
June 2003
Tool Demonstrations

Organized by Eric Verbeek

24th International Conference on Application and
Theory of Petri Nets

International Conference on Business Process
Management

Eindhoven, The Netherlands, June 23–27, 2003

Tool Demonstrations

Table of Contents

r

r-

Table of Contents

ADEPT Workflow Management System... 1
Manfred Reichert, Stefanie Rinderle, and Peter Dadam

System Architect .. 11

Prototyping Object Oriented Specifications... 15
Ali Al-Shabibi, Didier Buchs, Mathieu Buffo, Stanislav Chachkov, Ang Chen, David Hurzele

CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 25
Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank, Qvo
trup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, Kurt Jensen

CPN-AMI 2.6 ... 35
Yann Thierry-Mieg , Fabrice Kordon, Emmanuel Paviot-Adet, & Denis Poitrenaud

FileNET.. 41
FileNet Corporation

FLOWer ... 47
Pallas Athena

HiWorD: A Petri Net-Based Hierarchical Workflow Designer... 59
Boualem Benatallah, Piotr Chrzastowski-Wachtel, Rachid Hamadi, Milton O’Dell, and Adi
Susanto

jBpm : open source solution for BPM.. 61
Tom Baeyens

The Model-Checking Kit ... 71
Claus Schröter, Stefan Schwoon and Javier Esparza

PARIS: Method & Application .. 81
H.C.A. Verbeke

Visual Modelling Facilities in PEP .. 87
Christian Stehno

Protos.. 93
Pallas Athena

Renew – The Reference Net Workshop... 99
Olaf Kummer, Frank Wienberg, Michael Duvigneau, Michael Köhler, Daniel Moldt, Heiko
Rölke

PLC Programming with Signal Interpreted Petri Nets... 103
Stéphane Klein, Georg Frey and Mark Minas

Modelling and Validation with VipTool.. 113
Jörg Desel, Gabriel Juhás, Robert Lorenz and Christian Neumair

Table of Contents

Introduction
1.0
I
n
t
r
o
d
u
c
t
i
o
n

ADEPT Work”ow Management System �

…Tool Demonstration …

Manfred Reichert, Stefanie Rinderle, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{ reichert, rinderle, dadam } @informatik.uni-ulm.de

Abstract. In this tool presentation we give an overview of the ADEPT
work”ow management system (WfMS), which is one of the few avail-
able research prototypes dealing with enterprise-wide, adaptive work-
”ow (WF) management. ADEPT o�ers sophisticated modeling concepts
and advanced features, like temporal constraint management, ad-hoc WF
changes, WF schema evolution, synchronization of inter-work”ow depen-
dencies, and scalability. We sketch these features and describe how they
have been realized within ADEPT. In addition, we show which tools and
interfaces are o�ered to developers and users in this context. ADEPT
follows a holistic approach, i.e., the described concepts have not been
implemented in an isolated fashion only, but are treated in conjunction
with each other by integrating them within one WfMS.

1 Introduction

Long regarded as technology for the automation of well-structured business pro-
cesses, WF management is in the throes of transformation as more and more
non-traditional applications require comprehensive process support. In many
domains, like hospitals, engineering environments, or e-business, however, high
requirements with respect to functionality, ”exibility, and scalability exist [1…3].
In the ADEPT project, we have addressed these requirements from the very
beginning. In the meantime, we have developed an adaptive WfMS prototype,
which allows users to realize ”exible, enterprise-wide WF applications.

In this paper, we give an overview of the ADEPT WfMS and its related
concepts, tools, and user as well as programming interfaces. Section 2 summarizes
basic features of the ADEPT WfMS, which have been described in more detail
in previous publications of our group [2, 4, 5]. In Section 3 we show how these
features have been realized within the ADEPT WfMS. Section 4 sketches selected
projects to demonstrate the usefulness of the developed WfMS. We conclude with
a short summary in Section 5.

� This work was partially performed within the research project ŽChange management
in adaptive work”ow systemsŽ, which has been founded by the German Research
Community (DFG).
ADEPT Workflow Management System 1

Features of the ADEPT WfMS
2.0
F
e
a
t
u
r
e
s

o
f

t
h
e

A
D
E
P
T

W
f
M
S

2 Features of the ADEPT WfMS

WF Modeling : ADEPT o�ers advanced concepts for the modeling, analysis,
and veri“cation of WF templates [5]. It enables the explicit de“nition of control
and data ”ow, actor and resource assignments, temporal constraints, and pre-
planned exceptions (e.g., forward and backward jumps [6]). This can be done in
an integrated and consistent manner. Thereby ADEPT guarantees static and dy-
namic correctness properties (e.g., no missing input data when invoking activity
programs, no unde“ned work assignments, no deadlocks), which is an important
prerequisite for later model as well as instance changes. For control ”ow mod-
eling, a simple, yet powerful formalism is o�ered. It is based on serial-parallel
graphs with several important extensions necessary to adequately capture real-
world processes. Nevertheless the resulting WF models are easy to understand
for designers as well as for end users. In addition to this graph-based represen-
tation, a precise formal semantics, an equivalent operational semantics, and an
e�cient implementation exists.

Temporal Constraints : The handling of temporal constraints is an im-
portant feature of any WfMS. In ADEPT, designers can specify minimal and
maximal durations for WF activities. At runtime, in addition, appointments may
be associated with them. Furthermore, time dependencies between activities are
de“nable (e.g., ŽX must be completed 2 days beforeY startsŽ). ADEPT o�ers
advanced concepts for specifying such constraints and for checking already at
buildtime whether they are satis“able or not [2]. Currently, we use Temporal
Constraint Networks for representing time constraints and for checking consis-
tency. At runtime, ADEPT schedules activities according to their starting times,
supervises temporal constraints, and informs users when deadlines are going to
be missed. Problems we have to deal with in this context include uncertainty,
delays, and temporal inconsistencies (e.g., due to model changes).

Ad-hoc WF Changes : The support of ad-hoc changes is a must for WfMS
in order to cover a broad spectrum of processes. At the instance level, ADEPT
enables di�erent kinds of ad-hoc deviations from the pre-modeled WF template
(e.g., to omit activities, to change activity sequences, or to insert activities [5]).
Such dynamic changes, however, must not lead to an unstable system behav-
ior; i.e., none of the guarantees which have been achieved by formal checks at
buildtime must be violated due to the dynamic change. ADEPT ensures this by
introducing formal pre- and post-conditions for change operations. In particular,
a consistent state must be preserved when a WF instance is going to be adapted.
Additionally, ADEPT properly integrates changes with respect to authorization
and documentation. Furthermore, all complexity associated with the adaptation
of WF instance states, the re-mapping of input/output parameters of the com-
ponents a�ected by a change, the problem of missing input data due to activity
deletion, or the problem of deadlocks is hidden to a large degree from users.

WF Schema Evolution : In order to adequately deal with business pro-
cess changes it is important that adaptations can be quickly performed at the
WF type level as well. Besides versioning, ADEPT supports the propagation of
WF type changes to in-progress WF instances. In doing so, change propagation
2 ADEPT Workflow Management System

ADEPT Components, Architecture, and Interfaces
3.0
A
D
E
P
T

C
o
m
p
o
n
e
n
t
s
,

A
r
c
h
i
t
e
c
t
u
r
e
,

a
n
d

I
n
t
e
r
f
a
c
e
s

is restricted to those WF instances for which the type change does not con-
”ict with current instance state or previous ad-hoc changes. Basic to this is a
comprehensive framework for change propagation which is based on well-de“ned
compliance criteria for WF instances and on advanced rules for automatically
and e�ciently adapting instance markings.

Speci“cation and Synchronization of Inter-WF-Dependencies : Many
WfMS do not provide adequate means for (semantic) inter-work”ow coordination
as concurrently executed WF instances are considered completely independent.
Though WF templates are modeled separately from each other in order to re-
main comprehensible and manageable, very often corresponding instances are
semantically inter-related in the one way or another [4]. Pragmatical approaches
like inter-work”ow message passing or merging interdependent work”ows within
one template do not satisfactorily solve this problem. The latter, for example,
would lead to a large number of templates, each of them very complex and
hard to maintain. ADEPT uses interaction expressionsand interaction graphs
as a simple yet powerful mechanisms for the speci“cation and implementation of
inter-WF dependencies [4]. In addition to a graph-based semi-formal interpreta-
tion, a precise formal semantics, an equivalent operational semantics, an e�cient
implementation, and detailed complexity analyses exist, which allow us to ac-
tually apply this formalism to coordinate inter-WF dependencies. ADEPT uses
di�erent coordination and subscription protocols to actually employ interaction
expressions for the e�cient synchronization of concurrent work”ows.

Scalability and Distributed WF Control : In large-scale, enterprise-wide
application scenarios, performance is a critical issue. Due to the high amount of
communication between server(s) and clients the communication network may
become a bottleneck, especially if a large amount of Žlong-distanceŽ communi-
cation occurs. To avoid bottlenecks, ADEPT allows to reduce the network load
by partitioning WF graphs and by migrating the control of WF instances from
one server to another during run-time [7, 8]; i.e., a WF instance may no longer
be controlled by only one WF server. When performing such a migration, a de-
scription of the instance state is transmitted to the target server. This includes
information about activity states as well as WF relevant data. To avoid unneces-
sary communication between servers, ADEPT allows to control parallel branches
of a WF instance independently from each other (at least as no synchronization
due to other reasons, e.g., a dynamic WF change, becomes necessary).

When designing these features, the following issues have been of interest: How
to maintain robustness and correctness, how does the feature a�ect application
programming, and how is it made available to the end user? In addition, we have
identi“ed the interdependencies existing between them and we have shown how
the di�erent features work in conjunction with each other.

3 ADEPT Components, Architecture, and Interfaces

We have realized the described features in the ADEPT WfMS. This research
prototype supports WF control and monitoring, demonstrates the feasibility of
ADEPT Workflow Management System 3

ADEPT Components, Architecture, and Interfaces
dynamic WF changes in a (distributed) WfMS, deals with temporal constraints,
shows which user and programming interfaces are required, and proves that the
concepts work in conjunction with each other as well. All system components
have been implemented in Java, for communication Java RMI has been used.

3.1 ADEPT Buildtime Components

The ADEPT buildtime components enable the de“nition and management of
WF templates, the description of inter-WF dependencies, the modeling of or-
ganizational entities, the speci“cation of security constraints (Who is allowed
to perform a particular WF change?), and the plug-in of application compo-
nents. All relevant information is stored in the ADEPT repository. In addition,
XML-based descriptions of model data may be generated; e.g., to export tem-
plate descriptions to foreign tools or to exchange them between di�erent WF
servers. However, we do not support the XPDL syntax as de“ned by the Work-
”ow Management Coalition (WfMC). On the one hand, the ADEPT WF meta
model comprises several elements not captured by XPDL, on the other hand the
support of WfMC standards does not have top priority in our research project.

For the modeling and management of WF templates, ADEPT o�ers a syntax-
driven, graphical WF editor . A sample screen is depicted in Fig. 1. Its upper part
shows a control ”ow window whereas the lower part displays input parameters of
a selected activity and their mapping to WF data elements (data ”ow). Activity
attributes are displayed in the right window. To each activity node a (reusable)
template can be assigned. It sets out default properties like minimal/maximum
duration, actor assignments (e.g., based on user roles), associated application
components, and user-de“ned attributes. The WF designer is supported in cor-
rectly modeling and changing WF templates, i.e., static and dynamic WF prop-
erties as mentioned in Section 2 are guaranteed. To achieve this, the WF editor
enables on-the-”y checks during WF editing as well as complete model checks
initiated by the designer. In any case, a new WF template may only be released
if all checks are successful. This is crucial for the WfMS to achieve a reliable
and stable execution behavior. It is also a prerequisite for dynamic WF changes.
Finally, new releases of a WF template are introduced by deploying the template
to all relevant WF servers. For this, an XML-based description is sent to them
and imported into their run-time databases.

ADEPT distribution , the distributed variant of the ADEPT WfMS, addition-
ally provides support for assigning WF servers to WF activities. This WF graph
partitioning can be done manually or automatically by the use of a con“guration
tool. In the latter case, we make use of repository information (e.g., roles and
locations of users) in order to determine optimal server assignments (i.e., to a
“nd a partitioning which minimizes overall communication costs at run-time).
Taking our example from Fig. 1, WF instances will be controlled by WF servers
s1 and s2. (Server assignments are displayed below the activity nodes. Accord-
ingly, •perform examinationŽ and •write reportŽ are controlled by s2, whereas
all other activities are carried out by s1.)
4 ADEPT Workflow Management System

ADEPT Components, Architecture, and Interfaces
� � � � � �

� � � �

� � � �

Fig. 1. ADEPT Work”ow Editor

ADEPT provides several other buildtime components for de“ning di�erent
aspects of process-oriented information systems:

… ADEPT interaction editor : Powerful tool for de“ning and managing
inter-work”ow dependencies based on interaction expressions and graphs [4].

… ADEPT organization modeler : Graphical tool for describing organiza-
tional entities (e.g., user roles, capabilities, and organizational units) and
their relationships (incl. substitution rules).

… ADEPT application con“guration tool : This tool allows the WF de-
signer to assign di�erent application components to the same acitivity tem-
plate. In doing so, the concrete binding of a component at runtime can be
based on user as well as on workstation pro“les.

3.2 ADEPT Runtime Clients

ADEPT comprises standard runtime clients for end users as well as for system
and process administrators. These clients enable worklist display and manipu-
lation, WF monitoring, activity program execution, dynamic WF changes, and
system con“guration.

For worklist handling, several client programs are available. Besides ŽthickŽ
clients, ADEPT o�ers a Web client interface whose implementation is based on
servlets. Web clients have a limited functionality when compared to standard WF
clients, in particular concerning activity implementation. Both, thick and thin
clients, however, already provide user interfaces fordynamic changes, giving end
users the possibility, at run-time, to deviate from the pre-modeled task sequence.
In detail, authorized actors may intervene into WF control by inserting, deleting,
or shifting activities. In doing so, respective clients provide the necessary change
context and allow change de“nition at a high semantic level. In particular, end
users are not burdened with the complexity of dynamic changes; i.e., they must
not deal with the problem of missing input data, the avoidance of deadlocks, or
the graph transformations and state adaptations necessary to realize the change.
ADEPT Workflow Management System 5

ADEPT Components, Architecture, and Interfaces
To monitor in-progress WF instances and to demonstrate the e�ects of dy-
namic changes, ADEPT o�ers a specialmonitoring client . It allows authorized
users to visualize WF instance graphs, together with the information related to
them. Fig. 2 shows a sample screen of a WF instance created from the template
as depicted in Fig. 1. Activities •admit patientŽ, •instruct patientŽ, and •collect
patient dataŽ have been completed (indicated by symbol

�
), whereas activity

•calculate doseŽ is currently activated (indicated by symbol �). Fig. 2 also dis-
plays data elements read and written by the selected activity (•calculate doseŽ
in the example) as well as detailed information about this activity (e.g., actor
and server assignments, starting time, priority, etc.). All relevant information
is managed by the WF server which controls this activity (s1 in the example).
Actually, the monitoring client only shows the WF instance graph from the view-
point of server s1 (to which it is connected). Normally, this server does not know
how far the execution in the upper branch of the parallel branching (currently
controlled by s2) has proceeded.

Fig. 2. ADEPT Monitoring Client (before the dynamic change of a WF instance)

Let us sketch how a dynamic change of the (distributed) WF instance from
Fig. 2 is realized:

Example : Assume that an authorized user (connected to s1) speci“es that activity
•perform allergy testŽ is to be inserted between node sets { •instruct patientŽ } and
{ •write reportŽ, •produce drugŽ } ; i.e., the allergy test shall be performed after patient
instruction and before reporting and drug production. The resulting WF instance graph
is depicted in Fig. 3. Internally, the change is accomplished as follows: First of all, to
decide whether the insertion is permissible or not, s1 retrieves information about the
global state of the WF instance from other active servers (s2 in our example). As
a result, s1 “nds out that activities •write reportŽ (controlled by s2) and •produce
drugŽ (controlled by s1 itself) have not been started yet; thus the dynamic insertion is
allowed. In the following, s1 performs all necessary graph transformations to realize the
6 ADEPT Workflow Management System

ADEPT Components, Architecture, and Interfaces
change. It inserts activity •perform allergy testŽ parallel to the minimal block, which
contains the nodes •instruct patientŽ, •write reportŽ, and •produce drugŽ. (For this,
the AND split n1, which represents a null task, is inserted). To enforce the desired
control dependencies, three synchronization edges are added (e.g., the edge linking
•perform allergy testŽ with •write reportŽ). Finally, the state of the newly inserted
activity is evaluated, leading to its immediate activation.

Fig. 3. ADEPT monitoring client (after the WF instance change)

3.3 ADEPT System Architecture and Programming Interfaces

The ADEPT WfMS is based on a multi-server architecture (cf. Fig. 4). A WF
instance may either be controlled by a single server or by multiple servers if favor-
able. To each server di�erent clients can be connected, e.g., worklist programs,
monitoring components, and modeling tools. For implementing non-standard
clients, ADEPT o�ers a rich API. It extends the one-directional client-server
communication in order to enable WF servers to play an active role if need be;
e.g., to initiate requests at the client site in order to get approvals from WF par-
ticipants when performing a change or to immediately notify users when dead-
lines are going to be missed. Which communication model is used depends on the
application scenario and can be con“gured by developers. Inter-WF dependen-
cies are controlled by an interaction manager, which uses suitable coordination
protocols to ensure that a client does not execute an action which is currently
not permitted according to some inter-work”ow dependency.

Server implementation is based on relational DBMS, which enables trans-
actional execution of requests and, therefore, guarantees persistency and con-
sistency of model and instance data. The kernel of the WF server is realized
as a multi-layered architecture. The top level, the Execution Layer, processes
client API calls (e.g., to start an activity or to perform a change). Each call
is decomposed into a set of service requests from the underlyingService Layer,
ADEPT Workflow Management System 7

Practical Use and Lessons Learned
4.0
P
r
a
c
t
i
c
a
l

U
s
e

a
n
d

L
e
s
s
o
n
s

L
e
a
r
n
e
d

ADEPT
Server

Kernel
(WF APIprocessing)

Execution Layer

DBMS
(Oracle)

Distribution Layer

Data Access Layer

Application
Databases

Time
Management

Server-t o-Serv er -
Communica ti on
(sy nc hrono us &

asy nc hronous)

Service Layer

Input
Queue

Output
Queue

Processes/Threads

Service
Request

Proces ses /Threa ds

Name and DirectoryService

Input
Queue

Application Interface

WF Task
Manager

WF-
Client-
API

Service
Result

Active
Notification

ADEPT
Server

WFd ata

Workflow
Applications

ADEPT Demo Client
ADEPT editor
ADEPT organager

Fig. 4. ADEPT System Architecture

which comprises services designed along the described features (e.g., for schedul-
ing WF activities, dynamically changing WF instances, managing user worklists,
or handling temporal constraints). As an example take an activity completion,
which leads to an update of the time schedule and the state of the respective WF
instance, a role resolution of subsequent steps, and an update of worklists. Each
component of theService Layer itself decomposes calls into basic operations for
the Data Access Layer(e.g., to read, to create, or to modify WF objects). Fi-
nally, if a migration of the WF control or a synchronization of the WF data
becomes necessary, theDistribution Layer provides the required functionality.

ADEPT provides rich programming interfaces whose functionality goes far
beyond the WfMC API. The o�ered change operations hide as much of the com-
plexity of a dynamic change from application programmers as possible. Regard-
ing activity insertion, for example, the method dynamicInsertBetweenNodes
can be used: For a given WF instance, a new activity (with id actIdentifier
and activity template actTemplate) can be inserted between node setspredNodes
and succNodes. Information on how to map activity parameters to process data
elements can be passed by the parametermaInfo. ADEPT allows di�erent set-
tings, e.g., automatic mapping of parameters to existing data elements or pro-
vision of input parameters by automatically generated, electronic forms.

public class WFProcessInstance {

public WFModificationResult dynamicInsertBetweenNodes(

ActivityTemplate actTemplate, ActivityId actIdentifier,

InsertionArea predNodes, InsertionArea succNodes, ModificationAdjustInfo maInfo)

// other methods

}

4 Practical Use and Lessons Learned

To gain concrete implementation and usability experience we have elaborated
ADEPT within several research projects. Some of them have been carried out
8 ADEPT Workflow Management System

Practical Use and Lessons Learned
by our department in close cooperation with partners from di�erent application
domains. Additionally, we deployed the ADEPT WfMS to other research groups
who have used it as platform for implementing sophisticated WF scenarios. In
summary, all these projects helped us to identify basic needs for adaptive work-
”ows and to evolve the ADEPT WfMS over time. Current projects working with
ADEPT include CONSENSUS [1], AgentWork [3], and WebFlow [9].

Clinical work”ows : We consider hospital processes as being one of the
most challenging application areas for WF technology [2]. Typically, a hospital
comprises decentralized units which participate in a variety of medical and or-
ganizational procedures with di�erent complexity and duration (up to several
months). In a two-years WF project with a Women•s Hospital, we performed an
in-depth analysis of all characteristic WF types, the organizational structures
and responsibilities related to them, the kinds of exceptions which may occur,
and the adequate reactions necessary to deal with them. The identi“ed require-
ments helped us to design the basic features of the ADEPT WfMS and to get
an impression of the change facilities needed. In order to gain concrete experi-
ence with the use of WF technology in general and with the ADEPT WfMS in
particular we implemented selected clinical processes based on them. The goal
was to learn how computer-based process support can be smoothly integrated
in the daily routine work and how adequate user interfaces have to look like. As
a result, it became obvious that WfMS with a proper, secure, and robust han-
dling of exceptional cases are a mandatory prerequisite for any WF-based clinical
application. ADEPT has been perfectly coherent with these requirements.

Automatic WF adaptations : AgentWork [3] o�ers a system for auto-
matically adapting WF instances. For this, a rule-based approach has been
applied. When exceptional events occur, AgentWork identi“es WF instances
to be adapted, determines the change operations to be applied, automatically
performs the change, and noti“es WF participants accordingly. AgentWork has
adopted the ADEPT meta model and has used the ADEPT WfMS as implemen-
tation platform. It bene“ts from the o�ered features, in particular concerning
WF modeling and execution, ad-hoc changes, and temporal constraint manage-
ment. Apart from this, we had received important feedback which helped us to
evolve the ADEPT user and programming interfaces. Currently, with WebFlow
another project of this group is on its way [9]. It aims at the ”exible support of
cross-organizational work”ows. Due to its dynamic change facilities, the ADEPT
WfMS will be a core component of WebFlow as well.

Flexible E-negotiations : CONSENSUS o�ers a ”exible support system
for e-negotiations based on parameters like quality, delivery, or warranty [1]. E-
negotiations are required, for example, in conjunction with supply chains and
e-procurement. On the one hand they have to be organized in a process-oriented
manner, on the other hand they require ”exibility and dynamism to accommo-
date to the various contingencies and obstacles that can appear during negoti-
ation. For example, if a supplier or a shipping company makes a new o�er that
might be of interest for a buying company, the buyer will review negotiation
activities already planned within the WF model and may want to rearrange
ADEPT Workflow Management System 9

Summary
5.0
S
u
m
m
a
r
y

them (e.g., to dynamically skip, replace, or shift activities). In this context, the
ADEPT change and veri“cation facilities have proven as perfectly coherent with
the ”exibility requirements in e-negotiations. However, there are several require-
ments identi“ed within the CONSENSUS project (e.g., dynamic change of WF
attributes) which have not yet been fully supported by ADEPT (see [1]).

5 Summary

The ADEPT WfMS is the technological answer to the requirements set out by
real-world processes. We have implemented fundamental concepts related to WF
modeling, dynamic changes, temporal constraints, inter-WF dependencies, and
scalability in a powerful research prototype. Currently, the integration of change
propagation facilities in connection with WF schema evolution is on its way.
The lessons learned from the sketched application projects have helped us to
further develop the underlying concepts of the ADEPT WfMS, to improve and
complement its buildtime and runtime components, and to re“ne user as well
as programming interfaces. Adaptive WF technology as o�ered by ADEPT will
be core of future WfMS and signi“cantly in”uence the development of process-
centered applications. It will drastically simplify application programming by
providing rich, high-level interfaces for de“ning and changing model as well as
instance data. As a consequence, development and adaptation times can be re-
duced by factors when compared to current Žhard-wiredŽ solutions.

References

1. Bassil, S., Benyoucef, M., Keller, R., Kropf, P.: Addressing dynamism in e-
negotiations by work”ow management systems. In: Proc. DEXA Workshop. (2002)

2. Dadam, P., Reichert, M., Kuhn, K.: Clinical work”ows … the killer application
for process-oriented information systems? In: Proc. 4th Int•l Conf. on Business
Information Systems (BIS •00), Poznan, Poland (2000) 36…59

3. Müller, R., Rahm, E.: Dealing with logical failures for collaborating work”ows. In:
Proc. Int•l 5th Conf. on Coop. Inf. Sys., Eilat (2000) 210…223

4. Heinlein, C.: Work”ow and process synchronization with interaction expressions
and graphs. In: Proc. Int•l Conf. Data Eng., Heidelberg (2001) 243…252

5. Reichert, M., Dadam, P.: ADEPT flex - supporting dynamic changes of work”ows
without losing control. JIIS 10 (1998) 93…129

6. Reichert, M., Dadam, P., Bauer, T.: Dealing with backward and forward jumps
in work”ow management systems. Int•l Journal Software and Systems Modeling
(SoSyM) 2 (2003) 37…58

7. Bauer, T., Dadam, P.: E�cient distributed work”ow management based on variable
server assignments. In: Proc. CAiSE •00, Stockholm (2000) 94…109

8. Bauer, T., Reichert, M., Dadam, P.: Intra-subnet load balancing in distributed
work”ow management systems. Int•l Journal of Cooperative Information Systems
(IJCIS) 12 (2003) (to appear).

9. Greiner, U., Rahm, E.: WebFlow: A system for the ”exible execution of web-based,
cooperative work”ows (in German). In: Proc. Database Systems For Business, Tech-
nology and Web (BTW•2003), Leipzig (2003)
10 ADEPT Workflow Management System

Popkin Software & Systems BV
1.0
P
o
p
k
i
n

S
o
f
t
w
a
r
e

&

S
y
s
t
e
m
s

B
V

System Architect ® is a comprehensive and powerful modelling solution designed to provide all of the

tools necessary for development of successful enterprise systems. It was the first tool to integrate, in one

multi-user product, industry-leading support for all major areas of modelling, including business process

modelling, object-oriented and component modelling with UML, relational data modelling, and

structured analysis and design. All functionality is harnessed within System Architect•s extensible

repository with native support for Microsoft VBA.

System Architect provides perhaps the richest set of business modelling diagrams on the market, to

enable you to capture the entire enterprise from various business perspectives -- from high-level business

objectives and organisational makeup, through event-driven business process and functional modelling,

to design of the applications and databases that make the business run, to network architecture of where

everything is.

System Architect supports a commercial business modelling notation as well as the IDEF methodology.

Using either method, you can design new or redesign existing business processes to implement the most

cost-effective and competitive business processes possible. Support will very soon be provided for the

new BPMN (see below).

Over the last few years, organisations have become more aware of the growing need to develop

integrated models of their business in order to remain competitive and flexible to change.

To this end, interest in industry-accepted Enterprise Architecture Frameworks (for example, the Zachman

Framework) has increased dramatically.

To make navigating and viewing all of these models easier from a framework perspective, the new

System Architect Framework Manager has been introduced. The System Architect Framework Manager

enables users to view and access the models and artefacts they have developed in a System Architect

encyclopaedia through a framework interface. Each cell of the framework can be opened to view a filtered

browser list of all diagrams and definitions in the encyclopaedia that pertain to that cell of the framework.

Users may use predefined, industry accepted, frameworks such as the Zachman Framework or RUP that

are provided by Popkin, or build their own framework browser to support their own custom framework.

Popkin•s System Architect enterprise architecture tool set has met compliance requirements for the

TOGAF 7 Architecture Development Method (ADM), an international, open-standard method for

information systems architecture development. TOGAF is a framework -- a detailed method and a set of

supporting tools -- for developing an IT architecture, and is available free of charge to any organisation

wishing to develop an information systems architecture for use within that organisation. The Open Group

is an international vendor-neutral and technology-neutral consortium of leading technology organisations

world-wide.
System Architect 11

Popkin Software & Systems BV
The Popkin implementation of the Zachman Framework

In August 2001 the Business Process Modelling Initiative (BPMI), formed a working group to implement a

Business Process Modelling Notation (BPMN). The BPMN is the visualisation of the XML-based Business

Process Modelling Language (BPML). A BPMN diagram should be able to generate executable BPML.

Popkin Software led this working group.

The BPMI is a non-profit corporation with 80+ members, including BEA, IBM and SAP that promotes and

develops the use of Business Process Management (BPM) through the establishment of standards for

process design, deployment, execution, maintenance, and optimisation.

The Business Process Modeling Notation (BPMN) specification provides a graphical notation for

expressing business processes in a Business Process Diagram (BPD). The BPMN specification also

provides a binding between the notation's graphical elements and the constructs of block-structured

process execution languages, including BPML and BPEL4WS. The first draft of BPMN was made

available to the public on November 13, 2002.
12 System Architect

Popkin Software & Systems BV
System Architect will offer integral support for BPMN and BPML. An early practical implementation will be

the recently announced partnership with Intalio, makers of the n/3 BPM system. For the new solution,

Popkin's System Architect will export BPML generated from process models either created using

traditional techniques like IDEF, a structured approach to process modelling and analysis, or the newly

defined BPMN. The BPML is then executable in Intalio n/3 Designer and deployed onto the Intalio n/3

Server.

Organisations can use the Intalio-Popkin solution to manage the complete business process lifecycle

from design and development of business processes through their implementation, deployment,

execution, analysis and optimisation.

For more information contact :

Popkin Software & Systems BV

Rijnzathe 7 b-3
3454 PV De Meern
The Netherlands

Tel: +31 (0)30 6665530
Fax: +31 (0)30 6661405
info@popkin.nl
www.popkin.com
System Architect 13

Popkin Software & Systems BV
14 System Architect

Introduction

-

1.0
I
n
t
r
o
d
u
c
t
i
o
n

 Prototyping Object Or iented
Speci f icat ions

Ali Al-Shabibi, Didier Buchs, Mathieu Buffo, Stanislav Chachkov,
Ang Chen, David Hurzeler

Software Engineering Laboratory, Swiss Federal Institute of
Technology Lausanne, 1015 Lausanne, SWITZERLAND

{didier.buchs,stanislav.chachkov,david.hurzeler}@epfl.ch

Abstract. CoopnBuilder is an integrated development environment (IDE) for
Concurrent Object Oriented Petri Nets (COOPN). It comes with a complete
set of tools enabling the user to view, edit, check, simulate and generate code
from CO-OPN specifications. The Code Generation tool allows the user to
develop applications in an open way: the produced code can be integrated in
larger projects or use existing libraries. The code generation will be empha-
sized in this paper, and we will focus on ease-of-use and extensibility. Coop-
nBuilder is an open-source Java program and can be downloaded from ��
http://cui.unige.ch/smv

1 Introduction

CO-OPN is an object-oriented modelling language, based on Algebraic Data Types
(ADT), Petri nets, and IWIM (Idealized Worker, Idealized Manager) coordination mod-
els [1]. CO-OPN is designed for modelling systems where data, concurrency and prob-
lems related to effective distribution of system is of uttermost importance. In this kind
of systems, it is necessary to provide techniques and tools to help developers deal with
the high expressivity of the CO-OPN language. These tools should mainly guide users
in finding the right model and reduce the time necessary for reaching an efficient im-
plementation of a given model. We will make a survey of the basic tools of the Coopn-
Builder environment and focus on the code generation techniques and their potential
use in the development of real systems.

2 CO-OPN Specification Language

CO-OPN specifications are collections of algebraic abstract data types, and class
and context (i.e. coordination) modules. Syntactically, each module has the same over-
all structure; it includes an interface section defining all accessible elements from the
outside of the module, and a body section including the local aspects, private to the
module. Moreover, class and context modules have convenient graphical representa-
tions, showing their underlying Petri net model. A more detailed description of CO-
OPN can be found in [1].

From a semantic point of view, CO-OPN has a true concurrent semantics for ob-
jects, based on the classical model-based semantics of algebraic nets[2]. The dynamic
Prototyping Object Oriented Specifications 15

CO-OPN Specification Language

f

t
-

t

2.0
C
O
-
O
P
N

S
p
e
c
i
f
i
c
a
t
i
o
n

L
a
n
g
u
a
g
e

ity and mobility of objects (as for instance the dynamically evolving CO-OPN context
structures) is captured by localization semantic rules [6].

2.1 ADT Modules
CO-OPN ADT modules define data types by means of algebraic specifications. Each
module introduces one or more sorts (i.e. names of data types), along with generators
and operations on those sorts. The properties of the operations are given in the body o
the module, by means of positive conditional equational axioms. Operations are partial
deterministic functions.

An example of ADT is given by the CO-OPN standard library module Booleans
(Figure 1).

ADT Booleans;
Interface

Sort booleans;
Generator true,false : -> booleans;

 Operation
 _ and _ : booleans, booleans -> booleans;
Body
 Axioms
 X and true = X;
 X and false = false;
 ...
 Where
 X: booleans;

Figure 1 ADT Booleans (fragment).
Any kind of data structure could be modelled in this language with a high level of

abstraction and a clear declarative style. Even if we have a declarative approach, mos
of the usual data structures can be animated using rewriting techniques (essentially, re
write systems are obtained by orienting the equations). This is the main principle used
for the code generation supported by our tools.

2.2 Classes
CO-OPN classes are described by means of modular algebraic Petri Nets with particular
parameterized external transitions that are called methods or gates. Methods represen
services provided by the class and gates - services required. As usual, instances of class-
es are called objects. Objects are instantiated by using either user-defined creation
methods or a predefined method Create.

The behavior of transitions is defined by so-called behavioral axioms, similar to the
axioms in an ADT. A method call results in an external transitions synchronization,
similar to the Petri Net transition fusion technique. The axioms have the following syn-
tax (see Figure 2 for an example of corresponding graphical representation of axioms):
Cond=> eventnameWith synchro: pre -> post
In which the terms have the following meaning:

€ Cond is a set of equational conditions - the guard;
€ eventname is the name of a method with the algebraic term parameters.
€ synchro is the synchronization expression defining the policy of transactional in-

teraction of this event with other events. Synchronization expressions are the CO-
16 Prototyping Object Oriented Specifications

ADEPT Components, Architecture, and Interfaces

v-
ut-

-

-

3.0
A
D
E
P
T

C
o
m
p
o
n
e
n
t
s
,

A
r
c
h
i
t
e
c
t
u
r
e
,

a
n
d

I
n
t
e
r
f
a
c
e
s

OPN equivalent of method calls. The dot notation is used to access events of spe-
cific objects. Synchronization expressions can be combined using the synchroni-
zation operators: sequence, simultaneity and nondeterminism.

€ Pre and Post are the usual Petri Net flow relations determining what is consumed
from and what is produced in the object state places.

The state of a CO-OPN object is stored in places, which are really named multisets of
algebraic terms, object references or tuples of them.

k7 (pre) mc (pre and post)

ClassExample

 jmf _ (place)

mc.stop
(synchro)

stop(event)

stop(method)

 recording _ (place)

Figure 2 Graphical Representation of an Example Class
The interface of a class is composed of methods and gates. Where methods are the ser
ices offered by the class, the gates can be seen as services requested by the class or o
puts.

2.3 Contexts
Contexts are coordination entities, i.e. they coordinate activities among classes. Con-
texts, like classes, have an interface composed of methods and gates. They contain ob
jects and/or sub-contexts. Coordination is done using behavorial axioms that connect
methods and gates of embedded entities. A graphical representation of an example con
text is given in Figure 6.
Another important feature of CO-OPN contexts is locality. An object is always inside
one (and only one) context. The CO-OPN language can be used to specify distributed
systems and includes active object migration. This can be particularly useful for ex-
pressing complex localization problems. For instance, it seems natural to differentiate
the behaviour of a phonecard (object of class PhoneCard in Figure 3) if this phonecard
is in a wallet or if it is inserted into a telephone device. This can be expressed using a
context representing the wallet and another context representing the telephone. Moving
the card from the wallet to the telephone is modelled by a synchronization moving the
object from the Wallet context to the Cabin context (Figure 3).

Wallet Phone

insert_: Take PhoneCarddeliver _: Give PhoneCard

insert c With deliver c

Where c : PhoneCard

Figure 3 PhoneCard specification with migration information.
Prototyping Object Oriented Specifications 17

CoopnBuilder Framework

.

4.0
C
o
o
p
n
B
u
i
l
d
e
r

F
r
a
m
e
w
o
r
k

The migration of objects is done by transmitting the reference and the object itself
between the contexts participating in the synchronization. The direction of the migra-
tion is specified by special keywords (Give and Take) decorating the parameters. It
must be noted that if we omit these keywords, only references are copied. The CO-OPN
semantics does not allow to access remote objects, even if their references are known
Any attempt to synchronize with a non-local object will result in failure.

3 CoopnBuilder Framework

CoopnBuilder is the successor of the CoopnTools environment[3]. The CoopnBuilder
interface is inspired by the interfaces of most modern IDE. It is composed of three main
parts: a package tree, an editor view and a message panel (Figure 4).

package tree

message panel

editor view

Figure 4 CoopnBuilder main Window
In CO-OPN, modules (source code) are grouped in packages. The package view en-

ables the user to modify the package structure and launch tools associated to various
kinds of modules. It is similar to "project views" in other IDE. The editor view is used
to edit CO-OPN modules.

CoopnBuilder is an open framework. It is composed of a kernel part and a set of
tools [Figure 5]. The tools are loaded at start-up, so it is easy to extend CoopnBuilder
with new tools.
18 Prototyping Object Oriented Specifications

Tools

d

l

d

5.0
T
o
o
l
s

4 Tools

CoopnBuilder supports a very general software development model based on the clas-
sical waterfall model. It also supports various iterative development aspects at the spec-
ification level using constructs of the language (genericity and subtyping) and tuning of
the generated code by means of generation strategy selection management (step 3 an
4 on Figure 5).

4.1 General purpose tools
As seen above, CO-OPN specifications can be edited (step 1 on Figure 5) using textua
or graphical editors. A text editor also provides small tools that simplify the edition of
a specification. The checkertool (2 on Figure 5) verifies that a CO-OPN specification
is syntactically correct, and well-typed.

The textual and graphical representations of a specification can be printed or ex-
ported to various document formats. Graphical editors also support the integration of
external layouters (dot [14]).

Figure 5 Life-cycle of a specification with Coopn Builder.

Write Specification

Check

Generate Java Generate Prolog

Generation Strategy

SimulateDeploy

Monitoring

Simulate

1

2

54

6 98

7

3

The modular nature of the CO-OPN specifications allows us to manage specifica-

tions as a set of interconnected components that are separately specified and compose
by means of CO-OPN contexts. Special editors have been built to make this operation
easier where it is possible to just interconnect components (Figure 6). The semantics of
the interconnection follows the general idea of atomic synchronization (some kind of
transaction) that we introduced in the CO-OPN model. Consequently, the workload of
the specification can be considerably reduced if a well designed set of components al-
ready exists at the specification level; for some of the components, a dedicated imple-
mentation can make a link to already existing libraries. For instance, we have success-
fully integrated some of the Java media Framework librairies in some generated code.
Prototyping Object Oriented Specifications 19

Tools

-

-

Figure 6 Graphical Editor

4.2 The Abstract Data Type Evaluator and Simulator
After a CO-OPN specification has been "checked", we might want to execute, or simu-
late it. One of the approaches to do this is to transform it into a Prolog program[7]. The
evaluator and simulator tools (5,9 on Figure 5) implement this technique, and are based
on the resolution principle. While the evaluator tool enables the user to evaluate ab-
stract data types terms, the simulator tool offers a similar service for classes and con-
texts. These tools accept term-based queries with logical variables.

4.3 The Java Code Generator and Interpreter
Another approach to execute CO-OPN specifications, is their translation into Java code
[4] (step 4 on Figure 1). Basically, this corresponds to building rewrite systems for al-
gebraic abstract data types, and implementing concurrency. Also, the particular seman-
tics of the synchronizations between events in CO-OPN requires the implementation of
transactional mechanisms [4]. The generated code can be used as a prototype imple
mentation of a specification. CoopnBuilder has an "interpreter" tool, and this tool exe-
cutes CO-OPN terms using the generated Java code (by using the java language•s re
flexive mechanisms). This tool also features a built-in debugger, which enables step-by-
step execution of queries and/or exhibition of derivation trees at the end of a successful
20 Prototyping Object Oriented Specifications

Code Generation

r
6.0
C
o
d
e

G
e
n
e
r
a
t
i
o
n

query (monitoring, step 7 on Figure 1). The evaluator, simulator and interpreter tools
make the validation of CO-OPN specifications easier.

Figure 7 Interpreter and Debugger

5 Code Generation

Simulation is only one of the many different ways the code generator can be used. In
particular, it is designed to be embedded into an iterative development methodology
where the implementation choices should evolve [8]. Moreover, the target systems may
need drivers or user interfaces in order to manage human communication or hardware
control. We will explain how the generated code may be integrated in larger systems,
or use existing libraries.

5.1 Modularity and Configurability of the Code Generator
By default, the generated code uses rewriting techniques to evaluate terms. But this
might be space/time-costly. Therefore, we have made the code generator flexible
enough to allow users to improve the efficiency of evaluation by re-configuring the de-
fault code-generation algorithm.
For example, the evaluation of a specification often makes intensive use of numerical
calculations. In this case, term representation of numbers with the zero and successo
operations is not adapted to efficient evaluation. It is more interesting to represent nu-
merical values occurring in specifications by numerical types of the target language -
for example, the int type in Java. Our code generator can do that by allowing the choice
Prototyping Object Oriented Specifications 21

Code Generation

e

-

-
-

-

of the appropriate specific code-generation strategy: the user may choose which repre-
sentation of numbers he wants it to use.

Our generator allows the user to choose the strategy of code-generation for an indi-
vidual module, a group of modules or an entire specification. Of course, the choice of
code-generation strategies does not only address data representation alternatives. Mor
generally, this technique allows various kinds of optimization and code instrumenta-
tions (for example, in order to allow debugging).

For ease-of-use purposes, a choice of pre-defined strategies for different kinds of
modules (including standard library modules) is featured in the tool. Advanced users
may write their own code-generation strategies. It will also be possible to compose a
new code-generation strategy from pre-defined sub-strategies.

5.2 Integration of generated code
As stated above, another possible use for the generated code is integration into an ap
plication. Generated code can be integrated both as a server - you can call it -, or as a
client - it will call your code. The specifics of the CO-OPN specification language imply
that the generated code has to implement the non-determinism and transactional seman
tics of specifications. The user has the choice to either hide those aspects inside the gen
erated code or use them for finer integration. For more details on how to handle non-
determinism and transactional failures in non-reversible libraries, see [5].

5.3 Distributed systems and object migration

5.3.1 Implementation of migration
In order to implement the migration of objects, we have to carefully manage refer-

ences, and differentiate references of local and non-local objects (see Figure 8). We use
the classical Proxy mechanism to obtain an homogeneous access to objects. This indi
rect reference will present local and non-local objects to clients in a similar way. Usu-
ally, the Proxy just forwards synchronizations to the real object. In the case of an al-
ready moved object, the Proxy will always respond to inquiries by a failure.

The list of objects known by a context is managed in the KOT (Known Objects Ta-
ble). In the case where an object returns back to a context, no new entries will be added
to the KOT. Instead, the existing Proxy will be found and linked to the returned object.
This general mechanism satisfies both centralized and distributed implementations.

P

1
guid proxy

Context A

PO
guid=1

1
guidproxy Context B

migrationnull

KOT KOT

Figure 8 Implementation of object migration. (P: proxy, O: object, KOT: known
objects table of the context, GUID: globally unique id associated to object)
22 Prototyping Object Oriented Specifications

Related Work

i

-

-

-

-

r

-

7.0
R
e
l
a
t
e
d

W
o
r
k

6 Related Work

We can compare the CO-OPN modelling language and its features in our example with
various existing modelling languages. We should first note that CO-OPN is a formal
modelling language, i.e. it has well defined formal semantics [1]. Algebraic Petri Nets
are the basis of CO-OPN. The main differences between CO-OPN and mainstream Petr
nets based languages (for example DesignCPN [9]) is object-orientation: in CO-OPN,
Petri Nets are encapsulated into objects, which are instances of classes. Object-orienta
tion enables the developer to obtain a clear decomposition of the modelled system into
«modules». It also facilitates the transformation of a specification into a program in an
object-oriented programming language.
We should also note that even if the structure of a CO-OPN specification is composed
of classes and objects, we do not use any feature that could break the well defined se
mantics of CO-OPN. For example, we do not allow code fragments insertion in speci-
fications, as some languages do (Cooperative Nets [10]).
Another important feature of CO-OPN useful for our example is object mobility. This
has recently been added to our formalism, and the aim of this paper is to present an ex
ample where it is used. We are not aware of other object-oriented Petri net based lan-
guages in which mobility of objects or the notion of locality (expressed by Contexts in
our formalism) is present. The notion of mobility can be modeled using formalisms
such as Pi-calculus [11] or CSP [12]. Just as in the latters, communication between CO-
OPN objects can be configured, using CO-OPN contexts.
Transactions are another important part of the CO-OPN semantics: interactions be-
tween CO-OPN objects obey transactional semantics. This is well illustrated in our ex-
ample hereafter by the interactions between seller, buyer and bank account. Transac
tional semantics are not characteristic of Petri net based formalisms, or process calculi.
From this point of view, CO-OPN is similar to Prolog or other logical programming lan-
guages [13].
Finally, interactions between CO-OPN objects are synchronous. From this point of
view, CO-OPN can be compared to synchronous languages such as Esterel or Lustre
[16].

7 Future Work and Conclusions

In this short description we have presented the CoopnBuilder environment and the main
associated tools. The most usual tools - the checker, the structural editor, the viewers -
are not detailed in this paper; other tools, such as the code generator, the evaluator o
the simulator, have been shortly explained, and we have hopefully shown how they are
evolutive, useful and powerful.

Our present effort evolves around the execution of CO-OPN specifications. Two as-
pects are investigated: how to use generated code for testing and how to use it for se
mantic analisys.
Prototyping Object Oriented Specifications 23

References
8.0
R
e
f
e
r
e
n
c
e
s

8 References

[1] Didier Buchs and Nicolas Guelfi, ``A Formal Specification Framework for Object-Orient-
ed Distributed Systems,'' IEEE TSE, vol. 26, no. 7, July 2000, pp. 635-652.

[2] Olivier Biberstein, Didier Buchs and Nicolas Guelfi, ̀ `Object-Oriented Nets with Algebra-
ic Specifications: The CO-OPN/2 Formalism,'' Advances in Petri Nets on Object-Orienta-
tion, G. Agha and F. De Cindio and G. Rozenberg (Ed.), Lecture Notes in Computer Sci-
ence, no. 2001, Springer-Verlag, May 2001, pp. 70-127.

[3] Mathieu Buffo, Didier Buchs and Stanislav Chachkov, ̀ `CoopnTools a Toolkit for the sup-
port of CO-OPN,'' Proceedings of the Tools Demonstration of the 21th International Con-
ference on Application and Theory of Petri Nets, Aahrus University, June 2000, pp. 2-6.

[4] Stanislav Chachkov and Didier Buchs, ``From Formal Specifications to Ready-to-Use
Software Components: The Concurrent Object-Oriented Petri Net Approach,'' Internation-
al Conference on Application of Concurrency to System Design, Newcastle, IEEE Com-
puter Society Press, June 2001, pp. 99-110.

[5] Stanislav Chachkov and Didier Buchs, ``Interfacing Software Libraries from Non-deter-
ministic Prototypes,'' International Workshop on Rapid System Prototyping, July 1-3,
2002, Darmstadt, Germany

[6] Mathieu Buffo and Didier Buchs, ``A Coordination Model for Distributed Object Sys-
tems,'' Proceedings of the Second International Conference on Coordination Models and
Languages COORDINATION'97, September 1997, Lecture Notes in Computer Science,
vol. 1282, Springer-Verlag, 1997.

[7] D. Buchs and M. Buffo, ``Rapid Prototyping of Formally Modelled Distributed Systems,''
Proceedings of the Tenth International Workshop on Rapid System Prototyping (RSP'99),
Frances M. Titsworth (Ed.), IEEE, June 1999.

[8] Stanislav Chachkov and Didier Buchs, ``From an Abstract Object-Oriented Model to a
Ready-to-Use Embedded System Controller,'' Rapid System Prototyping, Monterey, CA,
IEEE Computer Society Press, June 2001, pp. 142-148.

[9] K. Jensen, "Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,"
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-Ver-
lag, 2nd corrected printing 1997. ISBN: 3-540-60943-1.

[10] Sibertin-Blanc, C. "Cooperative Nets" In Valette, R.: Lecture Notes in Computer Science,
Vol. 815; Application and Theory of Petri Nets 1994, Proceedings 15th International Con-
ference, Zaragoza, Spain, pages 471-490. Springer-Verlag, 1994.

[11] Robin Milner "Communicating and Mobile Systems: the -Calculus," Cambridge Univer-
sity Press, May 1999.

[12] C.A.R. Hoare "Communicating Sequential Processes," Prentice Hall International Series
in Computer Science, 1985.

[13] Ulf Nilsson and Jan Maluszynski "Logic, Programming and Prolog (2ed)"

[14] http://www.research.att.com/sw/tools/graphviz/
24 Prototyping Object Oriented Specifications

Introduction
1.0
I
n
t
r
o
d
u
c
t
i
o
n

CPN Tools for Editing, Simulating, and Analysing
Coloured Petri Nets

Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, Kurt Jensen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200, Århus N, Denmark

cpn@daimi.au.dk

Abstract. CPN Tools is a tool for editing, simulating and analysing Coloured Petri
Nets. The GUI is based on advanced interaction techniques, such as toolglasses,
marking menus, and bi-manual interaction. Feedback facilities provide contextual er-
ror messages and indicate dependency relationships between net elements. The tool
features incremental syntax checking and code generation which take place while a
net is being constructed. A fast simulator efficiently handles both untimed and timed
nets. Full and partial state spaces can be generated and analysed, and a standard state
space report contains information such as boundedness properties and liveness prop-
erties. The functionality of the simulation engine and state space facilities are similar
to the corresponding components in Design/CPN, which is a widespread tool for
Coloured Petri Nets.

1 Introduction

CPN Tools is a tool for editing, simulating and analysing untimed and timed, hierarchical
Coloured Petri nets (CPN or CP-nets) [1,2]. CPN Tools is intended to replace Design/CPN
[3], which is a widespread software package for CP-nets. In addition to Design/CPN, CPN
Tools can be compared to other Petri net tools such as ExSpect, GreatSPN, and Renew
which are all described in the Petri Nets Tool Database [4].

Design/CPN was first released in 1989 with support for editing and simulating CP-
nets. Since then a significant amount of time has been invested in developing efficient
and advanced support both for simulation and for generating and analysing full, partial,
and reduced state spaces. While the analysis components of Design/CPN have steadily
improved since 1989, the graphical user interface has remained virtually unchanged.

CPN Tools is the result of a research project, the CPN2000 project [5], at the University
of Aarhus, sponsored by the Danish National Centre for IT Research (CIT), George Mason
University, Hewlett-Packard, Nokia, and Microsoft. The goal of the CPN2000 project was
to take advantage of the developments in human-computer interaction, and to experiment
with these techniques in connection with a complete redesign of the GUI for Design/CPN.
The resulting CPN Tools combines powerful functionalities with a flexible user interface,
containing improved interaction techniques, as well as different types of graphical feedback
which keep the user informed of the status of syntax checks, simulations, etc. All models
that are created in Design/CPN can be converted and then used in CPN Tools; the reverse,
however, is not true.

This paper is organised as follows. Section 2 introduces the new interaction techniques
and components of the GUI. Section 3 describes how to edit CP-nets in CPN Tools. Finally,
Sect. 4 describes the simulation and state space facilities that are provided in CPN Tools.

2 The CPN Tools Interface

The CPN Tools interface requires a keyboard and at least one pointing device. Actually,
the interface supports and encourages the use of two or more pointing devices. For a right-
handed user we recommend using a mouse for the right hand and a trackball for the left
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 25

The CPN Tools Interface
2.0
T
h
e

C
P
N

T
o
o
l
s

I
n
t
e
r
f
a
c
e

Fig. 1. The CPN Tools interface. The left column is called the index. The top-left and top-right binders
contain sheets with different views of the same page. The bottom binder contains six sheets repre-
sented by tabs. The front sheet, containing the page named Top, shows a number of magnetic guide-
lines for easier alignment of objects. In the bottom-left binder, containing a declaration, a circular
marking menu has been popped up. The small binder on the right-hand side contains two sheets with
tool palettes. The palette in the front (Create) contains tools for creating CP-net objects and guide-
lines. A toolglass is positioned over the sheet in the top-right binder. This toolglass can be used to
edit colours, line styles and line widths.

hand. The mouse is used for tasks that may require precision, while the trackball is used
for tasks that do not require much precision e.g. moving tools. For simplicity we assume
a right-handed user in our description of interaction techniques. We describe how such a
person would typically use the right or left hand, but it should be noticed that all operations
can be done using either hand.

The interface has no menu bars or pull-down menus, and only few scrollbars and dialog
boxes. Instead, it uses a combination of traditional, recent and novel interaction techniques,
which are described below. Figure 1 shows the GUI for CPN Tools.

Workspace management makes it easy to manage the large number of pages that are
typically found in industrial-sized CP-nets. The workspace occupies the whole screen and
contains window-like objects called binders. Binders contain sheetswhere each sheet is
equivalent to a window in a traditional environment. A sheet provides a view of either a
page from a CP-net, or declarations, or a set of tools. Each sheet has a tab similar to those
found in tabbed dialogs. Clicking the tab brings that sheet to the front of the binder. A
sheet can be dragged to a different binder or to the background to create a new binder
for it. Binders reduce the number of windows on the screen and the time spent organising
26 CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets

The CPN Tools Interface
them. Binders also help users organise their work by grouping related sheets together and
reducing the time spent looking for hidden windows.

CPN Tools supports multiple views, allowing several sheets to contain different views
of the same page. For example, one sheet can provide a close-up view of a small part of a
page while another sheet can provide a view of the same page at a much smaller scale (see
figure1).

Direct manipulation (i.e. clicking or dragging objects) is used for frequent operations
such as moving objects, panning the content of a view and editing text. When a tool is held
in the right hand, e.g. after having selected it in a palette, direct manipulation actions are
still available via a long click, i.e. pressing the mouse button, waiting for a short delay until
the cursor changes, and then either dragging or releasing the mouse button.

Bi-manual manipulation is a variant of direct manipulation that involves using both
hands for a single task. It is used to resize objects (binders, places, transitions, etc.) and to
zoom the view of a page. The interaction is similar to holding an object with two hands and
stretching or shrinking it. Unlike traditional window management techniques, using two
hands makes it possible to simultaneously resize and move a binder, or pan and zoom the
view of a page. This has been further generalised to allow an arbitrary number of hands, so
two or more users can work together on the same computer.

Marking menus [6] are circular, contextual menus that appear when clicking the right
button of the mouse. Marking menus offer faster selection than traditional linear menus for
two reasons. First, it is easier for the human hand to move the cursor in a given direction
than to reach for a target at a given distance, as in a traditional linear menu. Second, the
menu does not appear when the selection gesture is executed quickly, which supports a
smooth transition between novice and expert use. Kurtenbach and Buxton [6] have shown
that selection times can be more than three times faster than with traditional menus.

Keyboard input is mainly to edit text. Some navigation commands are available at the
keyboard to make it easier to edit several inscriptions in sequence without having to move
the hands to the pointing devices. Keyboard modifiers and shortcuts are not necessary since
most of the interaction is carried out with the two hands on the pointing devices.

Palettes contain tools represented by buttons. Clicking a tool with the mouse activates
this tool, i.e. the user conceptually holds the tool in the hand. Clicking on an object with the
tool in hand applies the tool to that object. Palettes can be moved with either hand, making
it easy to bring the tools close to the objects being manipulated, and saving the time spent
moving the cursor to a traditional menubar or toolbar. In many current interfaces, after a
tool is used (especially a creation tool), the system automatically activates a “select” tool.
This supports a frequent pattern of use in which the user wants to move an object immedi-
ately after it has been created but causes problems when the user wants to create additional
objects of the same type. CPN Tools avoids this automatic changing of the current tool by
ensuring that the user can always move an object, even when a tool is active, with a long
click of the mouse. This mimics the situation in which one holds a physical pen in the hand
while moving an object out of the way in order to write.

Toolglasses [7] like palettes, contain a set of tools represented by buttons, and are
moved with the left hand, but unlike palettes, they are semi-transparent. A tool is applied to
an object with a click-throughaction: The tool is positioned over the object of interest and
the user clicks through the tool onto the object. The toolglass disappears when the tool re-
quires a drag interaction, e.g. when creating an arc. This prevents the toolglass from getting
in the way and makes it easier to pan the page with the left hand when the target position is
not visible. This is a case where the two hands operate simultaneously but independently.

The index is positioned in the left side of the workspace and contains lists of all the
available tools and net elements in CPN Tools (see figure 1). It is similar to, e.g., a tree
view of files in Windows Explorer, and the entries can be opened and closed in the same
way. in From the index, the user can drag tool palettes, CP-net pages, or declarations onto
the workspace. It is also possible to edit declarations and file names for the loaded nets
directly in the index. The index provides a feedback mechanism for locating CP-net objects
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 27

Editing CP-nets
3.0
E
d
i
t
i
n
g

C
P
-
n
e
t
s

connected to a particular declaration: if the cursor is held over a declaration, a blue halo or
underline appears on all declarations, pages, and binders containing that declaration. This
makes it easier to, e.g., make changes to a colour set and ensure that the changes are made
on all objects using this colour set.

Magnetic guidelines are used to align objects and keep them aligned. Moving an object
near a guideline causes the object to snap to it. Objects can be removed from a guideline
by dragging them away from it. Moving a guideline moves all the objects attached to it,
maintaining their alignment.

Preliminary results from our user studies make it clear that none of the above techniques
is always better or worse. Rather, each emphasises a different, but common pattern of use.
Marking menus work well when applying multiple commands to a single object. Palettes
work well when applying the same command to different objects. Toolglasses work well
when the work is driven by the structure of the diagram, such as working around a cycle in
a CP-net.

3 Editing CP-nets

Editing CP-nets in CPN Tools is easy, fast, and flexible since there is often more than one
way to perform a particular task. For example, places can be created using marking menus,
palettes and toolglasses. While a net is being edited, CPN Tools assists the user in a number
of different ways, e.g. by providing a variety of graphical feedback regarding the syntax of
the net and the status of the tool, or by automatically aligning objects in some situations.
The syntax of a net is checked and simulation code for the net is automatically generated
while the net is being constructed. This section describes how CP-nets can be created and
edited in CPN Tools.

3.1 Tools for Editing CP-nets

Most of the tools described here can be found both in the palettes and toolglasses that can
be dragged out from the Tool boxentry of the index (see figure 1) and in marking menus.

Create tools are used to create CP-net elements, i.e. places, transitions, and arcs. All
net elements can be created using palettes, toolglasses and marking menus. Net elements
can be positioned freely within a sheet, or they can be snapped to magnetic guidelines. CPN
Tools assists users by automatically aligning objects in some situations, even if guidelines
are not used. For example, if a place is connected to a transition, and the place is moved so
that it is sufficiently close to being vertically aligned with the transition, then CPN Tools
will snap the place to be perfectly vertically aligned with the transition.

Adding inscriptions to net elements is done by clicking on a net element. This will
select a default inscription, e.g. the name of a place or the inscription for an arc, and the
selected inscription can then be added, edited or removed through the keyboard. It is not
necessary to use the mouse when editing the inscriptions for one particular object, since
the TABkey can be used to move from one inscription to another for the object in question.
Furthermore, CPN Tools assists in positioning inscriptions. All inscriptions have a default
position, e.g. colour sets are positioned near the lower right-hand side of a place. A number
of snap points around objects can be used to position inscriptions in alternative standard
positions, and an inscription can also be positioned freely within a sheet. The alignment of
an inscription is maintained when the text of the inscription is changed.

In CPN Tools it is possible to clone, i.e. copy, almost any type of object, and then to
create new objects that are identical to the original object. Cloning an object clones all of
the relevant information such as size, textual inscriptions, line colour and line width. This
makes it very easy, for example, to create a number of places that have the same shape,
line colour, and colour set inscription, or to add the same arc inscription to a number of
28 CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets

Editing CP-nets
different arcs. After an object has been cloned using a marking menu, the right hand holds
a tool that can be used to create new objects. The cursor for the right hand indicates which
object was cloned. Figure 2 shows a place (on the left) and the cursor (on the right) that
was obtained after cloning the place .

Fig. 2. Cursor indicating which object has just been cloned.

Style tools can be used to change the style of any net element. Each kind of net element
has a default style which determines the size, line and fill colour, line width, and line style
(solid, dashed, etc.) of newly created elements. Applying a style tool, e.g. a colour or a
certain line width, to a guideline will apply it to all of the objects on the guideline.

View tools are used to define groups and to zoom in and out on a page. An arbitrary
number of groups can be defined for each CP-net. Currently, each group may only contain
objects from one page in a net. A group can, however, consist of different kinds of objects,
such as places, arc inscriptions, and auxiliary nodes. Objects can be added and removed
from groups via a marking menu, a tool palette or a toolglass. Creating a new object in a
group adds the object to the group, as well as adding it to the appropriate page in the CP-
net. If a tool, such as a style tool or a fusion set tool, is applied to a group member while in
group-mode, then the tool is automatically applied to all (relevant) members in the group.
The View palettealso contains tools for zooming in and out on a page. These tools can be
used as an alternative to the two-handed resizing technique that is described in Sect. 2.

Hierarchy tools are used to create hierarchical CP-nets. Tools exist for assigning an
existing page as a subpage to a substitution transition, for turning a transition into a substi-
tution transition and automatically creating a new page with interface places, for assigning
port types to places, and for creating fusion sets. These tools support both top-down and
bottom-up approaches to modelling. Marking menus can be used to navigate between su-
perpages and subpages. When navigating from one page to another, the destination page
is either brought to the front of a binder, if the page is already in a sheet, otherwise the
page is opened in a sheet and is added to the current binder. Figure 3 shows an example of
navigating from a superpage to a subpage.

3.2 Syntax Check and Code Generation

A common trait for many simulation tools is that the syntax of a model must be checked
and additional code must be generated before a simulation of the model can be executed. In
Design/CPN, users invoke syntax checks explicitly, either through a command in a menu
or through a switch to the simulation mode. In response to requests from users, this explicit
syntax check has been eliminated, and CPN Tools instead features a syntax check that au-
tomatically runs in the background. Moreover, when changes are made in a net, the syntax
check will check only the parts of the net that are affected by the change. For example,
when a declaration is changed, the syntax checker does not recheck all declarations, rather
it will recheck only the declarations and the net inscriptions that depend on the declaration
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 29

Editing CP-nets
(a) Bring up marking menu on Sender subpage
label. Receiver page is in front.

(b) Selecting Show SubPagebrings the Sender
page to front.

Fig. 3. Navigating through marking menus.

that has been modified. This allows the user to do small cycles of editing and simulation
without having to wait for the syntax check to ”catch up”. Immediately after a net has been
loaded and while a net is being edited, CPN Tools automatically checks to see if the net is
syntactically correct, e.g. if all inscriptions are of the right type and all ports and sockets are
connected properly. The main drawback to continually running the syntax check and code
generation in the background is that interaction with the GUI can occasionally be slowed
down, particularly when large portions of a CP-net are being checked.

Syntax check feedback is updated while the syntax check runs, and the user can follow
the progress in the index as well as on the individual sheets. Coloured halos and underlines
indicate whether or not a net element has been checked and if it is syntactically correct.
The colour-coded feedback not only lets the user know that something is happening during
the syntax check, but it also indicates the status and outcome of the syntax check.

When a net has just been loaded, all page entries in the index and all CP-net elements
on sheets are marked with orange to indicate that they have not yet been checked. Yellow
indicates that an object is currently being checked. Elements that are not marked with
halos or underlines have been successfully checked. When the user has finished a part
of a net to a certain degree, i.e. colour sets have been added to places, arcs have been
drawn between places and transitions, inscriptions have been added, etc., these objects are
immediately syntax checked, and the halos disappear if the syntax check was successful.
As the syntax check progresses, simulation information (enabled transitions, tokens, etc.)
appears. Section 4.1 contains more details about simulation feedback.

Error feedback is provided for each object that has syntax errors. Objects with syntax
errors are marked with red, and a speech bubble containing an error message appears with
a description of the error, as shown in figure 4. Most of these error messages come directly
from the simulation engine, which is implemented in Standard ML [8]. If the error is on
an arc, the transition connected to it is also marked with red, since a transition is incorrect
when at least one of its arcs is incorrect. The sheet tab and page entry in the index are also
marked with red, making it easier for users to find all errors in a net. When the error is
corrected, all red feedback and error messages disappear.

Code generation is connected to the syntax check. When portions of a net are found
to be syntactically correct, the necessary simulation code is automatically generated incre-
mentally. This saves time and eliminates the need for having two distinct modes for editing
and simulating CP-nets. As a result, it is possible to simulate part of a CP-net even though
other parts of the CP-net may have syntax errors or may be incomplete.

3.3 Additional Tools

Net tools are used to open, save and print CP-nets. In contrast to Design/CPN, multiple CP-
nets can be opened, edited and simulated at the same time. Individual pages from CP-nets
30 CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets

Analysing CP-nets
4.0
A
n
a
l
y
s
i
n
g

C
P
-
n
e
t
s

Fig. 4. Error feedback includes coloured halos and speech bubbles with error messages.

can be saved as Encapsulated Postscript (EPS) files using the Print tool. Figure 5 shows an
example of a page that was saved as an EPS file. Pages can be saved in either black and
white or colour, and either with or without current marking information.

D

INTxINT

Network

Network

C2

INT

B1

INTxDATA

RecNo1

Receiver

Received

DATA

""

RecNo2

Receiver

B2

INTxDATA

C1

INT
Sender

Sender

A

INTxDATA

Received1

DATA

""

Fig. 5. CP-net that had been saved in EPS format.

History provides an overview of many of the operations that are executed during the
construction of a CP-net. Typical operations that are shown in the History include: open
and close operations for nets, sheets, and binders; create and delete operations for pages,
net elements, and inscriptions; and style-change operations. Furthermore, undoand redo
tools can be applied to all of the operations that are shown in the History. Some operation,
such as movement of objects, are currently not saved within the History.

Help provides access to a number of web pages that are related to CPN Tools. This
includes links to: the web-based user manual, the homepage for CPN Tools, and a web
page for reporting bugs.

4 Analysing CP-nets

CPN Tools currently supports two types of analysis for CP-nets: simulation and state space
analysis. This section presents the Simulation toolsand the Statespace toolsthat can be
found under the Tool boxentry in the index of CPN Tools.
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 31

Analysing CP-nets
4.1 Simulation

Simulations are controlled using the Simulation tools. As in many other simulation software
packages, the icons for the simulation tools resemble buttons from a VCR (see figure 6).
The rewindtool returns a CP-net to its initial marking. The single-steptool causes one en-
abled transition to occur. Applying this tool to different areas in the workspace has different
results: on an enabled transition it causes that particular transition to occur, while on a page
it will cause a random, enabled transition on that particular page to occur. The play tool
will execute a user-defined number of steps, and the simulation graphics will be updated
after each step. The fast-forwardtool will also execute a user-defined number of steps, but
the simulation graphics will not be updated until after the last step has been executed.

Simulation feedback is updated during the syntax check and during simulations. Fig-
ure 6 shows typical simulation feedback. Green circles indicate how many tokens are cur-
rently on each place, and current markings appear in green text boxes next to the places.
Green halos are used to indicate enabled transitions. Pages containing enabled transitions
are underlined with green in the index, and their page tabs are also underlined with green.

Fig. 6. Simulation tools have VCR-like icons. Simulation feedback includes current marking infor-
mation and halos around enabled transitions. The Send Packet transition is enabled here.

As a simulation progresses, the simulation feedback changes with each step (if the single-
step tool or the play tool are used), and the user can follow the simulation both in the index
(through the green underlines) and on the individual pages. The green underlines in the
tabs make it easy to see which pages currently have enabled transitions, without stealing
the focus.

4.2 State Space Analysis

CPN Tools also contains facilities for generating and analysing full and partial state spaces
for CP-nets. To facilitate the implementation of the state space facilities, we have added
32 CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets

Analysing CP-nets
a few syntactical constraints which are important for state space generation and analysis
but which are unimportant for simulation. For example, a state space cannot be generated
unless all places and transitions in a page have unique names, and all arcs have inscriptions.
The syntax checker will locate violations of these constraints, and graphical feedback will
assist a user in locating potential problems. CP-nets that do not meet all of the constraints
can still be simulated without problems.

(a) State space tools.

Statistics

Occurrence Graph
Nodes: 54
Arcs: 1183
Secs: 0
Status: Partial

Scc Graph
Nodes: 43
Arcs: 1128
Secs: 0

(b) Statistics from state space report.

Fig. 7. State space tools from the index and a state space report.

State space tools from the index are shown in figure 7(a). The EnterStateSpacetool
is used first to generate net-specific code necessary for generating a state space, i.e. the
state space code is not generated incrementally as the simulation code is. The CalcSStool
is the tool that generates the state space, while the CalcSCCtool calculates the strongly
connected component graph of the state space. The user can set a number of options which
will determine how much of a state space should be generated. For example, it is possible
to stop generating a state space after a certain number of states have been generated or after
a certain amount of time has passed. Options are changed by editing text in the index.

Two tools exist for switching between the simulator and a state space. The SStoSimtool
will take a user-specified state (all states in the state space are numbered) from the state
space and “move” it to the simulator. This makes it possible to inspect the marking of the
CP-net and to see the enabled transitions. It is also possible to simulate the model starting
at the state that was moved from the state space. Similarly, the SimtoSStool will “move”
the current state of the CP-net in the simulator to the state space. Once a (partial) state
space has been generated, it is possible to seamlessly and instantaneously switch between
the state space and the simulator. In figure 7(a), the SStoSim tool is configured to move
state 5 to the simulator. A user can easily edit the text of the state number in order to select
another state.

Standard state space reports can be generated automatically and saved using the SaveRe-
port tool. Such reports contain information about one or more of the following: statistics
about the generation of the state space, boundedness properties, home properties, liveness
properties and fairness properties. Figure 7(b) shows a state space report containing only
statistics regarding the generation of the state space.

Querying facilities are also available. The state space facilities of CPN Tools are very
similar to the facilities in the Design/CPN Occurrence Graph Tool [9] (OG Tool). This
means that the standard queries that are described in the user manual for the OG Tool are
also available in CPN Tools. However, currently there is no advanced interface that can be
used to access these facilities. The method for accessing these queries is shown in figure 8.
A query can be written using the Auxiliary texttool from the Auxiliary tools. The query is
then evaluated by applying the ML Evaluatetool from the Simulation toolsto the auxiliary
text. The result of evaluating the query will be shown in a speech bubble. Currently, there
is no support for drawing state spaces or parts of state spaces.
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets 33

Conclusion and Future Work
5.0
C
o
n
c
l
u
s
i
o
n

a
n
d

F
u
t
u
r
e

W
o
r
k

Fig. 8. Evaluating state space queries.

5 Conclusion and Future Work

CPN Tools combine advanced interaction techniques into a consistent interface for editing,
simulating, and analysing Coloured Petri Nets. These interaction techniques have proven to
be very efficient when working with Coloured Petri Nets. CPN Tools requires an OpenGL
graphics accelerator and a PC running Windows 2000 or Windows XP. Furthermore, it
is recommended that the CPU is at least a Pentium II, 400 MHz (or equivalent) and that
there is at least 256 MB RAM. Future versions are expected to run on all major platforms
including, Windows, Unix/Linux and MacOS. Additional information about CPN Tools,
can be found at http://www.daimi.au.dk/CPNTools/ .

CPN Tools does not currently provide all of the functionality that is available for De-
sign/CPN. Future work will, however, extend the functionality of CPN Tools in several
different ways. Facilities for collecting data, running multiple simulations, and calculating
statistics are currently being integrated into CPN Tools, and these facilities are expected to
be available by the end of 2003. Additional animation facilities, such as message sequence
charts and domain-specific animation, are also being developed. However, these facilities
will probably not be available before 2004. Additional plans include the design and imple-
mentation of a totally new generation of state space facilities.

Acknowledgements We would like to thank Michel Beudouin-Lafon and Wendy E. Mackay
who played a central role in designing the new interface for CPN Tools. We would also like
to thank current and former members of the CPN Group at the University of Aarhus for
their participation in the design and implementation of the tool.

References

1. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Volumes
1-3. Monographs in Theoretical Computer Science. Springer-Verlag (1992-1997)

2. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured Petri nets.
International Journal on Software Tools for Technology Transfer 2 (1998) 98–132

3. Design/CPN. Online: http://www.daimi.au.dk/designCPN/.
4. Petri Nets Tool Database. Online: http://www.daimi.au.dk/PetriNets/tools/db.html.
5. CPN2000 Project. Online: http://www.daimi.au.dk/CPnets/CPN2000/.
6. Kurtenbach, G., Buxton, W.: User learning and performance with marking menus. In: Proceedings

of Human Factors in Computing Systems, ACM (1994) 258–264 CHI’94.
7. Bier, E., Stone, M., Pier, K., Buxton, W., Rose, T.D.: Toolglass and magic lenses: the see-through

interface. In: Proceedings of ACM SIGGRAPH, ACM Press (1993) 73–80
8. Standard ML of New Jersey. Online: http://cm.bell-labs.com/cm/cs/what/smlnj/.
9. Jensen, K., Christensen, S., Kristensen, L.M.: Design/CPN Occurrence Graph Man-

ual. Department of Computer Science, University of Aarhus, Denmark. (1996) Online:
http://www.daimi.au.dk/designCPN/man/.
34 CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets

Introduction
1.0
I
n
t
r
o
d
u
c
t
i
o
n

Complement pour presentation outil fko

Yann Thierry-Mieg , Fabrice Kordon, Emmanuel Paviot-Adet, & Denis
Poitrenaud

(LIP6-SRC, France)

Laboratoire d•Informatique de Paris 6, France Fabrice.Kordon@lip6.fr,
Emmanuel.Paviot-Adet@lip6.fr, Denis.Poitrenaud@lip6.fr,

Yann.Thierry-Mieg@lip6.fr

Keywords: Well-Formed Petri nets, symmetry detection, symbolic model-checking

Abstract.

1 Introduction

Researches in the area of Modeling of Parallel Systems aim at veri“cation, co-
herence and speed up of systems development, starting from requirement cap-
ture, high level and low level speci“cation up to “nal prototyping. These goals
are achieved through veri“cation, translation and re“nement of formal models.
They can be applied to large dynamic information systems.

Formal modeling is a key issue for veri“cation of system speci“cations and
has to deal with the always-growing industrial needs. Formalisms such as Petri
nets have been systematically improved, so Colored Petri nets are now widely
used for parallel and distributed systems.

However, to be operated on large speci“cations and to be an e�cient help to
system designers, techniques have to be implemented by CASE tools. This paper
presents CPN-AMI, a Petri net based CASE environment for the veri“cation of
parallel systems.

CPN-AMI brings together a large collection of tools implemented in various
research institutes from various countries. Its main strength is to be extendible.
CPN-AMI 2.6 35

CPN-AMI2.6: a Petri net based CASE environment
2.0
C
P
N
-
A
M
I
2
.
6
:

a

P
e
t
r
i

n
e
t

b
a
s
e
d

C
A
S
E

e
n
v
i
r
o
n
m
e
n
t

2.1 Architecture of CPN-AMI

CPN-AMI is a collection of tools federated in FrameKit [7, 14], a generic CASE
environment o�ering both integration capabilities and an enhanced development
environment. As all CASE environments generated from FrameKit, CP-AMI
o�ers a user-friendly access to Petri net services through a unique user interface:
Macao [15].

The tools implemented in our team are based on the FrameKit API libraries
that ensure an automatic integration in FrameKit.

We have coupled with a driver the tools developed in other universities and
then imported to be a part of CPN-AMI 2. A driver is a piece of code that
prepares required data to be processed by the tool, invokes it and then forwards
results to the user interface. Drivers are implemented using the FrameKit APIs.

This architecture is one of the strongest points in CPN-AMI. It enables an
enrichment process taking bene“ts of other developments to propose a uni“ed
Petri net based environment. Enrichment of the successive versions of CPN-AMI
was done at an extremely low development cost [7].

2.2 Tools in CPN-AMI

The currently released CPN-AMI 2.5.1 already o�ers numerous services:

– Modeling tools:
• Syntactic veriÞer: checks the AMI-Net syntax and transform the Petri

net into various internal representation for a large number of tools.
• Modular Petri net assembling: this tool is built to help designer to as-

semble modules communicating either by means of places or by means
of transitions. The users select a group of objets and then, merge them
to one equivalent object if it is possible (for example, color domains are
the same for places).

• Pretty Petri Nets : this service aims to rearrange ŽspaghettiŽ Petri nets.
This service has been made to be exploited by other Petri net services
(like CPN-Unfolder, Pre“x or reachability graph display). However, it
can be directly invoked by a user. This service relies on DOT [4].

• Suppression of 0-bounded places and non-Þrable transitions: uses the
bound of place service to suppress 0-bounded places and transitions with
those places as precondition. Mainly used with structural analysis in or-
der to limit the study to the useful part of the net.

– Simulation and debugging:
• Colored Petri net simulator : in this tool, we have attempted to keep, as

more as possible, the analogy with programming language debuggers. To
achieve this goal, the user may use di�erent execution modes, break point
possibilities, data extractions during the execution and external treat-
ments associated to transition. Standard debugging functions are also
available like intermediate state management (including load and save
operations) and con“guration management (a con“guration is a set of
simulation parameters: scripts de“nitions, observation net, intermediate
state).
36 CPN-AMI 2.6

CPN-AMI2.6: a Petri net based CASE environment
– Computation of structural properties:
• Place invariants: computation of P-SemiFlows using a service from Great-

SPN [6],
• Colored place invariants: this tool computes invariants using a adapted

version of the general algorithm [2]. It is one of the very few implemented
ones.

• Transition invariants : computation of T-SemiFlows using a service from
GreatSPN.

• Siphon and deadlocks: they can be computed using a service from Great-
SPN or using a BDD [5] based implementation.

• Bounds of places: this tool computes lower and upper structural bounds.
The calculus is based on the state equation and uses linear programming
techniques. As a consequence, the computed bounds (higher and lower)
may not be the best ones, but this tool may be useful to quickly highlight
some major problems in the model. For colored models, this tool can be
accessed via P/T unfolding. This service is based on lpsolve [11].

• Linear properties characterization: the aim of this tool is to compute a
linear characterization of the reachability set. When the resulting lin-
ear constraints system exactly describes the reachability set, a message
warns the user.

• Liveness computation for safe (1-bounded) nets: computes if the net is
live (from any reachable state and for any transition it is possible to
reach a state from which the transition is “rable).

– Computation of behavioral properties:
• Generation of the reachability graph, CTL and LTL queries evaluation:

this tool is based on PROD [16]. The proposed encapsulation let users ac-
cess to prede“ned services such as detecton of deadlocks but also enables
access to advanced funtioncs to evaluate CTL or LTL formulae

• Generation of the reachability graph, CTL and LTL queries evaluation
(alternative) : this tool is based on LoLA [12]. The proposed implementa-
tion let users access to a set of prede“ned services (some are not o�ered
in PROD such as the reversibility of a net). It also enables the evaluation
of temporal logic queries.

• Boolean formula on reachability graph: this tool computes a set of mark-
ings containing the reachability set. In this set, places are just considered
as ?marked? or ?unmarked?. The results are displayed as properties over
the net. This service uses BDDs [5] to compute the marking set.

• McMillan unfolding : this service computes an unfolding for a safe net
(safety is not veri“ed by the tool). This software has been developed by
S. Römer and implements the algorithm de“ned by J. Esparza, S. Römer
and W. Vogler in [10]. This tool is also part of PEP [9].

– Unfoldings:
• Colored Petri net unfolding: transforms a colored Petri net into a Place/Tran

Petri net. The resulting net is a new model that can be displayed and
analyzed. An option allows to suppress 0-bounded places and non-“rable
transitions. This option uses a heuristic to compute those places (it is
CPN-AMI 2.6 37

New tools for CPN-AMI 2.6
3.0
N
e
w

t
o
o
l
s

f
o
r

C
P
N
-
A
M
I

2
.
6

not based, like the ?suppression of 0-bounded places and non-“rable
transitions? service, on linear programming). Another option allows to
compute a pretty layout of the resulting net.

3 New tools for CPN-AMI 2.6

Version 2.6 of CPN-AMI, to be released in the second half for 2003, includes
new original tools to be demonstrated as a preliminary version in the 2003 Petri
Net conference.

3.1 DDD -based Model Checking

This tool is based on Data Decision Diagram (DDD), a new data structure
presented in [3], for the representation of the state space.

DDDs, similary to Binary Decision Diagrams, are sharing direct acyclic graphs
where nodes represents variables and arcs the values a�ected to them. The main
advantages of this data structure are: there is no hypothesis on variable domains,
there is no constraint on the variable order, it can code dynamic structures
(stack, “fo, etc.).

They are equiped with internal operators which can be seen as set operators.
Moreover, the user has the capacity to enrich functionnalities by de“ning speci“c
operators. This data structure has been used to model-check VHDL programs
as well as extended Petri nets. The tool integrated in CPN/AMI allows the
veri“cation of safety properties.

3.2 Symbolic model checking based on Well-Formed Nets

We present in the Petri-Net 2003 conference a new tool which automatically
detects the symmetries of a model [17], and allows their exploitation through
generation of an equivalent Well-Formed Net [8]. Well-Formed Nets allow au-
tomatic construction of a Symbolic Reachability Graph (SRG) [1] that groups
states according to an equivalence relation.

It relies on the tool GreatSPN 2.0 [6] of the University of Torino for the
construction of this graph.

The size of the obtained graph is at worst the same as that of the concrete
reachability graph, but if the model presents global symmetries the size of the
SRG may be exponentially smaller. This technique is particularly adapted for
models presenting large color domains, as the size of the RG is generally combi-
natorial on the size of color domain, but the SRG can yield linear size increase.

This tool currently o�ers deadlock and home-state detection, and LTL model-
checking on the SRG is being implemented and thus may be available at the time
of this tool presentation.
38 CPN-AMI 2.6

References
4.0
R
e
f
e
r
e
n
c
e
s

References

1. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability
graph for coloured Petri nets. Theoretical Computer Science, 176(1…2):39…65, 1997.

2. J-M. Couvreur. The general computation of ”ows for coloured nets. In ICATPN ,
pages 204…223, June 1990.

3. J-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P-A. Wacrenier.
Data decision diagrams for petri net analysis. In ICATPN , volume 2360 of LNCS,
pages 101…120. Springer-Verlag, June 2002.

4. E. Koutso“os and S.C. North. Drawing graphs with dot. Technical report, Tech-
nical report, AT&T Bell Laboratories, Murray Hill, NJ, 1993.

5. J. Cortadella E. Pastor, O. Roig and R.M. Badia. Petri net analysis using boolean
manipulation. In ICATPN , volume 815 of LNCS, pages 204…223. Springer-Verlag,
June 1994.

6. GreatSPN: GRaphical Editor, Analyzer for Timed, and Stochastic Petri Nets. url
: http://www.di.unito.it/~greatspn/ .

7. F. Kordon and J-L. Mounier. FrameKit, an Ada Framework for a Fast Implemen-
tation of CASE Environments. In ACM/SIGAda ASSET’98 symposium , pages
42…51, July 1998.

8. G. Franceschinis G. Chiola, C. Dutheillet and S. Haddad. Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Transactions on Com-
puters, 42(11):1343…1360, 1993.

9. PEP Homepage. url : http://parsys.informatik.uni-oldenburg.de/~pep .
10. S. Roemer J. Esparza and W. Vogler. An improvement of mcmillan•s unfolding

algorithm. In Tools and Algorithms for the Construction and Analysis of Systems ,
volume 1055 of LNCS, pages 87…106. Springer-Verlag, March 1996.

11. The lp solve web site. url : http://sal.kachinatech.com/B/3/LP_SOLVE.html .
12. The LoLA o�cial web site. url : http://www.informatik.hu-berlin.de/

~kschmidt/lola.html .
13. The CPN-AMI Home page. url : http://www.lip6.fr/cpn-ami .
14. The FrameKit Home page. url : http://www.lip6.fr/framekit .
15. The Macao Home page. url : http://www.lip6.fr/macao .
16. Home page of PROD. url : http://www.tcs.hut.fi/Software/prod .
17. Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Automatic symmetry detection in

well-formed nets. In ICATPN 2003 , LNCS. Springer-Verlag, June 2003.
CPN-AMI 2.6 39

References
40 CPN-AMI 2.6

Business Process Manager
1.0
B
u
s
i
n
e
s
s

P
r
o
c
e
s
s

M
a
n
a
g
e
r

Business Process Manager

Automate

Streamline
Optimize

Any Business Process

Drive Streamlined Decisions – Faster.
FileNET 41

Business Process Manager
Streamline the accounts
payable process to handle
more invoices quickly, easily,
and accurately to improve
cashflow and fiscal
responsibility.

Capture and review an
insurance policy in minutes
and automate the flow of the
policy through different
departments to improve
employee efficiency and
reduce the per-policy cost.

Seamlessly integrate legacy
systems into your financial
business processes,
maximizing the value of
existing investments.

�È

FileNet Corporation 3565 Harbor Boulevard, Costa Mesa, CA, USA 92626-1420
Phone: 800.FileNet (345.3638) Outside the U.S. call: +1.512.434.5935 www.filenet.com

Business Process Manager

page 2

Processes are the paths of decision making –
some are simple, others complex, and hundreds
weave through your business every day. They set
the pace of your operations. Managing the flow of
work, and information, along these process paths
determines the speed, agility, and quality of
decision making. That is why streamlining and
optimizing these processes determines the
success of your organization.

Processes involve people, business systems, and content. Only
when they work together in an automated environment can
maximum productivity and value be realized. Furthermore, optimized
processes strengthen your ability to react quickly to changing
market conditions and customer requests while ensuring regulatory
compliance. Bottom line, better processes continuously improve and
enhance the performance of your business to give you a competitive
advantage.

Many challenges need to be overcome before these objectives can
be met. Many existing processes are still done
manually, making them difficult to integrate and
standardize. They are not easy to modify when
conditions change. In addition, a large number
of complex processes rely on content from
disconnected systems that cannot share
information. All of this limits productivity, slows
cycle and response times, hinders regulatory
compliance, and makes it difficult to accurately
account for how decisions are made.

Companies utilizing the right Business Process
Management capabilities are conquering these
challenges to gain a true competitive edge by
automating, integrating and optimizing repetitive

critical business processes at every level of their organization. They
are doing so with FileNet Business Process Manager.

Lack of decision-
making processes:
Only 21% of companies
have processes for
prioritizing and
managing their
technology. Most make
their decisions ad hoc,
favoring the pet
projects of powerful
managers.

Optimize Magazine,
Nov. 2002

With FileNet Business
Process Manager, you can…
42 FileNET

Business Process Manager
Streamline the process of
reviewing loan applications
to reduce response time
from days to just minutes,
improving customer service
levels.

Automate the fulfillment of
vital records requests to
respond to constituents
more quickly and with
greater accuracy.

Move claims cases from
discovery to settlement
quickly by implementing
specific business rules to
facilitate faster resolution
and higher claims
processing efficiency.

�È

FileNet Corporation 3565 Harbor Boulevard, Costa Mesa, CA, USA 92626-1420
Phone: 800.FileNet (345.3638) Outside the U.S. call: +1.512.434.5935 www.filenet.com

Business Process Manager

page 3

The Path to Better Decisions
FileNet Business Process Manager controls the flow of work throughout
your business by streamlining, automating, and optimizing business
processes. It has the flexibility and scalability to handle the most complex
business processes – involving millions of transactions, thousands of
users, and multiple business applications.

Business Process Manager helps shorten process lifecycles and
automatically manages process exceptions so you can react immediately
to internal events or customer demands. While powerful, it is also easy to
use, administer, and deploy. Business analysts can modify processes and
apply new business rules immediately. Best practices and business logic
can be captured and reused thereby shortening implementation time and
increasing your speed-to-market so you can seize new business
opportunities.

Business Process Manager monitors and tracks business processes so
analysts and managers can see how their operations are performing.
This, in turn, helps you simulate and optimize key processes and the value
of internal resources. By integrating content with business processes, all
levels of your organization can make timely decisions based on the most
accurate information available.

These capabilities have delivered a significant return on investment for our
customers including benefits such as:

• improving productivity by 140%

• decreasing decision cycle time from 7 days to just 7 minutes

• automating the monthly payment of over 30,000 invoices to streamline
operations and take full advantage of early-payment discounts

• reducing Human Resources costs by $1 million by providing employees
with automated services and self-serve resources

• saving $3 million a year by driving high-performance processes and
optimized work ow throughout the organization.

A Platform for Tomorrow, Today

Business Process Manager is based on the FileNet P8 standards-based
architecture, which offers enterprise-level scalability and flexibility to
handle the most demanding content challenges, the most complex
business processes, and integration to all your existing systems. The
FileNet P8 architecture provides a scalable framework for functional
expansion to manage enterprise content and Web publishing challenges,
and provide greater process control and consistency across your
enterprise.

With FileNet Business
Process Manager, you can…
FileNET 43

Business Process Manager
Event-Driven Processing �Æ Increases the agility and
responsiveness of business operations by
automatically responding to transactions or business
events as they occur.

Process Versioning & Easy Administration �Æ
Supports rapid deployment of improved processes
while minimizing the impact on normal operations.

Process Tracking, Analysis & Simulation �Æ Ensures
better business decisions by monitoring workflow,
providing in-depth analysis of live and historical
process information, and validating process
modifications before they are deployed.

Reusable Process Definitions �Æ Enables rapid
deployment best practices, ensures consistent
processing, and lower TCO by reusing process
definitions.

Process Timers �Æ Maintains faster cycle times by
escalating work on time-based applications
requirements.

Process Power & Scalability �Æ Handles a wide range
of business processes including complex processes
that involve millions of transactions and tens of
thousands of users.

Fully Integrated Out-of-the-Box Content Management
�Æ Seamlessly manages, stores, and shares content
that is part of the business process without the burden
of integrating 3rd-party tools or custom programming.

Combining Automation, Integration and Optimization for Increased Business Performance

Application Integration �Æ Improves responsiveness
and decision making by integrating with business
applications and enterprise content via SOAP, XML,
and Enterprise Application Integration.

Graphical Process Design & Modeling Tool �Æ Easily
defines, designs, and administers business processes
for both business and IT users.

100% Web Based �Æ Delivers a high level of easily
accessible process functionality while minimizing
deployment costs.

Process Flexibility �Æ Provides a rich process
definition environment that can accurately implement
highly complex, interrelated processes with
comprehensive functionality.

Standards Based �Æ Protects investments by
integrating with other infrastructures using industry
standards (J2EE, XML).

Rules Engine Integration �Æ Flexibly incorporates and
changes business rules that apply to processes by
integrating with an industry leading Business Rules
Engine.

Out-of-the-Box End-User Process UI �Æ Enables you to
rapidly implement tailored BPM solutions through a
fully functional and customizable user interface.

Business Process Manager

FileNet Corporation 3565 Harbor Boulevard, Costa Mesa, CA, USA 92626-1420
Phone: 800.FileNet (345.3638) Outside the U.S. call: +1.512.434.5935 www.filenet.com
44 FileNET

Business Process Manager
Business Process Manager

FileNet Corporation 3565 Harbor Boulevard, Costa Mesa, CA, USA 92626-1420
Phone: 800.FileNet (345.3638) Outside the U.S. call: +1.512.434.5935 www.filenet.com

Platform Base

Accelerated Decision Making
The moment of decision happens thousands of times a day and
each moment affects the velocity of your business. By streamlining
and automating critical processes, FileNet Business Process
Manager allows you to optimize your operations and improve your
ability to make fast and accurate decisions while:

• Reducing cycle times and improving productivity across the
entire organization

• Lowering total cost of ownership by connecting users and
applications with a unified business process management
infrastructure

• Enabling the "real-time enterprise" by allowing users to better
react to business events as they occur

Operating Systems:
• Microsoft Windows 2000,
• Sun Solaris

Databases:
• Microsoft SQL Server
• Oracle

J2EE Application Servers:
• BEA Weblogic
• IBM WebSphere

Browsers:
• Microsoft Internet Explorer
• Netscape

Process
• Workflow Management
• Document Review & Approval
• Process Tracking
• Process Analyzer
• Process Simulation
• Process Designers
Content
• Library Services
• Classification
• Browse & Search
• HTML, PDF Renditions
• Events
• Lifecycle Management
• Publishing
Connectivity
• Workplace UI
• Microsoft Office & WebDAV

Integration
• Portal Integration
• XML Integration

� Additional Process Designers

FileNet Expansions

Business Process Manager provides comprehensive process management along with advanced
analytics and simulation. Expanded ECM capabilities can be easily added for managing Web content,
large volumes of fixed documents, and for enhanced content management and connectivity.

�È

page 5

� Capture Desktop

� Business Integration (EAI)

� Image Services Resource
Adapter (ISRA)

� Web Content Management
FileNET 45

Business Process Manager
�È

Business Process Manager

page 6

FileNet Enterprise Content Management (ECM) solutions are designed
to help companies manage the content and business processes that
must come together to improve the way decisions are made – by
individuals, across project teams and departments. Based on the
FileNet P8 architecture, these solutions provide a unified platform for
managing content, processes, and integration to existing systems for
a wide range of business applications, creating real process
efficiencies and providing a scalable architecture for expansion.

FileNet Business Process Manager is an ECM solution that allows
companies and government agencies to automate, streamline, and
optimize their complex business processes. With this solution,
processes supporting millions of transactions and thousands of users
can be quickly deployed and immediately modified so companies can
better respond to changing conditions.

About FileNet
FileNet Corporation (NASDAQ: FILE) can help organizations make better
decisions by managing the content and processes that drive their
business. FileNet’s Enterprise Content Management (ECM) solutions
allow customers to build and sustain competitive advantage by
managing content throughout their organizations, automating and
streamlining their business processes, and providing the full-spectrum
of connectivity needed to simplify their critical and everyday decision
making.

FileNet ECM solutions deliver a comprehensive set of capabilities that
integrate with existing information systems to provide cost-effective
solutions that solve real-world business problems.

Since our founding in 1982, 3,800 organizations, including 80 of the
Fortune 100, have taken advantage of FileNet solutions for help in
managing their mission-critical content and processes.

Headquartered in Costa Mesa, Calif., the Company markets its
innovative ECM solutions in more than 90 countries through its own
global sales, professional services and support organizations, as well as
via its ValueNet® Partner network of system integrators, value-added
resellers, and application developers.

FileNet Corporation 3565 Harbor Boulevard, Costa Mesa, CA, USA 92626-1420
Phone: 800.FileNet (345.3638) Outside the U.S. call: 512.434.5935
FileNet is a registered trademark of FileNet Corporation. © 2003 FileNet Corporation. All Rights Reserved. 1202/1496 www.filenet.com
46 FileNET

Flower
1.0
F
l
o
w
e
r

CASE HANDLING & WORKFLOW MANAGEMENT
PROFESSIONALLY-ORIENTATED SUPPORT

FOR PRODUCTION AND KNOWLEDGE WORKERS
IN ADMINISTRATIVE ENVIRONMENTS

GETTING IT RIGHT!
FLOWer 47

Flower
THE RESULT?

Your business processes carried out perfectly.
Your professionals committed.

Your web site integrated with your processes.
Your customers satisfied.
Your flexibility optimised.

Your continuity guaranteed.
Your growth supported.

•A case is presented,
a colleague is consulted about the case,

the customer is advised of the status of the case
the case is transferred,

the case passes through the organisation,
the objective is achieved!Ž

CASE HANDLING
& WORKFLOW
MANAGEMENT
48 FLOWer

What is FLOWer?
2.0
W
h
a
t

i
s

F
L
O
W
e
r
?

WHAT IS FLOWer?

� FLOWer is based on a new concept: case hand-
ling.
� FLOWer manages and supports the execution of
activities in the context of a specific case (folder,
event, incident).

THE POWER OF FLOWER:

� Simplicity;
� Flexibility in process handling;
� Insight into the whole, at any time;
� Work notification;
� Ability to retrieve cases;
� Monitoring of progress and deadlines;
� Detailed control and management information;
� Short implementation time;
� Extensive integration options;
� Full integration with the Internet;
� Scalability.

WHY WAS FLOWER DEVELOPED?

� FLOWer was developed from the realisation
that in office environments both production and
knowledge-intensive activities take place, often
within the same process. In other words, within
a process whilst the bulk of the work follows a
consistent route, there may be frequent exceptions.
The exception becomes the rule, but within agreed
business perameters. Flexibility is therefore key in
these environments.

� Further, the focus is on the case and not on the
activity. The process flow depends strongly on the
case and it is essential to have insight into the
whole at all times. This also applies to customers -
they want to be able to view the progress of their
case at any moment.

� FLOWer focuses on the case while also providing
the necessary flexibility.

FLOWer, getting it right!

CASE HANDLING
& WORKFLOW
MANAGEMENT
FLOWer 49

What is FLOWer?
•Employees have no overview of their cases
and often don•t know which activities they should carry out in a particular case.Ž

•Employees lack flexibility in handling their cases.Ž

•There is far too much work involved in processing exceptions.Ž

Žt isn•t possible to advise a customer of the status straight away.Ž

•Only part of the business process has been automated. And the web site doesn•t
comply with this.Ž

•Various locations use the same applications; it isn•t possible to tailor these
to the respective organisation in each location.Ž

•The time it takes new staff to become familiar with the applications is 3 to 6 months.Ž

•Applications support either only experienced or only new users.Ž

•Knowledge workers give up because the applications are registrative and do not
support the actual work.Ž

•The payback period of the applications is longer than a year.Ž

FLOWer, the solution for your business problems!

CASE HANDLING
& WORKFLOW
MANAGEMENT
50 FLOWer

Broad Application
3.0
B
r
o
a
d

A
p
p
l
i
c
a
t
i
o
n

BROAD APPLICATION

� FLOWer has a very broad application in
administrative, knowledge-intensive organisations
where:
� The focus is on processing case-specific matters
� (folders, events, incidents);
� There is a strong need for flexibility and adapta-
� bility;
� It is also necessary to be able to support pro-
� duction activities.

EXCELLENT START WITH PROTOS

� If you are using our product PROTOS, you will
already have defined and optimised your proces-
ses. From this basis, you can implement them in
FLOWer.
� So, as well as having knowledge and informa-
tion about your processes, with FLOWer you are
also sure of getting it right!

EXAMPLES

� Processing benefit payments, handling objec-
� tions and complaints.
� Banks and insurance companies (credit facilities,
� claims handling, fraud management).
� Government bodies (processing objections to �
� property tax levies, issuing licences, processing
� naturalisation requests).
� Telecommunications (customer and contract
� administration).
� Housing corporations (property administration).
� Educational institutions (student and course
� administration).
� Health Care sector (patient registration and
� administration).
� Police (support for police fieldwork).
� Courts (summonses).
� IT companies and IT departments (helpdesk sup
� port).

FLOWer, getting it right!

CASE HANDLING
& WORKFLOW
MANAGEMENT
FLOWer 51

Broad Application
CASE HANDLING
& WORKFLOW
MANAGEMENT

You can also do this for rolesƒIn the FLOWer Studio you can define a process
simply, using graphics.
52 FLOWer

Functionality
4.0
F
u
n
c
t
i
o
n
a
l
i
t
y

CASE HANDLING
& WORKFLOW
MANAGEMENT

FUNCTIONALITY

� Process design: FLOWer Studio

In the FLOWer Studio, a graphic design environ-
ment, a process can be fully designed:
� Process routing;
� Roles;
� Data;
� Forms.

� In the FLOWer Studio you can design your
� formsany way you like.

� Organisational design: FLOWer Management

FLOWer also includes a graphic environment
for designing the organisation. Here, the following
can be defined:
� Users (and user groups);
� Work profiles;
� Authorisation profiles or functions;
� Queues;
� Queries.

� Changes in the organisation model can be
carried out in real time without having to change
the process model.

FLOWer, getting it right!
FLOWer 53

Functionality
CASE HANDLING
& WORKFLOW
MANAGEMENT

The FLOWer Case Guide gives insight into
the entire context.

Employees are allocated a case or can call up
a case themselvesƒ
54 FLOWer

Functionality
CASE HANDLING
& WORKFLOW
MANAGEMENT

� Execution: FLOWer Client

� After the process and organisational design
phase, the employees can start to work on the
cases. They are allocated cases or can call them
up themselves.

� When a case is opened the Case Guide is
displayed. This gives the employee a direct view
of:
� The activities to be carried out at that moment;
� The pending activities still to be handled;
� The activities that have already been handled.

� Flexibility is crucial. If they are authorised, the
employees can redo, or skip activities. It is also
possible to carry out activities that are not yet due
for execution.

� Steering: FLOWer Management Information

� FLOWer records the entire history of a case and
offers extensive options in the area of manage-
ment information.

� If an activity is connected to a form, that form is
� opened when the activity is carried out.
� This allows the user to see immediately which
� fields are compulsory.

FLOWer, the user in control!
FLOWer 55

Functionality
CASE HANDLING
& WORKFLOW
MANAGEMENT

GETTING IT RIGHT...

Case Handling with FLOWer offers a flexible and controlled approach
to business workflows. Understand the possibilities and see it for yourself by

arranging an in-house demonstration.
56 FLOWer

Implementation Approach
5.0
I
m
p
l
e
m
e
n
t
a
t
i
o
n

A
p
p
r
o
a
c
h

CASE HANDLING
& WORKFLOW
MANAGEMENT

IMPLEMENTATION APPROACH

� Based on a phased project approach, FLOWer
makes dynamic, evolutionary development possi-
ble, together with all disciplines and people invol-
ved in the process.

The Result? A system:
� That is geared to the needs and wishes of

the users;
� That provides optimal support for your business

processes!

The time to implement? With FLOWer, an ope-
rational application can be produced within one
month after commencement.

USE OF PROTOS

To implement FLOWer, our product PROTOS is
used. PROTOS is a powerful tool for describing,
analysing and redesigning business processes.

This allows the implementation time to be consi-
derably reduced. From the very outset, there is
commitment and conformity!

BUSINESS PARTNERS

For the implementation of FLOWer, Pallas
Athena has concluded joint agreements with busi-
ness partners. Like Pallas Athena, these partners
offer:
� An exceptional quality of service;
� A process-orientated approach;
� A dedicated organisation and staff.

Getting it right …
also with our business partners!

GETTING IT RIGHT!
FLOWer 57

Implementation Approach
www.pallas-athena.com
Visit our web site for up-to-date and extensive information.

Pallas Athena
www.pallas-athena.com

GETTING IT RIGHT!
58 FLOWer

Introduction
1.0
I
n
t
r
o
d
u
c
t
i
o
n

HiWorD: A Petri Net-Based Hierarchical Workflow Designer�

Boualem Benatallah1, Piotr Chrza̧stowski-Wachtel3,4, Rachid Hamadi1, Milton O’Dell2, and Adi Susanto1

1School of Computer Science and Engineering 2Justwin Technologies Pty Ltd
The University of New South Wales 7-9 West Street Suite I.20, Level 1

Sydney NSW 2052, Australia North Sydney NSW 2060, Australia
{ boualem,rhamadi,adis} @cse.unsw.edu.au modell@justwin.com

3Institute of Informatics, Warsaw University 4Polish-Japanese Institute of Information Technology
Banacha 2, PL 02-097 Warszawa, Poland ul. Koszykowa 86, PL 02-008 Warszawa, Poland

pch@mimuw.edu.pl

Abstract

Much work is being conducted in the area of business
process modeling using work�ow technology. HiWorD is a
hierarchical work�ow modeling prototype with simulation
capability. It models business processes using Petri nets in
a hierarchical manner and implements recovery transitions
as a technique to recover from exceptions. The work�ow
hierarchy is created by re�ning places and transitions using
prede�ned patterns. By using these patterns, it is proven
that the resulting work�ow will be sound.

1. Introduction

HiWorD (HIerarchical WORkflow Designer) was cre-
ated to support workflow designers to model business pro-
cesses and perform business process simulation (see Fig-
ure 1). HiWorD uses Petri nets to model workflows firstly
because they are a well established means to describe con-
current systems, and secondly because of their solid and
proven theoretical foundation.

HiWorD is unique compared to other Petri net editors
that already exist for workflow modeling. HiWorD supports
not only the creation of a standard Petri net workflow, but
emphasizes other new ideas, such as building a hierarchi-
cal Petri net using predefined and safe refinement patterns,
and recovery transitions for exception handling. The latter
allows the designer to specify where to put tokens in the
workflow net when recovering from a particular exception.

� This work is partially supported by an ARC SPIRT grant “Man-
aging Changes in Dynamic Workflow Environments” between UNSW,
QUT, and Justwin Technologies, and by an internal research grant No.
BW/ALG/01/2002 of PJWSTK financially supported by KBN in Poland.

HiWorD is built along with a simulator. The simulator
enables designers to view the workflow execution graphi-
cally and generates logs that will be stored in a relational
database for further processing. Currently, the editor and
the simulator are two separate independent programs. Both
the editor and the simulator understand a common XML
schema which provides a framework for communicating be-
tween them.

Figure 1. HiWorD Modeling Tool

HiWorD is written in Java and will run on any machine
where a Java virtual machine is available. This includes
OS/2, Apple Macintosh, several flavours of Unix such as
Solaris or Linux, Windows 95/98/NT/2K, and many oth-
HiWorD: A Petri Net-Based Hierarchical Workflow Designer 59

