HIPPIE User Manual

(v0.1, 2014/5/18, Yih-Chii Hwang, yihhwang [at] mail.med.upenn.edu)

OVERVIEW OF HIPPIE

o)
o)
o

Flowchart of HIPPIE

Requirements

Directory structure for HIPPIE execution

CREATE THE CONFIGURATION FILE

PREPARE THE REFERENCE GENOME

RUN HIPPIE
THE PHASE MODE: PIPELINE EXECUTION

THE TASK MODE: RERUNNING SELECTED PORTIONS OF THE PIPELINE

THE DEBUG MODE: DEBUGGING OPTION

PHASES AND TASKS

o

O O O O

Phasel: Read Mapping

Phase2: Quality Control

Phase3: Peak identification and functional annotation

Phase4: Prediction of enhancer—target gene interaction

Phase5: Characters analysis of enhancer—target gene interactions

OVERVIEW OF HIPPIE .,

HIPPIE (High-throughput Identification Pipeline for Promoter Interacting Enhancer elements) is a
software package that takes Hi-C raw reads as input and ultimately identifies enhancer—target target gene
relationships by mapping the reads to reference genome, calling peak fragments, detecting DNA-DNA
interactions with quality controls, and integrating functional epigenomics knowledge. It is designed to be
executing on oracle grid engine system with memory and error control, as well as prerequisite control.

The entire script can be downloaded here.

Flowchart of HIPPIE

A complete HIPPIE workflow run consists of four phases as outlined in the following flowchart.

Hi-C FASTQ files

4 BAM BED
PHASE | files PHASE Il files PHASE Ili
) Identification of
Read Mapping Quality Control Hi-C Peaks
o

JAnnalated Peaks

PHASE IV Enhancer! PHASE V
Enhancer—Target Gene g Characterization of
ns

A A1
Epigenomics Data

DNAsel HS, Histone
Modification

|

Prediction Long-Range Regulatio

Figure 1. HIPPIE flowchart.

Requirements .,

bwa http://sourceforge.net/projects/bio-bwalfiles/ (tested in 0.7.8-r455)
Picard http://picard.sourceforge.net/ (tested in 1.113, java version 1.7.0_09-icedtea)
SAMtools http://sourceforge.net/projects/samtools/files/ (tested in 0.1.19-44428cd)
BEDtools https://github.com/arg5x/bedtools2 (tested in 2.19.1)
R http://www.r-project.org (tested in 3.1.0). Used R libraries are:

o gplots http://cran.r-project.org/web/packages/gplots/index.html

o RColorBrewer http://cran.r-project.org/web/packages/RColorBrewer/index.html
perl (tested on 5.10.1). Used modules are: “POSIX gw(ceil floor)”, “List::Util”.
e awk, zcat, sort

Please set the path for bwa, Picard, SAMtools, Bedtools, and Rin draw.ini (e.g.
path/to/hippie/hippie.ini).

Directory structure for HIPPIE execution

HIPPIE operates on a per-library (sample) level. A “project” can contain multiple libraries (samples) and

2

http://www.google.com/url?q=http%3A%2F%2Fwanglab.pcbi.upenn.edu%2Fhippie.tar.gz&sa=D&sntz=1&usg=AFQjCNFDNboiftBmakGtaGwRuNMCvmAKEA
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbio-bwa%2Ffiles%2F&sa=D&sntz=1&usg=AFQjCNGNCXlmilU5L-nYyLYSbGwq6UfiTg
http://www.google.com/url?q=http%3A%2F%2Fpicard.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNH_hgGBU07TgQLaYiW6O_BrR7Y2qg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsamtools%2Ffiles%2F&sa=D&sntz=1&usg=AFQjCNH518wSkgIwtT-G3iGevAD5oJUqJA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Farq5x%2Fbedtools2&sa=D&sntz=1&usg=AFQjCNHap-yQg5xdr34qpDFVAPRSlVAozg
http://www.google.com/url?q=http%3A%2F%2Fwww.r-project.org&sa=D&sntz=1&usg=AFQjCNFQr9ci9IxUVvXndwAOm-NMqLeAnw
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fgplots%2Findex.html&sa=D&sntz=1&usg=AFQjCNHPf8A82QJDpl7sM0WOedBEFbHf4A
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2FRColorBrewer%2Findex.html&sa=D&sntz=1&usg=AFQjCNHUtb6t8BgTeFq070_qWS1CQIfhrQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2FRColorBrewer%2Findex.html&sa=D&sntz=1&usg=AFQjCNHUtb6t8BgTeFq070_qWS1CQIfhrQ

each library resides in one directory. Each library directory has sub-directories for the command scripts and
output files (cmd/) and intermediate files (sai/, sam/, bam/) as in Figure2. The user is required to prepare
and maintain the input files based this directory structure, as well as describe information of each library of the
project in a configuration file, including paths for the project, reference genome, and reference epigenetics
(ENCODE) data, etc.

Hi-C_Project/ ~user_home/ |
—{hippie_project.cg]
—| libraryl/ |

fastq files
cmd/
libraryl.sh
fastqg/
saif
sam/

bam/

library2/

Figure 2. The directory structure up of HIPPIE. The shaded (grey) directories have to be prepared by the users, and the white
directories are automatically generated by HIPPIE based on the configuration file.

In this manual, we will use "Hi-C_Project" as an example project. The names of the libraries sequenced are

“library1”, “library2”, “library3”, etc.

Library (sample) directory |,

Each library can contain multiple paired-end fastq files with as long as the reads contained are from the same
library. The fastq files can be compressed (*.fastq.gz) or uncompressed (*.fastq). The files generated
subsequently are stored in each individual sample's sub-directories (eg. test_data/Hi-C_project/library1/).

Log directory: SHOME/stdout |,

Under Open Grid Scheduler or job distributing environment, the screen output from running jobs is redirected to
a log file. HIPPIE stores all such log files in a “stdout/” directory under user’'s home directory. You need to
create it before running HIPPIE.

$ mkdir -p ~/stdout

Create the configuration file .,

Please refer to the template file named “project configure.cfg”. This file contains information of the
libraries sequenced, including cell types, restriction enzyme, etc. Common attributes, such as reference
genome, other epigenetics (ChlP-seq peaks, DNase-seq hotspots) data, and research project name are also
described.

We suggest users separate the analyses of Hi-C for different organisms or species by creating different project
directories. This can prevent confusion of the reference genome and clarify the epigenetics data usage.

Prepare the reference genome

Please first download the reference genome sequence in FASTA format (.fa file), and run bwa index to generate
the index of the reference genome. See below example for human hg19:

1. Please find the reference genome can be found at:
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit and use the UCSC utility program,
twoBitToFa, to extract the .fa from this file (from http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/).

2. Please generate the index file of the reference genome (hg19.fa) for bwa alignment.
bwa index -a bwtsw hgl9.fa

The index will be generated under the same directory of hg19.fa. After the index is generated, set the path to the
hg19.fa GENOME_REF under in your configuration file (eg. “croject configure.cfg”).

http://www.google.com/url?q=http%3A%2F%2Fhgdownload-test.cse.ucsc.edu%2FgoldenPath%2Fhg19%2FbigZips%2Fhg19.2bit&sa=D&sntz=1&usg=AFQjCNHa3PLCemg0PgymwGXC5MKHCjp3ZQ
http://www.google.com/url?q=http%3A%2F%2Fhgdownload.cse.ucsc.edu%2Fadmin%2Fexe%2Flinux.x86_64%2F&sa=D&sntz=1&usg=AFQjCNGcuYjQvoeH0MnDfEAqHFEcfP4k1A

RUN HIPPIE .,

Each library has its own individual directory and sub-directories as in Figure 2. Once execute the configuration
file, a tailored bash script file (.sh) that contains all the commands to complete the analysis. To achieve this, we
describe how to execute this with the configuration file.

Once you have prepared the configuration file (e.g. project configure.cfg), the following are the steps to
execute it.

i. Change directory to the project directory (e.g. Hi—-C_Project/).
$ cd path/to/Hi-C_Project

ii. Evoke the environment paths by “source” the hippie.ini file from HIPPIE package (e.g.
path/to/hippie/hippie.ini). One needs to consult the person who installed HIPPIE, if you
cannot find it.

$ source path/to/HIPPIE/hippie/hippie.ini

Users can try "echo $HIPPIE HOME" to check whether the path set-up has worked correctly. It should
display where HIPPIE locates.

$ echo $HIPPIE_HOME
iii. Make sure SHOME/stdout/ directory is made.
$ 1ls $HOME/stdout/
iv. Run HIPPIE with a configuration file (- £) to generate the tailored bash script for each library.
$./hippie.sh -f project_configure.cfg [-h HIPPIE HOME DIR] [-pl] [-p2] [-p3] [-p4]

-£ - specifies the location of the project configuration file
-h HIPPIE_HOME_DIR - optionally specify the location of the HIPPIE home directory. Otherwise it
would use the environment variable SHIPPIE HOME in hippie.ini

e -pl -p2 -p3 -p4 - optionally submit all tasks from each phase for all samples specified in the
configuration file.

This would create the library-level directories (cmd/, fastqg/, sai/, sam/, and bam/). Under each
sample's cmd/ directory would be a launching script with a name in this format: “1ibraryl.sh”, and under
each library’s fastq/ directory would be the soft link of the pair-end read files (fastq, or fastq.gz).

In the next several sections we describe the different ways of using the launching script for each library.

THE PHASE MODE: PIPELINE EXECUTION .,

After executing hippie. sh, each library will have its own individual sub-directories generated as well
as the bash script (e.g. 1ibraryl.sh) under its cmd/ directory. The entire HIPPIE pipeline can be divided into
four phases, which can be run individually and sequentially.

The procedure of running each of the four phases is the same: First change directory to a library's cmd/
sub-directory and begin the analysis process by the phase (p1), phase 2, phase 3, phase 4, and phase 5. The
tasks of the phases are chained together and the submitted jobs are designed to run only after the prerequisite
jobs are finished.

$ cd path/to/Hi-C_Project/libraryl/cmd/
$./libraryl.sh -pl
$./libraryl.sh -p2
$./libraryl.sh -p3
$./libraryl.sh -p4
“‘Multiple phases” is also acceptable. That is, users can submit phase 1 through phase 4 all at once.
$./libraryl.sh -pl -p2 -p3 -p4d

The phase mode can operate with the debug mode (details see below).

THE TASK MODE: RUNNING SELECTED PORTIONS OF THE PIPELINE .,

Task mode allows you to run any single tasks of HIPPIE.
$ cd path/to/Hi-C_Project/libraryl/cmd
$./libraryl.sh -t TASKNAME

e -t TASKNAME - the single task to run

The task mode can also operate along with the debug mode. The tasks are chained together, thus the following
jobs will only run after their consecutively prerequisite job is finished. Thus, one can skip the first task, but
consecutively submit jobs for the second task and the third task. For example:

$./libraryl.sh -t SECOND_TASKNAME

$./libraryl.sh -t THIRD TASKNAME

THE DEBUG MODE: DEBUGGING OPTION .,

Debug mode does not submit jobs. Instead, the full command(s) that would be submitted is displayed.
The -d option must be followed by any flag that would normally submit a task or sequence of tasks such as
-pl, -p2, -p3,0r -t.

$ cd path/to/Hi-C_Project/libraryl/cmd
$./libraryl.sh -d -pl

e -d - debug mode; previews the gsub command that would be submitted
e -p -runs the steps for phase 2, when preceded by -d, the jobs would not be submitted. Instead,
the full command(s) would be displayed.

Debug mode works with any combination of task submitting flags
$ cd path/to/Hi-C_Project/libraryl/cmd
$./libraryl.sh -d -p2 -p3

$./libraryl.sh -d -t " annotateFragment"

PHASES AND TASKS ..,

Phase 1: Read Mapping ...,
Phase 1 takes the unmapped reads received and aligns them to the reference genome.

i. Aligning reads of all fastq files to the reference genome.
$ cd path/to/Hi-C_Project/libraryl/cmd
$./libraryl.sh -t bwaAln
The output files are stored in the sai/ directory.
i. Combining mate pairs. Task bwaAln is its prerequisite task.
$./libraryl.sh -t bwaSamp
The output files are stored in the sam/ directory.

iii. Adding readgroup information to all reads. Task bwaSamp is its prerequisite task.
If the project configuration file (project configure.cfg)has DATA TYPE with "ONEFASTQ" or
"ONEFASTQSE"

$ source libraryl.sh

$./libraryl.sh -t "addReadGroup $SAM DIR/s_${LINE} sequence.aligned.sam.gz

$BAM DIR/s_${LINE} Samp${RGID}"
else
$./libraryl.sh -t addReadGroupTasks
The output files are stored in the bam/ directory.

iv. Merging multiple alignment files (*.bam) from the same library into one alignment file. Task
addReadGroupTasks is its prerequisite task.
If the flowcell configuration file's DATA TYPE is "ONEFASTQ" or "ONEFASTQSE"

$ source libraryl.sh

$./libraryl.sh -t "mgBamSoftLink $BAM DIR/s_${LINE} rg.bam s_${LINE} merged.bam"
else

./libraryl.sh -t samtoolsMergeBam

The output file is stored in the cmd/ directory with file name in the format of

s libraryl merged.bam.

Phase 2: Quality Control

Phase 2 takes the aligned reads and further processes them with mapping quality control. First, it
transforms the bam file to bed file. Then, it removes the duplicates that may be due to PCR artifacts, discards
read mapped to random contigs; and finally, it filters the read pair that has worse mapping quality than
user-defined mapping quality criteria.

i. Basic statistics for the mapped/alignment file. Task samtoolsMergeBam of Phase 1 is its
prerequisite task.

$ cd path/to/Hi-C_Project/libraryl/cmd
$ source libraryl.sh

$./libraryl.sh -t doFlagStat "s_${LINE} merged"
The output file is stored in the cmd/stat/ directory: s libraryl merged.flagstat.
i. Transform bam file to bed file. Task samtoolsMergeBam of Phase 1 is its prerequisite task.
$./libraryl.sh -t bam2Bed
The output file is stored in the cmd/ directory: s libraryl merged.bed.
iii. Remove PCR artifact duplicate read pairs. Task bam2Bed is its prerequisite task.

$./libraryl.sh -t rmdupBed

The output file is stored in the cmd/ directory: s libraryl merged rmdup.bed.

iv. Filter out the reads that do not meet user-defined mapping quality. Only both reads resides on
autosomal and sex chromosomes are retained. Task rmdupBed is its prerequisite task.

$./libraryl.sh -t rmBadMapped

The output file is stored in the cmd/ directory: s libraryl.bed.

Phase 3: Peak identification and functional annotation .,

i. Calculate the distance of each pair of reads (forward and reverse) to their closest restriction sites
and classify the reads to specific read pairs or non-specific read pairs. Task rmBadMapped of
Phase 2 is their prerequisite task.

$ cd path/to/Hi-C_Project/libraryl/cmd
$./libraryl.sh -t getDistancetoRSLeft
$./libraryl.sh -t getDistancetoRSRight

$./libraryl.sh -t getDistancePairBed

The output file is stored in the cmd/ directory: s libraryl specific.bed and
s libraryl nonspecific.bed.

ii. Sortout each read by if it participates in a specific read or non-specific read pair. Task
getDistancePairBed is its prerequisite task.

$./libraryl.sh -t consecutiveReadsS

$./libraryl.sh -t consecutiveReadsNS

The output file is stored in the cmd/ directory: 1ibraryl consecutive m500.bed and
library consecutive NS.bed.

iii. Getlist of restriction fragments with number of reads. Tasks consecutiveReadssS and
consecutiveReadsNS are both its prerequisite tasks.

$./libraryl.sh -t getFragmentsRead

The output file is stored in the cmd/ directory: HindIII fragment S reads.bed and
HindIII fragment NS reads.bed. Depends on the restriction enzyme used, here we use Hindlll
as an example.

iv. Call Hi-C peaks in the unit of restriction fragment. Task getFragmentsRead is its prerequisite
task.

$./libraryl.sh -t getPeakFragment

The output file is stored in the cmd/ directory: 1ibraryl HindIIIfragment S reads 95.bed.
Here we use 95% upperbound threshold as an example.

v. Annotate the genetics feature of the Hi-C peaks. Task getPeakFragment is its prerequisite task.

$./libraryl.sh -t annotateFragment

The output file is stored in the cmd/directory: 1ibraryl HindIIIfragment 95 annotated.bed.

Phase 4: Prediction of enhancer-target gene interaction
i. Identify peak—peak interactions. Task annotateFragment of Phase 3 is its prerequisite task.

$./libraryl.sh -t findPeakInteraction

The output file is stored in the cmd/ directory: for intra- chromosomal interactions:
chr* 95 reads interaction.txt and forinter- chromosomal interactions:
libraryl interChrm 95 reads interaction.txt.

ii. ldentify promoter annotated peak—peak interaction. annotateFragment of Phase 3 is its
prerequisite task.

$./libraryl.sh -t findPromoterInteraction

The output file is stored in the cmd/ directory: for intra- chromosomal interactions:
chr* 95 promoter annotated interaction promoterAnno.txt and forinter-
chromosomal interactions: 1ibraryl 95 interChrm promoterInteraction.txt.

iii. Identify promoter interacting enhancer elements (also known as candidate enhancer elements,
CEE). Task findPromoterInteraction is its prerequisite task.

$./libraryl.sh -t getCeeTarget
The output file is stored in the cmd/ directory: 1ibraryl 95 CEE gene.bed.

Phase 5: Characters analysis of enhancer-target gene interactions .,

i. Calculate distance distribution between enhancers and their targets/closest genes. Task
getCeeTarget is its prerequisite task.

$./libraryl.sh -t ETdistance
The output file is stored in the cmd/ directory: 1ibraryl 95 ET distance.txt.

ii. Enrichment analyses for regulatory associated histone marks within enhancer elements and other
interactions, and plot the enrichment bar figure. Task getCeeTarget is its prerequisite task.

$./libraryl.sh -t histoneEnrichment

$./libraryl.sh -t plotHisEnrichment

10

The output file is stored in the cmd/ directory: histone enrichment.txt and
libraryl histone enrichment.jpg.

iii. Enrichment analyses of GWAS hit within the enhancer elements. Task getCeeTarget isits
prerequisite task.

$./libraryl.sh -t GWASEnrichment

The output file is stored in the cmd/ directory: 1ibraryl 95 GWAS enrichment.txt.

11

