YASKAWA

Machine Controller MP90O0 Series
New Ladder Editor

PROGRAMMING MANUAL

7

YASKAWA MANUAL NO. SIEZ-C887-13.1

Copyright © 2001 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is con-
stantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.

About This Manual

B This manual describes the programming instructons of the New Ladder Editor, a
programming software application that aids in the design and maintenance of
MP900-series Machine Controllers.

B This manual is written for readers with a working knowledge of Microsoft Windows
95/NT. Refer to Windows documentation provided with your computer for informa-
tion on basic operations, such as opening and closing windows and mouse opera-
tions.

B [ntended Audience
This manual is intended for the following users.
* Those responsible for designing the MP900 System
* Those responsible for writing MP900 motion programs
* Those responsible for writing MP900 ladder logic programs
W Description of Technical Terms
In this manual, the terms are defined as follows:
* PLC = Machine Controller
» CP-717 = CP-717 Engineering Tool
B Read this manual carefully to ensure the proper use of the New Ladder Editor. Also,
keep this manual in a safe place so that it can be referred to whenever necessary.

About The Software

B Precautions
 This software is to be installed on one and only one computer. You must purchase
another copy of the software to install it on another computer.

* This software is not to be copied for any reason other than when installing it on the com-

puter.

+ Store the floppy disks containing the software in a safe place.

* This software is not to be decompiled, disassembled, or reverse engineered.

» This software is not to be given to, rent to, exchanged with, or otherwise released to a
third party without the prior permission of Yaskawa Corporation.

B Trademarks

* Windows and Windows 95 are registered trademarks of Microsoft Corporation.
* Pentium is a registered trademark of Intel Corporation.

* Ethernet is a registered trademark of Xerox Corporation.

Visual Aids

The following aids are used to indicate certain types of information for easier refer-
ence.

IMPORTANT Indicates important information that should be memorized. Also indicates low-level

precautions that, if not heeded, may cause an alarm to sound but will not result in
the device being damaged.

<4 EXAMPLE » Indicates application examples.

? Indicates supplemental information.

Related Manuals

B Refer to the following related manuals as required.

Manual Name

Manual Number

Contents

MP900 Series Machine Controller
New Ladder Editor

User’s Manual

SIEZ-C887-13.2

Describes the operating methods of
the MP900 New Ladder Editor.

MP900 Series Machine Controller
User's Manual:
Ladder Programming

SIEZ-C887-1.2

Describes the instructions used in
MP900 ladder logic programming.

MP900 Series Machine Controller
User's Manual:
Motion Programming

SIEZ-C887-1.3

Describes the motion programming
language used for MP900 Machine
Controllers.

MP900 Series Machine Controller
User's Manual:
MECHATROLINK

SIEZ-C887-5.1

Describes MECHATROLINK Mod-
ules used for MP900 Machine Con-
trollers.

MP910 Machine Controller
User's Manual:
Design and Maintenance

SIEZ-C887-3.1

Describes the design and mainte-
nance for the MP910 Machine Con-
troller.

MP920 Machine Controller
User's Manual:
Design and Maintenance

SIEZ-C887-2.1

Describes the design and mainte-
nance for the MP920 Machine Con-
troller.

MP930 Machine Controller
User's Manual:
Design and Maintenance

SIEZ-C887-1.1

Describes the design and mainte-
nance for the MP930 Machine Con-
troller.

MP940 Machine Controller
User's Manual:
Design and Maintenance

SIEZ-C887-4.1

Describes the design and mainte-
nance for the MP940 Machine Con-
troller.

MP920 Machine Controller
User's Manual:
Motion Module

SIEZ-C887-2.5

Describes the functions, specifica-
tions, and usage of the MP920
Motion Modules (SVA-01, SVB-01,
and PO-01).

MP920 Machine Controller
User's Manual:
Communications Module

SIEZ-C887-2.6

Describes the functions, specifica-
tions, and usage of the MP920 Com-
munications Modules (217IF, 215IF,
and 218IF).

MP920 Machine Controller
User's Manual:
DeviceNet

SIEZ-C887-5.2

Describes the functions, specifica-
tions, and operating methods of the
MP920 DeviceNet Module (2601IF).

CONTENTS

About ThisManual-------------------------omem oo iii
About The Software-------------------mmm iii
Visual AidS - - - - - - - -mm s m i m e e iv
Related Manuals - - - - == === = - - e e e v

1 LADDER PROGRAM INSTRUCTIONS

1.1 Relay Circuit Instructions -----------cccmua- 1-4
1.1.1 N.O. Contact Instruction (NOC)------------c-cccmcmmmmo - 1-4
1.1.2 N.C. Contact Instruction (NCC) - == == === == mmmmm e o - - 1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10mS]) - - - - = = = = = - - - - 1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms]) - ---------- 1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [18])------------------ 1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [18])--------------- 1-10
1.1.7 RISING PULSE Instruction (ON-PLS) = --------cccmmmmmmmon- 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS) - --------nnnmmmumn-- 1-13
1.1.9 COIL Instruction (COIL) == === === mcmm e e e e e e e e - 1-14
1.1.10 SET COIL Instruction (S-COIL)-===---------------cu--- 1-15
1.1.11 RESET COIL Instruction (R-COIL)-==--------------------- 1-17

1.2 Numeric Operation Instructions - - - - = - - === - - ------- 1-19
1.2.1 STORE Instruction (STORE)- - - - === === ccmmmmmmmnaa e - 1-19
1.2.2 ADDITION Instruction (ADD)- === =======----““--“~“-«-«------- 1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) = === === == = = == == = - - 1-23
1.2.4 SUBTRACTION Instruction (SUB)-=-=----------------------- 1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX) - ------------- 1-27
1.2.6 MULTIPLICATION Instruction (MUL) === === == = = == oo m e e e e o - 1-28
1.2.7 DIVISION Instruction (DIV) === -==-ccmmmmmm e eeee o - 1-31
1.2.8 MOD Instruction (MOD) - - - - - === s s e e e oo - 1-33
1.2.9 REM Instruction (REM)- - - - = = = = = oo oo e e e e e oo 1-34
1.2.10 INC Instruction (INC) == ======--cooommmm e - 1-35
1.2.11 DEC Instruction (DEC) - - - - === - ----mcmm e e e e e oo - 1-36
1.2.12 ADD TIME Instruction (TMADD) - ---------=-==-“--------- 1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) === === === == === o m e - - 1-39
1.2.14 SPEND TIME Instruction (SPEND)------------------mm--- 1-41
1.2.15 SIGN INVERSION Instruction (INV)- === -------cccmmmmmm-- 1-43
1.2.16 1’S COMPLEMENT Instruction (COM)------------------- 1-44
1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)---------- 1-45
1.2.18 BINARY CONVERSION Instruction (BIN)------------=cu---- 1-46
1.2.19 BCD CONVERSION Instruction (BCD)--==--=====-=---nu--- 1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) === === === === - - - 1-50
1.2.21 ASCII CONVERSION Instruction (ASCIl) - === == = = = = == mcc e - - - 1-51
1.2.22 ASCII CONVERSION 2 Instruction (BINASC)---------------- 1-52
1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)---------------- 1-53

Vi

1.3 Logical Operation/Comparison Instructions- - ---------- 1-55

1.3.1 AND Instruction (AND) - - - - - - - cm o e 1-55
1.3.2 OR Instruction (OR) = -----------mmm i m oo 1-56
1.3.3 XOR Instruction (XOR) - -------------m---oommmmm oo oo - - 1-57
1.3.4 Comparison Instruction (<) ------------------------------ 1-59
1.3.5 Comparison Instruction (=) = === --=mmcmmm i oo 1-60
1.3.6 Comparison Instruction (=) -------------cccmmommmm oo 1-61
1.3.7 Comparison Instruction (1=) == == === == - o e e e e 1-62
1.3.8 Comparison Instruction (>=) ------------ccommomm - 1-63
1.3.9 Comparison Instruction (>) --------=--=-“-““--“-“-------- 1-64
1.3.10 RANGE CHECK Instruction (RCHK)------=----ccccmon-- 1-65
1.4 Program Control Instructions----------=-c-uco-u-n-- 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE)--=-=----==-===-------- 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE)---------------- 1-69
1.4.3 FUNCTION CALL Instruction (FUNC)-=-=-======-c--ooooon-- 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) ---------cccoooon-m- 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)--=-=-=-=-=---------- 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL) - ----------- 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) ------------------- 1-77
1.4.8 IF Instruction (IF, END_IF)--- - mmmmmmm e e e c e o 1-79
1.4.9 IF Instruction (IF, ELSE, END_|F)------cmmmmmmi e e oo 1-80
1.4.10 FOR Instruction (FOR, END_FOR)---------mmmmmmmaaaao o - 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION) - - - -=-------ooon-- 1-84
1.5 Basic Function Instructions - - - - = - -------um-un-n--- 1-85
1.5.1 SQUARE ROOT Instruction (SQRT)-----===--=-cmmmomunnn 1-85
1.5.2 SINE Instruction (SIN)- - === === c m e e e e e e 1-87
1.5.3 COSINE Instruction (COS) = -==---mmmmmmm i e e e oo 1-88
1.5.4 TANGENT Instruction (TAN) === == === mmmmmmmm i ie e e e o - 1-90
1.5.5 ARC SINE Instruction (ASIN)- - - = = = = = = cm e e e e e - 1-91
1.5.6 ARC COSINE Instruction (ACOS) --=-=-=-----mmmmmmmmmoo oo 1-92
1.5.7 ARC TANGENT Instruction (ATAN) -------c-cmmmmmmm e oo 1-93
1.5.8 EXPONENT Instruction (EXP)---------=-cccmcmcmmmemaam o 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) =-=-=-=====eccooooo-o- 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG) - - -=-==-=-=-=---------- 1-96
1.6 Data Manipulation Instructions--------------c-c---- 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL) -=----=--=--=-------- 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR)- === =====---c--o--- 1-99
1.6.3 MOVE BITS Instruction (MOVB) -------cmmmmmmmmaaaaoo - 1-101
1.6.4 MOVE WORD Instruction (MOVW) === ---cmmmmmmmaaaa oo 1-103
1.6.5 EXCHANGE Instruction (XCHG) --------====cccuccc---- 1-105
1.6.6 SET WORDS Instruction (SETW)---------ccmmmmmoaoo- 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD) - ---------- 1-108
1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS) - - - - - - 1-110
1.6.9 BINARY SEARCH Instruction (BSRCH) - - - === ===cuuoooooo-- 1-111
1.6.10 SORT Instruction (SORT) = === -ccmmmmm e o - 1-113
1.6.11 BIT SHIFT LEFT Instruction (SHFTL) - - === ---====cc------- 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)-------------------- 1-115
1.6.13 COPY WORD Instruction (COPYW)-------cmmmmmmaaao 1-116
1.6.14 BYTE SWAP Instruction (BSWAP) - - - - - - - o e e e e oo - 1-118

vii

1.7 DDC Instructions - -------------mo-mmmmm e 1-120

1.7.1 DEAD ZONE A Instruction (DZA) --=-----------------~-~-~--- 1-120
1.7.2 DEAD ZONE B Instruction (DZB) -------------------~-~-~--- 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) = = - === === === - - - - - - 1-124
1.7.4 PI CONTROL Instruction (PI) == -=-=--=----c-cmccmmm - 1-127
1.7.5 PD CONTROL Instruction (PD)- - === -===-ccmmommmaaannn 1-131
1.7.6 PID CONTROL Instruction (PID)--=-=--=-------=------~-~-~--- 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG)--------------------- 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG)-=---------------~-~---- 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN) ---------------- 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN) ------- 1-147

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU) -- 1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU) - 1-155

1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - --=-------- 1-163
1.8 Table Data Manipulation Instructions - -------------- 1-166
1.8.1 BLOCK READ Instruction (TBLBR) = = - = == = === = == == oo oo oo 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) - = = = = = == === c oo e oo - 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL) - -=--==--==--=------- 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) - - === === === === --- 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL) = - === -==-==---=--c---- 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV)- = = = == = === = = oo oo oo oo 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI) --------- 1-177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)- - - - - - - - 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) - - == === ------ 1-182

2 STANDARD SYSTEM FUNCTION

2.1 Message Functions -------------------“--------- 2-2
2.1.1 Send Message Function (MSG-SND) ----------=----=------- 2-2
2.1.2 Receive Message Function (MSG-RCV) --------=-cc-cmomo- 2-13

2.2 Trace Functions - = == = = = == cc o e e 2-22
2.2.1 Trace Function (TRACE) -----------mmmmmm e e oo o 2-22
2.2.2 Data Trace Read Function (DTRC-RD) - --------=--=-=------ 2-23
2.2.3 Failure Trace Read Function (FTRC-RD)--------=----------- 2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) - ----=--==n-cumoonn- 2-31

2.3 Inverter Functions -----------mcmommmm e 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR) - - - - - == ---------- 2-34
2.3.2 Inverter Constant Read Function (ICNS-RD) ----------------- 2-39

2.4 OtherFunctions - - - - ------cmmmmm e e e - 2-42
2.4.1 Counter Function (COUNTER) = --------cmmmmmmm e e oo 2-42
2.4.2 First-in First-out Function (FINFOUT)-----------=----cc----- 2-44

viii

Appendix A Expression

A1 EXPression - - - - - - - - mmm e e e e o A-2
A1 Operator = - === - - m e e e e e e e e A-2
A1.2 Operand ------ - - m oo e e A-3
A1.3 Function = -----c - mmmm e e A-4

A.2 Recognizable Expression - - -------------c-c----- A-5
A.2.1 Arithmetic Operator = ------=-c - e e e e e o - A-5
A.2.2 Comparison Operator-------- === - -cc oo A-5
A.2.3 Logic Operator---------- - oo e A-5
A.2.4 Substitution Operator - - - - - - === - mm s e A-6
A25 Function = -----cmmmmm e e A-6
A26 Others-------cmmmm e A-6

A.3 Application to Ladder Program -----------c-momo-no- A-8
A.3.1 Conditional Expression of IF Instruction - - - ---------=-------- A-8
A.3.2 Conditional Expression of WHILE Instruction ----------------- A-8
A.3.3 Operational Expression of EXPRESSION Instruction------------ A-9

1

Ladder Program Instructions

This chapter describes the details of ladder program instructions.

1.1 Relay Circuit Instructions - - ------=-c-ccmmomaaao- 1-4
1.1.1 N.O. Contact Instruction (NOC) - - - - === - == m - o e e e e oo 1-4
1.1.2 N.C. Contact Instruction (NCC) - --- === -mmmmmmm e aee e oo 1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms]) - ------------ 1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms]) ----------- 1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [1S]) ---=--=------------ 1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s]) == ------------- 1-10
1.1.7 RISING PULSE Instruction (ON-PLS) --------cccuuoooooo-- 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS) -------mmmmemaoaooo- 1-13
1.1.9 COIL Instruction (COIL) -=----=----mmmmmmm e e e e e - 1-14
1.1.10 SET COIL Instruction (S-COIL) == -===--=mmcmmmmmmmaeae oo - 1-15
1.1.11 RESET COIL Instruction (R-COIL) = === === === mmmmmmm oo o - 1-17

1.2 Numeric Operation Instructions - ---------=--------- 1-19
1.2.1 STORE Instruction (STORE) -----------------“--“------ 1-19
1.2.2 ADDITION Instruction (ADD) - -======mmmmmmmmm e e oo - 1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) -=--=-=-======------- 1-23
1.2.4 SUBTRACTION Instruction (SUB) === == == === cemmmmma oo - 1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX) -------------- 1-27
1.2.6 MULTIPLICATION Instruction (MUL) ----------=-=«---------- 1-28
1.2.7 DIVISION Instruction (DIV) === === == c s e e - 1-31
1.2.8 MOD Instruction (MOD) - === -==--cmmm e ee e e o - 1-33
1.2.9 REM Instruction (REM) - - - - - - - - e i - 1-34
1.2.10 INC Instruction (INC) =-------cccmmmmmmmmmieee e e - 1-35
1.2.11 DEC Instruction (DEC) = -------==ccmmmmmmmmmeem e e o - 1-36
1.2.12 ADD TIME Instruction (TMADD) ------------cccucmc---- 1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) - ---------ucoooooo-- 1-39
1.2.14 SPEND TIME Instruction (SPEND) -------cmmmmmmmmaaoooo- 1-41
1.2.15 SIGN INVERSION Instruction (INV) = = = === === m e e e e e e - - 1-43
1.2.16 1°S COMPLEMENT Instruction (COM) = === === === ccmmooooo- 1-44
1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS) - - - - ------ 1-45
1.2.18 BINARY CONVERSION Instruction (BIN) = === -=------------- 1-46

1-1

1 Ladder Program Instructions

1.2.19 BCD CONVERSION Instruction (BCD) - - -------=-=--------- 1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) - --------nuuun-- 1-50
1.2.21 ASCIl CONVERSION Instruction (ASCII) == === == --mmmmmun-- 1-51
1.2.22 ASCIl CONVERSION 2 Instruction (BINASC) - - - - - - - == === = - - - 1-52
1.2.23 ASCIl CONVERSION 3 Instruction (ASCBIN) - - - - = = = = === == - - - 1-53
1.3 Logical Operation/Comparison Instructions - ----------- 1-55
1.3.1 AND Instruction (AND) == === - - cc s o m e e e - 1-55
1.3.2 OR Instruction (OR) === === - - o e e oo - 1-56
1.3.3 XOR Instruction (XOR) === === == cmmmm e e e e oo - 1-57
1.3.4 Comparison Instruction (<) = ------=----c-cmmmmm e 1-59
1.3.5 Comparison Instruction (<=) ---------------------~-~------- 1-60
1.3.6 Comparison Instruction (=) -----------------------~--~-~---- 1-61
1.3.7 Comparison Instruction (1=) === = == == s e e e - 1-62
1.3.8 Comparison Instruction (>=) ---------------mmmmma - 1-63
1.3.9 Comparison Instruction (>) ------------=-----c-o--- 1-64
1.3.10 RANGE CHECK Instruction (RCHK) =---------------------- 1-65
1.4 Program Control Instructions - --------------------- 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE) -------------------- 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE) --------------- 1-69
1.4.3 FUNCTION CALL Instruction (FUNC) --------------------- 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) ------------------- 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS) --------------- 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL) - ----------- 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) -----------nnuuu--- 1-77
1.4.8 IF Instruction (IF, END_IF) ==--------coommmmmm e o 1-79
1.4.9 IF Instruction (IF, ELSE, END_IF) =---------ommmmmmmmaaaa- 1-80
1.4.10 FOR Instruction (FOR, END_FOR) ---------------cmmm--- 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION) - - - - ===« nmmmnmn- 1-84
1.5 Basic Function Instructions ----------------------- 1-85
1.5.1 SQUARE ROOT Instruction (SQRT) -----------------cu--- 1-85
1.5.2 SINE Instruction (SIN) - ------ccmmmmm e oo 1-87
1.5.3 COSINE Instruction (COS) -------------------“---------- 1-88
1.5.4 TANGENT Instruction (TAN) ---------------cmmmm o 1-90
1.5.5 ARC SINE Instruction (ASIN) = - -----cmmmmmm e iee e - 1-91
1.5.6 ARC COSINE Instruction (ACOS) - -=-=--------------cccu--- 1-92
1.5.7 ARC TANGENT Instruction (ATAN) ===-------ccmmmmmmaaa 1-93
1.5.8 EXPONENT Instruction (EXP) === ---------cccmmmmmmmaaao- 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) === === ===cccuaaumaz- 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG) - ----------------- 1-96
1.6 Data Manipulation Instructions - - - - - == - ----=-------- 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL) - ------------------- 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR) ------------------ 1-99
1.6.3 MOVE BITS Instruction (MOVB) =------------------------ 1-101
1.6.4 MOVE WORD Instruction (MOVW) - -----ccooommamaaa 1-103
1.6.5 EXCHANGE Instruction (XCHG) = ------------------------ 1-105
1.6.6 SET WORDS Instruction (SETW) -=------cmmmommacaa e 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD) - - - -------- 1-108
1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS) - - - - - - 1-110
1.6.9 BINARY SEARCH Instruction (BSRCH) - ------------------- 1-111

1-2

1.6.10 SORT Instruction (SORT) - -----cmmmmmm e o - 1-113

1.6.11 BIT SHIFT LEFT Instruction (SHFTL) = ---=----------com--- 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR) - = = === === === -=o---- 1-115
1.6.13 COPY WORD Instruction (COPYW) = - - === o ccmmmomm oo 1-116
1.6.14 BYTE SWAP Instruction (BSWAP) = - - - == -cncmmmmoamao 1-118
1.7 DDC Instructions - -------ommmmm e 1-120
1.7.1 DEAD ZONE A Instruction (DZA) - -==--===-=-==c--cuummm- 1-120
1.7.2 DEAD ZONE B Instruction (DZB) - - === -==========--euum"- 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) ==----=cumnnammann 1-124
1.7.4 PI CONTROL Instruction (Pl) = = = = === == == o oo cme oo e 1-127
1.7.5 PD CONTROL Instruction (PD) ---=------=c-mc-ccmcmma - 1-131
1.7.6 PID CONTROL Instruction (PID) - - === -===cmmommmmmoamaaan 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG) ---==---==-----=----- 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG) - ---==---==----=cum-- 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN) === = === === === - - - 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN) - - - - - - - - 1-147

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU) - - -1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU) - - 1-155

1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - ----------- 1-163
1.8 Table Data Manipulation Instructions --------------- 1-166
1.8.1 BLOCK READ Instruction (TBLBR) -------=----=c-ccmc-m-- 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) ---------mmmommnoanno- 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL) - --------=------------ 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) -----=---=-------- 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL) - - - ----=--m-emomnonnn- 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV) - ------cmommmm e e - 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI) - --------- 1-177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI) - - ------- 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) ------------- 1-182

1-3

1 Ladder Program Instructions

1.1.1 N.O. Contact Instruction (NOC)

1.1 Relay Circuit Instructions

1.1.1 N.O. Contact Instruction (NOC)

m Outline

The NOC sets the value of the bit output to ON if the value of the referenced register is 1
(ON), and to OFF is the value of the referenced register is 0 (OFF).

B Format
Symbol: NOC
- Full Name: NO Contact
MEOODD01 E*:jfg‘iiyi_RELAY
B Parameter
Parameter Name Setting
Relay No. * Any bit type register
* Any bit type register with subscript

B Program Example

When MWO000100 becomes ON, MB000101 becomes ON.

Intlll-.l:u] wiiE 01
]
ON
MBO000100 OFF ;
ON
MB000101 OFF ﬂ ;

1.1 Relay Circuit Instructions

1.1.2 N.C. Contact Instruction (NCC)

B Outline

The NCC sets the value of the bit output to OFF when the value of the referenced register is
1 (ON), and to ON when the value of the referenced register is 0 (OFF).

B Format
Symbol: NCC

1 Full Name: NC Contact
WEODDONY Category: RELAY

Icon: “_

B Parameter

Parameter Name Setting

Relay No. * Any bit type register
* Any bit type register with subscript

B Program Example

‘When MB000100 becomes ON, MB000101 becomes OFF.

MBRRDIOD MBERRNAT

oS I I

MB000100 OFF ;
o L 1

MB000101 OFF

1-5

1 Ladder Program Instructions
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

H Outline

The TON [10ms] is executed while the immediately-preceding value of the bit input is ON.
The value of the bit output is set to ON when the timer value reaches the set value. The
timer stops when the immediately-preceding value of the bit input is set to OFF during tim-
ing. When the bit input is set to ON again, timing restarts from the beginning (0). A value
equal to the actual timed time (10 ms Unit) is stored in the timer value register.

H Format

Symbol: TON [10ms]
Full Name: On-Delay Timer [10ms]

TON[10ns] Z Category: RELAY

Sebk 7 Icon: TOM
MRI000t 10
Count 7
M¥0002

B Parameter

Parameter Name Setting

Set (set value) * Any integer type register

* Any integer type register with subscript (0 to 65535:in 0.01 sec
unit)

* Constant

Count (timer value) * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

1-6

1.1 Relay Circuit Instructions

B Program Example

[T RLT LIS REE
—
et 00
Caunl WRIOO1I1

ON
MB000100 OFF Q ‘

ON ‘
MB000101 OFF

MB000011 0 5.00s-Ts

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])

B Outline

The TOFF [10ms] is executed while the immediately-preceding value of the bit input is
OFF. The value of the bit output is set to OFF when the timer value reaches the set value.
The timer stops when the immediately-preceding value of the bit input is set to ON during
timing. When the bit input is set to OFF again, timing restarts from the beginning (0). A

value equal to the actual timed time (10 ms Unit) is stored in the timer value register.
B Format

Symbol: TOFF [10ms]
Full Name: Off-Delay Timer [10 ms]

ml Category: RELAY

2al 7 Icon: TOFF
HR00003 10
Count f
HR00004

1-7

1 Ladder Program Instructions

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

B Parameter

Parameter Name Setting
Set (set value) * Any integer type register
* Any integer type register with subscript (0 to 65535: 0.01 sec
unit)
* Constant
Count (timer value) * Any integer type register (except for # and C registers)
 Any integer type register with subscript (except for # and C reg-
isters)
B Program Example
HpEREAan LI RD Y
=
LT L[]
Counl WAI0O011

ON
MB000100 OFF

ON
MB000101 OFF

L

I

500

MB000011 [0
A5OOS-TS‘

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

H Outline

The TON [1s] times while the immediately-preceding value of the bit input is ON. The
value of the bit output is set to ON when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal

to the actual timed time (1 s Unit) is stored in the timer value register.

1-8

1.1 Relay Circuit Instructions

B Format

Symbol: TON [1s]
Full Name: On-Delay Timer [1s]

"1 TOM[1=] EF" Category: RELAY
ant

2 Icon: Tﬂhll

NNO000S s
Count 7

MWOOR0R

B Parameter

Parameter Name Setting
Set (set value) * Any integer type register
* Any integer type register with subscript (0 to 65535: 1 sec unit)
* Constant
Count (timer value) * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

B Program Example

WiEad a0 wipER a1
[__Ton[1s]
Gel §A0
Counl WFI0011
ON
MB000100 OFF Q ‘
ON

MB000101 OFF ‘

MB000011 0 500s-Ts

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1-9

1 Ladder Program Instructions
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

H Outline

The TOFF [1s] times while the immediately-preceding value of the bit input is OFF. The
value of the bit output is set to OFF when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal

to the actual timed time (1 s Unit) is stored in the timer value register.

H Format

Symbol: TOFF [1s]
Full Name: Off-Delay Timer [15]

-l TOF[1s] EI- Category: RELAY

cal 7 Icon: TOFF
NN0D007 1s
Count
NEIDEDE

B Parameter

Parameter Name Setting
Set (set value) * Any integer type register
* Any integer type register with subscript (0 to 65535: 1 sec unit)
* Constant
Count (timer value) * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

1.1 Relay Circuit Instructions

IMPORTANT

B Program Example

WOERA 00
__ToF[1s} 3
CTT)
Count WPADO1 |
ON

MB000100 OFF

ON
MB000101 OFF

500

MB000011 [0 S ——

LT RRY

L

500s-Ts

d

(Ts = Scan set value)

MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1.1.7 RISING PULSE Instruction (ON-PLS)

H Outline

The ON-PLS sets the value of the bit input to ON during one scan when the immediately-

preceding value of the bit output changes from OFF to ON. The designated register is used

to store the previous value of the bit output.

B Format

1
MBOEBO003

B Parameter

Symbol: ON-PLS
Full Name: Rise Pulse
Category: RELAY

Icon: ;

Parameter Name

Setting

Register No.

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

1 Ladder Program Instructions

1.1.7 RISING PULSE Instruction (ON-PLS)

B Program Example

When IB00001 turns ON from OFF, MB000101 turns ON and stays ON during 1 scan.
MB000100 is used to store the previous value of IBO0001.

1B I:':I! LETTREE CITTERLY
I

ON
IBO0001 OFF

ON
MB000100 OFF

on]]

MB000101 OFF T f

1 scan 1 scan

Register status of Rising pulse instruction is shown in Table 1.1.

Table 1.1 Register Status with Rising Pulse Instruction

Input Result
1BO0001 MB000100 MB000100 MB000101
(Previous value of (IBO0001 stored)
IBO0001)
OFF OFF OFF OFF
OFF ON OFF OFF
ON OFF ON ON
ON ON ON OFF

Note: Case of Program Example, the instruction is used not for rise detec-
tion of MB000100 but is used for rise detection of IBO00O1.
MBO000100 is used only for storing the previous value of IBO0001.

1.1 Relay Circuit Instructions

1.1.8 FALLING PULSE Instruction (OFF-PLS)

B Outline

The OFF-PLS sets the value of the bit input to ON for one scan when the immediately-pre-
ceding value of the bit output changes from ON to OFF. The designated register is used to
store the previous value of the bit output.

B Format
Symbol: OFF-PLS
E Full Name: Fall Pulse
MEODODD & Category: RELAY

Icon: %

B Parameter

Parameter Name Setting
Register No. * Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

B Program Example

When IB00001 turns OFF, MB000101 turns ON and stays ON during 1 scan. MB000100 is
used to store the previous value of IBO00O1.

AL LN EEOOOTEA wlinEEn
L =
I -
ON
IB0O0001 OFF
ON
MB000100 OFF

on] L

MB000101 OFF T T

1 scan 1 scan

1 Ladder Program Instructions

1.1.9 COIL Instruction (COIL)

Register status of Falling pulse instruction is shown in Table 1.2.

Table 1.2 Register Status with Falling Pulse Instruction

Input Result
1B00001 MB000100 MB000100 MB000101
(Previous value of (IBO0001 stored)
IBO0001)
OFF OFF OFF OFF
OFF ON OFF ON
ON OFF ON OFF
ON ON ON OFF

Note: Case of Program Example, the instruction is used not for fall detec-

tion of MB000100 but is used for fall detection of IBO0O0O1.
MB000100 is used only for storing the previous value of IBO00O1.

1.1.9 COIL Instruction (COIL)

H Outline

The COIL sets the value of the referenced register to 1 (ON) when the immediately-preced-

ing value of the bit input is ON, and to 0 (OFF) when the immediately-preceding value of

the bit input is OFF.

B Format

T
NBOOOODODS

B Parameter

Symbol: COIL
Full Name: Coil
Category: RELAY

Icon: 'O'l

Parameter Name

Setting

Coil No.

* Any bit type register (except for # and C register)

* Any bit type register with subscript (except # and C registers)

1.1 Relay Circuit Instructions

B Program Example

When MB000100 becomes ON, MB000101 becomes ON.

I[IEII.'.l:II:I ORENa;

o — T L]

MB000100 OFF |—
o — 1]

MBO000101 OFF |—

1.1.10 SET COIL Instruction (S-COIL)

B Qutline

The S-COIL turns ON the output when the execution condition is satisfied, and maintains

the ON state.

B Format

Symbol: S-COIL
2 Full Name: Set Coil
WBODDA0E Ee;tggc;ré} RELAY

B Parameter

Parameter Name Setting
Coil No. * Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

1 Ladder Program Instructions

1.1.10 SET COIL Instruction (S-COIL)

B Program Example

Case where the same output destination is designated multiple times.

QBRI

Lo n e e

Ll e e]

HB:I:I:.::GCI

The above example acts as in the graph below.

MB000000

MB000001

MB000002

MB000003

0OB00000

* When OB00000 is OFF, with the "set coil" instruction, OB00000 turns

ON.

1.1 Relay Circuit Instructions

1.1.11 RESET COIL Instruction (R-COIL)

B Outline

The R-COIL turns OFF the output when the execution condition is satisfied, and maintains
the OFF state.

B Format

Symbol: R-COIL
Full Name: Reset Coil
! Category: RELAY

NEODDD07 .
o B

B Parameter

Parameter Name Setting
Coil No. * Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

B Program Example

Case where the same output destination is designated multiple times.

WBC] il e i)

1 Ladder Program Instructions

1.1.11 RESET COIL Instruction (R-COIL)

The above example acts as in the graph below.

MB000000
MB000001

MB000002

MBO000003

0OB00000

* When OB00000 is ON, with the "reset coil" instruction, OB00000 turns
OFF.

1.2 Numeric Operation Instructions

1.2 Numeric Operation Instructions

1.2.1 STORE Instruction (STORE)

m QOutline

The STORE instruction stores the contents of Source in the Dest.

B Format

Symbol: STORE
Full Name: Store
—[BTORE ﬂ]- Category: MATH

Source 7 Teon:

Weaang 1 i

Da=t 7
WRoononz

B Parameter

Parameter Name Setting

Source * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1 Ladder Program Instruction
1.2.1 STORE Instruction (STORE)

B Program Example

STORE =}

—
Source 1294E

Desl WWODIED LEZZAL]

T

Fouroe 1104587
Deaf MLERIOD (ETIALET]
ETORE

Bource §.2EABMIEDDE
Desl OFOOIED L1. 23456)

foures 1,22480 000000
Desl CAODIRD (aoooi |

Sauroe 1. E0ASETELIAS
Desl DLEANAD LTEmdsE

|NFO When a double-length integer type data is stored in an integer type register, the lower 16 bits are stored
as they are. Be careful since an operation error will not occur even if the data to be stored exceeds the
integer range (—32768 to 32767).

Tora—- |

Eourew ELOBIM |EEERS |
bead EWODERI [=-BbEdi)

1-20

1.2 Numeric Operation Instructions

1.2.2 ADDITION Instruction (ADD)

B Outline

The ADD instruction adds integer, double-length integer, and real number values. Source B
is added to Source A and stored in the Dest. If the result of adding integer values is greater
than 32767, an overflow error occurs. If the result of adding double-length integer values is
greater than 2147483647, an overflow error occurs.

B Format

Symbol: ADD
Full Name: Add

- ADD m— Category: MATH

Sourced 1 Icon: |
MR00OD0S +
source8 7
p¥ono0d
Dezt 7
NRDDEDE

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1-21

1 Ladder Program Instruction
1.2.2 ADDITION Instruction (ADD)

B Program Example

Addition of Integer Type Values

Ab =

Souresd ENODTHD L300y
Sourcell BRH4E
D21 ENDETED LEG2AL)

b =

Bourced ELOOTED 1 THIaaa
Sourcel ELODIEE FIE LT
Pzt ELDOIRE (3000003

Addition of Real Number Type Values

— A0 P
Fourcek DFIAROD [1H.03
Jaurcel | TIAGEDE+EA0
Pexl DFRAZOZ [T 34466
—B An0 =)
Faprcek DFIAZ0A I 13
Sourcel DMAZ0E {aanne §
Dexgl DFIAROE M IB)

——_ w3

Sources DFIAZID .51
SewrenB DLAAZ 1T L IO00ER]
Dot BFOOZIA CROONEE,. 51)

In the case of double-length integer type values, an operation using addition and subtraction instruc-

&
m
)
&

tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-

tion will be a 64-bit operation.

1-22

1.2 Numeric Operation Instructions

1.2.3 EXTENDED ADDITION Instruction (ADDX)

B Outline

The ADDX instruction adds integer values. Source B is added to Source A and stored in the
Dest. No operation error occurs, even if the operation results in an overflow. Otherwise, the
ADDX is much the same as the ADD.

B Format

Symbol: ADDX
Full Name: Expanded Add

[aphy Category: MATH

Sourceh 7 Teon: oo
MYnoong
SeuresB 7
Mygooo?
Pest 7
uRoaoo0g

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register
* Constant

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-23

1 Ladder Program Instruction
1.2.4 SUBTRACTION Instruction (SUB)

B Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the

addition of integer type values.

Spurced WADETIR LEEaLEy
Bourcal |

L L[] [=337E0)

} In the case of double-length integer type values, an operation using addition and subtraction instruc-
% tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1.2.4 SUBTRACTION Instruction (SUB)

H Outline

The SUB instruction subtracts integer, double-length integer, and real number values. Source
B is subtracted to Source A and stored in the Dest. If the result of subtracting integer values
is smaller than -32768, an underflow error occurs. If the result of subtracting double-length

integer values is smaller than -2147483648, an underflow error occurs.

B Format
Symbol: SUB
Full Name: Subtract
SUB | Category: MATH
Bouread 1 Icon:
HWD000a
Bourcef 1
H¥oonio
Dzt %
Wwonn

1-24

1.2 Numeric Operation Instructions

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Subtraction of Integer Type Values

allf I

Oourced W00 LOERER]

SourcsE 13545
Dest MO0 01 [=0@Fds)

A 1L _a-

re=—
Hourced WLOO10E Wy
Souress MLOD| D (Taann
Pagd WLOD|DE 1aannn

1-25

1 Ladder Program Instruction
1.2.4 SUBTRACTION Instruction (SUB)

Subtraction of Real Number Type Values

Sourced DFOOE RN {13
Jourcel |, 2RL§UEFODE
Desl DFDOFAZ [E.JRG44)

il
Tewreah DFRATOA 10,151

Sourcell DRIVE0E TR
et DFRA20E I-E. %)

AT) o

Saureas OFOOE1N [2.E1]
Sourcel BLOOF1} I IEEEEG)
Desi DFODIIL [=¥3095,.43])

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is

ﬁ
T
o
N\

used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-

tion will be a 64-bit operation.

1-26

1.2 Numeric Operation Instructions

1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)

B Outline

The SUBX instruction subtracts integer values. No operation error occurs, even if the oper-

ation results in an underflow.

B Format

Symbol: SUBX
Full Name: Expanded Subtract

~ ZUBK g— Category: MATH

Sourced 1 Icon: g
WWooo12
svourcad 7
Wwoao13
Dest 1
Wuanm 4
B Parameter
Parameter Name Setting
Source A * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript
* Subscript register
* Constant
Source B * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript
* Subscript register
* Constant
Dest * Any integer type and double-length integer type register
(except for # and C registers)
* Any integer type and double-length integer type register with
subscript (except for # and C registers)
* Subscript register

1-27

1 Ladder Program Instruction
1.2.6 MULTIPLICATION Instruction (MUL)

B Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the

subtraction of integer type values.

Sourced WADBTIN [=32TEa)
Sourcel |
Dmxd EYDRIDN LagTeTl

} In the case of double-length integer type values, an operation using addition and subtraction instruc-
% tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-

tion will be a 64-bit operation.

1.2.6 MULTIPLICATION Instruction (MUL)

m Outline

The MUL instruction multiplies integer, double-length integer, and real number values.

Source B is multiplied to Source A and stored in the Dest.

B Format
Symbol: MUL
Full Name: Multiply
UL | Category: MATH
Sourced 1 Icon: '
NWODD 16 E
Bourcel 7
N¥0DDO 18
Dest 7
N¥I0017

1-28

1.2 Numeric Operation Instructions

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Multiplication of Integer Type Values

—5 T
Bourced HEDETIG [SFE1 §]
Boureal 3
Dagd WEOETRG [l]
MU
Bourced BRODIED Conping
Sourced HIDPTRT CIO0DE)
Cwal HLDETR4 CIODEDR]

1-29

1 Ladder Program Instruction
1.2.6 MULTIPLICATION Instruction (MUL)

Multiplication of Double-length Integer Type Values

Suurced ELOOTEE | 1ERIan)
Sourcell W00 KT [OpIganh
Desl WLOOIBS L 3EIIRQ000 §

il I

Sourcss ELOOTH L19a0one)
SourcaB BLODTFE CAa000n)
Begt WLOOTIE (LIS LT

Multiplication of Real Number Type Values

q_ WL
Soyroek DFIOZOD LR

SauscaB DFADIOD (1.a)
bexl BFOQZOE 1.0

3 muL =)
Squrcek BFIOI0E {0,181

Zourcel DMOZ0E [oonszl
Dagl DFIOZDE [D.EF

— TR

Seurcsk DFIGZID i, 1E)
Zourcel DLAGZIZ RLTTIL R
Desgt DFa0z1a (ISEER.A)

In the case of double-length integer type values, an operation using addition and subtraction instruc-

ﬁ
T
o
N\

tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is

used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1-30

1.2 Numeric Operation Instructions

1.2.7 DIVISION Instruction (DIV)

B Outline

The DIV instruction divides integer, double-length integer, and real number values. Source
A is divided by Source B and stored in the Dest.

B Format

Symbol: DIV
Full Name: Divide

- DIy
Gourced 1
Waonon1e
Sourced 7
HEonn14
Degt 1
Wwannza

B Parameter

|

Category: MATH

Icon: & |
T

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest

* Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1-31

1 Ladder Program Instruction

1.2.7 DIVISION Instruction (DIV)

B Program Example

Real Number Type Data

OIy
dourced DEOOZDN (1aT.§]
SaureaB 3 :0DRFIAEDEN
Peai LFOOTED tdig, 6}
=] Bl
Togromh DFIIZ00 (A3AT. 61
Foaurowl ELMO0DDE+ AR 3.0
Dmzt DFIAZOZ fdEy. 6}

—{ [T =),

Sourced DFETIOD {1237, 8]
Exarcall DREEZ0H faanng |
Dest [FEOZID L. bl
— oo a_
Bourost DFROTIE (anone.a)
Esareal DLEAZIY {4a000}
Deek DFEAZIE 2.8

1-32

1.2 Numeric Operation Instructions

1.2.8 MOD Instruction (MOD)

B Outline

The MOD instruction outputs the remainder of integer or double-length integer division to
the Dest. Always execute the MOD immediately after the division instruction. If the MOD
is executed somewhere else, the operation results obtained before the next entry instruction

cannot be guaranteed.

B Format

Symbol: MOD
Full Name: Integer Remainder

— HOD &' Category: MATH

Dest 1 Icon:
HLAOD@ it

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

The quotient of an integer type division is stoned in MWO00101 and the remainder is stored

in MWO00102.
—{ 1]
Taiieeak MM 1DD (onn1el
Foyrcel 1
Dest WRIIO0 (OnEE1]

Dzl MAREIAZ tamoni |

1-33

1 Ladder Program Instruction
1.2.9 REM Instruction (REM)

1.2.9 REM Instruction (REM)

H Outline

The REM instruction outputs the remainder of real number division to the Dest. Here, the
remainder refers to the remainder obtained by repeatedly subtracting the Base designated by
the Source. Thus, the n is the number of times subtraction is repeated.

Dest = Source - (Base xn) (0 < Dest < Base)

B Format

Symbol: REM
Full Name: Real Remainder

e | REH E]- Category: MATH

Bource 7 Ieon: ooy
WFaD00 —
Baze ©
WFaoonz
Dest 2
WFaDO0:

B Parameter

Parameter Name Setting

Source * Any real number type register
* Any real number type register with subscript
* Constant

Base * Any real number type register
* Any real number type register with subscript
* Constant

Dest * Any real number type register (except for # and C register)
* Any real number type register with subscript (except for # and
C register)

B Program Example

The remainder of the division of the real number variable MF00200 by the constant value,
1.5, is determined and stored in DF00202.

—I R

Sporce EFOOTEN (]
Bass 1. BORRINE+DDD

Pesi DFODTED 1,03

1-34

1.2 Numeric Operation Instructions

1.2.10 INC Instruction (INC)

B Outline

The INC instruction adds 1 to the designated integer or double-length integer register. For
integer registers, no overflow error occurs even if the result of addition exceeds 32767.

Likewise, no overflow error occurs for double-length integer registers.

B Format

Symbol: INC
Full Name: Increment

3 Category: MATH

[ast 7 Icon:
RO +1-

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type

Spurced WROD1I0
Sourcel |

Dmgh WEOEIDG

ﬁ equivalent

I T T |

Deil WFIOIDE

1-35

1 Ladder Program Instruction
1.2.11 DEC Instruction (DEC)

Double-length Integer Type

Spurced BLOKTIN
Sourcel |

Desd BLOEIIY

II equivalent

Dl HLODIDE

1.2.11 DEC Instruction (DEC)

H Outline

The DEC instruction subtracts 1 from the designated integer or double-length integer regis-
ter. For integer registers, no underflow error occurs even if the result of subtraction is less

than -32768. Likewise, no underflow error occurs for double-length integer registers.

B Format

Symbol: DEC
Full Name: Decrement

‘E.F] Category: MATH

Desti 7 Icon: _.l
uwnoozz _

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-36

1.2 Numeric Operation Instructions

B Program Example

Integer Type

Spurced WROD1I0

Bourcel |

fmsd WNDEI0E

II equivalent

OELC |
Desl WFIOIDE

Double-length Integer Type

—' SUEK u

Spurced HLODTIA
Sourcel |

Dmgd HLDEIDE

ﬁ equivalent

OEE an |
Deal HLOOIDE

1-37

1 Ladder Program Instruction

1.2.12 ADD TIME Instruction (TMADD)

1.2.12 ADD TIME Instruction (TMADD)

H Outline

The TMADD instruction adds one time (hours/minutes/seconds) to another time. The

Source is added to the Dest and the result is stored in the Dest. The formats of Source and

Dest are as follows.

Table 1.3 Data Format

Register Offset Data Contents Data Range (BCD)
0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59
1 Seconds 0000 to 0059

If the contents of the Dest and Source and the operation result are with the appropriate

ranges, the operation will be performed normally. After the operation is completed, the /Sta-

tus] is turned OFF. If the contents of the Dest and Source are outside the data ranges, the

operation is not performed. In this case, 9999H is stored in the column "second" of the Dest,
and the /Status] is turned ON.

B Format

— THADD =

source . 1
Wyaonzz

best %
HYonnE4

[Status] 1
WEAOODE

B Parameter

Symbol: TMADD
Full Name: Time Add
Category: MATH

Icon: E,
ST

Parameter Name

Setting

Source

* Any integer type register
* Any integer type register with subscript

Dest

ister)

* Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-

[Status]*

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C register)

* Possible to omit.

1-38

1.2 Numeric Operation Instructions

B Program Example

The time data in DW0000 to DW00101 is added to the time data in MWO00100 to
MWO00101.

Eoaprca DRRRAGD
Dead WARR0D
[#tatua] DEEREYA0

8 hrs 40 min 32 sec + 1 hrs22 min 16 sec = 10 hrs 2 min 48 sec
(MWO00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

Time Data Before Execution After Execution
MW00100 0840H 1002H
MWO00101 0032H 0048H
DWO00000 0122H 0122H
DwWO00001 0016H 0016H

1.2.13 SUBTRACT TIME Instruction (TMSUB)

H Outline

The TMSUB instruction subtracts one time (hours/minutes/seconds) from another time. The

Source is subtracted from the Dest and the result is stored in the Dest. The formats of

Source and Dest are as follows.

Table 1.4 Data Format

Register Offset Data Contents Data Range (BCD)
0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59
1 Seconds 0000 to 0059

If the contents of the Dest and Source are with the appropriate ranges, the operation will be
performed normally. After the operation is completed, the /Status] is turned OFF. If the con-
tents of the Dest and Source are outside the data ranges, the operation is not performed. In
this case, 9999H is stored in the column "second" of the Dest, and the [Status] is turned ON.

1-39

1 Ladder Program Instruction
1.2.13 SUBTRACT TIME Instruction (TMSUB)

B Format
Symbol: TMSUB
Full Name: Time Sub
e | THSUB _ Zlj= Category: MATH
Source Icon: [Ty |
WYOO0:4 =
Dest 1
WRoon2e
[Status] %
We@oooa 2

B Parameter

Parameter Name Setting

Source * Any integer type register
* Any integer type register with subscript

Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

[Status]* * Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ter)

* Possible to omit.

B Program Example

The time data in DW0000 to DWO0001 is subtracted to the time data in MWO00100 to
MWO00101.

Esusrea DEERIAD
D WEpR1aa
[Etstus] DRBEREIO0

8 hrs 40 min 32sec + 1 hrs 22 min 16 sec = 7 hrs 18 min 16 sec
(MWO00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

Time Data Before Execution After Execution
MWO00100 0840H 0718H
MWO00101 0032H 0016H
DWO00000 0122H 0122H
DWO00001 0016H 0016H

1-40

1.2 Numeric Operation Instructions

B Outline

1.2.14 SPEND TIME Instruction (SPEND)

The SPEND instruction subtracts one time (year/month/day/hours/minutes/seconds) from

another time data and calculates the elapsed time. Source is subtracted from the Dest and the

result is stored in the Dest. The formats of Source and Dest are as follows.

Table 1.5 Source Format

Register Offset Data Contents Data Range (BCD) I/O
0 Year (BCD) 0000 to 0099 IN
1 Month/Day (BCD) Upper byte (month) : 1 to 12 IN
Lower byte (day) : 1 to 31
2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23 IN
Lower byte (minutes) : 0 to 59
3 Seconds (BCD) 0000 to 0059 IN
Table 1.6 Dest Format
Register Offset Data Contents Data Range (BCD) I/0
0 Year (BCD) 0000 to 0099 IN/OUT
1 Month/Day (BCD) Upper byte (month) : 1 to 12 IN/OUT
Lower byte (day) : 1 to 31
2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23 IN/OUT
Lower byte (minutes) : 0 to 59
Seconds (BCD) 0000 to 0059 IN/OUT
Total number of seconds | This is the number of records which is obtained | IN/OUT
by converting Year/Month/Day/Hour/Minutes/
Seconds, which is the results of operations, to
seconds. (Double-length integer)

If the contents of the Dest, Source and the operation result are with the appropriate ranges,

the operation will be performed normally. After the operation is completed, /Status] is

turned OFF. If the contents of the Dest and Source are outside the data ranges, the operation

is not performed. In this case, 9999H is stored in the column "second" of the Dest, and the

[Status] is turned ON.

B Format

—f SPEND

Source
WYoon2e

ezt T
uvoonz2g

[Status] 1
P

2+

1-41

Symbol: SPEND
Full Name: Time Spend
Category: MATH

Icon: E;'

=

1 Ladder Program Instruction
1.2.14 SPEND TIME Instruction (SPEND)

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)
[Status]* * Any bit type register (except for # and C register)

* Any bit type register with subscript (except for # and C register)

* Possible to omit.

B Program Example

The time elapsed from the time data in MW00100 to MW00103 to the time data in
DWO00000 to DW00003 is stored to MW00100 - MW00105.

Eogrce DRERAGGD

Pesd WRBRTHD
[Status] DHEEEIA0

98 yrs 5 mos 11 days 15 hrs 4 min 47 sec - 98 yrs 4 mos 2 days 8 hrs 13 min 8 sec
(MW00100) (MWO00101) (MW00102) (MW00103) (DW00000) (DW00101) (DW00102) (DW00103)
= 0yrs 39 days 6 hrs 51 min 39 sec

(MW00100) (MW00101) (MW00102) (MW00103)

Time Data Before Execution After Execution
MWO00100 H0098 H0000
MWO00101 HO511 H0039
MWO00102 H1504 HO0651
MWO00103 H0047 H0039
MWO00104 -
3394299 (Decimal)

MWO00105 -

DwO00000 HO0098 HO0098
DWO00001 HO0402 HO0402
Dw00002 HO0813 HO0813
DwO00003 HO0008 HO0008

|NFO In the operation results, the year is counted as 365 days and a leap year is not taken into consideration.
Also, the number of months is not counted. It is counted in days.

1-42

1.2 Numeric Operation Instructions

1.2.15 SIGN INVERSION Instruction (INV)

B Outline

The INV instruction inverts the sign of the contents of the Source, and the result is stored in

the Dest.

B Format

- INY

Zource !
Heoonnes

Dest ?
Weonnaa

B Parameter

Symbol: INV
Full Name: Inverse

y Category: MATH

: |
Icon: |r-nri

Parameter Name

Setting

Source

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest

* Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

Eourca HIDRTHM
Dmgd EEOE1EY

iop1a]

1 Ladder Program Instruction

1.2.16 1°S COMPLEMENT Instruction (COM)

Double-length Integer Type Data

]-H'l
Ermirca BLOGINE

Desl ELDODTEE

idndann

L=R0noo

Real Number Type Data

Epmirce DFOGERI
hesl DFODINE

1.2.16 1'S COMPLEMENT Instruction (COM)

H Outline

The COM instruction determines the 1’s complement of the contents of the Source and the

result is stored in the Dest.

H Format

source 1
L

Dest 9
Wongz:

B Parameter

Symbol: COM
Full Name: Complement
Category: MATH

Icon: E

Parameter Name

Setting

Source

* Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

Dest

* Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-44

1.2 Numeric Operation Instructions

B Program Example

Integer Type Data

Epires BROGIHI

besl WYODTED L HAAAR

Double-length Integer Type Data

Eemirce BR00| NN CHEGEERESS)

Desl WEODIEY LHAAANALER)

1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)

B Outline

The ABS instruction determines the absolute value of the contents of the Source and the

result is stored in the Dest.
B Format

Symbol: ABS
Full Name: Absolute

e | KBS m—' Category: MATH

Icon: |
source] n
Hwannaa I_I_
Dazt 7T
WYanoz4

B Parameter

Parameter Name Setting

Source * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)
* Subscript register

1-45

1 Ladder Program Instruction
1.2.18 BINARY CONVERSION Instruction (BIN)

B Program Example

Integer Type Data

Ermirca BROGIHI L=aaian

besl WWOOIN) LaaEnn

Double-length Integer Type Data

= __ 3
Ermirca BLOGTNI I=1RRdan

Desl ELODIED L1bpgan)

Real Number Type Data

Eonirca DFODZED I=1.0]
pesd DFODTEY 1.0

1.2.18 BINARY CONVERSION Instruction (BIN)

H Outline

The BIN instruction converts a binary coded decimal (BCD) value in the Source and into a
binary value (binary conversion) and the result is stored in the Dest. If the 4-digit BCD
value in the integer is abcd, the output value (Dest) of the BIN instruction can be determined
by the following formula:

Dest = (a x 1000) + (b x 100) + (¢ x 10) +d
Although the above formula is applicable even if the value in the Source is not in BCD nota-

tion (e.g. 123FH), correct results are obtained in such cases.

1-46

1.2 Numeric Operation Instructions

B Format

Symbol: BIN
Full Name: Convert to Binary
T | Category: MATH
Source 7 Icon: g
CLHTTES BCD

7
H¥I00EE

B Parameter

Parameter Name Setting

Source * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

Eenirea EYDE1HM (HIzEE
Peydi EEOBID B0l Fadl

Eeares ELORIM IHIZH45ETE
Pani ®LODTED [O1EA4ERTR]

1-47

1 Ladder Program Instruction
1.2.19 BCD CONVERSION Instruction (BCD)

1.2.19 BCD CONVERSION Instruction (BCD)

H Outline

The BCD instruction converts a binary value in the Source into a BCD value (BCD conver-

sion) and the result is stored in the Dest. If the 4 - digit decimal value in the Source is abed,

the output value (Dest) of the BCD instruction can be determined by the following formula:
Dest = (a x 4096) + (b x 256) + (c x 16) +d

Although the above formula is applicable even if the value in the Source cannot be

expressed in BCD notation (e.g. numbers greater than 9999 or negative numbers), correct

results are obtained in such cases.

H Format

Symbol: BCD
Full Name: Convert to BCD

- | Category: MATH

Saurce 1 Icon: BED
FLINER BN
Dest 2
WO U038

B Parameter

Parameter Name Setting
Source * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript

* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-48

1.2 Numeric Operation Instructions

B Program Example

Integer Type Data

(Eaidid]

Cpmircs BRO0 00
Desl WEOOIE (HIZ34

Double-length Integer Type Data

Grirce BLOGTHD
Desl ®WLODIEL fHrzaakEa)

[Nl ET T b

1-49

1 Ladder Program Instruction

1.2.20 PARITY CONVERSION Instruction (PARITY)

1.2.20 PARITY CONVERSION Instruction (PARITY)

H Outline

The PARITY instruction counts the number of bits in the Source that are set to ON (or 1) and

the result is stored in the Dest.

B Format

= T

Symbol: PARITY
Full Name: Count ON Bit
Category: MATH

Source 9 Icon: migd
WRO0034 #7
Dozt ?
M0 £0
B Parameter
Parameter Name Setting
Source * Any integer type and double-length integer type register

subscript

* Any integer type and double-length integer type register with

* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

PARITE

Eourca FUDR1H LHFOFE]

fasi EEOB1ET CO0BED]

Double-length Integer Type Data

Ermirce BLO0] IS [HFEFIFIFD

Desl ELOOTEE LOpe1§d

1-50

1.2 Numeric Operation Instructions

1.2.21 ASCII CONVERSION Instruction (ASCII)

B Outline

The ASCII instruction converts the specified characters (character string in Source) to the
corresponding ASCII character codes and stores them in the designated Dest. It recognizes

uppercase and lowercase characters separately.

The first character is stored in the lower-place byte of the first word and the second character

is stored in the higher-place byte of the first word. Other characters are stored in the same
way. If the number of characters is odd, the higher-place byte of the last word in the storage
register is set to 0. Up to 32 characters can be entered.

B Format

Symbol: ASCII
Full Name: Convert Character to ASCII

-'1 ASCII gr‘- Category: MATH

Source ¥ Icon: e |
Dest 7 |
WYooons

B Parameter

Parameter Name Setting

Source * ASCII characters

Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

B Program Example

The character string "ABCD" is stored in MW00100 to MW00101.

I
Ermirca ABCDH
hesi WEOEIIN
Upper Lower
MWO00100 42H ('B") 41H ('A") MWO00100 = 4241H
MWO00101 44H ('D") 43H ('C") MWO00101 = 4443H

1-51

1 Ladder Program Instruction
1.2.22 ASCIlI CONVERSION 2 Instruction (BINASC)

The character string "ABCDEFG" is stored in MW00100 to MW00103.

Eenirea ABCOEFE |
el WHODIEE
Upper Lower
MWO00100 42H (B) 41H (A) MWO00100 = 4241H
MWO00101 44H (D) 43H ('C) MWO00101 = 4443H
MWO00102 46H (F') 45H (E) MWO00100 = 4645H
MWO00103 00H 47H (G) MWO00101 = 0047H

)

"0" is entered in the extra byte.

1.2.22 ASCII CONVERSION 2 Instruction (BINASC)

H Outline

The BINASC instruction converts the 16-bit binary data stored in the Source into four-digit

hexadecimal ASCII character codes and stores them in the designated Dest (two words).
B Format

Symbol: BINASC
Full Name: Convert Binary to ASCII

"'1 BINAED Eh Category: MATH

Icon: EIM
Source T
N0 4 AL
Dezt T
Nrnoo43

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
* Constant
Dest * Any integer type register (except for # and C register)

* Any integer type register with subscript (except for # and C reg-
ister)

1-52

1.2 Numeric Operation Instructions

B Program Example

The "1234H" binary is converted to a for digit hexadecimal ASICII code and stored in
MWO00100 to MW00101.

Erurce HiThd

fieal WWODIIN
Upper Lower

MWO00100 32H ('2") 31H ('1") MWO00100 = 3231H

MWO00101 34H ('4") 33H ('3") MWO00101 = 3433H

1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

H Outline

The ASCBIN instruction converts four-digit hexadecimal ASCII character codes in the

Source into 16-bit binary data and stores it in the Dest.
B Format

Symbol : ASCBIN
Full Name : Convert ASCII to Binary

-Mq Category : MATH

Zource 1§ Icon : BEC
wenoD44 BIN
Dest ¥
WY0OD4s

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

1-53

1 Ladder Program Instruction
1.2.23 ASCIlI CONVERSION 3 Instruction (ASCBIN)

B Program Example

The for-byte ASCII code stored in MW00100 to MWO00101 is converted to two-byte binary
data, and the result is stored in MW00200.

I
Eomirce ER00100
Best #WOOIEA
Source
Upper Lower Upper Lower
MWO00100 32H (2) 31H (1) —» MWO00200 12H 34H
MW00101 34H (4) 33H (3)

1-54

1.3 Logical Operation/Comparison Instructions

1.3 Logical Operation/Comparison Instructions

1.3.1 AND Instruction (AND)

m QOutline

The AND instruction outputs the logical product (AND) of Source A and Source B to the

Dest.
Table 1.7 1 bit Truth Table for the Logical Product
Source A Source B Dest
0 0 0
0 1 0
1 0 0
1 1 1
B Format
Symbol: AND

Full Name: AND

-4 AND ﬂ]- Category: LOGIC

Sourced 1 Icon:
Weaong1 Al

Sourced ?
Weoonone

De=zt 7
Weoonna

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register
* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Dest * Any integer type and double-length integer type register
(except for # and C register)

* Any integer type and double-length integer type register with
subscript (except for # and C register)

* Subscript register

1-55

1 Ladder Program Instruction

1.3.2 OR Instruction (OR)

B Program Example

The logical product of MW000100 and a constant is stored in MWO00101.

3
Cources EYI0EDD (1234}
Eourced HOOFF | EOOFF)
Dl WTUDIAN IGULEE B

1.3.2 OR Instruction (OR)

H Outline

The OR instruction outputs the logical sum (OR) of Source A and Source B to the Dest.

Table 1.8 1 bit Truth Table for the Logical Sum

Source A Source B Dest
0 0 0
0 1 1
1 0 1
1 1 1
B Format
Symbol: OR

Full Name: Inclusive OR

“ﬂ Category: LOGIC

Sourced 7 Icon:
HWeannnd y_l
Seurcel ?
Heanons
Deasd 7
HROn008

1-56

1.3 Logical Operation/Comparison Instructions

B Parameter

Parameter Name

Setting

Source A

* Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Source B

* Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register
* Constant

Dest

* Any integer type and double-length integer type register
(except for # and C register)

* Any integer type and double-length integer type register with
subscript (except for # and C register)

* Subscript register

B Program Example

The logical sum of MW00100 and a constant is stored in MW00101.

Eourcen ETO0E00
EourceB HOOFF

Dl WTOOIAN

1.3.3 XOR Instruction (XOR)

B Outline

== i ﬂ

LHIZ34)
LHOOFF)

IHIZFF)

The XOR instruction outputs the exclusive logical sum (XOR) of Source A and Source B to

the Dest.

Table 1.9 1 bit Truth Table for the Exclusive Logical Sum

Source A Source B Dest
0 0 0
0 1 1
1 0 1
1 1 0

1-57

1 Ladder Program Instruction

1.3.3 XOR Instruction (XOR)

B Format

Symbol: XOR
Full Name: Exclusive OR

- WiOR ﬂ— Category: LOGIC

Sourcad T Icon: '
Nwonom? ﬂ
EourcaB 1
H¥D 0008
be=t 1
W0 00G0E

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register
* Constant

Dest * Any integer type and double-length integer type register
(except for # and C register)

* Any integer type and double-length integer type register with
subscript (except for # and C register)

* Subscript register

B Program Example

The exclusive logical sum of MW00100 and a constant is stored in MWO0O0101.

——
Sources HEWUOEDD LHEEEE)
CourceB HOOFF CHEBFF }

gl WWOORAN CHEEAA)

1-58

1.3 Logical Operation/Comparison Instructions

1.3.4 Comparison Instruction (<)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

B Format

Symbol: <
Full Name: Less Than (A <B)

—' i EI- Category: LOGIC

Sourced T
wyoonin

SourceB 7
Wyooon

B Parameter

Icon: |
<

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is smaller than 100, after the instructions operation are executed.

fe—] i

=) | -

Souwrcek WRDDIDD
SourceE 10D

Zourced EWIATAN
Sourcel EMINA2
Dzl WWOAIAA

1 Ladder Program Instruction

1.3.5 Comparison Instruction (<=)

1.3.5 Comparison Instruction (<=)

H Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

B Format

Sourcal 7
MEDODI2

SourceB 7
MEOOO]3

B Parameter

Symbol: <=
Full Name: Less Than or Equal (A <=B)
Category: LOGIC

Icon: 5

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is under 100, after the instructions operation are executed.

—{

T

a—__« 3

Sourcel MERDIDD

Jouwrcel 10D

1-60

Zhurcedn BT
Sourcel ETA1A2

Dzl WTOAIHA

1.3 Logical Operation/Comparison Instructions

1.3.6 Comparison Instruction (=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

B Format

Symbol: =
Full Name: Equal (A =B)

== Category: LOGIC

Sourced 7
MRODOT 4

SaurcelB T
MROGDLS

B Parameter

Icon:

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is equal to 100, after the instructions operation are executed.

.—l' we

Z— w3

Sarcad WRDD]DD

JouwrceE 100

SourcEn ETIOIA]
Sourcel EWIDIAZ

Dzl WA 1A

1 Ladder Program Instruction

1.3.7 Comparison Instruction (!=)

1.3.7 Comparison Instruction (!=)

H Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

B Format

Symbol: !=
Full Name: Not Equal (A! = B)
—] Category: LOGIC

Sourced 1 Icon:
WwO06 16 —#—'

g

SourceB T
H¥0O017

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is not equal to 100, after the instructions operation are executed.

H T — w3

Saurced WEDDIDD Sburced ETIEIA1

Jowrcel 10D Sourced ETIO102

Dzl WWORIAD

1-62

1.3 Logical Operation/Comparison Instructions

1.3.8 Comparison Instruction (>=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

B Format

Symbol: >=
Full Name: Greater Than or Equal (A >= B)

- >

Sourced T
NEOOE1A

sourcal 7
NROOE 1Y

B Parameter

ﬂ' Category: LOGIC

Icon: E

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is above 100, after the instructions operation are executed.

Z— -

SauafcEl MRRDIDD
JowrceE 10D

ShUFCEA W0
Sourced ETI0102
Dzl WTOQTIAA

1 Ladder Program Instruction

1.3.9 Comparison Instruction (>)

1.3.9 Comparison Instruction (>)

H Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

B Format

Symbol: >
Full Name: Greater Than (A > B)

L X Category: LOGIC

Sourced ¥
weannzo

Sourced ¥
WeEnnE

B Parameter

Icon: |
con }!

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is bigger than 100, after the instructions operation are executed.

I—l ¥

g 3

Soirrcel WEDDIDD

Jourcel 10D

Spurced ETAT1
Sourcel ETIA102

Dzl WTOQAAA

1-64

1.3 Logical Operation/Comparison Instructions

1.3.10 RANGE CHECK Instruction (RCHK)

B Outline

The RCHK instruction checks whether the input value in the Input is within the Lower Limit
and Upper Limit, and then outputs the result to the bit output. The contents of the /nput are

retained.

Bit output = OFF
Upper limit |-~ - - - f— ol T

Bit output = ON
Input

- Lower limit -----{------L£---

* If the Input value (/nput) is greater than the Lower Limit and less than the Upper Limit,
the result (Bit Output) = ON.
* In the cases other than the above, the result (Bit Output) = OFF.

B Format
Symbol: RCHK
Full Name: Range Check
- RCHK ﬂ_ Category: LOGIC
| Aput T Icon:

LT CHE

Lomar Limit ¥
MO0

lpp=r Limit ¥
MWIOO0 2

1-65

1 Ladder Program Instruction

1.3.10 RANGE CHECK Instruction (RCHK)

B Parameter

Parameter Name

Setting

Input

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Lower Limit

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Upper Limit

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

Integer Type Data

et ACHE

Inpul i
Loeer Limif -1034

Usemr Linik BOOA

E_ I'IEII]EEI]I]I]

Input (MW00100) Output (DB00000O)
-1000 > MW00100 OFF
~1000 <= MW00100 <= 1000 ON
MW00100 >1000 OFF

1.3 Logical Operation/Comparison Instructions

Double-length Integer Type Data

DEOQO000
ACHE E_ _&——

Inpul [WLREL
Lower Limif —-103009

—

Uppar Limlk fOAAAA

Input (ML0O0100) Output (DB00000O)
-100000 > ML00100 OFF
-100000 <= ML00100 <= 100000 ON
ML00100 >100000 OFF
Real Number Type Data
DERERDOD
— ACHE E-
Itipull pFaanaa
Lowar Linil -0 050000E+EN]
Uster LimlE 5. 053009E4+00)
Input (DF00100) Output (DB0O00000)
-10.5 > DF00100 OFF
-10.5 <= DF00100 <= 10.5 ON
DF00100 >10.5 OFF

1-67

1 Ladder Program Instruction
1.4.1 SUB-DRAWING CALL Instruction (SEE)

1.4 Program Control Instructions

1.4.1 SUB-DRAWING CALL Instruction (SEE)

m Outline

The SEE instruction is used to call a sub-drawing from a drawing or to call a sub-sub- draw-
ing from a sub-drawing. Calling is not possible between drawings of different types. For
example, SEE HO1 cannot be specified in DWGL.

B Format
Symbol: SEE
Full Name: Call Program

-@ Category: CONTROL
Man= Hi1 Ieon: e
B Parameter
Parameter Name Setting
Name Program Name

B Program Example

SEE AO01
DWG.A
DWG.A01
Start of execution of
(SEE) child drawing A01
Name. A01 4 .
End of execution of
child drawing A01 END

1-68

1.4 Program Control Instructions

1.4.2 MOTION PROGRAM CALL Instruction (MSEE)

B Outline

MSEE instruction is used in referring to the motion program.
This instruction can be referred only from DWG.H.
It is not possible to refer from DWG.A and DWG.L.

B Format
Symbol: MSEE
Full Name: Call Motion Program
- MEEE o) o Category: MOTION
Icon: g |
Frogram No. : Sae|
Data o)
WARDI OB
B Parameter
Parameter Name Setting
Program No. * Direct specification: Numerical value of 1-256
(Motion Program No.) « Indirect specification: Register of integer type
Dest * Register address (except for # and C registers)
(Work Register)
B Program Example
DWG H Motion program
DWG.H MPMO001

* VEL [X] 6000 [Y] 6000 ;

i

' MOV [X] 1000 [Y] 1000 ;
(MSEE) / - ;
Program No. 1 MYS X1 2000 ;

Data DA00000

END

1-69

1 Ladder Program Instruction
1.4.3 FUNCTION CALL Instruction (FUNC)

1.4.3 FUNCTION CALL Instruction (FUNC)

H Outline

The FUNC instruction is used to call a user function or system function from a drawing, sub-
drawing, or user function. The user function to be called must be defined in advance. (Sys-
tem functions do not have to be defined by the user because they are already defined by the

system.)
B Format
Symbol: FUNC
Full Name: User Function
o re—- S,
Nant CUNCT E:a;tlel:.gory. CONTROL
[RFUT Brealyw CUTPUT Braaly " NG
HEQAE1 D0 CIUINTROE
HODRESE T
B0 10D
B Parameter
Parameter Name Setting
Name Program name
INPUT Input parameter (the data type depends on function definition)
ADRESS Address parameter (Address type register)
OUTPUT Output parameter (the data type depends on function definition)

1-70

1.4 Program Control Instructions

The forms of parameter input and output are shown below.

Input Data Input Designa- Description
Form tion
Bit Input B-VAL Designates the output to be of a bit type. The bit type data
become the input to the function.
Integer Type I-VAL Designates the input to be of an integer type. The contents
Input (integer data) of the register with the designated number

become the input to the function.

I-REG Designates the input to be the contents of an integer type
register. The number of the integer type register is desig-
nated when referencing the function. The contents (integer
data) of the register with the designated number become
the input to the function.

Double-length L-VAL Designates the input to be of a double-length integer type
Integer Type register.
Input When reference the function, the contents (double-length

integer data) of the register with the designated number
become the input to the function.

L-REG Designates the input to be the contents of a double-length
integer type register. When reference the function, the con-
tents (double-length integer data) of the register with the
designated number become the input to the function.

Real Number F-VAL Designates the input to be of a real number type. The con-
Type Input tents (real number data) of the register with the designated
number become the input to the function.

F-REG Designates the input to be the contents of a real number
type register.

The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become
the input to the function.

Address Input — Hands over the address of the designated register (an arbi-
trary integer register) to the function. Only 1 input is
allowed in the case of a user function.

B Program Example

— FLIRC a.

Blams FEI
THPUT] EEOOOOAA DUTPUT| DEOADAR
THFUTY TW0aEn DUTRUTE ¥WMOn2a
INFUTE BEOOI3A N OUTPUTE HEOQOAZN
THPUTSA BLOOOET ITFUTE ELODZAN

ADREECE BADD EAD

1-71

1 Ladder Program Instruction

1.4.4 DIRECT INPUT STRING Instruction (INS)

1.4.4 DIRECT INPUT STRING Instruction (INS)

H Outline

The INS instruction continuously performs direct input to a single module according to the

contents of a previously-set parameter table. INS can only be used for LIO modules.
B Format

Symbol : INS
Full Name : Direct Input String

- ING | o Category : CONTROL

Paramsler ? Icon : 'in
MARD 100
[Etatus] 7
WEGD 00
B Parameter
Parameter Name Setting
Parameter * Register address (except for # and C registers)
* Register address with subscript
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

Table 1.10 INS Instruction Parameter/Data

ADR Type Symbol Name Specifications Input or
Output
0 w RSSEL | Module designation 1 Designation of module for performing input<For IN
W | MDSEL |Module designation 2 details refer to (1) and (2) below> N
2 w STS Status Output of a bit equivalence of the status for each OouT
word input
3 W N Number of words Designation of number of continuous input words IN
4 W ID1 Input data 1 If there is an error in the output of input data, 0 is ouT
. . . stored R
N+3 W IDN Input data N ouT

Method of Setting RSSEL

Designates the rack/slot where the target module is mounted.

Hexadecimal expression: xxyyH
xx = rack number (01H < xx < 04H)
yy = slot number (00H < yy < 0DH)

1-72

1.4 Program Control Instructions

(N
INFO The rack number = 1, slot number = 3 with tixation in MP930

Method of Setting MDSEL

F C 8 4 0
Hexadecimal:
a b c d abcdH
a: Input module type 0: Discrete input module
b: Rack number (1 < b <4) 1: Register input module

c: Slot number (1 <c <9)
d: Data offset (0<d <7)

(N
|NFO The input module type = 0, rack number = 1, slot number = 3, data offset = 0 with fixation in MP930

B Program Example

Data input from LIO mounted at rack 2, slot 4.

] sTRE____ gl

Bourcs HIZ04

Oest WEFAO100

— STORE E-

Source 1
besl WEIOLON

—l ETORE il

Hdource 1
Degl WPOI0B

—_ = 3

Perawsler BAODIDD
[Flalus] WEA0ODDD

1-73

1 Ladder Program Instruction

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

H Outline

The OUTS instruction continuously performs direct output to a single module according to

the contents of a previously-set parameter table. OUTS can only be used for LIO modules.

B Format

e | urs__ Z=

Paramster ?
HADD 160
[Status=] 7
HEGO2000

B Parameter

Symbol: OUTS

Full Name: Direct Output String
Category: CONTROL

Icon: @uT

Parameter Name

Setting

Parameter

* Register address (except for # and C registers)
* Register address with subscript

[Status]”

* Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

Table 1.11 OUTS Instruction Parameter/Data

ADR Type |Symbol | Name Specifications Input or
Output
0 W RSSEL | Module designation 1 Designation of module for performing output™ IN
w MDSEL | Module designation 2 IN
2 w STS Status Output of a bit equivalence of the status for each ouT
word output
W N Number of words Designation of number of words output continuously [IN
4 w OD1 Output data 1 Setting output data IN
N+3 w ODN Output data N IN

* Method of setting RSSEL and N (number of words) is the same as for INS.

1-74

1.4 Program Control Instructions

B Program Example

Two words output to LIO-01 mounted at rack 3, slot 10.

Bource FOSDA
Deel ®ADEIA0

—1 ZTIRE i

Gourca 0

best WDEIDI

——— o

Source I

Puzl WROE2OE

—_= 3

fnurca I

Deet WEOELDA

— LTORE Ir

—
dource |

Desl WADEZAN

Parassior HAIOZEE
[Flaius] WEIODDED

(N
INFO Two outputs will be done by using the OUTS instruction because local I/O is allocated by default for
MP930.

1-75

1 Ladder Program Instruction
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

H Outline

The XCALL instruction is used to call an extension program. Extension programs are table
format programs. Although a pulurality of XCALL instructions may be used in one draw-

ing, the same extension program cannot be called more than once.
B Format

Symbol: XCALL
Full Name: Call Extended Program

NCALL ZI Category: CONTROL

Name NCTEL Icon: o |
CALL

B Parameter

Parameter Name Setting

Name MCTBL: Constant table (M register)
IOTBL: I/O conversion table
ILKTBL: Interlock table

ASMTBL: Parts composition table

B Program Example

DWG.x.xx Expansion Conversion Program

()N(;:n':\:;l_li_KTBL < XCALL ILKTBL

A

XPEND

The converted ladder
program cannot be
viewed at the Editor.

1-76

1.4 Program Control Instructions

1.4.7 WHILE Instruction (WHILE, END_WHILE)

B Outline

Instruction between WHILE and END WHILE is repeatedly executed as long as the condi-
tion specified by WHILE instruction is satisfied. When the condition is no longer satisfied,
instruction sequence is not executed and the program proceeds with the instruction immedi-
ately after END WHILE.

B Format

* At instruction development display ON
Symbol: WHILE

END_WHILE
—I VHILE HII— Full Name: While Do
I ':1 uu End of While
Category: CONTROL
Icon: |, ENDY
WHILE °
—{__END_WHILE = T

* At instruction development display OFF

Symbol: WHILE-END_ WHILE
Full Name: While Do and

-1 WHILE-END WHILE !'l- End of While

Category: CONTROL

Icon: WMILE
B
B Parameter
Parameter Name Setting
Conditional Expression Description by Expression

1-77

1 Ladder Program Instruction

1.4.7 WHILE Instruction (WHILE, END_WHILE)

B Program Example

The total for 100 registers, from MW00100 to MW00199, is stored in MW00200.

ATORE o

Source ¥

best 1

Sourge B

Daxl NEIAZ00

1]
Spurced WROI00

Bounces WROIOD|
Penl WFEOIOD

I—l AD)

Sourced 1
Gourcedl 1
Desl 1

—' Enlr AHILE :‘

1-78

1.4 Program Control Instructions

1.4.8 IF Instruction (IF, END _IF)

B Outline

If the conditional expression in the IF instruction is approved, the instruction sequence
between IF and END_IF is executed. If the conditional expression in the IF instruction is

not approved, the instruction sequence between IF and END_IF is not executed.

B Format

* At instruction development display ON

Symbol: IF
END _IF
_I [F E'— Full Name: If Then
End of If
SRNRLARSNY Category: CONTROL
i e * Icon: , EMp
| |
| |iestrsceini ST | i _I_F_

* At instruction development display OFF

Symbol: IF-END_ IF
Full Name: IF Then and

-{ IF-EH:L'I-IF I]— End of If

Category: CONTROL

Icon: :lnu

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

1-79

1 Ladder Program Instruction
1.4.9 IF Instruction (IF, ELSE, END_IF)

B Program Example

If MB000108 is ON, MW00201 is added to MW00200, and MW00201 is incremented.

1F F- o

-

Coureal HEREDET
Source® WEREEWI
Geral NEREDED

Dasl WRRRIRI

I—' EHD!F :

1.4.9 IF Instruction (IF, ELSE, END _IF)

H Outline

If the conditional expression in the IF instruction is approved, the instruction sequence 1
between IF and ELSE is executed. If the conditional expression in the IF instruction is not

approved, the instruction sequence 2 between ELSE and END_IF is executed.

H Format

* At instruction development display ON

Symbol: IF
ELSE
-1 IF HF END _IF
WO 1003100 Full Name: If Then
Else
R e e e K End of If
| [Eisrryctin H|1|I|l.'||-' el | Category: CONTROL

Icon: s , BNl
iF | ase B

1-80

1.4 Program Control Instructions

* At instruction development display OFF

Symbol: IF-ELSE-
END IF
Full Name: IF Then and
-l IF-ELSE-END_IF i}- Else and
End of If
Category: CONTROL

Icon: ﬁ

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

B Program Example

MWO00011 is set to 0 if MWO00010 is positive number, and set to 1 if MWO00010 is negative

number.

=i 1F a. I

LLI PR

— STORE _ﬂ]—

Ebuirea 0

best WHDBDTT

— i 2

Source 1
Dzl WRDREID
END_TF

1-81

1 Ladder Program Instruction

1.4.10 FOR Instruction (FOR, END_FOR)

1.4.10 FOR Instruction (FOR, END_FOR)

H Outline

The instruction sequence surrounded by the FOR instruction and the corresponding
END_ FOR instruction are executed by the number of times. Variable starts from initial
value (/nit) and is incremented by Step on each execution. The instruction sequence is

ended when Variable > Max.

B Format

* At instruction development display ON

Symbol: FOR
END FOR

—I FOR a'— Full Name: For

Nariahle WEODT00 End of For

Category: CONTROL
Init 1 Icon: , EWOL
1 oA
Nax LE]
step 1

END _FOR

* At instruction development display OFF

Symbol: FOR-END FOR
Full Name: For and

={__FoR-Ewp_FoR ﬂ— End of For

Category: CONTROL

Icon: FoiF
EMD

1-82

1.4 Program Control Instructions

B Parameter

Parameter Name Setting

Variable * Any integer type register
* Any integer type register with subscript
* Subscript register (I and J registers)

Init * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

Max * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

Step * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

B Program Example

The high byte and low byte, form MW00100 to MW00102, are exchanged.

Varlabla 1
Init ®
Baw I
Elems 1

Pexl HERDTEEI

—" CHO_FOR :‘

1-83

1 Ladder Program Instruction
1.4.11 EXPRESSION Instruction (EXPRESSION)

1.4.11 EXPRESSION Instruction (EXPRESSION)

H Outline

EXPRESSION instruction is composed by one block. It considers on a par with a coil type
component, and an input line has the Instruction of Enable/Disable command. In the block,
Expression box for an operation formula description is prepared, and the description of the

operation formula to 1000 lines is possible.

B Format
Symbol: EXPRESSION
Full Name: Expression
-1 EXPRESZION ﬂ- Category: CONTROL
WROD 1 00=MR00 101 +NWO@ 102 ; Icon: Ex
WROD | 1O=MR00111-NWamI12; o

WEDD] 20200012 1#NR00 12210

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

B Program Example

ENPRESELON

U s WDRES DR E
MEDDLTO=MY00 L8 V-ETaa0 03
NEOOT20=W900 12 emmd 122 10z

1-84

1.5 Basic Function Instructions

1.5 Basic Function Instructions

1.5.1 SQUARE ROQOT Instruction (SQRT)

m QOutline

The SQRT instruction calculates the square root of an integer or real number value as the

operation result. The input units and output results for integer and real number values are

different. This instruction cannot be used for double-length integer data.

Integer Type Data

The square root of Source is stored in Dest. The operation result of the SQRT instruction
slightly differs from the square root in mathematical terms. To be more precise, the opera-

tion result is expressed by the following formula:

32768 sign (A)* SQRT (|A|/ 32768)
sign (A): sign of the Source

|A] : absolute value of the Source

In other words, the operation result is equal to the mathematical square root multiplied by
approximately 181.02. If the input is a negative value, the square root of the absolute value
is calculated first and then the negative value of the square root is output as the operation
result.

The maximum error of the output value is +/-2.

Real Number Type Data

The square root of Source is stored in Dest. If the input is a negative value, the square root
of the absolute value is calculated first and then the negative value of the square root is out-

put as the operation result. This instruction can be used in a real number operation.

B Format
Symbol: SQRT
Full Name: Square Root
— SORT g]-- Category: FUNCTION
Source NW0O0DOI Icon: o

ezt NWOOOO2

1-85

1 Ladder Program Instruction

1.5.1 SQUARE ROOT Instruction (SQRT)

B Parameter

Parameter Name

Setting

Source
(Input)

* Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Dest
(Output)

 Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

* When the input is a positive number

TR
Epmirce WAODIAA

D=st MAORINE

WAL ER]

[B1dad

* When the input is a negative number

] -;;-ﬂr

Ermirce WEDDIHA

Dast WAODIAE

Real Number Type Data

|8 E LE k]

[-piddah

* When the input is a positive number

—_ R

=
Ermirce [IFOBFIA

Dast WEDREAE

PE&)

* When the input is a negative number

_ ORI

=
Ermirce [IFOEBFIA

Dast WFDREAE

1=-0.11]

1.5 Basic Function Instructions

1.5.2 SINE Instruction (SIN)

B Outline

The SIN instruction calculates the sine of an integer or real number value as the operation
result. The input units and output results for integer and real number values are different.

This instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 = 0.01 degree) and the operation result is stored in the Desz. Upon output, the oper-

ation result is multiplied by 10,000.

If a value outside the range of -327.68 to 327.67 is entered, the correct result cannot be

obtained. For example, if 360.00 is entered, -295.36 degrees will be output as the result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the sine of the input is stored in the Dest.

B Format
Symbol: SIN
= = Full Name: Sine
-' 1M E i- Category: FUNCTION
Source WWODOD3 Icon: g
Desi HYOOO04
B Parameter
Parameter Name Setting
Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

1-87

1 Ladder Program Instruction
1.5.3 COSINE Instruction (COS)

B Program Example

Integer Type Data

21N
Epmirce HAODTIN Laan0n
[ELE LA LI L B Lasono

Input X = 30 degrees (MW00100 = 30*100 = 3000)
Output SIN (X) = 0.50 (MW00102 = 0.50"10000 = 5000)

Real Number Type Data

21N ﬂj

Ermirce [FODEFIA i150.0)

Daat DFOEZOZ .

1.5.3 COSINE Instruction (COS)

H Outline

The COS instruction calculates the cosine of integer or real number values as the operation

result.
The input units and output results for integer and real number values are different. This

instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 =0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 10,000. If a value outside the range of -327.68 to 327.67 is
entered, the correct result is obtained. For example, if 360.00 is entered, -295.36 degrees is

output as a result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the cosine of the input is stored in the
Dest.

1-88

1.5 Basic Function Instructions

B Format

Symbol: COS
Full Name: Cosine

- oS

Gource ME00O0E
De=t MPIOOOE

B Parameter

E]- Category: FUNCTION

Icon: md

Parameter Name

Setting

Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

[HiH

=]

Ermirce MRDD1EA

Dest WWORIAE

CAEN0D

L%

LLLLLE]

Input X = 60 degrees (MW00100 = 60*100 = 6000)
Output COS (X) = 0.50 (MW00102 = 0.50*10000 = 500)

Real Number Type Data

(K1
Epmirce [FDEBZAA

Dest DFDRENE

=]

1-89

1 Ladder Program Instruction

1.5.4 TANGENT Instruction (TAN)

1.5.4 TANGENT Instruction (TAN)

H Outline

The TAN instruction uses the Source as the input (unit = degrees) and stores the tangent of

the input in the Dest. This instruction can be used in a real number operation.

B Format
Symbol: TAN
Full Name: Tangent
- TAN ﬂ- Category: FUNCTION
Gource WEOODG Icon: san
Des=t NFOO0O2
B Parameter
Parameter Name Setting
Source * Any real number type register
(Input) Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The tangent of the input value (X = 45.0 degrees) [TAN (X) = 1.0] is calculated.

—_— Tl

Ermirce [DFOBGIA

Duat DFDREAE

N
INFO TANGENT Instruction cannot be used for integer type and double-length integer type data.

1-90

1.5 Basic Function Instructions

1.5.5 ARC SINE Instruction (ASIN)

B Outline

The ASIN instruction uses the Source as the input and stores the arc sine (unit = degrees) of

the input in the Dest. This instruction can be used in a real number operation.

B Format

Symbol: ASIN
Full Name: Arc Sine

[sz Category: FUNCTION

Icon: = 4l
Source MWFOOO02 sin
Dest WFOOD04

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) Any real number type register with subscript (except for # and
C register)

B Program Example

The arc sine of the input value (0.5) [ASIN (0.5) = 6 = 30.0 degrees] is calculated.

3 LN ZF

Fource DFOOZAQ BBl
D=ai DFOO202 BO.DY

on
-

(N
INFO ARC SINE Instruction cannot be used for integer type and double-length integer type data.

1-91

1 Ladder Program Instruction
1.5.6 ARC COSINE Instruction (ACOS)

1.5.6 ARC COSINE Instruction (ACOS)

H Outline

The ACOS instruction uses the Source as the input and stores the arc cosine (unit = degrees)

of the input in the Dest. This instruction can be used in a real number operation.
B Format

Symbol: ACOS
Full Name: Arc Cosine

-l ACDE E'- Category: FUNCTION

Seurce MFOODOE Icon: -1

ezt WFOGO0R

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The arc cosine of the input value (0.5) [ACOS (0.5) = X = 60.0 degrees] is calculated.

ACDE ﬂ-

Source DFOOZAN BB
D=ai DFOO202 EOL.DO)

on
.

ARC COSINE Instruction cannot be used for integer type and double-length integer type data.

ﬁ
z
o]
N\

1-92

1.5 Basic Function Instructions

1.5.7 ARC TANGENT Instruction (ATAN)

B Outline

The ATAN instruction calculates the arc tangent of integer or real number data as the opera-

tion result.

The input units and output results for integer and real number data are different. This

instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 =0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 100.

Real Number Type Data

The Source is used as the input (unit = degrees) and the arc tangent of the input is stored in
the Dest.

This instruction cannot be used for integer type and double-length integer data.

B Format
Symbol: ATAN
Full Name: Arc Tangent
-4 ATAN o) o Category: FUNCTION
& E a2 Icon:
ource NFOO0D tan
Deszl HWFDOODOB
B Parameter
Parameter Name Setting
Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-93

1 Ladder Program Instruction
1.5.8 EXPONENT Instruction (EXP)

B Program Example

Integer Type Data

ATaN
Epmirce HAODIIN caning
Deak WADDIAE (4500

Input X = 1.00 (MW00100 = 1.00*100 = 100)
Output X =45 degrees (MW00102 = 457100 = 4500)

Real Number Type Data

LTAR ﬂ I

Eedrcw OFDEZIA L1.m)

Dmmt DFOBEEE [a5.0]

1.5.8 EXPONENT Instruction (EXP)

H Outline

The EXP instruction uses the Source as the input (x) and stores the natural logarithmic base

(e) to the power of the input (¢*) in the Dest as the operation result. This instruction can be

used only in a real number operation.

B Format
Symbol: EXP
Full Name: Exponential
- EXF E]- Category: FUNCTION
Source MFDOODS Ieon: x|

De=zt WFOODEO

1-94

1.5 Basic Function Instructions

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

e (=2.7183) to the power of the input value (x = 1.0) is calculated.

so—-) |

—
Ermirce [FOEXIA 11.8]
Deusk DFOEZOZ [E.7193)

(N
INFO Maximum value (3.4 -+ - E + 38) is stored and an operation error will not occur even if the operation
results of EXP instruction in an overflow.

1.5.9 NATURAL LOGARITHM Instruction (LN)

B Outline

The LN instruction uses the Source as the input (x) and stores the natural logarithm (Log.*)
of the input in the Dest as the operation result. This instruction can be used only in a real

number operation.

B Format
Symbol: LN
Full Name: Natural Logarithm
o | LN E}- Category: FUNCTION
Source NFOOD1 Teon: (i

Dest HWFDOG12

1-95

1 Ladder Program Instruction
1.5.10 COMMON LOGARITHM Instruction (LOG)

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The natural logarithm of the input value (x = 10.0) [Log.(x) = 2.3026] is calculated.

Li -

—
Source DFGOZA0 [ra,ai
Besl DFOO202 (2. 3028)

(N
INFO LN instruction is input (x) value is checked, execute the following handling.
* When the input is minus LN (-1), calculate an absolute value.

* When the input is zero LN (0), take -o for solution.

1.5.10 COMMON LOGARITHM Instruction (LOG)

B Outline

The LOG instruction uses the Source as the input (x) and stores the common logarithm
(Log(*) of the input in the Dest as the operation result. This instruction can be used only in

a real number operation.
B Format

Symbol: LOG
Full Name: Logarithm Base 10

ot & Category: FUNCTION

Bource HWFDOD13 Icon: log
Dest NWFOODT14

1-96

1.5 Basic Function Instructions

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The common logarithm of the input value (x = 10.) [Log;(x) = 1.0] is calculated.

LG

2h

Source DEAOZAG
(=gl DFOO202

LOG instruction is input (x) value is checked, execute the following handling.

* When the input is minus LOG (-1), calculate an absolute value.
* When the input is zero LOG (0), take - for solution.

1-97

1 Ladder Program Instruction
1.6.1 BIT ROTATION LEFT Instruction (ROTL)

1.6 Data Manipulation Instructions

1.6.1 BIT ROTATION LEFT Instruction (ROTL)

H Outline

The ROTL instruction is used to rotate bits to the left the number of times designated in the
bit table designated by the leading bit address and bit width.

Bit width (m)

4 3)
Head bit address

1
e

B Format

——>—— Number of rotations

4
P T
—&

Symbol: ROTL
Full Name: Bit Rotate Left

f

ROTL

2

Category: MOVE

Head BiIt Addreszs % Icon: mGT
yaInnon L
Hymber of Robtwtions 7
U JUIETN
Bit Ridih
wEaoong

B Parameter

Parameter Name

Setting

Head Bit Address

* Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)

Number of Rotations

* Any integer type register
* Any integer type register with subscript
* Constant

Bit Width

* Any integer type register
* Any integer type register with subscript
* Constant

1-98

1.6 Data Manipulation Instructions

B Program Example

The data having MB0OO00OA (bit A of MW00000) as the head address and a bit width of 10
are rotated five times to the left.
: I
ROTL g,

Head Bit Address WBOOOOOA
Number of Rotations B 1
Bit Width 10

Rotation symmetry range (Bit width = 10)
F ¢ 9 4 0
exeouton [0 o[1|1 vfo] [| [[[[] | | [uwooooo
—
(T T T T T T T T T TtTolo]o]mmsecs

> v

F C 9 4 0

After
exeoution| 0 [1] ofofoof | | | | | | [[[|mwooooo
4

LT LT L] Tola] 1] |mwoooort

1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

H Outline

The ROTR instruction is used to rotate bits to the right the number of times designated in the
bit table designated by the leading bit address and bit width.

[Bit width (m) >

<«+— Head bit address

——<— Number of rotations

1-99

1 Ladder Program Instruction
1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

B Format
Symbol: ROTR
Full Name: Bit Rotate Right
| ROTR ﬂl- Category: MOVE
Head Bil Address 1 Icon: moT
MEDD@A02 R |
Mumber af Robalions 7
CETTE
Bit widih 1
HEDBaa4
B Parameter
Parameter Name Setting
Head Bit Address * Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)
Number of Rotations * Any integer type register
* Any integer type register with subscript
* Constant
Bit Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The data having MB00000 (bit 0 of MW00000) as the head address and a bit width of 10 are
rotated once to the right.

ROTR g]

Head Bit Addreszs HEOOOODA
Number of Rotations 1
Bit Width 10

Rotation symmetry range (Bit width = 10)

F c 8 4 0
Before
execution|1|1|1|1|0|0|1|0|0|0|1|1|0|1|0|1|
2 .
F C 8¢ 4 0
Sten (L [[o[o [[[oTofo] [+ [o]+]¢]
execution

- :

1-100

1.6 Data Manipulation Instructions

1.6.3 MOVE BITS Instruction (MOVB)

B Outline

The MOVB instruction moves the designated number of bits (Width) from the beginning of
the move source bits (Source) to the beginning of the move destination bits (Dest). The

move process is performed one bit at a time in the direction in which the relay number
increases.

Unless the move source bits overlap with the move destination bits, the move source bit

table is stored. If there is overlap between them, the move source bit table may not be stored.

Source —P| Dest—»p
Transfer source Tra”.Sfef .
data area = destination Width
data area

|<7 Number of transfers (m)4>|

m-1m-2m-3 5 4 3 2 1 0
| | | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | 0 | 1 le—Address of the head
transfer source bit
v v oy vy v Vv v v v

| | |0|1|1| |1|1|0|1|0|1 Address of the
head transfer
destination bit

Transfer source Transfer destination Transfer source Transfer destination

(a) c a (a)
(b) ///////, d b \\\\\\\‘ (b)
c / e c \ a
d ////////, f d \\\\\\\\‘ b
e / g e \ c
f ///////” 0 0 \\\\\\\‘ d
g @ (@ e
(h) (h) (h) (h)
When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

B Format

Symbol: MOVB
Full Name: Move Bit

= | Hove J= Category: MOVE

Source 1 Icon: MW
MBOOODDA B
Deast 7
MEODOOD £
Vidth 7
MEOOO0E

1-101

1 Ladder Program Instruction

1.6.3 MOVE BITS Instruction (MOVB)

B Parameter

Parameter Name

Setting

Source

* Any bit type register
* Any bit type register with subscript

Dest

* Any bit type register (except for # and C registers)

* Any bit type register with subscript (except for # and C regis-
ters)

Width

* Any integer type register
* Any integer type register with subscript
* Constant

B Program Example

The 10 bits of data starting from MB000000 (bit 0 of MW00000) are transferred to
MBO000010 (bit 0 of MW0000).

Source KBOODODD
Dest MBOOOO1D
Width 10

4—— Transferrangg ————»

MWO00000| 1 | 0 | O

o(1(1j0]0[1{0]0]0]0]|1

MWO00001| 0 | O [O

MWO00000| 1 [0 | O

MWO00001| 0 [O | O

ofofo|t1t}|1f{1f{ofo]1]O0|1]]0O0
After transfer l
4—— Transferrangg ——— ¥
1101 1(0]J0]1]O0O|O0O|O0O]O0]1
ofof1|1j0j0f(1[0]JO]0O]|O0]|1

1-102

1.6 Data Manipulation Instructions

1.6.4 MOVE WORD Instruction (MOVW)

B Outline

The MOVW instruction moves the designated number of words (Width) from the beginning
of the move source registers (Source) to the beginning of the move destination registers
(Dest). The move process is performed one word at a time in the direction in which the reg-

ister number increases.

Unless the move source registers overlap with the move destination registers, the move
source word table is stored. If there is overlap between them, the move source bit table may

not be stored.

Source —» Dest ——» Transfer
Transfer source S .
= destination Width
data area
data area

Transfer source Transfer destination ~ Transfer source Transfer destination

(@) c a (@)
) / d b \ (b)
c / e c \ a
d / f d \ b
e / g e \ c
f / 0 0 \ d
g9 @ @ e
(h) (h) (h) (h)
When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)
B Format

Symbol: MOVW
Full Name: Move Word

-1 MDY El- Category: MOVE

Saurce 7 Icon: Mo
W00 08 w
Dasl %
WRO0007
Bidlh %
HRO0008

1-103

1 Ladder Program Instruction
1.6.4 MOVE WORD Instruction (MOVW)

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The word data MW00000 to MWO00009 are transferred to MW00100 to MW00109.

Source WWO0O00D
Dest MWOO100

Width 10
MW00000 1234H MW00100 1234H
MW00001 2345H MW00101 2345H
MW00002 3456H After MW00102 3456H
transfer
MW00009 9999H MW00109 9999H

1-104

1.6 Data Manipulation Instructions

1.6.5 EXCHANGE Instruction (XCHG)

B Outline

The XCHG instruction is used to exchange data between data tables 1 (Data Tablel) and 2
(Data Table2).

Data Table 1—» DataTable 2 ——
Data Table 1 < Data Table 2 Width
Data Table 1 DataTable 2 Data Table 1 DataTable 2
a i i a
b j j b
c k k c
d | I | d
e m m e
f n n f
9 o o 9
h p p h
Before executing the XCHG instruction After executing the XCHG instruction
B Format
Symbol: XCHG
Full Name: Exchange
- ACHR #" Category: MOVE
Date Tablie 1 1 Icon: ey
Nronoog =
Data Table 2 7
MEOEI0
Vidth 1
Mwooann
B Parameter
Parameter Name Setting
Data Table 1 * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Data Table 2 * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Width * Any integer type register

* Any integer type register with subscript

« Constant

1-105

1 Ladder Program Instruction

1.6.6 SET WORDS Instruction (SETW)

B Program Example

The contents of MW00000 to MW00009 are exchanged to MW00100 to MW00109.

Data Table 1 MHOOODO
Data Table 2 WHOO100

Width 10
MW00000 | 1031H | MW00100 | 2050H MW00000
MW00001 | 1032H | MW00101 | 2051H MW00001
MW00002 | 1033H | MW00102 | 2052H MW00002
MW00003 | 1034H | MW00103 | 2053H MW00003
MW00004 | 1035H | MW00104 | 2054H | . MW00004
MW00005 | 1036H | MW00105 | 2055H | @S~ \wo0005
MWO00006 | 1037H | MW00106 | 2056H MW00006
MW00007 | 1038H | MW00107 | 2057H MW00007
MW00008 | 1039H | MW00108 | 2058H MW00008
MWO00009 | 1030H | MW00109 | 2059H MW00009

1.6.6 SET WORDS Instruction (SETW)

B Outline

2050H

2051H

2052H

2053H

2054H

2055H

2056H

2057H

2058H

2059H

MW00100

MW00101

MW00102

MW00103

MW00104

MW00105

MW00106

MW00107

MW00108

MW00109

1031H

1032H

1033H

1034H

1035H

1036H

1037H

1038H

1039H

1030H

The SETW instruction stores the designated data (Set Data) in all registers designated by the

transfer destination register number (Dest) and the number of destination registers (Width).

The storage process is performed one word at a time in the direction in which the register

number increases.

Transfer data Transfer destination area
XXXXX VWXXXXX <4— Transfer
XXXXX VWxxxxx + 1 des.tination
XXXXX VWxXXXX + 2 register no.
V=S,1,0,MD XXXXX VWxXXXxX + 3
XXXXX VWxxxxx +(n-1)
XXXXX VWxxxxx +n

1-106

~

Number of
transfers

1.6 Data Manipulation Instructions

B Format

Symbol: SETW
Full Name: Set Word

=] SETH _ Hj- Category: MOVE

fest 3 Icon: EBET
MRO001 2 w
Eet Data %
IR R
Widih 7
W¥I0G14

B Parameter

Parameter Name Setting

Dest * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

Set Data * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

Width * Any integer type register
* Any integer type register with subscript
* Constant

B Program Example

The contents of MW00100 to MWO00119 are set to 0.

Dest MWOO100

set Data 0
Width 20
Transfer data Transfer destination

00000 00000 MWO00100
00000 MWO00101
00000 MWO00102
00000 MWO00103
00000 MWO00118
00000 MWO00119

1-107

1 Ladder Program Instruction

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

H Outline

The BEXTD instruction stores the byte sequence stored in the transfer source registers

(Source) one byte at a time in the word sequence in the transfer destination registers (Des?).

The higher-place bytes of the transfer destination registers are set to 0.

T

Number of
transfers
(Number of bytes)

v

H Format

Source Dest
VWXXXXX a (Lower byte) » a (Lower byte) VWyyyyy
b (Upper byte) | | b (Upper byte)
VWxxxxx +1 | ¢ * b VWyyyyy +1
§TT \ o
VWxxxxx +2 | e c VWyyyyy +2
£ ooH
d VWyyyyy +3
V=S,,0,M,D ooH
e VWyyyyy +4
ooH
. VWyyyyy +5
00H

-{ BEXTD =
Source %
MEOGD 1B
Dest T
mNooo?

Byle Width ?

MwOOO1Aa

1-108

Symbol: BEXTD
Full Name: Extend Byte toWord
Category: MOVE

Icon: EIB:II‘

1.6 Data Manipulation Instructions

B Parameter

Parameter Name

Setting

Source

* Any integer type register
* Any integer type register with subscript

Dest

* Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

Byte Width

* Any integer type register
* Any integer type register with subscript
* Constant

B Program Example

The 5 bytes beginning with MW00100 are expanded into five words beginning with
MW00200.

Source MWOO100
Dest Wanzon

Byte Width &

MWO00100 | 10H (Lower byte) » 10H (Lower byte)
MW00101 | 11H (Upper byte) 00H (Upper byte)

MW00102 | 12H \‘ 11H
MW00103 13H\00H

MWO00104 | 14H 12H
OOH\ ooH

13H
ooH

14H
ooH

1-109

MW00200

MW00201

MWO00202

MWO00203

MWO00204

1 Ladder Program Instruction

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

H Outline

The BPRESS instruction stores the lower-place bytes of the word sequence stored in the

transfer source registers (Source) in the byte sequence of the transfer destination registers

(Dest). The higher-place bytes of the transfer source registers are ignored. This function is
the reverse of that of the BEXTD instruction.

* In the case of BPRESS VWxxxxx to VWyyyyy B=N

T VWxXXXXX

Number of
transfers
(Number of bytes) VWXXxxxx +1

Source

Dest

a (Lower byte)
xxH (Upper byte)

a (Lower byte) VWyyyyy

l VWxxxxx + 2

VWxxxxx + 3

VWxxxxx + 4

B Format

—4 BFRESS ﬁ]—

Sopurce 1
WYono g

D=l .|
Wyonozn

Byte Nidih 7
WRoona

B Parameter

.Y

b VWyyyyy +1
xxH

c VWyyyyy +2
xxH 00

xxH When the number of transfered bytes
e is an odd number, "0" is set.

xxH V=S,I,0,M,D

Symbol: BPRESS
Full Name: Compress Word to Byte

Category: MOVE

Icon: g |

Parameter Name

Setting

Source

* Any integer type register
* Any integer type register with subscript

Dest

isters)

* Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-

Byte Width

* Constant

* Any integer type register
* Any integer type register with subscript

1-110

1.6 Data Manipulation Instructions

B Program

Example

The 5 bytes beginning with MWO00100 are compressed into five words beginning with

MW00200.

BPRESS

E‘

Source MWOOD100
Dest MWnozon

Byte Width &
MWO00100 | 10H (Lower byte) » 10H (Lower byte) | MW00200
00H (Upper byte) o 11H (Upper byte)

MWO00101 | 11H 12H MW00201
OOH/13H
MwW00102 | 12H 14H MW00202
OOH/OOH

MW00103 | 13H
00H When the number of transfered
MW00104 14H L bytes is an odd number, "0" is set.
00H

1.6.9 BINARY SEARCH Instruction (BSRCH)

B Outline

The BSRCH instruction uses a binary search method to search the designated data (Search

Data) within the designated search range (Source). The search result (offset from the lead-

ing register number of the search range for the matching data) is stored in the designated reg-
ister (Result).

B Format

~{

BSRCH =

Bource 1

Kid
Zearch

Rezu

N¥00O2E
th T

NWOODOED
Pate 7

M¥00G24
It T

NWOODER

1-111

Symbol: BSRCH
Full Name: Binary Data Search
Category: MOVE

Icon: g
SiH

1 Ladder Program Instruction

1.6.9 BINARY SEARCH Instruction (BSRCH)

B Parameter

Parameter Name

Setting

Source

* Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript

Width

 Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript

Search Data

* Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript
* Constant

Result

* Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

B Program Example

Data matching with 01234 are searched for in registers MW00100 to MW00199, and the
result is stored in register DW00000.

Soigree ENOOIDE
Fldihk 10
Smarch Daila KB4
Reull R000EE
MW00100 0
MWO00101 00321
MWO00102 01234
MW00199 99765

1-112

DWO00000 00002

Offset number of MW00100
is stored in DW00000.
DWO00000 < 00102 - 00100

1

MWO00102 MWO00100

1.6 Data Manipulation Instructions

1.6.10 SORT Instruction (SORT)

B Outline

The SORT instruction sorts data within the designated register range (Data Table, Width) in

ascending order.

B Format

Symbol: SORT
Full Name: Sort

- SORT o) Category: MOVE
Data Table 7 Ieon: ol
NNIDD26 —
Width 7
MyoDo27
B Parameter
Parameter Name Setting

Data Table * Any integer type and double-length integer type register
(except for # and C registers)
* Any integer type and double-length integer type register with
subscript (except for # and C registers)
Width * Any integer type register (except for # and C registers)

 Any integer type register with subscript (except for # and C reg-
isters)
* Constant

B Program Example

The data in registers MW00100 to MWO00119 are sorted in ascending order.

Data Table HitN0100
Width 20

1-113

1 Ladder Program Instruction

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

H Outline

The SHFTL instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width (Bit Width) to the left the designated number of bits (Number of
Shifts).

H Format

Symbol: SHFTL
Full Name: Bit Shift Left

—' SHFTL E'— Category: MOVE

Head Bit Address 17 Icon: gwFT
WEOO0005 L
Number of Ehifta 7
Waoon2e
Bit ¥idih 9
CUGHLRE

B Parameter

Parameter Name Setting

Head Bit Address * Any bit type register (except for # and C registers)

* Any bit type register with subscript (except for # and C regis-
ters)

Number of Shifts * Any integer type register
* Any integer type register with subscript
* Constant

Bit Width * Any integer type register

* Any integer type register with subscript

* Constant

B Program Example

A ten-bit wide section of data with MBOOOOA (bit A of MW00000) as the head is shifted
five bits to the left.

SHFTL g}

Head Bit Address MEODOOOA
Number of Shifts B
Bit Width 10

1-114

1.6 Data Manipulation Instructions

A
MW00000|1|1|0|0|0|1 |
3
MW00001| 0|1|0|1|
) A v ——
Mwooooo|1|0|o|o|o|o |
0 is entered. 3
MW00001| 1|0|0|0‘
E—

Note: The upper five bits are thrown away.

1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)

H Outline

The SHFTR instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width to (Bit Width) the right the designated number of bits (Number of
Shifts).

B Format

Symbol: SHFTR
Full Name: Bit Shift Right

-' aHFTR E"' Category: MOVE

Head Bt Address 1 Icon: &
HEEQOOOE _Erl
Wumber of Ehiflz %
WREOna0
Bit Width 4
Weaonan

B Parameter

Parameter Name Setting

Head Bit Address * Any bit type register (except for # and C registers)

* Any bit type register with subscript (except for # and C regis-
ters)

Number of Shifts * Any integer type register
* Any integer type register with subscript
* Constant

Bit Width * Any integer type register

* Any integer type register with subscript
* Constant

1-115

1 Ladder Program Instruction
1.6.13 COPY WORD Instruction (COPYW)

B Program Example

A five-bit wide section of data with MB0005 (bit A of MW00000) as the head is shifted
three bits to the right.

SHFTR g]

Head Bit Addresz MBOOOOOS
Number of Shifts 3

Bit Width b
5
MWO00000 | - = - < - = - oo 1 1 1 1 T I
S
MWO00000 |- - - - - - - oo 0 0 0 1 T

Y Note: The lower three bits are thrown away.
0 is entered.

1.6.13 COPY WORSD Instruction (COPYW)

H Outline

The COPYW instruction copies the designated number of words (Width) from the beginning
of the copy source register (Source) to the beginning of the copy destination register (Dest).
The copy process copies the entire block of data from the copy source to the copy destina-
tion. Even if there is overlap between the copy source and the copy destination, the full

copy data block is copied to the copy destination.

B Format

Symbol: COPYW
Full Name: Copy Word

-i COPYW Er- Category: MOVE

Source 7 Icon: pomy

NWO0032 Wi
ezt T

NW00033
Widih 7
NRI0054

1-116

1.6 Data Manipulation Instructions

B Parameter

Parameter Name Setting

Source * Any integer type register
* Any integer type register with subscript

Dest » Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The word data of MW00000 to MW00009 are transferred to MW00100 to MW00109.

Source WMO000D
Dest M¥OOT0D

Width 10

MW00000 1032H MW00100 1032H

MWO00001 1133H MWO00101 1133H
After

MW00002 1234H —> MWO00102 1234H
transfer

MW00008 1841H MW00108 1841H

MW00009 1842H MWO00109 1842H

1-117

1 Ladder Program Instruction

1.6.14 BYTE SWAP Instruction (BSWAP)

1.6.14 BYTE SWAP Instruction (BSWAP)

H Outline

The BSWAP instruction swaps the higher-place and lower-place bytes of the designated reg-

ister (Dest).

VWXXXXX

Upper Lower

a : b

Before swap

B Format

o &

Pext 1
H¥D003E

B Parameter

VWXXXXX

Upper Lower V=S,1,0,M,D

»> .

After swap

Symbol: BSWAP
Full Name: Byte Swap
Category: MOVE

Icon: g
TP

Parameter Name

Setting

Dest

* Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

1-118

1.6 Data Manipulation Instructions

B Program Example

The upper and lower bytes of MW00100 to MW00102 are swapped.

et FOR ¥
Farisbhle]
[nit B
LLE i
Sep 1

Cext BROD100G

H ERD_FDE :-
Upper Lower
MWO00100 12H 34H

Before swap

Upper

Lower

MWO00101 13H

44H

Before swap

Upper

Lower

MWO00102 14H

54H

Before swap

1-119

» MWO00100

» MW00101

» MWO00102

Upper Lower
34H 12H
After swap
Upper Lower
44H 13H
After swap
Upper Lower
54H 14H
After swap

1 Ladder Program Instruction
1.7.1 DEAD ZONE A Instruction (DZA)

1.7 DDC Instructions

1.7.1 DEAD ZONE A Instruction (DZA)

m Outline

The DZA instruction executes a dead zone operation on integer, double-length integer or

real number data.

The following operation is performed, where Input is the input value, Zone is the designated

dead zone value, and Output is the output value:

* Output = Input (absolute value of Input is greater than or equal to the absolute value of
Zone)

* Output = 0 (absolute value of Input is less than the absolute value of Zone)

Y

H Format

Symbol: DZA
Full Name: Dead Zone A

T | Category: DDC

Input 7 Icon: if:
WEDOBD] Il
fone 1
WEDODD?
Ouk put 7
WEDODOA

1-120

1.7 DDC Instructions

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Zone * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Output * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

— LA Z

Iniesl EVODEL {160) (A RLTIR]
fora 100
Duleud WYO01ED LA L RLTIE) | L

Within Outside
dead zone dead zone

Double-length Integer Type Operation

— T I}

Ing=al ELODTEN y2aanon FEann;
Form HOOGDE
Outewd ELODIEE LRL DT b [T

Within Outside
dead zone dead zone

1-121

1 Ladder Program Instruction
1.7.2 DEAD ZONE B Instruction (DZB)

Real Number Type Operation

|) 1,

Ingssl DFOOZRD (1EB.00 .1y

Jorm |, 00DEREERODG

Dutewd DFODERD Lt L L bl

Within Outside
dead zone dead zone

1.7.2 DEAD ZONE B Instruction (DZB)

H Outline

The DZB instruction executes a dead zone operation on integer, double-length integer or real
number data.

The following operation is performed, where Input is the input value, Zone is the designated

dead zone value, and Output is the output value:

* Qutput = Input - the absolute value of Zone (the absolute value of /nput is greater than or
equal to the absolute value of Zone; Input is greater than or equal to 0)

* Output = Input + the absolute value of Zone (the absolute value of Input is greater than
or equal to the absolute value of Zone; Input is less than or equal to 0)

* Qutput = 0 (the absolute value of Input is less than the absolute value of Zone)

Y

-D

+D X

1-122

1.7 DDC Instructions

B Format

Symbol: DZB
Full Name: Dead Zone B

e | DZB ﬂ- Category: DDC

Input 17 Icon: 1
MWO0004 L
Lone T
H¥O000%5
Out put ¥
HEO 0008

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Zone * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Output * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

— 7B I]
Lr=sl EYDOTEN (OD1ER)] COOOBED]
fora BO0
Ouleud W¥O01EE LonpERl ool
Within Outside
dead zone dead zone

1-123

1 Ladder Program Instruction
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

Double-length Integer Type Operation

—[[7F1) I]
Ing=sl ELODTER L 2a0aon rEaaan
Form IOODODE
Duleud ELODTED Llaanony gpeaonn
Within Outside
dead zone dead zone

Real Number Type Operation

—{ £7B I}

Inial DFODZEN CIBD.R] 150.0]

Tora 0, DDOERAE+OOT

Oulesd DFOOEED 1 £, ol
Within Outside

dead zone dead zone

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

H Outline

The LIMIT instruction executes an upper/lower limit operation on integer, double-length
integer, or real number data. The following operation is performed, where Input is the input
value, Lower Limit is the lower limit, Upper Limit is the upper limit, and Output is the output

value:

* Qutput = Lower Limit (Input is less than Lower Limif)

* Output = Input (Lower Limit is less than or equal to Input which is less than or equal to
Upper Limit)

* QOutput = Upper Limit (Upper Limit is less than Input)

Y

Upper limit: B

X

-| Lower limit: A

1-124

1.7 DDC Instructions

B Format

Symbol: LIMIT
Full Name: Limit

—[LIKIT m— Category: DDC

Ingut Icon: J,_

1
Hedaony

Lover Limit %
Heaonna

Uppar Limit ¥
H¥onong

Out put "
H#aa0io

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Lower Limit * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Upper Limit * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Output * Any integer type and double-length integer register (except for
and C registers)

* Any integer type and double-length integer register with sub-
script (except for # and C registers) (except for # and C regis-
ters)

* Subscript register

1-125

1 Ladder Program Instruction

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

B Program Example

Integer Type Operation

-— LIE[T z}

[npuk WrIgion
Lower Limit =104
Upsgszr Liwil 100

Dt pul uraLng

Input (MW00100) Output (MW0010)

-100 > MW00100 -00100 (under the lower limit)

-100 < MWO00100 < 100 Value of MW00100 (within the upper

and lower limit)

MWO00100 >100

00100 (above the upper limit)

Double-length Integer Type Operation

-—- 1 LINET F-1,

[nput HLanIno
Lowsi Liwit -104000
Upspmr Limit 100000

Duif pul MLAD I DE

Input (ML00100)
-100000 > ML00100

Output (ML00102)
-100000 (under the lower limit)

-100000 < ML00100 < 100000 Value of ML00100 (within the upper and

lower limit)

ML00100 > 100000

100000 (above the upper limit)

1-126

1.7 DDC Instructions

Real Number Type Operation

-— | LIN[T =1,
Erpuit WFaRzOn
Lower Linit -1.0000BBE003

Upanr Limik 1.000000E+I02
Dl pul WFIazn:

Input (MF00200) Output (MF00202)
-100.0 > MF00200 -100.0 (under the lower limit)
-100.0 < MF00200 < 100.0 Value of MF00200 (within the upper and
lower limit)
MF00200 > 100.0 100.0 (above the upper limit)

1.7.4 PI CONTROL Instruction (PI)

B Outline

The PI instruction executes a PI control operation according to the contents of a previously
set parameter table. The input (/npuf) to the PI operation must be integer or real number
data. Double-length integer data cannot be used. The configurations of the parameter tables
for integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

Table 1.12 Integer Type Pl Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
w Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN
w Ki Integration adjustment Gain of the integration circuit input (a gain of 1 is set | IN
gain to 100)
3 w Ti Integration time Integration time (ms) IN
4 w IUL Upper integration limit Upper limit for the I offset IN
5 w ILL Lower integration limit Lower limit for the T offset IN
6 w UL Upper PI limit Upper limit for the P + I offset IN
7 w LL Lower PI limit Lower limit for the P + I offset IN
8 W DB Pl output dead band Width of the dead band for the P + I offset IN
9 w Y Pl output PI offset output (also output to the A register) ouT
10 w Yi | offset Storage of the T offset ouT
11 w IREM | remainder Storage of the I remainder OuT

1-127

1 Ladder Program Instruction

1.7.4 PI CONTROL Instruction (PI)

* Relay I/0O Bit Assignment

BIT Symbol Name Specifications 1/0
0 IRST Integration reset "ON" is input when integration is reset IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT
Table 1.13 Real Number Type PI Instruction Parameters
ADR Type Symbol Name Specifications /0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
W - (Reserved) Reserved register -
F Kp P gain Gain of the P offset IN
F Ki Integration adjustment Gain of the integration circuit input IN
gain
F Ti Integration time Integration time (s) IN
F IUL Upper integration limit Upper limit for the I offset IN
10 F ILL Lower integration limit Lower limit for the I offset IN
12 F UL Upper PI limit Upper limit for the P + I offset IN
14 F LL Lower PI limit Lower limit for the P + I offset IN
16 F DB PI1 output dead band Width of the dead band for the P + I offset IN
18 F Y Pl output PI offset output (also output to the A register) ouT
20 F Yi | offset I stored ouT
* Relay I/0 Bit Assignment
BIT Symbol Name Specifications 110
0 IRST Integration reset "ON" is input when integration is reset IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the PI operation is expressed as follows:

N S
Tix S
X: deviation input value

Y
T=Kp+Ki><

Y: output value
The following operation is performed within the PI instruction:
. Ti .
Y=KpxX + {(KixX +IREM)/ Ts + Y1’}

Yi’ previous output value
Ts: scan time setting

1-128

1.7 DDC Instructions

Block Diagram
LIMIT, DB
Input N J _/_ Output
X Kp [LIMIT " '/C-)_ © Y
Ki > Ts/Ti > L]
Z' e

* When the P + I offset reaches the upper or lower PI limit (UL, LL) or the PI dead
band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed by the present value.

* When the integration reset (IRST) is "ON"
Yi=0 and IREM = 0 are output.

B Format

Symbol: PI
Full Name: PI Control

T T - | Category: DDC

Input 7 Icon: -
MEOROT4
Parameler 7
MaO@OOR
Dutput 7
MEQODTh
B Parameter
Parameter Name Setting
Input * Any integer type and real number type register
* Any integer type and real number type register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type and real number type register (except for #
and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-129

1 Ladder Program Instruction

1.7.4 PI CONTROL Instruction (PI)

B Program Example

Integer Type Operation

MWO00100 to MWOO111 are used for the parameter table.

— Fl ﬂ]-

Tnpud MERRRID =~ Deviation input value

Purmmslar WAFR|DD s——- Head address of parameter table
Oubpuf MEREBI] =———— Pl output value

Real Number Type Operation

MF00200 to MF00220 are used for the parameter table.

— Pl ﬁ-

Tnpud MFRRRID ==~ Deviation input value

Parmmsiar MAEETDD s———=== Head address of parameter table
Oukpus MFBBBEE =— Pl output value

1-130

1.7 DDC Instructions

1.7.5 PD CONTROL Instruction (PD)

B Outline

The PD instruction executes a PD control operation according to the contents of a previously

set parameter table. The input (/npuf) to the PD operation must be integer or real number

data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.14 Integer Type PD Instruction Parameters

ADR Type Symbol Name Specifications I/O
0 w RLY Relay I/0 Relay input, relay output * INOUT
1 w Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN
2 w Kd D gain Gain of the differential circuit input (a gain of 1 is set | IN

to 100)
3 w Td1 Divergence differential The differential time (ms) used in the case of diverg- | IN
time ing input.
4 w Td2 Convergence differential The differential time (ms) used in the case of con- IN
time verging input.
5 w UL Upper PD limit Upper limit for the P + D offset IN
6 w LL Lower PD limit Lower limit for the P + D offset IN
7 w DB PD output dead band Width of the dead band for the P + D offset IN
8 w Y PD output PD offset output (also output to the A register) ouT
9 w X Input value storage Storage of the present deviation input value ouT
* Relay I/0 Bit Assignment
BIT Symbol Name Specifications I/0
Oto7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-131

1 Ladder Program Instruction

1.7.5 PD CONTROL Instruction (PD)

Table 1.15 Real Number Type PD Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay I/O Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Kp P gain Gain of the P correction IN
4 F Kd D gain Gain of the differential circuit input IN
6 F Td1 Divergence differential The differential time (s) used in the case of diverging | IN

time input.
8 F Td2 Convergence differential The differential time (s) used in the case of converg- [IN
time ing input.
10 F UL Upper PD limit Upper limit for the P + D offset IN
12 F LL Lower PD limit Lower limit for the P + D offset IN
14 F DB PD output dead band Width of the dead band for the P + D offset IN
16 F Y PD output PD offset output (also output to the A register) ouT
18 F X Input stored Present deviation input value stored ouT
* Relay I/O Bit Assignment
BIT Symbol Name Specifications /0
Oto7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output OouT

Here, the PD operation is expressed as follows:

L _Kp+KdxTdxS

X

X: deviation input value

Y: output value

The following operation is performed within the PD instruction:

Y =Kp xX +Kd x (X-X) x

X’: previous input value

Ts: scan time setting

1-132

Td
Ts

1.7 DDC Instructions

Block Diagram
Z-1
3Oo—* Kd Td/Ts LIMIT, DB
Input + { Output
X Kp i /O Y

* When the change in deviation output (X-X’) and the previous deviation input (X”)
are the same in sign (diverging) in the differential (D) operation
The divergence differential time (Td1) is used as the differential time.

* When the change in deviation output (X-X’) and the previous deviation input (X”)
are opposite in sign (converging) in the differential (D) operation
The convergence differential time (Td2) is used as the differential time.

B Format

Symbol: PD
Full Name: PD Control

-4 FD E}— Category: DDC

Input 1 Teon: e
WWOOa18
Farametar 7
mannong
ODutput 7
HW0 0017
B Parameter
Parameter Name Setting
Input * Any integer type and real number type register
* Any integer type and real number type register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type and real number type register (except for #
and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-133

1 Ladder Program Instruction

1.7.5 PD CONTROL Instruction (PD)

B Program Example

Integer Type Operation

MWO00100 to MWO00109 are used for the parameter table.

—{ FDl

Isout WERQAID =———— Deviation input value

Faramsisr MARD 100 <—— Head address of parameter table
Gutpul MERIAE] s——oo- PD output value

Real Number Integer Type Operation

MF00200 to MF00218 are used for the parameter table.

1] ﬂ

Inpul #F0O0ER =———— Deviation input value

Farsmeler MAOOTOE =——— Head address of parameter table
Oulpsd WFOODEE s PD output value

1-134

1.7 DDC Instructions

1.7.6 PID CONTROL Instruction (PID)

B Outline

The PID instruction executes a PID control operation according to the contents of a previ-

ously set parameter table. The input (/nput) to the PID operation must be integer or real

number data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.16 Integer Type PID Instruction Parameters

ADR Type Symbol Name Specifications I/O
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w Kp P gain Gain of the P correction (a gain of 1 is set to 100) IN
2 w Ki | gain Gain of the integration circuit input (a gain of 1 is set | IN

to 100)
3 w Kd D gain Gain of the differentiation circuit input (a gainof 1is | IN
set to 100)
w Ti Integration time Integration time (ms) IN
w Td1 Divergence differential The differential time (ms) used in the case of diverg- | IN
time ing input.
6 w Td2 Convergence differential The differential time (ms) used in the case of con- IN
time verging input.

w IUL Upper integration limit Upper limit for the I correction value IN

w ILL Lower integration limit Lower limit for the I correction value IN

w UL Upper PID limit Upper limit for the P + I + D offset IN

10 w LL Lower PID limit Lower limit for the P + 1+ D offset IN

11 Wi DB PID output dead band Width of the dead band for the P + 1+ D offset IN
12 w Y PID output PID offset output (also output to the A register) ouT
13 w Ti | offset I offset stored OouT
14 w IREM | remainder I remainder stored ouT
15 w X Input value storage Present deviation input value stored ouT

* Relay I/0O Bit Assignment.
BIT Symbol Name Specifications I/0

0 IRST [Integration reset "ON" is input when integration is reset. IN

1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-135

1 Ladder Program Instruction

1.7.6 PID CONTROL Instruction (PID)

Table 1.17 Real Number Type PID Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Kp P gain Gain of the P offset IN
4 F Ki I gain Gain of the integration circuit IN
6 F Kd D gain Gain of the differentiation circuit input IN
8 F Ti Integration time Integration time (ms) IN
10 F Td1 Divergence differential The differential time (s) used in the case of diverging | IN

time input.
12 F Td2 Convergence differential The differential time (s) used in the case of converg- | IN
time ing input.
14 F IUL Upper integration limit Upper limit for the I offset IN
16 F ILL Lower integration limit Lower limit for the T offset IN
18 F UL Upper PID limit Upper limit for the P+ 1+ D offset IN
20 F LL Lower PID limit Lower limit for the P + I + D offset IN
22 F DB PID output dead band Width of the dead band for the P + I + D offset IN
24 F Y PID output PID offset output (also output to the A register) ouT
26 F Ti | offset I offset stored ouT
28 F X Input value storage Present deviation input value stored OouT
* Relay I/0 Bit Assignment
BIT Symbol Name Specifications 1/0
0 IRST [Integration reset "ON" is input when integration is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the PID operation is expressed as follows:

X

=Kp +Kix

X: deviation input value

Y: output value

_r
Ti xS

=KdX TdxS

The following opertion is performed within the PID instruction:

Y=Kpx X+ {(KiXX+IREM)/

X: previous input value
Yi’: previous I output value

Ts: scan time setting

1-136

Td
Ts

i‘ FYP} KA X (X-X) X

1.7 DDC Instructions

Block Diagram
Z-1
* 4 Kd [—> Td/Ts LIMIT, DB
Input v | tyt | _/ Output
X " Kp TLIMIT e'n /C-_J C >y
Ki o Ts/Ti

* When the P + 1+ D offset reaches the upper or lower PID limit (UL, LL) or the PID
dead band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed with the present value.

* When the change in deviation output (X-X’) and the previous deviation input X’
are the same in sign (diverging) in the differential (D) operation
The divergence differential time (Td1) is used as the differential time.

* When the change in deviation output (X-X’) and the previous deviation input X’
are opposite in sign (converging) in the differential (D) operation
The convergence differential time (Td2) is used as the differential time.

* When the integration reset (IRST) is "ON"
Yi =0 and IREM = 0 are output.

B Format

Symbol: PID
Full Name: PID Control

P03 Category: DDC

Input 7 Icon: Pin|
M¥OOa18 |
Faramel=r 7
Mandang
Output 7
LI

1-137

1 Ladder Program Instruction

1.7.6 PID CONTROL Instruction (PID)

B Parameter

Parameter Name

Setting

Input

* Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Parameter

* Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output

* Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

B Program Example

Integer Type Operation

MWO00100 to MWO0O0115 are used for the parameter table.

FIl ol

Inpul ®WUORIE ==— Deviation input value

Farsmelar BANDIEN S——— Head address of parameter table
Outpud ®HOOD1] & PID output value

Real Number Type Operation

MF00200 to MF00228 are used for the parameter table.

FID
Inpul ®Foopgy ==——— Deviation input value

Faramslsr BANDZENE =——— Head address of parameter table
[uteud ®FOOOEE &——— PID output value

1-138

1.7 DDC Instructions

1.7.7 FIRST-ORDER LAG Instruction (LAG)

B Outline

The LAG instruction calculates the first-order lag according to the contents of a previously

set parameter table. The input (/npuf) to the LAG operation must be integer or real number

data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.18 Integer Type LAG Instruction Parameters

ADR Type Symbol Name Specifications I/O
0 w RLY Relay I/0 Relay input, relay output * INOUT
1 w T First-order lag time con- First-order lag time constant (ms) IN

stant
w Y LAG output LAG output (also output to the A register) ouT
w REM Remainder Remainder stored ouT
* Relay I/0O Bit Assignment.
BIT Symbol Name Specifications I/0
0 IRST [LAG reset "ON" is input when LAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT
Table 1.19 Real Type LAG Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F T First-order lag time con- First-order lag time constant (s) IN

stant
4 F Y LAG output LAG output (also output to the F register) ouT
* Relay I/0 Bit Assignment
BIT Symbol Name Specifications I/0
0 IRST [LAG reset "ON" is input when LAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the LAG operation is expressed as follows:

Y

1

X

= ; le.

1+TXS

1-139

T X (dY/dt) + Y = X

1 Ladder Program Instruction

1.7.7 FIRST-ORDER LAG Instruction (LAG)

The following operation is performed within the LAG instruction with dt = Ts and dY = Y-
Y’:

TXY +TsXX+REM
T+Ts
X: input value

Y =

Y: output value
Y’ : previous output value
Ts: scan time setting

Y =0 and REM = 0 are output when the LAG reset (RST) is "ON".
B Format

Symbol: LAG
Full Name: First Order Lag

T - Category: DDC

Imput ¥ Icon: LAG
Weaonzo
Paramster ¥
WaDOOm4
Qutpul 7
Weoanz
B Parameter
Parameter Name Setting
Input * Any integer type and real number type register
* Any integer type and real number type register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type and real number type register (except for #
and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-140

1.7 DDC Instructions

B Program Example

Integer Type Operation

MW00100 to MW00103 are used for the parameter table.

LAG g}

Ireui MERDATOD = Deviation input value

Faramsisr MARRNOOD =—— Head address of parameter table
Gudpul MEREAEL s | AG output value

Real Number Type Operation

MF00200 to MF00204 are used for the parameter table.

L =,

Impul MFRRNZD =—— Deviation input value

Faramsisr MAROZO0 =——— Head address of parameter table
Guipul MFREAEE o | AG output value

1-141

1 Ladder Program Instruction
1.7.8 PHASE LEAD/LAG Instruction (LLAG)

1.7.8 PHASE LEAD/LAG Instruction (LLAG)

H Outline

The LLAG instruction calculates the phase lead/lag according to the contents of a previously
set parameter table. The input (/npuf) to the LLAG operation must be integer or real number
data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.20 Integer Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
1 w T2 Phase lead time Phase lead time constant (ms) IN
constant

2 W ™ Phase lag time constant Phase lag time constant (ms) IN

3 w Y LLAG output LLAG output (may also be output to the A register) [OUT

4 W REM Remainder Remainder stored ouT

5 w X Input stored Input value stored ouT

* Relay I/0 Bit Assignment

BIT Symbol Name Specifications 1/0
0 IRST | LLAG reset "ON" is input when LLAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Table 1.21 Real Number Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 W - (Reserved) Reserved register -
2 w T2 Phase lead time constant | Phase lead time constant (s) IN
4 W T Phase lag time constant Phase lag time constant (s) IN
6 w Y LLAG output LLAG output (may also be output to the F register) | OUT
8 W X Input preservation Input value stored ouT

* Relay I/0 Bit Assignment

BIT Symbol Name Specifications /0
0 IRST [LLAG reset "ON" is input when LLAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-142

1.7 DDC Instructions

Here, the LLAG operation is expressed as follows:

Y B 1+T2XS
X 1+TLIXS

e, TX (dY/dt) + Y =T2 X (dX/dt) + X

The following operation is performed within the LLAG instruction with dt =Ts, dY = Y-Y”,
and dX = X-X’

TI XY+ (T2 + Ts) XX — T2 XX’+ REM
T1+Ts

Y =

X: input value

Y: output value

X’ previous input value
Y’ previous output value
Ts: scan time setting

Y =0, REM =0, X =0, are output when the LLAG reset (RST) is "ON".
B Format

Symbol: LLAG
Full Name: Phase Lead Lag
-] LLAG Zk Category: DDC

Icon:

Input 17 LLAG
Wwonnee o
Paraneler 1
Hannnoh
Dutput 17
HwO0023
B Parameter
Parameter Name Setting
Input * Any integer type and real number type register
* Any integer type and real number type register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type and real number type register (except for #
and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-143

1 Ladder Program Instruction
1.7.9 FUNCTION GENERATOR Instruction (FGN)

B Program Example

Integer Type Operation

MWO00100 to MWO00105 are used for the parameter table.

—- 1 LLAG g}

Ieoud MERQAID =—— Deviation input value

Faramsisr MAIDIO0 <——— Head address of parameter table
Gufpul MEROAR] s | | AG output value

Real Number Type Operation

MF00200 to MF00208 are used for the parameter table.

LLAL ﬂ I

leoud MFRBNZD =— Deviation input value

Faramsisr MARDZO0 =——— Head address of parameter table
Ouiput MPRRIZY s | LAG output value

1.7.9 FUNCTION GENERATOR Instruction (FGN)

H Outline

The FGN instruction generates a function curve according to the contents of a previously set
parameter table. The input to the FGN instruction can be integer, double-length integer, or

real number data. The configuration of the parameter table differs according to the type of

data.
Table 1.22 Integer Type FGN Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w N Number of data Number of pairs of X and Y IN
1 w X1 Data 1 IN
2 W Y1 Data 1 IN
3 w X2 Data 2 IN
4 w Y2 Data 2 IN
2N-1 w XN Data N IN
2N W YN Data N IN

1-144

1.7 DDC Instructions

Table 1.23 Double-length Integer or Real Type FGN Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w N Number of data Number of pairs of X and Y IN
1 w - (Reserved) Reserved register IN
2 L/F X1 Data 1 IN
4 L/F Y1 Data 1 IN
6 L/F X2 Data 2 IN
8 L/F Y2 Data 2 IN
4N-2 L/F XN Data N IN
4N L/F YN Data N IN

If the data set in the parameter table for the FGN instruction are X, and Y, the data must be

set so that X, <Y, ;;. The FGN instruction searches for an X,/ Y,, pair within the parameter

table for which X, < X <Y, and computes the output value Y according to the following

formula:

Y=Y+

Yn+1 *Yn
Xn+1_ Xn

X (X-Xp)(1Sn<N-1)

If the X,/ Y}, pair, which satisfies X, < X <Y, 4 for an input value X, does not exist in the

parameter table, the result will be as follows:

* [F X <X,
= + £ _
Y Yl X2 7X2 (X Xl)
* [F X>X,
Yo— Yo-
Y=Y+ i (X- X))
n n-
OQutput
value

1-145

X X3 X4

Input value

1 Ladder Program Instruction

1.7.9 FUNCTION GENERATOR Instruction (FGN)

B Format

Symbol: FGN
Full Name: Function Generator

Category: DDC

-

-t FGN
Input 9
MyYooDz4
Paramster ¥
MADQOOE
Oublpubt F
MYOan2 5

B Parameter

Icon:

Parameter Name

Setting

Input

* Any integer type, double-length integer and real number type
register

* Any integer type register with subscript

* Any integer type, double-length integer and real number type
register with subscript

* Subscript register

* Constant

Parameter

* Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output

* Any integer type, double-length integer and real number type
register (except for # and C registers)

* Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation (Number of Data: N = 20)

#W00000 to #W00040 are used for the parameter table.

Trpyd CLIEERT]

Poramsier QARIOOD
Tuiput WEHGER]

1-146

s————— Deviation input value

#————— Head address of parameter table
. FGN output value

1.7 DDC Instructions

Double-length Integer Type Operation (Number of Data: N = 20)

#L.00000 to #L.0008O are used for the parameter table.

Fin i] I

Irmaul MLBIn =——— Deviation input value

Farsmsisr @AB0A00 =——— Head address of parameter table
Oudput MLERIOE &——oo . FGN output value

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

—- Fiea =]

Irmul WFRlNEn =———— Deviation input value

Farsmaisr BABOOU0 =—— Head address of parameter table
Gudput MPRISEY s—oo - FGN output value

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

B Outline

The IFGN instruction generates a function curve according to the contents of a previously
set parameter table. The input to the IFGN instruction can be integer, double-length integer,

or real number data.
The configuration of the parameter table differs according to the type of data.

If the data set in the parameter table for the IFGN instruction are X, and Y,,, the data must be
set so that Y, is less than or equal to Y ,;;. The IFGN instruction searches for an X,/Y,, pair
within the parameter table in which Y/, is less than or equal to Y which is less than or equal

to Y+ from input value Y and calculates the output value X.

Table 1.24 Integer Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications I/0

0 w N Number of data Number of pairs of X and Y IN

1 W X1 Data 1 IN

2 w Y1 Data 1 IN

3 w X2 Data 2 IN

4 W Y2 Data 2 IN
2N-1 W XN Data N IN
2N w YN Data N IN

1-147

1 Ladder Program Instruction

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

Table 1.25 Double-length Integer or Real Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w N Number of data Number of pairs of X and Y IN
1 w - (Reserved) Reserved register IN
2 L/F X1 Data 1 IN
4 L/F Y1 Data 1 IN
6 L/F X2 Data 2 IN
8 L/F Y2 Data 2 IN
4N-2 L/F XN Data N IN
4N L/F YN Data N IN

If the data set in the parameter table for the IFGN instruction are X, and Y,,, the data must be
set so that X, <Y, 1. The IFGN instruction searches for an X,/ Y, pair within the parame-
ter table for which Y, <Y <Y, and computes the output value Y according to the follow-

ing formula:

X (Y_ Yn)

If the X,/ Y, pair, which satisfies Y,, <Y <Y, for an input value Y, does not exist in the

parameter table, the result will be as follows:

c I[FX <Y,
Xz—Xl
= + -
X=X+ $=5- (Y-Y)
*IFY > Y,
Xn— X1
X=X+ =21 (Y-Y
n+l Yn_ Yn-l (1)
Y4
Y3
Input Y
value
Y2
Y1
X1 X2 X X3 X4
Ouput value

1-148

1.7 DDC Instructions

B Format

Symbol: IFGN
Full Name: Inverse Function Generator

T - Category: DDC

Input 1% Tcon: L
00026 Fah
Farameler 7
ManQong
Output 7
NEOODE?
B Parameter
Parameter Name Setting
Input * Any integer type, double-length integer and real number type
register
* Any integer type register with subscript
* Any integer type, double-length integer and real number type
register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type, double-length integer and real number type
register (except for # and C registers)
* Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)
* Subscript register

1-149

1 Ladder Program Instruction

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

B Program Example

Integer Type Operation (Number of Data: N = 20)

#W00000 to #W00040 are used for the parameter table.

IFEH ﬂ

Inpul ®WIO0IE ==——— Deviation input value

Farumeler QAIOORE <—— Head address of parameter table
futed WEOO011 s——ooo |FGN output value

Double-length Integer Type Operation (Number of Data: N = 20)

#L.00000 to #L00080 are used for the parameter table.

I FLH
lnpul ®O0ipk =———— Deviation input value

Farsmeler QAO0opE =——— Head address of parameter table
Ouleed ®OO0IRF s———— IFGN output value

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

IFGH ﬂ

leoud MFRRZOD s Deviation input value

Faramsisr BAI0AU0 <——— Head address of parameter table
Gufpul MPRBGRY &——oo |FGN output value

1-150

1.7 DDC Instructions

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

B Outline

The LAU instruction performs acceleration and deceleration at a fixed acceleration/deceler-
ation rate upon input of a speed reference (/npuf). The operation is performed according to

the contents of a previously set parameter table.

The input to the LAU operation must be integer or real number data. Double-length data

cannot be used. The configurations of the parameter tables for integer and real number data
are different. Operations are performed by processing each parameter as an integer consist-

ing of the lower-place 16 bits.

Table 1.26 Integer Type LAU Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
1 w Lv 100% input level Scale of the 100% input value IN
2 w AT Acceleration time Time for acceleration from 0% to 100% (0.1 s) IN
3 W BT Deceleration time Time for deceleration from 0% to 100% (0.1 s) IN
4 w QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN
5 w \Y Current speed LAU output (also output to the A register) ouT
6 w DVDT Current acceleration/de- Scale with the normal acceleration rate being setto | OUT

celeration speed 5000.
7 w - (Reserved) Reserved register -
w VIM Previous speed instruction | For storage of the previous value of the speed ouT
instruction input
9 w DVDTK | DVDT coefficient Scaling coefficient of the current acceleration IN
(DVDT) (-32768 to 32767)
10 L REM Remainder Remainder of the acceleration/deceleration rate ouT
* Relay I/0 Bit Assignment
BIT Symbol Name Specifications I/0

0 RN Line is running "ON" is input while the line is running. IN

1 Qs Quick stop "OFF" is input upon quick stop. * IN

2 DVDTF | DVDT operation non- | "Closed" entered in DVDT operation non-execution | IN

execution
3 DVDTS | DVDT operation selec- | Selection DVDT operation method IN
tion

4t07 - (Reserved) Reserved relay for input IN
8 ARY In acceleration "ON" is output during acceleration. OuT
9 BRY In deceleration "ON" is output during deceleration. ouT
A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT
B EQU Coincidence "ON" is output when input value = output value. ouT
CtoF - (Reserved) Reserved relay for input OouT

* When the quick stop (QS) is "OFF", the quick stop time (QT) is used as acceleration/decelera-

tion time.

1-151

1 Ladder Program Instruction

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

Table 1.27 Real Type LAU Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay I/O Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F LV 100% input level Scale of the 100% input value IN
4 F AT Acceleration time Time for acceleration from 0% to 100% (1 s) IN
6 F BT Deceleration time Time for deceleration from 0% to 100% (1 s) IN
8 F QT Quick stop time Time for quick stop from 100% to 0% (1 s) IN
10 F \% Current speed LAU output (also output to the F register) ouT
12 F DVDT Current acceleration/de- Scaled with the normal acceleration rate being set to | OUT

celeration speed 5000.
* Relay I/0O Bit Assignment
BIT Symbol Name Specifications I/0

0 RN Line is running "ON" is input while the line is running. IN

1 Qs Quick stop "OFF" is input upon quick stop.* IN

2to7 - (Reserved) Reserved relay for input IN
ARY In acceleration "ON" is output during acceleration. ouT
BRY In deceleration "ON" is output during deceleration. ouT
A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT
B EQU Coincidence "ON" is output when input value = output value. ouT
CtoF - (Reserved) Reserved relay for input OouT

* When the quick stop (QS) is “OFF”, the quick stop time (QT) is used as

acceleration/deceleration time.

The following operations are performed inside integer type LAU instructions.

Integer Type LAU Instruction

LV X Ts (0.1 ms) + REM

Acceleration rate (ADV)= AT (0.1's) x 1000

LV x Ts (0.1 ms) + REM

Deceleration rate (BDV) = BT (0.1 s) X 1000

1-152

When VI>V’(V’20),

V=V’+ ADV: In acceleration (ARY)
ON

When VI < V' (V’S0),

V=V’- ADV: In acceleration (ARY)
ON

When VI >V’ (V'<0)

V=V’+ BDV: In deceleration (BRY)
ON

When VI<V’ (V> 0)

V=V’ - BDV: In deceleration (BRY)
ON

1.7 DDC Instructions

LV x Ts (0.1 ms) + REM When QS =ON (VI > V),
Quick stop rate (QDV) = QT (0.1 s) x 1000 V=V'+ QDV: In deceleration (BRY)
ON
At QS=ON(VI<V;V’>0)
V=V’- QDV: In deceleration (BRY)
ON

V’: previous speed output value

VI: Speed designated input
Ts: scan time setting
 Ifthe DVDT operation instruction (DVDTF) is ON, a current acceleration/deceleration

operation (DVDT) is performed.

« If DVDTF is OFF, DVDT =0 is output. If DVDTF is ON, a current acceleration/decel-
eration operation (DVDT) is output after one of the following operations has been per-
formed through DVDT operation selection (DVDTS).

After (*S) operates (“O) of either as follows, the operation of addition-subtraction speed
(DVDT) is output by DVDT operation selection (DVDTS) now when DVDTF is turn-
ing on.

)

. \4 V
N — - . x
If DVDTS is ON: DVDT DV 5000

If DVDTS is OFF: DVDT= (V x DVDTK)-(V’ x DVDTK)
AtV =0, the zero velocity (LSP) is ON, at VI =V equality (EQU) turns ON.

* When the "line is running" signal (RN) is "OFF", V =0 and DVDT = 0 are output.
Real Type LAU Instruction

LVXxTs (0.1 ms) WhenVI>V (V>0),
Acceleration rate (ADV) = AT(s) x 10000 V=V+ ADV: ARY (in acceleration) is
ON
When VI<V(V’<0) ,
V=V’ - ADV: ARY (in acceleration) is
ON

-LVXTs (0.1 ms) When VI<V’(V>0)
Decelerationrate (BDV) = BT(s) X 10000 V=V’+ BDV: BRY (in deceleration) is
ON
At VI> V' (V’<0)
V=V’ - BDV: BRY (in deceleration) is
ON

-LV X Ts (0.1 ms) When QS = ON (V> VI),
QT(s) x 10000 V=V’+ QDV: BRY (in deceleration) is
ON
When QS = ON (V’< VI)
V=V’-QDV: BRY (in deceleration) is
ON

Quick stop rate (QDV) =

V’: previous speed output value
VI: Speed designated input
Ts: scan time setting (ms)

1-153

1 Ladder Program Instruction

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

The current acceleration/deceleration (DVDT) is output after the following operation is car-

ried out:

)

ADV

DVDT=

X 5000

When the "line is running" signal (RN) is "OFF", V = 0 and DVDT = 0 are output.

B Format

Symbol: LAU
Full Name: Linear Accelerator

o | LAl ﬂ]- Category: DDC
Input 7 Icon: s
NNDDOZAR
Parameter 7
ManDoog
Qutput 7
NNOOO24
B Parameter
Parameter Name Setting
Input * Any integer, double-length integer type and real number type
register
* Any integer, double-length integer type and real number type
register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer, double-length integer type and real number type
register (except for # and C registers)
* Any integer, double-length integer type and real number type
register with subscript (except for # and C registers)
* Subscript register

1-154

1.7 DDC Instructions

B Program Example

Integer Type Operation

MWO00100 to MWO000111 are used for the parameter table.

—-{ Ll

legul MERQAID =————— Deviation input value

Parsmsisr WABD 100 <——— Head address of parameter table
Guiput MERISN] oo LAU output value

Real Number Type Operation

MF00200 to MF00212 are used for the parameter table.

Lkl m

Inpul EFOODIE =— Deviation input value

Faramslsr MAODZEE =——— Head address of parameter table
futpuyt BFOOBEE &——ou-— | AU output value

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

m Outline

The SLAU instruction performs acceleration and deceleration at a variable acceleration/
deceleration rate upon input of a speed reference (Input). The operation is performed

according to the contents of the previously set parameter table.

Positive and negative values can be entered for speed reference input. Always set a value so
that the linear acceleration or deceleration time (AT or BT) is greater than or equal to the S-

curve acceleration or deceleration time (AAT or BBT).

The input to the SLAU operation must be integer or real number data. Double-length inte-
ger data cannot be used. The configurations of the parameter tables for integer and real

number data are different

1-155

1 Ladder Program Instruction

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Table 1.28 Integer Type SLAU Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w LV 100% input level Scale of the 100% input IN
2 w AT Acceleration time Time for acceleration from 0% to100% (0.1 s) IN
3 W BT Deceleration time Time for deceleration from 0% to100% (0.1 s) IN
4 w QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN
5 w AAT S-curve acceleration time | Time spent in the S-curve region of acceleration IN

(0.01-32.00 s)
6 w BBT S-curve deceleration time | Time spent in the S-curve region of deceleration IN
(0.01-32.00 s)
W \% Current speed SLAU output (also output to the A register) ouT
8 w DVDT1 | Current acceleration/ Scaled with the normal acceleration rate being set to | OUT
deceleration speed1 5000.
(DVDT1)
w - (Reserved) Reserved register -
10 w ABMD Speed increase upon Amount of change in speed after hold instruction and | OUT
holding until stabilization.
11 W REMA1 Remainder Remainder of acceleration/deceleration rate ouT
12 w - (Reserved) Reserved register -
13 W VIM Remainder For storage of the previous value of the speed desig- [OUT
nation input
14 L DVDT2 | Current acceleration/ 1000 times of actual acceleration/deceleration OouT
deceleration speed2
(DVDT2)
16 L DVDT3 | Current acceleration/ Current acceleration/deceleration (= DCDT2/1000) | OUT
deceleration speed3
(DVDT3)
18 L REM2 Remainder Remainder of S-curve area acceleration/deceleration | OUT
rate
20 W REM3 Remainder Remainder of the current speed ouT
21 W DVDTK | DVDT1 coefficient Scaling coefficient (-32768 to 32767) of current IN
acceleration/deceleration (DVDT1)

1-156

1.7 DDC Instructions

* Relay I/0O Bit Assignment

BIT Symbol Name Specifications I/0
0 RN Line is running "ON" is input while the line is running. IN
1 Qs Quick stop "OFF" is input upon quick stop” IN
2 DVDTF | Non-execution of Input of "OFF" into non-execution of DVDT1 opera- | IN
DVDT1 operation tion.
3 DVDTS | DVDT1 operation se- Selection DVDT1 operation method N
lection
4t07 - (Reserved) Reserved relay for input IN
8 ARY In acceleration "ON" is output during acceleration. ouT
9 BRY In deceleration "ON" is output during deceleration. ouT
A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT
B EQU Coincidence "ON" is output when input value = output value. ouT
C EQU (Reserved) Reserved relay for output ouT
D CCF Work relay System internal work relay OouT
E BBF Work relay System internal work relay ouT
F AAF Work relay System internal work relay ouT
* When the quick stop (QS) is "OFF", the quick stop time is used for the acceleration/deceleration
time.
Table 1.29 Real Type SLAU Instruction Parameters
ADR Type Symbol Name Specifications 1/0
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Lv 100% input level Scale of the 100% input IN
4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN
6 F BT Deceleration time Time for deceleration from 100% to 0% (s) IN
8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN
10 F AAT S-curve acceleration time | Time spent in the S-curve area during acceleration N
(s)
12 F BBT S-curve deceleration time | Time spent in the S-curve area during deceleration IN
(s)
14 \% Current speed SLAU output (also output to the F register) ouT
16 DVDT Current acceleration/de- Scaled with the normal acceleration rate being set. ouT
celeration
18 F ABMD Speed increase upon Amount of change in speed after hold instruction ouT
holding until stabilization.

1-157

1 Ladder Program Instruction

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

* Relay I/O Bit Assignment

BIT Symbol Name Specifications 1/0

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop. IN
2t07 - (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. ouT

9 BRY In deceleration "ON" is output during deceleration. ouT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT

B EQU Coincidence "ON" is output when input value = output value. OouT
CtoF - (Reserved) Reserved relay for output ouT

The following operations are performed inside integer type SLAU instructions.
Integer Type SLAU Instruction

LV x Ts (0.1 ms) + REM1 Outside S- curve area (ADVS > ADV)
AT(0.1s) x 1000 When VI>V’ (V' 2 0)
V=V’+ ADV: In acceleration (ARY)
ON
When VI<V’(V’ < 0)
V=V’- ADV: In acceleration (ARY)
ON

Acceleration rate (ADV) =

LV xTs (0.1 ms) + REM1 Outside S-curve area (BDVS > BDV)
BT (0.1s) x 1000 AtVI>V (V'<0)
V=V’+ BDV: In deceleration (BRY)
ON
When VI<V’ (V’>0)
V=V’ - BDV:In deceleration (BRY)
ON

Deceleration rate (BDV) =

LV x Ts (0.1 ms) + REM1 When QS=ON (VI>V’),

QT (0.1 s) x 1000 V =V’+ QDV: In deceleration(BRY)
ON
When QS=ON (VI<V’),
V=V’ -QDV: In deceleration(BRY)
ON
(NOTE) The quick stop rate is not S -
curve movement, but linear movement
(same as the quick stop rate of SLAU).

Quick stop rate (QDV) =

1-158

1.7 DDC Instructions

Acceleration rate in the S-curve area (ADVS) = ADVS’+ AADVS

ADV x Ts (0.1 ms) + REM2 ADVS’: previous value of ADVS
AAT (0.01 s) x 100 Inside the S-curve area (BDVS<BDV)

When VI>V’ (V' 2 0),

V =V’+ ADVS: In acceleration (ARY)
ON

When VI< V> (V’<0),

V =V’ - ADVS: In acceleration (ARY)
ON

AADVS =

S character section moderation rate (BDVS) = BDVS’+ BBDVS

BDV x Ts(0.1 ms) + REM2 In(BDVS <BDV) in S character section
BBT (0.01 s) x 100 AtVI>V (V’<0)
V =V’ + BDVS; Moderation inside (BRY)
turning on
AtVI<V’ (V’>0)
V=V’-BDVS; (BRY) turning on when
being accelerating

BBDVS=

V’: Speed output value last time
VI: Speed instruction input
Ts: Scanning time setting

» Addition-subtraction speed 1(DVDT1) is operated now when DVDT1 operation instruc-
tion (DVDTF) is turning on.

* When DVDTF is turning off, DVDT1 = 0 is output.

After (*S) operates (“O) of either as follows, the operation of addition-subtraction speed
1 (DVDT1) is output by DVDT]1 operation selection (DVDTS) now when DVDTF is
turning on.

(V-V)

When DVDTS is turning on: DVDT1= X 5000

When DVDTS is turning off: DVDT =(V X DVDTK)-(V’ X DVDTK); DVDTK:
DVDT coefficient

 Addition-subtraction speed 2 (DVDT?2) is output as follows now.
(“S) is accelerating: In S character section: DVDT2 = +ADVS,
Outside S character section: DVDT2 =+ADV
The moderation inside: In S character section: DVDT2 =+BDVS.
Outside S character section: DVDT2 = +BDV

« It was output to operate (“O) as follows maintenance per hour degree rise (ABMD).

DVDT2’ X DVDT2’ Present value last time of addition-subtraction

ABMD =
2 X AADVS (BBDVS) speed 2 (DVDT2)

* 0 velocities (LSP) turn on in turning on with V = 0 and agreement (EQU) is turned on by
Vi=V.

* When line in operation (RN) is "Open", V=0, DVDT1 =0, DVDT2 =0, DVDT3 =0,
ABMD =0, REM1 =0, REM2 = 0, and REM3 = 0 are output.

1-159

1 Ladder Program Instruction
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Real Type SLAU Instruction

LVxTs (0.1 ms) Outside S character section
AT (s) x 10000 (ADVS > ADV)

VI>V (V' >0):

V=V +ADV

Acceleration rate (ADV) =

LV X Ts (0.1ms) Outside S character section
BT(s) x 10000 (BDVS <BDV)
VI<V(V’>0):
V=V +BDV

Moderation rate (BDV) =

LVXTs(0.1ms) QS=ON (V' >VI):
QT(s) x 10000 V=V’+QDV

Rapid stop rate (QDV) =

S character section acceleration rate (ADVS) = ADVS’ + AADVS

ADV xTs (0.1 ms) : Value last time of ADVS’= ADVS
AAT(s) x 10000 In (ADVS <ADV) in S character section
VI>V’(V’>0):
V=V’+ADVS

AADVS =

S character section moderation rate (BDVS) = BDVS’+ BBDVS

BDV x Ts (0.1 ms) :Value last time of BDVS’= BDVS
BBT(s) x 10000 Outside S character section
(BDVS >BDV)
VI<V’(V’>0):
V=V’+BDVS

BBDVS =

V’: Speed output value last time
VI: Speed instruction input
Ts: Scanning time setting value

+ After (*S) operates (“O) as follows, addition-subtraction speed (DVDT) is output now.
(“S) is accelerating: In S character section: DVDT = ADVS.
Outside S character section: DVDT = ADV
Moderation inside : In S character section: DVDT = BDVS.
Outside S character section: DVDT = BDV

« It was output to operate (“O) as follows maintenance per hour degree rise (ABMD).

DVDTX DVDT
2X AADVS (BBDVS)

ABMD =

* When line in operation (RN) is "Open", V=0, DVDT = 0, and ABMD = 0 are output.

1-160

1.7 DDC Instructions

B Format

—I sSLal EI—

Input T
HED0G20

Paraneter T
HADOODG

Output 7
MwOnna|

B Parameter

Symbol: SLAU
Full Name: S-Curve Linear Accelerator
Category: DDC

Icon: |
A"

Parameter Name

Setting

Input * Any integer, double-length integer type and real number type
register

* Any integer, double-length integer type and real number type
register with subscript

* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer, double-length integer type and real number type
register (except for # and C registers)

* Any integer, double-length integer type and real number type
register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

MWO00100 to MWO000121 are used for the parameter table.

ELM m

Inpul ®WO0RIE =——— Deviation input value

Faramslsr BAODIER = Head address of parameter table
flutpd BWOODI1T =——— SLAU output value

1-161

1 Ladder Program Instruction

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Real Number Type Operation

MF00200 to MF00218 are used for the parameter table.

ELM ﬂ

Inpul ®FOOBEE ==— Deviation input value

Parsmeler BANDIEN =———— Head address of parameter table
futpud ®FOO0EE & SLAU output value

Speed
(V)
VI Y TN
(100%) / \
Acceleration Deceleration
\ >
0,S-curvé |Straight |Sicurve S-curvé | Straight |S-+curve Ti
section line area | section section line area |section (tl)me
AAT AAT BBT BBT
AT BT
A A A A
Acceleration Acceleration Deceleration Deceleration
start completed start completed

Note: Please note the following when you use integer type SLAU instruc-
tion.
Please do not change input value (VI) before reaching input value
(VI) (de-and acceleration inside).
When input value (VI) is changed in the de-and acceleration, over-
shooting/undershoot might be generated. (Refer to the figure below)
Please make the application program when you change input value
(VI) in the de-and acceleration by either the undermentioned.
* Please use real type SLAU instruction.
* Please use the LIMIT instruction together when you use inte-
ger SLAU instruction. The output value of integer type
SLAU instruction is limited, and that is, please assume the
output value of the LIMIT instruction to be a input value of
the LIMIT instruction, and limit overshooting/undershoot.

I will encourage the use of one real type SLAU instruction

from the easiness of making the application program.

1-162

1.7 DDC Instructions

/ Overshooting
Speed
\

Speed

/N Vi

Instruction (input value)
change in moderation,

‘/(Change to 0 -VI)

(*S) the instruction

(input value)

changes while accelerating?
(Change to VI—0)

0 0
Time ~~ Time

\\ Undershoot

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

B Outline

The PWM instruction converts the value of the Input to PWM as an input value (between -
100.00 and 100.00%, with increments of 0.01%) and outputs the result to the Output and the
parameter table.

Double-length integer and real number operations are not allowed.

PWMT (X + 10000)
20000

Time of ON output =

PWMT (X + 10000)

Number of ON outputs = Ts x 20000

X: input value

Ts: scan time set value (ms)

When 100.00% is input: all ON

When 0% is input: 50% duty (50% ON)
When -100.00% is input: all OFF

When the PWM reset (PWMRST) is ON, all internal operations are reset and PWM opera-
tions are performed with that instant as the starting point. After turning the power ON, set
PWMRST to ON to clear all internal operations, then use the PWM instruction.

1-163

1 Ladder Program Instruction

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

Table 1.30 Integer Type PWM Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 W PWMT | PWM cycle PWM cycle (1 ms) (1 to 32767 ms) IN
2 W ONCNT | ON output set timer Set timer for ON output (1 ms) ouT
3 w CVON ON output counting timer | Counting timer for ON output (1 ms) ouT
4 w CVON ON output counting timer | ON output counting timer remainder (0.1 ms) OouT

REM remainder
W OFFCNT | OFF output set timer Set timer for OFF output (1 ms) ouT
W CVOFF | OFF output counting timer | Counting timer for OFF output (1 ms) ouT
w CVOFF | OFF output counting timer [OFF output counting timer remainder (0.1 ms) OouT
REM remainder
* Relay I/O Bit Assignment
BIT Symbol Name Specifications /0
0 PWM PWM reset "ON" is input when PWM is reset IN
RST
2to7 |- (Reserved) Reserved relay for input IN
8 PWM PWM output PWM is output (2 value output: ON = 1, OFF = 0) ouT
ouT
9toF |- (Reserved) Reserved relay for output ouT
B Format
Symbol: PWM
Full Name: Pulse Width Modulation
-1 P m— Category: DDC
Input 10 Icon: -
Heonoaz ’4
Peramster 1
Haannin
Ot put 1
HE0002a

1-164

1.7 DDC Instructions

B Parameter

Parameter Name Setting

Input * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

* Subscript register
* Constant

B Program Example

MWO00100 is used as PWM input and MW00200 to MW00207 as a parameter table.

:qul'.l.lllm MpnnEann
I

lswul ENENIDE =— PWM deviation input value

Faramaler BARRIDE =— Head address of parameter table
Oulpul BREREEE s PWM output value

INFO PWM reset with the first scan of DWG.L. (SB000001 when used with DWG.H)

1-165

1.8.1 BLOCK READ Instruction (TBLBR)

1.8 Table Data Manipulation Instructions

1.8.1 BLOCK READ Instruction (TBLBR)

m Outline

The TBLBR instruction consecutively reads file register table elements in block format that
are specified by table name (7able Name), row number, and column number. It then stores
the elements in a continuous region starting with the specified register (Read Data). The
type of the element being read is automatically determined according to the specified table.
The type of the storage destination register is ignored and the read data is stored according to

the table element type without converting the data type.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the

storage destination register is retained without reading the data.

Upon normal termination, the number of words transferred is set in the /Output/, and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /Output], and the [Status] is
turned ON.

Table 1.31 List of Error Codes

Error Code Error Name Content

0001H Referenced table undefined The target table is not defined.

0002H Outside row number range The row number of the table element is not within
the range of the target table.

0003H Outside column number range The column number of the table element is not
within the range of the target table.

0004H Number of elements incorrect The number of elements of the target is invalid.

0005H Insufficient space in storage destina- | There is not enough space for storing.

tion

0006H Incorrect element type The type of the specified element is a malfunction.

0007H Cue buffer error An attempt is made to read the cue buffer when it is
empty, or the buffer is written to by pointer advance
when it is full.

0008H Cue table error The specified table is not a table of the cue type.

0009H System error An unexpected error is detected internally in the sys-
tem during instruction execution.

1-166

1.8 Table Data Manipulation Instructions

Table 1.32 Block Read PI Instruction Parameters

ADR Type Symbol Name Specifications I/O
0 L ROW1 | Table element beginning Beginning row number of the target table element IN
row number (1 to 65535)
2 L CcoL1 Table element beginning Beginning column number of the target table ele- IN
column number ment (1 to 32767)
W RLEN Number of row elements Number of row elements (1 to 32767) IN
w CLEN Number of column ele- Number of column elements (1 to 32767) IN
ments
B Format
Symbol: TBLBR
Full Name: Table Block Read
THLER o Category: TABLE
Table Mams 7 Icon: %
Read Dala 7 J
Wanonoi
Paramste=r %
WaDOOOZ
[Dutput] 7
Weoono
[Btatus] 17
HBOODO@
B Parameter
Parameter Name Setting
Table Name Table name
Read Data * Register address (except for # and C registers)

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)

* Any bit type register with subscript

* Possible to omit.

1-167

1.8.2 BLOCK WRITE Instruction (TBLBW)

B Program Example

From the table defined as TABLE1, with DW00010 to DW00015 as a parameter table, data
(element type is integer type) from the starting table element position to the end position are
stored in block form in the area starting from MWO00100.

Tubim Mama TSELE|
Feed Dmfim ®AOO|
Faramailer DBANODiD
[Oulp=dl]l wWOOG] |

[States] EEOODBDE

1.8.2 BLOCK WRITE Instruction (TBLBW)

H Outline

The TBLBW instruction writes the contents of a continuous region starting with the speci-
fied register (Write Data) to the file register table elements in block format that are specified
by table name (7able Name), row number, and column number. The data is processed
assuming that the type of the table elements in the storage destination register is the same as

that of the table elements in the storage source register.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the

storage destination register is retained without writing the data.

Upon normal termination, the number of words transferred is set in the /Output] and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /[Output] and the [Status] is
turned ON.

Table 1.33 Block Write Instruction Parameters

ADR Type Symbol Name Specifications 110
0 L ROW1 Table element beginning Beginning row number of the target table IN
row number element (1 to 65535)
2 L CcOoL1 Table element beginning Beginning column number of the target table IN
column number element (1 to 32767)
4 W RLEN Number of row elements Number of row elements (1 to 32767) IN
W CLEN Number of column Number of column elements (1 to 32767) IN
elements

1-168

1.8 Table Data Manipulation Instructions

B Format
Symbol: TBLBW
Full Name: Table Block Write
-[TBLEV E]- Category: TABLE
Tﬂ.h I‘E‘ H‘ ne ? Icon: TBL
Write Data 7
WADDOOZ
Paramster 7
Wanooo4
[Output] 7
uWwooooz
[Btaius] %
WBOODOG2
B Parameter
Parameter Name Setting
Table Name Table name
Write Data * Register address (except for # and C registers)
* Register address with subscript
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

From the table defined as TABLE1, with DW00010 to DW00015 as a parameter table, arca
(element type is integer type) from the starting table element position to the end position are
stored in block form in the data from MW00100.

Tabl+ Name TABLE|
Hrile Dals Wannlbp
Paramsiar DEOODID
[Dilgsal] wWOODII

[Stalus] EBODODDE

1-169

1.8.3 ROW SEARCH Instruction (TBLSRL)

1.8.3 ROW SEARCH Instruction (TBLSRL)

H Outline

The TBLSRL instruction searches for the column element of the file register table specified

by the table name (7able Name), row number, and column number. If there is data that

matches the data in the specified register (Search Data), the instruction reports that row

number. The type of the data to be searched is automatically determined according to the

specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or

insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching column element is found, 1 is set in the search

result, the row number is set in the [Output], and the [Status] is turned OFF. If no matching

column element is found, O is set in the search result.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is
turned ON.

Table 1.34 Row Search Instruction Parameters

e | TBLEAL Fo) o

Table Name 7
Search Daka 7
MADOEDS
Porameter 7T
MeO0aos

M¥O0003

[Output]

ok

[Glatus]

<

MEODOOD:

1-170

Symbol: TBLSRL

Full Name: Table Row Search
Category: TABLE

Icon: mmL

ADR Type Symbol Name Specifications /0
0 L ROW1 Table element head row Head row number of the target table element IN
number (1 to 65535)
2 L ROW2 | Table element last row Last row number of the target table element IN
number (1 to 65535)
4 L COL- Table element column Column number of the target table element IN
UMN number (1 to 32767)
6 w FIND Search result Search results ouT
0: No matching row
1: Matching row exists
B Format

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
Search Data * Register address

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)

* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The table defined as TABLEI] is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

THL A _ﬂ

Takim Mumm TAHLE]

Emmrch Duisw BAUDIEE
Faremelar OROGDIE
[Drlput] EFOOB11

[Fleiun] EHOODERE

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

H Outline

The TBLSRC instruction searches for the row element of the file register table specified by
a table name (7able Name), row number, and column number. If there is data that matches
the data of the specified register (Search Data), the instruction reports that column number.

The type of the data to searched is automatically determined according to the specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or

insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching row element is found, 1 is set in the search result,
the row number is set in the [Output], and the [Status] is turned OFF. If no matching col-

umn element is found, O is set in the search result.

When an error occurs, the corresponding error code is set in the /Output] and the [Status] is
turned ON.

1-171

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

Table 1.35 Column Search Instruction Parameters

ADR Type Symbol Name Specifications 110
0 L ROWA1 Table element row Row number of the target table element IN
number (1 to 65535)
2 L COL- Table element head Head column number of the target table IN
UMN1 | column number element (1 to 32767)
4 L COL- Table element last column | Last column number of the target table IN
UMN2 number element (1 to 32767)
6 w FIND Search result Search results OouT
0: No matching column
1: Matching column exists
B Format

| TeisRc

Symbol: TBLSRC
Full Name: Table Column Search
Category: TABLE

Tabla Mame 7T Icon: THL|
Search Data 1 SHO
Hannoo?
Paramster 1
HADDOOR
[Dutput] 17
Nwonno4
[Status] 1T
HE00NO04
B Parameter
Parameter Name Setting
Table Name Table name

Search Data

* Register address
* Register address with subscript

Parameter

* Register address
* Register address with subscript

[Output]*

* Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]*

* Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

1-172

1.8 Table Data Manipulation Instructions

B Program Example

The table defined as TABLE] is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

— TRL ZAL _ﬂ

lablie Wums FAHLE1
Ewmprch Duim EADD)EE
Foremelar DSOGUI1E
Irlpui] WROGDT1

[Fleiun]l BEOODEER

1.8.5 BLOCK CLEAR Instruction (TBLCL)

H Outline

The TBLCL instruction clears the data of the block element of the file register table speci-
fied by a table name (7able Name), row number, and column number. If the element type is

a character string, space is written. If the element type is a numeric value, 0 is writte n.

If both the table element leading row number and the table element leading column number

are 0, the entire table is cleared.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and data is not written.
Upon normal termination, the number of words cleared is set in the /[Output], and the [Sta-
tus] is turned OFF.

When an error occurs, the corresponding error code is set in the /Output], and the [Status] is

turned ON.

Table 1.36 Block Clear Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 L ROW Table element head row Head row number of the target table element IN
number (0 to 65535)
2 L COL- Target table element head | Head column number of the target table element IN
UMN column number (10 to 32767)
W RLEN Number of row elements Number of row elements (1 to 32767) IN
w CLEN Number of column Number of column elements (1 to 32767) IN
elements

1-173

1.8.5 BLOCK CLEAR Instruction (TBLCL)

B Format
Symbol: TBLCL
Full Name: Table Block Clear
THLEL
-[ﬂ- Category: TABLE
Table Hame ¥ Icon: TBL|
Parametar 7 con: CL|
MADDO0S j
[Output] %
uNoonos
[Btatus] 7
MBOROODS
B Parameter
Parameter Name Setting
Table Name Table name
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The designated block in the table defined as TABLEL is cleared using DW00010 to
DWO00015 as a parameter table.

TBLECL

Table Mass TAELE]
Paramaisr DAOODTD
[Dutzast] ®=WOO0T]

[Ztatus] sEOODOEGE

1-174

1.8 Table Data Manipulation Instructions

1.8.6 BLOCK MOVE Instruction (TBLMV)

B Outline

The TBLMYV instruction transfers the data of the block elements of the file register table
specified by the table name (7able Name), row number, and column number to another
block. Block transfer between different tables and data transfer within the same table are
both possible. Ifthe column element types of the source and destination blocks are different,

an error is reported and data is not written.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
unmatched storage destination element type are found, they are reported and data is not writ-

ten.

Upon normal termination, the number of words transferred is set in the /Output/, and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is
turned ON.

Table 1.37 Inter Table Block Transfer Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 L ROW1 Table element head row Head row number of the transfer source table IN
number element (1 to 65535)
2 L COL - Table element head col- Head column number of the transfer source IN
UMN1 [umn number table element (1 to 32767)
4 W RLEN Number of row elements Number of transfer row elements to be IN
transferred (1 to 32767)
5 W CLEN Number of column Number of transfer column elements to be IN
elements transferred (1 to 32767)
6 L ROW2 Table element head Head row number of the transfer destination IN
row number table element (1 to 65535)
8 L COL - Table element head Head column number of the transfer destination IN
UMN2 column number table element (1 to 32767)

1-175

1.8.6 BLOCK MOVE Instruction (TBLMV)

B Format

= | TELAY F=) o

Symbol: TBLMV
Full Name: Table Block Move
Category: TABLE

Src Table Mame 7 Icon: THL
Pest Teble Hame ¥ MV
Farame=ler T
MADOOTO
(0wt put] 1
MROOONE
[Btatus) 1
MEOQODOE
B Parameter
Parameter Name Setting
Src Table Name Table name
Dest Table Name Table name
Parameter * Register address

* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

There are tables defined as TABLE1 and TABLE2. The designated block in TABLE] is
transferred to the designated block in TABLE2 using DW00010 to DW00019 as a parameter

table.

TRLMY

Erc Tahls Mams TADLET
DEpt Tshila Hass TADLLZ

rl,

Firasslss DAFEaIN
[Dudpuk] MERERDN
[Eistum] WnEEAaan

1-176

1.8 Table Data Manipulation Instructions

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

B Outline

The QTBLR/QTBLRI instruction consecutively reads file register table column elements
specified by table name (7able Name), row numbers, and column numbers and stores the
elements in the continuous region starting with the specified register (Read Data). The type
of the element being read is automatically determined according to the specified table. The
type of the storage destination register is ignored and the read data is stored according to the
table element type without converting the data type.

The QTBLR instruction does not change the queue table read pointer. The QTBLRI instruc-

tion advances the queue table read pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or empty queue buffers are found, they are reported, data is
not read, and the queue table read pointer does not advance. The contents of the storage des-

tination register are retained.

Upon normal termination, the number of words transferred is set in the /Output/, and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is
turned ON. The pointer value does not change.

Table 1.38 Queue Table Read Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 L Table element correspond- | Corresponding row number of the target table IN
ing row number element (0 to 65535)
2 L Table element beginning Beginning column number of the target table N
column number element (1 to 32767)
4 w Number of column Number of column elements continuously read out | IN
elements (1 to 32767)
w Reserved
L Read pointer Read pointer of the queue after execution ouT
L WPTR | Write pointer Write pointer of the queue after execution ouT

1-177

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

B Format

Symbol: QTBLR

QTBLRI
TOLR OTELRL
w . — ﬂ_ Full Name: Queue Table Read
Table Hewe 1 Table Muwe ?
Rewd Dabe 1 Rood Duts 1 Queue Table Read
NARBDDTI .
e A Category: TABLE
MARDDIT CTOLT B Icon: GEl @EL
[Dotput] 1 [Dabput] % R | Rl
NPEDDOT ETIgae1
[3iatus] 1 [3talus] 7
WERLDOOT EEONTER
B Parameter
Parameter Name Setting
Table Name Table name
Read Data * Register address (except for # and C registers)
* Register address with subscript
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

1-178

1.8 Table Data Manipulation Instructions

B Program Example

Column element data (element format assumed to be integer) from the table defined as
TABLE] is stored for the number of column elements beginning with MW00100 using
DW00010 to DW00014 as a parameter table.

&R &

Tahle Mawe TRELE]
Read Dila WRIQIDE
Paramefer [DAIOG1D
[Oukesdd] WROO1T

[Gtatus] MEBIOOUE

Table Mape TRELE]
Aeid Dakba WAIDIOD
Paramefer DRIOGI1D
[Dukesrl] WPIDDIY

[Status] WBIOODE

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

H Outline

The QTBLW/QTBLWI instruction writes the contents of the continuous region starting with
the specified register (Write Data) to the file register table column elements specified by

table name (7able Name), row numbers, and column numbers. The data is processed assum-
ing that the type of the table elements in the storage destination register is the same as that of

the table elements in the storage source register.

The QTBLW instruction does not change the queue table write pointer. The QTBLWI

instruction advances the queue table write pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or full queue buffers are found, they are reported, data is

not written, and the queue table write pointer does not advance.

Upon normal termination, the number of words transferred is set in the /Output/, and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /Output], and the [Status] is

turned ON . The pointer value does not change.

1-179

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

Table 1.39 Queue Table Write Instruction Parameters

ADR Type Symbol Name Specifications 1/0
0 L ROW Table element Corresponding row number of the target table IN
corresponding row num- element (0 to 65535)
ber
2 L COL- Table element Beginning column number of the target table IN
UMN beginning column number | element (1 to 32767)
4 w CLEN Number of column Number of column elements to be continuously IN
elements write (1 to 32767)
w Reserved
L RPTR Read pointer Read pointer of the queue after execution ouT
WPTR Write pointer Write pointer of the queue after execution ouT
B Format
Symbol: QTBLW
QTBLWI
-{ aTELY 3 GTEy] Zp= Full Name: Queue Table White
Table Nune 1 Tabla Hans 1 Q{leue Table Pointer
¥rite Dsis 1 ¥rite Duis 1 Clear
CTE CIAT Category : TABLE
Paramester 1 Parameter 1
T HADDD 8 Icon: | L
[Gutput] 1 [Oubtput] 1 W[Wl
LLIITES LI
[Etatus] 1 [Etatus] 1
HABDDOOS CL

1-180

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
Write Data * Register address (except for # and C registers)

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

Integer form consecutive data for the number of column elements beginning with MW00100
is written in column element data in the table defined as TABLE1 using DW00010 to
DWO00014 as a parameter table.

Table Muwss THELE!

Fribta Dala mADROOD
Paramster DADIAID
[Dukeut] WEBRALI

[Gtaiuz] EERIAOOE

Tabile Huws TAHLE]
Prite Deba BADERIOD
Paramaler BADIAID
[uteut] wEERAL)

[Skaluz] WEDIROOE

1-181

1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

H Outline

The QTBLCL instruction returns the queue read and queue write pointers of the file register

table specified by a table name (7able Name) to their initial state (first row).
Upon normal termination, 0 is set in the /Output/, and the [Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /Output], and the [Status] is

turned ON.
B Format
Symbol: QTBLCL
Full Name: Queue Table Pointer
Clear
T T Category: TABLE
Table Mame 1 Ieon: ':EE-
[Dutput] 17 Ll
H®ann1
[GLatus] 1
HEOODOAT!

1-182

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
[Output]* * Any integer type register (except for # and C registers)

* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The cue read and cue write pointer of TABLE] are reset to initial status.

Tuble Msms TARLED
[Dutesad] ®W00011

[Btatua] EEOOOODE

1-183

2

Standard System Function

This chapter describes the details of standard system functions.

2.1 Message Functions - ----------------------------- 2-2
2.1.1 Send Message Function (MSG-SND) ---------------c-m-o--- 2-2
2.1.2 Receive Message Function (MSG-RCV) -------cmmocmnoonno- 2-13

22 Trace Functions ---------cmommmm e 2-22
2.2.1 Trace Function (TRACE) --------mmmmmmm e e oo - 2-22
2.2.2 Data Trace Read Function (DTRC-RD) --------=----cmcu-o-- 2-23
2.2.3 Failure Trace Read Function (FTRC-RD) -------------------- 2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) -------------------- 2-31

2.3 Inverter Functions - --------ccmmmmmma i 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR) ----------------- 2-34
2.3.2 Inverter Constant Read Function (ICNS-RD) ----------------- 2-39

2.4 Other Functions - ----------- - e 2-42
2.4.1 Counter Function (COUNTER) ---------mmmmmmm i a oo 2-42
2.4.2 First-in First-out Function (FINFOUT) ----------c-cmommonoo- 2-44

2-1

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2.1 Message Functions

2.1.1 Send Message Function (MSG-SND)

m Outline

Sends a message to the called station which is on the line and which is designated by the

transmission device type. Supports a plurality of protocol types.
The execution command (Execute) must be held until Complete or Error becomes ON.
[Transmission Devices] CPU Module, 215IF, 2171IF, 2181IF, SV-01

[Protocols] MEMOBUS, non-procedural

B Format

Symbol: MSG-SND

= W50- EHD =) léull Name: Message Send

Exmeaile] Bty 7 ategory: SYSTEM
EANO0TE CETTT Icon: w=gl

dborl 1 Ceapleie 1 BND
HEO0 002 CENTTTEH

D= Tee 1 Errpr 7
HT0074 HBODEET]

Pro=Te= 1
WT00zE

Cir-Fg 1
WT00ZE

Ch-Ma 1
w0

Param 1
MO0

2-2

2.1 Message Functions

B Parameter

I/0 Parameter I/10 Setting
Definition Name Designation
Input Execute B-VAL Send message instruction

Abort B-VAL Send message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module =8 215IF =1 2171F =5
218IF =6 SVB-01 =11

Pro-Typ I-REG Transmission protocol
MEMOBUS =1
non-procedural = 2

Cir-No I-REG Line No.
CPU module =1, 2 215IF=1to 8 217IF =1 to 24
218IF=1to 8 SVB-01 =1to 16

Ch-No I-REG Transmission buffer channel No.
CPU module=1, 2 215IF=1to 13 217IF =1
218IF=1to 10 SVB-01=1to08

Param Address in- | Head address of set data (MW, DW, #W)

put
Output Busy B-VAL Message is being sent.
Complete B-VAL The sending of the message has been completed.
Error B-VAL Occurrence of error

B Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical

order.
Table 2.1 is Parameter List.

Table 2.1 Parameter List

Parameter No. IN/OUT Contents
MEMOBUS Non-procedural

PARAM 00 ouT Process result Process result

PARAM 01 ouT Status Status

PARAM 02 IN Called station # Called station #

PARAM 03 SYS System reserved System reserved

PARAM 04 IN Function code

PARAM 05 IN Data address Data address

PARAM 06 IN Data size Data size

PARAM 07 IN Called CPU# Called CPU#

PARAM 08 IN Coil offset

PARAM 09 IN Input relay offset

PARAM 10 IN Input register offset

PARAM 11 IN Holding register offset Register offset

PARAM 12 SYS For system use For system use

2-3

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

Table 2.1 Parameter List

Parameter No. IN/OUT Contents
MEMOBUS Non-procedural
PARAM 13 SYS System reserved System reserved
PARAM 14 SYS System reserved System reserved
PARAM 15 SYS System reserved System reserved
PARAM 16 SYS System reserved System reserved

Process Result (PARAMOO0)

The process result is output to the upper byte. The lower byte is for system analysis.

* 00xx: In process (BUSY)
+ 10xx: End of process (COMPLETE)
+ 8xxx: Occurrence of error (ERROR)

Error Classification

81xx: Function code error

The sending of an unused function code was attempted. Or, an unused function code

was received.
82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-

ter offset setting is out of range.

83xx: Data size error

The size of the sent or received data is out of range.
84xx: Line No. setting error

The line No. setting is out of range.

85xx: Channel No. Setting error

The channel No. setting error.

86xx: Station address error

The station No. setting is out of range.

88xx: Transmission unit error

An error response was returned from the transmission unit.
89xx: Device selection error

A non-applicable device is selected.

2-4

2.1 Message Functions

Status (PARAMO1)

Output the status of the transmission unit.

* Bit Assignment

FEDTC CBAD98 7 6 5 43 2 10

| L[]
HEEEEEN
COMMAND

RESULT

REQUEST

+ COMMAND

» PARAMETER

Command list is described below.

Code Symbol Meaning

1 U_SEND Send generic message

2 U_REC Receive generic message

3 ABORT Forced interruption

8 M_SEND Send MEMOBUS command ... completed upon receipt of
response.

9 M_REC Receive MEMOBUS command ... accompanies sending of
response.

C MR_SEND | Send MEMOBUS response.

 RESULT

Symbol and Meaning of the Result list is described in Table 2.2.

Table 2.2 Result List

Code Symbol Meaning
0 - Executing
1 SEND_OK [Sending has been completed correctly.
2 REC_OK Receiving has been completed correctly.
3 ABORT_OK | Completion of forced interruption
4 FMT_NG Parameter format error
5 SEQ_NG, Command sequence error
or INIT_NG | The token has not been received yet.
Not connected to a transmission system.
6 RESET_NG, | Reset state
or Out-of-ring. The token could not be received even when the
O_RING_NG | token monitor time was exceeded.
7 REC_NG Data receive error (error detected by a program of a lower
rank)

2-5

2 Standard System Function
2.1.1 Send Message Function (MSG-SND)

« PARAMETER
One of the error codes of Table 2.3 is indicated if RESULT =4 (FMT_NG). Otherwise,

this indicates the address of the called station.

Table 2.3 Error Codes List

Code Error
00 No errors
01 Station address is out of range.
02 Monitored MEMOBUS response receiving time error
03 Resending count setting error
04 Cyclic area setting error
05 Message signal CPU No. error
06 Message signal register No. error
07 Message signal word count error
+ REQUEST
1 = Request

0 = Completion of receipt report

Called Station # (PARAMO02)

Serial

1 to 254: Message is sent to the station of designated device address.

2-6

2.1 Message Functions

Function Code (PARAMO04)

The MEMOBUS function code to be sent is set. Refer to Table 2.4.

Table 2.4 Function Codes

Function Code Setting
00H Unused -
01H Read coil status OK
02H Read input relay status OK
03H Read contents of holding register OK
04H Read contents of input register OK
05H Change status of single coil OK
06H Write into a single holding register OK
07H Unused -
08H Loop-back test OK
09H Read contents of holding register (expanded) OK
0AH Read contents of input register (expanded) OK
0BH Write into holding register (expanded) OK
O0CH Unused -
ODH Discontinuous readout of holding register (expanded) OK
OEH Discontinuous write into holding register (expanded) OK
OFH Change status of a multiple coil OK
10H Write into a plurality of holding register OK

11H to 20H | Unused -
21H to 3FH | System reserved -
40H to 4FH | System reserved -

50H to Unused -

Note: 1. —: cannot be set, OK: can be set
2. Only MW (MB) can be used as the sending/receiving register dur-

ing master operation. The MB, MW, IB, and IW registers can be
used respectively as the coil, holding register, input relay, and input

registers during slave operation.

2-7

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

Data Address

The set contents will differ according to the function code as Table 2.5.

Table 2.5 Address Setting Range

Function Code Data Address Setting Range

00H Unused Ineffective

01H Read coil status 0 to 65535 (0 to FFFFH) *!
02H Read input relay status 0 to 65535 (0 to FFFFH)*!
03H Read contents of holding register 0 to 32767 (0 to 7FFFH)*2
04H Read contents of input register 0 to 32767 (0 to 7FFFH) *2
05H Change status of single coil 0 to 65535 (0 to FFFFH)*!
06H Write into a single holding register 0 to 32767 (0 to 7FFFH) *2
07H Unused Ineffective

08H Loop-back test Ineffective

09H Read contents of holding register (expanded) | 0 to 32767 (0 to 7FFFH) *2
0AH Read contents of input register (expanded) 0 to 32767 (0 to 7FFFH) *2
0BH Write into holding register (expanded) 0 to 32767 (0 to 7FFFH)*2
OCH Unused Ineffective

ODH Discontinuous readout of holding register 0 to 32767 (0 to 7FFFH) *3

(expanded)
OEH Discontinuous write into holding register 0 to 32767 (0 to 7FFFH) *3
(expanded)

OFH Change status of a multiple coil 0 to 65535 (0 to FFFFH) *!
10H Write into a plurality of holding register 0 to 32767 (0 to 7FFFH) *2

* 1. Request for readout from/write-in to coil or relay: Set the head bit
address of the data.
* 2. Request for continuous readout from/write-in to a register: Set head
word address of the data.

* 3. Request for discontinuous readout from/write-in to a register: Set head
word address of the data.

2-8

2.1 Message Functions

m Data Size (PARAMOG)

Set the size (in number of bits or number of words) of the data that is requested for readout
or write-in. The setting range will differ according to the transmission module and the func-

tion code to be used. Refer to Table 2.6.

Table 2.6 Serial Data Size Setting Range

Function Code Data Address Setting Range
215IF/218IF CPU Module/
2171F/SVB-01
OOH Unused Ineffective
01H Read coil status 1 to 2000 (1 to 07DOH) bits
02H Read input relay status 1 to 2000 (1 to 07DOH) bits
03H Read contents of holding register 1 to 125 (1 to 007DH) words
04H Read contents of input register 1 to 125 (1 to 007DH) words
05H Change status of single coil Ineffective
06H Write into a single holding register Ineffective
07H1 Unused Ineffective
08H Loop-back test Ineffective
09H Read contents of holding register 1 to 508 1 to 252
(expanded) (1to O1FCH) (1 to 00FCH)
words words
0AH Read contents of input register 1 to 508 1 to 252
(expanded) (1 to 01FCH) (1 to 00FCH)
words words
0BH Write into holding register 1 to 507 1 to 252
(expanded) (1 to 01FBH) (1 to 00FBH)
words words
OCH Unused Ineffective
ODH Discontinuous readout of holding 1 to 508 1 to 252
register (expanded) (1to 01FCH) (1 to 00FCH)
words words
OEH Discontinuous write into holding 1 to 254 1to 126
register (expanded) (1 to 00FEH) (1 to 007EH)
words words
OFH Change status of a multiple coil 1 to 800 (1 to 0320H) bits
10H Write into a plurality of holding reg- | 1to 100 (1 to 0064H) words
ister

Called CPU # (PARAMO7)

Set the called CPU No.

Coil Offset (PARAMOS)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,

and OFH.

2-9

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

Input Relay Offset (PARAMO09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and OAH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, OEH, and 10H.

For System Use (PARAM12)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by

the user program thereafter since this parameter will then be used by the system.

Relationship between the Data Address, Size and Offset

Relationship between the data address, size and offset are described in Figure 2.1.

[MSG-SND] [MSG-RCV]
mwooooo 4 T
Sending side o :
Offset Receiving side
¢ offset address offset address Offset
Data Sending side o T
address data address Sending side Data
¢ data address address
Moo & [T y
Data size Data 4
¢ Data Data size
---------- v

Fig. 2.1 Relationship between the Data Address, Size and Offset

When transmission protocol is set to non-procedural

The setting of PARAMO04, PARAMOS, PARAMO09, and PARAMI10 are not necessary.

Transmission enabled register is only MW.

2-10

2.1 Message Functions

B [nput
EXCUTE (Send Message Execution Command)

When the command becomes "ON", the message is sent.

ABOUT (Send Message Forced Interruption Command)

This command forcibly interrupts the sending of the message. This has priority over EXE-

CUTE (send message forced interruption command).

DEV-TYP (Transmission Device Type)

Designates transmission device type.

CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, SVB-01 = 11

PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not

received from the other station.
MEMOBUS : Setting = 1
Non-procedural : Setting = 2
CIR-NO (Circuit No.)
Designate the Circuit No.
CPU Module=1, 2, 215IF =1t0 §,217IF =1 to 24, 218IF =1 to 8, SVB-01 =1 to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be

set so as not to be duplicated on a single line.

CPU Module=1,215IF=1to 13,217IF =1, 218IF =1 to 10, SVB-01 =1 to §

PARAM (Set Data Head Address)

The head address of the set data is designated. For details of the set data, refer to "M Param-
eter Details" (on page 2-3).

BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

2 Standard System Function
2.1.1 Send Message Function (MSG-SND)

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAMO0O and PARAM
01 of "M Parameter Details" (on page 2-3).

B Program Example

Program example is described in Figure 2.2.

-
Source I

Pest F¥IO0IE

| EBIiIﬂ.I]:EIE hﬂﬁﬂl i m.ﬂqiﬂ SE.l"llli:lB HISII.RIHI

—([
Enecisle DERERZO1 Busy [DEDOEIE
Abarl DBEDEEIOA Ceamii lak& DEIOOZ LI
[iww=Tyn | Error DEOOZIE
Pro-Tywp |
Cir-Ha |
Chelg 1

Firas DaDEIan

i3:[] EF 4R

Dest [WRO0TE

IF

DOEIAE ITeel pus

Dest [WOOOZTE

2-12

2.1 Message Functions

—_ 3

Source DERIAOD
Pest DEVROZE

-.-.-[ﬂﬂEE ﬂ

Seurce DRIDOI
Deat DERRGET

—er)

Fig. 2.2 Program Sample
2.1.2 Receive Message Function (MSG-RCV)

B Outline

Receives a message from a calling station which is on the line and which is designated by

the transmission device type. Supports a plurality of protocol types.
The execution command (Execute) must be held until Complete or Error becomes ON.
[Transmission Devices] CPU module, 2151IF, 217IF, 218IF, SVB-01

[Protocols] MEMOBUS, non-procedural
B Format

Symbol: MSG-RCV
—f WE0-REY E_ Full Name: Message Receive

Exgouts 1 Buay 7 Category: SYSTEM
EEOa00654 HBODBENE Icon: MG

o AW,
kbart 1 Compleie ¥ -
EENDDOEE HBODBEE?

[y =Typ 1 Error 9
Ergnze HEODBERD

Pra-Tye 1
LR

Cir-MAu 1

ERI0040

Ch-Bs 1
ETI0031

Param 1
manonog

2-13

2 Standard System Function
2.1.2 Receive Message Function (MSG-RCV)

B Parameter

/0 Parameter I/0 Setting
Definition Name Designation
Input Execute B-VAL Receive message instruction

Abort B-VAL Receive message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module =8 215IF =1 217IF =5
218IF =6 SVB-01 =11

Pro-Typ I-REG Transmission protocol (Set up of RTU and ASCII is module configu-

ration definition.)

MEMOBUS =1
non-procedural = 2

Cir-No I-REG Line No.
CPU module =1 215IF=1to 8 217IF =1to0 24
218IF=1t0 8 SVB-01=1to 16

Ch-No I-REG Transmission buffer channel No.
CPU module =1 215IF=1to0 13 217IF =1
218[F=1to 10 SVB-01=1to8

Param Address in- | Head address of set data (MW, DW, #W)

put
Output Busy B-VAL Message is being received.
Complete B-VAL The receiving of the message has been completed.
Error B-VAL Occurrence of error

B Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical

order.
Table 2.7 is Parameter List.

Table 2.7 Parameter List

Parameter No. IN/OUT Contents
MEMOBUS Non-procedural

PARAM 00 ouT Process result Process result
PARAM 01 ouT Status Status
PARAM 02 ouT Called station # Called station #
PARAM 03 SYS System reserved System reserved
PARAM 04 ouT Function code
PARAM 05 OouT Data address Data address
PARAM 06 ouT Data size Data size
PARAM 07 ouT Called CPU# Called CPU#
PARAM 08 IN Coil offset
PARAM 09 IN Input relay offset
PARAM 10 IN Input register offset
PARAM 11 IN Holding register offset Register offset

2-14

2.1 Message Functions

Table 2.7 Parameter List

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural
PARAM 12 IN Write-in range LO Register offset
PARAM 13 IN Write-in range HI Register offset
PARAM 14 SYS For system use For system use
PARAM 15 SYS System reserved System reserved
PARAM 16 SYS System reserved System reserved

Process Result (PARAMOO)

The process result is output to the upper byte. The lower byte is for system analysis.

* 00xx: In process (BUSY)
» 10xx: End of process (COMPLETE)
» 8xxx: Occurrence of error (ERROR)

Error Classification
» 81xx: Function cord error

The sending of an unused function code was attempted. Or, an unused function code

was received.
+ 82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-

ter offset setting is out of range.
* 83xx: Data size error
The size of the sent or received data is out of range.
» 84xx: Line No. setting error
The line No. setting is out of range.
+ 85xx: Channel No. Setting error
The channel No. setting error.
» 86xx: Station address error
The station No. setting is out of range.
+ 88xx: Transmission unit error

An error response was returned from the transmission unit. (Refer to "B Parameter
Details" (on page 2-14)).

» 89xx: Device selection error

A non-applicable device is selected.

2-15

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

Status (PARAMO1)

Output the status of the transmission unit. See "Status (PARAMO1)" (on page 2-5) for

details.

Called Station # (PARAMO02)

The station number of sending side is output.

Function Code (PARAMO04)

Output the MEMOBUS function code received. Refer to Table 2.8.

Table 2.8 Function Codes

Function Code Setting
00H Unused -
01H Read coil status OK
02H Read input relay status OK
03H Read contents of holding register OK
04H Read contents of input register OK
05H Change status of single coil OK
06H Write into a single holding register OK
07H Unused -
08H Loop-back test OK
09H Read contents of holding register (expanded) OK
O0AH Read contents of input register (expanded) OK
0BH Write into holding register (expanded) OK
O0CH Unused -
ODH Discontinuous readout of holding register (expanded) OK
OEH Discontinuous write into holding register (expanded) OK
OFH Change status of a multiple coil OK
10H Write into a plurality of holding register OK

11H to 20H | Unused =
21H to 3FH | System reserved -
40H to 4FH | System reserved -

50H to Unused -

Note: 1. —: cannot be output, OK: can be output

2. The MB, MW, IB, and IW registers can be used respectively as the
coil, holding register, input relay, and input registers during slave

operation.

2-16

2.1 Message Functions

Data Address (PARAMO05)

The data address requested by the sending side is output.

Data Size (PARAMO06)

The data size (number of bits or number of words) of the requested read or write is output.

Called CPU # (PARAMO7)

The called CPU NO. is output.

Coil Offset (PARAMO0S)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,
and OFH.

Input Relay Offset (PARAMO09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and OAH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, OEH, and 10H.

Write-in Range LO (PARAM12), Write-in Range HI (PARAM13)

Set the write allowable range for the request for write-in. A request which is outside of this
range will cause an error. This is valid in the case of function code 0BH, OEH, OFH, and
10H.

0 < Write-in Range LO < Write-in Range HI < Maximum value of MW Address

For System Use (PARAM14)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by

the user program thereafter since this parameter will then be used by the system.

When Non-procedural is set for Transmission Protocol

PARAMO4 has no function. The settings of PARAMO08, PARAMO09, and PARAM10 are not

necessary. The message receivable register is only MW.

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

W Input

EXCUTE (Receive Message Exection Command)

When the command becomes "ON", the message is receive. This must be held until COM-
PLETE (completion of process) or ERROR (occurrence of error) becomes "ON".

ABORT (Receive Message Forced Interruption Command)

This command forcibly interrupts the receiving of the message. This has priority over EXE-

CUTE (receive message execution command).

DEV-TYP (Transmission Device Type)
Designates transmission device type.

CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, SVB-01 = 11
PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not sent to

the called station.
MEMOBUS : Setting =1
Non-procedural : Setting = 2

CIR-NO (Circuit No.)

Designate the circuit No.

CPU Module=1, 2,215IF=1t08,217[F=1to 24, 218IF =1 to 8, SVB-01 =1 to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be

set so as not to be duplicated on a single line.

CPU Module=1,215IF =1to0 13,217IF =1, 218IF =1 to 10, SVB-01 =1 to 8

PARAM (Setting Data Head Address)

The head address of the set data is designated. For details of the set data refer to "M Param-
eter Details" (on page 2-14).

2-18

2.1 Message Functions

B Output
BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAMOO and
PARAMO! of "M Parameter Details" (on page 2-14).

2-19

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

B Program Example

Program example is described in Figure 2.3.

ZRODDDOE
e B STORE =}
—
Hourge 0
Owet DAOODOIA

—' ETeE EI

Source 0

best OWBEE1E

STORE ﬂ

Souree BITH
Dezl DERERT]

UGG RV -

Execuls EREEIA04 Buzy DBOODEIDO
Aborl DBFIIZOA Compleie DEOODTI
Daee=Tym 1 Error DEOOOZIE

Fro=Tre 1
Eir-Ma 1
Cii-Ma 1
Paras DARDDON

e

——]

Dest D¥000Z4

T

1F -

-

DEDDEETE==t rus

Dest DEFIEES

[}

2-20

2.1 Message Functions

Source DREEIN
Dozl DERRIEY

i—' EMD_IF =' I

Fig. 2.3 Program Sample

2-21

2 Standard System Function

2.2.1 Trace Function (TRACE)

2.2 Trace Functions

2.2.1 Trace Function (TRACE)

m Outline

Performs execution control of the traces of the trace data designated by the trace group No.

The trace is defined as "Data Trace Definition" screen.
 Tracing is executed when the trace execution command (Execute) is set to ON.
* The trace counter is reset when the trace reset command (Resef) is set to ON.
The trace end (Trc-End) output is also reset at this time.

* The trace end (7rc-End) output is set to ON when the trace execution count becomes
equal to the set count (set as Trace Definition).

Hm Format

Symbol: TRACE
Full Name: Trace

—I THACE EP—

Category: SYSTEM

Evecuta 1 Tre=<End 7
#Ea0001a MEOEDE1Y Icon: THA
Rpemd 19 Error % E—]
MERO0TE (10 8 BEY
Graup-Hs 1 Simliux 7
Wrinni "L T
B Parameter
I/0 Parameter 1/0 Setting
Definition Name Designation
Input Execute B-VAL Trace execution command
Reset B-VAL Trace reset command
Group-No I-REG Designation of the trace group
Output Trc-End B-VAL End of Trace
Error B-VAL Occurrence of error
Status I-REG Trace execution status

2-22

2.2 Trace Functions

Configuration of the trace execution status (STATUS) is described below.

Table 2.9 Configuration of the Trace Execution Status

Name

Bit No.

Remarks

Trace data full

bit 0

This becomes ON after one round of reading of the
contents in the data trace memory of the designated

group has been completed.

System reserved

bit 1 to bit 7

No trace definition

bit8

The function will not be executed.

Designated group No.
error

bit9

The function will not be executed.

System reserved

bit 10 to bit
12

Execution timing error bit13 The function will not be executed.
System reserved bitl4
System reserved bitl5

2.2.2 Data Trace Read Function (DTRC-RD)

H Outline

Reads out the trace data of the main controller unit and stores this data in the user registers.

The data in the trace memory can be read out upon designating the record number and the

number of records. The readout can be performed by designating just the necessary items in

the record.
B Format
Symbol: DTRC-RD
= DRAC-AD _ﬁ_ Full Name: Data-Trace Read
Exeouls 1 Coamiste 7 Category: SYSTEM
[FELTETIRN: [T NN Icon: D.mq
& irin- B Erfar T 'HD
[Bl EEIOEN 1§
Amz g 1 Elwtge 7
P BT MU
Eag-Tias Rec-Zize 7
WETAng ERINFAR
Zwlmel 1 Sac-Lem ¥
(L BT FLUITTE T
Hal=ikfer 1
MANRADE

2-23

2 Standard System Function

2.2.2 Data Trace Read Function (DTRC-RD)

B Parameter

I/0 Parameter 1/0 Setting
Definition Name Designation
Input Execute B-VAL Designation of the execution of data trace read
Group-No I-REG Designation of the data trace group No. (1 to 4)
Rec-No I-REG Designation of the head record No. for readout (0 to
maximum number of records-1)
Rec-Size I-REG Designation of the number of records requested for
readout (1 to maximum number of records)
Select I-REG [tem to be read out (0001H to FFFFH)
Bits 0 to F correspond to data designations 1 to 16 of
the trace definition.
Dat-Adr Address in- | Designation of the No. of the head register for readout
put (address of MW or DW)
Output Complete B-VAL Completion of trace read
Error B-VAL Occurrence of error
Status I-REG Data trace read execution status
Rec-Size I-REG Number of records read
Rec-Len I-REG Length (in words) of 1 record that is read

Table 2.10 Configuration of the Data Trace Read Execution Status (STATUS)

Name Bit No. Note
System reserved bit0 to bit7
No trace definition bit8 The function is not executed.
Group No. error bit9 The function is not executed.
Designated record No. bit10
error
Error in the designated bitl1l The function is not executed.
number of records read
Data storage error bit12 The function is not executed.
System reserved bit13
System reserved bit14
Address input error bitl5 The function is not executed.

2-24

2.2 Trace Functions

B Readout of Data

Readout of Data is described in Figure 2.4.

Data Trace Memory

Record No. 0
User Register
+ ’ 4— Head address of
o the register into
Number of which data is read
No. of the head read records | ¢2d0Ut
record to be read N | Newg

—

Fig. 2.4 Data Read
The most recent record No. of trace groups are each stored in SW00100 to SW00103.

Table 2.11 Newest Records Number

System Register Number Data Trace Definition
SW00100 For group 1
SW00101 For group 2
SW00102 For group 3
SW00103 For group 4
SW00104 -
SW00105 -
SW00106 -
SWo00107 -

B Configuration of the Read Data

Configuration of the read data is described in Figure 2.5.

Dat -Adr-> 1 to 32 words| Record 1 ITEM1 Old
ITEM16
1 to 32 words Record 2
Trace data

Max. 32512 words

1 to 32 words Record n New

Fig. 2.5 Configuration of the Read Data

2-25

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

Record Length

A Record is composed of the data for the selected items.

Word length of 1 record =Bn X 1 word + Wn X 1 word + Ln X 2 words + Fn X 2 words

Bn: Number of bit type register selected points

Wn: Number of word type register selected points

Ln: Number of double-length integer type register selected points

Fn: Number of real number type register selected points

Maximum of record length = 32 words (e.g. when there are 16 double-length integer type or
real number type registers)

Minimum of record length = 1 words (e.g. when there is one bit type or integer type register)

Number of Records

The Number of Records is the following.

Maximum Number of Records 32512/ Record Length

Number of records when the record length is the 0to 1015
maximum
0 to 32511

Number of records when the record length is the
minimum

2.2.3 Failure Trace Read Function (FTRC-RD)

H Outline

Reads the failure trace data and stores them in the user register. The data in the trace buffer
can be read out upon designating the number of records needed. Either the failure occur-
rence data or the restoration data are designated for readout. Enables the reset (initializa-

tion) of the failure trace buffer.

2-26

B Format
Symbol: FTRC-RD
Full Name: Failure-Trace Read
- FTRC-AD o]
Exscils 1 Compiatn T Category: SYSTEM
BEOO0GEE MABERREDE Icon: FWd
: -Ab
Bazai 1 Errar ¥
L MBDEEEZY
) Eatus ¥
0010 LTI
Amc-Sigw Fac-8ilze ¥
L LR LI
Bal-dde 17 Amg-Lan T
EAOOODE (LTTTAE

2.2 Trace Functions

B Parameter

110 Parameter 1/0 Setting
Definition Name Designation
Input Execute B-VAL Failure trace readout instruction
Reset B-VAL Failure trace buffer reset instruction
Type I-REG Type of data read
1: Occurrence data
2: Restoration data
Rec-Size I-REG Number of read record
Occurrence data: 1 to 64 Restoration data: 450
Dat-Adr Address in- | Head register address for reading (address of MW or
put DW)
Output Complete B-VAL Completion of failure trace read
Error B-VAL Occurrence of error
Status I-REG Failure trace read execution status
Rec-Size I-REG Number of records read
Rec-Len I-REG Length of record read

Table 2.12 Failure Trace Reading Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit7
No trace definition bit8 The function will not be executed.
Designated type No. error | bit9 The function will not be executed.
System reserved bit10
Error in the designated bitl1 The function will not be executed.
number of records
Data storage error bit12 The function will not be executed.
System reserved bit13
System reserved bit14
System reserved bitl5 The function will not be executed.

B Failure Occurrence Data Readout

Failure occurrence data readout is described in Figure 2.6. The readout will always be

started from the most recent record.

Failure Occurrence Trace Memory

od
Number of Readout
read records
Most recent __p. | New
record 4 —»

User Register

Fig. 2.6 Failure Occurrence Data Readout

2-27

<4— Head address of
the register into
which data is read

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

B Readout Data Configuration (Failure Occurrence Data)

Data Configuration

Dat -Adr— 1 to 5 words Record 1 Time of occurrence-old
5 words Record 2
. Trace data
° Max. 320 words
5 words Record n Time of occurrence-new

Fig. 2.7 Data Configuration

Record Configuration

2 words
— Register Designation No. —

1 word | Year and month of occurrence | 1 record (5 words)

1 word Day and hour of occurrence l

1 word | Minutes and seconds of occurrence

Fig. 2.8 Record Configuration
Structure of Register Designation No. (2 words)
Contain the failure detection relay information.

F 8 7 0 (Example) MB020001 (hexadecimal expression)
1 word @ @ 01 83
1 word Data address 07DO0

Fig. 2.9 Structure of Register Designation No.

Table 2.13 Bit Configuration

No. Bit Configuration of @ Bit Configuration of @
7 Defined flag (1 = defined, 0 = unde- | System reserved (= 0)
fined)
6 System reserved (= 0) Data Type

Bit =0, Integer =1,
Double-length integer = 2,

4 0 =NO contact designation,
: : Real Number =3

1 = NC contact designation
3 Type of register Bit Address Oto F
2 S=0,
7 =1,

0=2,
0 | mM=3

2-28

2.2 Trace Functions

Number of Records

The Number of Records is the following.

Minimum number of records

0 (no failure restoration data)

Maximum number of records

64

Failure Restoration Data

Failure restoration data is described in Figure 2.10. The number (amount) of restoration data
is stored in SW00093 (ring counter for 1 to 9999).

Failure Restoration Trace Data

Old

Record No. of
read record N | New

Number of
read records

User Register

—> 7'y <— Head address of the
Oid register into which
Readout data is read
New
> v

Fig. 2.10 Failure Restoration Data

Readout Data Configuration (Failure Restoration Data)

Data configuration is described in Figure 2.11.

Time of restoration-old

Trace data

Dat - Adr -8 words Record 1
8 words Record 2
8 words Record n

Time of restoration-new

Fig. 2.11 Data Configuration

2-29

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

Record Configuration

Record composition is shown in Figure 2.12.

2 words

1 word
1 word
1 word
1 word
1 word

1 word

Fig. 2.12 Record Configuration

— Register Designation No. -

Year and month of occurrence

Day and hour of occurrence

Minutes and seconds of occurrence

Year and month of restoration

Day and hour of restoration

Minutes and seconds of restoration

1 record (8 words)

Number of Record

The Number of Records is the following.

Minimum number of records

0 (no failure restoration data)

Maximum number of records

450

2-30

2.2 Trace Functions

2.2.4 Inverter Trace Read Function (ITRC-RD)

B Outline

Reads out the trace data of the inverter and stores this data in the user registers. The data in
the trace buffer can be read out upon designating the number of records needed. The readout

can be performed upon designating just the necessary items in the record.

[Applicable inverters]: MP930, SVB-01, connected via 215IF

B Format
Symbol: ITRC-RD
- 11EC-RO ﬂ_ Full Name: Inverter-Trace Read
Exspule F Bugy 1 Category: SYSTEM
e dd MENDU0ZE Icon : [TRE!
wbort YV Comelsis 1 'E:D.l
uBFII02E wEgnogt
Deie=-Tyw 1 Error 1
CLIRE R HEO00ER
Cir-Ho T Slalus 1
TITT R W03
Zt-Ma 1 Aee-Zize 1
MEEIDNT WRI00E
Ch-Me 1 Bec-Lan 1
LT ERE] Wa00zE
Fac-Glze ¥
LIT L RE]
Saleck 7
TLIEER]
DNmk-bdr 1§
w7

2-31

2 Standard System Function

2.2.4 Inverter Trace Read Function (ITRC-RD)

B Parameter

/0 Parameter I/0 Setting
Definition Name Designation
Input Execute B-VAL Inverter trace read instruction
Abort B-VAL Inverter trace read forced interruption instruction
Dev-Typ I-REG Type of transmission device
215IF =1 MP930 =4 SVB-01 =11
Cir-No I-REG Line No.
2151F =1 MP930 =1 SVB-0l=1to 16
St-No I-REG Slave station No.
2151F =1 to 64 MP930=1to 14 SVB-01 =1to 14
Ch-No I-REG Transmission buffer channel No. (No designation)
215IF=1to3 MP930 =1 SVB-01=1to8
Rec-Size I-REG Number of records to be read (1 to 64)
Select I-REG Items to be read (0001H to FFFFH)
Bits 0 to F correspond to trace data items 1 to 26
Dat-Adr Address in- | Head address of data buffer register (address of MW or DW)
put
Output Busy B-VAL The reading of inverter trace data is in progress.
Complete B-VAL Completion of inverter trace read
Error B-VAL Occurrence of error
Status I-REG Inverter trace read execution status
Rec-Size I-REG Number of read records
Rec-Len I-REG Length of read record (for 1 record)

Table 2.14 Configuration of the Inverter Trace Read Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit8
Transmission parameter bit9 The function will not be executed.
error
System reserved bit10
Error in the designated bitl1 The function will not be executed.
number of records
Data storage error bit12 The function will not be executed.
Transmission error bit13 The function will not be executed.
System reserved bit14
Address input error bitl5 The function will not be executed.

2-32

2.2 Trace Functions

B Readout of Inverter Trace Data

The readout will always be started from the most recent record.

Most recent —»

record

Inverter T

race Memory

Data Configuration

Dat- Adr—-> 1 to 16 words

User Register

4— Head address of

A
Oid the register into
Number of | o 1out which data is read
read records
New
—>
B Readout Data Configuration
Record 1 ITEM1 4014
ITEM16
1 to 16 words Record 2
Trace data
. Max. 1920 words
1 to 16 words Record n VNew

Record Length

A record is composed of the data of the selected items.

Word length of 1 record = 1 to 16 words

Number of Records

Maximum number of records = 120

2-33

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

2.3 Inverter Functions

2.3.1 Inverter Constant Write Function (ICNS-WR)

m Outline

Writes the inverter constants.
The types and ranges of the inverter constants to be written can be designated.

[Applicable inverters] connected via MP930, SVB-01, CP-215

B Format

Symbol: ICNS-WR
Full Name: Inverter-Constant Write
Category: SYSTEM
Icon: KGNS
L |

-1 | CME-TR

iDIIIIII

ar

1
LOEELERY

Exmruls

Ahurl Comp lmlm T

D~ Tl

T
(1S EER]

T
LIS E R

Clr-Ho 7

SteMp

Gh-Ha

Cha-Tye

Cridi-Hi

g
LIS RES
¥
LLITERE

T
LLIE R

T
(LIS R R

Ena-dlze 7

Dk =&dr

[LIS

T
HaEE

T EEEE b
T
[1:IRELEE]

HUEkus T
[LIBEEE]

2-34

2.3 Inverter Functions

B Parameter

1/0 Parameter 110 Setting
Definition Name Designation
Input Execute B-VAL Inverter constant write instruction
Abort B-VAL Inverter constant write forced interruption instruction
Dev-Typ I-REG Type of transmission device
2151F =1 MP930=4 SVB-01 =11
Cir-No I-REG Line No.
215IF=1,2 MP930 =1 SVB-01=1to 16
St-No I-REG Slave station No.
215IF =1to 64 MP930=1to 14 SVB-01 =1to 14
Ch-No I-REG Transmission buffer channel No.
215IF=1to 3 MP930=1 SVB-0l=1t08
Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An, 2 =Bn, 3 = Chn,
4=Dn,5=En, 6 =Fn,7=Hn,8=Ln,9=0n, 10=Tn
Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.
Cns-Size I-REG Number of inverter constants (number of data to be written)1 to 100
Dat-Adr Address in- | Register address of set data (address of MW, DW, or #W)
put
Output Busy B-VAL Inverter constants are being written in.
Complete B-VAL The write-in of inverter constants has been completed.
Error B-VAL Occurrence of error
Status I-REG Inverter constant write execution status

2-35

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

Table 2.15 Configuration of Inverter Constant Write Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit7
Execution sequence error | bit8 The function will not be executed.
Transmission parameter bit9 The function will not be executed.
error
Designated type error bit10 The function will not be executed.
Designated No. error bitl1l The function will not be executed.
Error in number (amount) | bitl2 The function will not be executed.
of the designated data
Transmission error bitl3 The function will not be executed.
Inverter response error bitl4 The function will not be executed.
Address input error bitl5 The function will not be executed.

Note: In the case of an inverter response error, the error codes from the
inverter are indicated in bit 0 to bit 7.
01H(1) : function code error
02H(2) : reference No. error
03H(3) : write-in count error
21H(33) : write-in data upper/lower limit error
22H(34) : write-in error (during running, during UV)
Numbers in () are of decimal expressions.

B Configuration of the Write-in Data

Cns-Typ

¢ Inverter Constants

bn-01| Acceleration time 1

User Register

Dat-Adr —» Constant data 1 —» bn-05| ASR proportional gain | «— Cns-No
Constant data 2 ——» bn-06| ASR integration time
Cns-Size : :
l Constant data 10 ——» bn-14 PG dividing ratio

bn-25| AO optional output gain

2-36

2.3 Inverter Functions

B Method of Writing to an EEPROM

Procedures for writing constants to an EEPROM (inverter internal constant storage memory)
are shown in below.

|

Writing of a inverter constant
to work memory

y

WRITE ENTER command

i

Constants written with the system function "ICNS-WR" are once entered in work memory.
In order to actually store these in EEPROM, it is necessary to bring up the WRITE ENTER
command as shown in below.

Inverter |
"ICNS-WR" function
Work memory < » /
Shared
memory
Digital EEPROM
operator ™~ WRITE ENTER

command

WRITE ENTER Command

Using the "ICNS-WR" function, by writing the data "0" in the reference number "FFFD" the
WRITE ENTER command is entered for the inverter.

2-37

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

B Program Example

An example of a program (if MP930) that writes "200" in the constant "C1-01" is shown

below.

lﬂ.llllfll PRIVREE| DEJIIJ LH lﬁl.ll-l“l IJHIJMJH
i L | St
JI0E4
[ﬂl [
nr
I-—l [Ch- Fol
Evecuts (DITDDEZ Buze DREOOOOOE
&bort DBIIRREE Cosplels DBEODOODZ
Dy Typ i Error DBOOOOOD
Cir=NHa 1 Steilus DEDOOOZ
Th=Ho 1
Ch-Ho 1
Cnz-Tym A
Cnz-Ho H11
Cnz-8ize §
Dat-Ade DAIREN]
1F =
OEOO00a s =t rue
2000004 DRILTEDD
[P
L
STORE el
Fource 0
Dest DWIGNND

ERD_IF

i

2-38

e e e e e e e

2.3 Inverter Functions

1¥
DRODDOOS * 1 rus

ETORE a—

Suirce [¥O0003
Desl [¥O003Y

— =

GEDODOOY WEEIII

END_IF

1]

2.3.2 Inverter Constant Read Function (ICNS-RD)

B Outline

Reads the inverter constants.
The types and ranges of the inverter constants to be read can be designated.

[Applicable inverters] connected via MP930, SVB-01, CP-215

B Format
Symbol: ICNS-RD
- ToRE - P - Full Name: Inverter-Constant Read
Exacote i Buew 3 Category: SYSTEM
WEODEN44 WHIAOD&E Icon: ICheg
abarl 1 Cosplela T R
MEOD 145 MBEAOD&T
Das-Tve 1 Errosd. 7T
] MRIAOD &R
Gir-Ho 1 Binlene ¥
LT "LITTEH]
LTI |
WTUOEAT
Ch-He 1
[T%]
Erx-Tve 1
]
[r-Ho 1
L]
Cne-31ze 1
HTOOR4E
Dal-Adr 1
MAODE1 8

2-39

2 Standard System Function

2.3.2 Inverter Constant Read Function (ICNS-RD)

B Parameter

1/0 Parameter I/O Setting
Definition Name Designation
Input Execute B-VAL Inverter constant read execution instruction
Abort B-VAL Inverter constant read forced interruption instruction
Dev-Typ I-REG Type of transmission device
215IF =1 MP930 =4 SVB-01 =11
Cir-No I-REG Line No.
2151F=1,2 MP930 =1 SVB-01 =1to 16
St-No I-REG Slave station No.
215IF =1to 64 MP930=1to 14 SVB-01 =1to 14
Ch-No I-REG Transmission buffer channel No.
215IF=1to 3 MP930 = 1 SVB-01=1to8
Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An. 2 =Bn, 3 = Chn,
4=Dn,5=En,6=Fn,7=Hn,8=Ln,9=0n, 10=Tn
Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.
Cns-Size I-REG Number of inverter constants (number of data to be read) 1 to 100
Dat-Adr Address in- | Register address of read-out destination (address of MW or DW)
put
Output Busy B-VAL Inverter constants are being read.
Complete B-VAL The reading of inverter constants has been completed.
Error B-VAL Occurrence of error
Status I-REG Inverter constant read execution status

Table 2.16 Configuration of Inverter Constant Read Execution Status (STASTUS)

Name Bit No. Remarks
System reserved bit0 to bit7
Execution sequence error | bit8 The function will not be executed.
Transmission parameter bit9 The function will not be executed.
error
Designated type error bit10 The function will not be executed.
Designated No. error bitl1 The function will not be executed.
Error in number (amount) | bitl2 The function will not be executed.
of the designated data
Transmission error bit13 The function will not be executed.
Inverter response error bit14 The function will not be executed.
Address input error bitl5 The function will not be executed.

Note: In the case of an inverter response error, the error codes from the

inverter are indicated in bit0 to bit7.
01H(1): function code error
02H(2): reference No. error
Numbers in () are of decimal expressions.

2-40

2.3 Inverter Functions

B Configuration of the Data Readout

Cns-Typ

¢ Inverter Constants

bn-01 Acceleration time 1

User Register

Dat-Adr —» Constant data 1 <4— bn-05| ASR proportional gain | «— Cns-No
Constant data 2 <4—— bn-06| ASR integration time
Cns-Size : :
l Constant data 10 <+— bn-14 PG dividing ratio

bn-25| AO optional output gain

2-41

2 Standard System Function

2.4.1 Counter Function (COUNTER)

2.4 Other Functions

2.4.1 Counter Function (COUNTER)

m Outline

Increments or decrements the current value when the count up/down command (Up-Cmd,
Down-Cmd) changes from OFF to ON.

When the counter reset command (Resef) becomes ON, the current counter value is set to 0.

Also, the current counter value and the set value are compared and the comparison result is

output.

* The current value will not be incremented neither decremented if a

counter error (current value > set value) occurs.

B Format
Symbol: COUNTER
- OUNTER E_ Full Name: Counter
Up-Cad 1 Cni-lp 1 Category: SYSTEM
WO00nn U EETTE] Icon: Faa 111
Disri- Dasd 1 Enl-Zira 1 DER |
MEQOODRE UELER LA
Bazad 1 Gnt=frr T
00008 CTELE DD
Cak-Dala 1
ERAO0n|
B Parameter
/0 Parameter I/0 Setting
Definition Name Designation
Input Up-Cmd B-VAL Count up command (OFF—ON) Data area for counter
Down-Cmd | B-VAL Count down command (OFF—ON) process
1: Set value
Reset B-VAL Counter reset command
2: Current value
Cnt-Data Address in- | Head address of data area for counter pro- 3: Work flag
put cess (MW or DW register)
Output Cnt-Up B-VAL Becomes ON when current counter value = set value.
Cnt-Zero B-VAL Becomes ON when current counter value = 0.
Cnt-Err B-VAL Becomes ON when current counter value > set value.

2-42

2.4 Other Functions

The forms of parameter input and output are shown in below.

Input Data
Form

Input Desig-
nation

Description

Bit Input

B-VAL

Designates the output to be of a bit type. The bit type data
become the input to the function.

Integer
Type Input

I-VAL

Designates the input to be of an integer type. The contents
(integer data) of the register with the designated number
become the input to the function.

I-REG

Designates the input to be the contents of an integer type regis-
ter. The number of the integer type register is designated when
referencing the function. The contents (integer data) of the
register with the designated number become the input to the
function.

Double-
length Inte-
ger Type
Input

L-VAL

Designates the input to be of a double-length integer type.
When reference the function, the contents (double-length inte-
ger data) of the register with the designated number become
the input to the function.

L-REG

Designates the input to be the contents of a double-length inte-
ger type register. When reference the function, the contents
(double-length integer data) of the register with the designated
number become the input to the function.

Real Num-
ber Type
Input

F-VAL

Designates the input to be of a real number type. The contents
(real number data) of the register with the designated number
become the input to the function.

F-REG

Designates the input to be the contents of a real number type
register.

The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become the
input to the function.

Address
Input

Hands over the address of the designated register (an arbitrary
integer register) to the function. Only 1 input is allowed in the
case of a user function.

2-43

2 Standard System Function

2.4.2 First-in First-out Function (FINFOUT)

2.4.2 First-in First-out Function (FINFOUT)

H Outline

This is a first-in first-out type block data transfer function. The FIFO data table is composed
of a 4-word header part and a data buffer. 3 words of the header part (data size, input size,
output size) must be set before this function is referenced.

* When the data input command (/n-Cmd) becomes ON, the designated number of data is
sequentially stored from the designated input data area to the data area of the FIFO
table.

» When the data output command (Out-Cmd) becomes ON, the designated number of data
are transferred from the head of the data area of the FIFO table to the designated output
data area.

* When the reset command (Reser) becomes ON, the number (amount) of data stored is set
to zero and the FIFO table empty output (7h/-Emp) becomes ON.

« If "size of available space for data (empty size) < input size" or if "data size < output
size," the FIFO table error (7hl-Err) becomes ON.

B Format
Symbol: FINFOUT
wf T 18 T o) o Full Name: First-in First-out
fn-Cad T Th | =Fulll 1 Category: SYSTEM
MHILELH upIAaa 0 Icon: FiM
Ouf-Cmd 1 Thl-Esp 1 Fo J
MRERIAAE MEIAAAI |
Aeset 7 Tbi-Err 1
UBEIE1A3 MBIANN I
FIFO=ThI ¥
TN
In-Dals T
TYTT TR
Oust=Daka ¥
WARTELA

2-44

2.4 Other Functions

B Parameter

1/0 Parameter 110 Setting
Definition Name Designation
Input In-Cmd B-VAL Data input command (IN-CMD) FIFO Table Configu-
Out-Cmd B-VAL Data output command (OUT-CMD) ration
0: data size
Reset B-VAL Reset command . .
1: input size
FIFO-Tbl Address in- | Head address of FIFO table (MW or DW 2: output size
put address) 3: number of data
In-Data Address in- | Head address of input data (MW or DW stored
put address) 4: data
Out-Data Address in- | Head address of output data (MW or DW
put address)
Output Tbl-Full B-VAL FIFO table is full.
Tbl-Emp B-VAL FIFO table is empty.
Tbl-Err B-VAL FIFO table error.

2-45

Appendix A

Expression

It is necessary to describe the conditional expression and the operational
expression in IF, WHILE, and the EXPRESSION instruction in the ladder
instruction. Those expressions can be described by using "Expression".

This appendix describes the use rule of the Expression.

A1 EXPression = - === - - - s s o e e e oo A-2
A1 1 0perator - - - - - - - - o e e e e e A-2
A1.20perand -------- - - s e A-3
A1 B Function - = - - cmm i e A-4

A.2 Recognizable Expression -------------cmmo-- A-5
A.2.1 Arithmetic Operator - - - - - - - - - c i e A-5
A.2.2 Comparison Operator - ------------cmm oo A-5
A.2.3 Logic Operator - - ------- o m e A-5
A.2.4 Substitution Operator - - - == - === - = oo m e A-6
A25Function = - - - mmm e e A-6
A2B60thers -------ommm e e e A-6

A.3 Application to Ladder Program - --------------------- A-8
A.3.1 Conditional Expression of IF Instruction - - - ------------------- A-8
A.3.2 Conditional Expression of WHILE Instruction ------------------ A-8
A.3.3 Operational Expression of EXPRESSION Instruction ------------ A-9

A-1

Appendix A Expression
A.1.1 Operator

A.1 Expression

The Expression is composed of the operator, the operand (constant and variable), and functions.
The end of one Expression is shown by the semicolon *“;”. The expressions can be united by

using parentheses “(”,“)”.

Each component of the Expression is explained here.

A.1.1 Operator

B Usable Operator

There is the following kinds of usable operators.

Arithmetic Operator
+ Addition

- Subtraction

* Multiplication

/ Division

% Surplus

& AND of each bit
| OR of each bit

Logic Operator (Only for the Bit Type)

&& Logical product
I Logical add

! Logical denial

Comparison Operator

Equal to a right value

I= Not equal to a right value

> Greater than a right value

>= Greater than or equal to a right value
< Less than a right value

<= Less than or equal to a right value

A-2

A.1 Expression

Substitution Operator

= A right value is substituted for a left value

Reserved Word

true/false Value to logical expression

B Priority Level and Uniting Rule

There is a priority level in the operator, and the uniting rule is applied.

The priority level and the uniting rule (order from which the operand is evaluated) of the
operator are settled in the next table. The table is sequentially shown from the operator with
a high priority level. The operator of the same line has the same priority level, and is evalu-

ated according to the uniting rule.

Operator Explanation Uniting Rule
[10) expression right from left
-1 monadic left from right
x| % multiplication, division, right from left
surplus
+ - addition, subtraction right from left
< > <= >= relation right from left
== I= relation (value) right from left
& AND of each bit right from left
| OR of each bit right from left
&& logical AND right from left
| logical OR right from left
A.1.2 Operand
B Constant

The constant is either the integer or the real number.

Integer

The integer can use the value within the range which can be expressed by 32 bit integer
value. (-2147483648 to 2147483647)

Real number

The real number can use the value within the range which can be expressed by 32 bit float
type. + (1.175494351e-38F to 3.402823466e+38F)

W Variable

In Expression, it is possible to describe by associating the arbitrary variable name permitted
by C language with controller’s register.
Controller’s bit type register is handled as bool type though the bool type variable does not

A-3

Appendix A Expression
A.1.3 Function

exist in C language. The bool type variable takes only either of value of true or false. It can
be used only for the logical expression.

The following limitations are installed in the variable name which can be used.

« It is started from characters other than the numerical value.

* The character which can be used is alphabet and underscore “_”, and figures among
ASCII characters.
* The same variable name as the following function names cannot be used.
<4 EXAMPLE b Abc OK
get input0 OK
lab NG
Sin NG

A.1.3 Function
The following arithmetic functions can be used.

cos (), sin (), arctan (), tan ()

A-4

A.2 Recognizable Expression

A.2 Recognizable Expression

The Expression is described by combining the operand and the operator. There are some restric-

tions in the description method. The restriction is explained as follows.

A.2.1 Arithmetic Operator

This operator can be used for the operand of the integer type and the real type.

The monadic minus can be used only once. The bit operation can use only the integer type. A
The arithmetic operation cannot be used for the operand of the bit type.

Even if the calculation value exceeds the range of the register, the type conversion is not

automatically done. Therefore, the user should allocate an appropriate type in the variable.
<4 EXAMPLE B> MWO00001 = MW00002 + MW00003 OK
MWO00001 = MWO00002 / 345 OK

MF00002 = (MW00004 + MF00002) / (ML00018 + MW00008) OK

MWO00001 = MW00002 & 4096 OK
MB000010 =MB000011 — MB000012 NG
MWO00001 = MB000011 * MW00001 NG

A.2.2 Comparison Operator

This operator can be used for the operand of the integer type and the real type.
The register of the bit type should come left. In the case to do the comparison which uses “=

=" or “ !="" for the operand of the integer bit type, the comparison object should be an

expression of true/false.

4 EXAMPLE B> MB000010 = MW00002 != MW00003 OK
MB000010 = MF00002 < 99.99 OK
MB000010 = MW00002 >= MWO00003 OK
MB000010 = MB000011 = = true OK
MB000010 =MB000011 !=0 NG
MB000010 = MB000011 == NG

A.2.3 Logic Operator

This operator can be used only for the operand of the bit type.

4 EXAMPLE B> MB000010 = MB000011 && MB000012 OK
MB000010 = !MB000011 OK
MB000010 = (MW000020 >= 50) && MB000011 OK
MB000010 = MWO00001 || MW00002 NG
MB000010 = IMW00001 NG

A-5

Appendix A Expression
A.2.4 Substitution Operator

A.2.4 Substitution Operator

If it is a difference of the real type or the integer type even if a right, left type is different,
substitution is possible. However, the rounding error is caused when substituting from the
real type to the integer type.

Substitution for the bit type register can do only a logical value (bit type register or true/
false). In the case to substitute the values other than a logical value for the bit type register,
the values are compared with 0 (Or, 0.0), and the truth is converted into the substituted code.

The substitution of the bit type excluding the bit type register is assumed to be impossible.

<4 EXAMPLE > MW00001 = MW00002 OK
ML00003 = MW00002 OK
MF00006 = MW00002 * 343 OK
MB000010 = MB000011 OK
MWO00001 = MF00012 OK
MB000102 = MW00010 OK
MB000102 = true OK
MW00010 = MB000101 NG
MWO00010 = true NG

A.2.5 Function

The argument and the return value to the function depend on the specification of controller’s
function. That is, the output value is returned by the integer when the register of the integer
and the integer type is input to sin (), cos (), and arctan (), and when the register of the real

number and the real type is input, the output value is returned by the real number. When the
register of the integer type is input because the argument of tan () is a real number, is treated

as a real type.

4 EXAMPLE B> MWO00001 = sin (MW00002) OK
MF00001 = cos (MF00002 * 3.14) OK
MWO00001 = — arctan(MF00002) OK

A.2.6 Others

B Parentheses

Two or more expressions can be united by using “(” and “)”.

4 EXAMPLE B> MWO00001 = — (MW00002 — MW00003) / (MW00004 + MW00005)) OK

A-6

A.2 Recognizable Expression

B Array

The array can be specified by using “[”” and “]” B as well as C language.

4 EXAMPLE B> MWO00001 = MW00002 [100] OK
MWO00001 = MW00002 [MW00100] OK
MB00001 = MB000020 [0] OK

A-7

Appendix A Expression

A.3.1 Conditional Expression of IF Instruction

A.3 Application to Ladder Program

The use of Expression in the ladder program is divided into three kinds of the following.

+ Conditional expression of IF instruction
+ Conditional expression of WHILE instruction

» Operational expression of EXPRESSION instruction

The use example is explained as follows.

A.3.1 Conditional Expression of IF Instruction

The Expression is described in the conditional expression description area of the IF instruc-
tion and the ELSE instruction. However, only Expression which outputs the result of the
bool type can be described. Therefore, the description of the Expression which includes the

substitution operator is not recognized.

<4 EXAMPLE B> MB000001 = = true OK
MW00002 < 100 OK
MWO00003 = MW00004 OK
MBO000005 = false NG
MW00007 =MW00010 NG

A.3.2 Conditional Expression of WHILE Instruction

The Expression is described in the conditional expression description area of the WHILE
instruction. However, only Expression which outputs the result of the bool type can be
described. Therefore, the description of the Expression which includes the substitution oper-

ator is not recognized.

4 EXAMPLE B Refer to the example of A.3.1 "Conditional Expression of IF Instruction".

A-8

A.3 Application to Ladder Program

A.3.3 Operational Expression of EXPRESSION Instruction

The Expression is described in the conditional expression description area of the EXPRES-
SION instruction. The operational expression can be described according to the description

rule of Expression. However, Expression which outputs the result of the bool type cannot be

described.
4 EXAMPLE B> MB000010 = MB000001 && MB000005; OK
MB000011 = MB000010 = = true; OK
MWO00000 = (MW00001 + MW00005) / MW00004; OK
MW00003 = MW00000/50; OK
MW00002 = MW00001 & 300; OK
MW00010 = MW00003 — MW00002; OK
MB000001 = = true; NG
MW00006 >= 100; NG
MW00007 != MWO00009; NG

A-9

Machine Controller MP90O0 Series
New Ladder Editor

PROGRAMMING MANUAL

IRUMA BUSINESS CENTER
480, Kamifujisawa, Iruma, Saitama 358-8555, Japan
Phone 81-42-962-5696 Fax 81-42-962-6138

YASKAWA ELECTRIC AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-847-887-7000 Fax 1-847-887-7370

MOTOMAN INC. HEADQUARTERS
805 Liberty Lane West Carrollton, OH 45449, U.S.A.
Phone 1-937-847-6200 Fax 1-937-847-6277

YASKAWA ELETRICO DO BRASIL COMERCIO LTD.A.
Avenida Fagundes Filho, 620 Bairro Saude-Sao Paulo-SP, Brazil CEP: 04304-000
Phone 55-11-5071-2552 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398

Motoman Robotics Europe AB
Box 504 S38525 Torsas, Sweden
Phone 46-486-48800 Fax 46-486-41410

Motoman Robotec GmbH
Kammerfeldstrape 1, 85391 Allershausen, Germany
Phone 49-8166-90-100 Fax 49-8166-90-103

YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom
Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION
Kfpa Bldg #1201, 35-4 Youido-dong, Yeongdungpo-Ku, Seoul 150-010, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.
No.18 Xizang Zhong Road. Room 1805, Harbour Ring Plaza Shanghai 20000, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299

YATEC ENGINEERING CORPORATION
4F., No.49 Wu Kong 6 Rd, Wu-Ku Industrial Park, Taipei, Taiwan
Phone 886-2-2298-3676 Fax 886-2-2298-3677

YASKAWA ELECTRIC (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone 852-2803-2385 Fax 852-2547-5773

BENING OFFICE

Room No. 301 Office Building of Beijing International Club, 21
Jianguomenwai Avenue, Beijing 100020, China

Phone 86-10-6532-1850 Fax 86-10-6532-1851

TAIPEI OFFICE
9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

SHANGHAI YASKAWA-TONGJI M & E CO., LTD.
27 Hui He Road Shanghai China 200437
Phone 86-21-6553-6060 Fax 86-21-5588-1190

BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing P.R. China Post Code: 100083
Phone 86-10-6233-2782 Fax 86-10-6232-1536

SHOUGANG MOTOMAN ROBOT CO., LTD.

7, Yongchang-North Street, Beijing Economic Technological Investment & Development Area,
Beijing 100076, P.R. China

Phone 86-10-6788-0551 Fax 86-10-6788-2878

YASKAWA ELECTRIC CORPORATION

YASKAWA

In the event that the end user of this product is to be the military and said product is to be
employed in any weapons systems or the manufacture thereof, the export will fall under
the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade
Regulations. Therefore, be sure to follow all procedures and submit all relevant

documentation according to any and all rules, regulations and laws that may apply. MANUAL NO. SIEZ-C887-13.1
Specifications are subject to change without notice ' 3 T

for ongoing product modifications and improvements. © Printed in Japan July 2003 01-12<3&>
© 2001-2003 YASKAWA ELECTRIC CORPORATION. All rights reserved. 03-4®

	Front cover
	About This Manual
	About The Software
	Visual Aids
	Related Manuals
	CONTENTS
	1 Ladder Program Instructions
	1.1 Relay Circuit Instructions
	1.1.1 N.O. Contact Instruction (NOC)
	1.1.2 N.C. Contact Instruction (NCC)
	1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])
	1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])
	1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])
	1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])
	1.1.7 RISING PULSE Instruction (ON-PLS)
	1.1.8 FALLING PULSE Instruction (OFF-PLS)
	1.1.9 COIL Instruction (COIL)
	1.1.10 SET COIL Instruction (S-COIL)
	1.1.11 RESET COIL Instruction (R-COIL)

	1.2 Numeric Operation Instructions
	1.2.1 STORE Instruction (STORE)
	1.2.2 ADDITION Instruction (ADD)
	1.2.3 EXTENDED ADDITION Instruction (ADDX)
	1.2.4 SUBTRACTION Instruction (SUB)
	1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)
	1.2.6 MULTIPLICATION Instruction (MUL)
	1.2.7 DIVISION Instruction (DIV)
	1.2.8 MOD Instruction (MOD)
	1.2.9 REM Instruction (REM)
	1.2.10 INC Instruction (INC)
	1.2.11 DEC Instruction (DEC)
	1.2.12 ADD TIME Instruction (TMADD)
	1.2.13 SUBTRACT TIME Instruction (TMSUB)
	1.2.14 SPEND TIME Instruction (SPEND)
	1.2.15 SIGN INVERSION Instruction (INV)
	1.2.16 1’S COMPLEMENT Instruction (COM)
	1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)
	1.2.18 BINARY CONVERSION Instruction (BIN)
	1.2.19 BCD CONVERSION Instruction (BCD)
	1.2.20 PARITY CONVERSION Instruction (PARITY)
	1.2.21 ASCII CONVERSION Instruction (ASCII)
	1.2.22 ASCII CONVERSION 2 Instruction (BINASC)
	1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

	1.3 Logical Operation/Comparison Instructions
	1.3.1 AND Instruction (AND)
	1.3.2 OR Instruction (OR)
	1.3.3 XOR Instruction (XOR)
	1.3.4 Comparison Instruction (<)
	1.3.5 Comparison Instruction (<=)
	1.3.6 Comparison Instruction (=)
	1.3.7 Comparison Instruction (!=)
	1.3.8 Comparison Instruction (>=)
	1.3.9 Comparison Instruction (>)
	1.3.10 RANGE CHECK Instruction (RCHK)

	1.4 Program Control Instructions
	1.4.1 SUB-DRAWING CALL Instruction (SEE)
	1.4.2 MOTION PROGRAM CALL Instruction (MSEE)
	1.4.3 FUNCTION CALL Instruction (FUNC)
	1.4.4 DIRECT INPUT STRING Instruction (INS)
	1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)
	1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)
	1.4.7 WHILE Instruction (WHILE, END_WHILE)
	1.4.8 IF Instruction (IF, END_IF)
	1.4.9 IF Instruction (IF, ELSE, END_IF)
	1.4.10 FOR Instruction (FOR, END_FOR)
	1.4.11 EXPRESSION Instruction (EXPRESSION)

	1.5 Basic Function Instructions
	1.5.1 SQUARE ROOT Instruction (SQRT)
	1.5.2 SINE Instruction (SIN)
	1.5.3 COSINE Instruction (COS)
	1.5.4 TANGENT Instruction (TAN)
	1.5.5 ARC SINE Instruction (ASIN)
	1.5.6 ARC COSINE Instruction (ACOS)
	1.5.7 ARC TANGENT Instruction (ATAN)
	1.5.8 EXPONENT Instruction (EXP)
	1.5.9 NATURAL LOGARITHM Instruction (LN)
	1.5.10 COMMON LOGARITHM Instruction (LOG)

	1.6 Data Manipulation Instructions
	1.6.1 BIT ROTATION LEFT Instruction (ROTL)
	1.6.2 BIT ROTATION RIGHT Instruction (ROTR)
	1.6.3 MOVE BITS Instruction (MOVB)
	1.6.4 MOVE WORD Instruction (MOVW)
	1.6.5 EXCHANGE Instruction (XCHG)
	1.6.6 SET WORDS Instruction (SETW)
	1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)
	1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)
	1.6.9 BINARY SEARCH Instruction (BSRCH)
	1.6.10 SORT Instruction (SORT)
	1.6.11 BIT SHIFT LEFT Instruction (SHFTL)
	1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)
	1.6.13 COPY WORD Instruction (COPYW)
	1.6.14 BYTE SWAP Instruction (BSWAP)

	1.7 DDC Instructions
	1.7.1 DEAD ZONE A Instruction (DZA)
	1.7.2 DEAD ZONE B Instruction (DZB)
	1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)
	1.7.4 PI CONTROL Instruction (PI)
	1.7.5 PD CONTROL Instruction (PD)
	1.7.6 PID CONTROL Instruction (PID)
	1.7.7 FIRST-ORDER LAG Instruction (LAG)
	1.7.8 PHASE LEAD/LAG Instruction (LLAG)
	1.7.9 FUNCTION GENERATOR Instruction (FGN)
	1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)
	1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)
	1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)
	1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

	1.8 Table Data Manipulation Instructions
	1.8.1 BLOCK READ Instruction (TBLBR)
	1.8.2 BLOCK WRITE Instruction (TBLBW)
	1.8.3 ROW SEARCH Instruction (TBLSRL)
	1.8.4 COLUMN SEARCH Instruction (TBLSRC)
	1.8.5 BLOCK CLEAR Instruction (TBLCL)
	1.8.6 BLOCK MOVE Instruction (TBLMV)
	1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)
	1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)
	1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

	2 Standard System Function
	2.1 Message Functions
	2.1.1 Send Message Function (MSG-SND)
	2.1.2 Receive Message Function (MSG-RCV)

	2.2 Trace Functions
	2.2.1 Trace Function (TRACE)
	2.2.2 Data Trace Read Function (DTRC-RD)
	2.2.3 Failure Trace Read Function (FTRC-RD)
	2.2.4 Inverter Trace Read Function (ITRC-RD)

	2.3 Inverter Functions
	2.3.1 Inverter Constant Write Function (ICNS-WR)
	2.3.2 Inverter Constant Read Function (ICNS-RD)

	2.4 Other Functions
	2.4.1 Counter Function (COUNTER)
	2.4.2 First-in First-out Function (FINFOUT)

	Appendix A Expression
	A.1 Expression
	A.1.1 Operator
	A.1.2 Operand
	A.1.3 Function

	A.2 Recognizable Expression
	A.2.1 Arithmetic Operator
	A.2.2 Comparison Operator
	A.2.3 Logic Operator
	A.2.4 Substitution Operator
	A.2.5 Function
	A.2.6 Others

	A.3 Application to Ladder Program
	A.3.1 Conditional Expression of IF Instruction
	A.3.2 Conditional Expression of WHILE Instruction
	A.3.3 Operational Expression of EXPRESSION Instruction

	Back cover

