) o
. ®
o JBoss
O
@® @ b Red Hat

Fuse Mediation Router
Component Reference

Version 2.6
January 2011

Component Reference
Version 2.6

Updated: 03 Dec 2013
Copyright © 2011-2013 Red Hat, Inc. and/or its affiliates.

Trademark Disclaimer

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution—Share Alike
3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/
3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the
original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA
to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are
trademarks of Red Hat, Inc., registered in the United States and other countries.

Apache, ServiceMix, Camel, CXF, and ActiveMQ are trademarks of Apache Software Foundation. Any other names contained
herein may be trademarks of their respective owners.

Third Party Acknowledgements

One or more products in the Red Hat JBoss Fuse release includes third party components covered by licenses that require
that the following documentation notices be provided:

« JLine (http://jline.sourceforge.net) jline:jline:jar:1.0
License: BSD (LICENSE.txt) - Copyright (c) 2002-2006, Marc Prud’hommeaux <mwpl@cornell.edu>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

» Neither the name of JLine nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://jline.sourceforge.net

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

« Stax2 API (http://woodstox.codehaus.org/StAX2) org.codehaus.woodstox:stax2-api:jar:3.1.1
License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)
Copyright (c) <YEAR>, <OWNER> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

e jibx-run - JiBX runtime (http://www:.jibx.org/main-reactor/jibx-run) org.jibx:jibx-run:bundle:1.2.3
License: BSD (http://jibx.sourceforge.net/jibx-license.html) Copyright (c) 2003-2010, Dennis M. Sosnoski.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

» Neither the name of JiBX nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

http://woodstox.codehaus.org/StAX2
http://www.opensource.org/licenses/bsd-license.php
http://www.jibx.org/main-reactor/jibx-run
http://jibx.sourceforge.net/jibx-license.html

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

» JavaAssist (http://www.jboss.org/javassist) org.jboss.javassist:com.springsource.javassist:jar:3.9.0.GA:compile
License: MPL (http://www.mozilla.org/MPL/MPL-1.1.html)

» HAPI-OSGI-Base Module (http://hl7api.sourceforge.net/hapi-osgi-base/) ca.uhn.hapi:hapi-osgi-base:bundle:1.2

License: Mozilla Public License 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)

http://www.jboss.org/javassist
http://www.mozilla.org/MPL/MPL-1.1.html
http://hl7api.sourceforge.net/hapi-osgi-base/
http://www.mozilla.org/MPL/MPL-1.1.txt

Table of Contents

1. COMPONENTS OVEIVIEW ...uiuieieieieeinssssssa s s s s s s st sa s e s s s s s s s s s sasnsasasasasasasnsnsnnnnen 13

LiSt Of COMPONENTS ...ttt e ettt ettt e et ettt e e e 14
B X o7 £ Y- 1 R 25
3. ACtIiVEMQ JOUFNAI ..uiieieiiiiiiiiii i s r s ra s s s s s s e s s s a s s s a s s s a s s naa s s saasasansnsassnnnsnns 31
L 33
L 2 (o 35
L = = T Y 41
8 =T L T = 11T - Lo 45
L2 = o = - 51
L TR T 3 T 53
0 TR 1 - TR 61
8 T 00 T T (o 63
12. Crypto (Digital SIgNALUIES) ..ucuiuiuiuiiniiiiiirr s ra s s s s s s an s s s s s s ssnsnsns 65
13. CXF BN COMPONENT ...uuueieiiiiiaisiaiaissrarsssa st ssna s ssaa s saa s ssaaatasssaassssanasasssnnssssannsasssnns 71
) 75
T 0 99
T 0 T = 15 - 107
T o 109
TR =Y o 111
L T | 113
TR = 1= 117
30 N T 4 119
7R Y =T | X [1 121
2 TR (- o 123
R 1T 129
TR 151
T 1 o T T 153
B R =T =T 4 T - N 157
- I 161
2 R € 177

Introduction to the GAE COMPONENES ...ttt e 178

o =T 1 PP 184

001110 T PP PPN 193

o Lo 1 R 197

o 02T T PPN 201

(0T o TR 203

OEASK e e 205
B0 TR - Ty {0 209
B 31 TR 1 213
B o 11 o =T 4y - 217
2 TR o | 219
Fuse Mediation Router Component Reference Version 2.6 7

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

L0 I, 229
152 I 241
IR C ettt et A e R et e e R e R ea AR et e r et e rran 247
B0 1 1o o - T R 251
B0 T 13 7 o) R 253
| 259
0 0 265
B 15] 2 267
JDBC-AggregatioNREPOSITOIYcuieiuieiiiiiiiriirarrr s s s ra s s sanansnss 271
B = 277
B T 291
T IS it e e e R e e Ea e R R e R e AR e Ea R EarerrEr e ran e rans 293
B 1 313
TP A e E e e A Ea e AR e E A e e AR e e R e Ea e EarE e tRr e ran e rannnrn 315
0 Y 321
LI 1T ¥ - T [323
I 325
T 329
0 o 331
I T - T 335
T T N 339
I A ittt e e e et e e h e r e R E e ARt R e ra R Ear e e r e e ran e rans 349
1,0 T 357
VISV ittt et e et e e e e e AR AR e R R e e r Rt R e raa e raen 361
V= T o L= 363
oY o R 367
VIR ettt e e e e e e e e e e et E AR E R e Ea e Ear et R e rarrrannan 377
L 3 o T o 13T N 379
2o) oL 381
0 (= 383
g 0 o T=1 o - PR 387
L0 11 = g 2 389
L 1= 393
QUICKTEIX - eeeeieisisese s s e s s s s s s s s s s e s s na s e s s s s s s s rarararararararanarannrnnnnnannnnnr e rnrnnnns 395
= N 403
L= 4= 405
RIMI ittt et e e e e e s e e e R AR e R R e R et R e rarra e raen 413
01U (=1 o o 415
5 421
LS 1 425
£ N 429
LS I Y 435
£ 1o TS =Y o2 U S 4411
51 o L 447

Fuse Mediation Router Component Reference Version 2.6

42T~ 1 L o 455
0T | 469
30 IS o110 T | LY (=T = o 473
7S ¢] T RS- o) /N 479
83. SPriNg WED SeIVICES ...uivuiuiiiinieiiiiiiiieirrir s et s s st e s s e s s s s s s sansnrnns 485
84, SQL COMPONENT ..uiueieiiieiarrierassre s ssssa s ssa s e sss st ssssassssssatsssnssssnsnsarsssssnssnsnsarsssnnns 493
LS 1 T 497
TS T o =T 14 o - - 501
70 == 505
2 R 1] 1 0T 507
L3 Y 7 11T = 511
L L Y=Y Lo T o 1 /S 513
£ 1R 519
L2 7 1 | = 521
L 2 T (0 TU =1 VA = e o o 1] 4| 523
L2 R € 1 525
X e e 529

Fuse Mediation Router Component Reference Version 2.6 9

List of Tables

1.1. Fuse Mediation ROULEr COMPONENTSiuiuiniiiiititet et ettt ettt ettt e aeans 14

10 Fuse Mediation Router Component Reference Version 2.6

List of Examples

29.1. web.xml with authorization CONSIIAINTt e e aas

Fuse Mediation Router Component Reference Version 2.6

11

12

Fuse Mediation Router Component Reference Version 2.6

Chapter 1. Components Overview

This chapter provides a summary of all the components available for Fuse Mediation Router.

LISt Of COMPONENTS ... ettt e e ettt ettt ettt e et et et et a e aenes

Fuse Mediation Router Component Reference Version 2.6

13

Chapter 1. Components Overview

List of Components

Table of components

The following components are available for use with Fuse Mediation Router.

Table 1.1. Fuse Mediation Router Components

Component

Endpoint URI

Artifact ID

Description

ActiveMQ

activen: [qeLe: | topic: |pestiratiohare)

activemqg-core

For JMS Messaging with
Apache ActiveMQ.

ActiveMQ Journal

acthveny. joumel:DirectorNre Aptios]

activemq-core

Uses ActiveMQ's fast disk
journaling implementation
to store message bodies
in a rolling log file.

AMQP

anp: [gee: {toic: Yectizt ik Ptios]|

camel-amgp

For messaging with the
AMQP protocol.

Atom

atom://AtomUri[?0ptions]

camel-atom

Working with Apache
Abdera for atom
integration, such as
consuming an atom feed.

Bean

bean: BeanID[2methodName=Methad]

camel-core

Uses the Bean Binding to
bind message exchanges
to beans in the Registry. Is
also used for exposing and
invoking POJO (Plain Old
Java Obijects).

Bean Validation

bean-validator:Some
thing[?0ptions]

camel-bean-validator

Validates the payload of a
message using the Java
Validation API (JSR 303"
and JAXP Validation) and
its reference
implementation Hibernate
Validator®.

Browse

! http://jcp.org/en/jsr/detail?id=303

browse: Name

camel-core

http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

14

Provdes a simple
BrowsableEndpoint which
can be useful for testing,

Fuse Mediation Router Component Reference Version 2.6

http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

List of Components

Component

Endpoint URI

Artifact ID

Description

visualisation tools or
debugging. The exchanges
sent to the endpoint are all
available to be browsed.

Cache

cache: //CacheName[?0ptions]

camel-cache

The cache component
enables you to perform
caching operations using
EHCache as the Cache
Implementation.

Cometd

Qetst/Hestrae] Rt} Garelae o]

camel-cometd

A transport for working
with the jetty
implementation of the
cometd/bayeux protocol.

Crypto

crypto:sign:nName[?0p
tions]
crypto:verify:nName[?0p
tions]

camel-crypto

Sign and verify exchanges
using the Signature
Service of the Java
Cryptographic Extension.

CXF

cxf://Address[?0ptions]

camel-cxf

Working with Apache CXF
for web services
integration.

CXFRS

cxfrs:bean:RsEdpaint [?0ptions)

camel-cxf

Provides integration with
Apache CXF for
connecting to JAX-RS
services hosted in CXF.

DataSet

dataset :Name[?0ptions]

camel-core

For load & soak testing the
DataSet provides a way to
create huge numbers of
messages for sending to
Components or asserting
that they are consumed
correctly.

Direct

direct :EndpointID[?0ptions]

camel-core

Direct invocation of the
consumer from the
producer so that single
threaded (non-SEDA) in
VM invocation is
performed.

Fuse Mediation Router Component Reference Version 2.6

15

Chapter 1. Components Overview

Component Endpoint URI Artifact ID Description

Esper esper :name camel-esper Working with the Esper
Library for Event Stream
Processing.

Event event://dummy camel-spring Working with Spring

ApplicationEvents.

EventAdmin on page 121

eventadmin:topic

camel-eventadmin

8 http://flatpack.sourceforge.net/
http://freemarker.org/

http://code.google.com/apis/accounts/docs/OAuth.html

16

Exec exec://Executable[?0ptions]|camel-exec Execute system command.
File2 file://birectoryname[?(ptions] |camel-core Sending messages to a file
or polling a file or directory.

FIX fix://ConfigurationResource|camel-fix Sends or receives
messages using the FIX
protocol.

Flatpack flatpeck: [fixed|delim] :cnfigFile| camel- flatpack Processing fixed width or
delimited files or messages
using the FlatPack® library

Freemarker freemarker: TemplateResource|camel - freemarker Generates a response
using a Freemarker®
template.

FTP2 fipv/[Lseradestae] ot} Dietoyae tivs]| came 1 - Ftp Sending and receiving files
over FTP.

GAuth gauth://Name[?0ptions] |camel-gae Used by web applications
to implement a
Google-specific OAuth®
consumer

GHTTP ghttp:///pPath[?0ptions] |camel-gae Provides connectivity to

ghttp://Host the GAE URL fetch service
’;"’_”"e[]:P""t]/Path[?Op and can also be used to
ions .
ghttps://Host recellve messages from
name[:Port]/Path[?0p serviets.
tions]
GLogin glogin: //Hostrare[:Fort] [2ptias] | camel -gae Used by Camel

applications outside
Google App Engine (GAE)

Fuse Mediation Router Component Reference Version 2.6

http://flatpack.sourceforge.net/
http://freemarker.org/
http://code.google.com/apis/accounts/docs/OAuth.html
http://flatpack.sourceforge.net/
http://freemarker.org/
http://code.google.com/apis/accounts/docs/OAuth.html

List of Components

Component Endpoint URI Artifact ID Description
for programmatic login to
GAE applications.

GMail gmail://user camel-gae Supports sending of emails
name@gmail.com[?0p via the GAE mail service.
tions]
gmail://Username@google
mail.com[?0ptions]

GTask gtask://QueueName camel-gae Supports asynchronous

message processing on
GAE using the task
gueueing service as a
message queue.

HDFS hdfs://Path[?0ptions] |camel-hdfs For reading/writing from/to

an HDFS® filesystem.

Hibernate hibernate://EntityName |camel-hibernate (Camel|For using a database as a

Extra) gueue via the Hibernate’
library.
HL7 mina:tcp://Host[:Port]|camel-hl7 For working with the HL7
MLLP protocol and the
HL7 model using the HAPI
Iibrarys.

HTTP http: //Hostrare] :Rort | [/Rescurcelbi] | came 1 -ht tp For calling out to external
HTTP servers.

iBATIS ibatis:operationhame[?0ptions] [camel-ibatis Performs a query, poll,
insert, update or delete in
a relational database using
Apache iBATIS.

IMap inep:// [Leena@Hst] :Rort] [Aptios] | came 1 -mail Receiving email using
IMap.

IRC irc:Host[:Port]/#Room |camel-irc For IRC communication.

JavaSpace Jjavaspace: jini://Host[?gptions] | camel - javaspace Sending and receiving

messages through
JavaSpace.

3 http://http/hadoop.apache.org/hdfs/

http://www.hibernate.org/
8 http://hl7api.sourceforge.net/

Fuse Mediation Router Component Reference Version 2.6

17

http://http/hadoop.apache.org/hdfs/
http://www.hibernate.org/
http://hl7api.sourceforge.net/
http://hl7api.sourceforge.net/
http://http/hadoop.apache.org/hdfs/
http://www.hibernate.org/
http://hl7api.sourceforge.net/

Chapter 1. Components Overview

Component Endpoint URI Artifact ID Description

JBI jbi:service:service camel-jbi For JBI integration such as
Namespace[sep]service working with Apache
N . . ServiceMix.
jbi:endpoint:service
Namespace[sep]service
Name[sep]endpointName
jbi:name:endpointName

JCR Jor/serermodRasioyfEtiotak camel - jcr Storing a message in a
JCR (JSR-170) compliant
repository like Apache
Jackrabbit.

JDBC jdbc : DataSourceName[?0ptions] | camel - jdbc For performing JDBC
gueries and operations.

JOBCAqepi Repodnyanege27l camel-jdbc-aggregator

Jetty Jetty:http:/Het[Rot][/Rsartd] | camel - jet ty For exposing services over
HTTP.

Jing rng:LocalOrRemo camel-jing Validates the payload of a
teresource message using RelaxNG
rnc:LocalOrRemo or RelaxNG compact
teResource syntax.

JMS Jis:[tep:][aee: [toic: et izthme Gitivs]| came 1 - jms Working with IMS

providers.

JPA jpa: [EntityClasshame] [?options] | camel- jpa For using a database as a
queue via the JPA
specification for working
with OpenJPA, Hibernate
or TopLink.

JT400 §t460: //User :Pnd@Systar/PathTdDTAQ| came 1 - j £ 400 For integrating with data
queues on an AS/400 (aka
System i, IBM |, i5, ...)
system.

LDAP IoppHet] Rrt]hese. . . [8soqpesne] | came 1 - 1dap Performing searches on
LDAP servers (Scope must
be one of
object |onelevel | subtree).

List list:ListID camel-core Provides a simple
BrowsableEndpoint which
can be useful for testing,

18 Fuse Mediation Router Component Reference Version 2.6

List of Components

Component Endpoint URI Artifact ID Description
visualisation tools or
debugging. The exchanges
sent to the endpoint are all
available to be browsed.

Log loy:Lagigetegry[leel-agigeel] | camel-core Uses Jakarta Commons
Logging to log the
message exchange to
some underlying logging
system like log4j.

Lucene lucene:SearcherName:in |camel-lucene Uses Apache Lucene to

sert [?analyzer‘:Analyz perform Java-based
ir] . . indexing and full text
ucene: Searcher based searches using
Name:query[?analyz d d
er=Analyzer] advance .
analysis/tokenization
capabilities.

MINA mina:tcp://Host camel-mina Working with Apache

name[:Port][?0ptions] MINA.
mina:udp://Host

name[:Port][?0ptions]

mina:multicast://Host

name[:Port][?0ptions]

mina:vm://Host

name[:Port][?0ptions]

Mock mock : EndpointID camel-core For testing routes and
mediation rules using
mocks.

MSMQ msmq : MsngQueueName [?0ptions] | camel-msmq Sending and receiving
messages with Microsoft
Message Queuing.

MSV msV: LocalOrRemoteResource |camel-msv Validates the payload of a
message using the MSV
Library.

Nagios nagios://Host|[:Port][?(ptions] |camel-nagios Sending passive checks to

Nagios using
JSendNSCA”.

® http://code.google.com/p/jsendnsca/

Fuse Mediation Router Component Reference Version 2.6

19

http://code.google.com/p/jsendnsca/
http://code.google.com/p/jsendnsca/

Chapter 1. Components Overview

Component Endpoint URI Artifact ID Description
Netty netty:tcp://local camel-netty Working with TCP and
host:99999[?0ptions] UDP protocols using Java
ze“}g;g&: // /Remote NIO based capabilities
ost: LstiiEions] offered by the JBoss
Netty10 community project.
NMR nmr : serviceMixURI servicemix-camel For OSGi integration when

working with Apache
ServiceMix. Enables you
to specify the URI of a
ServiceMix endpointll.

Pax-Logging on page 379

paxlogging:Appender

camel-paxlogging

POP

oo/ [t :Rort] [2otiors]

camel-mail

Receiving email using
POP3 and JavaMail.

Printer lpr://local camel-printer Provides a way to direct
hOSt[:POrf]/defaUlt [’)Op payloads on a route to a
tions] rinter
1pr://Remote P ’

Host[:Port]/path/to/print
er[?0ptions]

Properties properties://Key[?0ptions]|camel-properties Facilitates using property
placeholders directly in
endpoint URI definitions.

Quartz quartz://[Group camel-quartz Provides a scheduled
Name/] TimerName [?0p delivery of messages using
tions] , the Quartz scheduler.
quartz://GroupName/Timer
Name/CronExpression

Quickfix quickfix-server:config |camel-quickfix Implementation of the
File) QuickFix for Java engine
quickfix-client:config which allow to
- send/receive FIX*

messages.

Ref ref:EndpointID camel-core Component for lookup of

existing endpoints bound
in the Registry.

10 http://www.jboss.org/netty

http://servicemix.apache.org/uris.html

http://www.fixprotocol.org/

20

Fuse Mediation Router Component Reference Version 2.6

http://www.jboss.org/netty
http://www.jboss.org/netty
http://servicemix.apache.org/uris.html
http://www.fixprotocol.org/
http://www.jboss.org/netty
http://servicemix.apache.org/uris.html
http://www.fixprotocol.org/

List of Components

Component Endpoint URI Artifact ID Description

Restlet restlet:RestletUrl[?0ptions]|camel-restlet Component for consuming
and producing Restful
resources using Restlet™.

RMI mi//RaRgistrykst RiRgianRItReismft came 1 - rmi Working with RMI.

Routebox on page 415

routebox: routeboxiare[?Qptions]

camel-routebox

RSS

rss:uri

camel-rss

Working with ROME™ for
RSS integration, such as
consuming an RSS feed.

RNC

rnc:LocalOrRemoteResource

camel-jing

Validates the payload of a
message using RelaxNG
Compact Syntax.

RNG

rng: LocalOrRemoteResource

camel-jing

Validates the payload of a
message using RelaxNG.

Scalate

scalate: TenplateName[?0ptions]

og. fusssouree, salate/salate-canel

Uses the given Scalate™
template to transform the
message.

SEDA

seda:EndpointID

camel-core

Used to deliver messages
toa

javautl.concurrent BlodkingQueue,
useful when creating
SEDA style processing
pipelines within the same
CamelContext.

SERVLET

servlet://RelativePath[?Qotions]

camel-servlet

Provides HTTP based
endpoints for consuming
HTTP requests that arrive
at a HTTP endpoint and
this endpoint is bound to a
published Servlet.

SFTP

Sfto/Uerad@hstae] 7ot ity tioe]

camel-ftp

Sending and receiving files
over SFTP.

Smooks

For working with EDI
parsin? using the Smooks
library °.

13 http://www.restlet.org/

1: https://rome.dev.java.net/

http://scalate.fusesource.org/

http://milyn.codehaus.org/Smooks

Fuse Mediation Router Component Reference Version 2.6

21

http://www.restlet.org/
https://rome.dev.java.net/
http://scalate.fusesource.org/
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://www.restlet.org/
https://rome.dev.java.net/
http://scalate.fusesource.org/
http://milyn.codehaus.org/Smooks

Chapter 1. Components Overview

Component Endpoint URI Artifact ID Description

SMPP pp://UeerTnfe@bst [:Rort] [2qotiars] | came 1 - smpp To send and receive SMS
using Short Messaging
Service Center using the
JSMPP library®’.

SMTP antp://[Uenare@Hst| Rort] [ptios] | camel -mail Sending email using SMTP
and JavaMail.

SNMP smp: //Hestrene[:Port] [20ptions] | came 1 - snmp Gives you the ability to poll

SNMP capable devices or
receive traps.

Spring Integration

iy tEyEHn R tarE e tios]

camel-spring-integration

The bridge component of
Camel and Spring

Integration.

SQL sql:SqlQuerystring[?0ptions]|camel-sql Performing SQL queries
using JDBC.

Stream stream: [in|out |err|heeder] [ptios] | came 1 - st ream Read or write to an

input/output/error/file
stream rather like Unix

pipes.

String Template

string-teyplate: Template R 2ticrs]

camel-stringtemplate

Generates a response
using a String Template.

Test

test:RouterEndpointUri

camel-spring

Creates a Mock endpoint
which expects to receive
all the message bodies
that could be polled from
the given underlying
endpoint.

Timer

timer :EndpointID[?0ptions]

camel-core

A timer endpoint.

Validation

validator : LocalOrRemoteResource

camel-spring

Validates the payload of a
message using XML
Schema and JAXP
Validation.

Velocity

velocity: TemplatelRI[?0ptions]

camel-velocity

Generates a response
using an Apache Velocity
template.

VM

vm:EndpointID

v http://code.google.com/p/jsmpp/

22

camel-core

Used to deliver messages
toa

Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/p/jsmpp/
http://code.google.com/p/jsmpp/

List of Components

Component Endpoint URI Artifact ID Description
java.uti. concument BlockingQueve,
useful when creating
SEDA style processing
pipelines within the same
JVM.

XMPP Xmpp : Hostname[:Port][/Room] |camel-xmpp Working with XMPP and
Jabber.

XQuery xquery: TemplateURI camel-saxon Generates a response
using an XQuery template.

XSLT xslt:TemplateURI[?0ptions]|camel-spring xquery:someXQueryResource.

Fuse Mediation Router Component Reference Version 2.6 23

24

Fuse Mediation Router Component Reference Version 2.6

Chapter 2. ActiveMQ

ActiveMQ Component

The ActiveMQ component allows messages to be sentto a Jms? Queue or Topic; or messages to be consumed
from a IMS Queue or Topic using Apache ActiveMQz.

This component is based on the IMS Component on page 293 and uses Spring's JMS support for declarative
transactions, using Spring's JmsTemplate for sending and a MessageListenerContainer for consuming. All
the options from the JMS on page 293 component also apply for this component.

To use this component, make sure you have the activemq. jar or activemq-core. jar on your classpath
along with any Fuse Mediation Router dependencies such as camel-core.jar, camel-spring.jar and
camel-jms.jar.

URI format
activemq: [queue: |topic:]destinationName

Where destinationName is an ActiveMQ queue or topic name. By default, the destinationName is interpreted
as a queue name. For example, to connect to the queue, F00.BAR, use:

activemq:F00.BAR

You can include the optional queue: prefix, if you prefer:

activemq:queue:F00.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the topic, Stocks.Prices,
use:

activemq:topic:Stocks.Prices

Options

See Options on the JMS on page 293 component as all these options also apply for this component.

! http://java.sun.com/products/jms/
http://activemq.apache.org/

Fuse Mediation Router Component Reference Version 2.6 25

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://java.sun.com/products/jms/
http://activemq.apache.org/

Chapter 2. ActiveMQ

Configuring the Connection Factory

The following test case® shows how to add an ActiveMQComponent to the CamelContext using the
activeMQComponent () method* while specifying the brokerURL® used to connect to ActiveMQ.

camelContext.addComponent("activemq", activeMQComponent('"vm://localhost?broker.persist
ent=false"));

Configuring the Connection Factory using Spring XML

You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">

</camelContext>

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>
</bean>

</beans>

Using connection pooling

When sending to an ActiveMQ broker using Camel it's recommended to use a pooled connection factory to
handle efﬁcientgooling of IMS connections, sessions and producers. This is documented in the page ActiveMQ
Spring Support.

You can grab Jencks AMQ pool with Maven:

i http://svn.apache.org/repos/asf/activemg/trunk/activemg-camel/src/test/java/org/apache/camel/component/ActiveMQRoute Test.java

Qﬁp]/camel.W.memmamwmwmmmmme@mmmhtml#activeMQComponentﬂava.lang.Sﬁing)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/spring-support.html

26 Fuse Mediation Router Component Reference Version 2.6

http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/camel/component/ActiveMQRouteTest.java
CamelContext
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/spring-support.html
http://activemq.apache.org/spring-support.html
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/camel/component/ActiveMQRouteTest.java
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/spring-support.html

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemqg-pool</artifactId>
<version>5.3.2</version>

</dependency>

And then setup the activemq component as follows:

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="pooledConnectionFactory" class="org.apache.activemq.pool.PooledConnectionFact
ory">
<property name="maxConnections" value="8" />
<property name="maximumActive" value="500" />
<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="pooledConnectionFactory"/>
<property name="transacted" value="false"/>
<property name="concurrentConsumers" value="10"/>

</bean>

<bean id="activemq" class="org.apache.activemqg.camel.component.ActiveMQComponent">
<property name="configuration" ref="jmsConfig"/>
</bean>

Invoking MessageListener POJOs in a route

The ActiveMQ component also provides a helper Type Converter’ from a JIMS MessagelListener to a Processor.
This means that the Bean on page 41 component is capable of invoking any JMS MessageListener bean
directly inside any route.

So for example you can create a MessageListener in JMS as follows:

public class MyListener implements MessagelListener {
public void onMessage(Message jmsMessage) {
//
1
1

Then use it in your route as follows

7 Type Converter

Fuse Mediation Router Component Reference Version 2.6 27

Type Converter
Processor
Type Converter

Chapter 2. ActiveMQ

from("file://foo/bar").
bean(MyListener.class);

That is, you can reuse any of the Fuse Mediation Router Components on page 3 and easily integrate them
into your JMS MessageListener POJO\!

Consuming Advisory Messages

ActiveMQ can generate Advisory messages8 which are put in topics that you can consume. Such messages
can help you send alerts in case you detect slow consumers or to build statistics (number of messages/produced
per day, etc.) The following Spring DSL example shows you how to read messages from a topic.

<route>

<from uri="activemq:topic:ActiveMQ.Advisory.Connection?mapJmsMessage=false" />
<convertBodyTo type="java.lang.String"/>

<transform>

<simple>${in.body}</simple>

</transform>

<to uri="file://data/activemq/?fileExist=Append&ileName=advisoryConnection-
${date:now:yyyyMMdd}.txt" />

</route>

If you consume a message on a queue, you should see the following files under data/activemq folder :
advisoryConnection-20100312.txt advisoryProducer-20100312.txt

and containing string:

ActiveMQMessage {commandId = O, responseRequired = false, messageId = ID:dell-charles-
3258-1268399815140
-1:0:0:0:221, originalDestination = null, originalTransactionId = null, producerId =
ID:dell-charles-
3258-1268399815140-1:0:0:0, destination = topic://ActiveMQ.Advisory.Connection,
transactionId = null,
expiration = 0, timestamp = 0, arrival = 0, brokerInTime = 1268403383468, brokerOutTime
= 1268403383468,
correlationId = null, replyTo = null, persistent = false, type = Advisory, priority
0, groupID = null,
groupSequence = 0, targetConsumerId = null, compressed = false, userID = null, content
= null,
marshalledProperties = org.apache.activemqg.util.ByteSequence@17e2705, dataStructure
= ConnectionInfo
{commandId = 1, responseRequired = true, connectionId = ID:dell-charles-3258-

8 http://activemq.apache.org/advisory-message.html

28 Fuse Mediation Router Component Reference Version 2.6

http://activemq.apache.org/advisory-message.html
http://activemq.apache.org/advisory-message.html

1268399815140-2:50,

clientId = ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****,

brokerPath = null, brokerMasterConnector = false, manageable = true, clientMaster =
true},

redeliveryCounter = 0, size = 0, properties = {originBrokerName=master, origin
BrokerId=ID:dell-charles-

3258-1268399815140-0:0, originBrokerURL=vm://master}, readOnlyProperties = true,
readOnlyBody = true,

droppable = false}

Getting Component JAR
You need these dependencies
e camel-jms

* activemqg-camel

camel-jms

You must have the camel - jms as dependency as ActiveMQ on page 25 is an extension to the JMS on page 293
component.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>
<version>1.6.0</version>
</dependency>

The ActiveMQ component is released with the ActiveMQ project itself. For Maven 2 users you just need to
add the following dependency to your project.

ActiveMQ 5.2 or later

<dependency>
<groupId>org.apache.activemqg</groupId>
<artifactId>activemqg-camel</artifactId>

<version>5.2.0</version>
</dependency>

ActiveMQ 5.1.0

For 5.1.0 its in the activemq-core library

Fuse Mediation Router Component Reference Version 2.6 29

Chapter 2. ActiveMQ

<dependency>
<groupId>org.apache.activemg</groupId>
<artifactId>activemqg-core</artifactId>
<version>5.1.0</version>

</dependency>

Alternatively you can download the component JAR file directly from the Maven repository:

. a(:tivemq-camel-s.2.0.jar9

. activemq-core-S.l.O.jar10

ActiveMQ 4.x

For this version you must use the JMS on page 293 component instead. Please be careful to use a pooling
connection factory as described in the JmsTemplate Gotchas™?

° http://repo2.maven.org/maven2/org/apache/activemg/activemqg-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemg/activemqg-core/5.1.0/activemq-core-5.1.0.jar

http://activemq.apache.org/jmstemplate-gotchas.html

30

Fuse Mediation Router Component Reference Version 2.6

http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://activemq.apache.org/jmstemplate-gotchas.html
http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://activemq.apache.org/jmstemplate-gotchas.html

Chapter 3. ActiveMQ Journal

ActiveMQ Journal Component

The ActiveMQ Journal Component allows messages to be stored in a rolling log file and then consumed from
that log file. The journal aggregates and batches up concurrent writes so that the overhead of writing and
waiting for the disk sync is relatively constant, regardless of how many concurrent writes are being done.
Therefore, this component supports and encourages you to use multiple concurrent producers to the same
journal endpoint.

Each journal endpoint uses a different log file and therefore write batching (and the associated performance
boost) does not occur between multiple endpoints.

This component only supports one active consumer on the endpoint. After the message is processed by the
consumer's processor, the log file is marked and only subsequent messages in the log file will get delivered
to consumers.

URI format
activemq.journal:directoryName[?options]

So for example, to send to the journal located in the /tmp/data directory you would use the following URI:

activemq.journal:/tmp/data

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Name Default Value Description

syncConsume false If set to true, when the journal is marked after a message is consumed, wait
till the Operating System has verified the mark update is safely stored on disk.

syncProduce true If setto true, wait till the Operating System has verified the message is safely
stored on disk.

Expected Exchange Data Types

The consumer of a Journal endpoint generates DefauItExchangel objects with the In message set as follows:

! http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html

Fuse Mediation Router Component Reference Version 2.6 31

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html

Chapter 3. ActiveMQ Journal

» journal header: set to the endpoint URI of the journal the message came from.
« location header: set to a Location® which identifies where the record was stored on disk.
» Message body: set to ByteSequenceS, which contains the byte array data of the stored message.

The producer to a Journal endpoint expects an Exchange4 with an In message where the body can be converted
toa ByteSequence5 orabyte[].

2 http://activemq.apache.org/maven/activemqg-core/apidocs/org/apache/activemg/kaha/impl/async/Location.html
http://activemq.apache.org/maven/activemqg-core/apidocs/org/apache/activemg/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemqg-core/apidocs/org/apache/activemg/util/ByteSequence.html

32 Fuse Mediation Router Component Reference Version 2.6

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html

Chapter 4. AMQP

AMQP

The AMQP component supports the AMQP protocoll via the Qpid2 project.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ampg</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format

amgp: [queue: |topic:]destinationName[?options]

You can specify all of the various configuration options of the JMS on page 293 component after the destination

name.

! http://www.amqp.org/
2 http://cwiki.apache.org/qpid/

Fuse Mediation Router Component Reference Version 2.6

33

http://www.amqp.org/
http://cwiki.apache.org/qpid/
http://www.amqp.org/
http://cwiki.apache.org/qpid/

34

Fuse Mediation Router Component Reference Version 2.6

Chapter 5. Atom

Atom Component
The atom: component is used for polling atom feeds.

Fuse Mediation Router will poll the feed every 60 seconds by default. Note: The component currently only
supports polling (consuming) feeds.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>

<groupId>org.apache.camel</groupId>

<artifactId>camel-atom</artifactId>

<version>x.x.x</version>

<!-- use the same version as your Camel core version -->
</dependency>

URI format
atom://atomUri[?options]

Where atomUri is the URI to the Atom feed to poll.

Options

Property Default Description

splitEntries true If true Fuse Mediation Router will poll the feed and for the subsequent
polls return each entry poll by poll. If the feed contains 7 entries then
Fuse Mediation Router will return the first entry on the first poll, the
2nd entry on the next poll, until no more entries where as Fuse
Mediation Router will do a new update on the feed. If false then Fuse
Mediation Router will poll a fresh feed on every invocation.

filter true Is only used by the split entries to filter the entries to return. Fuse

Mediation Router will default use the UpdatebDateFilter that only
return new entries from the feed. So the client consuming from the
feed never receives the same entry more than once. The filter will
return the entries ordered by the newest last.

Fuse Mediation Router Component Reference Version 2.6 35

Chapter 5. Atom

lastUpdate null Is only used by the filter, as the starting timestamp for selection never
entries (uses the entry.updated timestamp). Syntax format is:
YYYyy-MM-ddTHH:MM: ss. Example: 2007-12-24T17:45:59.

throttleEntries true Camel 2.5: Sets whether all entries identified in a single feed poll
should be delivered immediately. If true, only one entry is processed
per consumer .delay. Only applicable when splitEntries is set to

true.
feedHeader true Sets whether to add the Abdera Feed object as a header.
sortEntries false If splitEntries is true, this sets whether to sort those entries by

updated date.
consumer.delay 60000 Delay in millis between each poll.
consumer.initialDelay 1000 Millis before polling starts.

consumer.userFixedDelay false If true, use fixed delay between pools, otherwise fixed rate is used.
See ScheduledExecutorService® in JDK for details.

You can append query options to the URI in the following format, ?option=value&option=valueé. ..

Exchange data format

Fuse Mediation Router will set the In body on the returned Exchange with the entries. Depending on the
splitEntries flag Fuse Mediation Router will either return one Entry or a List<Entry>.

Option Value Behavior

spliteEntries true Only a single entry from the currently being processed feed is set:
exchange.in.body(Entry)

splitEntries false The entire list of entries from the feed is set: exchange.in.body(List<Entry>)

Fuse Mediation Router can set the Feed object on the in header (see feedHeader option to disable this):

Message Headers

Fuse Mediation Router atom uses these headers.

Header Description

org.apache.camel.component.atom.feed Fuse Mediation Router 1.x: When consuming the
org.apache.abdera.model.Feed object is set to this header.

! http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

36 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

CamelAtomFeed Fuse Mediation Router 2.0: When consuming the
org.apache.abdera.model.Feed object is set to this header.

Samples

In the following sample we poll James Strachan's blog:

from("atom://http://macstrac.blogspot.com/feeds/posts/default").to("seda:feeds");

In this sample we want to filter only good blogs we like to a SEDA queue. The sample also shows how to set
up Fuse Mediation Router standalone, not running in any container or using Spring.

@Override

protected CamelContext createCamelContext() throws Exception {
// First we register a blog service in our bean registry
SimpleRegistry registry = new SimpleRegistry();
registry.put("blogService", new BlogService());

// Then we create the camel context with our bean registry
context = new DefaultCamelContext(registry);

// Then we add all the routes we need using the route builder DSL syntax
context.addRoutes(createMyRoutes());

// And finally we must start Camel to let the magic routing begins
context.start();

return context;

}

/**
* This is the route builder where we create our routes using the Camel DSL syntax
*/
protected RouteBuilder createMyRoutes() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
// We pool the atom feeds from the source for further processing in the seda
queue
// we set the delay to 1 second for each pool as this is a unit test also and
we can
// not wait the default poll interval of 60 seconds.
// Using splitEntries=true will during polling only fetch one Atom Entry at any
given time.
// As the feed.atom file contains 7 entries, using this will require 7 polls
to fetch the entire
// content. When Camel have reach the end of entries it will refresh the atom
feed from URI source

Fuse Mediation Router Component Reference Version 2.6 37

Chapter 5. Atom

// and restart - but as Camel by default uses the UpdatedDateFilter it will
only deliver new

// blog entries to "seda:feeds". So only when James Straham updates his blog
with a new entry

// Camel will create an exchange for the seda:feeds.

from("atom:file:src/test/data/feed.atom?splitEntries=true&con
sumer.delay=1000").to("seda:feeds");

// From the feeds we filter each blot entry by using our blog service class
from("seda:feeds").filter().method("blogService", "isGoodBlog").to("seda:goodB
logs");

// And the good blogs is moved to a mock queue as this sample is also used for
unit testing

// this is one of the strengths in Camel that you can also use the mock endpoint
for your

// unit tests

from("seda:goodBlogs").to("mock:result");

}i
}

/**
* This is the actual junit test method that does the assertion that our routes is working

* as expected
*/
@Test
public void testFiltering() throws Exception {
// create and start Camel
context = createCamelContext();
context.start();

// Get the mock endpoint
MockEndpoint mock = context.getEndpoint("mock:result", MockEndpoint.class);

// There should be at least two good blog entries from the feed
mock.expectedMinimumMessageCount(2);

// Asserts that the above expectations is true, will throw assertions exception if it
failed
// Camel will default wait max 20 seconds for the assertions to be true, if the conditions

// 1is true sooner Camel will continue
mock.assertIsSatisfied();

// stop Camel after use
context.stop();

38 Fuse Mediation Router Component Reference Version 2.6

/~k~k
* Services for blogs
*/
public class BlogService {

/~k~k
* Tests the blogs if its a good blog entry or not
*/
public boolean isGoodBlog(Exchange exchange) {
Entry entry = exchange.getIn().getBody(Entry.class);
String title = entry.getTitle();

// We like blogs about Camel

boolean good = title.toLowerCase().contains("camel");
return good;

Fuse Mediation Router Component Reference Version 2.6

39

40

Fuse Mediation Router Component Reference Version 2.6

Chapter 6. Bean

Bean Component
The bean: component binds beans to Fuse Mediation Router message exchanges.

URI format
bean:beanID[?options]

Where beanlD can be any string which is used to lookup look up the bean in the Registry

Options

Name Type Default Description

method String null The method name that bean will be invoked. If not provided, Fuse
Mediation Router will try to pick the method itself. In case of
ambiguity an exception is thrown. See Bean Binding for more
details.

cache boolean false If enabled, Fuse Mediation Router will cache the result of the first

Registry look-up. Cache can be enabled if the bean in the Registry
is defined as a singleton scope.

multiParameterArray boolean false Fuse Mediation Router 1.5: How to treat the parameters which
are passed from the message body; if it is true, the In message
body should be an array of parameters.

type String null Fuse Mediation Router 2.6: The fully qualified class name of
the parameter type (or sub-type) of the method which should be
called. This is only necessary, if you use method overloading and
you have to tell Fuse Mediation Router which of the methods
should be used. Otherwise you will fail with an
AmbiguousMethodCallException exception.

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Using
The object instance that is used to consume messages must be explicitly registered with the Registry. For

example, if you are using Spring you must define the bean in the Spring configuration, spring.xml; or if you
don't use Spring, put the bean in JNDI.

Fuse Mediation Router Component Reference Version 2.6 41

Registry
Bean Binding
Registry
Registry
Registry

Chapter 6. Bean

// lets populate the context with the services we need

// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();

context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);

Once an endpoint has been registered, you can build routes that use it to process exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {
public void configure() {
from("direct:hello").to("bean:bye");
}
1)

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it, you can only
route from some inbound message Endpoint to the bean endpoint as output. So consider using a direct: or
queue: endpoint as the input.

You can use the createProxy () methods on ProxyHeIper1 to create a proxy that will generate BeanExchanges
and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();

assertEquals("Good Bye!", rc);

And the same route using Spring DSL:

<route>
<from uri="direct:hello">
<to uri="bean:bye"/>
</route>

Bean as endpoint

Fuse Mediation Router also supports invoking Bean on page 41 as an Endpoint. In the route below:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<to uri="myBean"/>
<to uri="mock:results"/>
</route>
</camelContext>

! http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

42 Fuse Mediation Router Component Reference Version 2.6

Endpoint
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

<bean id="myBean" class="org.apache.camel.spring.bind.ExampleBean"/>

What happens is that when the exchange is routed to the myBean Fuse Mediation Router will use the Bean
Binding to invoke the bean. The source for the bean is just a plain POJO:

public class ExampleBean {
public String sayHello(String name) {
return "Hello " + name + "!";
}
}

Fuse Mediation Router will use Bean Binding to invoke the sayHello method, by converting the Exchange's
In body to the String type and storing the output of the method on the Exchange Out body.

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter)
and how parameter values are constructed from the Message are all defined by the Bean Binding mechanism
which is used throughout all of the various Bean Integration mechanisms in Fuse Mediation Router.

» Class on page 61 component
» Bean Binding

» Bean Integration

Fuse Mediation Router Component Reference Version 2.6 43

Bean Binding
Bean Binding
Bean Binding
Bean Binding
Bean Integration
Bean Binding
Bean Integration

44

Fuse Mediation Router Component Reference Version 2.6

Chapter 7. Bean Validation

Bean Validation Component
Available as of 2.3

The Validation component performs bean validation of the message body using the Java Bean Validation API
(JSR 3031). uses the reference implementation, which is Hibernate Validator®.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-bean-validator</artifactId>
<version>x.x.x</version>

<!-- use the same version as your Camel core version -->
</dependency>

URI format
bean-validator:something[?options]

or

bean-validator://something[?options]

Where something must be present to provide a valid URL. You can append query options to the URI in the
following format, ?option=value&option=value&. ..

URI Options

The following URI options are supported:

Option Default Description
group javax.validation.groups.Default The custom validation group to use.
messagelInterpolator org.hibernate.validator.engine. Reference to a custom
ResourceBundleMessageInterpolator javax.validation.MessagelIntery
Registry.

! http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

Fuse Mediation Router Component Reference Version 2.6 45

http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
Registry
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

Chapter 7. Bean Validation

traversableResolver org.hibernate.validator.engine.resolver. Reference to a custom
DefaultTraversableResolver javax.validation.TraversableReso
Registry.
constraintValidatorFactory org.hibernate.validator.engine. Reference to a custom
ConstraintvValidatorFactoryImpl javax.validation.Constraintvalid

in the Registry.

Example

Assumed we have a java bean with the following annotations

® Car.java

// Java
public class Car {

@NotNull
private String manufacturer;

@NotNull
@Size(min = 5, max = 14, groups = OptionalChecks.class)
private String licensePlate;

// getter and setter

and an interface definition for our custom validation group

® OptionalChecks.java

public interface OptionalChecks {

}

with the following route, only the @NotNull constraints on the attributes manufacturer and licensePlate will be
validated (uses the default group javax.validation.groups.Default).

from("direct:start")

.to("bean-validator://x")
.to("mock:end")

46 Fuse Mediation Router Component Reference Version 2.6

Registry
Registry

If you want to check the constraints from the group optionalChecks, you have to define the route like this

from("direct:start")
.to("bean-validator://x?group=OptionalChecks")
.to("mock:end")

If you want to check the constraints from both groups, you have to define a new interface first

® AliChecks.java

@GroupSequence({Default.class, OptionalChecks.class})
public interface AllChecks {

}

and then your route definition should looks like this

from("direct:start")
.to("bean-validator://x?group=AllChecks")
.to("mock:end")

And if you have to provide your own message interpolator, traversable resolver and constraint validator factory,
you have to write a route like this

<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")
.to("bean-validator://x?group=AllChecks&messageInterpolator=#myMessageInterpolator&travers
ableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFactory")
.to("mock:end")

It's also possible to describe your constraints as XML and not as Java annotations. In this case, you have to
provide the file META-INF/validation.xml which could looks like this

Fuse Mediation Router Component Reference Version 2.6 47

Chapter 7. Bean Validation

® yvalidation.xml

<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">
<default-provider>org.hibernate.validator.HibernatevValidator</default-provider>
<message-interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</mes
sage-interpolator>
<traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolv
er</traversable-resolver>
<constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryIm
pl</constraint-validator-factory>

<constraint-mapping>/constraints-car.xml</constraint-mapping>
</validation-config>

and the constraints-car.xml file

48 Fuse Mediation Router Component Reference Version 2.6

® constraints-car.xml

<?xml version="1.0" encoding="UTF-8"?>
<constraint-mappings xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-
1.0.xsd"

xmlns="http://jboss.org/xml/ns/javax/validation/mapping">
<default-package>org.apache.camel.component.bean.validator</default-package>

<bean class="CarWithoutAnnotations" ignore-annotations="true">
<field name="manufacturer">

<constraint annotation="javax.validation.constraints.NotNull" />
</field>

<field name="licensePlate">
<constraint annotation="javax.validation.constraints.NotNull" />

<constraint annotation="javax.validation.constraints.Size">
<groups>
<value>org.apache.camel.component.bean.validator.OptionalChecks</value>
</groups>
<element name="min">5</element>
<element name="max">14</element>
</constraint>
</field>
</bean>
</constraint-mappings>

Fuse Mediation Router Component Reference Version 2.6 49

50

Fuse Mediation Router Component Reference Version 2.6

Chapter 8. Browse

Browse Component

Available as of Fuse Mediation Router 2.0

The Browse component provides a simple BrowsableEndpoint which can be useful for testing, visualisation

tools or debugging. The exchanges sent to the endpoint are all available to be browsed.

URI format
browse:someName

Where someName can be any string to uniquely identify the endpoint.

Sample

In the route below, we insert a browse: component to be able to browse the Exchanges that are passing
through:

from("activemqg:order.in").to("browse:orderReceived").to("bean:processOrder");

We can now inspect the received exchanges from within the Java code:

private CamelContext context;

public void inspectRecievedOrders() {
BrowsableEndpoint browse = context.getEndpoint("browse:orderReceived",
BrowsableEndpoint.class);
List<Exchange> exchanges = browse.getExchanges();

// then we can inspect the list of received exchanges from Java

for (Exchange exchange : exchanges) {
String payload = exchange.getIn().getBody();

Fuse Mediation Router Component Reference Version 2.6

51

BrowsableEndpoint

52

Fuse Mediation Router Component Reference Version 2.6

Chapter 9. Cache

Cache Component
Available as of Fuse Mediation Router 2.1

The cache component enables you to perform caching operations using EHCache as the Cache Implementation.
The cache itself is created on demand or if a cache of that name already exists then it is simply utilized with
its original settings.

This component supports producer and event based consumer endpoints.

The Cache consumer is an event based consumer and can be used to listen and respond to specific cache
activities. If you need to perform selections from a pre-existing cache, used the processors defined for the
cache component.

URI format
cache://cacheName[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

maxElementsInMemory 1000 The numer of elements that may be stored
in the defined cache

memoryStoreEvictionPolicy MemoryStoreEvictionPolicy.LFU The number of elements that may be stored
in the defined cache. The policy options
include:

e MemoryStoreEvictionPolicy.LFU—Least
frequently used.

* MemoryStoreEvictionPolicy.LRU—Least
recently used.

¢ MemoryStoreEvictionPolicy.FIFO—First
in first out, ordered by creation time.

overflowToDisk true Specifies whether cache may overflow to
disk.

Fuse Mediation Router Component Reference Version 2.6 53

Chapter 9. Cache

eternal false
timeToLiveSeconds 300
timeToIdleSeconds 300
diskPersistent true

diskExpiryThreadIntervalSeconds 120

cacheManagerFactory null

Sets whether elements are eternal. If eternal,
timeouts are ignored and the element is
never expired.

The maximum time between creation time
and when an element expires. Is only used
if the element is not eternal.

The maximum amount of time between
accesses before an element expires.

Whether the disk store persists between
restarts of the Virtual Machine. The default
value is false.

The number of seconds between runs of the
disk expiry thread. The default value is 120
seconds.

Camel 2.3: If you want to use a custom
factory which instantiates and creates the
EHCache net.sf.ehcache.CacheManager.

Message Headers

Header Description

* ADD
¢ UPDATE
e DELETE

* DELETEALL

CACHE_OPERATION The operation to be performed on the cache. The valid options are:

CACHE_KEY The cache key used to store the message in the cache. The cache key is optional, if the
CACHE_OPERATION is DELETEALL.

Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a pre-existing
or created-on- demand cache. The mechanics of doing this involve - setting the Message Exchange Headers
shown above. - ensuring that the Message Exchange Body contains the message directed to the cache

54

Fuse Mediation Router Component Reference Version 2.6

Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-existing or

created-on-demand Cache using an event Listener and receive automatic notifications when any cache activity
take place (i.e ADD/UPDATE/DELETE/DELETEALL). Upon such an activity taking place - an exchange containing
Message Exchange Headers and a Message Exchange Body containing the just added/updated payload is

placed and sent. - in case of a DELETEALL operation, the Message Exchange Header CACHE_KEY and the

Message Exchange Body are not populated.

Cache Processors

There are a set of nice processors with the ability to perform cache lookups and selectively replace payload

content at the - body - token - xpath level

Example 1: Configuring the cache

from("cache://MyApplicationCache" +
"?maxElementsInMemory=1000" +
"&memoryStoreEvictionPolicy=" +

"MemoryStoreEvictionPolicy.LFU" +
"&overflowToDisk=true" +
"&eternal=true" +
"&timeToLiveSeconds=300" +
"&timeToIdleSeconds=true" +
"&diskPersistent=true" +
"&diskExpiryThreadIntervalSeconds=300")

Example 2: Adding keys to the cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader ("CACHE_OPERATION", constant("ADD"))
.setHeader ("CACHE_KEY", constant("Ralph_Waldo_Emerson"))
.to("cache://TestCachel")
1
iy

Example 2: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder() {

Fuse Mediation Router Component Reference Version 2.6

55

Chapter 9. Cache

public void configure() {
from("direct:start")
.setHeader ("CACHE_OPERATION", constant("UPDATE"))
.setHeader ("CACHE_KEY", constant("Ralph_Waldo_Emerson"))
.to("cache://TestCachel")
}
1

Example 3: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader ("CACHE_OPERATION", constant("DELETE"))
.setHeader ("CACHE_KEY", constant("Ralph_Waldo_Emerson"))
.to("cache://TestCachel")
3
Y

Example 4: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader ("CACHE_OPERATION", constant("DELETEALL"))
.to("cache://TestCachel");
}
3

Example 5: Notifying any changes registering in a Cache to Processors and
other Producers

RouteBuilder builder = new RouteBuilder() {

public void configure() {

from("cache://TestCachel")

.process(new Processor() {

public void process(Exchange exchange)
throws Exception {

String operation = (String) exchange.getIn().getHeader ("CACHE_OPERATION");
String key = (String) exchange.getIn().getHeader ("CACHE_KEY");
Object body = exchange.getIn().getBody();
// Do something

56 Fuse Mediation Router Component Reference Version 2.6

}
19
}
}i

Example 6: Using Processors to selectively replace payload with cache values

RouteBuilder builder = new RouteBuilder() {
public void configure() {
//Message Body Replacer
from("cache://TestCachel")
.filter(header ("CACHE_KEY").isEqualTo("greeting"))
.process(new CacheBasedMessageBodyReplacer("cache://TestCachel", "farewell"))
.to("direct:next");

//Message Token replacer

from("cache://TestCachel")

.filter(header ("CACHE_KEY").isEqualTo("quote"))

.process(new CacheBasedTokenReplacer("cache://TestCachel", "novel", "#novel#"))
.process(new CacheBasedTokenReplacer("cache://TestCachel", "author", "#author#"))
.process(new CacheBasedTokenReplacer('"cache://TestCachel", "number", "#number#"))
.to("direct:next");

//Message XPath replacer
from("cache://TestCachel").
.filter(header ("CACHE_KEY").isEqualTo("XML_FRAGMENT"))
.process(new CacheBasedXPathReplacer("cache://TestCachel", "book1","/books/book1"))
.process (new CacheBasedXPathReplacer('"cache://TestCachel", "book2","/books/book2"))
.to("direct:next");
}
3

Example 7: Getting an entry from the Cache

from("direct:start")
// Prepare headers
.setHeader (CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_GET))

.setHeader (CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
.to("cache://TestCachel").
// Check if entry was not found
.choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).
// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader (CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERA
TION_ADD))

Fuse Mediation Router Component Reference Version 2.6 57

Chapter 9. Cache

.setHeader (CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCachel")

.end()

.to("direct:nextPhase");

Example 8: Checking for an entry in the Cache

Note: CHECK command tests existence of the entry in the cache but doesn't place message to the body.

from("direct:start")
// Prepare headers
.setHeader (CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_CHECK))

.setHeader (CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).

.to("cache://TestCachel").

// Check if entry was not found

.choice().when(header (CacheConstants.CACHE_ELEMENT_WAS_FOUND) .isNull()).
// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader (CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERA

TION_ADD))

.setHeader (CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCachel")

.end();

Management of EHCache
EHCache has its own statistics and management from IMxt.

Here's a snippet on how to expose them via JMX in a Spring application context:

<bean id="ehCacheManagementService" class="net.sf.ehcache.management.ManagementService"
init-method="init" lazy-init="false">

<constructor-arg>

<bean class="net.sf.ehcache.CacheManager" factory-method="getInstance"/>

</constructor-arg>

<constructor-arg>

<bean class="org.springframework.jmx.support.JmxUtils" factory-method="locateMBeanServ
er'"/>

</constructor-arg>

<constructor-arg value="true"/>

<constructor-arg value="true"/>

<constructor-arg value="true"/>

<constructor-arg value="true"/>

 camel IMX

58 Fuse Mediation Router Component Reference Version 2.6

Camel JMX
Camel JMX

</bean>

Of course you can do the same thing in straight Java:

ManagementService.registerMBeans(CacheManager.getInstance(), mbeanServer, true, true,
true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also change
CacheConfiguration parameters on the fly.

Fuse Mediation Router Component Reference Version 2.6 59

60

Fuse Mediation Router Component Reference Version 2.6

Chapter 10. Class

Class Component
Available as of 2.4

The class: component binds beans to message exchanges. It works in the same way as the Bean on page 41
component but instead of looking up beans from a Registry it creates the bean based on the class name.

URI format
class:className[?options]

Where className is the fully qualified class name to create and use as bean.

Options
Name Type Default Description
method String null The method name that bean will be invoked. If not provided, will

try to pick the method itself. In case of ambiguity an exception is
thrown. See Bean Binding for more details.

multiParameterArray boolean false How to treatthe parameters which are passed from the message
body; if it is true, the In message body should be an array of
parameters.

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Using

You simply use the class component just as the Bean on page 41 component but by specifying the fully
qualified classname instead. For example to use the MyFooBean you have to do as follows:

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean").to("mock:res
ult");

You can also specify which method to invoke on the MyFooBean, for example hello:

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean?meth

Fuse Mediation Router Component Reference Version 2.6 61

Registry
Bean Binding

Chapter 10. Class

od=hello").to("mock:result");

Setting properties on the created instance

In the endpoint uri you can specify properties to set on the created instance, for example if it has a setPrefix
method:

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
.to("mock:result");

And you can also use the # syntax to refer to properties to be looked up in the Registry.

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#fo0")
.to("mock:result");

Which will lookup a bean from the Registry with the id foo and invoke the setCool method on the created
instance of the MyPrefixBean class.

? See more
See more details at the Bean on page 41 component as the class component works in much the same way. |

* Bean on page 41
* Bean Binding

¢ Bean Integration

62 Fuse Mediation Router Component Reference Version 2.6

Registry
Registry
Bean Binding
Bean Integration

Chapter 11. Cometd

Cometd Component

The cometd: component is a transport for working with the jet’[y1 implementation of the cometd/bayeux protocolz.
Using this component in combination with the dojo toolkit library it's possible to push Fuse Mediation Router
messages directly into the browser using an AJAX based mechanism.

URI format

cometd://host:port/channelName[?options]

The channelName represents a topic that can be subscribed to by the Fuse Mediation Router endpoints.

Examples

cometd://localhost:8080/service/mychannel
cometds://localhost:8443/service/mychannel

where cometds: represents an SSL configured endpoint.

Options

Name Default Value Description

resourceBase The root directory for the web resources or classpath. Use the protocol
file: or classpath: depending if you want that the component loads the
resource from file system or classpath. Classpath is required for OSGI
deployment where the resources are packaged in the jar

timeout 240000 The server side poll timeout in milliseconds. This is how long the server
will hold a reconnect request before responding.

interval 0 The client side poll timeout in milliseconds. How long a client will wait
between reconnects

maxInterval 30000 The max client side poll timeout in milliseconds. A client will be removed
if a connection is not received in this time.

multiFrameInterval 1500 The client side poll timeout, if multiple connections are detected from
the same browser.

! http://www.mortbay.org/jetty

2 http://docs.codehaus.org/display/JETTY/Cometd+%?28aka+Bayeux%29

Fuse Mediation Router Component Reference Version 2.6 63

http://www.mortbay.org/jetty
http://docs.codehaus.org/display/JETTY/Cometd+%28aka+Bayeux%29
http://www.mortbay.org/jetty
http://docs.codehaus.org/display/JETTY/Cometd+%28aka+Bayeux%29

Chapter 11. Cometd

jsonCommented true If true, the server will accept JSON wrapped in a comment and will
generate JSON wrapped in a comment. This is a defence against Ajax
Hijacking.

logLevel 1 0=none, 1=info, 2=debug.

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Here is some examples of how to pass the parameters.

For file (when the Webapp resources are located in the Web Application directory)
cometd://localhost:8080?resourceBase=file./webapp. For classpath (when the web resources are
packaged inside the Webapp folder) cometd://localhost:8080?resourceBase=classpath:webapp.

64 Fuse Mediation Router Component Reference Version 2.6

Chapter 12. Crypto (Digital
Sighatures)

Crypto component for Digital Signatures
Available as of Fuse Mediation Router 2.3

Using Fuse Mediation Router cryptographic endpoints and Java's Cryptographic extension it is easy to create
Digital Signatures for Exchanges. Fuse Mediation Router provides a pair of flexible endpoints which get used
in concert to create a signature for an exchange in one part of the exchange's workflow and then verify the
signature in a later part of the workflow.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

Introduction

Digital signatures make use Asymmetric Cryptographic techniques to sign messages. From a (very) high level,
the algorithms use pairs of complimentary keys with the special property that data encrypted with one key can
only be decrypted with the other. One, the private key, is closely guarded and used to 'sign’ the message while
the other, public key, is shared around to anyone interested in verifying your messages. Messages are signed
by encrypting a digest of the message with the private key. This encrypted digest is transmitted along with the
message. On the other side the verifier recalculates the message digest and uses the public key to decrypt
the the digest in the signature. If both digest match the verifier knows only the holder of the private key could
have created the signature.

Fuse Mediation Router uses the Signature service from the Java Cryptographic Extension to do all the heavy
cryptographic lifting required to create exchange signatures. The following are some excellent sources for
explaining the mechanics of Cryptography, Message digests and Digital Signatures and how to leverage them
with the JCE.

» Bruce Schneier's Applied Cryptography

» Beginning Cryptography with Java by David Hook

Fuse Mediation Router Component Reference Version 2.6 65

Exchange

Chapter 12. Crypto (Digital Signatures)

» The ever insightful, Wikipedia Digital_signatures1

URI format

As mentioned Fuse Mediation Router provides a pair of crypto endpoints to create and verify signatures

crypto:sign:name[?options]

crypto:verify:name[?options]

* crypto:sign creates the signature and stores it in the Header keyed by the constant Exchange . SIGNATURE,
i.e. "CamelDigitalSignature".

» crypto:verify will read in the contents of this header and do the verification calculation.

In order to correctly function, sign and verify need to share a pair of keys, sign requiring a PrivateKey and
verify a PublicKey (or a Certificate containing one). Using the JCE is is very simple to generate these key
pairs but it is usually most secure to use a KeyStore to house and share your keys. The DSL is very flexible
about how keys are supplied and provides a number of mechanisms.

Note a crypto:sign endpoint is typically defined in one route and the complimentary crypto:verify in
another, though for simplicity in the examples they appear one after the other. It goes without saying that both
sign and verify should be configured identically.

Options

Name Type Default Description

algorithm String DSA The name of the JCE Signature algorithm that will be used.

alias String null An alias hame that will be used to select a key from the keystore.

bufferSize Integer 2048 the size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the exchange's payload.
Either this or a Public Key is required.

keystore KeyStore null A reference to a JCE Keystore that stores keys and certificates
used to sign and verify.

provider String null The name of the JCE Security Provider that should be used.

privateKey PrivatKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the exchange's
payload.

! http://fen.wikipedia.org/wiki/Digital_signature

66

Fuse Mediation Router Component Reference Version 2.6

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Digital_signature

secureRandom secureRandom null A reference to a SecureRandom object that wil Ibe used to initialize
the Signature service.

password char[] null The password for the keystore.

1) Raw keys

The most basic way to way to sign an verify an exchange is with a KeyPair as follows.

from("direct:keypair").to("crypto:sign://basic?privateKey=#myPrivateKey", "crypto:verify://ba
sic?publicKey=#myPublicKey", "mock:result");

The same can be achieved with the Spring XML Extensions? using references to keys

<route>
<from uri="direct:keypair"/>
<to uri="crypto:sign://basic?privateKey=#myPrivateKey" />
<to uri="crypto:verify://basic?publicKey=#myPublicKey" />
<to uri="mock:result"/>

</route>

2) KeyStores and Aliases.

The JCE provides a very versatile KeyStore for housing pairs of PrivateKeys and Certificates keeping them
encrypted and password protected. They can be retrieved from it by applying an alias to the retrieval apis.
There are a number of wagls to get keys and Certificates into a keystore most often this is done with the external
'keytool' application. This™ is a good example of using keytool to create a KeyStore with a self signed Cert and
Private key.

The examples use a Keystore with a key and cert aliased by 'bob'. The password for the keystore and the key
is 'letmein’

The following shows how to use a Keystore via the Fluent builders, it also shows how to load and initialize the
keystore.

from("direct:keystore").to("crypto:sign://keystore?keystore=#keystore&alias=bob&password=1let
mein", "crypto:verify://keystore?keystore=#keystore&alias=bob", "mock:result");

Again in Spring a ref is used to lookup an actual keystore instance.

<route>
<from uri="direct:keystore"/>
<to uri="crypto:sign://keystore?keystore=#keystore&lias=bob&assword=letmein" />

2 Spring XML Extensions
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html

Fuse Mediation Router Component Reference Version 2.6 67

Spring XML Extensions
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html
Spring XML Extensions
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html

Chapter 12. Crypto (Digital Signatures)

<to uri="crypto:verify://keystore?keystore=#keystore&lias=bob" />
<to uri="mock:result"/>
</route>

3) Changing JCE Provider and Algorithm

Changing the Signature algorithm or the Security provider is a simple matter of specifying their names. You
will need to also use Keys that are compatible with the algorithm you choose.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(512, new SecureRandom());

keyPair = keyGen.generateKeyPair();

PrivateKey privateKey = keyPair.getPrivate();

PublicKey publicKey = keyPair.getPublic();

// we can set the keys explicitly on the endpoint instances.
context.getEndpoint("crypto:sign://rsa?algorithm=MD5withRSA", DigitalSignatureEnd
point.class).setPrivateKey(privateKey);
context.getEndpoint("crypto:verify://rsa?algorithm=MD5withRSA", DigitalSignatureEnd
point.class).setPublicKey(publicKey);
from("direct:algorithm").to("crypto:sign://rsa?algorithm=MD5withRSA", "crypto:verify://rsa?al
gorithm=MD5withRSA", "mock:result");

from("direct:provider").to("crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN",
"crypto:verify://provider?publicKey=#myPublicKey&provider=SUN", "mock:result");

or

<route>
<from uri="direct:algorithm"/>
<to uri="crypto:sign://rsa?algorithm=MD5withRSA&rivateKey=#rsaPrivateKey" />
<to uri="crypto:verify://rsa?algorithm=MD5withRSA&ublicKey=#rsaPublicKey" />
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:provider"/>
<to uri="crypto:sign://provider?privateKey=#myPrivateKey&rovider=SUN" />
<to uri="crypto:verify://provider?publicKey=#myPublicKey&rovider=SUN" />
<to uri="mock:result"/>

</route>

4) Changing the Signature Mesasge Header

It may be desirable to change the message header used to store the signature. A different header name can
be specified in the route definition as follows

68 Fuse Mediation Router Component Reference Version 2.6

from("direct:signature-header").to("crypto:sign://another?privateKey=#myPrivateKey&signa

tureHeader=AnotherDigitalSignature",
"crypto:verify://another?publicKey=#myPublicKey&signa

tureHeader=AnotherDigitalSignature", "mock:result");

or

<route>

<from uri="direct:signature-header"/>

<to uri="crypto:sign://another?privateKey=#myPrivateKey&ignatureHeader=AnotherDigitalSig
nature" />

<to uri="crypto:verify://another?publicKey=#myPublicKey&ignatureHeader=AnotherDigitalSig
nature" />

<to uri="mock:result"/>
</route>

5) Changing the buffersize

In case you need to update the size of the bulffer...

from("direct:buffersize").to("crypto:sign://buffer?privateKey=#myPrivateKey&buffersize=1024",
"crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024", "mock:result");

or

<route>
<from uri="direct:buffersize" />
<to uri="crypto:sign://buffer?privateKey=#myPrivateKey&uffersize=1024" />
<to uri="crypto:verify://buffer?publicKey=#myPublicKey&uffersize=1024" />
<to uri="mock:result"/>

</route>

6) Supplying Keys dynamically.

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically. Using the same
key across all recipients may neither be feasible or desirable. It would be useful to be able to specify the
signature keys dynamically on a per exchange basis. The exchange could then be dynamically enriched with
the key of its target recipient prior to signing. To facilitate this the signature mechanisms allow for keys to be
supplied dynamically via the message headers below

* Exchange.SIGNATURE_PRIVATE_KEY, "CamelSignaturePrivateKey"

* Exchange.SIGNATURE_PUBLIC_KEY_OR_CERT, "CamelSignaturePublicKeyOrCert"

from("direct:headerkey-sign").to("crypto:sign://alias");
from("direct:headerkey-verify").to("crypto:verify://alias", "mock:result");

Fuse Mediation Router Component Reference Version 2.6 69

Chapter 12. Crypto (Digital Signatures)

or

<route>
<from uri="direct:headerkey-sign"/>
<to uri="crypto:sign://headerkey" />

</route>

<route>
<from uri="direct:headerkey-verify"/>
<to uri="crypto:verify://headerkey" />
<to uri="mock:result"/>

</route>

Better again would be to dynamically supply a keystore alias. Again the alias can be supplied in a message
header

* Exchange.KEYSTORE_ALIAS, "CamelSignatureKeyStoreAlias"

from("direct:alias-sign").to("crypto:sign://alias?keystore=#keystore");
from("direct:alias-verify").to("crypto:verify://alias?keystore=#keystore", "mock:result");

or

<route>
<from uri="direct:alias-sign"/>
<to uri="crypto:sign://alias?keystore=#keystore" />
</route>
<route>
<from uri="direct:alias-verify"/>
<to uri="crypto:verify://alias?keystore=#keystore" />
<to uri="mock:result"/>
</route>

The header would be set as follows

Exchange unsigned = getMandatoryEndpoint("direct:alias-sign").createExchange();
unsigned.getIn().setBody(payload);

unsigned.getIn().setHeader (DigitalSignatureConstants.KEYSTORE_ALIAS, "bob");
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_PASSWORD, "letmein".toCharAr
ray());

template.send("direct:alias-sign", unsigned);

Exchange signed = getMandatoryEndpoint("direct:alias-sign").createExchange();
signed.getIn().copyFrom(unsigned.getOut());

signed.getIn().setHeader (KEYSTORE_ALIAS, "bob");

template.send("direct:alias-verify", signed);

See also:

» Crypto Crypto is also available as a Data Format

70 Fuse Mediation Router Component Reference Version 2.6

Crypto
Data Format

Chapter 13. CXF Bean Component

CXF Bean Component (2.0 or later)

The cxfbean: component allows other Camel endpoints to send exchange and invoke Web service bean
objects. (Currently, it only supports JAXRS, JAXWS(new to camel2.1) annotated service bean.)

Note: CxfBeanEndpoint is a ProcessorEndpoint so it has no consumers. It works similarly to a Bean
component.

URI format
cxfbean:serviceBeanRef

Where serviceBeanRef is a registry key to look up the service bean object. If serviceBeanRef references a
List object, elements of the List are the service bean objects accepted by the endpoint.

Options

Name Description Example

cxfBeanBinding CXF bean binding specified by the \# notation. The referenced cxfBinding=#bindingNam
object must be an instance of
org.apache.camel.component.cxf.cxfbean.CxfBeanBinding.

bus CXF bus reference specified by the \# notation. The referenced bus=#busName

object must be an instance of org.apache.cxf.Bus.

headerFilterStrategy Header filter strategy specified by the \# notation. The referenced headerFilterStrategy=#
object must be an instance of
org.apache.camel.spi.HeaderFilterStrategy.

setDefaultBus Will set the default bus when CXF endpoint create a bus by itself. true, false

populateFromClass Since 2.3, the wsdlLocation annotated in the POJO is ignored (by true, false
default) unless this option is set to false. Prior to 2.3, the
wsdlLocation annotated in the POJO is always honored and it is
not possible to ignore.

providers Since 2.5, setting the providers for the CXFRS endpoint. providers=#providerRef

Fuse Mediation Router Component Reference Version 2.6 71

Chapter 13. CXF Bean Component

Headers
Name Description Type Required? Default In/Out Examples
Value

CamelHttpCharacterEncoding Character encoding String No None In 1ISO-8859-1
(before 2.0-m2:
CamelCxfBeanCharacterEncoding)
CamelContentType (before 2.0-m2: Content type String No \rxfr\x In text/xml
CamelCxfBeanContentType)
CamelHttpBaseUri (2.0-m3 and The value of this String Yes The In http://localhost:9000
before: header will be set in Endpoint !
CamelCxfBeanRequestBasePath) the CXF message as URI of the

the source

Message.BASE_PATH endpoint

property. It is needed in the

by CXF JAX-RS Camel

processing. Basically, exchange

itis the scheme, host

and port portion of

the request URI.
CamelHttpPath (before 2.0-m2: Request URI's path String Yes None In consumer/123
CamelCxfBeanRequestPat{}h)
CamelHttpMethod (before 2.0-m2: RESTfulrequestverb String Yes None In GET, PUT, POST,
CamelCxfBeanVerb) DELETE
CamelHttpResponseCode HTTP response code Integer No None Out 200

Note: Currently, CXF Bean component has (only) been tested with Jetty HTTP component it can
understand headers from Jetty HTTP component without requiring conversion.

A Working Sample

This sample shows how to create a route that starts a Jetty HTTP server. The route sends requests to a CXF
Bean and invokes a JAXRS annotated service.

First, create a route as follows. The from endpoint is a Jetty HTTP endpoint that is listening on port 9000.
Notice that the matchOnUriPrefix option must be set to true because RESTful request URI will not match
the endpoint's URI http://localhost:9000 exactly.

! http://localhost:9000

72 Fuse Mediation Router Component Reference Version 2.6

http://localhost:9000
http://localhost:9000
http://localhost:9000

<route>

<from uri="jetty:http://localhost:9000?matchOnUriPrefix=true" />
<to uri="cxfbean:customerServiceBean" />

</route>

The to endpoint is a CXF Bean with bean hame customerServiceBean. The name will be looked up from the
registry. Next, we make sure our service bean is available in Spring registry. We create a bean definition in
the Spring configuration. In this example, we create a List of service beans (of one element). We could have
created just a single bean without a List.

<util:list id="customerServiceBean">
<bean class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />
</util:list>

<bean class="org.apache.camel.wsdl_first.PersonImpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can make a request
and receive response.

url = new URL("http://localhost:9000/customerservice/orders/223/products/323");

in = url.openStream();

assertEquals("{\"Product\":{\"description\":\"product 323\",\"id\":323}}", CxfUtils.get
StringFromInputStream(in));

Fuse Mediation Router Component Reference Version 2.6 73

74

Fuse Mediation Router Component Reference Version 2.6

Chapter 14. CXF

CXF Component
The cxf: component provides integration with Apache CXF* for connecting to JAX-WS services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

? CXF dependencies

If you want to learn about CXF dependencies, see the WHICH-JARS® text file.

When using CXF as a consumer, the CAMEL:CXF Bean Component allows you to factor out how message
payloads are received from their processing as a RESTful or SOAP web service. This has the potential of
using a multitude of transports to consume web services. The bean component's configuration is also simpler
and provides the fastest method to implement web services using Camel and CXF.

URI format
cxf:bean:cxfEndpoint[?options]

Where cxfEndpoint represents a bean ID that references a bean in the Spring bean registry. With this URI
format, most of the endpoint details are specified in the bean definition.

cxf://someAddress[?options]

L http://incubator.apache.org/cxf/
2 http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

Fuse Mediation Router Component Reference Version 2.6 75

http://incubator.apache.org/cxf/
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS
http://incubator.apache.org/cxf/
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

Chapter 14. CXF

Where someAddress specifies the CXF endpoint's address. With this URI format, most of the endpoint details

are specified using options.

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsd1l/hello_world.wsdl&dataFormat=PAYLOAD

Options

Name
wsd1URL

serviceClass

serviceClassInstance

serviceName

portName

76

Description Sample Values
The location of the WSDL. file://local/wsdl/hello.wsdl or wsd1/hel.

The name of the SEI (Service Endpoint Interface) org.apache.camel.Hello
class. This class can have, but does not require,

JSR181 annotations. Since 2.0, this option is only

required by POJO mode. If the wsdIURL option is

provided, serviceClass is not required for PAYLOAD

and MESSAGE mode. When wsdIURL option is

used without serviceClass, the serviceName and

portName (endpointName for Spring configuration)

options MUST be provided.

Since 2.0, itis possible to use # notation to reference
a serviceClass object instance from the registry..

Please be advised that the referenced object
cannot be a Proxy (Spring AOP Proxy is OK) as
itreliesonObject.getClass().getName() method
for non Spring AOP Proxy.

In 1.6 or later (will be deprecated in 2.0), serviceClassInstance=beanName
serviceClassInstance works like

serviceClass=#beanName, which looks up a

serviceObject instance from the registry.

The service name this service is implementing, it {http://org.apache.camel}Service
maps to the wsdl:service@name

The port name this service is implementing, it maps {http://org.apache.camel}PortNar
to the wsdl:port@name.

Fuse Mediation Router Component Reference Version 2.6

dataFormat Which message data format the CXF endpoint
supports

relayHeaders Available since Fuse Mediation Router 1.6.1. Please
see the Description of relayHeader option section
for this option in Fuse Mediation Router 2.0. Should
a CXF endpoint relay headers along the route.
Currently only available when dataFormat=P0JO

wrapped Which kind of operation that the CXF endpoint
producer will invoke.
wrappedStyle New in 2.5.0 The WSDL style that describes how

parameters are represented in the SOAP body. If
the value is false, CXF will chose the
document-literal unwrapped style, If the value is true,
CXF will chose the document-literal wrapped style

setDefaultBus Specifies whether or not to use the default CXF bus
for this endpoint.

bus New in Fuse Mediation Router 2.0, use # notation
to reference a bus object from the registry. The
referenced object must be an instance of
org.apache.cxf.Bus.

cxfBinding New in Fuse Mediation Router 2.0, use # notation
to reference a CXF binding object from the registry.
The referenced object must be an instance of
org.apache.camel.component.cxf.CxfBinding

headerFilterStrategy New in Fuse Mediation Router 2.0, use # notation
to reference a header filter strategy object from the
registry. The referenced object must be an instance
oforg.apache.camel.spi.HeaderFilterStrategy.

loggingFeatureEnabled New in 2.3, this option enables CXF Logging Feature
which writes inbound and outbound SOAP
messages to log.

defaultOperationName New in 2.4, this option will set the default
operationName that will be used by the CxfProducer
which invokes the remote service.

defaultOperationNameSpace New in 2.4, this option will set the default
operationNamespace that will be used by the
CxfProducer which invokes the remote service.

synchronous New in 2.5, this option will let cxf endpoint decide to
use sync or async API to do the underlying work.

Fuse Mediation Router Component Reference Version 2.6

P0JO, PAYLOAD, MESSAGE

true, false

true, false

true, false

true, false

bus=#busName

cxfBinding=#bindingName

headerFilterStrategy=#strateg

loggingFeatureEnabled{}=true

defaultOperationName{}=greetM

defaultOperationNamespace{}=

http://apache.org/hello_world

synchronous=true

7

Chapter 14. CXF

The default value is false which means camel-cxf
endpoint will try to use async API by default.

publishedEndpointUrl New in 2.5, this option can override the endpointUrl publshedEndpointUrl=http://examg
that published from the WSDL which can be
accessed with service address url plus ?wsdl.

The serviceName and portName are QNames3, so if you provide them be sure to prefix them with their
{namespace} as shown in the examples above.

NOTE From Fuse Mediation Router 1.5.1, the servicecClass for a CXF producer (that is, the to endpoint)
should be a Java interface.

The descriptions of the dataformats

DataFormat Description

P0JO POJOs (plain old Java objects) are the Java parameters to the method being invoked on the
target server. Both Protocol and Logical JAX-WS handlers are supported.

PAYLOAD PAYLOAD is the message payload (the contents of the soap: body) after message configuration
in the CXF endpoint is applied. Only Protocol JAX-WS handler is supported. Logical JAX-WS
handler is not supported.

MESSAGE MESSAGE is the raw message that is received from the transport layer. JAX-WS handler is not
supported.

You can determine the data format mode of an exchange by retrieving the exchange property,
CamelCXFDataFormat. The exchange key constant is defined in
org.apache.camel.component.cxf.CxfConstants.DATA_FORMAT_PROPERTY.

How to enable CXF's LoggingOutinterceptor in MESSAGE mode

CXF's LoggingOutInterceptor outputs outbound message that goes on the wire to logging system
(java.util.logging). Since the LoggingOutInterceptor isin PRE_STREAM phase (but PRE_STREAM phase
is removed in MESSAGE mode), you have to configure LoggingOutInterceptor to be run during the WRITE
phase. The following is an example.

<bean id="loggingOutInterceptor" class="org.apache.cxf.interceptor.LoggingOutInterceptor">

<!-- it really should have been user-prestream but CXF does have such phase! -->
<constructor-arg value="write"/>
</bean>

<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9002/helloworld"

8 http://fen.wikipedia.org/wiki/QName

78 Fuse Mediation Router Component Reference Version 2.6

http://en.wikipedia.org/wiki/QName
http://en.wikipedia.org/wiki/QName

serviceClass="org.apache.camel.component.cxf.HelloService">
<cxf:outInterceptors>
<ref bean="loggingOutInterceptor"/>

</cxf:outInterceptors>

<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
</cxf:properties>
</cxf:cxfEndpoint>

Description of relayHeaders option
There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL-first developer.

The in-band headers are headers that are explicitly defined as part of the WSDL binding contract for an endpoint
such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the WSDL
binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP
headers, be relayed along the route to be consumed say by another JAXWS endpoint, then relayHeaders
should be set to true, which is the default value.

Available in Release 1.6.1 and after (only in POJO mode)

The relayHeaders=true setting expresses an intent to relay the headers. The actual decision on whether a
given header is relayed is delegated to a pluggable instance that implements the MessageHeadersRelay
interface. A concrete implementation of MessageHeadersRelay will be consulted to decide if a header needs
to be relayed or not. There is already an implementation of SoapMessageHeadersRelay which binds itself to
well-known SOAP name spaces. Currently only out-of-band headers are filtered, and in-band headers will
always be relayed when relayHeaders=true. If there is a header on the wire, whose name space is unknown
to the runtime, then a fall back befaultMessageHeadersRelay will be used, which simply allows all headers
to be relayed.

The relayHeaders=false setting asserts that all headers, in-band and out-of-band, will be dropped.

You can plugin your own MessageHeader sRelay implementations overriding or adding additional ones to the
list of relays. In order to override a preloaded relay instance just make sure that your MessageHeadersRelay
implementation services the same name spaces as the one you looking to override. Also note, that the overriding
relay has to service all of the name spaces as the one you looking to override, or else a runtime exception on
route start up will be thrown as this would introduce an ambiguity in name spaces to relay instance mappings.

Fuse Mediation Router Component Reference Version 2.6 79

Chapter 14. CXF

<cxf:cxfEndpoint ...>
<cxf:properties>
<entry key="org.apache.camel.cxf.message.headers.relays">
<list>
<ref bean="customHeadersRelay"/>
</list>
</entry>
</cxf:properties>
</cxf:cxfEndpoint>
<bean id="customHeadersRelay" class="org.apache.camel.component.cxf.soap.headers.Custom
HeadersRelay"/>

Take a look at the tests that show how you'd be able to relay/drop headers here:

Changes since Release 2.0

* P0JO and PAYLOAD modes are supported. In P0J0 mode, only out-of-band message headers are available
for filtering as the in-band headers have been processed and removed from the header list by CXF. The
in-band headers are incorporated into the MessageContentList in P0JO mode. The camel-cxf component
does make any attempt to remove the in-band headers from the MessageContentList as it does in 1.6.1.
If filtering of in-band headers is required, please use PAYLOAD mode or plug in a (pretty straightforward) CXF
interceptor/JAXWS Handler to the CXF endpoint.

» The Message Header Relay mechanism has been merged into CxfHeaderFilterStrategy. The
relayHeaders option, its semantics, and default value remain the same, but it is a property of
CcxfHeaderFilterStrategy.Here is an example of configuring it.

<bean id="dropAllMessageHeadersStrategy" class="org.apache.camel.component.cxf.CxfHeader
FilterStrategy">

<!-- Set relayHeaders to false to drop all SOAP headers -->
<property name="relayHeaders" value="false'"/>

</bean>
Then, your endpoint can reference the CxfHeaderFilterStrategy
<route>
<from uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHead

ersStrategy"/>
<to uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHead

4

htips/lsvn.apache orgfrepas/asficamelbranchesicamet-1. xicomponentsicametexisietestiavalorg/apacheicamelcomponentiodisoapheaders/CxiMessageHeadersRelay Testjava

80 Fuse Mediation Router Component Reference Version 2.6

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

ersStrategy"/>
</route>

» The MessageHeadersRelay interface has changed slightly and has been renamed to MessageHeaderFilter.
It is a property of CxfHeaderFilterStrategy. Here is an example of configuring user defined Message
Header Filters:

<bean id="customMessageFilterStrategy" class="org.apache.camel.component.cxf.CxfHeaderFil
terStrategy">
<property name="messageHeaderFilters">
<list>
<l-- SoapMessageHeaderFilter is the built in filter. It can be removed by
omitting it. -->
<bean class="org.apache.camel.component.cxf.SoapMessageHeaderFilter"/>

<!-- Add custom filter here -->
<bean class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
</list>

</property>
</bean>

» Other than relayHeaders, there are new properties that can be configured in CxfHeaderFilterStrategy.

Name Description type Required? Default value

relayHeaders All message headers will be boolean No true (1.6.1
processed by Message Header behavior)
Filters

relayAllMessageHeaders All message headers will be boolean No false (1.6.1
propagated (without processing by behavior)
Message Header Filters)

allowFilterNamespaceClash If two filters overlap in activation boolean No false (1.6.1
namespace, the property control how behavior)

it should be handled. If the value is
true, last one wins. If the value is
false, it will throw an exception

Fuse Mediation Router Component Reference Version 2.6 81

Chapter 14. CXF

Configure the CXF endpoints with Spring

You can configure the CXF endpoint with the Spring configuration file shown below, and you can also embed
the endpoint into the camelContext tags. When you are invoking the service endpoint, you can set the
operationName and operationNameSpace headers to explicitly state which operation you are calling.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://activemq.apache.org/camel/schema/cxfEndpoint"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/cxfEndpoint http://act
ivemqg.apache.org/camel/schema/cxf/camel-cxf-1.6.0.xsd
http://activemq.apache.org/camel/schema/spring http://act
ivemq.apache.org/camel/schema/spring/camel-spring.xsd ">
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/CamelContext/Router
Port"
serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>
<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/SoapContext/Soap
Port"
wsdlURL="testutils/hello_world.wsdl"
serviceClass="org.apache.hello_world_soap_http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"
xmlns:s="http://apache.org/hello_world_soap_http" />
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="cxf:bean:routerEndpoint" />
<to uri="cxf:bean:serviceEndpoint" />
</route>
</camelContext>
</beans>

NOTE In Camel 2.x we change to use http://camel.apache.org/schema/cxf as the CXF endpoint's target
namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-

82 Fuse Mediation Router Component Reference Version 2.6

spring.xsd ">

In Fuse Mediation Router 2.x, the http://activemq.apache.org/camel/schema/cxfEndpoint namespace
was changed to http://camel.apache.org/schema/cxf.

Be sure to include the JAX-WS schemaLocation attribute specified on the root beans element. This allows
CXF to validate the file and is required. Also note the namespace declarations at the end of the
<cxf:cxfEndpoint/> tag--these are required because the combined {namespace}localName syntax is
presently not supported for this tag's attribute values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

PortName The endpoint name this service is implementing, it maps to the wsd1:port@name. In the
format of ns: PORT_NAME where ns is a namespace prefix valid at this scope.

serviceName The service name this service is implementing, it maps to the wsdl:service@name. In the
format of ns: SERVICE_NAME where ns is a namespace prefix valid at this scope.

wsd1lURL The location of the WSDL. Can be on the classpath, file system, or be hosted remotely.
bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could have JSR181
annotation or not.

It also supports many child elements:

Name Value
cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See
below.

Fuse Mediation Router Component Reference Version 2.6 83

Chapter 14. CXF

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See
below.

cxf:dataBinding You can specify the which DataBinding will be use in the endpoint. This can
be supplied using the Spring <bean class="MyDataBinding"/> syntax.

cxf:binding You can specify the BindingFactory for this endpoint to use. This can be
supplied using the Spring <bean class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of <bean>s or
<ref>s

cxf:schemalLocations The schema locations for endpoint to use. A list of <schemaLocation>s

cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the

Spring <bean class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide interceptors, properties and handlers here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

You can use CXF:properties to set the CXF endpoint's dataFormat and setDefaultBus properties from a
Spring configuration file, as follows:

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
serviceClass="org.apache.camel.component.cxf.HelloService"
endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>
<entry key="dataFormat" value="MESSAGE"/>
<entry key="setDefaultBus" value="true"/>
</cxf:properties>
</cxf:cxfEndpoint>

How to make the camel-cxf component use log4j instead of java.util.logging
CXF's default logger is java.util.logging. If you want to change it to 1og4j, proceed as follows. Create a

file, in the classpath, named META-INF/cxf/org.apache.cxf.logger. This file should contain the fully-qualified
name of the class, org.apache.cxf.common.logging.Log4jLogger, with no comments, on a single line.

84 Fuse Mediation Router Component Reference Version 2.6

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

How to let camel-cxf response message with xml start document

If you are using some soap client such as PHP, you will get this kind of error, because CXF doesn't add the
XML start document "<?xml version="1.0" encoding="utf-8"?>"

Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in [...]

To resolved this issue, you just need to tell StaxOutinterceptor to write the XML start document for you.

public class WriteXmlDeclarationInterceptor extends AbstractPhaseInterceptor<SoapMessage>
{
public WriteXmlDeclarationInterceptor() {
super (Phase.PRE_STREAM) ;
addBefore(StaxOutInterceptor.class.getName());

}

public void handleMessage(SoapMessage message) throws Fault {
message.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
}

}
You can add a customer interceptor like this and configure it into you camel-cxf endpont

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/CamelContext/RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl">
<cxf:outInterceptors>
<!-- This interceptor will force the CXF server send the XML start document to
client -->
<bean class="org.apache.camel.component.cxf.WriteXmlDeclarationInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>
<!-- Set the publishedEndpointUrl which could override the service address from
generated WSDL as you want -->
<entry key="publishedEndpointUrl" value="http://www.simple.com/services/test" />
</cxf:properties>
</cxf:cxfEndpoint>

Or adding a message header for it like this if you are using Camel 2.4.

// set up the response context which force start document
Map<String, Object> map = new HashMap<String, Object>();
map.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
exchange.getOut().setHeader(Client.RESPONSE_CONTEXT, map);

Fuse Mediation Router Component Reference Version 2.6 85

Chapter 14. CXF

How to consume a message from a camel-cxf endpoint in POJO data format

The camel-cxf endpoint consumer P0JO data format is based on the cxf invokers, so the message header
has a property with the name of CxfConstants.0OPERATION_NAME and the message body is a list of the SEI
method parameters.

public class PersonProcessor implements Processor {
private static final transient Log LOG = LogFactory.getLog(PersonProcessor.class);

@Suppresswarnings("unchecked")
public void process(Exchange exchange) throws Exception {
LOG.info("processing exchange in camel");

BindingOperationInfo boi = (BindingOperationInfo)exchange.getProperty(BindingOpera
tionInfo.class.toString());

if (boi != null) {

LOG.info("boi.isUnwrapped" + boi.isUnwrapped());

}

// Get the parameters list which element is the holder.

MessageContentsList msglList = (MessageContentsList)exchange.getIn().getBody();

Holder<String> personld = (Holder<String>)msgList.get(Q);

Holder<String> ssn = (Holder<String>)msgList.get(1);

Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length() == 0) {
LOG.info("person id 123, so throwing exception");
// Try to throw out the soap fault message
org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =
new org.apache.camel.wsdl_first.types.UnknownPersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl_first.UnknownPersonFault fault =
new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null value of
person name", personFault);
// Since camel has its own exception handler framework, we can't throw the ex
ception to trigger it
// We just set the fault message in the exchange for camel-cxf component handling
and return
exchange.getOut().setFault(true);
exchange.getOut().setBody(fault);

return;
name.value = "Bonjour";
ssn.value = "123";

5 http://cwiki.apache.org/CXF20DOC/invokers.html

86 Fuse Mediation Router Component Reference Version 2.6

http://cwiki.apache.org/CXF20DOC/invokers.html
http://cwiki.apache.org/CXF20DOC/invokers.html

LOG.info("setting Bonjour as the response");

// Set the response message, first element is the return value of the operation,
// the others are the holders of method parameters
exchange.getOut().setBody(new Object[] {null, personId, ssn, name});

How to prepare the message for the camel-cxf endpoint in POJO data format

The camel-cxf endpoint producer is based on the cxf client API®. First you need to specify the operation name
in the message header, then add the method parameters to a list, and initialize the message with this parameter
list. The response message's body is a messageContentsList, you can get the result from that list.

Note: After Fuse Mediation Router 1.5,the message body changed from an object array to a message content
list. If you still want to get the object array from the message body, you can get the body using
message.getbody(Object[].class), as follows:

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();

// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE) ;

senderExchange.getIn().setBody(params);

senderExchange.getIn().setHeader (CxfConstants.0OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();

// The response message's body is an MessageContentsList which first element is the return
value of the operation,

// If there are some holder parameters, the holder parameter will be filled in the reset
of List.

// The result will be extract from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList)out.getBody();

LOG.info("Received output text: " + result.get(0));

Map<String, Object> responseContext = CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CON
TEXT));

assertNotNull(responseContext);

assertEquals("We should get the response context here", "UTF-8", respon
seContext.get(org.apache.cxf.message.Message.ENCODING));

assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE, result.get(0Q));

6 https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxflendpoint/Client.java

Fuse Mediation Router Component Reference Version 2.6 87

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

Chapter 14. CXF

How to deal with the message for a camel-cxf endpoint in PAYLOAD data
format

PAYLOAD means that you process the payload message from the SOAP envelope. You can use the

Header .HEADER_LIST as the key to set or get the SOAP headers and use the List<Element> to set or get
SOAP body elements. In Fuse Mediation Router 1.x, you can get the List<Element> and header from the
CXF Message, but if you want to set the response message, you need to create the CXF message using the
CXF API.

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {
public void configure() {
from(SIMPLE_ENDPOINT_URI + "&dataFormat=PAYLOAD").to("log:info").process(new
Processor () {
public void process(final Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
if (inMessage instanceof CxfMessage) {
CxfMessage cxfInMessage = (CxfMessage) inMessage;
CxfMessage cxfOutMessage = (CxfMessage) exchange.getOut();
List<Element> inElements = cxfInMessage.getMessage().get(List.class);

List<Element> outElements = new ArrayList<Element>();

XmlConverter converter = new XmlConverter();

String documentString = ECHO_RESPONSE;

if (inElements.get(0Q).getLocalName().equals("echoBoolean")) {

documentString = ECHO_BOOLEAN_RESPONSE;
}
org.apache.cxf.message.Exchange ex = ((CxfExchange)exchange).ge
tExchange();

Endpoint ep = ex.get(Endpoint.class);
org.apache.cxf.message.Message response = ep.getBinding().createMes

sage();
Document outDocument = converter.toDOMDocument (documentString);
outElements.add(outDocument.getDocumentElement());
response.put(List.class, outElements);
cxfOutMessage.setMessage(response);

b
b
1):
b
+i
3

In Fuse Mediation Router 2.0: CxfMessage .getBody() will return an
org.apache.camel.component.cxf.CxfPayload object, which has getters for SOAP message headers and

88 Fuse Mediation Router Component Reference Version 2.6

Body elements. This change enables decoupling the native CXF message from the Fuse Mediation Router
message.

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {
public void configure() {
from(SIMPLE_ENDPOINT_URI + "&dataFormat=PAYLOAD").to("log:info").process(new
Processor () {
@SuppresswWarnings("unchecked")
public void process(final Exchange exchange) throws Exception {

CxfPayload<SoapHeader> requestPayload = exchange.getIn().getBody(CxfPay
load.class);
List<Element> inElements = requestPayload.getBody();
List<Element> outElements = new ArrayList<Element>();
// You can use a customer toStringConverter to turn a CxfPayLoad message
into String as you want
String request = exchange.getIn().getBody(String.class);
XmlConverter converter = new XmlConverter();
String documentString = ECHO_RESPONSE;
if (inElements.get(0@).getLocalName().equals("echoBoolean")) {
documentString = ECHO_BOOLEAN_RESPONSE;
assertEquals("Get a wrong request", ECHO_BOOLEAN_REQUEST, request);

} else {
assertEquals("Get a wrong request", ECHO_REQUEST, request);

}

Document outDocument = converter.toDOMDocument (documentString);
outElements.add(outDocument.getDocumentElement());
// set the payload header with null
CxfPayload<SoapHeader> responsePayload = new CxfPayload<SoapHeader>(null,
outElements);
exchange.getOut().setBody(responsePayload);

1)
i

How to get and set SOAP headers in POJO mode

P0JO means that the data format is a list of Java objects when the CXF endpoint produces or consumes Camel
exchanges. Even though Fuse Mediation Router exposes the message body as POJOs in this mode, the CXF
component still provides access to read and write SOAP headers. However, since CXF interceptors remove
in-band SOAP headers from the header list after they have been processed, only out-of-band SOAP headers
are available in POJO mode.

Fuse Mediation Router Component Reference Version 2.6 89

Chapter 14. CXF

The following example illustrates how to get/set SOAP headers. Suppose we have a route that forwards from
one CXF endpoint to another. That is, SOAP Client -> Fuse Mediation Router -> CXF service. We can attach
two processors to obtain/insert SOAP headers at (1) before request goes out to the CXF service and (2) before
response comes back to the SOAP Client. Processor (1) and (2) in this example are
InsertRequestOutHeaderProcessor and InsertResponseOutHeaderProcessor. Our route looks like this:

<route>
<from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
<process ref="InsertRequestOutHeaderProcessor" />
<to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
<process ref="InsertResponseOutHeaderProcessor" />
</route>

In 2.x SOAP headers are propagated to and from Fuse Mediation Router Message headers. The Fuse Mediation
Router message header name is org.apache.cxf.headers.Header.list, which is a constant defined in
CXF (org.apache.cxf.headers.Header .HEADER_LIST). The header value is a List<> of CXF SoapHeader
objects (org.apache.cxf.binding.soap.SoapHeader). The following snippet is the
InsertResponseOutHeaderProcessor (that inserts a new SOAP header in the response message). The way
to access SOAP headers in both InsertResponseOutHeaderProcessor and
InsertRequestOutHeaderProcessor are actually the same. The only difference between the two processors
is setting the direction of the inserted SOAP header.

public static class InsertResponseOutHeaderProcessor implements Processor {

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {
List<SoapHeader> soapHeaders = (List)exchange.getIn().getHeader (Header .HEADER LIST);

// Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http://cxf.apache.org/outofband/Header\" hdrAttribute=\"testHdrAt
tribute\" "
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" soap:mustUnder
stand=\"1\">"
+ "<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outof
bandHeader>";
SoapHeader newHeader = new SoapHeader (soapHeaders.get(Q).getName(),
DOMUtils.readXml(new StringReader(xml)).getDocumentElement());
// make sure direction is OUT since it is a response message.
newHeader .setDirection(Direction.DIRECTION_OUT);
//newHeader .setMustUnderstand(false);
soapHeaders.add(newHeader) ;

920 Fuse Mediation Router Component Reference Version 2.6

In 1.x SOAP headers are not propagated to and from Fuse Mediation Router Message headers. Users have
to go deeper into CXF APlIs to access SOAP headers. Also, accessing the SOAP headers in a request message
is slightly different than in a response message. The InsertRequestOutHeaderProcessor and
InsertResponseOutHeaderProcessor are as follow.s

public static class InsertRequestOutHeaderProcessor implements Processor {
public void process(Exchange exchange) throws Exception {
CxfMessage message = exchange.getIn().getBody(CxfMessage.class);
Message cxf = message.getMessage();
List<SoapHeader> soapHeaders = (List)cxf.get(Header.HEADER_LIST);

// Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http://cxf.apache.org/outofband/Header\" hdrAttribute=\"testHdrAt
tribute\" "
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" soap:mustUnder
stand=\"1\">"
+ "<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outof
bandHeader>";

SoapHeader newHeader = new SoapHeader (soapHeaders.get(0).getName(),
DOMUtils.readXml(new StringReader(xml)).get
DocumentElement());
// make sure direction is IN since it is a request message.
newHeader .setDirection(Direction.DIRECTION_IN);
//newHeader .setMustUnderstand(false);
soapHeaders.add(newHeader);

3

public static class InsertResponseOutHeaderProcessor implements Processor {
public void process(Exchange exchange) throws Exception {
CxfMessage message = exchange.getIn().getBody(CxfMessage.class);
Map responseContext = (Map)message.getMessage().get(Client.RESPONSE_CONTEXT);
List<SoapHeader> soapHeaders = (List)responseContext.get(Header.HEADER_LIST);

// Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http://cxf.apache.org/outofband/Header\" hdrAttribute=\"testHdrAt
tribute\" "
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" soap:mustUnder
stand=\"1\">"
+ "<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outof
bandHeader>";
SoapHeader newHeader = new SoapHeader (soapHeaders.get(0).getName(),
DOMUtils.readXml(new StringReader (xml)).getDocumentElement());
// make sure direction is OUT since it is a response message.
newHeader .setDirection(Direction.DIRECTION_OUT);

Fuse Mediation Router Component Reference Version 2.6 91

Chapter 14. CXF

//newHeader .setMustUnderstand(false);
soapHeaders.add(newHeader);

How to get and set SOAP headers in PAYLOAD mode

We have already shown how to access SOAP message (CxfPayload object) in PAYLOAD mode (see "How to
deal with the message for a camel-cxf endpoint in PAYLOAD data format" on page 88).

In Fuse Mediation Router 2.x Once you obtain a CxfPayload object, you can invoke the
cxfPayload.getHeaders() method that returns a List of DOM Elements (SOAP headers).

from(getRouterEndpointURI()).process(new Processor() {

@SuppressWarnings("unchecked")

public void process(Exchange exchange) throws Exception {
CxfPayload<SoapHeader> payload = exchange.getIn().getBody(CxfPayload.class);
List<Element> elements = payload.getBody();
assertNotNull("wWe should get the elements here", elements);
assertEquals("Get the wrong elements size", 1, elements.size());
assertEquals("Get the wrong namespace URI", "http://camel.apache.org/pizza/types",

elements.get(0Q).getNamespaceURI());

List<SoapHeader> headers = payload.getHeaders();
assertNotNull("We should get the headers here", headers);
assertEquals("Get the wrong headers size", headers.size(), 1);
assertEquals("Get the wrong namespace URI",
((Element) (headers.get(0).getObject())).getNamespaceURI(),
"http://camel.apache.org/pizza/types");

1)
.to(getServiceEndpointURI());

In Fuse Mediation Router 1.x: You can get/set to the CXF Message by the key
org.apache.cxf.headers.Header.list which is a constant defined in CXF
(org.apache.cxf.headers.Header .HEADER_LIST).

from(routerEndpointURI).process(new Processor() {
@SuppresswWarnings("unchecked")
public void process(Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
CxfMessage message = (CxfMessage) inMessage;
List<Element> elements = message.getMessage().get(List.class);
assertNotNull("we should get the payload elements here" , elements);

92 Fuse Mediation Router Component Reference Version 2.6

assertEquals("Get the wrong elements size" , elements.size(), 1);
assertEquals("Get the wrong namespace URI" , elements.get(0Q).getNamespaceURI(),
"http://camel.apache.org/pizza/types");

List<SoapHeader> headers = CastUtils.cast((List<?>)message.getMessage().get(Head
er .HEADER_LIST));

assertNotNull("we should get the headers here", headers);

assertEquals("Get the wrong headers size", headers.size(), 1);

assertEquals("Get the wrong namespace URI" , ((Element)(headers.get(0).getOb
ject())).getNamespaceURI(), "http://camel.apache.org/pizza/types");

}
1)

.to(serviceEndpointURI);

SOAP headers are not available in MESSAGE mode

SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

How to throw a SOAP Fault from Fuse Mediation Router

If you are using a CXF endpoint to consume the SOAP request, you may need to throw the SOAP Fault from
the camel context. Basically, you can use the throwFault DSL to do that; it works for P0JO, PAYLOAD and
MESSAGE data format. You can define the soap fault like this:

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();

Document doc = detail.getOwnerDocument();

Text tn = doc.createTextNode(DETAIL_TEXT);

detail.appendChild(tn);

Then throw it as you like:

from(routerEndpointURI).setFaultBody(constant (SOAP_FAULT));

If your CXF endpoint is working in the MESSAGE data format, you could set the the SOAP Fault message in the
message body and set the response code in the message header.

from(routerEndpointURI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message out = exchange.getOut();
// Set the message body with the
out.setBody(this.getClass().getResourceAsStream("SoapFaultMessage.xml"));
// Set the response code here
out.setHeader (org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));

Fuse Mediation Router Component Reference Version 2.6 93

Chapter 14. CXF

)i

The response code setting only works in Fuse Mediation Router version >=1.5.1

How to propagate a CXF endpoint's request and response context

cxf client API provides a way to invoke the operation with request and response context. If you are using a
CXF endpoint producer to invoke the external Web service, you can set the request context and get the
response context with the following code:

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new Pro
cessor() {
public void process(final Exchange exchange) {
final List<String> params = new ArrayList<String>();
params.add(TEST_MESSAGE) ;
// Set the request context to the inMessage
Map<String, Object> requestContext = new HashMap<String, Object>();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, JAXWS_SERV
ER_ADDRESS) ;
exchange.getIn().setBody(params);
exchange.getIn().setHeader (Client.REQUEST_CONTEXT , requestContext);
exchange.getIn().setHeader (CxfConstants.OPERATION_NAME, GREET_ME_OPERATION);

3

1)

org.apache.camel.Message out = exchange.getOut();

// The output is an object array, the first element of the array is the return
value

Object\[\] output = out.getBody(Object\[\].class);

LOG.info("Received output text: " + output\[O\]);

// Get the response context form outMessage

Map<String, Object> responseContext = CastUtils.cast((Map)out.getHeader(Client.RE
SPONSE_CONTEXT)) ;

assertNotNull(responseContext);

assertEquals("Get the wrong wsdl opertion name", "{ht
tp://apache.org/hello_world_soap_http}greetMe",

responseContext.get("javax.xml.ws.wsdl.operation").toString());

7 https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/lendpoint/Client.java

94 Fuse Mediation Router Component Reference Version 2.6

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

Attachment Support

POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in Payload Mode for
enabling MTOM).However, SOAP with Attachment is not tested.Since attachments are marshalled and
unmarshalled into POJOs, users typically do not need to deal with the attachment themself.Attachments are
propagated to Camel message's attachments since 2.1.So, it is possible to retreive attachments by Camel
Message API

DataHandler Message.getAttachment(String id)

Payload Mode: MTOM is supported since 2.1. Attachments can be retrieved by Camel Message APIs mentioned
above. SOAP with Attachment is not supported as there is no SOAP processing in this mode.

To enable MTOM, set the CXF endpoint property "mtom_enabled" to true. (I believe you can only do it with
Spring.)

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9091/jaxws-mtom/hello"
wsd1URL="mtom.wsd1"
serviceName="ns:HelloService"
endpointName="ns:HelloPort"
xmlns:ns="http://apache.org/camel/cxf/mtom_feature">

<cxf:properties>
<!-- enable mtom by setting this property to true -->
<entry key="mtom-enabled" value="true"/>

<!-- set the camel-cxf endpoint data fromat to PAYLOAD mode -->
<entry key="dataFormat" value="PAYLOAD"/>
</cxf:properties>

You can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.

Exchange exchange = context.createProducerTemplate().send("direct:testEndpoint", new Pro
cessor() {

public void process(Exchange exchange) throws Exception {
exchange.setPattern(ExchangePattern.InOut);
List<Element> elements = new ArrayList<Element>();
elements.add(DOMUtils.readXml(new StringReader (MtomTestHelper.REQ_MESSAGE)).getDoc
umentElement());
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new ArraylList<SoapHeader>(),

Fuse Mediation Router Component Reference Version 2.6 95

Chapter 14. CXF

elements);
exchange.getIn().setBody(body);
exchange.getIn().addAttachment(MtomTestHelper.REQ PHOTO_CID,
new DataHandler (new ByteArrayDataSource(MtomTestHelper.REQ_PHOTO_DATA, "applic
ation/octet-stream")));

exchange.getIn().addAttachment(MtomTestHelper.REQ IMAGE_CID,
new DataHandler (new ByteArrayDataSource(MtomTestHelper.requestJpeg, "im

age/jpeg")));
}
1)
// process response

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include", out.get
Body().get(0),
XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue("//ns:DetailResponse/ns:image/xop:Include", out.getBody().get(0),

XPathConstants.NODE);
String imageIld = ele.getAttribute("href").substring(4); // skip "cid:"

DataHandler dr = exchange.getOut().getAttachment(photold);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.RESP_PHOTO_DATA, IOUtils.readBytesFromStream(dr.get
InputStream()));

dr = exchange.getOut().getAttachment(imageId);
Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

You can also consume a Camel message received from a CXF endpoint in Payload mode.

96 Fuse Mediation Router Component Reference Version 2.6

public static class MyProcessor implements Processor {

@SuppresswWarnings("unchecked")
public void process(Exchange exchange) throws Exception {
CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);

// verify request
Assert.assertEquals(1, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", in.get
Body().get(0),
XPathConstants.NODE);
String photold = ele.getAttribute("href").substring(4); // skip "cid:"
Assert.assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", in.getBody().get(0),

XPathConstants.NODE);
String imageld = ele.getAttribute("href").substring(4); // skip "cid:"
Assert.assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageld);

DataHandler dr = exchange.getIn().getAttachment(photold);

Assert.assertEquals("application/octet-stream", dr.getContentType());

MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA, IOUtils.readBytesFrom
Stream(dr.getInputStream()));

dr = exchange.getIn().getAttachment(imageId);

Assert.assertEquals("image/jpeg", dr.getContentType());

MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg, IOUtils.readBytesFrom
Stream(dr.getInputStream()));

// create response
List<Element> elements = new ArrayList<Element>();
elements.add(DOMUtils.readXml(new StringReader (MtomTestHelper.RESP_MESSAGE)).getDoc
umentElement());
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new ArraylList<SoapHeader>(),

elements);
exchange.getOut().setBody(body);
exchange.getOut().addAttachment (MtomTestHelper .RESP_PHOTO_CID,
new DataHandler (new ByteArrayDataSource(MtomTestHelper.RESP_PHOTO_DATA, "applic
ation/octet-stream")));

exchange.getOut().addAttachment (MtomTestHelper .RESP_IMAGE_CID,

Fuse Mediation Router Component Reference Version 2.6 97

Chapter 14. CXF

new DataHandler (new ByteArrayDataSource(MtomTestHelper.responseJpeg, "im
age/jpeg")));

3
3

Message Mode: Attachments are not supported as it does not process the message at all.

98 Fuse Mediation Router Component Reference Version 2.6

Chapter 15. CXFRS

CXFRS Component

The cxfrs: component provides integration with Apache CXF? for connecting to JAX-RS services hosted in
CXF.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>

<groupId>org.apache.camel</groupId>

<artifactId>camel-cxf</artifactId>

<version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>

When using CXF as a consumer, the CAMEL:CXF Bean Component allows you to factor out how message
payloads are received from their processing as a RESTful or SOAP web service. This has the potential of
using a multitude of transports to consume web services. The bean component's configuration is also simpler
and provides the fastest method to implement web services using Camel and CXF.

URI format
cxfrs://address?options

Where address represents the CXF endpoint's address

cxfrs:bean:rsendpoint
Where rsEndpoint represents the Spring bean's name which represents the CXFRS client or server

For either style above, you can append options to the URI as follows:

cxfrs:bean:cxfEndpoint?resourceClasses=org.apache.camel.rs.Example

t http://incubator.apache.org/cxf/

Fuse Mediation Router Component Reference Version 2.6 99

http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/

Chapter 15. CXFRS

Options
Name Description Example
resourceClasses The resource classes which you resourceClasses=org.apache.camel.rs.Examplel,org.apa
want to export as REST service
httpClientAPI New to Fuse Mediation Router httpClientAPI=true
2.1 Ifitis true, the CxfRsProducer
will use the HttpClientAPI to invoke
the service
synchronous New in 2.5, this option will let synchronous=true

throwExceptionOnFailure

maxClientCacheSize

CxfRsConsumer decide to use
sync or async API to do the
underlying work. The default value
is false which means it will try to
use async API by default.

New in 2.6, this option tells the throwExceptionOnFailure=true
CxfRsProducer to inspect return

codes and will generate an

Exception if the return code is

larger than 207.

New in 2.6, you can set the In maxClientCacheSize=5
message header,
CamelDestinationOverrideUrl,
to dynamically override the target
destination Web Service or REST
Service defined in your routes. The
implementation caches CXF
clients or clientFactoryBean in
CcxfProvider and CxfRsProvider.
This option allows you to configure
the maximum size of the cache.

You can also configure the CXF REST endpoint through the Spring configuration. Since there are lots of
difference between the CXF REST client and CXF REST Server, we provide different configuration for them.
Please check out the schema file? and CXF REST user guide3 for more information.

2 http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html

100

Fuse Mediation Router Component Reference Version 2.6

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html

How to configure the REST endpoint in Fuse Mediation Router

In camel-cxf schema file4, there are two elements for the REST endpoint definition. cxf:rsServer for REST
consumer, cxf:rsClient for REST producer. You can find a Fuse Mediation Router REST service route
configuration example here.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xmlns:jaxrs="http://cxf.apache.org/jaxrs"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd

http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd
Ve
<!-- Defined the real JAXRS back end service -->
<jaxrs:server id="restService"
address="http://localhost:9002/rest"
staticSubresourceResolution="true">
<jaxrs:serviceBeans>
<ref bean="customerService"/>
</jaxrs:serviceBeans>
</jaxrs:server>

<bean id="jsonProvider" class="org.apache.cxf.jaxrs.provider.JSONProvider"/>

<bean id="customerService" class="org.apache.camel.component.cxf.jaxrs.testbean.Custom
erService" />

<!-- Defined the server endpoint to create the cxf-rs consumer -->
<cxf:rsServer id="rsServer" address="http://localhost:9000/route"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

<!-- Defined the client endpoint to create the cxf-rs consumer -->
<cxf:rsClient id="rsClient" address="http://localhost:9002/rest"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"/>

<!-- The camel route context -->
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="cxfrs://bean://rsServer"/>

4 http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd

Fuse Mediation Router Component Reference Version 2.6 101

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd

Chapter 15. CXFRS

<!-- We can remove this configure as the CXFRS producer is using the HttpAPI by default

-->

<setHeader headerName="CamelCxfRsUsingHttpAPI">
<constant>True</constant>
</setHeader>
<to uri="cxfrs://bean://rsClient"/>
</route>
</camelContext>
</beans>

How to consume the REST request in Fuse Mediation Router

CXF JAXRS front end” implements the JAXRS(JSR311) APIG, SO we can export the resources classes as a
REST service. And we leverage the CXF Invoker API” to turn a REST request into a normal Java object method
invocation. Unlike the camel-restlet, you don't need to specify the URI template within your restlet endpoint,
CXF take care of the REST request URI to resource class method mapping according to the JSR311
specification. All you need to do in Fuse Mediation Router is delegate this method request to a right processor
or endpoint.

Here is an example

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() {
errorHandler (new NoErrorHandlerBuilder());
from(CXF_RS_ENDPOINT_URI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
// Get the operation name from in message
String operationName = inMessage.getHeader (CxfConstants.OPERATION_NAME,
String.class);
if ("getCustomer".equals(operationName)) {
String httpMethod = inMessage.getHeader (Exchange.HTTP_METHOD,
String.class);
assertEquals("Get a wrong http method", "GET", httpMethod);
String path = inMessage.getHeader (Exchange.HTTP_PATH, String.class);

// The parameter of the invocation is stored in the body of in
message

String id = (String) inMessage.getBody(String.class);

if ("/customerservice/customers/126".equals(path)) {

5 http://cwiki.apache.org/CXF20DOC/jax-rs.html
6 https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers

102 Fuse Mediation Router Component Reference Version 2.6

http://cwiki.apache.org/CXF20DOC/jax-rs.html
https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers
http://cwiki.apache.org/CXF20DOC/jax-rs.html
https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers

Customer customer = new Customer();
customer.setId(Long.parseLong(id));
customer.setName("wWillem");
// We just put the response Object into the out message body
exchange.getOut().setBody(customer);
} else {
if ("/customerservice/customers/456".equals(path)) {
Response r = Response.status(404).entity("Can't found the
customer with uri " + path).build();
throw new WebApplicationException(r);
} else {
throw new RuntimeCamelException("Can't found the customer
with uri " + path);

1
1
if ("updateCustomer".equals(operationName)) {
assertEquals("Get a wrong customer message header", "headerl;header2",

inMessage.getHeader ("test"));
String httpMethod = inMessage.getHeader (Exchange.HTTP_METHOD,
String.class);
assertEquals("Get a wrong http method", "PUT", httpMethod);
Customer customer = inMessage.getBody(Customer.class);

assertNotNull("The customer should not be null.", customer);
// Now you can do what you want on the customer object
assertEquals("Get a wrong customer name.", "Mary", customer.get
Name());
// set the response back
exchange.getOut().setBody(Response.ok().build());
1
1
1
1
}
1

How to invoke the REST service through camel-cxfrs producer ?

CXF JAXRS front end® implements a proxy based client APIg, with this API 3/0u can invoke the remote REST
service through a proxy. camel-cxfrs producer is based on this proxy API*C. So, you just need to specify the
operation name in the message header and prepare the parameter in the message body, camel-cxfrs producer
will generate right REST request for you.

8 http://cwiki.apache.org/CXF20DOC/jax-rs.html
M http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
0 http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI|

Fuse Mediation Router Component Reference Version 2.6 103

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI

Chapter 15. CXFRS

Here is an example

Exchange exchange = template.send("direct://proxy", new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
// set the operation name
inMessage.setHeader (CxfConstants.OPERATION_NAME, "getCustomer");
// using the proxy client API
inMessage.setHeader (CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.FALSE);
// set the parameters , if you just have one parameter
// camel will put this object into an Object[] itself
inMessage.setBody("123");

1)

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");
assertEquals("Get a wrong customer name", response.getName(), "John");

CXF JAXRS front end™* also provides a http centric cIientAPIlz, You can also invoke this APl from camel-cxfrs
producer. You need to specify the HTTP_PATH and Http method and let the the producer know to use the
HTTP centric client by using the URI option httpClientAPI or set the message header with
cxfConstants.CAMEL_CXF_RS_USING_HTTP_API. You can turn the response object to the type class that you
specify with CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS.

Exchange exchange = template.send("direct://http", new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
// using the http central client API
inMessage.setHeader (CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.TRUE);
// set the Http method
inMessage.setHeader (Exchange.HTTP_METHOD, "GET");
// set the relative path
inMessage.setHeader (Exchange.HTTP_PATH, "/customerservice/customers/123");

// Specify the response class , cxfrs will use InputStream as the response object
type
inMessage.setHeader (CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS, Customer.class);

1 http://cwiki.apache.org/CXF20DOC/jax-rs.html
2 http://cxf.apache.org/docs/jax-rs.htmi#JAX-RS-HTTPcentricclients

104 Fuse Mediation Router Component Reference Version 2.6

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HTTPcentricclients
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HTTPcentricclients

// since we use the Get method, so we don't need to set the message body
inMessage.setBody(null);

1

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");
assertEquals("Get a wrong customer name", response.getName(), "John");

From Fuse Mediation Router 2.1, we also support to specify the query parameters from CXFRS URI for the
CXFRS HTTP centric client.

Exchange exchange = template.send("cxfrs://http://localhost:9003/testQuery?httpCli
entAPI=true&ql=12&q2=13"

To support the Dynamical routing, you can override the URI's query parameters by using the
cxfConstants.CAMEL_CXF_RS_QUERY_MAP header to set the parameter map for it.To support the Dynamical
routing, you can override the URI's query parameters by using the CxfConstants.CAMEL_CXF_RS_QUERY_MAP
header to set the parameter map for it.

Map<String, String> queryMap = new LinkedHashMap<String, String>();
queryMap.put("ql", "new");

queryMap.put("g2", "world");

inMessage.setHeader (CxfConstants.CAMEL_CXF_RS_QUERY_MAP, queryMap);

Fuse Mediation Router Component Reference Version 2.6 105

106 Fuse Mediation Router Component Reference Version 2.6

Chapter 16. DataSet

DataSet Component

The DataSet component (available since 1.3.0) provides a mechanism to easily perform load & soak testing
of your system. It works by allowing you to create DataSet instances® both as a source of messages and as
a way to assert that the data set is received.

Fuse Mediation Router will use the throughput logger on page 331 when sending dataset's.

URI format
dataset:name[?options]
Where name is used to find the DataSet instance? in the Registry

Fuse Mediation Router ships with a support implementation of
org.apache.camel.component.dataset.DataSet, the
org.apache.camel.component.dataset.DataSetSupport class, that can be used as a base for implementing
your own DataSet. Fuse Mediation Router also ships with a default implementation, the
org.apache.camel.component.dataset.SimpleDataSet that can be used for testing.

Options

Option Default Description

produceDelay 3 Allows a delay in ms to be specified, which causes producers to pause in order to
simulate slow producers. Uses a minimum of 3 ms delay unless you set this option
to -1 to force no delay at all.

consumeDelay O Allows a delay in ms to be specified, which causes consumers to pause in order to
simulate slow consumers.

preloadSize O Sets how many messages should be preloaded (sent) before the route completes

its initialization.
initialbelay 21000 Camel 2.1: Time period in millis to wait before starting sending messages.

minRate 0 Wait until the DataSet contains at least this number of messages

You can append query options to the URI in the following format, ?option=value&option=value&. ..

! http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html

Fuse Mediation Router Component Reference Version 2.6 107

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
Registry
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html

Chapter 16. DataSet

Configuring DataSet

Fuse Mediation Router will lookup in the Registry for a bean implementing the DataSet interface. So you can
register your own DataSet as:

<bean id="myDataSet" class='"com.mycompany.MyDataSet">

<property name="size" value="100"/>
</bean>

Example

For example, to test that a set of messages are sent to a queue and then consumed from the queue without
losing any messages:

// send the dataset to a queue
from("dataset:foo0").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemqg:SomeQueue").to("dataset:fo0");

The above would look in the Registry to find the foo DataSet instance which is used to create the messages.

Then you create a DataSet implementation, such as using the SimpleDataSet as described below, configuring
things like how big the data set is and what the messages look like etc.

Properties on SimpleDataSet

Property Type Description

defaultBody Object Specifies the default message body. For SimpleDataSet it is a constant payload;
though if you want to create custom payloads per message, create your own derivation
of bataSetSupport.

reportGroup long Specifies the number of messages to be received before reporting progress. Useful
for showing progress of a large load test.

size long Specifies how many messages to send/consume.

» Spring Testing

108 Fuse Mediation Router Component Reference Version 2.6

Registry
Registry
Spring Testing

Chapter 17. Db4o

Db4o Component
Available as of Camel 2.5

The db4o: component allows you to work with db4o® NoSQL database. The camel-db4o library is provided
by the Camel Extra’ project which hosts all *GPL related components for Camel.

Sending to the endpoint

Sending POJO object to the db4o endpoint adds and saves object into the database. The body of the message
is assumed to be a POJO that has to be saved into the db40 database store.

Consuming from the endpoint

Consuming messages removes (or updates) POJO objects in the database. This allows you to use a Db4o
datastore as a logical queue; consumers take messages from the queue and then delete them to logically
remove them from the queue.

If you do not wish to delete the object when it has been processed, you can specify consumeDelete=false
on the URI. This will result in the POJO being processed each poll.

URI format

db4o:className[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

consumeDelete true Option for Db4oConsumer only. Specifies whether or not the
entity is deleted after it is consumed.

consumer .delay 500 Option for HibernateConsumer only. Delay in millis between
each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

! http://www.db4o.com
2 http://code.google.com/p/camel-extra/

Fuse Mediation Router Component Reference Version 2.6 109

http://www.db4o.com
http://code.google.com/p/camel-extra/
http://www.db4o.com
http://code.google.com/p/camel-extra/

Chapter 17. Db4o

consumer .userFixedDelay false Option for HibernateConsumer only. Set to true to use fixed
delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService® in JDK for details.

8 http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

110 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Chapter 18. Direct

Direct Component

The direct: component provides direct, synchronous invocation of any consumers when a producer sends a
message exchange. This endpoint can be used to connect existing routes in the same camel context.

? Asynchronous

The Seda component provides asynchronous invocation of any consumers when a producer sends a message
exchange.

? Connection to other camel contexts

The VM on page 519 component provides connections between Camel contexts as long they run in the same ‘
JVM.

URI format

direct:someName[?options]

Where someName can be any string to uniquely identify the endpoint

Options
Name Default Value Description
allowMultipleConsumers true @deprecated If set to false, then when a second consumer is

started on the endpoint, an I1legalStateException is thrown.
Will be removed in Camel 2.1: Direct endpoint does not support
multiple consumers.

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Samples

In the route below we use the direct component to link the two routes together:

Fuse Mediation Router Component Reference Version 2.6 111

Chapter 18. Direct

from("activemq:queue:order.in").to("bean:orderServer?method=validate").to("direct:pro
cessOrder");

from("direct:processOrder").to("bean:orderService?method=process").to("activemq:queue:or
der.out");

And the sample using spring DSL:

<route>
<from uri="activemq:queue:order.in"/>
<to uri="bean:orderService?method=validate"/>
<to uri="direct:processOrder"/>

</route>

<route>
<from uri="direct:processOrder"/>
<to uri="bean:orderService?method=process"/>
<to uri="activemq:queue:order.out"/>
</route>
See also samples from the Seda component, how they can be used together.
* Seda

* VM on page 519

112 Fuse Mediation Router Component Reference Version 2.6

Chapter 19. EJB

EJB Component
Available as of 2.4

The ejb: component binds EJBs to message exchanges.

URI format
ejb:ejbName[?options]

Where ejbName can be any string which is used to look up the EJB in the Application Server JNDI Registry

Options
Name Type Default Description
method String null The method name that bean will be invoked. If not provided, will

try to pick the method itself. In case of ambiguity an exception is
thrown. See Bean Binding for more details.

multiParameterArray boolean false How to treatthe parameters which are passed from the message
body; if it is true, the In message body should be an array of
parameters.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

The EJB on page 113 component extends the Bean on page 41 component in which most of the details from
the Bean on page 41 component applies to this component as well.

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter)
and how parameter values are constructed from the MessageMessage are all defined by the Bean Binding
mechanism which is used throughout all of the various Bean Integration mechanisms in .

Examples

In the following examples we use the Greater EJB which is defined as follows:

Fuse Mediation Router Component Reference Version 2.6 113

Registry
Bean Binding
Bean Binding
Bean Integration

Chapter 19. EJB

public interface GreaterLocal {
String hello(String name);
String bye(String name);

}

And the implementation

@Stateless
public class GreaterImpl implements GreaterLocal {

public String hello(String name) {
return "Hello " + name;

3

public String bye(String name) {
return "Bye " + name;

3

Using Java DSL

In this example we want to invoke the hello method on the EJB. Since this example is based on an unit test
using Apache OpenEJB we have to set a JndiContext on the EJB on page 113 component with the OpenEJB
settings.

@Override
protected CamelContext createCamelContext() throws Exception {
CamelContext answer = new DefaultCamelContext();

// enlist EJB component using the JndiContext
EjbComponent ejb = answer.getComponent("ejb", EjbComponent.class);
ejb.setContext(createEjbContext());

return answer;

3

private static Context createEjbContext() throws NamingException {
// here we need to define our context factory to use OpenEJB for our testing
Properties properties = new Properties();
properties.setProperty(Context.INITIAL_CONTEXT_FACTORY, "org.apache.openejb.client.Loc
alInitialContextFactory");

return new InitialContext(properties);

114 Fuse Mediation Router Component Reference Version 2.6

Then we are ready to use the EJB in the route:

from("direct:start")
// invoke the greeter EJB using the local interface and invoke the hello method
.to("ejb:GreaterImplLocal?method=hello")
.to("mock:result");

* In areal application server

In a real application server you most likely do not have to setup a JndiContext on the EJB on page 113
component as it will create a default JndiContext on the same JVM as the application server, which usually
allows it to access the JNDI registry and lookup the EJB on page 113s. However if you need to access a
application server on a remote JVM or the likes, you have to prepare the properties beforehand.

Using Spring XML
And this is the same example using Spring XML instead:

Again since this is based on an unit test we need to setup the EJB on page 113 component:

<!-- setup Camel EJB component -->

<bean id="ejb" class="org.apache.camel.component.ejb.EjbComponent">
<property name="properties" ref="jndiProperties"/>

</bean>

<!-- use OpenEJB context factory -->
<p:properties id="jndiProperties">
<prop key="java.naming.factory.initial">org.apache.openejb.client.LocalInitialContext
Factory</prop>
</p:properties>

Before we are ready to use EJB on page 113 in the routes:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<to uri="ejb:GreaterImplLocal?method=hello"/>
<to uri="mock:result"/>
</route>
</camelContext>

* Bean on page 41

» Bean Binding

Fuse Mediation Router Component Reference Version 2.6 115

Bean Binding

Chapter 19. EJB

» Bean Integration

116 Fuse Mediation Router Component Reference Version 2.6

Bean Integration

Chapter 20. Esper

Esper

The Esper component supports the Esper Library1 for Event Stream Processing. The camel-esper library is
provided by the Camel Extra’ project which hosts all *GPL related components for Fuse Mediation Router.

URI format
esper:name[?options]

When consuming from an Esper endpoint you must specify a pattern or eql statement to query the event
stream.

For example

from("esper://cheese?pattern=every event=MyEvent(bar=5)").
to("activemqg:Foo");

Options

Name Default Value Description

pattern The Esper Pattern expression3 as a String to filter events
eql The Esper EQL expression4 as a String to filter events

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Demo

There is a demo which shows how to work with ActiveMQ, Fuse Mediation Router and Esper5 in the Camel
Extra® project

» Esper Fuse Mediation Router Demo’

! http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://lesper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://lesper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/wiki/EsperDemo

Fuse Mediation Router Component Reference Version 2.6 117

http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/wiki/EsperDemo

118 Fuse Mediation Router Component Reference Version 2.6

Chapter 21. Event

Event Component

The event: component provides access to the Spring ApplicationEvent objects. This allows you to publish
ApplicationEvent objects to a Spring ApplicationContext or to consume them. You can then use Enterprise
Integration Patterns to process them such as Message Filter.

URI format
event://default
As of FUSE Mediation Router 1.5 the component prefix has been renamed to spring-event

spring-event://default

Fuse Mediation Router Component Reference Version 2.6 119

120 Fuse Mediation Router Component Reference Version 2.6

Chapter 22. EventAdmin

EventAdmin component
Available in Camel 2.6

The eventadmin component can be used in an OSGi environment to receive OSGi EventAdmin events and
process them.

Dependencies

Maven users need to add the following dependency to their pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-eventadmin</artifactId>
<version>${camel-version}</version>
</dependency>

where $\{camel-version\} must be replaced by the actual version of Camel (2.6.0 or higher).

URI format

eventadmin:topic

where topic is the name of the topic to listen too.

URI options

‘Name Default value Description ‘

Message headers

‘Name Type Message Description‘

Fuse Mediation Router Component Reference Version 2.6 121

Chapter 22. EventAdmin

Message body

The in message body will be set to the received Event.

Example usage

<route>
<from uri="eventadmin:*"/>
<to uri="stream:out"/>
</route>

122

Fuse Mediation Router Component Reference Version 2.6

Chapter 23. Exec

Exec component

Available in Fuse Mediation Router 2.3

The exec component can be used to execute a system command.

Dependencies

Maven users need to add the following dependency to their pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-exec</artifactId>
<version>${camel-version}</version>
</dependency>

where ${camel-version} must be replaced by the actual version of Fuse Mediation Router (2.3.0 or higher).

URI format

exec://executable[?options]

where executable is the name, or file path, of the system command that will be executed. If executable name
is used (e.g. exec:java), the executable must in the system path.

URI options

Name Default value
args null
workingDir null

timeout Long.MAX_VALUE

Fuse Mediation Router Component Reference Version 2.6

Description

The arguments of the executable. The arguments may
be one or many whitespace-separated tokens, that
can be quoted with ", e.g. args="arg 1" arg2 will
use two arguments arg 1 and arg2. To include the
quotes use "", e.g. args=""arg 1"" arg2 will use
the arguments "arg 1" and arg2.

The directory in which the command should be
executed. If null, the working directory of the current
process will be used.

The timeout, in milliseconds, after which the
executable should be terminated. If the executable

123

Chapter 23. Exec

outFile null

binding a DefaultExecBinding
instance

commandExecutor a
DefaultCommandExecutor
instance

useStderrOnEmptyStdout false

has has not finished within the timeout, the component
will send a termination request.

The name of a file, created by the executable, that
should be considered as output of the executable. If
no outFile is set, the standard output (stdout) of the
executable will be considered as output.

A reference to a
org.apache.commons.exec.ExecBinding in the
Registryl.

A reference to a
org.apache.commons.exec.ExecCommandExecutor
in the Registryz, that customizes the command
execution. The default command executor utilizes the
commons-exec Iibrarys. It adds a shutdown hook for
every executed command.

A boolean which dictates when stdin is empty, it
should fallback and use stderr in the Message Body.
This option is default false.

Message headers

The supported headers are defined in org.apache.camel.component.exec.ExecBinding.

Name
ExecBinding.EXEC_COMMAND_EXECUTABLE

ExecBinding.EXEC_COMMAND_ARGS

! http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://commons.apache.org/exec/

124

Type
String

java.util.List<String> in

Message Description

The name of the
system
command that
will be
executed.
Overrides the
executable in
the URL.

The arguments
of the
executable. The
arguments are

in

Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://commons.apache.org/exec/
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://commons.apache.org/exec/

ExecBinding.EXEC_COMMAND_OUT_FILE String
ExecBinding.EXEC_COMMAND_TIMEOUT long
ExecBinding.EXEC_COMMAND_WORKING_DIR String
ExecBinding.EXEC_EXIT_VALUE int

Fuse Mediation Router Component Reference Version 2.6

in

in

in

out

used literally, no
quoting is
applied.
Overrides
existing args in
the URIL.

The name of a
file, created by
the executable,
that should be
considered as
output of the
executable.
Overrides
existing
outFile in the
URI.

The timeout, in
milliseconds,
after which the
executable
should be
terminated.
Overrides
existing
timeout in the
URI.

The directory in
which the
command
should be
executed.
Overrides
existing
workingDir in
the URL.

The value of
this header is
the exit value of
the executable.
Typically
not-zero exit

125

Chapter 23. Exec

values indicates
abnormal
termination.
Note that the
exit value is
OS-dependent.

ExecBinding.EXEC_STDERR java.io.InputStream out The value of
this header
points to the
standard error
stream (stderr)
of the
executable. If
no stderr is
written, the
value is null.

ExecBinding.EXEC_USE_STDERR_ON_EMPTY_STDOUT boolean in Indicates when
the stdin is
empty, should
we fallback and
use stderr as
the body of the
Message. By
default this
option is false.

Message body

If the in message body, that that the Exec component receives, is convertible to java.io.InputStream, itis
used to feed input of the executable via its stdin. After the execution, the message body4 is the result of the

execution, that is org.apache.camel.components.exec.ExecResult instance containingsthe stdout, stderr,
exit value and out file. The component supports the following ExecResult type converters™ for convenience:

From To

ExecResult java.io.InputStream
ExecResult String

ExecResult byte []

4 http://camel.apache.org/exchange.html
http://camel.apache.org/type-converter.html

126 Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/exchange.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/type-converter.html

’ExecResult org.w3c.dom.Document

If out file is used (the endpoint is configured with outFile, or there is ExecBinding.EXEC_COMMAND_OUT_FILE
header) the converters return the content of the out file. If no out file is used, then the converters will use the
stdout of the process for conversion to the target type. For example refer to the usage examples.

Executing word count (Linux)

The example below executes wc (word count, Linux) to count the words in file /usr/share/dict/words. The
word count (output) is written in the standart output stream of wc.

from("direct:exec")
.to("exec:wc?args=--words /usr/share/dict/words")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
// By default, the body is ExecResult instance
assertIsInstanceOf (ExecResult.class, exchange.getIn().getBody());
// Use the Camel Exec String type converter to convert the ExecResult to String
// In this case, the stdout is considered as output
String wordCountOutput = exchange.getIn().getBody(String.class);
// do something with the word count

1)

Executing java

The example below executes java with 2 arguments: -server and -version, provided that java is in the
system path.

from("direct:exec")
.to("exec:java?args=-server -version")

The example below executes java in c:/temp with 3 arguments: -server, -version and the sytem property
user.name.

from("direct:exec")
.to("exec:c:/program files/jdk/bin/java?args=-server -version -Duser.name=Camel&working
Dir=c:/temp")

Fuse Mediation Router Component Reference Version 2.6 127

Chapter 23. Exec

Executing Ant scripts

The following example executes Apache Ant® (Windows only) with the build file CamelExecBuildFile.xml,
provided that ant . bat is in the system path, and that CamelExecBuildFile.xml is in the current directory.

from("direct:exec")
.to(exec:ant.bat?args=-f CamelExecBuildFile.xml")

In the next example, the ant .bat command, redirects the ant output to CamelExecOutFile. txt with -1. The
file CamelExecOutFile. txt is used as out file with outFile=CamelExecOutFile.txt. The example assumes
that ant . bat is in the system path, and that CamelExecBuildFile.xml is in the current directory.

from("direct:exec")
.to("exec:ant.bat?args=-f CamelExecBuildFile.xml -1 CamelExecOutFile.txt&outFile=CamelEx
ecOutFile.txt")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
InputStream outFile = exchange.getIn().getBody(InputStream.class);
assertIsInstanceOf (InputStream.class, outFile);
// do something with the out file here

1)

6 http://ant.apache.org/

128 Fuse Mediation Router Component Reference Version 2.6

http://ant.apache.org/
http://ant.apache.org/

Chapter 24. File2

File Component - Fuse Mediation Router 2.0 onwards

The File component provides access to file systems, allowing files to be processed by any other Fuse Mediation
Router Components on page 3 or messages from other components to be saved to disk.

URI format

file:directoryName[?options]

or

file://directoryName[?options]

Where directoryName represents the underlying file directory.

You can append query options to the URI in the following format, 2option=value&option=value&. ..

? Only directories

Fuse Mediation Router 2.0 only support endpoints configured with a starting directory. So the directoryName
must be a directory. If you want to consume a single file only, you can use the fileName option, e.g. by setting
fileName=thefilename. Also, the starting directory must not contain dynamic expressions with ${ } placeholders.
Again use the fileName option to specify the dynamic part of the filename.

In Fuse Mediation Router 1.x you could also configure a file and this caused more harm than good as it could
lead to confusing situations.

O Avoid reading files currently being written by another applic-

ation

Beware the JDK File 10 API is a bit limited in detecting whether another application is currently writing/copying
a file. And the implementation can be different depending on OS platform as well. This could lead to that Fuse
Mediation Router thinks the file is not locked by another process and start consuming it. Therefore you have
to do you own investigation as to what suits your environment. To help with this, Fuse Mediation Router provides
different readLock options and the doneFileOption option that you can use. See also the section "Consuming
files from folders where others drop files directly" on page 138.

Fuse Mediation Router Component Reference Version 2.6 129

Chapter 24. File2

URI Options
Name Default Description
Value

autoCreate true Automatically create missing directories in the file's pathname. For the file
consumer, that means creating the starting directory. For the file producer, it
means the directory to where the files should be written.

buffersize 128kb Write buffer sized in bytes.

fileName null Use Expression such as File Language to dynamically set the filename. For
consumers, it's used as a filename filter. For producers, it's used to evaluate the
filename to write. If an expression is set, it take precedence over the
camelFileName header. (Note: The header itself can also be an Expression). The
expression options support both String and Expression types. If the expression
isa Stringtype, itis always evaluated using the File Language. If the expression
is an Expression type, the specified Expression type is used - this allows you,
for instance, to use OGNL expressions. For the consumer, you can use it to filter
filenames, so you can for instance consume today's file using the File Language
syntax: mydata-${date:now:yyyyMMdd}. txt.

flatten false Flatten is used to flatten the file name path to strip any leading paths, so it's just
the file name. This allows you to consume recursively into sub-directories, but
when you eg write the files to another directory they will be written in a single
directory. Setting this to true on the producer enforces that any file name recived
in CamelFileName header will be stripped for any leading paths.

charset null Camel 2.5: this option is used to specify the encoding of the file, and camel will
set the Exchange property with Exchange.CHARSET_NAME with the value of
this option.

Consumer only

Name Default Description

Value

initialbDelay 1000 Milliseconds before polling the file/directory starts.

delay 500 Milliseconds before the next poll of the file/directory.

useFixedDelay false Set to true to use fixed delay between pools, otherwise fixed rate is used. S

ScheduledExecutorService® in JDK for details.

recursive false If a directory, will look for files in all the sub-directories as well.

! http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

130 Fuse Mediation Router Component Reference Version 2.6

Expression
File Language
Expression
File Language
OGNL
File Language
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

delete

noop

preMove

move

moveFailed

include
exclude

idempotent

idempotentRepository

inProgressRepository

filter

sorter

false

false

null

.camel

null

null
null

false

null

memory

null

null

If true, the file will be deleted after it is processed

If true, the file is not moved or deleted in any way. This option is good fo
data, or for ETL type requirements. If noop=true, Fuse Mediation Router
idempotent=true as well, to avoid consuming the same files over and o

Use Expression such as File Language to dynamically set the filename wh
it before processing. For example to move in-progress files into the orde
set this value to order.

Use Expression such as File Language to dynamically set the filename wh
it after processing. To move files into a .done subdirectory just enter .do

Use Expression such as File Language to dynamically set the filename wh
failed files after processing. To move files into a error subdirectory just er
Note: When moving the files to another location it can/will handle the err
you move it to another location so Fuse Mediation Router cannot pick up
again.

Is used to include files, if filename matches the regex pattern.
Is used to exclude files, if filename matches the regex pattern.

Option to use the Idempotent Consumer EIP pattern to let Fuse Mediatio
skip already processed files. Will by default use a memory based LRUCa
holds 1000 entries. If noop=true then idempotent will be enabled as well
consuming the same files over and over again.

Pluggable repository as a
org.apache.camel.processor.idempotent.MessageIdRepository2 class. Wil
use MemoryMessageIdRepository if none is specified and idempotent i

Pluggable in-progress repository as a
org.apache.camel.processor.idempotent.MessageldRepository3 class. Thei
repository is used to account the current in progress files being consumed.
a memory based repository is used.

Pluggable filter as a org.apache.camel.component.file.GenericFile
class. Will skip files if filter returns false in its accept () method. Fuse M
Router also ships with an ANT path matcher filter in the camel-springc
More details in section below.

Pluggable sorter as a
java.util.Comparator<org.apache.camel.component.file.GenericFiIe>4 cla

2 http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageldRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageldRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html

Fuse Mediation Router Component Reference Version 2.6 131

ETL
Expression
File Language
Expression
File Language
Expression
File Language
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html

Chapter 24. File2

sortBy

readLock

readLockTimeout

readLockCheckInterval

exclusiveReadLockStrategy

doneFileName

132

null

markerFile

1000

null

null

Built-in sort using the File Language. Supports nested sorts, so you can hav:
by file name and as a 2nd group sort by modified date. See sorting section be
details.

Used by consumer, to only poll the files if it has exclusive read-lock on the fil
the file is not in-progress or being written). Fuse Mediation Router will wait u
file lock is granted.

The readLock option supports the following built-in strategies:

* markerFile is the behaviour from Fuse Mediation Router 1.x, where Fuse M
Router will create a marker file and hold a lock on the marker file. This opt
not available for the FTP on page 161 component.

¢ changed uses a length/modification timestamp to detect whether the file is ¢
being copied or not. Will wait at least 1 second to determine this, so this o
cannot consume files as fast as the others, but can be more reliable as th
IO API cannot always determine whether a file is currently being used by :
process. This option is not available for the FTP on page 161 component.

e fileLock uses java.nio.channels.FileLock. This option is not availat
the FTP on page 161 component.

¢ rename attempts to rename the file, in order to test whether we can get an e»
read-lock.

¢ none is for no read locks at all.

Optional timeout in milliseconds for the read-lock, if supported by the read-Ic
the read-lock could not be granted and the timeout triggered, then Fuse Mec
Router will skip the file. At next poll Fuse Mediation Router, will try the file age
this time maybe the read-lock could be granted. Currently fileLock, change
rename support the timeout.

Camel 2.6: Interval in millis for the read-lock, if supported by the read lock. -
interval is used for sleeping between attempts to acquire the read lock. For e
when using the changed read lock, you can set a higher interval period to ca
slow writes. The default of 1 sec. may be too fast if the producer is very slow
the file.

Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiveReadLockSt
implementation.

Camel 2.6: If provided, Camel will only consume files if a done file exists. Thit
configures what file name to use. Either you can specify a fixed name. Or yc

Fuse Mediation Router Component Reference Version 2.6

File Language

processStrategy

maxMessagesPerPoll

use dynamic placeholders. The done file is always expected in the same
the original file. See using done file and writing done file sections for exal

null Apluggable org.apache.camel.component.file.GenericFileProces:
allowing you to implement your own readLock option or similar. Can alsc
when special conditions must be met before a file can be consumed, such a
ready file exists. If this option is set then the readLock option does not ay

0 An integer that defines the maximum number of messages to gather per
default, no maximum is set. Can be used to set a limit of e.g. 1000 to avc
the server read thousands of files as it starts up. Set a value of 0 or nega
disabled it.

startingDirectoryMustExist false Whether the starting directory must exist. Mind that the autoCreate optiol

directoryMustExist

enabled, which means the starting directory is normally auto-created if it do
You can disable autoCreate and enable this to ensure the starting direct
exist. Will throw an exception, if the directory doesn't exist.

false Similar to startingDirectoryMustExist but this applies during polling !
sub-directories.

Default behavior for file consumer
» By default the file is locked for the duration of the processing.

« After the route has completed, files are moved into the .camel subdirectory, so that they appear to be
deleted.

» The File Consumer will always skip any file whose name starts with a dot, such as ., .camel, .m2 or .groovy.

» Only files (not directories) are matched for valid filename, if options such as: includeNamePrefix,
includeNamePostfix, excludeNamePrefix, excludeNamePostfix, regexPattern are used.

Producer only

Name Default Description
Value
fileExist override What to do if a file already exists with the same name. The following

values can be specified: Override, Append, Fail and Ignore. Override,
which is the default, replaces the existing file. Append adds content to
the existing file. Fail throws a GenericFileOperationException,
indicating that there is already an existing file. Ignore silently ignores
the problem and does not override the existing file, but assumes
everything is okay.

Fuse Mediation Router Component Reference Version 2.6 133

Chapter 24. File2

tempPrefix null
tempFileName null
keepLastModified false

eagerDeleteTargetFile true

doneFileName null

This option is used to write the file using a temporary name and then,
after the write is complete, rename it to the real name. Can be used to
identify files being written and also avoid consumers (not using exclusive
read locks) reading in progress files. Is often used by FTP on page 161
when uploading big files.

Camel 2.1: The same as tempPrefix option but offering a more fine
grained control on the naming of the temporary filename as it uses the
File Languages.

Camel 2.2: Will keep the last modified timestamp from the source file
(if any). Will use the Exchange . FILE_LAST_MODIFIED header to located
the timestamp. This header can contain either a java.util.Date or
long with the timestamp. If the timestamp exists and the option is
enabled it will set this timestamp on the written file. Note: This option
only applies to the file producer. You cannot use this option with any
of the ftp producers.

Camel 2.3: Whether or not to eagerly delete any existing target file.
This option only applies when you use fileExists=0verride and the
tempFileName option as well. You can use this to disable (set it to false)
deleting the target file before the temp file is written. For example you
may write big files and want the target file to exists during the temp file
is being written. This ensure the target file is only deleted until the very
last moment, just before the temp file is being renamed to the target
filename.

Camel 2.6: If provided, then Camel will write a 2nd done file when the
original file has been written. The done file will be empty. This option
configures what file name to use. Either you can specify a fixed name.
Or you can use dynamic placeholders. The done file will always be
written in the same folder as the original file. See writing done file section
for examples.

Default behavior for file producer

» By default it will override any existing file, if one exist with the same name. In Fuse Mediation Router 1.x the
Append is the default for the file producer. We have changed this to Override in Fuse Mediation Router 2.0
as this is also the default file operation using java.io.File. And also the default for the FTP library we use
in the camel-ftp on page 161 component.

5 File Language

134

Fuse Mediation Router Component Reference Version 2.6

File Language
File Language

Move and Delete operations

Any move or delete operations is executed after (post command) the routing has completed; so during processing
of the Exchange the file is still located in the inbox folder.

Lets illustrate this with an example:

from("file://inbox?move=.done").to("bean:handleOrder");

When a file is dropped in the inbox folder, the file consumer notices this and creates a new FileExchange
that is routed to the handleOrder bean. The bean then processes the File object. At this point in time the file
is still located in the inbox folder. After the bean completes, and thus the route is completed, the file consumer
will perform the move operation and move the file to the .done sub-folder.

The move and preMove options should be a directory name, which can be either relative or absolute. If relative,
the directory is created as a sub-folder from within the folder where the file was consumed.

By default, Fuse Mediation Router will move consumed files to the .camel sub-folder relative to the directory
where the file was consumed.

If you want to delete the file after processing, the route should be:

from("file://inobox?delete=true").to("bean:handleOrder");

We have introduced a pre move operation to move files before they are processed. This allows you to mark
which files have been scanned as they are moved to this sub folder before being processed.

from("file://inbox?preMove=inprogress").to("bean:handleOrder");
You can combine the pre move and the regular move:
from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

So in this situation, the file is in the inprogress folder when being processed and after it's processed, it's
moved to the . done folder.

Fine grained control over Move and PreMove option

The move and preMove option is Expression-based, so we have the full power of the File Language6 to do

advanced configuration of the directory and namepattern. Fuse Mediation Router will, in fact, internally convert
the directory name you enter into a File Language’ expression. So when we enter move=. done Fuse Mediation
Router will convert this into: ${file:parent}/.done/${file:onlyname}. This is only done if Fuse Mediation

6 http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Fuse Mediation Router Component Reference Version 2.6 135

Expression
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Chapter 24. File2

Router detects that you have not provided a ${ } in the option value yourself. So when you enter an expression
containing ${ }, the expression is interpreted as a File Language expression.

So if we want to move the file into a backup folder with today's date as the pattern, we can do:

move=backup/${date:now:yyyyMMdd}/${file:name}

About moveFailed
The moveFailed option allows you to move files that could not be processed succesfully to another location

such as a error folder of your choice. For example to move the files in an error folder with a timestamp you
can use moveFailed=/error/${file:name.noext}-${date:now:yyyyMMddHHmmssSSS}.${file:name.ext}.

See more examples at File Languages.
Message Headers

The following headers are supported by this component:

File producer only

Header Description

CamelFileName Specifies the name of the file to write (relative to the endpoint directory). The name
can be a String; a String with a File Language or Simple expression; or an
Expression object. If it's null then Fuse Mediation Router will auto-generate a
filename based on the message unique ID.

camelFileNameProduced The actual absolute filepath (path + name) for the output file that was written. This
header is set by Camel and its purpose is providing end-users with the name of
the file that was written.

File consumer only

Header Description

CamelFileName Name of the consumed file as a relative file path with offset from the starting
directory configured on the endpoint.

CamelFileNameOnly Only the file name (the name with no leading paths).

CamelFileAbsolute A boolean option specifying whether the consumed file denotes an absolute path

or not. Should normally be false for relative paths. Absolute paths should normally

8 http://camel.apache.org/file-language.html

136 Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/file-language.html
File Language
Simple
Expression
http://camel.apache.org/file-language.html

not be used but we added to the move option to allow moving files to absolute
paths. But can be used elsewhere as well.

CcamelFileAbsolutePath The absolute path to the file. For relative files this path holds the relative path
instead.

CamelFilePath The file path. For relative files this is the starting directory + the relative filename.
For absolute files this is the absolute path.

CamelFileRelativePath The relative path.
CamelFileParent The parent path.
CamelFileLength A long value containing the file size.

CamelFileLastModified A Date value containing the last modified timestamp of the file.

Batch Consumer

This component implements the Batch Consumer.

Exchange Properties, file consumer only

As the file consumer is BatchConsumer it supports batching the files it polls. By batching it means that Fuse
Mediation Router will add some properties to the Exchange so you know the number of files polled the current
index in that order.

Property Description
CamelBatchSize The total number of files that was polled in this batch.
CamelBatchIndex The current index of the batch. Starts from O.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only true for the last
entry.

This allows you for instance to know how many files exists in this batch and for instance let the Aggregator
aggregate this number of files.

Common gotchas with folder and filenames

When Fuse Mediation Router is producing files (writing files) there are a few gotchas affecting how to set a
filename of your choice. By default, Fuse Mediation Router will use the message ID as the filename, and since
the message ID is normally a unique generated ID, you will end up with filenames such as:
ID-MACHINENAME-2443-1211718892437-1-0. If such a filename is not desired, then you must provide a
filename in the CamelFileName message header. The constant, Exchange.FILE_NAME, can also be used.

The sample code below produces files using the message ID as the filename:

Fuse Mediation Router Component Reference Version 2.6 137

Batch Consumer
Exchange
Exchange

Chapter 24. File2

from("direct:report").to("file:target/reports");

To use report. txt as the filename you have to do:

from("direct:report").setHeader (Exchange.FILE_NAME, constant("report.txt")).to("file:tar
get/reports");

Or the same as above, but with CamelFileName:

from("direct:report").setHeader ("CamelFileName", constant("report.txt")).to("file:target/re
ports");

And a syntax where we set the filename on the endpoint with the fileName URI option.

from("direct:report").to("file:target/reports/?fileName=report.txt");

Filename Expression

Filename can be set either using the expression option or as a string-based File Language9 expression in
the CamelFileName header. See the File Language10 for syntax and samples.

Consuming files from folders where others drop files directly

Beware if you consume files from a folder where other applications write files directly. Take a look at the
different readLock options to see what suits your use cases. The best approach is however to write to another
folder and after the write move the file in the drop folder. However if you write files directly to the drop folder
then the option changed could better detect whether a file is currently being written/copied as it uses a file
changed algorithm to see whether the file size / modification changes over a period of time. The other read
lock options rely on Java File API that sadly is not always very good at detecting this. You may also want to
look at the doneFileName option, which uses a marker file (done) to signal when a file is done and ready to
be consumed.

Using done files
Available as of Camel 2.6
See also section writing done files below.

If you want only to consume files when a done file exist, then you can use the doneFileName option on the
endpoint.

from("file:bar?doneFileName=done");

M http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

138 Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Will only consume files from the bar folder, if a file name done exists in the same directory as the target files.
Camel will automatic delete the done file when it's done consuming the files.

However its more common to have one done file per target file. This means there is a 1:1 correlation. To do
this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following
two dynamic tokens: file:name and file:name.noext which must be enclosed in ${ }. The consumer only
supports the static part of the done file name as either prefix or suffix (not both).

from("file:bar?doneFileName=${file:name}.done");

In this example only files will be polled if there exists a done file with the name file name.done. For example
* hello. txt - is the file to be consumed
* hello.txt.done - is the associated done file

You can also use a prefix for the done file, such as:

from("file:bar?doneFileName=ready-${file:name}");

* hello.txt - is the file to be consumed

* ready-hello. txt - is the associated done file

Writing done files
Available as of Camel 2.6

After you have written af file you may want to write an additional done file as a kinda of marker, to indicate to
others that the file is finished and has been written. To do that you can use the doneFileName option on the
file producer endpoint.

.to("file:bar?doneFileName=done");

Will simply create a file named done in the same directory as the target file.

Fuse Mediation Router Component Reference Version 2.6 139

Chapter 24. File2

However its more common to have one done file per target file. This means there is a 1:1 correlation. To do
this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following
two dynamic tokens: file:name and file:name.noext which must be enclosed in ${ }.

.to("file:bar?doneFileName=done-${file:name}");

Will for example create a file named done-foo. txt if the target file was foo. txt in the same directory as the
target file.

.to("file:bar?doneFileName=${file:name}.done");

Will for example create a file named foo. txt.done if the target file was foo. txt in the same directory as the
target file.

.to("file:bar?doneFileName=${file:name.noext}.done");

Will for example create a file named foo . done if the target file was foo. txt in the same directory as the target
file.

Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir
and delete the file in the inputdir.

Reading recursive from a directory and write the another
from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir
and delete the file in the inputdir. Will scan recursively into sub-directories. Will lay out the files in the same
directory structure in the outputdir as the inputdir, including any sub-directories.

inputdir/foo.txt
inputdir/sub/bar.txt

Will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the source directory
layout (e.g. to flatten out the path), you just add the flatten=true option on the file producer side:

140 Fuse Mediation Router Component Reference Version 2.6

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir?flatten=true")

Will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

Reading from a directory and the default move operation

Fuse Mediation Router will by default move any processed file into a . camel subdirectory in the directory the
file was consumed from.

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Affects the layout as follows: before

inputdir/foo.txt
inputdir/sub/bar.txt

after
inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt

outputdir/foo.txt
outputdir/sub/bar.txt

Read from a directory and process the message in java
from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Object body = exchange.getIn().getBody();
// do some business logic with the input body
}
1)
The body will be a File object that points to the file that was just dropped into the inputdir directory.
Read files from a directory and send the content to a jms queue

from("file://inputdir/").convertBodyTo(String.class).to("jms:test.queue")

By default the file endpoint sends a FileMessage which contains a File object as the body. If you send this
directly to the JMS component the JMS message will only contain the File object but not the content. By
converting the File to a String, the message will contain the file contents what is probably what you want.

The route above using Spring DSL:

Fuse Mediation Router Component Reference Version 2.6 141

Chapter 24. File2

<route>
<from uri="file://inputdir/"/>
<convertBodyTo type="java.lang.String"/>
<to uri="jms:test.queue"/>

</route>

Writing to files

Fuse Mediation Router is of course also able to write files, i.e. produce files. In the sample below we receive
some reports on the SEDA queue that we processes before they are written to a directory.

public void testToFile() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock .expectedMessageCount(1);
mock .expectedFileExists("target/test-reports/report.txt");

template.sendBody("direct:reports", "This is a great report");

assertMockEndpointsSatisfied();

}

protected JndiRegistry createRegistry() throws Exception {
// bind our processor in the registry with the given id
JndiRegistry reg = super.createRegistry();
reg.bind("processReport", new ProcessReport());
return reg;

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
// the reports from the seda queue is processed by our processor
// before they are written to files in the target/reports directory
from("direct:reports").processRef("processReport").to("file://target/test-re
ports", "mock:result");
3
3
3

private class ProcessReport implements Processor {
public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
// do some business logic here

// set the output to the file
exchange.getOut().setBody(body);

142 Fuse Mediation Router Component Reference Version 2.6

// set the output filename using java code logic, notice that this is done by setting

// a special header property of the out exchange
exchange.getOut().setHeader (Exchange.FILE_NAME, "report.txt");

Write to subdirectory using Exchange.FILE_NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a route setup as
such:

<route>

<from uri="bean:myBean"/>

<to uri="file:/rootDirectory"/>
</route>

You can have myBean set the header Exchange . FILE_NAME to values such as:

Exchange.FILE_NAME
Exchange.FILE_NAME

hello.txt => /rootDirectory/hello.txt
foo/bye.txt => /rootDirectory/foo/bye.txt

This allows you to have a single route to write files to multiple destinations.

Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-folder name:

from("file://inbox?move=backup/${date:now:yyyyMmdd}/${file:name}").to("...");

See File Language for more samples.

Avoiding reading the same file more than once (idempotent consumer)

Fuse Mediation Router supports Idempotent Consumer directly within the component so it will skip already
processed files. This feature can be enabled by setting the idempotent=true option.

from("file://inbox?idempotent=true").to("...");

By default Fuse Mediation Router uses a in memory based store for keeping track of consumed files, it uses
a least recently used cache storing holding up to 1000 entries. You can plugin your own implementation of
this store by using the idempotentRepository option using the # sign in the value to indicate it's a referring
to a bean in the Registry with the specified id.

<!-- define our store as a plain spring bean -->
<bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

Fuse Mediation Router Component Reference Version 2.6 143

File Language
Registry

Chapter 24. File2

<route>
<from uri="file://inbox?idempotent=true&dempotentRepository=#myStore"/>
<to uri="bean:processInbox"/>

</route>

Fuse Mediation Router will log at DEBUG level if it skips a file because it has been consumed before:

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this file:
target\idempotent\report.txt

Using a file based idempotent repository

In this section we will use the file based idempotent repository
org.apache.camel.processor.idempotent.FileIdempotentRepository instead of the in-memory based
that is used as default. This repository uses a 1st level cache to avoid reading the file repository. It will only
use the file repository to store the content of the 1st level cache. Thereby the repository can survive server
restarts. It will load the content of the file into the 1st level cache upon startup. The file structure is very simple
as it store the key in separate lines in the file. By default, the file store has a size limit of 1mb when the file
grew larger Fuse Mediation Router will truncate the file store be rebuilding the content by flushing the 1st level
cache in a fresh empty file.

We configure our repository using Spring XML creating our file idempotent repository and define our file
consumer to use our repository with the idempotentRepository using \# sign to indicate Registry lookup:

<!-- this is our file based idempotent store configured to use the .filestore.dat as file
-->
<bean id="fileStore" class="org.apache.camel.processor.idempotent.FileIdempotentRepository">

<!-- the filename for the store -->

<property name="fileStore" value="target/fileidempotent/.filestore.dat"/>

<!-- the max filesize in bytes for the file. Fuse Mediation Router will trunk and flush
the cache

if the file gets bigger -->
<property name="maxFileStoreSize" value="512000"/>

<!-- the number of elements in our store -->
<property name="cacheSize" value="250"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file://target/fileidempotent/?idempotent=true&dempotentReposit
ory=#fileStore&ove=done/${file:name}"/>
<to uri="mock:result"/>
</route>
</camelContext>

144 Fuse Mediation Router Component Reference Version 2.6

Registry

Using a JPA based idempotent repository

In this section we will use the JPA based idempotent repository instead of the in-memory based that is used
as default.

First we need a persistence-unit in META-INF/persistence.xml where we need to use the class
org.apache.camel.processor.idempotent.jpa.MessageProcessed as model.

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/idempotentTest;cre
ate=true"/>
<property name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.Embedded
Driver"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFOQ"/>
</properties>
</persistence-unit>

Then we need to setup a Spring jpaTemplate in the spring XML file:

<!-- this is standard spring JPA configuration -->

<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">
<property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalEntityManagerFact

oryBean">

<!-- we use idempotentDB as the persitence unit name defined in the persistence.xml
file -->

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

And finally we can create our JPA idempotent repository in the spring XML file as well:

<!-- we define our jpa based idempotent repository we want to use in the file consumer -->
<bean id="jpaStore" class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplate -->
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name).

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>
</bean>

Fuse Mediation Router Component Reference Version 2.6 145

Chapter 24. File2

And then we just need to reference the jpaStore bean in the file consumer endpoint, using the
idempotentRepository option and the # syntax:

<route>
<from uri="file://inbox?idempotent=true&dempotentRepository=#jpaStore"/>
<to uri="bean:processInbox"/>

</route>

Filter using org.apache.camel.component.file.GenericFileFilter

Fuse Mediation Router supports pluggable filtering strategies. You can then configure the endpoint with such
a filter to skip certain files being processed.

In the sample we have build our own filter that skips files starting with skip in the filename:

public class MyFileFilter implements GenericFileFilter {
public boolean accept(GenericFile pathname) {
// we dont accept any files starting with skip in the name
return !pathname.getFileName().startswWith("skip");

3

And then we can configure our route using the filter attribute to reference our filter (using # notation) that we
have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?filter=#myFilter"/>

<to uri="bean:processInbox"/>
</route>

Filtering using ANT path matcher

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to depend on
camel-spring if you are using Maven. The reasons is that we leverage Spring's AntPathMatcher** to do the
actual matching.

The file paths is matched with the following rules:

» ? matches one character

* * matches zero or more characters

1" http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

146 Fuse Mediation Router Component Reference Version 2.6

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

« ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<template id="camelTemplate'"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan for -->

<endpoint id="myFileEndpoint" uri="file://target/antpathmatcher?recursive=true&ilter=#my
AntFilter"/>

<route>
<from ref="myFileEndpoint"/>
<to uri="mock:result"/>

</route>
</camelContext>
<!-- we use the antpath file filter to use ant paths for includes and exlucde -->

<bean id="myAntFilter" class="org.apache.camel.component.file.AntPathMatcherGenericFileFil
ter">

<!-- include and file in the subfolder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to seperate multiple

excludes -->
<property name="excludes" value="**/*bad*, **/*.xml"/>
</bean>

Sorting using Comparator

Fuse Mediation Router supports pluggable sorting strategies. This strategy it to use the build in
java.util.Comparator in Java. You can then configure the endpoint with such a comparator and have Fuse
Mediation Router sort the files before being processed.

In the sample we have built our own comparator that just sorts by file name:

public class MyFileSorter implements Comparator<GenericFile> {
public int compare(GenericFile o1, GenericFile 02) {
return ol.getFileName().compareToIgnoreCase(o2.getFileName());
}

}

And then we can configure our route using the sorter option to reference to our sorter (mySorter) we have
defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="mySorter" class='"com.mycompany.MyFileSorter"/>

Fuse Mediation Router Component Reference Version 2.6 147

Chapter 24. File2

<route>
<from uri="file://inbox?sorter=#mySorter"/>
<to uri="bean:processInbox"/>

</route>

? URI options can reference beans using the # syntax

In the Spring DSL route about notice that we can reference beans in the Registry by prefixing the id with #. So
writing sorter=#mySorter, will instruct Fuse Mediation Router to go look in the Registry for a bean with the
ID, mySorter.

Sorting using sortBy

Fuse Mediation Router supports pluggable sorting strategies. This strategy it to use the File Language to
configure the sorting. The sortBy option is configured as follows:

sortBy=group 1;group 2;group 3;...

Where each group is separated with semi colon. In the simple situations you just use one group, so a simple
example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse: to the group, so the sorting is now
Z.A:

sortBy=reverse:file:name

As we have the full power of File Language we can use some of the other parameters, so if we want to sort
by file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string comparison, so if you want to use file name
sorting but to ignore the case then we do:

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modifed

148 Fuse Mediation Router Component Reference Version 2.6

Registry
Registry
File Language
File Language

And then we want to group by name as a 2nd option so files with same modifcation is sorted by name:

sortBy=file:modifed;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be in
milliseconds, but what if we want to sort by date only and then subgroup by name? Well as we have the true
power of File Language12 we can use the its date command that supports patterns. So this can be solved as:

sortBy=date:file:yyyyMMdd; file:name

Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could reverse the file
names:

sortBy=date:file:yyyyMMdd;reverse:file:name

Using GenericFileProcessStrategy

The option processStrategy can be used to use a custom GenericFileProcessStrategy that allows you
to implement your own begin, commit and rollback logic. For instance lets assume a system writes a file in a
folder you should consume. But you should not start consuming the file before another ready file have been
written as well.

So by implementing our own GenericFileProcessStrategy we can implement this as:

* Inthe begin() method we can test whether the special ready file exists. The begin method returns a boolean
to indicate if we can consume the file or not.

* inthe commit () method we can move the actual file and also delete the ready file.

Debug logging

This component has log level TRACE that can be helpful if you have problems.
See also:

* File Language13

 FTP2 on page 161

12 http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Fuse Mediation Router Component Reference Version 2.6 149

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

150 Fuse Mediation Router Component Reference Version 2.6

Chapter 25. FIX

FIX

The FIX component supports the FIX protocol1 by using the QuickFix/J Iibraryz.
URI format

fix://configurationResource

Where configurationResource points to the QuickFix/J configuration file to define how to connect to FIX.
This could be a resource on the classpath or a reference to a full URL using the http: or file: schemes.

Message Formats

By default this component will attempt to use the Type Converter® to turn the inbound message body into a
QuickFix Message class* and all outputs from FIX will be in the same format.

! http://fen.wikipedia.org/wiki/FIX_protocol
2 http://www.quickfixj.org/
Type Converter

4 http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html

Fuse Mediation Router Component Reference Version 2.6 151

http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/
Type Converter
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/
Type Converter
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html

152 Fuse Mediation Router Component Reference Version 2.6

Chapter 26. Flatpack

Flatpack Component

The Flatpack component supports fixed width and delimited file parsing using the FlatPack Iibraryl. Notice:
This component only supports consuming from flatpack files to Object model. You can not (yet) write from
Object model to flatpack format.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format
flatpack:[delim|fixed]:flatPackConfig.pzmap.xml[?options]

Or for a delimited file handler with no configuration file just use:

flatpack:someName[?options]
You can append query options to the URI in the following format, ?option=value&option=value&. ..

URI Options

Name Default Value Description

delimiter , The default character delimiter for delimited files.

textQualifier " The text qualifier for delimited files.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for the column
headers).

splitRows true As of Fuse Mediation Router 1.5, the component can either process

each row one by one or the entire content at once.

! http://flatpack.sourceforge.net

Fuse Mediation Router Component Reference Version 2.6 153

http://flatpack.sourceforge.net
http://flatpack.sourceforge.net

Chapter 26. Flatpack

Examples
» flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint using the foo.pzmap . xm1 file configuration.
» flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the bar . pzmap . xml file configuration.

» flatpack:foo creates a delimited endpoint called foo with no file configuration.

Message Headers

Fuse Mediation Router will store the following headers on the IN message:

Header Description

camelFlatpackCounter The current row index. For splitRows=false the counter is the total number of
rows.

Message Body

The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that has converters for java.util.Map or
java.util.List. Usually you want the Map if you process one row at a time (splitRows=true). Use List for
the entire content (splitRows=false), where each element in the list is a Map. Each Map contains the key for
the column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn().getBody(Map.class);
String firstName = row.get("FIRSTNAME");

However, you can also always get it as a List (even for splitRows=true). The same example:
List data = exchange.getIn().getBody(List.class);
Map row = (Map)data.get(Q);
String firstName = row.get("FIRSTNAME");

Header and Trailer records

In Fuse Mediation Router 1.5 onwards the header and trailer notions in Flatpack are supported. However, you
must use fixed record IDs:

» header for the header record (must be lowercase)

154 Fuse Mediation Router Component Reference Version 2.6

e trailer for the trailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit one or both of them
if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="DATE" length="8"/>

</RECORD>

<COLUMN name="FIRSTNAME" length="35" />
<COLUMN name="LASTNAME" length="35" />
<COLUMN name="ADDRESS" length="100" />
<COLUMN name="CITY" length="100" />
<COLUMN name="STATE" length="2" />
<COLUMN name="ZIP" length="5" />

<RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="STATUS" length="7"/>

</RECORD>

Using the endpoint

A common use case is sending a file to this endpoint for further processing in a separate route. For example:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="file://someDirectory"/>
<to uri="flatpack:foo"/>
</route>

<route>
<from uri="flatpack:foo"/>

</route>
</camelContext>

You can also convert the payload of each message created to a Map for easy Bean Integration

Fuse Mediation Router Component Reference Version 2.6 155

Bean Integration

156 Fuse Mediation Router Component Reference Version 2.6

Chapter 27. Freemarker

Freemarker
Available as of Fuse Mediation Router 1.6

The freemarker: component allows you to process a message using a Freemarker! template. This can be
ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-freemarker</artifactId>
<version>x.x.x</version>

<!-- use the same version as your Camel core version -->
</dependency>

URI format
freemarker:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example, file://folder/myfile.ftl).

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Default Description
contentCache true Cache for the resource content when its loaded.
encoding null Character encoding of the resource content.

Freemarker Context

Fuse Mediation Router will provide exchange information in the Freemarker context (just a Map). The Exchange
is transfered as:

! http://freemarker.org/

Fuse Mediation Router Component Reference Version 2.6 157

http://freemarker.org/
Templating
http://freemarker.org/

Chapter 27. Freemarker

Key Value
exchange The Exchange itself.
headers The headers of the In message.

camelContext The Camel Context.

request The In message.
body The In message body.
response The Out message (only for InOut message exchange pattern).

Hot reloading

The Freemarker template resource is by default not hot reloadable for both file and classpath resources
(expanded jar). If you set contentCache=false, then Fuse Mediation Router will not cache the resource and
hot reloading is thus enabled. This scenario can be used in development.

Dynamic templates
Available as of Camel 2.1 Camel provides two headers by which you can define a different resource location

for a template or the template content itself. If any of these headers is set then Camel uses this over the
endpoint configured resource. This allows you to provide a dynamic template at runtime.

Header Type Description

CamelFreemarkerResourceUri String Camel 2.1: A URI for the template resource to use instead of the
endpoint configured.

CamelFreemarkerTemplate String Camel 2.1: The template to use instead of the endpoint configured.

Samples

For example, you can define a route like the following:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl");

To use a Freemarker template to formulate a response to /nOut message exchanges (where there is a
JMSReplyTo header).

If you want to process InOnly exchanges, you could use a Freemarker template to transform the message
before sending it on to another endpoint:

158 Fuse Mediation Router Component Reference Version 2.6

from("activemq:My.Queue").
to(ExchangePattern.InOut, "freemarker:com/acme/MyResponse.ftl").
to("activemqg:Another.Queue");

And to disable the content cache (for example, for development usage where the . ft1 template should be hot
reloaded):

from("activemq:My.Queue").

to(ExchangePattern.InOut, "freemarker:com/acme/MyResponse.ftl?contentCache=false").
to("activemqg:Another.Queue");

And for a file-based resource:

from("activemq:My.Queue").
to(ExchangePattern.InOut, "freemarker:file://myfolder/MyResponse.ftl?contentCache=false").

to("activemqg:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should use dynamically via a header, so
for example:

from("direct:in").
setHeader ("CamelFreemarkerResourceUri").constant("path/to/my/template.ftl").
to("freemarker:dummy");

The Email Sample

In this sample we want to use Freemarker templating for an order confirmation email. The email template is
laid out in Freemarker as:

Dear ${headers.lastName}, ${headers.firstName}
Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();

msg.setHeader ("firstName", "Claus");
msg.setHeader ("lastName", "Ibsen");
msg.setHeader ("item", "Camel in Action");

msg.setBody("PS: Next beer is on me, James");

Fuse Mediation Router Component Reference Version 2.6 159

Chapter 27. Freemarker

return exchange;

}

@Test
public void testFreemarkerLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");

mock.expectedMessageCount(1);

mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel in Ac
tion.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
from("direct:a").to("freemarker:org/apache/camel/component/freemarker/let
ter.ftl").to("mock:result");
3
3

160 Fuse Mediation Router Component Reference Version 2.6

Chapter 28. FTP2

FTPISFTP Component - Fuse Mediation Router 2.0 onwards

This component provides access to remote file systems over the FTP and SFTP protocols.

Using Fuse Mediation Router 1.x

If you are using Fuse Mediation Router 1.x then see this link for documentation. This page is only for Fuse
Mediation Router 2.0 or newer.

Using FTPS

The FTPS component is only available in Camel 2.2 or newer. FTPS (also known as FTP Secure) is an
extension to FTP that adds support for the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL)
cryptographic protocols.

Libraries used

This component uses two different libraries for the actual FTP work. FTP and FTPS uses Apache Commons
Net" while SFTP uses JCraft JSCH?.

URI format

ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

Where directoryname represents the underlying directory. Can contain nested folders.

If no username is provided, then anonymous login is attempted using no password. If no port number is
provided, Fuse Mediation Router will provide default values according to the protocol (ftp = 21, sftp = 22, ftps
=21).

L http://commons.apache.org/net/
http://www.jcraft.com/jsch/

Fuse Mediation Router Component Reference Version 2.6 161

http://commons.apache.org/net/
http://commons.apache.org/net/
http://www.jcraft.com/jsch/
http://commons.apache.org/net/
http://www.jcraft.com/jsch/

Chapter 28. FTP2

You can append query options to the URI in the following format, 2option=value&option=value&. ..

URI Options

The options below are exclusive for the FTP2 on page 161 component.

Name

username

password

binary

disconnect

localWorkDirectory

passiveMode

securityProtocol

disableSecureDataChannelDefaults

execProt

162

Default
Value
null
null

false

false

null

false

TLS

false

null

Description

Specifies the username to use to log in to the remote file
systen.

Specifies the password to use to log in to the remote file
system.

Specifies the file transfer mode, BINARY or ASCII. Default
is ASCII (false).

Camel 2.2: Whether or not to disconnect from remote
FTP server right after use. Can be used for both
consumer and producer. Disconnect will only disconnect
the current connection to the FTP server. If you have a
consumer which you want to stop, then you need to stop
the consumer/route instead.

When consuming, a local work directory can be used to
store the remote file content directly in local files, to avoid
loading the content into memory. This is beneficial, if you
consume a very big remote file and thus can conserve
memory. See below for more details.

FTP only: Specifies whether to use passive mode
connections. Default is active mode {false).

FTPS only: Sets the underlying security protocol. The
following values are defined: TLS: Transport Layer
Security SSL: Secure Sockets Layer

Camel 2.4: FTPS only: Whether or not to disable using
default values for execPbsz and execProt when using
secure data transfer. You can set this option to true if
you want to be in absolute full control what the options
execPbsz and execProt should be used.

Camel 2.4: FTPS only: Will by default use option P if
secure data channel defaults hasn't been disabled.
Possible values are: c: Clear S: Safe (SSL protocol only)
E: Confidential (SSL protocol only) P: Private

Fuse Mediation Router Component Reference Version 2.6

execPbsz

isImplicit

knownHostsFile

privateKeyFilePassphrase

privateKeyFilePassphrase

strictHostKeyChecking

maximumReconnectAttempts

reconnectDelay

connectTimeout

soTimeout

timeout

throwExceptionOnConnectFailed

siteCommand

Fuse Mediation Router Component Reference Version 2.6

null

false

null

null

null

no

1000

10000

null

30000

false

null

Camel 2.4: FTPS only: This option specifies the buffer
size of the secure data channel. If option
useSecureDataChannel has been enabled and this option
has not been explicit set, then value 0 is used.

FTPS only: Sets the security mode(implicit/explicit).
Default is explicit (false).

SFTP only: Sets the known_hosts file, so that the SFTP
endpoint can do host key verification.

SFTP only: Set the private key file passphrase to that
the SFTP endpoint can do private key verification.

SFTP only: Set the private key file passphrase to that
the SFTP endpoint can do private key verification.

SFTP only:Camel 2.2: Sets whether to use strict host
key checking. Possible values are: no, yes and ask. ask
does not make sense to use as Camel cannot answer
the question for you as its meant for human intervention.
Note: The default in Camel 2.1 and below was ask.

Specifies the maximum reconnect attempts Fuse
Mediation Router performs when it tries to connect to the
remote FTP server. Use 0 to disable this behavior.

Delay in millis Fuse Mediation Router will wait before
performing a reconnect attempt.

Camel 2.4: Is the connect timeout in millis. This
corresponds to using ftpClient.connectTimeout for
the FTP/FTPS. For SFTP this option is also used when
attempting to connect.

FTP and FTPS Only:Camel 2.4: Is the
SocketOptions.SO_TIMEOUT value in millis. Note SFTP
will automatic use the connectTimeout as the soTimeout

FTP and FTPS Only:Camel 2.4: Is the data timeout in
millis. This corresponds to using ftpClient.dataTimeout
for the FTP/FTPS. For SFTP there is no data timeout.

Camel 2.5: Whether or not to thrown an exception if a
successful connection and login could not be establish.
This allows a custom pollStrategy to deal with the
exception, for example to stop the consumer or the likes.

FTP and FTPS Only:Camel 2.5: To execute site
commands after successful login. Multiple site commands
can be separated using a new line character (\n). Use

163

Chapter 28. FTP2

help site to see which site commands your FTP server
supports.

stepwise true When consuming directories, specifies whether or not to
use stepwise mode for traversing the directory tree.
Stepwise means that it will CD one directory at a time.
For more details, see "Stepwise changing directories”
on page 166.

separator Auto Camel 2.6: Dictates what path separator char to use
when uploading files. Auto means use the path provided
without altering it. UNIX means use UNIX style path
separators. Windows means use Windows style path

separators.
ftpClient null FTP and FTPS Only:Camel 2.1: Allows you to use a
custom org.apache.commons.net.ftp.FTPClient
instance.
ftpClientConfig null FTP and FTPS Only:Camel 2.1: Allows you to use a
custom
org.apache.commons.net.ftp.FTPClientConfig
instance.
ftpClient.trustStore.file null FTPS Only: Sets the trust store file, so that the FTPS
client can look up for trusted certificates.
ftpClient.trustStore.type JKS FTPS Only: Sets the trust store type.
ftpClient.trustStore.algorithm Sunx509 FTPS Only: Sets the trust store algorithm.
ftpClient.trustStore.password null FTPS Only: Sets the trust store password.
ftpClient.keyStore.file null FTPS Only: Sets the key store file, so that the FTPS
client can look up for the private certificate.
ftpClient.keyStore.type JKS FTPS Only: Sets the key store type.
ftpClient.keyStore.algorithm sunx509 FTPS Only: Sets the key store algorithm.
ftpClient.keyStore.password null FTPS Only: Sets the key store password.
ftpClient.keyStore.keyPassword null FTPS Only: Sets the private key password.

* FTPS component default trust store

By default, the FTPS component trust store accept all certificates. If you only want trust selective certificates,
you have to configure the trust store with the ftpClient.trustStore.xxx options or by configuring a custom
ftpClient.

164 Fuse Mediation Router Component Reference Version 2.6

You can configure additional options on the ftpClient and ftpClientConfig from the URI directly by using
the ftpClient. or ftpClientConfig. prefix

For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000").to("bean:f00");

You can mix and match and have use both prefixes, for example to configure date format or timezones.

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.server
LanguageCode=fr").to("bean:foo");
You can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPCIientConfig3 for possible options and more details.
And as well for Apache Commons FTP FTPClient®.

If you do not like having many and long configuration in the url you can refer to the ftpClient or
ftpClientConfig to use by letting Camel lookup in the Registry for it.

For example:

<bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
<property name="lenientFutureDates" value="true"/>
<property name="serverlLanguageCode" value="fr"/>

</bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig").to("bean:foo");

8 http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html

Fuse Mediation Router Component Reference Version 2.6 165

http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html
Registry
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html

Chapter 28. FTP2

More URI options

See File2 on page 129 as all the options there also applies for this component.

Stepwise changing directories

Camel FTP on page 161 can operate in two modes in terms of traversing directories when consuming files (for
example, downloading) or producing files (for example, uploading):

* stepwise
¢ not stepwise

You may want to pick either one depending on your situation and security issues. Some Camel end users can
only download files if they use stepwise, while others can only download if they do not. At least you have the
choice to pick.

Note that stepwise changing of directory will in most cases only work when the user is confined to it's home
directory and when the home directory is reported as /.

The difference between the two of them is best illustrated with an example. Suppose we have the following
directory structure on the remote FTP server we need to traverse and download files:

/

/one

/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b. txt) folder.
Using stepwise=true (default mode)

The following log shows the conversation between the FTP endpoint and the remote FTP server when the
FTP endpoint is operating in stepwise mode:

TYPE A
200 Type set to A
PWD

166 Fuse Mediation Router Component Reference Version 2.6

257 "/" is current directory.

CwD one

250 CwWD successful. "/one" is current directory.

CwWD two

250 CwWD successful. "/one/two" is current directory.
SYST

215 UNIX emulated by Filezilla

PORT 127,0,0,1,17,94

200 Port command successful

LIST

150 Opening data channel for directory list.
226 Transfer OK

CWD sub-a

250 CwWD successful. "/one/two/sub-a" is current directory.

PORT 127,0,0,1,17,95

200 Port command successful

LIST

150 Opening data channel for directory list.
226 Transfer OK

CDUP

200 CDUP successful. "/one/two" is current directory.

CWD sub-b

250 CwWD successful. "/one/two/sub-b" is current directory.

PORT 127,0,0,1,17,96

200 Port command successful

LIST

150 Opening data channel for directory list.
226 Transfer OK

CDUP

200 CDUP successful. "/one/two" is current directory.

CwD /

250 CwWD successful. "/" is current directory.
PWD

257 "/" is current directory.

CwD one

250 CwWD successful. "/one" is current directory.
CwD two

250 CwWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97

200 Port command successful

RETR foo.txt

150 Opening data channel for file transfer.

226 Transfer OK

CwD /

250 CWD successful. "/" is current directory.
PWD

257 "/" is current directory.

CwD one

250 CWD successful. "/one" is current directory.

Fuse Mediation Router Component Reference Version 2.6

167

Chapter 28. FTP2

CwD two

250 CWD successful. "/one/two" is current directory.
CWD sub-a

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98

200 Port command successful

RETR a.txt

150 Opening data channel for file transfer.

226 Transfer OK

CwD /

250 CWD successful. "/" is current directory.

PWD

257 "/" is current directory.

CwWD one

250 CWD successful. "/one" is current directory.

CwD two

250 CWD successful. "/one/two" is current directory.
CWD sub-b

250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99

200 Port command successful

RETR b.txt

150 Opening data channel for file transfer.

226 Transfer OK

CwD /

250 CWD successful. "/" is current directory.

QuUIT

221 Goodbye

disconnected.

As you can see when stepwise is enabled, it will traverse the directory structure using CD xxx.

Using stepwise=false

The following log shows the conversation between the FTP endpoint and the remote FTP server when the
FTP endpoint is operating in non-stepwise mode:

168

230 Logged on

TYPE A

200 Type set to A

SYST

215 UNIX emulated by Filezilla

PORT 127,0,0,1,4,122

200 Port command successful

LIST one/two

150 Opening data channel for directory list

Fuse Mediation Router Component Reference Version 2.6

226 Transfer OK

PORT 127,0,0,1,4,123

200 Port command successful

LIST one/two/sub-a

150 Opening data channel for directory list
226 Transfer OK

PORT 127,0,0,1,4,124

200 Port command successful

LIST one/two/sub-b

150 Opening data channel for directory list
226 Transfer OK

PORT 127,0,0,1,4,125

200 Port command successful

RETR one/two/foo0.txt

150 Opening data channel for file transfer.
226 Transfer OK

PORT 127,0,0,1,4,126

200 Port command successful

RETR one/two/sub-a/a.txt

150 Opening data channel for file transfer.
226 Transfer OK

PORT 127,0,0,1,4,127

200 Port command successful

RETR one/two/sub-b/b.txt

150 Opening data channel for file transfer.
226 Transfer OK

QUIT

221 Goodbye

disconnected.

As you can see when not using stepwise, there are no CD operation invoked at all.

Examples

Fuse Mediation Router Component Reference Version 2.6 169

Chapter 28. FTP2

© FTP Consumer does not support concurrency

The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is not
thread safe). You can use multiple FTP consumers to poll from different endpoints. It is only a single endpoint
that does not support concurrent consumers.

The FTP producer does not have this issue, it supports concurrency.

In the future we will add consumer pooling to Fuse Mediation Router® to allow this consumer to support
concurrency as well.

? More information

This component is an extension of the File2 on page 129 component. So there are more samples and details
on the File2 on page 129 component page.

Default when consuming files

The FTP on page 161 consumer will by default leave the consumed files untouched on the remote FTP server.
You have to configure it explicit if you want it to delete the files or move them to another location. For example
you can use delete=true to delete the files, or use move=.done to move the files into a hidden done sub
directory.

The regular File on page 129 consumer is different as it will by default move files to a .camel sub directory.
The reason Camel does not do this by default for the FTP consumer is that it may lack permissions by default
to be able to move or delete files.

limitations

The option readLock can be used to force Fuse Mediation Router not to consume files that are currently in
the process of being written. However, this option is turned off by default, as it requires that the user has write
access. There are other solutions to avoid consuming files that are currently being written over FTP; for instance,
you can write to a temporary destination and move the file after it has been written.

The ftp producer does not support appending to existing files. Any existing files on the remote server will be
deleted before the file is written.

5 https://issues.apache.org/activemg/browse/CAMEL-1682

170 Fuse Mediation Router Component Reference Version 2.6

https://issues.apache.org/activemq/browse/CAMEL-1682
https://issues.apache.org/activemq/browse/CAMEL-1682

Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

CamelFileName Specifies the output file name (relative to the endpoint directory) to be used for
the output message when sending to the endpoint. If this is not present and no
expression either, then a generated message ID is used as the filename instead.

camelFileNameProduced The actual absolute filepath (path + name) for the output file that was written.
This header is set by Fuse Mediation Router and its purpose is providing
end-users the name of the file that was written.

CamelFileBatchIndex Current index out of total number of files being consumed in this batch.
CamelFileBatchSize Total number of files being consumed in this batch.
CamelFileHost The remote hostname.

CamelFileLocalwWorkPath Path to the local work file, if local work directory is used.

About timeouts

The two sets of libraries (see above) have different APIs for setting the timeout. You can use the
connectTimeout option for both of them to set a timeout in milliseconds to establish a network connection.
An individual soTimeout can also be set on the FTP/FTPS, which corresponds to using ftpClient.soTimeout.
Notice SFTP will automatically use connectTimeout as its soTimeout. The timeout option only applies for
FTP/FTSP as the data timeout, which corresponds to the ftpClient.dataTimeout value. All timeout values
are in milliseconds.

Using Local Work Directory

Fuse Mediation Router supports consuming from remote FTP servers and downloading the files directly into
a local work directory. This avoids reading the entire remote file content into memory as it is streamed directly
into the local file using FileOutputStreanm.

Fuse Mediation Router will store to a local file with the same name as the remote file, though with . inprogress
as extension while the file is being downloaded. Afterwards, the file is renamed to remove the .inprogress
suffix. And finally, when the Exchange is complete the local file is deleted.

So if you want to download files from a remote FTP server and store it as files then you need to route to a file
endpoint such as:

from("ftp://someone@someserver .com?password=secret&localWorkDirectory=/tmp").to("file://in

Fuse Mediation Router Component Reference Version 2.6 171

Exchange

Chapter 28. FTP2

box");

? Optimization by renaming work file

The route above is ultra efficient as it avoids reading the entire file content into memory. It will download the
remote file directly to a local file stream. The java.io.File handle is then used as the Exchange body. The
file producer leverages this fact and can work directly on the work file java.io.File handle and perform a
java.io.File.rename to the target filename. As Fuse Mediation Router knows it's a local work file, it can
optimize and use a rename instead of a file copy, as the work file is meant to be deleted anyway.

Samples

In the sample below we set up Fuse Mediation Router to download all the reports from the FTP server once
every hour (60 min) as BINARY content and store it as files on the local file system.

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
// we use a delay of 60 minutes (eg. once pr. hour we poll the FTP server
long delay = 60 * 60 * 1000L;

// from the given FTP server we poll (= download) all the files

// from the public/reports folder as BINARY types and store this as files

// in a local directory. Fuse Mediation Router will use the filenames from the
FTPServer

// notice that the FTPConsumer properties must be prefixed with "consumer." in
the URL
// the delay parameter is from the FileConsumer component so we should use
consumer .delay as
// the URI parameter name. The FTP Component is an extension of the File Compon

ent.
from("ftp://tiger:scott@localhost/public/reports?binary=true&consumer.delay="
+ delay).
to("file://target/test-reports");
3
};
3

And the route using Spring DSL:

<route>
<from uri="ftp://scott@localhost/public/reports?password=tiger&inary=true&elay=60000"/>

172 Fuse Mediation Router Component Reference Version 2.6

Exchange

<to uri="file://target/test-reports"/>
</route>

Consuming a remote FTP server triggered by a route

The FTP consumer is built as a scheduled consumer to be used in the from route. However, if you want to
start consuming from an FTP server triggered within a route, use a route like the following:

from("seda:start")
// set the filename in FILE_NAME header so Fuse Mediation Router know the name of the
remote file to poll
.setHeader (Exchange.FILE_NAME, header("myfile"))
.pollEnrich("ftp://admin@localhost:21/getme?password=admin&binary=false")
.to("mock:result");

Consuming a remote FTPS server (implicit SSL) and client authentication

from("ftps://admin@localhost:2222/public/camel?password=admin&securityProtocol=SSL&isImpli
cit=true
&ftpClient.keyStore.file=./src/test/resources/server.jks
&ftpClient.keyStore.password=password&ftpClient.keyStore.keyPassword=password")
.to("bean:foo");

Consuming a remote FTPS server (explicit TLS) and a custom trust store
configuration

from("ftps://admin@localhost:2222/public/camel?password=admin&ftpClient.trust
Store.file=./src/test/resources/server.jks&ftpClient.trustStore.password=password")
.to("bean:foo");

Filter using org.apache.camel.component.file.GenericFileFilter

Fuse Mediation Router supports pluggable filtering strategies. You define a filter strategy by implementing the
org.apache.camel.component.file.GenericFileFilter interface in Java. You can then configure the
endpoint with the filter to skip certain files.

In the following sample we define a filter that only accepts files whose filename starts with report.

public class MyFileFilter implements GenericFileFilter {

Fuse Mediation Router Component Reference Version 2.6 173

Chapter 28. FTP2

public boolean accept(GenericFile file) {
// we only want report files
return file.getFileName().startswWith("report");

}

And then we can configure our route using the filter attribute to reference our filter (using # notation) that we
have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileFilter"/>

<route>
<from uri="ftp://someuser@someftpserver.com?password=secret&filter=#myFilter"/>

<to uri="bean:processInbox"/>
</route>

Filtering using ANT path matcher

The ANT path matcher is a filter that is shipped out-of-the-box in the camel-spring jar. So you need to depend
on camel-spring if you are using Maven. The reason is that we leverage Spring's AntPathMatcher® to do the
actual matching.

The file paths are matched with the following rules:
» ? matches one character

* * matches zero or more characters

» ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<template id="camelTemplate"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan for -->

<endpoint id="myFTPEndpoint" uri="ftp://admin@localhost:20123/antpath?password=admin&ecurs
ive=true&elay=10000&nitialDelay=2000&ilter=#myAntFilter"/>

<route>
<from ref="myFTPEndpoint"/>
<to uri="mock:result"/>
</route>

6 http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

174 Fuse Mediation Router Component Reference Version 2.6

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

</camelContext>

<!-- we use the AntPathMatcherRemoteFileFilter to use ant paths for includes and exlucde -
->

<bean id="myAntFilter" class="org.apache.camel.component.file.AntPathMatcherGenericFileFil
ter'>

<!-- include and file in the subfolder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to seperate multiple

excludes -->
<property name="excludes" value="**/*bad*, **/*.xml"/>
</bean>

Debug logging

This component has log level TRACE that can be helpful if you have problems.

Fuse Mediation Router Component Reference Version 2.6 175

176 Fuse Mediation Router Component Reference Version 2.6

Chapter 29. GAE

Introduction t0 the GAE COMPONENTSuitititii e e et aaeanes 178
o =T 1 o PP 184
01110 TP 193
oo o 11 o PPN 197
o 00T 1P PPPP 201
0 S P 203
0 =TS PSPPI 205

Fuse Mediation Router Component Reference Version 2.6 177

Chapter 29. GAE

Introduction to the GAE Components

Fuse Mediation Router Components for Google App Engine

? Tutorials

¢ A good starting point for using Fuse Mediation Router on GAE is the Tutorial for Camel on Google App
Engine

« The OAuth tutorial®> demonstrates how to implement OAuth® in web applications.

The Fuse Mediation Router components for Google App Engine4 (GAE) are part of the camel-gae project and
provide connectivity to GAE's cloud computing services®. They make the GAE cloud computing environment
accessible to applications via Fuse Mediation Router interfaces. Following this pattern for other cloud computing
environments could make it easier to port Fuse Mediation Router applications from one cloud computing
provider to another. The following table lists the cloud computing services provided by Google App Engine
and the supporting Fuse Mediation Router components. The documentation of each component can be found
by following the link in the Camel Component column.

GAE service Camel component Component description

6 ghttp on page 193 Provides connectivity to the GAE URL fetch service but can also
be used to receive messages from servlets.

Task queueing service’ gtask on page 205 Supports asynchronous message processing on GAE by using
the task queueing service as message queue.

URL fetch service

Mail service® gmail on page 201 Supports sending of emails via the GAE mail service. Receiving
mails is not supported yet but will be added later.

Memcache service® Not supported yet.

XMPP service® Not supported yet.

; Tutorial for Camel on Google App Engine
Tutorial-OAuth

8 http://oauth.net/
http://code.google.com/appengine/
http://code.google.com/appengine/docs/java/apis.html
http://code.google.com/appengine/docs/javalurlfetch/
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/mail/
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/xmpp/

178 Fuse Mediation Router Component Reference Version 2.6

Tutorial for Camel on Google App Engine
Tutorial for Camel on Google App Engine
Tutorial-OAuth
http://oauth.net/
http://code.google.com/appengine/
http://code.google.com/appengine/docs/java/apis.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/mail/
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/xmpp/
Tutorial for Camel on Google App Engine
Tutorial-OAuth
http://oauth.net/
http://code.google.com/appengine/
http://code.google.com/appengine/docs/java/apis.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/mail/
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/xmpp/

Introduction to the GAE Components

Images service™ Not supported yet.
Datastore service®? Not supported yet.
Accounts service®® gauth on page 184 These components interact with the Google Accounts API for

glogin on page 197 authentication and authorization. Google Accounts is not specific
to Google App Engine but is often used by GAE applications for
implementing security. The gauth on page 184 component is
used b&web applications to implement a Google-specific
OAuth™ consumer. This component can also be used to
OAuth-enable non-GAE web applications. The glogin on page 197
component is used by Java clients (outside GAE) for
programmatic login to GAE applications. For instructions how
to protect GAE applications against unauthorized access refer
to the Security for Fuse Mediation Router GAE
applications on page 203 page.

Camel context

Setting up a SpringCamelContext on Google App Engine differs between Camel 2.1 and higher versions.
The problem is that usage of the Camel-specific Spring configuration XML schema from the
http://camel.apache.org/schema/spring namespace requires JAXB and Camel 2.1 depends on a Google
App Engine SDK version that doesn't support JAXB yet. This limitation has been removed since Camel 2.2.

JMX must be disabled in any case because the javax.management package isn't on the App Engine JRE
whitelist.

Fuse Mediation Router 2.1
camel-gae 2.1 comes with the following CamelContext implementations.

* org.apache.camel.component.gae.context.GaeDefaultCamelContext (extends
org.apache.camel.impl.DefaultCamelContext)

* org.apache.camel.component.gae.context.GaeSpringCamelContext (extends
org.apache.camel.spring.SpringCamelContext)

Both disable JMX before startup. The GaeSpringCamelContext additionally provides setter methods adding
route builders as shown in the next example.

1 http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/OAuth.html

Fuse Mediation Router Component Reference Version 2.6 179

http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/OAuth.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/schema/spring
http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/OAuth.html

Chapter 29. GAE

® appctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="camelContext"
class="org.apache.camel.component.gae.context.GaeSpringCamelContext">
<property name="routeBuilder" ref="myRouteBuilder" />

</bean>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">
</bean>

</beans>

Alternatively, use the routeBuilders property of the GaeSpringCamelContext for setting a list of route builders.
Using this approach, a SpringCamelContext can be configured on GAE without the need for JAXB.

Fuse Mediation Router 2.2

With Camel 2.2 or higher, applications can use the http://camel.apache.org/schema/spring namespace
for configuring a SpringCamelContext but still need to disable JIMX. Here's an example.

180 Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/schema/spring

Introduction to the GAE Components

® appctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camel:camelContext id="camelContext">
<camel:jmxAgent id="agent" disabled="true" />
<camel:routeBuilder ref="myRouteBuilder"/>
</camel:camelContext>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">
</bean>

</beans>

The web.xml
Running Fuse Mediation Router on GAE requires usage of the CamelHttpTransportServlet from

camel-servlet. The following example shows how to configure this servlet together with a Spring application
context XML file.

Fuse Mediation Router Component Reference Version 2.6 181

Chapter 29. GAE

<web-app

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<servlet>
<servlet-name>CamelServlet</servlet-name>
<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-
class>
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>appctx.xml</param-value>
</init-param>
</servlet>

<!--

Mapping used for external requests
-->
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/camel/*</url-pattern>
</servlet-mapping>

<!--

Mapping used for web hooks accessed by task queueing service.
-->
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/worker/*</url-pattern>
</servlet-mapping>

</web-app>

The location of the Spring application context XML file is given by the contextConfigLocation init parameter.
The appctx.xml file must be on the classpath. The servlet mapping makes the Fuse Mediation Router
application accessible under http://<appname>.appspot.com/camel/. .. when deployed to Google App
Engine where <appname> must be replaced by a real GAE application name. The second servlet mapping is

182 Fuse Mediation Router Component Reference Version 2.6

Introduction to the GAE Components

used internally by the task queueing service for background processing via web hooks®®. This mapping is
relevant for the gtask on page 205 component and is explained there in more detail.

5 http://www.webhooks.org/

Fuse Mediation Router Component Reference Version 2.6 183

http://www.webhooks.org/
http://www.webhooks.org/

Chapter 29. GAE

gauth

gauth Component

Available in Fuse Mediation Router 2.3

The gauth component is used by web apf)lications to implement a Google-specific OAuth™® consumer. It will
be later extended to support other OAuth ! providers as well. Although this component belongs to the Camel
Components for Google App Engine on page 177 (GAE), it can also be used to OAuth-enable non-GAE web
applications. For a detailed description of Google's OAuth implementation refer to the Google OAuth API

reference™®.

URI format

gauth://name[?options]

The endpoint name can be either authorize or upgrade. An authorize endpoint is used to obtain an
unauthorized request token from Google and to redirect the user to the authorization page. The upgrade
endpoint is used to process OAuth callbacks from Google and to upgrade an authorized request token to a
long-lived access token. Refer to the usage section for an example.

Options

Name Default Value
callback null

scope null
consumerKey null

16 http://code.google.com/apis/accounts/docs/OAuth.html
! http://oauth.net/
http://code.google.com/apis/accounts/docs/OAuth_ref.html
http://www.google.com/calendar/feeds/

184

Required

true (can alternatively be set via
GAuthAuthorizeBinding.GAUTH_CALLBACK
message header)

true (can alternatively be set via
GAuthAuthorizeBinding.GAUTH_SCOPE
message header)

true (can alternatively be set on
component-level).

Description

URL where to redirect the
granted or denied access.

URL identifying the service
Scopes are defined by eal
see the service's documen
value. To specify more tha
each one separated with &
H}tp://www.google.com

Domain identifying the we
is the domain used when |
application with Google. E

Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/apis/accounts/docs/OAuth.html
http://oauth.net/
http://code.google.com/apis/accounts/docs/OAuth_ref.html
http://code.google.com/apis/accounts/docs/OAuth_ref.html
http://www.google.com/calendar/feeds/
http://www.google.com/calendar/feeds/
http://www.google.com/calendar/feeds/
http://code.google.com/apis/accounts/docs/OAuth.html
http://oauth.net/
http://code.google.com/apis/accounts/docs/OAuth_ref.html
http://www.google.com/calendar/feeds/

gauth

consumerSecret null one of consumerSecret or keyLoaderRef is
required (can alternatively be set on
component-level).

keyLoaderRef null one of consumerSecret or keyLoaderRef is
required (can be alternatively set on
component-level)

authorizeBindingRef Reference to false
GAuthAuthorizeBinding

upgradeBindingRef Reference to false
GAuthAuthorizeBinding

camelcloud.appspot.
non-registered applical

Consumer secret of the
consumer secret is ger
registering the applicat
needed if the HMAC-S
shall be used. For a nor
use anonymous.

Reference to a private
registry. Part of camel-
loaders: GAuthPk8Load
key from a PKCS#8 file
to load a private key fre
is needed if the RSA-S
shall be used. These c
the org.apache.camel
package.

Reference to a

OutboundBinding<GAL
GoogleOAuthParamete
GoogleOAuthParamete
customizing how an Ex
GoogleOAuthParamete
for teh authorization ph
won't change the defat

Reference to a

OutboundBinding<GAL
GoogleOAuthParamete
GoogleOAuthParamete
customizing how an Ex
GoogleOAuthParamete
for teh token upgrade pl
won't change the defat

Message headers

Name Type Endpoint Message Description
GAuthAuthorizeBinding.GAUTH_CALLBACK String gauth:authorize in Overrides
the

Fuse Mediation Router Component Reference Version 2.6

185

Chapter 29. GAE

GAuthAuthorizeBinding.GAUTH_SCOPE

GAuthUpgradeBinding.GAUTH_ACCESS_TOKEN

String gauth:authorize in

String gauth:upgrade

GAuthUpgradeBinding.GAUTH_ACCESS_TOKEN_SECRET String gauth:upgrade

out

out

callback
option.

Overrides
the scope
option.

Contains the
long-lived
access
token. This
token should
be stored by
the
applications
in context of
a user.

Contains the
access token
secret. This
token secret
should be
stored by the
applications
in context of
a user.

Message body

The gauth component doesn't read or write message bodies.

Component configuration

Some endpoint options such as consumerKey, consumerSecret or keyLoader are usually set to the same
values on gauth:authorize and gauth:upgrade endpoints. The gauth component allows to configure them
on component-level. These settings are then inherited by gauth endpoints and need not be set redundantly
in the endpoint URIs. Here are some configuration examples.

186

Fuse Mediation Router Component Reference Version 2.6

gauth

® component configuration for a registered web application

using the HMAC-SHA1 sighature method

<bean id="gauth" class="org.apache.camel.component.gae.auth.GAuthComponent">
<property name="consumerKey" value="example.appspot.com" />
<property name="consumerSecret" value="QAtA...HfQ" />

</bean>

® component configuration for an unregistered web application

using the HMAC-SHA1 signature method

<bean id="gauth" class="org.apache.camel.component.gae.auth.GAuthComponent">
<!-- Google will display a warning message on the authorization page -->
<property name="consumerKey" value="anonymous" />
<property name="consumerSecret" value="anonymous" />

</bean>

Fuse Mediation Router Component Reference Version 2.6 187

Chapter 29. GAE

® component configuration for a registered web application

using the RSA-SHA1 signhature method

<bean id="gauth" class="org.apache.camel.component.gae.auth.GAuthComponent">
<property name="consumerKey" value="ipfcloud.appspot.com" />
<property name="keylLoader" ref="jksLoader" />
<!--<property name="keyLoader" ref="pk8Loader" />-->

</bean>

<!-- Loads the private key from a Java key store -->
<bean id="jksLoader"
class="org.apache.camel.component.gae.auth.GAuthJksLoader">
<property name="keyStoreLocation" value="myKeytore.jks" />
<property name="keyAlias" value="myKey" />
<property name="keyPass" value="myKeyPassword" />
<property name="storePass" value="myStorePassword" />
</bean>

<!-- Loads the private key from a PKCS#8 file -->

<bean id="pk8Loader"
class="org.apache.camel.component.gae.auth.GAuthPk8Loader">
<property name="keyStoreLocation" value="myKeyfile.pk8" />

</bean>

Usage

Here's the minimum setup for adding OAuth to a (non-GAE) web application. In the following example, it is
assumed that the web application is running on gauth.example.org.

188 Fuse Mediation Router Component Reference Version 2.6

gauth

® GAuthRouteBuilder.java

import java.net.URLEncoder;
import org.apache.camel.builder.RouteBuilder;

public class GAuthRouteBuilder extends RouteBuilder {

@Override
public void configure() throws Exception {

// Calback URL to redirect user from Google Authorization back to the web application

String encodedCallback = URLEncoder.encode("https://gauth.example.org:8443/handler",
"UTF-8");
// Application will request for authorization to access a user's Google Calendar
String encodedScope = URLEncoder.encode("http://www.google.com/calendar/feeds/",
"UTF-8");

// Route 1: A GET request to http://gauth.example.org/authorize will trigger the
the OAuth

// sequence of interactions. The gauth:authorize endpoint obtains an unauthorized
request

// token from Google and then redirects the user (browser) to a Google authorization
page.

from("jetty:http://0.0.0.0:8080/authorize")

.to("gauth:authorize?callback=" + encodedCallback + "&scope=" + encodedScope);

// Route 2: Handle callback from Google. After the user granted access to Google
Calendar
// Google redirects the user to https://gauth.example.org:8443/handler (see callback)
along
// with an authorized request token. The gauth:access endpoint exchanges the author
ized
// request token against a long-lived access token.
from("jetty:https://0.0.0.0:8443/handler")
.to("gauth:upgrade")
// The access token can be obtained from
// exchange.getOut().getHeader (GAuthUpgradeBinding.GAUTH_ACCESS_TOKEN)
// The access token secret can be obtained from
// exchange.getOut().getHeader (GAuthUpgradeBinding.GAUTH_ACCESS_TOKEN_SECRET)
.process(/* store the tokens in context of the current user ... */);

Fuse Mediation Router Component Reference Version 2.6 189

Chapter 29. GAE

The OAuth sequence is triggered by sending a GET requestto http://gauth.example.org/authorize
20 The user is then redirected to a Google authorization page. After having granted access on this page,
Google redirects the user to the web application which handles the callback and finally obtains a long-lived
access token from Google.

These two routes can perfectly co-exist with any other web application framework. The framework provides
the basis for web application-specific functionality whereas the OAuth service provider integration is done with
Fuse Mediation Router. The OAuth integration part could even use resources from an existing servlet container
by using the servlet component instead of the jetty component.

? What to do with the OAuth access token?

« Application should store the access token in context of the current user. If the user logs in next time, the
access token can directly be loaded from the database, for example, without doing the OAuth dance again.

¢ The access token is then used to get access to Google services, such as a Google Calendar API, on behalf
of the user. Java applications will most likely use the GData Java Iibrary21 for that. See below for an example
how to use the access token with the GData Java library to read a user's calendar feed.

« The user can revoke the access token at any time from his Google Accounts® page. In this case, access
to the corresponding Google service will throw an authorization exception. The web application should
remove the stored access token and redirect the user again to the Google authorization page for creating
another one.

The above example relies on the following component configuration.

<bean id="gauth" class="org.apache.camel.component.gae.auth.GAuthComponent">
<property name="consumerKey" value="anonymous" />
<property name="consumerSecret" value="anonymous" />

</bean>

2 http://gauth.example.org/authorize
http://code.google.com/p/gdata-java-client/
https://www.google.com/accounts

190 Fuse Mediation Router Component Reference Version 2.6

http://gauth.example.org/authorize
http://gauth.example.org/authorize
http://code.google.com/p/gdata-java-client/
https://www.google.com/accounts
http://gauth.example.org/authorize
http://code.google.com/p/gdata-java-client/
https://www.google.com/accounts

gauth

If you don't want that Google displays a warning message on the authorization page, you'll need to register23
your web application and change the consumerKey and consumerSecret settings.

GAE example

To OAuth-enable a Google App Engine application, only some small changes in the route builder are required.
Assuming the GAE application hostname is camelcloud.appspot.com a configuration might look as follows.
Here, the ghttp on page 193 component is used to handle HTTP(S) requests instead of the jetty component.

® GAuthRouteBuilder

import java.net.URLEncoder;
import org.apache.camel.builder.RouteBuilder;

public class TutorialRouteBuilder extends RouteBuilder {

@override
public void configure() throws Exception {

String encodedCallback = URLEncoder.encode("https://camelcloud.appspot.com/handler",
"UTF-8");
String encodedScope = URLEncoder.encode("http://www.google.com/calendar/feeds/",
"UTF-8");

from("ghttp:///authorize")
.to("gauth:authorize?callback=" + encodedCallback + "&scope=" + encodedScope);

from("ghttp:///handler")
.to("gauth:upgrade")
.process(/* store the tokens in context of the current user ... */);

B http://code.google.com/apis/accounts/docs/RegistrationForWebAppsAuto.html

Fuse Mediation Router Component Reference Version 2.6 191

http://code.google.com/apis/accounts/docs/RegistrationForWebAppsAuto.html
http://code.google.com/apis/accounts/docs/RegistrationForWebAppsAuto.html

Chapter 29. GAE

Access token usage

Here's an example how to use an access token to access a user's Google Calendar data with the GData Java

Iibrary24

. The example application writes the titles of the user's public and private calendars to stdout.

® Access token usage

import
import
import
import
import

import

public

com.google.gdata.client.authn.oauth.OAuthHmacShalSigner;
com.google.gdata.client.authn.oauth.OAuthParameters;
com.google.gdata.client.calendar.CalendarService;
com.google.gdata.data.calendar.CalendarEntry;
com.google.gdata.data.calendar.CalendarFeed;

java.net.URL;

class AccessExample {

public static void main(String... args) throws Exception {

String accessToken =
String accessTokenSecret =

CalendarService myService = new CalendarService("exampleCo-exampleApp-1.0");
OAuthParameters params = new OAuthParameters();
params.setOAuthConsumerKey("anonymous");

params.setOAuthConsumerSecret ("anonymous");
params.setOAuthToken(accessToken);

params.setOAuthTokenSecret (accessTokenSecret);
myService.setOAuthCredentials(params, new OAuthHmacShailSigner());

URL feedUrl = new URL("http://www.google.com/calendar/feeds/default/");
CalendarFeed resultFeed = myService.getFeed(feedUrl, CalendarFeed.class);

System.out.println("Your calendars:");
System.out.println();

for (int i = 0; i < resultFeed.getEntries().size(); i++) {
CalendarEntry entry = resultFeed.getEntries().get(1i);
System.out.println(entry.getTitle().getPlainText());

2 http://code.google.com/p/gdata-java-client/

192

Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/p/gdata-java-client/
http://code.google.com/p/gdata-java-client/
http://code.google.com/p/gdata-java-client/

ghttp

ghttp Component

ghttp

The ghttp component contributes to the Camel Components for Google App Engine on page 177 (GAE). It
provides connectivity to the GAE URL fetch service®® but can also be used to receive messages from servlets
(the only way to receive HTTP requests on GAE). This is achieved by extending the Servlet

component on page 435.As aconsequence, ghttp URI formats and options sets differ on the consumer-side

(from) and producer-side (to).

URI format

Format
ghttp:///path[?options]

ghttp://hostname[:port][/path][?options]
ghttps://hostname[:port][/path][?options]

Context

Consumer See also Servlet component on page 435

Producer

Comment

See also Http component on page 229

Options

Name Default Value Context

bridgeEndpoint true Producer

throwExceptionOnFailure true Producer

inboundBindingRef referenceto Consumer
GHttpBinding

outboundBindingRef referenceto Producer
GHttpBinding

Description

If set to true the Exchange.HTTP_URI header will be
ignored. To override the default endpoint URI with the
Exchange.HTTP_URI header set this option to false.

Throw a org.apache.camel.component.gae.http if
the response code is >= 400. To disable throwing an
exception set this option to false.

Reference to an InboundBinding<GHttpEndpoint,
HttpServletRequest, HttpServletResponse>in
the Registry for customizing the binding of an Exchange
to the Servlet API. The referenced binding is used as
post-processor to
org.apache.camel.component.http.HttpBinding.

Reference to an outboundBinding<GHt tpEndpoint,
HTTPRequest, HTTPResponse> in the Registry for
customizing the binding of an Exchange to the
URLFetchService.

% http://code.google.com/appengine/docs/java/urlfetch/

Fuse Mediation Router Component Reference Version 2.6

193

http://code.google.com/appengine/docs/java/urlfetch/
Registry
Registry
http://code.google.com/appengine/docs/java/urlfetch/

Chapter 29. GAE

On the consumer-side, all options of the Servlet component on page 435 are supported.
Message headers

On the producer side, the following headers of the Http component on page 229 are supported.

Name Type Description

Exchange.CONTENT_TYPE String The HTTP content type. Is set on both the in and out message to
provide a content type, such as text/html.

Exchange.CONTENT_ENCODING String The HTTP content encoding. Is set on both the in and out message
to provide a content encoding, such as gzip.

Exchange.HTTP_METHOD String The HTTP method to execute. One of GET, POST, PUT and DELETE.
If not set, POST will be used if the message body is not null, GET
otherwise.

Exchange.HTTP_QUERY String Overrides the query part of the endpoint URI or the the query part

of Exchange .HTTP_URI (if defined). The query string must be in
decoded form.

Exchange.HTTP_URI String Overrides the default endpoint URI if the bridgeEndpoint option is
set to false. The URI string must be in decoded form.

Exchange .RESPONSE_CODE int The HTTP response code from URL fetch service responses.

On the consumer-side all headers of the Servlet component on page 435 component are supported.
Message body

On the producer side the in message body is converted to a byte[]. The out message bodg is made available
as InputStreanm. If the reponse size exceeds 1 megabyte a ResponseToolLargeException % is thrown by the
URL fetch service (see quotas and IimitsZ7).

Receiving messages

For receiving messages via the ghttp component, a CamelHttpTransportServlet must be configured and
mapped in the application's web . xml1. For example, to handle requests targeted at
http://<appname>.appspot.com/camel/* or http://localhost/camel/* (when using alocal development
server) the following servlet mapping must be defined:

% http://code.google.com/appengine/docs/java/javadoc/
http://code.google.com/appengine/docs/java/urlfetch/overview.html#Quotas_and_Limits

194 Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/appengine/docs/java/javadoc/
http://code.google.com/appengine/docs/java/urlfetch/overview.html#Quotas_and_Limits
http://code.google.com/appengine/docs/java/javadoc/
http://code.google.com/appengine/docs/java/urlfetch/overview.html#Quotas_and_Limits

ghttp

<servlet>
<servlet-name>CamelServlet</servlet-name>
<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-
class>

</servlet>
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>

<url-pattern>/camel/*</url-pattern>
</servlet-mapping>

Endpoint URI path definitions are relative to this servlet mapping e.g. the route

from("ghttp:///greeting").transform().constant("Hello")

processes requests targeted at http://<appname>.appspot.com/camel/greeting. In this example, the
request body is ignored and the response body is set to Hello. Requests targeted at
http://<appname>.appspot.com/camel/greeting/* are not processed by default. This requires setting the
option matchonUriPrefix to true.

from("ghttp:///greeting?matchOnUriPrefix=true").transform().constant("Hello")

Sending messages

For sending resquests to external HTTP services the ghttp component uses the URL fetch service?®. For

example, the Fuse Mediation Router homepage can the retrieved with the following endpoint definition on the
producer-side.

from(...)
.to("ghttp://camel.apache.org")
The HTTP method used depends on the Exchange.HTTP_METHOD message header or on the presence of an

in-message body (GET if null, POST otherwise). Retrieving the Camel homepage via a GAE application is as
simple as

® http://code.google.com/appengine/docs/java/urlfetch/

Fuse Mediation Router Component Reference Version 2.6 195

http://<appname>.appspot.com/camel/greeting
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/

Chapter 29. GAE

from("ghttp:///home")
.to("ghttp://camel.apache.org")

Sending a GET requestto http://<appname>.appspot.com/camel/home returns the Camel homepage.
HTTPS-based communication with external services can be enabled with the ghttps scheme.

from(...)

.to("ghttps://svn.apache.org/repos/asf/camel/trunk/")

Dependencies

Maven users will need to add the following dependency to their pom. xm1.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gae</artifactId>
<version>${camel-version}</version>
</dependency>

where ${camel-version} must be replaced by the actual version of Fuse Mediation Router (2.1.0 or higher).

196 Fuse Mediation Router Component Reference Version 2.6

http://<appname>.appspot.com/camel/home

glogin

glogin Component

glogin

Available in Fuse Mediation Router 2.3 (or latest development snapshotzg).

The glogin component is used by Fuse Mediation Router applications outside Google App Engine (GAE) for
programmatic login to GAE applications. It is part of the Fuse Mediation Router Components for Google App
Engine on page 177. Security-enabled GAE applications on page 203 normally redirect the user to a login page.
After submitting username and password for authentication, the user is redirected back to the application. That
works fine for applications where the client is a browser. For all other applications, the login process must be
done programmatically. All the necessary steps30 for programmatic login are implemented by the glogin

component. These are

1. Get an authentication token from Google Accounts®® via the ClientLogin API®2,

2. Get an authorization cookie from Google App Engine's login API.

The authorization cookie must then be send with subsequent HTTP requests to the GAE application. It expires

after 24 hours and must then be renewed.

URI format

glogin://hostname[:port][?options]

The hostname is either the internet hostname of a GAE application (e.g. camelcloud.appspot.com) or the
name of the host where the development server® is running (e.g. localhost). The port is only used when
connecting to a development server (i.e. when devMode=true, see options) and defaults to 8080.

Options

Name Default Value Required

clientName apache-camel-2.x false

i https://svn.apache.org/repos/asf/camel/trunk/components/camel-gae/
http://krasserm.blogspot.com/2010/01/accessing-security-enabled-google-app.html
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/AuthForinstalledApps.html
http://code.google.com/appengine/docs/java/tools/devserver.html

31

Fuse Mediation Router Component Reference Version 2.6

Description

A client name with recommended (but not
required) format
<organization>\-<appname>\-<version>.

197

https://svn.apache.org/repos/asf/camel/trunk/components/camel-gae/
http://krasserm.blogspot.com/2010/01/accessing-security-enabled-google-app.html
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://code.google.com/appengine/docs/java/tools/devserver.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-gae/
http://krasserm.blogspot.com/2010/01/accessing-security-enabled-google-app.html
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://code.google.com/appengine/docs/java/tools/devserver.html

Chapter 29. GAE

userName null true (can alternatively be set via Login username (an email address).
GLoginBinding.GLOGIN_USER_NAME
message header)
password null true (can alternatively be set via Login password.
GLoginBinding.GLOGIN_PASSWORD
message header)
devMode false false If setto true alogin to a development server
is attempted.
devAdmin false false If setto true alogin to a development server
in admin role is attempted.
Message headers
Name Type Message Description
GLoginBinding.GLOGIN_HOST_NAME String in Overrides the hostname defined in the endpoint
URI.
GLoginBinding.GLOGIN_USER_NAME String in Overrides the userName option.
GLoginBinding.GLOGIN_PASSWORD String in Overrides the password option.
GLoginBinding.GLOGIN_TOKEN String out Contains the authentication token obtained from
Google Accounts*. Login to a development server
does not set this header.
GLoginBinding.GLOGIN_COOKIE String out Contains the application-specific authorization

cookie obtained from Google App Engine (or a
development server).

Message body

The glogin component doesn't read or write message bodies.

Usage

The following JUnit test show an example how to login to a development server as well as to a deployed GAE

application located at http://camelcloud.appspot.com.

34 http://code.google.com/apis/accounts/

198

Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/apis/accounts/
http://camelcloud.appspot.com
http://code.google.com/apis/accounts/

glogin

® GLoginTest.java

import org.apache.camel.Exchange;

import org.apache.camel.Processor;

import org.apache.camel.ProducerTemplate;

import org.junit.Ignore;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import static org.apache.camel.component.gae.login.GLoginBinding.*;
import static org.junit.Assert.*;

public class GLoginTest {
private ProducerTemplate template = ...

@Test
public void testDevLogin() {
Exchange result = template.request("glogin://localhost:8888?userName=test@ex
ample.org&devMode=true", null);
assertNotNull(result.getOut().getHeader (GLOGIN_COOKIE));
1

@Test
public void testRemoteLogin() {
Exchange result = template.request("glogin://camelcloud.appspot.com", new Processor()
public void process(Exchange exchange) throws Exception {

exchange.getIn().setHeader (GLOGIN_USER_NAME, "replaceme@gmail.com");
exchange.getIn().setHeader (GLOGIN_PASSWORD, "replaceme");

1
1
assertNotNull(result.getOut().getHeader (GLOGIN_COOKIE));

The resulting authorization cookie from login to a development server looks like

ahlogincookie=test@example.org:false:11223191102230730701;Path=/

The resulting authorization cookie from login to a deployed GAE application looks (shortened) like

Fuse Mediation Router Component Reference Version 2.6 199

Chapter 29. GAE

ACSID=AJKiYCE...XxhH9P_jR_V3; expires=Sun, 07-Feb-2010 15:14:51 GMT; path=/

200 Fuse Mediation Router Component Reference Version 2.6

gmail

gmail Component

gmail

The gmail component contributes to the Camel Con;é)onents for Google App Engine on page 177 (GAE). It

supports sending of emails via the GAE mail service

. Receiving mails is not supported yet but will be added

later. Currently, only Google accounts that are application administrators can send emails.

URI format

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Options

Name Default Value Context Description

to null Producer To-receiver of the email. This can be a single receiver
or a comma-separated list of receivers.

cc null Producer Cc-receiver of the email. This can be a single receiver
or a comma-separated list of receivers.

bcc null Producer Bcc-receiver of the email. This can be a single receiver
or a comma-separated list of receivers.

subject null Producer Subject of the email.

outboundBindingRef reference to Producer Reference to an outboundBinding<GMailEndpoint,

GMailBinding MailService.Message, void> in the Registry for

customizing the binding of an Exchange to the malil
service.

Message headers

Name Type Context Description

GMailBinding.GMAIL_SUBJECT String Producer
GMailBinding.GMAIL_SENDER String Producer

GMailBinding.GMAIL_TO String Producer

% http://code.google.com/appengine/docs/java/mail/

Fuse Mediation Router Component Reference Version 2.6

Subject of the email. Overrides subject endpoint option.

Sender of the email. Overrides sender definition in
endpoint URI.

To-receiver(s) of the email. Overrides to endpoint
option.

201

http://code.google.com/appengine/docs/java/mail/
Registry
http://code.google.com/appengine/docs/java/mail/

Chapter 29. GAE

GMailBinding.GMAIL_CC String Producer Cc-receiver(s) of the email. Overrides cc endpoint
option.

GMailBinding.GMAIL_BCC String Producer Bcc-receiver(s) of the email. Overrides bcc endpoint
option.

Message body

On the producer side the in message body is converted to a String.

Usage

.setHeader (GMailBinding.GMAIL_SUBJECT, constant("Hello"))
.setHeader (GMailBinding.GMAIL_TO, constant("account2@somewhere.com"))
.to("gmail://accountl@gmail.com");

Sends an email with subject Hello from account1@gmail . comto account2@somewhere.com. The mail message
body is taken from the in message body. Please note that accounti@gmail.com must be an administrator
account for the current GAE application.

Dependencies

Maven users will need to add the following dependency to their pom.xml.

L ® poent

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gae</artifactId>
<version>${camel-version}</version>
</dependency>

where $\{camel-version\} must be replaced by the actual version of Fuse Mediation Router (2.1.0 or higher).

202 Fuse Mediation Router Component Reference Version 2.6

gsec

gsec

Security for Fuse Mediation Router GAE Applications

Securing GAE applications from unauthorized access is described in the Security and Authentication®® section
of the Google App Engine documentation. Authorization constraints are declared in the web.xml. This applies
to Fuse Mediation Router applications as well. In the following example, the application is configured to only
allow authenticated users (in any role) to access the application. Additionally, access to /worker/* URLs
masy only be done by users in the admin role. By default, web hook URLSs installed by the gtask on page 205
component match the /worker/* pattern and should not be accessed by normal users. With this authorization
constraint, only the task queuing service (which is always in the admin role) is allowed to access the web
hooks. For implementing custom, non-declarative authorization logic, Fuse Mediation Router GAE applications
should use the Google Accounts Java API*.

Example 29.1. web.xml with authorization constraint

<web-app

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemalLocation="

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<servlet>
<servlet-name>CamelServlet</servlet-name>
<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-

class>
<init-param>
<param-name>contextConfigLocation</param-name>
<param-value>appctx.xml</param-value>
</init-param>
</servlet>
<l==

Mapping used for external requests
--=
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/camel/*</url-pattern>
</servlet-mapping>

<l--

36 http://code.google.com/appengine/docs/java/config/iwebxml.html#Security_and_Authentication
http://code.google.com/appengine/docs/java/users/overview.html

Fuse Mediation Router Component Reference Version 2.6 203

http://code.google.com/appengine/docs/java/config/webxml.html#Security_and_Authentication
http://code.google.com/appengine/docs/java/users/overview.html
http://code.google.com/appengine/docs/java/config/webxml.html#Security_and_Authentication
http://code.google.com/appengine/docs/java/users/overview.html

Chapter 29. GAE

Mapping used for web hooks accessed by task queueing service.
-->
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/worker/*</url-pattern>
</servlet-mapping>

<l--
By default allow any user who is logged in to access the whole
application.
-->
<security-constraint>
<web-resource-collection>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>*</role-name>
</auth-constraint>
</security-constraint>

<l--
Allow only admin users to access /worker/* URLs e.g. to prevent
normal user to access gtask web hooks.
-->
<security-constraint>
<web-resource-collection>
<url-pattern>/worker/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

</web-app>

204 Fuse Mediation Router Component Reference Version 2.6

gtask

gtask

gtask Component

The gtask component contributes to the Camel Components for Google App Engine on page 177 (GAE). It
supports asynchronous message processing on GAE by using the task queueing service™ as message queue.
For adding messages to a queue it uses the task queue API. For receiving messages from a queue it installs
an HTTP callback handler. The handler is called by an HTTP POST callback (a web hooksg) initiated by the
task queueing service. Whenever a new task is added to a queue a callback will be sent. The gtask component
abstracts from these details and supports endpoint URIs that make message queueing on GAE as easy as
message queueing with JMS on page 293 or SEDA on page 429.

URI format

gtask://queue-name

Options

Name Default Value Context Description

workerRoot worker Producer The servlet mapping for callback handlers. By default,
this component requires a callback servlet mapping of
/worker/*. If another servlet mapping is used e.g.
/myworker/* it must be set as option on the producer
side: to("gtask:myqueue?workerRoot=myworker").

inboundBindingRef reference to Consumer Reference to an InboundBinding<GTaskEndpoint,
GTaskBinding HttpServletRequest, HttpServletResponse>inthe
Registry for customizing the binding of an Exchange to
the Servlet API. The referenced binding is used as
post-processor to
org.apache.camel.component.http.HttpBinding.

outboundBindingRef reference to Producer Reference to an OutboundBinding<GTaskEndpoint,
GTaskBinding TaskOptions, void> inthe Registry for customizing
the binding of an Exchange to the task queueing
service.

On the consumer-side, all options of the Servlet component on page 435 are supported.

38 http://code.google.com/appengine/docs/java/taskqueue/
http://www.webhooks.org/

Fuse Mediation Router Component Reference Version 2.6 205

http://code.google.com/appengine/docs/java/taskqueue/
http://www.webhooks.org/
Registry
Registry
http://code.google.com/appengine/docs/java/taskqueue/
http://www.webhooks.org/

Chapter 29. GAE

Message headers

On the consumer-side all headers of the Servlet component on page 435 component are supported plus the
following.

Name Type Context Description
GTaskBinding.GTASK_QUEUE_NAME String Consumer Name of the task queue.
GTaskBinding.GTASK_TASK_NAME String Consumer Name of the task (generated value).
GTaskBinding.GTASK_RETRY_COUNT int Consumer Number of callback retries.

Message body

On the producer side the in message body is converted to a byte[] and is POSTed to the callback handler
as content-type application/octet-stream.

Usage

Setting up tasks queues is an administrative task on Google App Engine. Only one queue is pre-configured
and can be referenced by name out-of-the-box: the default queue. This queue will be used in the following
examples. Please note that when usin% task queues on the local development server, tasks must be executed

A
manually from the developer console™.

Default queue

.to(gtask:default) // add message to default queue

from(gtask:default) // receive message from default queue (via a web hook)

This example requires the following servlet mapping.

a0 http://code.google.com/appengine/docs/java/taskqueue/overview.html#Task_Queues_and_the_Development_Server

206 Fuse Mediation Router Component Reference Version 2.6

http://code.google.com/appengine/docs/java/taskqueue/overview.html#Task_Queues_and_the_Development_Server
http://code.google.com/appengine/docs/java/taskqueue/overview.html#Task_Queues_and_the_Development_Server

gtask

® web.xml

<servlet>
<servlet-name>CamelServlet</servlet-name>
<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-
class>

</servlet>

<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/worker/*</url-pattern>
</servlet-mapping>

Dependencies

Maven users will need to add the following dependency to their pom. xm1.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gae</artifactId>
<version>${camel-version}</version>
</dependency>

where ${camel-version} must be replaced by the actual version of Fuse Mediation Router (2.1.0 or higher).

Fuse Mediation Router Component Reference Version 2.6 207

208 Fuse Mediation Router Component Reference Version 2.6

Chapter 30. HawtDB

HawtDB

Available as of Fuse Mediation Router 2.3

HawtDB! is a very lightweight and embedable key value database. It allows together with Fuse Mediation
Router to provide persistent support for various Fuse Mediation Router features such as Aggregator.

Current features it provides:

» HawtDBAggregationR

epository

Using HawtDBAggregationRepository

HawtDBAggregationRepository is an AggregationRepository which on the fly persists the aggregated
messages. This ensures that you will not loose messages, as the default aggregator will use an in memory
only AggregationRepository.

It has the following options:

Option

repositoryName

persistentFileName

bufferSize

sync

pageSize

hawtDBFile

! http://hawtdb.fusesource.org/

Type
String

String

int

boolean

short

HawtDBFile

Description

A mandatory repository name. Allows you to use a shared HawtDBFile
for multiple repositories.

Filename for the persistent storage. If no file exists on startup a new
file is created.

The size of the memory segment buffer which is mapped to the file
store. By default its 8mb. The value is in bytes.

Whether or not the HawtDBFile should sync on write or not. Default
is true. By sync on write ensures that its always waiting for all writes
to be spooled to disk and thus will not loose updates. If you disable
this option, then HawtDB will auto sync when it has batched up a
number of writes.

The size of memory pages. By default its 512 bytes. The value is in
bytes.

Use an existing configured
org.apache.camel.component.hawtdb.HawtDBFile instance.

Fuse Mediation Router Component Reference Version 2.6 209

http://hawtdb.fusesource.org/
http://hawtdb.fusesource.org/

Chapter 30. HawtDB

returnoldexchange boolean Whether the get operation should return the old existing Exchange if
any existed. By default this option is false to optimize as we do not
need the old exchange when aggregating.

useRecovery boolean Whether or not recovery is enabled. This option is by default true.
When enabled the Fuse Mediation Router Aggregator automatic recover
failed aggregated exchange and have them resubmitted.

recoveryInterval long If recovery is enabled then a background task is run every x'th time to
scan for failed exchanges to recover and resubmit. By default this
interval is 5000 millis.

maximumRedeliveries int Allows you to limit the maximum number of redelivery attempts for a
recovered exchange. If enabled then the Exchange will be moved to
the dead letter channel if all redelivery attempts failed. By default this
option is disabled. If this option is used then the deadLetterUri option
must also be provided.

deadLetteruri String An endpoint uri for a Dead Letter Channel where exhausted recovered
Exchanges will be moved. If this option is used then the
maximumRedeliveries option must also be provided.

The repositoryName option must be provided. Then either the persistentFileName or the hawtDBFile must
be provided.

What is preserved when persisting

HawtDBAggregationRepository will only preserve any Serializable compatible data types. If a data type
is not such a type its dropped and a WARN is logged. And it only persists the Message body and the Message
headers. The Exchange properties are not persisted.

Recovery

The HawtDBAggregationRepository will by default recover any failed Exchange. It does this by having a
background tasks that scans for failed Exchanges in the persistent store. You can use the checkInterval
option to set how often this task runs. The recovery works as transactional which ensures that Fuse Mediation
Router will try to recover and redeliver the failed Exchange. Any Exchange which was found to be recovered
will be restored from the persistent store and resubmitted and send out again.

The following headers is set when an Exchange is being recovered/redelivered:

Header Type Description
Exchange.REDELIVERED Boolean s set to true to indicate the Exchange is being redelivered.

Exchange.REDELIVERY_COUNTER Integer The redelivery attempt, starting from 1.

210 Fuse Mediation Router Component Reference Version 2.6

Exchange
Exchange
Exchange
Exchange
Exchange
Exchange

Only when an Exchange has been successfully processed it will be marked as complete which happens when
the confirm method is invoked on the AggregationRepository. This means if the same Exchange fails again
it will be kept retried until it success.

You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a given
recovered Exchange. You must also set the deadLetterUri option so Fuse Mediation Router knows where
to send the Exchange when the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-hawtdb, for example this test’.

Using HawtDBAggregationRepository in Java DSL

In this example we want to persist aggregated messages in the target/data/hawtdb. dat file.

public void configure() throws Exception {

// create the hawtdb repo

HawtDBAggregationRepository repo = new HawtDBAggregationRepository("repol", "tar
get/data/hawtdb.dat");

// here is the Camel route where we aggregate
from("direct:start")
.aggregate(header("id"), new MyAggregationStrategy())
// use our created hawtdb repo as aggregation repository
.completionSize(5).aggregationRepository(repo)
.to("mock:aggregated");

Using HawtDBAggregationRepository in Spring XML

The same example but using Spring XML instead:

<!-- a persistent aggregation repository using camel-hawtdb -->
<bean id="repo" class="org.apache.camel.component.hawtdb.HawtDBAggregationRepository">
<!-- store the repo in the hawtdb.dat file -->
<property name="persistentFileName" value="target/data/hawtdb.dat"/>
<!-- and use repo2 as the repository name -->
<property name="repositoryName" value="repo2"/>
</bean>
<!-- aggregate the messages using this strategy -->

<bean id="myAggregatorStrategy" class="org.apache.camel.component.hawtdb.HawtDBSpringAggreg
ateTest$MyAggregationStrategy"/>

<!-- this is the camel routes -->

2
https://svn.apache.org/repos/asficamel/trunk/components/camel-hawtdb/srcitest/java/org/apache/camel/componenthawtdb/HawtDBAggregateRecover Test java

Fuse Mediation Router Component Reference Version 2.6 211

Exchange
Exchange
Exchange
Exchange
https://svn.apache.org/repos/asf/camel/trunk/components/camel-hawtdb/src/test/java/org/apache/camel/component/hawtdb/HawtDBAggregateRecoverTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-hawtdb/src/test/java/org/apache/camel/component/hawtdb/HawtDBAggregateRecoverTest.java

Chapter 30. HawtDB

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<!-- aggregate using our strategy and hawtdb repo, and complete when we have 5

messages aggregated -->
<aggregate strategyRef="myAggregatorStrategy" aggregationRepositoryRef="repo" com
pletionSize="5">

<!-- correlate by header with the key id -->
<correlationExpression><header>id</header></correlationExpression>
<!-- send aggregated messages to the mock endpoint -->
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>
Dependencies

To use HawtDB on page 209 in your Fuse Mediation Router routes you need to add the a dependency on
camel-hawtdb.

If you use maven you could just add the following to your pom.xml, substituting the version number for the
latest & greatest release (see the download page for the latest versionss).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hawtdb</artifactId>
<version>2.3.0</version>

</dependency>

See Also:

» Aggregator

» JDBC-AggregationRepository on page 271

* Components on page 3

3
Download

212 Fuse Mediation Router Component Reference Version 2.6

Download
Download

Chapter 31. HDFS

HDFS Component

The hdfs component enables you to read and write messages from/to an HDFS file system. HDFS is the
distributed file system at the heart of Hadoop It can only be built using JDK1.6 or later because this is a strict
requirement for Hadoop itself. ThIS component is hosted at http://github.com/dgreco/camel-hdfs. We decided
to put it temporarily on this glthub because currently Camel is being built and tested using JDK1.5 and for
this reason we couldn't put that component into the Camel official distribution. Hopefully, as soon Camel will
allow to use JDK1.6 for building and testing we will put it into the trunk. This component is developed and
tested using the latest Camel snapshot, but it should work seamlessly with the latest Camel GA version (at
the time of writing 2.1.0)

URI format
hdfs://hostname[:port][/path][?options]

You can append query options to the URI in the following format, ?option=value&option=valueé&. .. The
path is treated in the following way:

1. as a consumer, if it's a file, it just reads the file, otherwise if it represents a directory it scans all the file under
the path satisfying the configured pattern. All the files under that directory must be of the same type.

2. as a producer, if at least one split strategy is defined, the path is considered a directory and under that
directory the producer creates a different file per split named seg0, segl, seg2, etc.

Options

Name Default Value Description

overwrite true The file can be overwritten

bufferSize 4096 The buffer size used by HDFS

replication 3 The HDFS replication factor

blockSize 67108864 The size of the HDFS blocks

fileType NORMAL_FILE It can be SEQUENCE_FILE, MAP_FILE, ARRAY_FILE, or
BLOOMMAP_FILE, see Hadoop

fileSystemType HDFS It can be LOCAL for local filesystem

! http://hadoop.apache.org
http://www.github.com

Fuse Mediation Router Component Reference Version 2.6 213

http://hadoop.apache.org
http://github.com/dgreco/camel-hdfs
http://www.github.com
http://hadoop.apache.org
http://www.github.com

Chapter 31. HDFS

keyType NULL The type for the key in case of sequence or map files. See below.

valueType TEXT The type for the key in case of sequence or map files. See below.

splitStrategy A string describing the strategy on how to split the file based on different
criteria. See below.

openedSuffix opened When afile is opened for reading/ writing the file is renamed with this suffix
to avoid to read it during the writing phase.

readsuffix read Once the file has been read is renamed with this suffix to avoid to read it
again.

initialbDelay 0 For the consumer, how much to wait (milliseconds) before to start scanning
the directory.

delay 0 The interval (milliseconds) between the directory scans.

pattern * The pattern used for scanning the directory

chunkSize 4096 When reading a normal file, this is split into chunks producing a message
per chunk

KeyType and ValueType

* NULL it means that the key or the value is absent

» BYTE for writing a byte, the java Byte class is mapped into a BYTE

» BYTES for writing a sequence of bytes. It maps the java ByteBuffer class
* INT for writing java integer

» FLOAT for writing java float

* LONG for writing java long

» DOUBLE for writing java double

» TEXT for writing java strings

BYTES is also used with everything else, for example, in Camel a file is sent around as an InputStream, int
this case is written in a sequence file or a map file as a sequence of bytes.

Splitting Strategy
In the current version of Hadoop (0.20.1) opening a file in append mode is disabled since it's not enough

reliable. So, for the moment, it's only possible to create new files. The Camel HDFS endpoint tries to solve
this problem in this way:

214 Fuse Mediation Router Component Reference Version 2.6

« If the split strategy option has been defined, the actual file name will become a directory name and a <file
name>/seg0 will be initially created.

» Every time a splitting condition is met a new file is created with name <original file name>/segN where N is
1, 2, 3, etc.The splitStrategy option is defined as a string with the following
syntax:splitStrategy=<ST>:<value>,<ST>:<value>,*

where <ST> can be: BYTES a new file is created, and the old is closed when the number of written bytes is
more than <value> MESSAGES a new file is created, and the old is closed when the number of written
messages is more than <value> IDLE a new file is created, and the old is closed when no writing happened
in the last <value> milliseconds

for example: hdfs://localhost/tmp/simple-file?splitStrategy=IDLE:1000,BYTES:5 it means: a new file is created

either when it has been idle for more than 1 second or if more than 5 bytes have been written. So, running
hadoop fs Is /tmp/simplefile you'll find the following files seg0, segl, seg2, etc

Fuse Mediation Router Component Reference Version 2.6 215

216 Fuse Mediation Router Component Reference Version 2.6

Chapter 32. Hibernate

Hibernate Component

The hibernate: component allows you to work with databases using Hibernate as the object relational mapping
technology to map POJOs to database tables. The camel-hibernate library is provided by the Camel Extra
project which hosts all GPL related components for Fuse Mediation Router.

Sending to the endpoint

Sending POJOs to the hibernate endpoint inserts entities into the database. The body of the message is
assumed to be an entity bean that you have mapped to a relational table using the hibernate .hbm.xm1 files.

If the body does not contain an entity bean, use a Message Translator in front of the endpoint to perform the
necessary conversion first.

Consuming from the endpoint

Consuming messages removes (or updates) entities in the database. This allows you to use a database table
as a logical queue; consumers take messages from the queue and then delete/update them to logically remove
them from the queue.

If you do not wish to delete the entity when it has been processed, you can specify consumeDelete=false on
the URI. This will result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to exclude it from a
future query) then you can annotate a method with @Consumed? which will be invoked on your entity bean
when the entity bean is consumed.

URI format
hibernate:[entityClassName][?options]

For sendin%to the endpoint, the entityClassName is optional. If specified it is used to help use the Type
Conversion™ to ensure the body is of the correct type.

For consuming, the entityClassName is mandatory.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

! http://code.google.com/p/camel-extra/
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
Type Conversion

Fuse Mediation Router Component Reference Version 2.6 217

http://code.google.com/p/camel-extra/
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
Type Conversion
Type Conversion
http://code.google.com/p/camel-extra/
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
Type Conversion

Chapter 32. Hibernate

Options

Name Default Value Description

entityType entityClassName s the provided entityClassName from the URI.

consumeDelete true Option for HibernateConsumer only. Specifies whether or not
the entity is deleted after it is consumed.

consumeLockEntity true Option for HibernateConsumer only. Specifies whether or not
to use exclusive locking of each entity while processing the
results from the pooling.

flushonSend true Option for HibernateProducer only. Flushes the
EntityManager4 after the entity bean has been persisted.

maximumResults -1 Option for HibernateConsumer onl%. Set the maximum number
of results to retrieve on the Query™.

consumer .delay 500 Option for HibernateConsumer only. Delay in millis between
each poll.

consumer.initialbDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

consumer .userFixedDelay false

Option for HibernateConsumer only. Set to true to use fixed
delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService® in JDK for details.

4 http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

218

Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Chapter 33. HL7

HL7 Component

The hI27 component is used for working with the HL7 MLLP protocol and the HL7 model* using the HAPI
library”.

This component supports the following:

« HL7 MLLP codec for Mina®.

» Agnostic data format using either plain String objects or HAPI HL7 model objects.
» Type Converter from/to HAPI and String.

» HL7 DataFormat using HAPI library.

» Even more easy-of-use as it is integrated well with the camel-mina component.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hl7</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

HL7 MLLP protocol

HL7 is often used with the HL7 MLLP protocol that is a text based TCP socket based protocol. This component
ships with a Mina Codec that conforms to the MLLP protocol so you can easily expose a HL7 listener that
accepts HL7 requests over the TCP transport.

To expose a HL7 listener service we reuse the existing camel-mina component where we just use the
HL7MLLPCodec as codec.

The HL7 MLLP codec has the following options:

! http://www.hl7.org/
2 http://hl7api.sourceforge.net
http://mina.apache.org/

Fuse Mediation Router Component Reference Version 2.6 219

http://www.hl7.org/
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net
http://mina.apache.org/
Type Converter
http://www.hl7.org/
http://hl7api.sourceforge.net
http://mina.apache.org/

Chapter 33. HL7

Name Default Value Description

startByte 0x0b The start byte spanning the HL7 payload. Is the HL7 default value of 0x0b
(11 decimal).

endBytel oxic The first end byte spanning the HL7 payload. Is the HL7 default value of
0x1c (28 decimal).

endByte2 ox0d The 2nd end byte spanning the HL7 payload. Is the HL7 default value of
0x0d (13 decimal).

charset JVM Default The encoding (is a charset name4) to use for the codec. If not provided,
Fuse Mediation Router will use the JVM default Charset®.

convertLFtoCR true Will convert \n to \r (6x0d, 13 decimal) as HL7 usually uses \r as segment
terminators. The HAPI library requires the use of \r.

validate true Fuse Mediation Router 2.0: Whether HAPI Parser should validate or not.

Exposing a HL7 listener

In our Spring XML file, we configure an endpoint to listen for HL7 requests using TCP:

<endpoint id="hl7listener" uri="mina:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

Notice we configure it to use camel-mina with TCP on the localhost on port 8888. We use sync=true to
indicate that this listener is synchronous and therefore will return a HL7 response to the caller. Then we set
up mina to use our HL7 codec with codec=#hl7codec. Notice that h17codec is just a Spring bean ID, so we
could have named it mygreatcodecforhl7 or whatever. The codec can also be set up in the Spring XML file:

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
<property name="charset" value="iso0-8859-1"/>
</bean>

And here we configure the charset encoding to use, and iso-8859-1 is commonly used.
The endpoint hl7listener can then be used in a route as a consumer, as this java DSL example illustrates:
from("hl71listener").to("patientLookupService");

This is a very simple route that will listen for HL7 and route it to a service named patientLookupService that
is also a Spring bean ID we have configured in the Spring XML as:

<bean id="patientLookupService" class="com.mycompany.healtcare.service.PatientLookupSer
vice"/>

4 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
5 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

220 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

And another powerful feature of Fuse Mediation Router is that we can have our busines logic in POJO classes
that are not at all tied to Fuse Mediation Router as shown here:

public class PatientLookupService {
public Message lookupPatient(Message input) throws HL7Exception {
QRD grd = (QRD)input.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

// find patient data based on the patient id and create a HL7 model object with the
response

Message response = ... create and set response data
return response

3

Notice that this class is just using imports from the HAPI library and none from Fuse Mediation Router.

HL7 Model using java.lang.String

The HL7MLLP codec uses plain String as data format. And Fuse Mediation Router uses Type Converter to
convert from/to strings to the HAPI HL7 model objects. However, you can use the plain String objects if you
prefer, for instance if you need to parse the data yourself.

See samples for such an example.

HL7 Model using HAPI

The HL7 model is Java objects from the HAPI library. Using this library, we can encode and decode from the
EDI format (ER7) that is mostly used with HL7. With this model you can code with Java objects instead of the
EDI based HL7 format that can be hard for humans to read and understand.

The ER7 sample below is a request to lookup a patient with the patient ID, 0101701234.

MSH | A~\\& | MYSENDER | MYRECEIVER |MYAPPLICATION | | 200612211200 | | QRYAA19|1234 |P|2.4
QRD | 200612211200 |R|I|GetPatient| | |1ARD|0101701234 |DEM| |

Using the HL7 model we can work with the data as a ca.uhn.hl17v2.model.Message.Message object. To
retrieve the patient ID for the patient in the ER7 above, you can do this in java code:

Message msg = exchange.getIn().getBody(Message.class);

QRD grd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(©).getIDNumber().getValue();

Fuse Mediation Router has built-in type converters, so when this operation is invoked:

Message msg = exchange.getIn().getBody(Message.class);

Fuse Mediation Router Component Reference Version 2.6 221

Type Converter

Chapter 33. HL7

Fuse Mediation Router will convert the received HL7 data from String to Message. This is powerful when
combined with the HL7 listener, then you as the end-user don't have to work with byte[], String or any other
simple object formats. You can just use the HAPI HL7 model objects.

Message Headers

The unmarshal operation adds these MSH fields as headers on the Camel message:

Camel 1.x

Key MSH field Example
h1l7.msh.sendingApplication MSH-3 MYSERVER
hl7.msh.sendingFacility MSH-4 MYSERVERAPP
hl7.msh.receivingApplication MSH-5 MYCLIENT
hl7.msh.receivingFacility MSH-6 MYCLIENTAPP
h1l7.msh.timestamp MSH-7 20071231235900
hl7.msh.security MSH-8 null
h1l7.msh.messageType MSH-9-1 ADT
hl7.msh.triggerEvent MSH-9-2 A0l
h1l7.msh.messageControl MSH-10 1234
h1l7.msh.processingId MSH-11 P
h1l7.msh.versionId MSH-12 2.4
Camel 2.0

Key MSH field Example
CamelHL7SendingApplication MSH-3 MYSERVER
CamelHL7SendingFacility MSH-4 MYSERVERAPP
CamelHL7ReceivingApplication MSH-5 MYCLIENT
CamelHL7ReceivingFacility MSH-6 MYCLIENTAPP
CamelHL7Timestamp MSH-7 20071231235900
CamelHL7Security MSH-8 null
CamelHL7MessageType MSH-9-1 ADT
CamelHL7TriggerEvent MSH-9-2 A01

222 Fuse Mediation Router Component Reference Version 2.6

CamelHL7MessageControl MSH-10 1234
CamelHL7ProcessingId MSH-11 P
CamelHL7VersionId MSH-12 2.4

All headers are String types. If a header value is missing, its value is null.
Options

The HL7 Data Format supports the following options:

Option Default Description
validate true Camel 2.0: Whether the HAPI Parser should validate.

Dependencies

To use HL7 in your camel routes you need to add a dependency on camel-hl7, which implements this data
format.

If you use Maven, you could just add the following to your pom.xm1, substltutlng the version number for the
latest & greatest release (see the download page for the latest versions)

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hl7</artifactId>
<version>2.2.0</version>
</dependency>

Since HAPI 0.6, the library has been split into a base Iibrary7 and several structures libraries, one for each
HL7v2 message version:
* v2.1 structures Iibrary8
e V2.2 structures Iibrary9

* V2.3 structures IibrarylO

Download

http /Ihl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/

http /Ihl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v21/1.0/
http /Ihl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v22/1.0/
0 http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v23/1.0/

Fuse Mediation Router Component Reference Version 2.6 223

Download
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v21/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v22/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v23/1.0/
Download
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v21/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v22/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v23/1.0/

Chapter 33. HL7

e v2.3.1 structures Iibraryll
* V2.4 structures Iibrary12
e v2.5 structures Iibrary13
» v2.5.1 structures Iibrary14
* V2.6 structures Iibrary15

By default camel-h17 only references the HAPI base Iibraryls. Applications are responsible for including
structures libraries themselves. For example, if a application works with HL7v2 message versions 2.4 and 2.5
then the following dependencies must be added:

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v24</artifactId>
<version>1.0</version>

</dependency>

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v25</artifactId>
<version>1.0</version>

</dependency>

OSGi

An OSGi bundle containing the base library, all structures I|brar|es and required dependencies (on the bundle
classpath) can be downloaded from the HAPI Maven reposnory " as well.

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-osgi-base</artifactId>
<version>1.0.1</version>

</dependency>

http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v231/1.0/
http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v251/1.0/
http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v26/1.0/
http //hI7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/

http //hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-osgi-base/

224 Fuse Mediation Router Component Reference Version 2.6

http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v231/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v251/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v26/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-osgi-base/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v231/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v24/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v251/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-structures-v26/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-osgi-base/

Samples

In the following example we send a HL7 request to a HL7 listener and retrieves a response. We use plain
String types in this example:

String linel = "MSH|A~\\&|MYSENDER|MYRECEIVER|MYAPPLICA
TION||200612211200| |QRYNA19|1234|P|2.4";
String line2 = "QRD|200612211200|R|I|GetPatient|||1ARD|0101701234|DEM||";

StringBuilder in = new StringBuilder();
in.append(linel);
in.append("\n");
in.append(line2);

String out = (String)template.requestBody("mina:tcp://127.0.0.1:8888?sync=true&codec=#hl7co
dec", in.toString());

In the next sample, we want to route HL7 requests from our HL7 listener to our business logic. We have our
business logic in a plain POJO that we have registered in the registry as h17service = for instance using
Spring and letting the bean id = h17service.

Our business logic is a plain POJO only using the HAPI library so we have these operations defined:

public class MyHL7BusinessLogic {

// This is a plain P0JO that has NO imports whatsoever on Fuse Mediation Router.
// its a plain P0JO only importing the HAPI library so we can much easier work with the
HL7 format.

public Message handleA19(Message msg) throws Exception {
// here you can have your business logic for A19 messages
assertTrue(msg instanceof QRY_A19);
// just return the same dummy response
return createADR19Message();

}

public Message handleA®1(Message msg) throws Exception {
// here you can have your business logic for A@1 messages
assertTrue(msg instanceof ADT_A01);
// just return the same dummy response
return createADTO1Message();

3

Then we set up the Fuse Mediation Router routes using the RouteBuilder as follows:

DataFormat hl7 = new HL7DataFormat();
// we setup or HL7 listener on port 8888 (using the hl7codec) and in sync mode so we can

Fuse Mediation Router Component Reference Version 2.6 225

Chapter 33. HL7

return a response
from("mina:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")

bean

// we use the HL7 data format to unmarshal from HL7 stream to the HAPI Message model
// this ensures that the camel message has been enriched with hl7 specific headers to
// make the routing much easier (see below)
.unmarshal(hl7)
// using choice as the content base router
.choice()

// where we choose that A19 queries invoke the handleA19 method on our hl7service

.when(header ("CamelHL7TriggerEvent").isEqualTo("A19"))
.beanRef("hl7service", "handleA19")
.to("mock:a19")
// and A@1 should invoke the handleA@1 method on our hl7service bean
.when(header ("CamelHL7TriggerEvent").isEqualTo("AG1")).to("mock:a01")
.beanRef("hl7service", "handleAo1")
.to("mock:a19")
// other types should go to mock:unknown
.otherwise()
.to("mock:unknown")
// end choice block
.end()
// marhsal response back
.marshal(hl7);

Notice that we use the HL7 DataFormat to enrich our Camel Message with the MSH fields preconfigued on
the Camel Message. This lets us much more easily define our routes using the fluent builders. If we do not
use the HL7 DataFormat, then we do not gains these headers and we must resort to a different technique for
computing the MSH trigger event (= what kind of HL7 message it is). This is a big advantage of the HL7
DataFormat over the plain HL7 type converters.

Sample using plain String objects

In this sample we use plain String objects as the data format, that we send, process and receive. As the
sample is part of a unit test, there is some code for assertions, but you should be able to understand what
happens. First we send the plain string, Hello World, to the HL7MLLPCodec and receive the response as a
plain string, Bye World

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Bye World");

// send plain hello world as String
Object out = template.requestBody("mina:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec",
"Hello World");

assertMockEndpointsSatisfied();

226

Fuse Mediation Router Component Reference Version 2.6

// and the response is also just plain String
assertEquals("Bye World", out);

Here we process the incoming data as plain String and send the response also as plain String:

from("mina:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
// use plain String as message format
String body = exchange.getIn().getBody(String.class);
assertEquals("Hello World", body);

// return the response as plain string
exchange.getOut().setBody("Bye World");
}
1)

.to("mock:result");

Fuse Mediation Router Component Reference Version 2.6

227

228 Fuse Mediation Router Component Reference Version 2.6

Chapter 34. HTTP

HTTP Component

The http: component provides HTTP based endpoints1 for consuming external HTTP resources (as a client
to call external servers using HTTP).

URI format
http:hostname[:port][/resourceUri][?options]
Will by default use port 80 for HTTP and 443 for HTTPS.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

camel-http vs camel-jetty

You can only produce to endpoints generated by the HTTP component. Therefore it should never be used as
input into your Fuse Mediation Router Routes. To bind/expose an HTTP endpoint via a HTTP server as input
to a camel route, you can use the Jetty Component on page 277

HttpEndpoint Options
Name Default Description
Value
throwExceptionOnFailure true Fuse Mediation Router 2.0: Option to disable throwing the

HttpOperationFailedException in case of failed responses from
the remote server. This allows you to get all responses regardles
of the HTTP status code.

bridgeEndpoint false Camel 2.1: If the option is true , HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint's URI for
request. You may also set the throwExcpetionOnFailure to be
false to let the HttpProducer send all the fault response back. Camel
2.3: If the option is true, HttpProducer and CamelServlet will skip
the gzip processing if the content-encoding is "gzip".

t Endpoint

Fuse Mediation Router Component Reference Version 2.6 229

Endpoint
Endpoint

Chapter 34. HTTP

disableStreamCache

httpBindingRef

httpBinding

httpClientConfigurerRef

httpClientConfigurer

httpClient.XXX

clientConnectionManager

transferException

false

null

null

null

null

null

null

false

Camel 2.3: DefaultHttpBinding will copy the request input stream
into a stream cache and put it into message body if this option is
false to support read it twice, otherwise DefaultHttpBinding will set
the request input stream direct into the message body.

Referencetoaorg.apache.camel.component.http.HttpBinding
in the Registry.

Camel 2.3: Reference to a
org.apache.camel.component.http.HttpBinding inthe Registry.

Reference to a
org.apache.camel.component.http.HttpClientConfigurer in
the Registry. From Camel 2.3 onwards prefer to use the
httpClientConfigurer option.

Camel 2.3: Reference to a
org.apache.camel.component.http.HttpClientConfigurerin
the Registry.

Setting options on the HttpCIientParamsz. For instance
httpClient.soTimeout=5000 will setthe SO_TIMEOUT to 5 seconds.

Camel 2.3: To use a custom
org.apache.http.conn.ClientConnectionManager.

Camel 2.6: If enabled and an Exchange failed processing on the
consumer side, and if the caused Exception was send back
serialized in the response as a
application/x-java-serialized-object content type (for
example using Jetty on page 277 or Servlet Camel components).
On the producer side the exception will be deserialized and thrown
as is, instead of the HttpOperationFailedException. The caused
exception is required to be serialized.

The following authentication options can also be set on the HttpEndpoint:

Name Default Value Description

authMethod null
authMethodPriority null

authUsername null
authPassword null
authDomain null

Authentication method, either as Basic, Digest or NTLM.

Priority of authentication methods. Is a list separated with comma.
For example: Basic, Digest to exclude NTLM.

Username for authentication
Password for authentication
Domain for NTML authentication

2 http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html

230

Fuse Mediation Router Component Reference Version 2.6

Registry
Registry
Registry
Registry
http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html
Exchange
http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html

authHost null Optional host for NTML authentication

proxyHost null The proxy host name

proxyPort null The proxy port number

proxyAuthMethod null Authentication method for proxy, either as Basic, Digest or NTLM.
proxyAuthUsername null Username for proxy authentication

proxyAuthPassword null Password for proxy authentication

proxyAuthDomain null Domain for proxy NTML authentication

proxyAuthHost null Optional host for proxy NTML authentication

When using authentication you must provide the choice of method for the authMethod or authProxyMethod
options. You can configure the proxy and authentication details on either the Ht tpComponent or the
HttpEndoint. Values provided on the Ht tpEndpoint will take precedence over Ht tpComponent. Its most likely
best to configure this on the HttpComponent which allows you to do this once.

The Http component uses convention over configuration which means that if you have not explicit set a
authMethodPriority then it will fallback and use the select(ed) authMethod as priority as well. So if you use
authMethod.Basic then the auhtMethodPriority will be Basic only.

Exchange Properties Fuse Mediation Router 2.x

The following Exchange properties are recognized by HTTP endpoints:

Name Type Description

Exchange.HTTP_URI String URI to call. Will override existing URI set directly
on the endpoint.

Exchange.HTTP_PATH String Request URI's path, the header will be used to
build the request URI with the HTTP_URI.
Camel 2.3.0: If the path is start with "/", http
producer will try to find the relative path based
on the Exchange.HTTP_BASE_URI header or
the
exchange.getFromEndpoint().getEndpointUri();

Exchange.HTTP_QUERY String URI parameters. Will override existing URI
parameters set directly on the endpoint.

Exchange.HTTP_RESPONSE_CODE int The HTTP response code from the external
server. Is 200 for OK.

Exchange.HTTP_CHARACTER_ENCODING String Character encoding.

Fuse Mediation Router Component Reference Version 2.6 231

Chapter 34. HTTP

Exchange.CONTENT_TYPE

Exchange.CONTENT_ENCODING

Exchange .HTTP_SERVLET_REQUEST

Exchange .HTTP_SERVLET_RESPONSE

Exchange .HTTP_PROTOCOL_VERSION

String

String

HttpServletRequest

HttpServletResponse

String

The HTTP content type. Is set on both the IN
and OUT message to provide a content type,
such as text/html.

The HTTP content encoding. Is set on both the
IN and OUT message to provide a content
encoding, such as gzip.

Fuse Mediation Router 2.3: The
HttpServletRequest object.

Fuse Mediation Router 2.3: The
HttpServletResponse object.

Camel 2.5: You can set the http protocol version
with this header, eg. "HTTP/1.0". If you didn't

specify the header, HttpProducer will use the
default value "HTTP/1.1"

Message Body

Fuse Mediation Router will store the HTTP response from the external server on the OUT body. All headers
from the IN message will be copied to the OUT message, so headers are preserved during routing. Additionally
Fuse Mediation Router will add the HTTP response headers as well to the OUT message headers.

Response code

Fuse Mediation Router will handle according to the HTTP response code:

» Response code is in the range 100..299, Fuse Mediation Router regards it as a success response.

» Response code is in the range 300..399, Fuse Mediation Router regards it as a redirection response and
will throw a HttpOperationFailedException with the information.

» Response code is 400+, Fuse Mediation Router regards it as an external server failure and will throw a
HttpOperationFailedException with the information.The option, throwExceptionOnFailure, can be set
to false to prevent the Ht tpOperationFailedException from being thrown for failed response codes. This
allows you to get any response from the remote server.There is a sample below demonstrating this.

HttpOperationFailedException

This exception contains the following information:

* The HTTP status code

232

Fuse Mediation Router Component Reference Version 2.6

» The HTTP status line (text of the status code)
* Redirect location, if server returned a redirect

» Response body as a java.lang.String, if server provided a body as response

Calling using GET or POST

From Fuse Mediation Router 1.5 onwards, the following algorithm is used to determine if either GET or POST
HTTP method should be used:

1. Use method provided in header.

2. GET if query string is provided in header.

3. GET if endpoint is configured with a query string.
4. posT if there is data to send (body is not null).

5. GET otherwise.

How to get access to HttpServietRequest and HttpServietResponse
Available as of Fuse Mediation Router 2.0

You can get access to these two using the Camel type converter system using NOTE from Camel 2.3.0 you
can get the request and response not just from the processor after the camel-jetty or camel-cxf endpoint.

HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletRequest response = exchange.getIn().getBody(HttpServletResponse.class);

Configuring URI to call

You can set the HTTP producer's URI directly form the endpoint URI. In the route below, Fuse Mediation
Router will call out to the external server, oldhost, using HTTP.

from("direct:start")
.to("http://0ldhost");

And the equivalent Spring sample:

Fuse Mediation Router Component Reference Version 2.6 233

Chapter 34. HTTP

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<to uri="http://o0ldhost"/>
</route>
</camelContext>

In Fuse Mediation Router 1.5.1 you can override the HTTP endpoint URI by adding a header with the key,
HttpProducer .HTTP_URI, on the message.

from("direct:start")
.setHeader (org.apache.camel.component.http.HttpProducer .HTTP_URI, constant("ht
tp://newhost"))
.to("http://0ldhost");

In the sample above Fuse Mediation Router will call the http://newhost 3 despite the endpoint is configured
with http://oldhost .

In Fuse Mediation Router 2.0, you can override the HTTP endpoint URI by setting the Exchange . HTTP_URI
header, as follows:

from("direct:start")
.setHeader (Exchange.HTTP_URI, constant("http://newhost"))
.to("http://0ldhost");

Configuring URI Parameters

The http producer supports URI parameters to be sent to the HTTP server. The URI parameters can either
be set directly on the endpoint URI, as follows:

from("direct:start")
.to("http://0ldhost?order=123&detail=short");

Or as a header with the key, Exchange . HTTP_QUERY, on the message, as follows:

from("direct:start")
.setHeader (Exchange .HTTP_QUERY, constant("order=123&detail=short"))
.to("http://0ldhost");

8 http://newhost
4 http://oldhost

234 Fuse Mediation Router Component Reference Version 2.6

http://newhost
http://newhost
http://oldhost
http://oldhost
http://newhost
http://oldhost

How to set the http method (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE)
to the HTTP producer

The HTTP component provides a way to set the HTTP request method by setting the message header. Here
is an example;

from("direct:start")
.setHeader (Exchange .HTTP_METHOD, constant(org.apache.camel.component.http.Http
Methods.POST))
.to("http://www.google.com")
.to("mock:results");

The method can be written a bit shorter using the string constants:

.setHeader ("CamelHttpMethod", constant("POST"))

And the equivalent Spring sample:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<setHeader headerName="CamelHttpMethod">
<constant>P0ST</constant>
</setHeader>
<to uri="http://www.google.com"/>
<to uri="mock:results"/>
</route>
</camelContext>

Using client tineout - SO_TIMEOUT
See the unit test in this link®
Configuring a Proxy

Only for >= Fuse Mediation Router 1.6.2 The HTTP component provides a way to configure a proxy.

from("direct:start")
.to("http://0ldhost?proxyHost=www.myproxy.com&proxyPort=80");

There is also support for proxy authentication via the proxyUsername and proxyPassword options.

5 http://svn.apache.org/viewvc?view=rev&revision=781775

Fuse Mediation Router Component Reference Version 2.6 235

http://svn.apache.org/viewvc?view=rev&revision=781775
http://svn.apache.org/viewvc?view=rev&revision=781775

Chapter 34. HTTP

Using proxy settings outside of URI

Only for >= Fuse Mediation Router 1.6.2 The HTTP component will detect Java System Properties for
http.proxyHost and http.proxyPort and use them if provided. See more at SUN http proxy documentation®.

To avoid the System properties conflicts, from Fuse Mediation Router 2.2.0 you can only set the proxy configure
from CameContext or URI. Java DSL :

context.getProperties().put("http.proxyHost", "172.168.18.9");
context.getProperties().put("http.proxyPort" "8080");

Spring XML

<camelContext>
<properties>
<property key="http.proxyHost" value="172.168.18.9"/>
<property key="http.proxyPort" value="8080"/>
</properties>
</camelContext>

Fuse Mediation Router will first set the settings from Java System or CamelContext Properties and then the
endpoint proxy options if provided. So you can override the system properties with the endpoint options.

Configuring charset

If you are using POST to send data you can configure the charset using the Exchange property:

exchange.setProperty(Exchange.CHARSET_NAME, "iso0-8859-1");

Or the httpClient options: httpClient.contentCharset=iso-8859-1

Sample with scheduled poll

The sample polls the Google homepage every 10 seconds and write the page to the file message.html:

from("timer://foo?fixedRate=true&delay=0&period=10000")
.to("http://www.google.com")
.setHeader (FileComponent.HEADER_FILE_NAME, "message.html").to("file:target/google");

6 http://java.sun.com/javase/6/docs/technotes/guides/net/proxies.html

236 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/javase/6/docs/technotes/guides/net/proxies.html
http://java.sun.com/javase/6/docs/technotes/guides/net/proxies.html

URI Parameters from the endpoint URI

In this sample we have the complete URI endpoint that is just what you would have typed in a Web browser.
Multiple URI parameters can of course be set using the & character as separator, just as you would in the web
browser. Fuse Mediation Router does no tricks here.

// we query for Camel at the Google page
template.sendBody("http://www.google.com/search?q=Camel", null);

URI Parameters from the Message

Map headers = new HashMap();

headers.put(Exchange.HTTP_QUERY, "g=Camel&lr=lang_en");

// we query for Camel and English language at Google
template.sendBody("http://www.google.com/search", null, headers);

In the header value above notice that it should not be prefixed with ? and you can separate parameters as
usual with the & char.

Getting the Response Code

You can get the HTTP response code from the HTTP component by getting the value from the Out message
header with Exchange . HTTP_RESPONSE_CODE.

Exchange exchange = template.send("http://www.google.com/search", new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getIn().setHeader (Exchange.HTTP_QUERY, constant("hl=en&q=activemq"));

}
1);
Message out = exchange.getOut();
int responseCode = out.getHeader (Exchange.HTTP_RESPONSE CODE, Integer.class);

Using throwExceptionOnFailure=false to get any response back

Available as of Fuse Mediation Router 2.0 In the route below we want to route a message that we enrich
with data returned from a remote HTTP call. As we want any response from the remote server, we set the
throwExceptionOnFailure option to false SO we get any response in the AggregationStrategy. As the
code is based on a unit test that simulates a HTTP status code 404, there is some assertion code etc.

// We set throwExceptionOnFailure to false to let Fuse Mediation Router return any response
from the remove HTTP server without thrown

// HttpOperationFailedException in case of failures.

// This allows us to handle all responses in the aggregation strategy where we can check

Fuse Mediation Router Component Reference Version 2.6 237

Chapter 34. HTTP

the HTTP response code
// and decide what to do. As this is based on an unit test we assert the code is 404
from("direct:start").enrich("http://localhost:8222/myserver?throwExceptionOnFail
ure=false&user=Camel", new AggregationStrategy() {
public Exchange aggregate(Exchange original, Exchange resource) {
// get the response code
Integer code = resource.getIn().getHeader (Exchange.HTTP_RESPONSE_CODE, Integer.class);

assertEquals (404, code.intValue());
return resource;

}).to("mock:result");

// this is our jetty server where we simulate the 404
from("jetty://http://localhost:8222/myserver")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody("Page not found");
exchange.getOut().setHeader (Exchange.HTTP_RESPONSE_CODE, 404);

}
1

Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
httpClient.cookiePolicy=ignoreCookies

Advanced Usage

If you need more control over the HTTP producer you should use the HttpComponent where you can set
various classes to give you custom behavior.

Setting MaxConnectionsPerHost

The Http Component has a org.apache.commons.httpclient.HttpConnectionManager where you can
configure various global configuration for the given component. By global, we mean that any endpoint the
component creates has the same shared HttpConnectionManager. So, if we want to set a different value for
the max connection per host, we need to define it on the HTTP component and not on the endpoint URI that
we usually use. So here comes:

First, we define the http component in Spring XML. Yes, we use the same scheme name, http, because
otherwise Fuse Mediation Router will auto-discover and create the component with default settings. What we
need is to overrule this so we can set our options. In the sample below we set the max connection to 5 instead
of the default of 2.

238 Fuse Mediation Router Component Reference Version 2.6

<bean id="http" class="org.apache.camel.component.http.HttpComponent">
<property name="camelContext" ref="camel"/>
<property name="httpConnectionManager" ref="myHttpConnectionManager"/>
</bean>

<bean id="myHttpConnectionManager" class="org.apache.commons.httpclient.MultiThreadedHttp
ConnectionManager">

<property name="params" ref="myHttpConnectionManagerParams"/>
</bean>

<bean id="myHttpConnectionManagerParams" class="org.apache.commons.httpclient.params.Http
ConnectionManagerParams'>

<property name="defaultMaxConnectionsPerHost" value="5"/>
</bean>

And then we can just use it as we normally do in our routes:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring" trace="true">
<route>
<from uri="direct:start"/>
<to uri="http://www.google.com"/>
<to uri="mock:result"/>
</route>
</camelContext>

Using HTTPS to authenticate

Some HTTPS servers do not return a HTTP code 401 Authorization Required, which can cause HTTPS
connections to fail. The solution to this problem is to set the following URI option:
httpClient.authenticationPreemptive=true

Setting up SSL for HTTP Client

Basically camel-http component is built on the top of Apache HTTP client, and you can implement a custom
org.apache.camel.component.http.HttpClientConfigurer to do some configuration on the HTTP client
if you need full control of it.

However if you just want to specify the keystore and truststore you can do this with Apache HTTP
HttpClientConfigurer, for example:

Protocol authhttps = new Protocol("https", new AuthSSLProtocolSocketFactory(
new URL("file:my.keystore"), "mypassword",
new URL("file:my.truststore"), "mypassword"), 443);

Protocol.registerProtocol("https", authhttps);

Fuse Mediation Router Component Reference Version 2.6 239

Chapter 34. HTTP

And then you need to create a class that implements HttpClientConfigurer, and registers https protocol
providing a keystore or truststore per example above. Then, from your Fuse Mediation Router route builder
class you can hook it up like so:

HttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer using the URI. For
example:

<bean id="myHttpClientConfigurer"
class="my.https.HttpClientConfigurer">
</bean>

<to uri="https://myhostname.com:443/myURL?httpClientConfigurerRef=myHttpClientConfigurer"/>

As long as you implement the HttpClientConfigurer and configure your keystore and truststore as described
above, it will work fine.

See also:

» Jetty on page 277

240 Fuse Mediation Router Component Reference Version 2.6

Chapter 35. IBATIS

IBATIS

The ibatis: component allows you to query, poll, insert, update and delete data in a relational database using
Apache iBATIS.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ibatis</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format
ibatis:statementName[?options]

Where statementName is the name in the iBATIS XML configuration file which maps to the query, insert,
update or delete operation you wish to evaluate.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

This component will by default load the iBatis SqlMapConfig file from the root of the classpath and expected
named as SqlMapConfig.xml. It uses Spring resource loading so you can define it using classpath, file or
http as prefix to load resources with those schemes. In Camel 2.2 you can configure this on the
iBatisComponent with the setSqlMapConfig(String) method.

Options
Option Type Default Description
consumer .onConsume String null Statements to run after consuming. Can be

used, for example, to update rows after they

have been consumed and processed in Fuse
Mediation Router. See sample later. Multiple

statements can be separated with comma.

! http://ibatis.apache.org/

Fuse Mediation Router Component Reference Version 2.6 241

http://ibatis.apache.org/
http://ibatis.apache.org/

Chapter 35. iBATIS

consumer .uselterator boolean

consumer.routeEmptyResultSet boolean

statementType

maxMessagesPerPoll int

StatementType null

true If true each row returned when polling will be
processed individually. If false the entire List
of data is set as the IN body.

false Fuse Mediation Router 2.0: Sets whether

empty result set should be routed or not. By
default, empty result sets are not routed.

Fuse Mediation Router 1.6.1/2.0: Mandatory
to specify for IbatisProducer to control which
iBatis sqlMapClient method to invoke. The
enum values are: QueryForObject,
QueryForlList, Insert, Update, Delete.

0 Fuse Mediation Router 2.0: An integer to
define a maximum messages to gather per poll.
By default, no maximum is set. Can be used
to set a limit of e.g. 1000 to avoid when starting
up the server that there are thousands of files.
Set a value of 0 or negative to disabled it.

Message Headers

Fuse Mediation Router will populate the result message, either IN or OUT with a header with the operationName

used:

Header Type

org.apache.camel.ibatis.queryName String

CamelIBatisStatementName

CamelIBatisResult

String

Object

Description

Fuse Mediation Router 1.x: The statementName used (for
example: insertAccount).

Fuse Mediation Router 2.0: The statementName used
(for example: insertAccount).

Fuse Mediation Router 1.6.2/2.0: The response returned
from iBatis in any of the operations. For instance an INSERT
could return the auto-generated key, or number of rows
etc.

Message Body

Fuse Mediation Router 1.6.1: The response from iBatis will be set as OUT body.

Fuse Mediation Router 1.6.2/2.0: The response from iBatis will only be set as body if it's a SELECT statement.
That means, for example, for INSERT statements Fuse Mediation Router will not replace the body. This allows

242

Fuse Mediation Router Component Reference Version 2.6

you to continue routing and keep the original body. The response from iBatis is always stored in the header
with the key CamelIBatisResult.

Samples

For example if you wish to consume beans from a JMS queue and insert them into a database you could do
the following:

from("activemq:queue:newAccount").
to("ibatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Fuse Mediation Router which
SqlMapClient operation to invoke.

Where insertAccount is the iBatis ID in the SQL map file:

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterClass="Account">
insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMATIL

)
values (
#id#, #firstName#, #lastName#, #emailAddress#

)

</insert>

Using StatementType for better control of IBatis

Available as of Fuse Mediation Router 1.6.1/2.0 When routing to an iBatis endpoint you want more fine
grained control so you can control whether the SQL statement to be executed is a SELEECT, UPDATE, DELETE
or INSERT etc. This is now possible in Fuse Mediation Router 1.6.1/2.0. So for instance if we want to route to
an iBatis endpoint in which the IN body contains parameters to a SELECT statement we can do:

from("direct:start")
.to("ibatis:selectAccountById?statementType=QueryForObject")
.to("mock:result");

In the code above we can invoke the iBatis statement selectAccountById and the IN body should contain
the account id we want to retrieve, such as an Integer type.

We can do the same for some of the other operations, such as QueryForList:

Fuse Mediation Router Component Reference Version 2.6 243

Chapter 35. iBATIS

from("direct:start")
.to("ibatis:selectAllAccounts?statementType=QueryForList")
.to("mock:result");

And the same for UPDATE, where we can send an Account object as IN body to iBatis:

from("direct:start")
.to("ibatis:updateAccount?statementType=Update")
.to("mock:result");

Scheduled polling example

Since this component does not support scheduled polling, you need to use another mechanism for triggering
the scheduled polls, such as the Timer on page 507 or Quartz on page 389 components.

In the sample below we poll the database, every 30 seconds using the Timer on page 507 component and send
the data to the JMS queue:

from("timer://pollTheDatabase?delay=30000").to("ibatis:selectAllAccounts?statementType=Query
ForList").to("activemq:queue:allAccounts");

And the iBatis SQL map file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

Using onConsume

This component supports executing statements after data have been consumed and processed by Fuse
Mediation Router. This allows you to do post updates in the database. Notice all statements must be UPDATE
statements. Fuse Mediation Router supports executing multiple statements whose name should be separated
by comma.

The route below illustrates we execute the consumeAccount statement data is processed. This allows us to
change the status of the row in the database to processed, so we avoid consuming it twice or more.

from("ibatis:selectUnprocessedAccounts?consumer.onConsume=consumeAccount").to("mock:results");
And the statements in the sglmap file:
<select id="selectUnprocessedAccounts" resultMap="AccountResult">

select * from ACCOUNT where PROCESSED = false
</select>

244 Fuse Mediation Router Component Reference Version 2.6

<update id="consumeAccount" parameterClass="Account">
update ACCOUNT set PROCESSED = true where ACC_ID = #id#
</update>

Fuse Mediation Router Component Reference Version 2.6 245

246 Fuse Mediation Router Component Reference Version 2.6

Chapter 36. IRC

IRC Component

The irc component implements an IRC! (Internet Relay Chat) transport.
URI format

irc:nick@host[:port]/#room[?options]

In Fuse Mediation Router 2.0, you can also use the following format:

irc:nick@host[:port]?channels=#channell, #channel2, #channel3[?options]

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options
Name Description Example Default
Value

channels New in 2.0, comma channels=#channell, #channel2 null
separated list of IRC
channels to join.

nickname The nickname used irc:MyNick@irc.server.org#channel or null
in chat. irc:irc.server.org#channel?nickname=MyUser

username The IRC server user irc:MyUser@irc.server.org#channel or Same as
name. irc:irc.server.org#channel?username=MyUser nickname.

password The IRC server password=somepass None
password.

realname The IRC user's realname=MyName None
actual name.

colors Whether or not the true, false true
server supports color
codes.

onReply Whether or notto true, false false

handle general
responses to
commands or

! http://fen.wikipedia.org/wiki/Internet_Relay_Chat

Fuse Mediation Router Component Reference Version 2.6 247

http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Internet_Relay_Chat

Chapter 36. IRC

informational
messages.
onNick Handle nickname true, false true
change events.
onQuit Handle user quit true, false true
events.
onJoin Handle user join true, false true
events.
onKick Handle kick events. true, false true
onMode Handle mode true, false true
change events.
onPart Handle user part true, false true
events.
onTopic Handle topic change true, false true
events.
onPrivmsg Handle message true, false true
events.
trustManager New in 2.0, the trust trustManager=#referenceToTrustManagerBean The default
manager used to trust
verify the SSL manager,
server's certificate. which
accepts all
certificates,
will be
used.
keys Camel 2.2: Comma irc:MyNick@irc.server.org/#channel?keys=chankey null
separated list of IRC
channel keys.
Important to be listed
in same order as
channels. When
joining multiple
channels with only
some needing keys
just insert an empty
value for that
channel.
248 Fuse Mediation Router Component Reference Version 2.6

SSL Support

As of Fuse Mediation Router 2.0, you can also connect to an SSL enabled IRC server, as follows:

ircs:host[:port]/#room?username=user&password=pass

By default, the IRC transport uses SSLDefauItTrustManagerz. If you need to provide your own custom trust
manager, use the trustManager parameter as follows:

ircs:host[:port]/#room?username=user&password=pass&trustManager=#referenceToMyTrustManagerBean

Using keys

Available as of Camel 2.2 Some irc rooms requires you to provide a key to be able to join that channel. The
key is just a secret word.

For example we join 3 channels where as only channel 1 and 3 uses a key.

irc:nick@irc.server.org?channels=#chanl, #chan2, #chan3&keys=chanilKey, ,chan3key

2 http://moepii.sourceforge.net/irclib/javadoc/org/schwering/irc/lib/ssl/SSLDefaultTrustManager.html

Fuse Mediation Router Component Reference Version 2.6 249

http://moepii.sourceforge.net/irclib/javadoc/org/schwering/irc/lib/ssl/SSLDefaultTrustManager.html
http://moepii.sourceforge.net/irclib/javadoc/org/schwering/irc/lib/ssl/SSLDefaultTrustManager.html

250 Fuse Mediation Router Component Reference Version 2.6

Chapter 37. JavaSpace

JavaSpace Component

The javaspace component is a transport for working with any JavaSpace compliant implementation and this
component has been tested with both the Blitz implementationl and the GigaSpace implementationz. This
component can be used for sending and receiving any object inheriting from the Jini
net.jini.core.entry.Entry class. Itis also possible to pass the bean ID of a template that can be used for
reading/taking the entries from the space. This component can be used for sending/receiving any serializable
object acting as a sort of generic transport. The JavaSpace component contains a special optimization for
dealing with the BeanExchange. It can be used to invoke a POJO remotely, using a JavaSpace as a transport.
This latter feature can provide a simple implementation of the master/worker pattern, where a POJO provides
the business logic for the worker. Look at the test cases for examples of various use cases for this component.

URI format
javaspace:jini://host[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

spaceName null Specifies the JavaSpace name.

verb take Specifies the verb for getting JavaSpace entries. The values
can be: take or read.

transactional false If true, sending and receiving entries is performed within a

transaction.
transactionalTimeout Long.MAX_VALUE Specifies the transaction timeout.

concurrentConsumers 1 Specifies the number of concurrent consumers getting entries
from the JavaSpace.

templateId null If present, this option specifies the Spring bean ID of the template
to use for reading/taking entries.

! http://www.dancres.org/blitz/
http://www.gigaspaces.com/

Fuse Mediation Router Component Reference Version 2.6 251

http://www.dancres.org/blitz/
http://www.gigaspaces.com/
http://www.dancres.org/blitz/
http://www.gigaspaces.com/

Chapter 37. JavaSpace

Sending and Receiving Entries

//Sending route
from("direct:input").to("javaspace:jini://localhost?spaceName=mySpace");

//Receiving Route
from("javaspace:jini://localhost?spaceName=mySpace&templateId=template&verb=take&concurrent
Consumers=1")

In this case the payload can be any object that inherits from the Jini Entry type.
Sending and receiving serializable objects

Using the preceding routes, it is also possible to send and receive any serializable object. The JavaSpace
component detects that the payload is not a Jini Entry and then it automatically wraps the payload with a
Camel Jini Entry. In this way, a JavaSpace can be used as a generic transport mechanism.

Using JavaSpace as a remote invocation transport

The JavaSpace component has been tailored to work in combination with the Camel bean component. It is
therefore possible to call a remote POJO using JavaSpace as the transport:

from("direct:input").to("javaspace:jini://localhost?spaceName=mySpace"); //Client side
from("javaspace:jini://localhost?concurrentConsumers=10&spaceName=mySpace").to("pojo:pojo");

//Server side

In the code there are two test cases showing how to use a POJO to realize the master/worker pattern. The
idea is to use the POJO to provide the business logic and rely on Fuse Mediation Router for sending/receiving
requests/replies with the proper correlation.

252 Fuse Mediation Router Component Reference Version 2.6

Chapter 38. Jasypt

Jasypt component

Available as of Camel 2.5

Jasypt1 is a simplified encryption library which makes encryption and decryption easy. Camel integrates with
Jasypt to allow sensitive information in Properties on page 387 files to be encrypted. By dropping camel-jasypt
on the classpath those encrypted values will automatic be decrypted on-the-fly by Camel. This ensures that

human eyes can't easily spot sensitive information such as usernames and passwords.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jasypt</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

Tooling

The Jasypt on page 253 component provides a little command line tooling to encrypt or decrypt values.

The console output the syntax and which options it provides:

Apache Camel Jasypt takes the following options

-h or -help = Displays the help screen

-c or -command <command> = Command either encrypt or decrypt
-p or -password <password> = Password to use

-i or -input <input> = Text to encrypt or decrypt

-a or -algorithm <algorithm> = Optional algorithm to use

For example to encrypt the value tiger you run with the following parameters. In the apache camel kit, you
cd into the lib folder and run the following java cmd, where <CAMELHOME>__ is where you have downloaded

and extract the Camel distribution.

! http://www.jasypt.org/

Fuse Mediation Router Component Reference Version 2.6

http://www.jasypt.org/
http://www.jasypt.org/

Chapter 38. Jasypt

$ cd <CAMEL_HOME>/1ib
$ java -jar camel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result

Encrypted text: gaEEacuW7BUti8LcMgyjKw==

This means the encrypted representation gaEEacuw7BUti8LcMgyjKw== can be decrypted back to tiger if you
know the master password which was secret. If you run the tool again then the encrypted value will return a
different result. But decrypting the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

$ cd <CAMEL_HOME>/1lib
$ java -jar camel-jasypt-2.5.0.jar -c decrypt -p secret -i gaEEacuW7BUti8LcMgyjKw==

Which outputs the following result:

Decrypted text: tiger

The idea is then to use those encrypted values in your Properties on page 387 files. Notice how the password
value is encrypted and the value has the tokens surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock: {{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsWOuV37gQOQHFu7K003Ww==)

Tooling dependencies

The tooling requires the following JARs in the classpath, which has been enlisted in the MANIFEST. MF file of
camel-jasypt with optional/ as prefix. Hence why the java cmd above can pickup the needed JARs from
the Apache Distribution in the optional directory.

jasypt-1.6.jar commons-lang-2.4.jar commons-codec-1.4.jar icu4j-4.0.1.jar

254 Fuse Mediation Router Component Reference Version 2.6

#* Java 1.5 users

The icu4j-4.0.1.jar is only needed when running on JDK 1.5.

This JAR is not distributed by Apache Camel and you have to download it manually and copy it to the
lib/optional directory of the Camel distribution. You can download it from Apache Central Maven repo”.

URI Options

The options below are exclusive for the Jasypt on page 253 component.

Name Default Value Type Description

password null String Specifies the master password to use for decrypting. This option is
mandatory. See below for more details.

algorithm null String Name of an optional algorithm to use.

Protecting the master password

The master password used by Jasypt on page 253 must be provided, so its capable of decrypting the values.
However having this master password out in the opening may not be an ideal solution. Therefore you could
for example provided it as a JVM system property or as a OS environment setting. If you decide to do so then

the password option supports prefixes which dictates this. sysenv: means to lookup the OS system environment
with the given key. sys: means to lookup a JVM system property.

For example you could provided the password before you start the application

$ export CAMEL_ENCRYPTION_PASSWORD=secret

Then start the application, such as running the start script.

When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTION_PASSWORD

The password option is then a matter of defining as follows: password=sysenv:CAMEL_ENCRYPTION_PASSWORD.

2 http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/

Fuse Mediation Router Component Reference Version 2.6 255

http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/
http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/

Chapter 38. Jasypt

Example with Java DSL

In Java DSL you need to configure Jasypt on page 253 as a JasyptPropertiesParser instance and set it on
the Properties on page 387 component as show below:

// create the jasypt properties parser

JasyptPropertiesParser jasypt = new JasyptPropertiesParser();
// and set the master password

jasypt.setPassword("secret");

// create the properties component

PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:org/apache/camel/component/jasypt/myproperties.properties");
// and use the jasypt properties parser so we can decrypt values
pc.setPropertiesParser(jasypt);

// add properties component to camel context
context.addComponent ("properties", pc);

The properties file myproperties.properties then contain the encrypted value, such as shown below. Notice
how the password value is encrypted and the value has the tokens surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsW9uV37gQOQHFu7K0OO3Ww==

Example with Spring XML

In Spring XML you need to configure the JasyptPropertiesParser which is shown below. Then the Camel
Properties on page 387 component is told to use jasypt as the properties parser, which means
Jasypt on page 253 have its chance to decrypt values looked up in the properties.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
<property name="password" value="secret"/>

</bean>

<!-- define the camel properties component -->

<bean id="properties" class="org.apache.camel.component.properties.PropertiesComponent">
<!-- the properties file is in the classpath -->

<property name="location" value="classpath:org/apache/camel/component/jasypt/myproper
ties.properties"/>
<!-- and let it leverage the jasypt parser -->

256 Fuse Mediation Router Component Reference Version 2.6

<property name="propertiesParser" ref="jasypt"/>
</bean>

The Properties on page 387 component can also be inlined inside the <camelContext> tag which is shown
below. Notice how we use the propertiesParserRef attribute to refer to Jasypt on page 253.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
<!-- password is mandatory, you can prefix it with sysenv: or sys: to indicate it should
use

an 0S environment or JVM system property value, so you dont have the master password
defined here -->
<property name="password" value="secret"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define the camel properties placeholder, and let it leverage jasypt -->
<propertyPlaceholder id="properties"
location="classpath:org/apache/camel/component/jasypt/myproper
ties.properties"
propertiesParserRef="jasypt"/>
<route>
<from uri="direct:start"/>
<to uri="{{cool.result}}"/>
</route>
</camelContext>

See Also
e Security
» Properties on page 387

» Encrypted passwords in ActiveMQ3 - ActiveMQ has a similar feature as this camel-jasypt component

8 http://activemq.apache.org/encrypted-passwords.html

Fuse Mediation Router Component Reference Version 2.6 257

Security
http://activemq.apache.org/encrypted-passwords.html
http://activemq.apache.org/encrypted-passwords.html

258 Fuse Mediation Router Component Reference Version 2.6

Chapter 39. JBI

JBI Component

The jbi component is implemented by the ServiceMix Camel module® and provides integration with a JBI
Normalized Message Router, such as the one provided by Apache ServiceMix?.

See below for information about how to use StreamSource types from ServiceMix™ in Fuse Mediation Router.

The following code:

from("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

Automatically exposes a new endpoint to the bus, where the service QName is
{http://foo.bar.org}MyService and the endpoint name is MyEndpoint (see #URI-format).

When a JBI endpoint appears at the end of a route, for example:
to("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

The messages sent by this producer endpoint are sent to the already deployed JBI endpoint.
URI format

jbi:service:serviceNamespace[sep]serviceName[?options]
jbi:endpoint:serviceNamespace[sep]serviceName[sep]endpointName[?options]
jbi:name:endpointName[?options]

The separator that should be used in the endpoint URL is:

» / (forward slash), if serviceNamespace starts with http://, or

* : (colon), if serviceNamespace starts with urn:foo:bar.

For more details of valid JBI URIs see the ServiceMix URI Guide”.

L http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/uris.html

Fuse Mediation Router Component Reference Version 2.6 259

http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/uris.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/uris.html

Chapter 39. JBI

Using the jbi:service: or jbi:endpoint: URI formats sets the service QName on the JBI endpoint to the
one specified. Otherwise, the default Fuse Mediation Router JBI Service QName is used, which is:

{http://activemqg.apache.org/camel/schema/jbi}endpoint

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Examples

jbi:service:http://foo.bar.org/MyService
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint

jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint
jbi:name:cheese

URI options

Name Default value Description
mep MEP of the Camel Allows users to override the MEP set on the Exchange object.
Exchange Valid values for this option are in-only, in-out, robust-in-out
and in-optional-out
operation Value of the Specifies the JBI operation for the MessageExchange. If no value
jbi.operation is supplied, the JBI binding will use the value of the jbi.operation

header property header property.

serialization basic Default value (basic) will check if headers are serializable by
looking at the type, setting this option to strict will detect objects
that can not be serialized although they implement the
Serializable interface. Set to nocheck to disable this check
altogether, note that this should only be used for in-memory
transports like SEDAFlow, otherwise you can expect to get
NotSerializableException thrown at runtime.

convertException false false: send any exceptions thrown from the Camel route back
unmodified true: convert all exceptions to a JBI FaultException
(can be used to avoid non-serializable exceptions or to implement
generic error handling

Examples

jbi:service:http://foo.bar.org/MyService?mep=in-out (override the MEP, use InOut JBI
MessageExchanges)

jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?mep=in (override the MEP, use InOnly JBI
MessageExchanges)

260 Fuse Mediation Router Component Reference Version 2.6

jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?operation={http://www.mycompany.org}AddNumbers
(overide the operation for the JBI Exchange to {http://www.mycompany.org}AddNumbers)

Using Stream bodies

If you are using a stream type as the message body, you should be aware that a stream is only capable of
being read once. So if you enable DEBUG logging, the body is usually logged and thus read. To deal with this,
Fuse Mediation Router has a streamCaching option that can cache the stream, enabling you to read it multiple
times.

from("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint").streamCaching().to("xslt:trans
form.xs1l", "bean:doSomething");

From Fuse Mediation Router 1.5 onwards, the stream caching is default enabled, so it is not necessary to
set the streamCaching() option.

In Fuse Mediation Router 2.0 we store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be deleted.

Creating a JBI Service Unit

If you have some Fuse Mediation Router routes that you want to deploy inside JBI as a Service Unit, you can
use the JBI Service Unit Archetype to create a new Maven project for the Service Unit.

If you have an existing Maven project that you need to convert into a JBI Service Unit, you may want to consult
ServiceMix Maven JBI Plugins5 for further help. The key steps are as follows:

» Create a Spring XML file at src/main/resources/camel-context.xml to bootstrap your routes inside the
JBI Service Unit.

» Change the POM file's packaging to jbi-service-unit.
Your pom. xml should look something like this to enable the jbi-service-unit packaging:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLS
chema-instance"

Xxsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>myGroupId</groupId>

<artifactId>myArtifactId</artifactId>
<packaging>jbi-service-unit</packaging>

5 http://servicemix.apache.org/maven-jbi-plugin.html

Fuse Mediation Router Component Reference Version 2.6 261

http://servicemix.apache.org/maven-jbi-plugin.html
http://servicemix.apache.org/maven-jbi-plugin.html

Chapter 39. JBI

<version>1.0-SNAPSHOT</version>
<name>A Fuse Mediation Router based JBI Service Unit</name>
<url>http://www.myorganization.org</url>

<properties>
<camel-version>1.0.0</camel-version>
<servicemix-version>3.3</servicemix-version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-camel</artifactId>
<version>${servicemix-version}</version>
</dependency>

<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-core</artifactId>
<version>${servicemix-version}</version>
<scope>provided</scope>
</dependency>
</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>
</configuration>
</plugin>

<!-- creates the JBI deployment unit -->
<plugin>
<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>
</plugin>
</plugins>
</build>
</project>

262 Fuse Mediation Router Component Reference Version 2.6

For more information, see the following references:
« ServiceMix Camel module®
» Using Camel with ServiceMix’

» Cookbook on using Camel with ServiceMix®

6 http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/order-file-processing.html

Fuse Mediation Router Component Reference Version 2.6 263

http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/order-file-processing.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/order-file-processing.html

264 Fuse Mediation Router Component Reference Version 2.6

Chapter 40. JCR

JCR Component

The jcr component allows you to add nodes to a JCR (JSR-170) compliant content repository (for example,
Apache Jackrabbitl).

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jcr</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format

jcr://user:password@repository/path/to/node

Usage

The repository element of the URI is used to look up the JCR Repository object in the Camel context
registry.

If a message is sent to a JCR producer endpoint:
* A new node is created in the content repository,

» All the message properties of the IN message are transformed to JCR Value instances and added to the
new node,

e The node's UUID is returned in the OUT message.

Message properties

All message properties are converted to node properties, except for the CamelJcrNodeName property (you can
refer to JcrConstants.NODE_NAME in your code), which is used to determine the node name.

! http://jackrabbit.apache.org/

Fuse Mediation Router Component Reference Version 2.6 265

http://jackrabbit.apache.org/
http://jackrabbit.apache.org/

Chapter 40. JCR

Example

The snippet below creates a node named node under the /home/test node in the content repository. One
additional attribute is added to the node as well: my.contents.property which will contain the body of the
message being sent.

from("direct:a").setProperty(JcrConstants.JCR_NODE_NAME, constant('"node"))
.setProperty("my.contents.property", body()).to("jcr://user:pass@repository/home/test");

266 Fuse Mediation Router Component Reference Version 2.6

Chapter 41. JDBC

JDBC Component

The jdbc component enables you to access databases through JDBC, where SQL queries and operations
are sent in the message body. This component uses the standard JDBC API, unlike the SQL
Component on page 493 component, which uses spring-jdbc.

This component can only be used to define producer endpoints, which means that you cannot use the JDBC
component in a from() statement.

URI format

jdbc:dataSourceName[?options]
This component only supports producer endpoints.

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options
Name Default Description
Value

readSize 0/2000 The default maximum number of rows that can be
read by a polling query. The default value is 2000 for
Fuse Mediation Router 1.5.0 or older. In newer
releases the default value is 0.

statement.<xxx> null Fuse Mediation Router 2.1: Sets additional options

on the java.sql.Statement that is used behind the
scenes to execute the queries. For instance,
statement.maxRows=10. For detailed documentation,
see the java.sql.Statement javadocl
documentation.

! http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Fuse Mediation Router Component Reference Version 2.6 267

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Chapter 41. JDBC

useJDBC4ColumnNameAndLabelSemantics true Fuse Mediation Router 1.6.3/2.2: Sets whether to
use JDBC 4/3 column label/name semantics. You can
use this option to turn it false in case you have issues
with your JDBC driver to select data. This only applies
when using SQL SELECT using aliases (e.g. SQL
SELECT id as identifier, name as given_name
from persons).

Result

The result is returned in the OUT body as an ArrayList<HashMap<String, Object>>. The List object
contains the list of rows and the Map objects contain each row with the String key as the column name.

This component fetches ResultSetMetaData to be able to return the column name as the key in the Map.

Message Headers

Header Description
CamelJdbcRowCount If the query is a SELECT, the row count is returned in this OUT header.
camelJdbcUpdateCount If the query is an UPDATE, the update count is returned in this OUT header.

Samples
In the following example, we fetch the rows from the customer table.

First we register our datasource in the Fuse Mediation Router registry as testdb:
JndiRegistry reg = super.createRegistry();

reg.bind("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we
refer to the testdb datasource that was bound in the previous step:

// lets add simple route
public void configure() throws Exception {

268 Fuse Mediation Router Component Reference Version 2.6

from("direct:hello").to("jdbc:testdb?readSize=100");
1

Or you can create a DataSource in Spring like this:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://kickoff?period=10000"/>
<setBody>
<constant>select * from customer</constant>
</setBody>
<to uri="jdbc:testdb"/>
<to uri="mock:result"/>
</route>
</camelContext>
<!-- Just add a demo to show how to bind a date source for camel in Spring-->
<bean id="testdb" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:mem:camel_jdbc" />
<property name="username" value="sa" />
<property name="password" value="" />
</bean>

We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The
result of the query is returned in the OUT body:

// first we create our exchange using the endpoint

Endpoint endpoint context.getEndpoint("direct:hello");
Exchange exchange endpoint.createExchange();

// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receives the response from Camel
Exchange out = template.send(endpoint, exchange);

// assertions of the response

assertNotNull(out);

assertNotNull(out.getOut());

ArraylList<HashMap<String, Object>> data = out.getOut().getBody(ArrayList.class);

assertNotNull("out body could not be converted to an ArrayList - was: "
+ out.getOut().getBody(), data);

assertEquals(2, data.size());

HashMap<String, Object> row = data.get(0);

assertEquals("custl", row.get("ID"));

assertEquals("jstrachan", row.get("NAME"));

row = data.get(1);

assertEquals("cust2", row.get("ID"));

assertEquals("nsandhu", row.get("NAME"));

Fuse Mediation Router Component Reference Version 2.6 269

Chapter 41. JDBC

If you want to work on the rows one by one instead of the entire ResultSet at once you need to use the Splitter
EIP such as:

from("direct:hello")
// here we split the data from the testdb into new messages one by one
// so the mock endpoint will receive a message per row in the table
.to("jdbc:testdb").split(body()).to("mock:result");

Sample - Polling the database every minute

If we want to poll a database using the JDBC component, we need to combine it with a polling scheduler such
as the Timer on page 507 or Quartz on page 389 etc. In the following example, we retrieve data from the database
every 60 seconds:

from("timer://foo?period=60000").setBody(constant("select * from customer")).to("jd
bc:testdb").to("activemq:queue:customers");

See also:

. SQL

270 Fuse Mediation Router Component Reference Version 2.6

SQL

Chapter 42. JIDBC-AggregationRepository

JDBC-AggregationRepository
Available as of Camel 2.6

The camel-jdbc-aggregator component allows together with Camel to provide persistent support for the
Aggregator.

Using JdbcAggregationRepository
JdbcAggregationRepository is an AggregationRepository which on the fly persists the aggregated
messages. This ensures that you will not loose messages, as the default aggregator will use an in memory

only AggregationRepository.

It has the following options:

Option Type Description

dataSource DataSource Mandatory: The javax.sql.DataSource to use for accessing the
database.

repositoryName String Mandatory: The name of the repository.

transactionManager TransactionManager Mandatory: The
org.springframework.transaction.PlatformTransactionManager
to mange transactions for the database. The TransactionManager must
be able to support databases.

lobHandler LobHandler A org.springframework.jdbc.support.lob.LobHandler to handle
Lob types in the database. Use this option to use a vendor specific
LobHandler, for example when using Oracle.

returnoldexchange boolean Whether the get operation should return the old existing Exchange if any
existed. By default this option is false to optimize as we do not need
the old exchange when aggregating.

useRecovery boolean Whether or not recovery is enabled. This option is by default t rue. When
enabled the Camel Aggregator automatic recover failed aggregated
exchange and have them resubmitted.

recoveryInterval long If recovery is enabled then a background task is run every x'th time to
scan for failed exchanges to recover and resubmit. By default this interval
is 5000 millis.

maximumRedeliveries int Allows you to limit the maximum number of redelivery attempts for a

recovered exchange. If enabled then the Exchange will be moved to the

Fuse Mediation Router Component Reference Version 2.6 271

Chapter 42. JDBC-AggregationRepository

dead letter channel if all redelivery attempts failed. By default this option
is disabled. If this option is used then the deadLetterUri option must
also be provided.

deadLetteruri String An endpoint uri for a Dead Letter Channel where exhausted recovered
Exchanges will be moved. If this option is used then the
maximumRedeliveries option must also be provided.

What is preserved when persisting

JdbcAggregationRepository will only preserve any Serializable compatible data types. If a data type is
not such a type its dropped and a WARN is logged. And it only persists the Message body and the Message
headers. The Exchange properties are not persisted.

Recovery

The JdbcAggregationRepository will by default recover any failed Exchange. It does this by having a
background tasks that scans for failed Exchanges in the persistent store. You can use the checkInterval
option to set how often this task runs. The recovery works as transactional which ensures that Camel will try
to recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored
from the persistent store and resubmitted and send out again.

The following headers is set when an Exchange is being recovered/redelivered:

Header Type Description
Exchange .REDELIVERED Boolean Is set to true to indicate the Exchange is being redelivered.

Exchange.REDELIVERY_COUNTER Integer The redelivery attempt, starting from 1.

Only when an Exchange has been successfully processed it will be marked as complete which happens when
the confirm method is invoked on the AggregationRepository. This means if the same Exchange fails again
it will be kept retried until it success.

You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a given
recovered Exchange. You must also set the deadLetterUri option so Camel knows where to send the
Exchange when the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-jdbc-aggregagor, for example this test.

272 Fuse Mediation Router Component Reference Version 2.6

Exchange
Exchange
Exchange
Exchange
Exchange
Exchange
Exchange
Exchange
Exchange
Exchange
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jdbc-aggregator/src/test/java/org/apache/camel/component/jdbc/aggregationrepository/JdbcAggregateRecoverDeadLetterChannelTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jdbc-aggregator/src/test/java/org/apache/camel/component/jdbc/aggregationrepository/JdbcAggregateRecoverDeadLetterChannelTest.java

Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention the
completed has the same name as the aggregation one suffixed with "_COMPLETED". The name must be
configured in the Spring bean with the RepositoryName property. In the following example aggregation will
be used.

The table structure definition of both table are identical: in both case a String value is used as key (id) whereas
a Blob contains the exchange serialized in byte array. However one difference should be remembered: the id
field does not have the same content depending on the table. In the aggregation table id holds the correlation
Id used by the component to aggregate the messages. In the completed table, id holds the id of the exchange
stored in corresponding the blob field.

Here is the SQL query used to create the tables, just replace "aggregation" with your aggregator repository
name.

CREATE TABLE aggregation (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_pk PRIMARY KEY (id)
)i
CREATE TABLE aggregation_completed (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_completed_pk PRIMARY KEY (id)
)i

Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into a
byte array to be stored in a database BLOB field. All those conversions are handled by the JdbcCodec class.
One detail of the code requires your attention: the ClassLoadingAwareObjectInputStream.

The ClassLoadingAwareObjectInputStream has been reused from the Apache ActiveMQ2 project. It wraps
an ObjectInputStream and use it with the ContextClassLoader rather than the currentThread one. The
benefit is to be able to load classes exposed by other bundles. This allows the exchange body and headers
to have custom types object references.

2 http://activemq.apache.org/

Fuse Mediation Router Component Reference Version 2.6 273

http://activemq.apache.org/
http://activemq.apache.org/

Chapter 42. JDBC-AggregationRepository

Transaction

A Spring PlatformTransactionManager is required to orchestrate transaction.

Service (Start/Stop)

The start method verify the connection of the database and the presence of the required tables. If anything
is wrong it will fail during starting.

Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already know,
each aggregator should have its own repository (with the corresponding pair of table created in the database)
and a data source. If the default lobHandler is not adapted to your database system, it can be injected with
the lobHandler property.

Here is the declaration for Oracle:

<bean id="lobHandler" class="org.springframework.jdbc.support.lob.OracleLobHandler">
<property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>

<bean id="nativeJdbcExtractor" class="org.springframework.jdbc.support.nativejdbc.Com
monsDbcpNativeJdbcExtractor"/>

<bean id="repo" class="org.apache.camel.component.jdbc.aggregationRepository.JdbcAggreg
ationRepository">
<property name="transactionManager" ref="transactionManager"/>
<property name="repositoryName" value="aggregation"/>
<property name="dataSource" ref="dataSource"/>

<!-- Only with Oracle, else use default -->
<property name="lobHandler" ref="lobHandler"/>
</bean>
Dependencies

To use JDBC-AggregationRepository on page 271 in your camel routes you need to add the a dependency on
camel-jdbc-aggregator.

If you use maven you could just add the following to your pom.xml, substituting the version number for the
latest & greatest release (see the download page for the latest versions3).

3
Download

274 Fuse Mediation Router Component Reference Version 2.6

Download
Download

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jdbc-aggregator</artifactId>
<version>2.6.0</version>

</dependency>

* Aggregator

« HawtDB on page 209

* Components on page 3

Fuse Mediation Router Component Reference Version 2.6 275

276 Fuse Mediation Router Component Reference Version 2.6

Chapter 43. Jetty

Jetty Component

The jetty component provides HTTP-based endpoints1 for consuming HTTP requests. That is, the Jetty
component behaves as a simple Web server.

? Upgrading from Jetty 6 to 7

You can read more about upgrading Jetty here

URI format

jetty:http://hostname[:port][/resourceUri][?options]

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options
Name Default Description
Value

sessionSupport false Specifies whether to enable the session manager on the server side
of Jetty.

httpClient .XXX null Fuse Mediation Router 1.6.0/2.0: Configuration of Jetty's HttpCIient?’.
For example, setting httpClient.idleTimeout=30000 sets the idle
timeout to 30 seconds.

httpBindingRef null Fuse Mediation Router 1.6.0/2.0: Reference to an
org.apache.camel.component.http.HttpBinding in the Registry.
HttpBinding can be used to customize how a response should be
written.

jettyHttpBindingRef null Camel 2.6.0: Reference to an
org.apache.camel.component.jetty.JettyHttpBinding in the
Registry. JettyHttpBinding can be used to customize how a response
should be written.

L Endpoint

2 http://wiki.eclipse.org/Jetty/Howto/Upgrade_from_Jetty 6_to_Jetty 7

8 http://wiki.eclipse.org/Jetty/Tutorial/HttpClient

Fuse Mediation Router Component Reference Version 2.6 277

Endpoint
http://wiki.eclipse.org/Jetty/Howto/Upgrade_from_Jetty_6_to_Jetty_7
http://wiki.eclipse.org/Jetty/Tutorial/HttpClient
Registry
Registry
Endpoint
http://wiki.eclipse.org/Jetty/Howto/Upgrade_from_Jetty_6_to_Jetty_7
http://wiki.eclipse.org/Jetty/Tutorial/HttpClient

Chapter 43. Jetty

matchOnUriPrefix

handlers

chunked

enableJmx

disableStreamCache

bridgeEndpoint

enableMultipartFilter

multipartFilterRef

continuationTimeout

278

false

null

true

false

false

false

true

null

null

Fuse Mediation Router 2.0: Whether or not the CamelServlet should
try to find a target consumer by matching the URI prefix if no exact
match is found.

Fuse Mediation Router 1.6.1/2.0: Specifies a comma-delimited set
of org.mortbay. jetty.Handler instances in your Registry (such as
your Spring ApplicationContext). These handlers are added to the
Jetty servlet context (for example, to add security).

Camel 2.2: If this option is false Jetty servlet will disable the HTTP
streaming and set the content-length header on the response

Camel 2.3: If this option is true, Jetty IMX support will be enabled for
this endpoint. See Jetty JMX support for more details.

Camel 2.3: Determines whether or not the raw input stream from Jetty
is cached or not (Camel will read the stream into a in memory/overflow
to file, Stream caching) cache. By default Camel will cache the Jetty
input stream to support reading it multiple times to ensure it Camel
can retrieve all data from the stream. However you can set this option
to true when you for example need to access the raw stream, such
as streaming it directly to a file or other persistent store.
DefaultHttpBinding will copy the request input stream into a stream
cache and put it into message body if this option is false to support
reading the stream multiple times.

Camel 2.1: If the option is true , HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint's URI for request.
You may also set the throwExcpetionOnFailure to be false to let the
HttpProducer send all the fault response back. Camel 2.3: If the option
is true, HttpProducer and CamelServlet will skip the gzip processing
if the content-encoding is "gzip".

Canel 2.5: Whether Jetty
org.eclipse.jetty.servlets.MultiPartFilter is enabled or not.
You should set this value to false when bridging endpoints, to ensure
multipart requests is proxied/bridged as well.

Camel 2.6: Allows using a custom multipart filter. Note: setting
multipartFilterRef forces the value of enableMultipartFilter
to true.

Camel 2.6: Allows to set a timeout in millis when using Jetty on page 277
as consumer (server). By default Jetty uses 30000. You can use a
value of <= 0 to never expire. If a timeout occurs then the request will
be expired and Jetty will return back a http error 503 to the client. This
option is only in use when using Jetty on page 277 with the
Asynchronous Routing Engine.

Fuse Mediation Router Component Reference Version 2.6

Registry
Stream caching
Asynchronous Routing Engine

useContinuation true Camel 2.6: Whether or not to use Jetty continuations” for the Jetty
Server.

DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this
option is false to support reading the stream multiple times. |

Message Headers

Fuse Mediation Router uses the same message headers as the HTTP on page 229 component. From Camel
2.2, it also uses (Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn on or turn off the chuched
encoding on the camel-jetty consumer.

Fuse Mediation Router also populates all request.parameter and request.headers. For example, given a client
request with the URL, http://myserver/myserver?orderid=123, the exchange will contain a header named
orderid with the value 123. This feature was introduced in Fuse Mediation Router 1.5.

From Camel 1.6.3 and Camel 2.2.0, you can get the request.parameter from the message header not only
from Get Method, but also other HTTP method.

Usage
The Jetty component only supports consumer endpoints. Therefore a Jetty endpoint URI should be used only
as the input for a Fuse Mediation Router route (in a from() DSL call). To issue HTTP requests against other

HTTP endpoints, use the HTTP Component on page 229

Component Options

The JettyHttpComponent provides the following options:

Name Default Value Description

enableJmx false Camel 2.3: If this option is true, Jetty IMX support will be
enabled for this endpoint. See Jetty JMX support for more
details.

sslKeyPassword null Consumer only: The password for the keystore when using
SSL.

sslPassword null Consumer only: The password when using SSL.

sslKeystore null Consumer only: The path to the keystore.

minThreads null Camel 2.5Consumer only: To set a value for minimum

number of threads in server thread pool.

4 http://wiki.eclipse.org/Jetty/Feature/Continuations

Fuse Mediation Router Component Reference Version 2.6 279

http://wiki.eclipse.org/Jetty/Feature/Continuations
http://myserver/myserver?orderid=123
http://wiki.eclipse.org/Jetty/Feature/Continuations

Chapter 43. Jetty

maxThreads

threadPool

sslSocketConnectors

socketConnectors

sslSocketConnectorProperties

socketConnectorProperties

httpClient

httpClientMinThreads

httpClientMaxThreads

httpClientThreadPool

null

null

null

null

null

null

null

null

null

null

Camel 2.5Consumer only: To set a value for maximum
number of threads in server thread pool.

Camel 2.5Consumer only: To use a custom thread pool
for the server.

Camel 2.3Consumer only: A map which contains per port
number specific SSL connectors. See section SSL support
for more details.

Camel 2.5Consumer only: A map which contains per port
number specific HTTP connectors. Uses the same principle
as sslSocketConnectors and therefore see section SSL
support for more details.

Camel 2.5Consumer only. A map which contains general
SSL connector properties. See section SSL support for
more details.

Camel 2.5Consumer only. A map which contains general
HTTP connector properties. Uses the same principle as
sslSocketConnectorProperties and therefore see section
SSL support for more details.

Producer only: To use a custom HttpClient with the jetty
producer.

Producer only: To set a value for minimum number of
threads in HttpClient thread pool.

Producer only: To set a value for maximum number of
threads in HttpClient thread pool.

Producer only: To use a custom thread pool for the client.

Sample

In this sample we define a route that exposes a HTTP service at http://localhost:8080/myapp/myservice:

from("jetty:http://localhost:9080/myapp/myservice").process(new MyBookService());

280

Fuse Mediation Router Component Reference Version 2.6

http://localhost:8080/myapp/myservice

® Usage of localhost

When you specify localhost in a URL, Fuse Mediation Router exposes the endpoint only on the local TCP/IP
network interface, so it cannot be accessed from outside the machine it operates on.

If you need to expose a Jetty endpoint on a specific network interface, the numerical IP address of this interface
should be used as the host. If you need to expose a Jetty endpoint on all network interfaces, the 0.0.0.0
address should be used.

Our business logic is implemented in the MyBookService class, which accesses the HTTP request contents
and then returns a response. Note: The assert call appears in this example, because the code is part of an
unit test.

public class MyBookService implements Processor {
public void process(Exchange exchange) throws Exception {
// just get the body as a string
String body = exchange.getIn().getBody(String.class);

// we have access to the HttpServletRequest here and we can grab it if we need it
HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
assertNotNull(req);

// for unit testing
assertEquals("bookid=123", body);

// send a html response
exchange.getOut().setBody("<html><body>Book 123 is Camel in Action</body></html>");

3

The following sample shows a content-based route that routes all requests containing the URI parameter, one,
to the endpoint, mock: one, and all others to mock:other.

from("jetty:" + serverUri)
.choice()
.when().simple("in.header.one").to("mock:one")
.otherwise()
.to("mock:other");

So if a client sends the HTTP request, http://serverUri?one=hello, the Jetty component will copy the
HTTP request parameter, one to the exchange's in.header. We can then use the simple language to route
exchanges that contain this header to a specific endpoint and all others to another. If we used a language
more powerful than Simple—such as El or OGNL—we could also test for the parameter value and do routing
based on the header value as well.

Fuse Mediation Router Component Reference Version 2.6 281

http://serverUri?one=hello
Simple
El
OGNL

Chapter 43. Jetty

Session Support

The session support option, sessionSupport, can be used to enable a HttpSession object and access the
session object while processing the exchange. For example, the following route enables sessions:

<route>
<from uri="jetty:http://0.0.0.0/myapp/myservice/?sessionSupport=true"/>

<processRef ref="myCode"/>
<route>

The myCode Processor can be instantiated by a Spring bean element:
<bean id="myCode" class="com.mycompany.MyCodeProcessor"/>

Where the processor implementation can access the HttpSession as follows:

public void process(Exchange exchange) throws Exception {
HttpSession session = ((HttpExchange)exchange).getRequest().getSession();

SSL Support (HTTPS)

Jetty provides SSL support out of the box. To enable Jetty to run in SSL mode, simply format the URI with the
https:// prefix—for example:

<from uri="jetty:https://0.0.0.0/myapp/myservice/"/>

Jetty also needs to know where to load your keystore from and what passwords to use in order to load the
correct SSL certificate. Set the following JVM System Properties:

until Camel 2.2

» jetty.ssl.keystore specifies the location of the Java keystore file, which contains the Jetty server's own
X.5009 certificate in a key entry. A key entry stores the X.509 certificate (effectively, the public key) and also
its associated private key.

» jetty.ssl.password the store password, which is required to access the keystore file (this is the same
password that is supplied to the keystore command's -storepass option).

» jetty.ssl.keypassword the key password, which is used to access the certificate's key entry in the keystore
(this is the same password that is supplied to the keystore command's -keypass option).

from Camel 2.3 onwards

282 Fuse Mediation Router Component Reference Version 2.6

Processor

» org.eclipse.jetty.ssl.keystore specifies the location of the Java keystore file, which contains the Jetty
server's own X.509 certificate in a key entry. A key entry stores the X.509 certificate (effectively, the public
key) and also its associated private key.

* org.eclipse.jetty.ssl.password the store password, which is required to access the keystore file (this
is the same password that is supplied to the keystore command's \-storepass option).

» org.eclipse.jetty.ssl.keypassword the key password, which is used to access the certificate's key
entry in the keystore (this is the same password that is supplied to the keystore command's \ -keypass
option).

For details of how to configure SSL on a Jetty endpoint, see How to Configure SsL®.

Some SSL properties aren't exposed directly by Camel, however Camel does expose the underlying
SslSocketConnector, which will allow you to set properties like needClientAuth for mutual authentication
requiring a client certificate or wantClientAuth for mutual authentication where a client doesn't need a certificate
but can have one. There's a slight difference between Camel 1.6.x and 2.x:

Camel 1.x
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">

<property name="sslSocketConnector">
<bean class="org.mortbay.jetty.security.SslSocketConnector">

<property name="password" value="..." />
<property name="keyPassword" value="..." />
<property name="keystore" value="..." />
<property name="wantClientAuth" value="..." />
<property name="truststore" value="..." />
</bean>
</property>
</bean>

Until Camel 2.2

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">
<map>
<entry key="8043">
<bean class="org.mortbay.jetty.security.SslSocketConnector">

<property name="password" value="..." />
<property name="keyPassword" value="..." />
<property name="keystore" value="..." />
<property name="needClientAuth" value="..." />

5 http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

Fuse Mediation Router Component Reference Version 2.6 283

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

Chapter 43. Jetty

<property name="truststore" value="..." />
</bean>
</entry>
</map>
</property>
</bean>

Camel 2.3t0 2.4

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">
<map>
<entry key="8043">
<bean class="org.eclipse.jetty.server.ssl.SslSocketConnector">

<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore'"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>
</bean>
</entry>
</map>
</property>

</bean>

From Camel 2.5 we switch to use Ss1SelectChannelConnector

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">
<map>
<entry key="8043">
<bean class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore'"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>
</bean>
</entry>
</map>
</property>

</bean>

The value you use as keys in the above map is the port you configure Jetty to listen on.

Configuring general SSL properties

Available as of Camel 2.5

284 Fuse Mediation Router Component Reference Version 2.6

Instead of a per port number specific SSL socket connector (as shown above) you can now configure general
properties which applies for all SSL socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectorProperties">

<properties>
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore'"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore'"value="..."/>

</properties>

</property>
</bean>

Configuring general HTTP properties
Available as of Camel 2.5

Instead of a per port number specific HTTP socket connector (as shown above) you can now configure general
properties which applies for all HTTP socket connectors (which is not explicit configured as above with the
port number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="socketConnectorProperties">
<properties>
<property name="acceptors" value="4"/>
<property name="maxIdleTime" value="300000"/>
</properties>
</property>
</bean>

Default behavior for returning HTTP status codes

The default behavior of HTTP status codes is defined by the
org.apache.camel.component.http.DefaultHttpBinding class, which handles how a response is written
and also sets the HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is returned. If the exchange failed with
an exception, the 500 HTTP status code is returned, and the stacktrace is returned in the body. If you want to

Fuse Mediation Router Component Reference Version 2.6 285

Chapter 43. Jetty

specify which HTTP status code to return, set the code in the HttpProducer .HTTP_RESPONSE_CODE header
of the OUT message.

Customizing HttpBinding
Available as of Fuse Mediation Router 1.5.1/2.0

By default, Fuse Mediation Router uses the org.apache.camel.component.http.DefaultHttpBinding to
handle how a response is written. If you like, you can customize this behavior either by implementing your own
HttpBinding class or by extending DefaultHttpBinding and overriding the appropriate methods.

The following example shows how to customize the DefaultHttpBinding in order to change how exceptions
are returned:

public class MyJettyHttpBinding extends DefaultJettyHttpBinding {
@override
protected void populateResponse(Exchange exchange, JettyContentExchange httpExchange,
Message in,
HeaderFilterStrategy strategy, int responseCode) throws
IOException {

Message answer = exchange.getOut();
answer .setHeaders(in.getHeaders());

answer .setHeader (Exchange.HTTP_RESPONSE_CODE, responseCode);
answer .setBody("Not exactly the message the server returned.");

3
We can then create an instance of our binding and register it in the Spring registry as follows:
<bean id="mybinding" class="com.mycompany.MyHttpBinding"/>
And then we can reference this binding when we define the route:
<route>
<from uri="jetty:http://0.0.0.0:8080/myapp/myservice?httpBindingRef=mybinding"/>

<to uri="bean:doSomething"/>
</route>

Jetty handlers and security configuration
Available as of Fuse Mediation Router 1.6.1/2.0: You can configure a list of Jetty handlers on the endpoint,

which can be useful for enabling advanced Jetty security features. These handlers are configured in Spring
XML as follows:

286 Fuse Mediation Router Component Reference Version 2.6

<-- Jetty Security handling -->
<bean id="userRealm" class="org.mortbay.jetty.plus.jaas.JAASUserRealm">
<property name="name" value="tracker-users" />
<property name="loginModuleName" value="ldaploginmodule" />
</bean>

<bean id="constraint" class="org.mortbay.jetty.security.Constraint">
<property name="name" value="BASIC" />

<property name="roles" value="tracker-users" />

<property name="authenticate" value="true" />

</bean>

<bean id="constraintMapping" class="org.mortbay.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint" />

<property name="pathSpec" value="/*" />

</bean>

<bean id="securityHandler" class="org.mortbay.jetty.security.SecurityHandler">
<property name="userRealm" ref="userRealm" />
<property name="constraintMappings" ref="constraintMapping"/></bean>

And from Camel 2.3 onwards you can configure a list of Jetty handlers as follows:

<-- Jetty Security handling -->

<bean id="constraint" class="org.eclipse.jetty.http.security.Constraint">
<property name="name" value="BASIC"/>
<property name="roles" value="tracker-users"/>
<property name="authenticate" value="true"/>

</bean>

<bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint"/>
<property name="pathSpec" value="/*"/>

</bean>

<bean id="securityHandler" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
<property name="authenticator">
<bean class="org.eclipse.jetty.security.authentication.BasicAuthenticator"/>
</property>
<property name="constraintMappings">
<list>
<ref bean="constraintMapping"/>
</list>
</property>
</bean>

You can then define the endpoint as:

Fuse Mediation Router Component Reference Version 2.6 287

Chapter 43. Jetty

from("jetty:http://0.0.0.0:9080/myservice?handlers=securityHandler")

If you need more handlers, set the handlers option equal to a comma-separated list of bean IDs.

How to return a custom HTTP 500 reply message

You may want to return a custom reply message when something goes wrong, instead of the default reply
message Camel Jetty on page 277 replies with. You could use a custom HttpBinding to be in control of the
message mapping, but often it may be easier to use Camel's Exception Clause to construct the custom reply
message. For example as show here, where we return Dude something went wrong with HTTP error code
500:

from("jetty://http://localhost:8234/myserver")
// use onException to catch all exceptions and return a custom reply message
.onException(Exception.class)
.handled(true)
// create a custom failure response
.transform(constant("Dude something went wrong"))
// we must remember to set error code 500 as handled(true)
// otherwise would let Camel thing its a OK response (200)
.setHeader (Exchange.HTTP_RESPONSE_CODE, constant(500))
.end()
// now just force an exception immediately
.throwException(new IllegalArgumentException("I cannot do this"));

Multi-part Form support

From Camel 2.3.0, camel-jetty support to multipart form post out of box. The submitted form-data are mapped
into the message header. Camel-jetty creates an attachment for each uploaded file. The file name is mapped
to the name of the attachment. The content type is set as the content type of the attachment file name. You
can find the example here.

// Set the jetty temp directory which store the file for multi part form
// camel-jetty will clean up the file after it handled the request.

// The option works rightly from Camel 2.4.0
getContext().getProperties().put("CamelJettyTempDir", "target");

from("jetty://http://localhost:9080/test").process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message in = exchange.getIn();
assertEquals("Get a wrong attachement size", 1, in.getAttachments().size());
// The file name is attachment id
DataHandler data = in.getAttachment("NOTICE.txt");

288 Fuse Mediation Router Component Reference Version 2.6

Exception Clause

assertNotNull("Should get the DataHandle NOTICE.txt", data);
assertEquals("Get a wrong content type", "text/plain", data.getContentType());
assertEquals("Got the wrong name", "NOTICE.txt", data.getName());

assertTrue("We should get the data from the DataHandle", data.getDataSource()
.getInputStream().available() > 0);

// The other form date can be get from the message header
exchange.getOut().setBody(in.getHeader ("comment"));

1

Jetty JMX support

From Camel 2.3.0, camel-jetty supports the enabling of Jetty's IMX capabilities at the component and endpoint
level with the endpoint configuration taking priority. Note that IMX must be enabled within the Camel context
in order to enable JMX support in this component as the component provides Jetty with a reference to the
MBeanServer registered with the Camel context. Because the camel-jetty component caches and reuses Jetty
resources for a given protocol/host/port pairing, this configuration option will only be evaluated during the
creation of the first endpoint to use a protocol/host/port pairing. For example, given two routes created from
the following XML fragments, JMX support would remain enabled for all endpoints listening on "https://0.0.0.0".

<from uri="jetty:https://0.0.0.0/myapp/myservicel/?enableJmx=true"/>

<from uri="jetty:https://0.0.0.0/myapp/myservice2/?enableJmx=false"/>

The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer. Jetty creates
MBean names dynamically. If you are running another instance of Jetty outside of the Camel context and
sharing the same MBeanServer between the instances, you can provide both instances with a reference to
the same MBeanContainer in order to avoid hame collisions when registering Jetty MBeans.

See also:

« Http

Fuse Mediation Router Component Reference Version 2.6 289

https://0.0.0.0"

290 Fuse Mediation Router Component Reference Version 2.6

Chapter 44. Jing

Jing Component

The Jing component uses the Jing Library1 to perform XML validation of the message body using either:
+ RelaxNG XML Syntax’

* RelaxNG Compact Syntax3

Note that the MSV on page 361 component can also support RelaxNG XML syntax.

URI format

rng:somelLocalOrRemoteResource
rnc:somelLocalOrRemoteResource

Where rng means use the RelaxNG XML Syntax4 whereas rnc means use RelaxNG Compact Syntax5. The
following examples show possible URI values

Example Description
rng:foo/bar.rng References the XML file foolbar.rng on the classpath

rnc:http://foo.com/bar.rnc References the RelaxNG Compact Syntax file from the URL,
http://foo.com/bar.rnc.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Default Description

useDom false Fuse Mediation Router 2.0: Specifies whether DOMSource/DOMResult or
SaxSource/SaxResult should be used by the validator.

! http://www.thaiopensource.com/relaxng/jing.html
2 http://relaxng.org/
8 http://relaxng.org/compact-tutorial-20030326.html
4 http://relaxng.org/
5 http://relaxng.org/compact-tutorial-20030326.html

Fuse Mediation Router Component Reference Version 2.6 291

http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html

Chapter 44. Jing

Example

The following example6 shows how to configure a route from the endpoint direct:start which then goes to one
of two endpoints, either mock:valid or mock:invalid based on whether or not the XML matches the given
RelaxNG Compact Syntax7 schema (which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<doTry>
<to uri="rnc:org/apache/camel/component/validator/jing/schema.rnc"/>
<to uri="mock:valid"/>

<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>
</camelContext>

6

http://svn.apache.org/repos/asf/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rmc-context.xml
7 http://relaxng.org/compact-tutorial-20030326.html

292 Fuse Mediation Router Component Reference Version 2.6

http://svn.apache.org/repos/asf/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html

Chapter 45. IMS

JMS Component

The JMS component allows messages to be sent to (or consumed from) a Jvst Queue or Topic. The
implementation of the IMS Component uses Spring's JMS support for declarative transactions, using Spring's
JmsTemplate for sending and a MessageListenerContainer for consuming

© For users with Fuse Mediation Router 1.6.1 or older

JMS consumers have a bad default in Fuse Mediation Router 1.6.1 or older. The maxMessagesPerTask is set
to 1, whereas it really should be -1. This issue causes Spring to create a new thread after it has processed a
message, causing the thread count to rise continuously. You can see this in the log where a new thread name
is used. To remedy this, change a route such as:

<from uri="jms:queue:foo"/>

By adding the maxMessagesPerTask option and setting its value to -1, as follows:

<from uri="jms:queue:foo&axMessagesPerTask=-1"/>

This has been fixed in Fuse Mediation Router 1.6.2/2.0.

? Using ActiveMQ
If you are using Apache ActiveMQ~, you should prefer the ActiveMQ on page 25 component as it has been

particularly optimized for ActiveMQ on page 25. All of the options and samples on this page are also valid for
the ActiveMQ on page 25 component.

© Using JMS API 1.0.2

The old IMS API 1.0.2 has been @deprecated in Camel 2.1 and will be removed in Camel 2.2 release. Its
no longer provided in Spring 3.0 which we want to be able to support out of the box in Camel 2.2+ releases.

! http://java.sun.com/products/jms/
http://activemq.apache.org/

Fuse Mediation Router Component Reference Version 2.6 293

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://java.sun.com/products/jms/
http://activemq.apache.org/

Chapter 45. IMS

URI format
jms:[temp:][queue: |topic:]destinationName[?options]

Where destinationName is a JMS queue or topic name. By default, the destinationName is interpreted as
a queue name. For example, to connect to the queue, FOO.BAR, use:

jms:F00.BAR
You can include the optional queue: prefix, if you prefer:
jms:queue:F00.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the topic, Stocks.Prices,
use:

jms:topic:Stocks.Prices

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Using Temporary Destinations

As of Fuse Mediation Router 1.4.0, you can access temporary queues using the following URL format:
jms:temp:queue:foo

Or temporary topics using the following URL format:

jms:temp:topic:bar

This URL format enables multiple routes or processors or beans to refer to the same temporary destination.
For example, you can create three temporary destinations and use them in routes as inputs or outputs by
referring to them by name.

294 Fuse Mediation Router Component Reference Version 2.6

Notes

#* If you are using ActiveMQ

Note that the IMS component reuses Spring 2's JmsTemplate for sending messages. This is not ideal for use
in a non-J2EE container and typically requires some caching in the JMS provider to avoid performance being
Iousys. Soif you intend to use Apache ActiveMQ4 as your Message Broker - which is a good choice as ActiveMQ
rocks :-) , then we recommend that you either

» Use the ActiveMQ on page 25 component, which is already configured to use ActiveMQ efficiently, or

» Use the PoolingConnectionFactory in ActiveMQ.

If you wish to use durable topic subscriptions, you need to specify both clientld and durableSubscriptionName.
Note that the value of the c1ientId must be unique and can only be used by a single JMS connection instance
in your entire network. You may prefer to use Virtual Topics5 instead to avoid this limitation. More background
on durable messaging here".

When using message headers, the JMS specification states that header names must be valid Java identifiers.
So, by default, Fuse Mediation Router ignores any headers that do not match this rule. So try to name your
headers as if they are valid Java identifiers. One benefit of doing this is that you can then use your headers
inside a JMS Selector (whose SQL92 syntax mandates Java identifier syntax for headers).

From Fuse Mediation Router 1.4 onwards, a simple strategy for mapping header names is used by default.
The strategy is to replace any dots in the header name with the underscore character and to reverse the
replacement when the header name is restored from a JMS message sent over the wire. What does this mean?
No more losing method names to invoke on a bean component, no more losing the filename header for the
File Component, and so on.

The current header name strategy for accepting header names in Fuse Mediation Router is as follows:

» Replace all dots with underscores (for example, org.apache.camel.MethodName becomes
org_apache_camel_MethodName).

» Test if the name is a valid java identifier using the JDK core classes.

8 http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

Fuse Mediation Router Component Reference Version 2.6 295

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

Chapter 45. IMS

« If the test success, the header is added and sent over the wire; otherwise it is dropped (and logged at DEBUG
level).

In Fuse Mediation Router 2.0 the strategy for mapping header names has been changed to use the following
replacement strategy:

» Dots are replaced by _DoT_ and the replacement is reversed when Fuse Mediation Router consume the
message

» Hyphen is replaced by _HYPHEN_ and the replacement is reversed when Fuse Mediation Router consumes
the message

O For Consuming Messages cacheLevelName settings are vital!

If you are using Spring before 2.5.1 and Fuse Mediation Router before 1.3.0, you might want to set the
cacheLevelName to be CACHE_CONSUMER for maximum performance. Due to a bug in earlier Spring versions’
causing a lack of transactional integrity, previous versions of Fuse Mediation Router and Fuse Mediation Router
versions from 1.3.0 onwwards when used with Sé)ring versions earlier than 2.5.1 will default to using
CACHE_CONNECTION. See the JIRAs CAMEL-163° and CAMEL-294°, Also, if you are using XA resources or
running in a J2EE container, you may want to set the cacheLevelName to be CACHE_NONE as we have found
that when using JBoss with TibCo EMS and JTA/XA you must disable caching. Another user reports problems
using WebSphere MQ 6.0.2.5, Fuse Mediation Router 1.6.0 and Spring 2.5.6. The application does not use
XA and is not running inside a J2EE Container, but the cacheLevelName=CACHE_NONE setting seems to solve
the problem with WebSphere MQ. See also more about JmsTemplate gotchaslo.

Options

You can configure many different properties on the JMS endpoint which map to properties on the
JMSConfiguration POJO™. Note: Many of these properties map to properties on Spring JMS, which Fuse
Mediation Router uses for sending and receiving messages. So you can get more information about these
properties by consulting the relevant Spring documentation.

Option Default Value Description
acceptMessagesWhileStopping false Specifies whether the consumer accept messages while it is sto

7 http://opensource.atlassian.com/projects/spring/browse/SPR-3890

8 https://issues.apache.org/activemqg/browse/CAMEL-163

° https://issues.apache.org/activemqg/browse/CAMEL-294
http://activemq.apache.org/jmstemplate-gotchas.html
http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html

296 Fuse Mediation Router Component Reference Version 2.6

http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
http://activemq.apache.org/jmstemplate-gotchas.html
http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
http://activemq.apache.org/jmstemplate-gotchas.html
http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html

acknowledgementModeName

acknowledgementMode

alwaysCopyMessage

autoStartup

cachelLevelName

cacheLevel

clientId

consumerType

concurrentConsumers

connectionFactory

deliveryMode
deliveryPersistent
destination
destinationName

destinationResolver

AUTO_ACKNOWLEDGE The JMS acknowledgement name, which is one of: TRANSAC

-1

false

true
CACHE_CONSUMER

-1
null

Default

null

true
null
null
null

AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE

The JMS acknowledgement mode defined as an Integer. Allo
the acknowledgment mode. For the regular modes, it is prefer
instead.

If true, Fuse Mediation Router will always make a JMS mess
to the producer for sending. Copying the message is needed
replyToDestinationSelectorName is set (incidentally, Fuse
alwaysCopyMessage option to true, if a replyToDestinati

Specifies whether the consumer container should auto-startt

Sets the cache level by name for the underlying JMS resourc
CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and CACH
and see the warning above.

Sets the cache level by ID for the underlying JMS resources.

Sets the JMS client ID to use. Note that this value, if specifie
a single JMS connection instance. It is typically only requirec
prefer to use Virtual Topics13 instead.

The consumer type to use, which can be one of: Simple, Defa
type determines which Spring JMS listener to use. Default \
org.springframework.jms.listener.DefaultMessageLi:
org.springframework.jms.listener.SimpleMessagelis!
will use

org.springframework.jms.listener.serversession.Setl
If the option, useVersion102=true, Fuse Mediation Router w
ServerSessionPool is @deprecated and will be removed ir

Specifies the default number of concurrent consumers.

The default IMS connection factory to use for the listenerc
templateConnectionFactory, if neither is specified.

Specifies the delivery mode when sending, where 1 = non-pe
Specifies whether persistent delivery is used by default.

Fuse Mediation Router 2.0: Specifies the JMS Destination
Fuse Mediation Router 2.0: Specifies the JMS destination r

A pluggable org.springframework.jms.support.destina
you to use your own resolver (for example, to lookup the rea

12 http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://activemg.apache.org/virtual-destinations.html

Fuse Mediation Router Component Reference Version 2.6

297

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://activemq.apache.org/virtual-destinations.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://activemq.apache.org/virtual-destinations.html

Chapter 45. IMS

disableReplyTo

durableSubscriptionName

eagerLoadingOfProperties

exceptionListener

explicitQosEnabled

exposeListenerSession

idleTaskExecutionLimit

jmsMessageType

jmsKeyFormatStrategy

jmsOperations

lazyCreateTransactionManager

listenerConnectionFactory

mapJmsMessage

maxConcurrentConsumers

298

false

null

false

null

false

true

null

default

null

true

null

true

If true, ignore the JMSReplyTo header and so treat messages &
reply back.

The durable subscriber name for specifying durable topic subsc
configured as well.

Enables eager loading of JMS properties as soon as a message |
because the JMS properties might not be required. But this featu
with the underlying JMS provider and the use of JMS properties.
purposes, to ensure JMS properties can be understood and har

Specifies the JIMS Exception Listener that is to be notified of any

Set if the deliveryMode, priority or timeToLive qualities of s
messages. This option is based on Spring's JmsTemplate. The de
options are applied to the current endpoint. This contrasts with t
operates at message granularity, reading QoS properties exclus
message headers.

Specifies whether the listener session should be exposed when

Specifies the limit for idle executions of a receive task, not havir
execution. If this limit is reached, the task will shut down and lea
the case of dynamic scheduling; see the maxConcurrentConsun

Fuse Mediation Router 2.0: Allows you to force the use of a spec
for sending JMS messages. Possible values are: Bytes, Map, Ot
Mediation Router would determine which JMS message type to
allows you to specify it.

Fuse Mediation Router 2.0: Pluggable strategy for encoding ai
compliant with the JMS specification. Fuse Mediation Router pr
box: default and passthrough. The default strategy will safe
The passthrough strategy leaves the key as is. Can be used for
JMS header keys contain illegal characters. You can provide yo
org.apache.camel.component.jms.JmsKeyFormatStrategy &

Allows you to use your own implementation of the org.springf
interface. Fuse Mediation Router uses JmsTemplate as default.
used much as stated in the spring API docs.

Fuse Mediation Router 2.0: If true, Fuse Mediation Router wil
there is no transactionManager injected when option transac

The JMS connection factory used for consuming messages.

Fuse Mediation Router 1.6.2/2.0: Specifies whether Fuse Media
JMS message to an appropiate payload type, such as javax. jn
section about how mapping works below for more details.

Specifies the maximum number of concurrent consumers.

Fuse Mediation Router Component Reference Version 2.6

maxMessagesPerTask

messageConverter

messageIdEnabled

messageTimestampEnabled
password

priority

pubSubNoLocal
receiveTimeout

recoveryInterval

preserveMessageQos

replyTo

replyToDestinationSelectorName

replyToDeliveryPersistent

requestTimeout

selector

subscriptionDurable
taskExecutor

taskExecutorSpring2

templateConnectionFactory

-1
null

true

true

null

false
None
5000

false

null

null

true

20000

null

false
null
null

null

Fuse Mediation Router Component Reference Version 2.6

The number of messages per task. -1 is unlimited.

Fuse Mediation Router 1.6.2/2.0: To use a custom Spring
org.springframework.jms.support.converter.Message(
how to map to/from a javax.jms.Message.

When sending, specifies whether message IDs should be ad
the UUID generator registered with the CamelContext—for c
Programming EIP Components.

Specifies whether timestamps should be enabled by default
The password for the connector factory.

Values greater than 1 specify the message priority when sen
the highest). The explicitQosEnabled option must also be
effect.

Specifies whether to inhibit the delivery of messages publish
The timeout for receiving messages (in milliseconds).

Specifies the interval between recovery attempts, in millisecc
seconds.

Camel 2.0: Set to true, if you want to send message using t
instead of the QoS settings on the JMS endpoint. The following
JMSDeliveryMode, and JMSExpiration. You can provide all
will fall back to use the values from the endpoint instead. So, v
the values from the endpoint. The explicitQosEnabled opti
the endpoint, and not values from the message header.

Provides an explicit ReployTo destination, which overrides ai
Message.getJIMSReplyTo()

Sets the JMS Selector using the fixed name to be used so y«
others when using a shared queue (that is, if you are not usi

Specifies whether to use persistent delivery by default for rej

The timeout for waiting for a reply when using the InOut Exct
is 20 seconds.

Sets the JMS Selector, which is an SQL 92 predicate that is
You may have to encode special characters such as = as %:

@deprecated: Enabled by default, if you specify a durables
Allows you to specify a custom task executor for consuming

To use when using Spring 2.x with Camel. Allows you to spe
messages.

The JMS connection factory used for sending messages.

299

https://access.redhat.com/site/documentation/en-US/Fuse_Mediation_Router/2.6/pdf/Programming_EIP_Components/Fuse_Mediation_Router-2.6-Programming_EIP_Components-en-US.pdf#MsgFormats-UuidGen

Chapter 45. IMS

timeToLive
transacted
transactedInOut
transactionManager
transactionName

transactionTimeout

transferException

transferExchange

username

useMessageIDAsCorrelationID

useVersionl02

null

false

false

null

null

null

false

false

null
false

false

When sending messages, specifies the time-to-live of the mess:
explicitQosEnabled option must also be enabled in order for

Specifies whether to use transacted mode for sending/receiving
Pattern. See the section Enabling Transacted Consumption for |

@deprecated: Specifies whether to use transacted mode for senc
Pattern®*. Applies only to producer endpoints. See section Enak
details.

The Spring transaction manager to use.
The name of the transaction to use.
The timeout value of the transaction, if using transacted mode.

Camel 2.0: If enabled and you are using Request Reply messa
the consumer side, then the caused Exception will be send bac
javax.jms.0ObjectMessage. If the client is Camel, the returned
to use Camel JMS on page 293 as a bridge in your routing - for ex:
robust routing. Notice that if you also have transferExchange e
The caught exception is required to be serializable. The original
be wrapped in an outer exception such as org.apache.camel.F
to the producer.

Fuse Mediation Router 2.0: You can transfer the exchange ove
headers. The following fields are transferred: In body, Out body,
Fault headers, exchange properties, exchange exception. This r
Fuse Mediation Router will exclude any non-serializable objects

The username for the connector factory.
Specifies whether JMSMessageID should always be used as JMS
@deprecated (removed from Camel 2.5 onwards): Specifies v

Message Mapping between JMS and Fuse Mediation Router

Fuse Mediation Router automatically maps messages between javax.jms.Message and

org.apache.camel.Message.

When sending a JMS message, Fuse Mediation Router converts the message body to the following JMS

message types:

Body Type JMS Message

String javax.jms.TextMessage

14 Exchange Pattern

300

Comment

Fuse Mediation Router Component Reference Version 2.6

Exchange Pattern
Exchange Pattern
Exchange Pattern
Exchange Pattern
Exchange
Exchange Pattern

org.w3c.dom.Node javax.jms.TextMessage The DOM will be converted to String
Map javax.jms.MapMessage

java.io.Serializable javax.jms.ObjectMessage

byte[] javax.jms.BytesMessage
java.io.File javax.jms.BytesMessage
java.io.Reader javax.jms.BytesMessage

java.io.InputStream javax.jms.BytesMessage

java.nio.ByteBuffer javax.jms.BytesMessage

When receiving a JMS message, Fuse Mediation Router converts the JMS message to the following body
type:

JMS Message Body Type
javax.jms.TextMessage String
javax.jms.BytesMessage byte[]

javax.jms.MapMessage Map<String, Object>

javax.jms.0ObjectMessage Object

Disabling auto-mapping of JIMS messages
Available as of Fuse Mediation Router 1.6.2/2.0

You can use the mapJmsMessage option to disable the auto-mapping above. If disabled, Fuse Mediation Router
will not try to map the received JMS message, but instead uses it directly as the payload. This allows you to
avoid the overhead of mapping and let Fuse Mediation Router just pass through the JMS message. For
instance, it even allows you to route javax. jms.0bjectMessage JMS messages with classes you do not have
on the classpath.

Using a custom MessageConverter
Available as of Fuse Mediation Router 1.6.2/2.0

You can use the messageConverter option to do the mapping yourself in a Spring
org.springframework.jms.support.converter.MessageConverter class.

For example, in the route below we use a custom message converter when sending a message to the IMS
order queue:

from("file://inbox/order").to("jms:queue:order?messageConverter=#myMessageConverter");

Fuse Mediation Router Component Reference Version 2.6 301

Chapter 45. IMS

You can also use a custom message converter when consuming from a JMS destination.

Controlling the mapping strategy selected
Available as of Fuse Mediation Router 2.0

You can use the jmsMessageType option on the endpoint URL to force a specific message type for all
messages. In the route below, we poll files from a folder and send them as javax.jms.TextMessage as we
have forced the JMS producer endpoint to use text messages:

from("file://inbox/order").to("jms:queue:order?jmsMessageType=Text");

You can also specify the message type to use for each messabe by setting the header with the key
CamelJmsMessageType. For example:

from("file://inbox/order").setHeader ("CamelJmsMessageType", JmsMessage
Type.Text).to("jms:queue:order");

The possible values are defined in the enum class, org.apache.camel. jms.JmsMessageType.
Message format when sending

The exchange that is sent over the JIMS wire must conform to the IMS Message specls.
For the exchange. in.header the following rules apply for the header keys:

» Keys starting with JMS or JMSX are reserved.

» exchange.in.headers keys must be literals and all be valid Java identifiers (do not use dots in the key
name).

» From Fuse Mediation Router 1.4 until Fuse Mediation Router 1.6.x, Fuse Mediation Router automatically
replaces all dots with underscores in key names. This replacement is reversed when Fuse Mediation Router
consumes JMS messages.

» From Fuse Mediation Router 2.0 onwards, Fuse Mediation Router replaces dots & hyphens and the reverse
when when consuming JMS messages:. is replaced by _DOT_ and the reverse replacement when Fuse
Mediation Router consumes the message. - is replaced by _HYPHEN_ and the reverse replacement when
Fuse Mediation Router consumes the message.

» See also the option jmsKeyFormatStrategy introduced in Fuse Mediation Router 2.0, which allows you
to use your own custom strategy for formatting keys.

For the exchange. in.header, the following rules apply for the header values:

5 http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

302 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

» The values must be primitives or their counter objects (such as Integer, Long, Character). The types,
String, CharSequence, Date, BigDecimal and BigInteger are all converted to their toString()
representation. All other types are dropped.

Fuse Mediation Router will log with category org.apache.camel.component.jms.JmsBinding at DEBUG
level if it drops a given header value. For example:

2008-07-09 06:43:04,046 [main] DEBUG JmsBinding
- Ignoring non primitive header: order of class: org.apache.camel.component.jms.issues.Dummy
Order with value: DummyOrder{orderId=333, itemId=4444, quantity=2}

Message format when receiving

Fuse Mediation Router adds the following properties to the Exchange when it receives a message:

Property Type Description

org.apache.camel.jms.replyDestination javax.jms.Destination The reply destination.

Fuse Mediation Router adds the following JMS properties to the In message headers when it receives a IMS
message:

Header Type Description

JMSCorrelationID String The JMS correlation ID.

JMSDeliveryMode int The JMS delivery mode.

JMSDestination javax.jms.Destination The JMS destination.

JMSExpiration long The JMS expiration.

JMSMessageID String The JMS unique message ID.

JMSPriority int The JMS priority (with 0 as the lowest priority and 9 as the
highest).

JMSRedelivered boolean Is the IMS message redelivered.

JMSReplyTo javax.jms.Destination The JMS reply-to destination.

JMSTimestamp long The JMS timestamp.

JMSType String The JMS type.

JMSXGroupID String The JMS group ID.

As all the above information is standard JMS you can check the JMS documentation™® for further details.

16 http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Fuse Mediation Router Component Reference Version 2.6 303

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html
http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Chapter 45. IMS

About using Fuse Mediation Router to send and receive messages and
JMSReplyTo

The JMS component is complex and you have to pay close attention to how it works in some cases. So this
is a short summary of some of the areas/pitfalls to look for.

When Fuse Mediation Router sends a message using its JMSProducer, it checks the following conditions:
» The message exchange pattern,
» Whether a JMSReplyTo was set in the endpoint or in the message headers,

* Whether any of the following options have been set on the JMS endpoint: disableReplyTo,
preserveMessageQos, explicitQosEnabled.

All this can be a tad complex to understand and configure to support your use case.

JmsProducer

The JmsProducer behaves as follows, depending on configuration:

Exchange Other options Description

Pattern
InOut Fuse Mediation Router will expect a reply, set a temporary JMSReplyTo, and
after sending the message, it will start to listen for the reply message on the
temporary queue.
InOut JMSReplyTo is Fuse Mediation Router will expect a reply and, after sending the message, it
set will start to listen for the reply message on the specified JMSReplyTo queue.
InOnly Fuse Mediation Router will send the message and not expect a reply.
InOnly JMSReplyTois By default, Fuse Mediation Router suppresses the JMSReplyTo destination and
set clears the JMSReplyTo header before sending the message. Fuse Mediation

Router then sends the message and does not expect a reply. Fuse Mediation
Router logs this in the log at DEBUG level and you should see: DEBUG
JmsProducer - Disabling JMSReplyTo as this Exchange is not OUT
capable with JMSReplyTo: myReplyQueue to destination: myQueue.

If you want to leave the JMSReplyTo header in the outgoing message, you must
set either preserveMessageQos=true or explicitQosEnabled=true. From
Fuse Mediation Router 2.6 onwards, you can also populate the JMSReplyTo
header by setting the replyTo option in the URI. For example, if you send a
message to the

304 Fuse Mediation Router Component Reference Version 2.6

jms:queue:Foo?replyTo=FooReply&preserveMessageQos=true URI, the
JMSReplyTo header is included, even if the exchange is InOnly.

JmsConsumer

The JmsConsumer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut Fuse Mediation Router will send the reply back to the
JMSReplyTo queue.

InOnly Fuse Mediation Router will not send a reply back, as the pattern
is InOnly.

disableReplyTo=true This option suppresses replies.

So pay attention to the message exchange pattern set on your exchanges.

If you send a message to a JMS destination in the middle of your route you can specify the exchange pattern
to use, see more at Request Reply. This is useful if you want to send an Inonly message to a JMS topic:

from("activemq:queue:in")
.to("bean:validateOrder")
.to(ExchangePattern.InOnly, "activemq:topic:order")
.to("bean:handleOrder");

Reuse endpoint and send to different destinations computed at runtime

Available as of Fuse Mediation Router 1.6.2/2.0 If you need to send messages to a lot of different IMS
destinations, it makes sense to reuse a JMS endpoint and specify the real destination in a message header.
This allows Fuse Mediation Router to reuse the same endpoint, but send to different destinations. This greatly
reduces the number of endpoints created and economizes on memory and thread resources.

You can specify the destination in the following headers:

Header Type Description

CamelJmsDestination javax.jms.Destination Fuse Mediation Router 2.0: A destination object.

CamelJmsDestinationName String Fuse Mediation Router 1.6.2/2.0: The destination
name.

For example, the following route shows how you can compute a destination at run time and use it to override
the destination appearing in the JMS URL:

Fuse Mediation Router Component Reference Version 2.6 305

Chapter 45. IMS

from("file://inbox")
.to("bean:computeDestination")
.to("activemq:queue:dummy");

The queue name, dummy, is just a placeholder. It must be provided as part of the IMS endpoint URL, but it will
be ignored in this example.

In the computeDestination bean, specify the real destination by setting the CamelJmsDestinationName
header as follows:

public void setJmsHeader (Exchange exchange) {
String id =
exchange.getIn().setHeader ("CamelJmsDestinationName", "order:" + id");

3

Then Fuse Mediation Router will read this header and use it as the destination instead of the one configured
on the endpoint. So, in this example Fuse Mediation Router sends the message to activemq:queue:order:2,
assuming the id value was 2.

If both the CamelJmsDestination and the CamelImsDestinationName headers are set, CamelJmsDestination
takes priority.

Configuring different JMS providers

You can configure your JMS provider in Spring XML as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
</camelContext>

<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">
<bean class="org.apache.activemqg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost?broker.persistent=false"/>
</bean>
</property>
</bean>

Basically, you can configure as many JMS component instances as you wish and give them a unique name
using the id attribute. The preceding example configures an activemg component. You could do the same
to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints within that component using URIs.
For example for the component name, activemq, you can then refer to destinations using the URI format,
activemq: [queue: |topic:]destinationName. You can use the same approach for all other IMS providers.

This works by the SpringCamelContext lazily fetching components from the spring context for the scheme
name you use for Endpoint URIs and having the Component resolve the endpoint URIs.

306 Fuse Mediation Router Component Reference Version 2.6

Spring
Endpoint
URIs
Component

Using JNDI to find the ConnectionFactory

If you are using a J2EE container, you might need to look up JNDI to find the JMS ConnectionFactory rather
than use the usual <bean> mechanism in Spring. You can do this using Spring's factory bean or the new Spring
XML namespace. For example:

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="myConnectionFactory"/>

</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="jms/connectionFactory"/>

See The jee schema®’ in the Spring reference documentation for more details about JNDI lookup.

Using JNDI to lookup the physical queues

You need to use the destinationResolver option to use the Spring JNDI resolver that can lookup in the
JNDI, or use your own custom implementation.

See this nabble post for more details:
http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html 18

Using WebSphere MQ

See this link at nabble™® for details of how a Fuse Mediation Router user configured JMS on page 293 to connect
to remote WebSphere MQ brokers.

Concurrent Consuming

A common requirement with JMS is to consume messages concurrently in multiple threads in order to make
an application more responsive. You can set the concurrentConsumers option to specify the number of threads
servicing the JMS endpoint, as follows:

from("jms:SomeQueue?concurrentConsumers=20").
bean(MyClass.class);

You can configure this option in one of the following ways:
e On the JmsComponent,

* On the endpoint URI or,

=t http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apcs02.html#xsd-config-body-schemas-jee
8 http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html
19 http://www.nabble.com/Camel-and-IBM-MQ-Series-td24524277.html

Fuse Mediation Router Component Reference Version 2.6 307

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apcs02.html#xsd-config-body-schemas-jee
http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html
http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html
http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html
http://www.nabble.com/Camel-and-IBM-MQ-Series-td24524277.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apcs02.html#xsd-config-body-schemas-jee
http://www.nabble.com/JMS-queue---JNDI-instead-of-physical-name-td24484994.html
http://www.nabble.com/Camel-and-IBM-MQ-Series-td24524277.html

Chapter 45. IMS

» By invoking setConcurrentConsumers() directly on the JmsEndpoint.

Enabling Transacted Consumption

A common requirement is to consume from a queue in a transaction and then process the message using the
Fuse Mediation Router route. To do this, just ensure that you set the following properties on the
component/endpoint:

* transacted = true
e transactionManager = a Transsaction Manager - typically the JmsTransactionManager

See also the Transactional Client EIP pattern for further details.

Using JMSReplyTo for late replies
Avaiable as of Fuse Mediation Router 2.0

When using Fuse Mediation Router as a JMS listener, it sets an Exchange property with the value of the
ReplyTo javax.jms.Destination object, having the key ReplyTo. You can obtain this Destination as
follows:

Destination replyDestination = exchange.getIn().getHeader (JmsConstants.JMS_REPLY_DESTINATION,
Destination.class);

And then later use it to send a reply using regular JMS or Fuse Mediation Router.

// we need to pass in the JMS component, and in this sample we use ActiveMQ

JmsEndpoint endpoint = JmsEndpoint.newInstance(replyDestination, activeMQComponent);

// now we have the endpoint we can use regular Fuse Mediation Router API to send a
message to it

template.sendBody(endpoint, "Here is the late reply.");

A different solution to sending a reply is to provide the replyDestination object in the same Exchange
property when sending. Fuse Mediation Router will then pick up this property and use it for the real destination.
The endpoint URI must include a dummy destination, however. For example:

// we pretend to send it to some non existing dummy queue
template.send("activemq:queue:dummy, new Processor() {
public void process(Exchange exchange) throws Exception {
// and here we override the destination with the ReplyTo destination object so
the message is sent to there instead of dummy
exchange.getIn().setHeader (JmsConstants.JMS_DESTINATION, replyDestination);
exchange.getIn().setBody("Here is the late reply.");

308 Fuse Mediation Router Component Reference Version 2.6

Using a request timeout

In the sample below we send a Request Reply style message Exchange (we use the requestBody method =
Inout) to the slow queue for further processing in Camel and we wait for a return reply:

// send a in-out with a timeout for 5 sec
Object out = template.requestBody("activemq:queue:slow?requestTimeout=5000", "Hello World");

Samples

JMS is used in many examples for other components as well. But we provide a few samples below to get
started.

Receiving from JMS

In the following sample we configure a route that receives JMS messages and routes the message to a POJO:

from("jms:queue:foo").
to("bean:myBusinessLogic");

You can of course use any of the EIP patterns so the route can be context based. For example, here's how to
filter an order topic for the big spenders:

from("jms:topic:0rdersTopic").

filter().method("myBean", "isGoldCustomer").
to("jms:queue:BigSpendersQueue");

Sending to a JMS

In the sample below we poll a file folder and send the file content to a JMS topic. As we want the content of
the file as a TextMessage instead of a BytesMessage, we need to convert the body to a String:

from("file://orders").
convertBodyTo(String.class).
to("jms:topic:0rdersTopic");

Using Annotations

Fuse Mediation Router also has annotations so you can use POJO Consuming21 and POJO Producing.

2 poJo Consuming

Fuse Mediation Router Component Reference Version 2.6 309

Exchange
POJO Consuming
POJO Producing
POJO Consuming

Chapter 45. IMS

Spring DSL sample

The preceding examples use the Java DSL. Fuse Mediation Router also supports Spring XML DSL. Here is
the big spender sample using Spring DSL:

<route>
<from uri="jms:topic:0rdersTopic"/>
<filter>
<method bean="myBean" method="isGoldCustomer"/>
<to uri="jms:queue:BigSpendersQueue"/>
</filter>
</route>

Other samples

JMS appears in many of the examples for other components and EIP patterns, as well in this Fuse Mediation
Router documentation. So feel free to browse the documentation. If you have time, check out the this tutorial
that uses JMS but focuses on how well Spring Remoting and Fuse Mediation Router works together
Tutorial-JmsRemoting.

Using JMS as a Dead Letter Queue storing Exchange

Available as of Camel 2.0 Normally, when using JMS on page 293 as the transport, it only transfers the body
and headers as the payload. If you want to use JMS on page 293 with a Dead Letter Channel, using a IMS
gueue as the Dead Letter Queue, then normally the caused Exception is not stored in the JIMS message. You
can, however, use the transferExchange option on the JMS dead letter queue to instruct Camel to store the
entire Exchange in the queue as a javax.jms.0bjectMessage that holds a
org.apache.camel.impl.DefaultExchangeHolder. This allows you to consume from the Dead Letter Queue
and retrieve the caused exception from the Exchange property with the key Exchange . EXCEPTION_CAUGHT.
The demo below illustrates this:

// setup error handler to use JMS as queue and store the entire Exchange
errorHandler (deadLetterChannel("jms:queue:dead?transferExchange=true"));

Then you can consume from the JMS queue and analyze the problem:

from("jms:queue:dead").to("bean:myErrorAnalyzer");

// and in our bean

String body = exchange.getIn().getBody();

Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class);
// the cause message is

String problem = cause.getMessage();

310 Fuse Mediation Router Component Reference Version 2.6

Tutorial-JmsRemoting
Exchange

Using JMS as a Dead Letter Channel storing error only

You can use JMS to store the cause error message or to store a custom body, which you can initialize yourself.
The following example uses the Message Translator EIP to do a transformation on the failed exchange before
it is moved to the JMS on page 293 dead letter queue:

// we sent it to a seda dead queue first
errorHandler (deadLetterChannel("seda:dead"));

// and on the seda dead queue we can do the custom transformation before its sent to the
JMS queue
from("seda:dead").transform(exceptionMessage()).to("jms:queue:dead");

Here we only store the original cause error message in the transform. You can, however, use any Expression
to send whatever you like. For example, you can invoke a method on a Bean or use a custom processor.

» Transactional Client
» Bean Integration
 Tutorial-JmsRemoting

» JMSTemplate gotchas22

Sending an InOnly message and keeping the JMSReplyTo header

When sending to a JMS on page 293 destination using camel-jms the producer will use the MEP to detect if
its InOnly or InOut messaging. However there can be times where you want to send an InOnly message but
keeping the IMSReplyTo header. To do so you have to instruct Camel to keep it, otherwise the IMSReplyTo
header will be dropped.

For example to send an InOnly message to the foo queue, but with a IMSReplyTo with bar queue you can do
as follows:

template.send("activemq:queue:foo?preserveMessageQos=true", new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getIn().setBody("World");

exchange.getIn().setHeader ("JMSReplyTo", "bar");

}

1)

= http://activemg.apache.org/jmstemplate-gotchas.html

Fuse Mediation Router Component Reference Version 2.6 311

Expression
Bean Integration
Tutorial-JmsRemoting
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html

Chapter 45. IMS

Notice we use preserveMessageQos=true to instruct Camel to keep the IMSReplyTo header.

312 Fuse Mediation Router Component Reference Version 2.6

Chapter 46. JIMX

JMX Component

The JMX component enables consumers to subscribe to an MBean's notifications. The component supports
passing the Notification object directly through the exchange or serializing it to XML according to the schema

provided within this project. This is a consumer-only component. Exceptions are thrown if you attempt to create
a producer for it.

URI Format

The component can connect to the local platform MBean server with the following URI:

jmx://platform?options

A remote MBean server URL can be specified after the jmx: scheme prefix, as follows:

jmx:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi?options
You can append query options to the URI in the following format, 2option=value&option=value&. . ..

URI Options

Property Required Default Description

format xml Format for the message body. Either xml or raw. If xml1, the
notification is serialized to XML. If raw, the raw java object is set
as the body.

password Credentials for making a remote connection.

objectDomain Yes The domain of the MBean you are connecting to.

objectName The name key for the MBean you are connecting to. Either this

property of a list of keys must be provided (but not both). For more
details, see "ObjectName Construction” on page 314.

notificationFilter Reference to a bean that implements the NotificationFilter
interface. The #beanID syntax should be used to reference the bean
in the registry.

handback Value to hand back to the listener when a notification is received.
This value will be put into the jmx.handback message header.

Fuse Mediation Router Component Reference Version 2.6 313

Chapter 46. IMX

ObjectName Construction

The URI must always have the objectbDomain property. In addition, the URI must contain either objectName
or one or more properties that start with key.

Domain with Name property

When the objectName property is provided, the following constructor is used to build the objectName instance
for the MBean:

ObjectName(String domain, String key, String value)

The key value in the preceding constructor must be name and the value is the value of the objectName property.
Domain with Hashtable

ObjectName(String domain, Hashtable<String,String> table)

The Hashtable is constructed by extracting properties that start with key. The properties will have the key

prefix stripped prior to building the Hashtable. This allows the URI to contain a variable number of properties
to identify the MBean.

Example

from("jmx:platform?objectDomain=jmxExample&key.name=simpleBean").
to("log:jmxEvent");

Full example

A complete example using the IMX component is available under the examples/camel -example - jmx directory.

314 Fuse Mediation Router Component Reference Version 2.6

Chapter 47. JPA

JPA Component

The jpa component enables you to store and retrieve Java objects from persistent storage using EJB 3's Java
Persistence Architecture (JPA), which is a standard interface layer that wraps Object/Relational Mapping
(ORM) products such as OpenJPA, Hibernate, TopLink, and so on.

Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the In
message is assumed to be an entity bean (that is, a POJO with an @Entity1 annotation on it) or a collection
or an array of entity beans.

If the body does not contain one of the preceding types, put a Message TranslatorMessage Translator in front
of the endpoint to perform the necessary conversion first.

Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database.
This allows you to use a database table as a logical queue: consumers take messages from the queue and
then delete/update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed, you can specify consumeDelete=false
on the URI. This will result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to exclude it from a
future query) then you can annotate a method with @Consumed? which will be invoked on your entity bean
when the entity bean is consumed.

URI format
jpa:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type Converter to ensure
the body is of the correct type.

For consuming, the entityClassName is mandatory.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

! http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
2 http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html

Fuse Mediation Router Component Reference Version 2.6 315

http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
Type Converter
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html

Chapter 47. JPA

Options

Name Default Value Description

entityType entityClassName Overrides the entityClassName from the URI.

persistenceUnit camel The JPA persistence unit used by default.

consumeDelete true JPA consumer only: If true, the entity is deleted after it is
consumed; if false, the entity is not deleted.

consumeLockEntity true JPA consumer only: Specifies whether or not to set an
exclusive lock on each entity bean while processing the results
from polling.

flushonSend true JPA producer only: Flushes the EntityManager3 after the
entity bean has been persisted.

maximumResults -1 JPA consumer only: Set the maximum number of results to
retrieve on the Query4.

transactionManager null Fuse Mediation Router 1.6.1/2.0: Specifies the transaction
manager to use. If none provided, Fuse Mediation Router will
use a JpaTransactionManager by default. Can be used to set
a JTA transaction manager (for integration with an EJB
container).

consumer .delay 500 JPA consumer only: Delay in milliseconds between each poll.

consumer.initialDelay 1000

consumer .useFixedDelay false

maxMessagesPerPoll 0]

consumer.query

consumer .namedQuery

JPA consumer only: Milliseconds before polling starts.

JPA consumer only: Set to true to use fixed delay between
polls, otherwise fixed rate is used. See
ScheduledExecutorService® in JDK for detalils.

Fuse Mediation Router 2.0:JPA consumer only: An integer
value to define the maximum number of messages to gather
per poll. By default, no maximum is set. Can be used to avoid
polling many thousands of messages when starting up the
server. Set a value of 0 or negative to disable.

JPA consumer only: To use a custom query when consuming
data.

JPA consumer only: To use a named query when consuming
data.

8 http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

316

Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

consumer .nativeQuery JPA consumer only: To use a custom native query when
consuming data.

usePersist false Camel 2.5: JPA producer only: Indicates to use
entityManager.persist(entity) instead of
entityManager.merge(entity). Note:
entityManager.persist(entity) doesn't work for detached
entities (where the EntityManager has to execute an UPDATE
instead of an INSERT query)!

Message Headers

Fuse Mediation Router adds the following message headers to the exchange:

Header Type Description

CamelJpaTemplate JpaTemplate Fuse Mediation Router 2.0: The JpaTemplate object that is used to
access the entity bean. You need this object in some situations, for
instance in a type converter or when you are doing some custom
processing.

Configuring EntityManagerFactory

You are strongly advised to configure the JPA component to use a specific EntityManagerFactory instance.
If you do not do so, each JpaEndpoint will auto-create its own EntityManagerFactory instance.For example,
you can instantiate a JPA component that references the myEMFactory entity manager factory, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>
</bean>

In Camel 2.3 the JpaComponent will auto lookup the EntityManagerFactory from the Registry which means
you do not need to configure this on the JpaComponent as shown above. You only need to do so if there is
ambiguity, in which case Camel will log a WARN.

Configuring TransactionManager

You are strongly advised to specify the TransactionManager instance used by the JPA component. If you do
not do so, each JpaEndpoint will auto-create its own instance of TransactionManager. For example, you
can instantiate a JPA component that references the myTransactionManager transaction manager, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>

Fuse Mediation Router Component Reference Version 2.6 317

Registry

Chapter 47. JPA

<property name="transactionManager" ref="myTransactionManager"/>
</bean>

In Camel 2.3 the JpaComponent will auto lookup the TransactionManager from the Registry which means

you do not need to configure this on the JpaComponent as shown above. You only need to do so if there is
ambiguity, in which case Camel will log a WARN.

Using a consumer with a named query

For consuming only selected entities, you can use the consumer . namedQuery URI query option. First, you
have to define the named query in the JPA Entity class:

@Entity
@NamedQuery(name = "stepl", query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {

}
After that you can define a consumer uri like this one:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=stepl")
.to("bean:myBusinessLogic");

Using a consumer with a query

For consuming only selected entities, you can use the consumer . query URI query option. You only have to
define the query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=select o from
org.apache.camel.examples.MultiSteps o where o.step = 1")
.to("bean:myBusinessLogic");

Using a consumer with a native query

For consuming only selected entities, you can use the consumer .nativeQuery URI query option. You only
have to define the native query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=select * from MultiSteps
where step = 1")

318 Fuse Mediation Router Component Reference Version 2.6

Registry

.to("bean:myBusinessLogic");

If you use the native query option, you will receive an object array in the message body.
Example

See the Tracer Example for an example using JPA to store traced messages into a database.

Fuse Mediation Router Component Reference Version 2.6 319

320 Fuse Mediation Router Component Reference Version 2.6

Chapter 48. JT400

JT/400 Component

The jt400 component allows you to exchanges messages with an AS/400 system using data queues. This
components is only available in Fuse Mediation Router 1.5 and above.

URI format
jt400://user :password@system/QSYS.LIB/LIBRARY.LIB/QUEUE.DTAQ[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

URI options

Name Default value Description

ccsid default system Specifies the CCSID to use for the connection with the
CCsID AS/400 system.

format text Specifies the data format for sending messages valid

options are: text (represented by String) and binary
(represented by byte[])

consumer .delay 500 Delay in milliseconds between each poll.
consumer.initialDelay 1000 Milliseconds before polling starts.
consumer .userFixedDelay false true to use fixed delay between polls, otherwise fixed rate

is used. See ScheduledExecutorService® in JDK for detalils.

Usage

When configured as a consumer endpoint, the endpoint will poll a data queue on a remote system. For every
entry on the data queue, a new Exchange is sent with the entry's data in the In message's body, formatted
either as a String or a byte[], depending on the format. For a provider endpoint, the In message body
contents will be put on the data queue as either raw bytes or text.

! http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Fuse Mediation Router Component Reference Version 2.6 321

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Chapter 48. JT400

Example

In the snippet below, the data for an exchange sent to the direct:george endpoint will be put in the data
gueue PENNYLANE in library BEATLES on a system named LIVERPOOL. Another user connects to the same data
gueue to receive the information from the data queue and forward it to the mock: ringo endpoint.

public class Jt400RouteBuilder extends RouteBuilder {

@override
public void configure() throws Exception {
from("direct:george").to("jt400://GEORGE: EGROEG@LIVER
POOL/QSYS.LIB/BEATLES.LIB/PENNYLANE.DTAQ");
from("jt400://RINGO:OGNIR@LIVER
POOL/QSYS.LIB/BEATLES.LIB/PENNYLANE.DTAQ").to("mock:ringo");
b
3

322 Fuse Mediation Router Component Reference Version 2.6

Chapter 49. Language

Language
Available as of Camel 2.5

The language component allows you to send Exchange to an endpoint which executes a script by any of the
supported Languages in Camel. By having a component to execute language scripts, it allows more dynamic
routing capabilities. For example by using the Routing SlipRouting Slip or Dynamic RouterDynamic Router
EIPs you can send messages to language endpoints where the script is dynamic defined as well.

This component is provided out of the box in camel-core and hence no additional JARs is needed. You only
have to include additional Camel components if the language of choice mandates it, such as using Groovy or
JavaScript languages.

URI format

language://languageName[:script][?options]

URI Options

The component supports the following options.

Name Default Value Type Description

languageName null String The name of the Language1 to use, such as simple, groovy,
javascript etc. This option is mandatory.

script null String The script to execute.

transform true boolean Whether or not the result of the script should be used as the new

message body. By setting to false the script is executed but the
result of the script is discarded.

Message Headers

The following message headers can be used to affect the behavior of the component

! Languages

Fuse Mediation Router Component Reference Version 2.6 323

Exchange
Languages
Groovy
JavaScript
Languages
Languages

Chapter 49. Language

Header Description

camellLanguageScript The scriptto execute provided in the header. Takes precedence over script configured
on the endpoint.

Examples
For example you can use the Simple language to Message TranslatorMessage Translator a message:
from("direct:start").to("language:simple:Hello ${body}").to("mock:result");

In case you want to convert the message body type you can do this as well:

from("direct:start").to("language:simple:${mandatoryBodyAs(String)}").to("mock:result");

You can also use the Groovy language, such as this example where the input message will by multiplied with
2:

from("direct:start").to("language:groovy:request.body * 2").to("mock:result");

You can also provide the script as a header as shown below. Here we use XPath language to extract the text
from the <foo> tag.

Object out = producer.requestBodyAndHeader ("language:xpath", "<foo>Hello World</foo>", EX
change.LANGUAGE_SCRIPT, "/foo/text()");

assertEquals("Hello World", out);

* Languages

* Routing SlipRouting Slip

» Dynamic RouterDynamic Router

324 Fuse Mediation Router Component Reference Version 2.6

Simple
Groovy
XPath
Languages

Chapter 50. LDAP

LDAP Component

The Idap component allows you to perform searches in LDAP servers using filters as the message payload.
This component uses standard JNDI (javax.naming package) to access the server.

URI format

ldap:ldapServerBean[?options]

The IdapServerBean portion of the URI refers to a DirContext" bean in the registry. The LDAP component only
supports producer endpoints, which means that an 1dap URI cannot appear in the from at the start of a route.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

base ou=system The base DN for searches.

scope subtree Specifies how deeply to search the tree of entries, starting
at the base DN. Value can be object, onelevel, or subtree.

pageSize No paging used. When specified the LDAP module uses paging to retrieve

returnedAttributes Depends on LDAP
Server (could be all or
none) .

all results (most LDAP Servers throw an exception when
trying to retrieve more than 1000 entries in one query). To
be able to use this, an LdapContext (subclass of
DirContext) has to be passed in as 1dapServerBean
(otherwise an exception is thrown)

Comma-separated list of attributes that should be setin each
entry of the result

Result

The result is returned in the Out body as a ArrayList<javax.naming.directory.SearchResult> object.

! http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html

Fuse Mediation Router Component Reference Version 2.6 325

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html

Chapter 50. LDAP

DirContext

The URI, 1dap:ldapserver, references a Spring bean with the ID, 1dapserver. The 1dapserver bean may
be defined as follows:

<bean id="ldapserver" class="javax.naming.directory.InitialDirContext" scope="prototype'">
<constructor-arg>
<props>
<prop key="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</prop>
<prop key="java.naming.provider.url">ldap://localhost:10389</prop>
<prop key="java.naming.security.authentication'">none</prop>
</props>
</constructor-arg>
</bean>

The preceding example declares a regular Sun based LDAP DirContext that connects anonymously to a
locally hosted LDAP server.

DircContext objects are not required to support concurrency by contract. It is therefore important that the
directory context is declared with the setting, scope="prototype", in the bean definition or that the context
supports concurrency. In the Spring framework, prototype scoped objects are instantiated each time they
are looked up.

Fuse Mediation Router 1.6.1 and Fuse Mediation Router 2.0 include a fix” to support concurrency for LDAP
producers. IdapServerBean contexts are now looked up each time a request is sent to the LDAP server. In
addition, the contexts are released as soon as the producer completes.

Samples

Following on from the Spring configuration above, the code sample below sends an LDAP request to filter
search a group for a member. The Common Name is then extracted from the response.

2
https://issues.apache.org/activema/browse/CAMEL-1583?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentld=51503

326 Fuse Mediation Router Component Reference Version 2.6

https://issues.apache.org/activemq/browse/CAMEL-1583?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=51503
https://issues.apache.org/activemq/browse/CAMEL-1583?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=51503

ProducerTemplate<Exchange> template = exchange
.getContext().createProducerTemplate();

Collection<?> results = (Collection<?>) (template
.sendBody (
"ldap:ldapserver?base=ou=mygroup, ou=groups, ou=system",
"(member=uid=huntc, ou=users, ou=system)"));

if (results.size() > 0) {
// Extract what we need from the device's profile

Iterator<?> resultIter = results.iterator();

SearchResult searchResult = (SearchResult) resultIter
.next();

Attributes attributes = searchResult
.getAttributes();

Attribute deviceCNAttr = attributes.get("cn");

String deviceCN = (String) deviceCNAttr.get();

If no specific filter is required - for example, you just need to look up a single entry - specify a wildcard filter
expression. For example, if the LDAP entry has a Common Name, use a filter expression like:

(cn=*)

Binding using credentials

A Camel end user donated this sample code he used to bind to the Idap server using credentials.

Properties props = new Properties();

props.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
props.setProperty(Context.PROVIDER _URL, "ldap://localhost:389");
props.setProperty(Context.URL_PKG_PREFIXES, "com.sun.jndi.url");
props.setProperty(Context.REFERRAL, "ignore");
props.setProperty(Context.SECURITY_AUTHENTICATION, "simple");
props.setProperty(Context.SECURITY_PRINCIPAL, "cnh=Manager");
props.setProperty(Context.SECURITY_CREDENTIALS, "secret");

SimpleRegistry reg = new SimpleRegistry();
reg.put("myldap", new InitialldapContext(props, null));

CamelContext context = new DefaultCamelContext(reg);
context.addRoutes (
new RouteBuilder() {
public void configure() throws Exception {
from("direct:start").to("ldap:myldap?base=ou=test");

3

Fuse Mediation Router Component Reference Version 2.6 327

Chapter 50. LDAP

}
)i

context.start();

ProducerTemplate template = context.createProducerTemplate();

Endpoint endpoint = context.getEndpoint("direct:start");

Exchange exchange = endpoint.createExchange();
exchange.getIn().setBody(" (uid=test)");

Exchange out = template.send(endpoint, exchange);
Collection<SearchResult> data = out.getOut().getBody(Collection.class);
assert data != null;

assert !data.isEmpty();

System.out.println(out.getOut().getBody());

context.stop();

328 Fuse Mediation Router Component Reference Version 2.6

Chapter 51. List

List Component
deprecated: is renamed to the Browse on page 51 component in Fuse Mediation Router 2.0

The List component provides a simple BrowsableEndpoint which can be useful for testing, visualisation tools
or debugging. The exchanges sent to the endpoint are all available to be browsed.

URI format
list:someName

Where someName can be any string to uniquely identify the endpoint.

Sample
In the route below we have the list component to be able to browse the Exchanges that is passed through:
from("activemqg:order.in").to("list:orderReceived").to("bean:processOrder");
Then we will be able to inspect the received exchanges from java code:
private CamelContext context;
public void inspectRecievedOrders() {
BrowsableEndpoint browse = context.getEndpoint("list:orderReceived", BrowsableEnd
point.class);
List<Exchange> exchanges = browse.getExchanges();
// then we can inspect the list of received exchanges from Java
for (Exchange exchange : exchanges) {
String payload = exchange.getIn().getBody();
}

See also:

* Browse on page 51

Fuse Mediation Router Component Reference Version 2.6 329

BrowsableEndpoint

330 Fuse Mediation Router Component Reference Version 2.6

Chapter 52. Log

Log Component
The log: component logs message exchanges to the underlying logging mechanism.

URI format
log:loggingCategory[?options]

Where loggingCategory is the name of the logging category to use. You can append query options to the
URI in the following format, ?option=value&option=value&. ..

For example, a log endpoint typically specifies the logging level using the 1evel option, as follows:

log:org.apache.camel.example?level=DEBUG

The default logger logs every exchange (regular logging). But Fuse Mediation Router also ships with the
Throughput logger, which is used whenever the groupSize option is specified.

? Also alogin the DSL

In Camel 2.2 onwards there is a 1og directly in the DSL, but it has a different purpose. Its meant for lightweight
and human logs. See more details at LogEIP.

Options

Option Default Type Description

level INFO String Logging level to use. Possible values: FATAL, ERROR, WARN, INFO,
DEBUG, TRACE, OFF

groupSize null Integer An integer that specifies a group size for throughput logging.

groupInterval null Integer Camel 2.6: If specified will group message stats by this time interval
(in millis)

groupDelay 0 Integer Camel 2.6: Set the initial delay for stats (in millis)

groupActiveOnly true boolean Camel 2.6: If true, will hide stats when no new messages have been
received for a time interval, if false, show stats regardless of message
traffic

Fuse Mediation Router Component Reference Version 2.6 331

Chapter 52. Log

groupDelay and groupActiveOnly are only applicable when using groupInterval.

Formatting

The log formats the execution of exchanges to log lines. By default, the log uses LogFormatter to format the
log output, where LogFormatter has the following options:

Option Default Description

showAll false Quick option for turning all options on (multiline, maxChars has to be
manually set if to be used).

showExchangelId false Show the unique exchange ID.

showExchangePattern true Camel 2.3: Shows the Message Exchange Pattern (or MEP for short).

showProperties false Show the exchange properties.

showHeaders false Show the In message headers.

showBodyType true Show the In body Java type.

showBody true Show the In body.

showOut false If the exchange has an Out message, show the Out message.

showException false Fuse Mediation Router 2.0: If the exchange has an exception, show the

exception message (no stack trace).

showCaughtException false Fuse Mediation Router 2.0: If the exchange has a caught exception, show
the exception message (no stack trace). A caught exception is stored as
a property on the exchange and for instance a doCatch can catch
exceptions. See Try Catch Finally.

showStackTrace false Fuse Mediation Router 2.0: Show the stack trace, if an exchange has an
exception. Only effective if one of showAll, showException or
showCaughtException are enabled.

showFuture false Camel 2.1: Whether Camel should show java.util.concurrent.Future
bodies or not. If enabled Camel could potentially wait until the Future task
is done. Will by default not wait.

multiline false If true, each piece of information is logged on a new line.
maxChars Fuse Mediation Router 2.0: Limits the number of characters logged per
line.

332 Fuse Mediation Router Component Reference Version 2.6

Try Catch Finally

Regular logger sample

In the route below we log the incoming orders at DEBUG level before the order is processed:

from("activemqg:orders").to("log:com.mycompany.order?level=DEBUG").to("bean:processOrder");

Or using Spring XML to define the route:
<route>
<from uri="activemq:orders"/>
<to uri="log:com.mycompany.order?level=DEBUG"/>

<to uri="bean:processOrder"/>
</route>

Regular logger with formatter sample

In the route below we log the incoming orders at INFO level before the order is processed.

from("activemq:orders").
to("log:com.mycompany.order?showAll=true&multiline=true").to("bean:processOrder");

Throughput logger with groupSize sample

In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10 messages.

from("activemq:orders").
to("log:com.mycompany.order?level=DEBUG?groupSize=10").to("bean:processOrder");

Throughput logger with groupinterval sample

This route will result in message stats logged every 10s, with an initial 60s delay and stats should be displayed
even if there isn't any message traffic.

from("activemqg:orders")
.to("log:com.mycompany.order?level=DEBUG?groupInterval=10000&groupDelay=60000&groupAct
iveOnly=false")
.to("bean:processOrder");

The following will be logged:

"Received: 1000 new messages, with total 2000 so far. Last group took: 10000 millis which
is: 100 messages per second. average: 100"

Fuse Mediation Router Component Reference Version 2.6 333

334 Fuse Mediation Router Component Reference Version 2.6

Chapter 53. Lucene

Lucene (Indexer and Search) Component
Available as of Fuse Mediation Router 2.2

The lucene component is based on the Apache Lucene project. Apache Lucene is a powerful high-performance,
full-featured text search engine library written entirely in Java. For more details about Lucene, please see the
following links * http://lucene.apache.org/java/docs/ Lx http://lucene.apache.org/java/docs/features.html 2

The lucene component in camel facilitates integration and utilization of Lucene endpoints in enterprise integration
patterns and scenarios. The lucene component does the following

 builds a searchable index of documents when payloads are sent to the Lucene Endpoint
« facilitates performing of indexed searches in Fuse Mediation Router
This component only supports producer endpoints.

URI format

lucene:searcherName:insert[?options]
lucene:searcherName:query[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Insert Options

Name Default Value Description

analyzer StandardAnalyzer An Analyzer builds TokenStreams, which analyze text. It thus represents a
policy for extracting index terms from text. The value for analyzer can be any
class that extends the abstract class org.apache.lucene.analysis.Analyzer.
Lucene also offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the
document by the specified analyzer

srcDir null An optional directory containing files to be used to be analyzed and added
to the index at producer startup.

! http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/features.html

Fuse Mediation Router Component Reference Version 2.6 335

http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/features.html
http://lucene.apache.org/java/docs/features.html
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/features.html

Chapter 53. Lucene

Query Options

Name Default Value Description

analyzer StandardAnalyzer An Analyzer builds TokenStreams, which analyze text. It thus represents a
policy for extracting index terms from text. The value for analyzer can be any
class that extends the abstract class org.apache.lucene.analysis.Analyzer.
Lucene also offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the
document by the specified analyzer

maxHits 10 An integer value that limits the result set of the search operation

Message Headers

Header Description

QUERY The Lucene Query to performed on the index. The query may include wildcards and phrases

Lucene Producers
This component supports 2 producer endpoints.

* insert - The insert producer builds a searchable index by analyzing the body in incoming exchanges and
associating it with a token ("content").

* query - The query producer performs searches on a pre-created index. The query uses the searchable
index to perform score & relevance based searches. Queries are sent via the incoming exchange contains
a header property name called 'QUERY". The value of the header property 'QUERY" is a Lucene Query. For
more details on how to create Lucene Queries check out
http://lucene.apache.org/java/3_0_0O/queryparsersyntax.html 3

Lucene Processor

There is a processor called LuceneQueryProcessor available to perform queries against lucene without the
need to create a producer.

8 http://lucene.apache.org/java/3_0_0/queryparsersyntax.html

336 Fuse Mediation Router Component Reference Version 2.6

http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html

Example 1: Creating a Lucene index

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start").
to("lucene:whitespaceQuotesIndex:insert?analyzer=#whitespaceAnalyzer&in
dexDir=#whitespace&srcDir=#load_dir").
to("mock:result");
}
¥

Example 2: Loading properties into the JNDI registry in the Camel Context

@Override
protected JndiRegistry createRegistry() throws Exception {
JndiRegistry registry =
new JndiRegistry(createJndiContext());
registry.bind("whitespace", new File("./whitespaceIndexDir"));
registry.bind("load_dir",
new File("src/test/resources/sources"));
registry.bind("whitespaceAnalyzer",
new WhitespaceAnalyzer());
return registry;

}

CamelContext context = new DefaultCamelContext(createRegistry());

Example 2: Performing searches using a Query Producer

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start").
setHeader ("QUERY", constant("Seinfeld")).
to("lucene:searchIndex:query?analyzer=#whitespaceAnalyzer&indexDir=#whitespace&max
Hits=20").
to("direct:next");

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {
LOG.debug("Number of hits: " + hits.getNumberOfHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {

Fuse Mediation Router Component Reference Version 2.6 337

Chapter 53. Lucene

LOG.debug("Hit " + i + " Index Location:" + hits.getHit().get(i).getHit
Location());
LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());
}

}).to("mock:searchResult");
}
1

Example 3: Performing searches using a Query Processor

RouteBuilder builder = new RouteBuilder() {
public void configure() {
try {
from("direct:start").
setHeader ("QUERY", constant("Rodney Dangerfield")).
process(new LuceneQueryProcessor("target/stdindexDir", analyzer, null, 20)).

to("direct:next");
} catch (Exception e) {
e.printStackTrace();
3

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {

LOG.debug("Number of hits: " + hits.getNumberOfHits());

for (int i = @; i < hits.getNumberOfHits(); i++) {
LOG.debug("Hit " + i + " Index Location:" + hits.getHit().get(i).getH

itLocation());

LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());

3

}).to("mock:searchResult");

3

338 Fuse Mediation Router Component Reference Version 2.6

Chapter 54. Mail

Mail Component

The mail component provides access to Email via Spring's Mail support and the underlying JavaMail system.

© Geronimo mail Jar

We have discovered that the geronimo mail . jar (v1.6) has a bug when polling mails with attachments. It
cannot correctly identify the Content - Type. So, if you attach a . jpeg file to a mail and you poll it, the
Content-Type is resolved as text/plain and not as image/jpeg. For that reason, we have added an
org.apache.camel.component.ContentTypeResolver SPI interface which enables you to provide your own
implementation and fix this bug by returning the correct Mime type based on the file name. So if the file name
ends with jpeg/jpg, you can return image/jpeg.

You can set your custom resolver on the MailComponent instance or on the MailEndpoint instance. This
feature is added in Camel 1.6.2/2.0.

© Geronimo mail .jar

We have discovered that the geronimo mail . jar (v1.6) has a bug when polling mails with attachments. It
cannot correctly identify the Content-Type. So, if you attach a . jpeg file to a mail and you poll it, the
Content-Type is resolved as text/plain and not as image/jpeg. For that reason, we have added an
org.apache.camel.component.ContentTypeResolver SPI interface which enables you to provide your own
implementation and fix this bug by returning the correct Mime type based on the file name. So if the file name
ends with jpeg/jpg, you can return image/jpeg.

You can set your custom resolver on the MailComponent instance or on the MailEndpoint instance. This
feature is added in Fuse Mediation Router 1.6.2/2.0.

* POP3 or IMAP

POP3 has some limitations and end users are encouraged to use IMAP if possible.

Fuse Mediation Router Component Reference Version 2.6 339

Chapter 54. Mail

* Using mock-mail for testing

You can use a mock framework for unit testing, which allows you to test without the need for a real mail server.
However you should remember to not include the mock-mail when you go into production or other environments
where you need to send mails to a real mail server. Just the presence of the mock-javamail.jar on the classpath
means that it will kick in and avoid sending the mails.

URI format

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP, respectively):
smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

The mail component also supports secure variants of these protocols (layered over SSL). You can enable the
secure protocols by adding s to the scheme:

smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

You can append query options to the URI in the following format, ?option=value&option=values&. ..

Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

Default ports

As of Fuse Mediation Router 1.4, default port numbers are supported. If the port number is omitted, Fuse
Mediation Router determines the port number to use based on the protocol.

340 Fuse Mediation Router Component Reference Version 2.6

Protocol Default Port Number

SMTP 25

SMTPS 465
POP3 110
POP3S 995
IMAP 143

IMAPS 993

Options

Property Default Description

host The host name or IP address to connect to.

port See #DefaultPorts The TCP port number to connect on.

username The user name on the email server.

password null The password on the email server.

ignoreUriScheme false If false, Fuse Mediation Router uses the scheme to detel
protocol (POP, IMAP, SMTP etc.)

defaultEncoding null The default encoding to use for Mime Messages.

contentType text/plain New option in Fuse Mediation Router 1.5. The mail mes
Use text/html for HTML mails.

folderName INBOX The folder to poll.

destination username@host @deprecated Use the to option instead. The To recipien
email).

to username@host As of Fuse Mediation Router 1.4, the TO recipients (the
mail). Separate multiple email addresses with a comma.

cc null As of Fuse Mediation Router 1.4, the CC recipients (the
mail). Separate multiple email addresses with a comma.

BCC null As of Fuse Mediation Router 1.4, the BCC recipients (tt
mail). Separate multiple email addresses with a comma.

from camel@localhost The FROM email address.

subject As of Camel 2.3, the Subject of the message being sent.
subject in the header takes precedence over this option.

deleteProcessedMessages true Deletes the messages after they have been processed. Thi

Fuse Mediation Router Component Reference Version 2.6

the DELETED flag on the mail message. If false, the SEEN

341

Chapter 54. Mail

delete

processOnlyUnseenMessages

unseen

fetchSize

alternateBodyHeader

alternativeBodyHeader

debugMode

connectionTimeout

consumer.initialDelay

consumer .delay

342

false

false

true

mail_alternateBody

CamelMailAlternativeBody

false

30000

1000
60000

As of Fuse Mediation Router 1.5, the default setting is fal.
is named delete in Camel 2.0 onwards.

Fuse Mediation Router 2.0: Deletes the messages after the
processed. This is done by setting the DELETED flag on the n
false, the SEEN flag is set instead.

As of Fuse Mediation Router 1.4, it is possible to configure
endpoint so that it processes only unseen messages (that is, |
or all messages. Note that Fuse Mediation Router always sk
messages. Setting this option to true will filter to only unseer
of Fuse Mediation Router 1.5, the default setting is true. F
support the SEEN flag, so this option is not supported in POP
instead. This option is named unseen in Camel 2.0 onwards

Fuse Mediation Router 2.0: Is used to fetch only unseen m
is, new messages). Note that POP3 does not support the SEEN
instead.

As of Fuse Mediation Router 1.4, this option sets the maxir
messages to consume during a poll. This can be used to av
a mail server, if a mailbox folder contains a lot of messages.
of -1 means no fetch size and all messages will be consume
value to 0 is a special corner case, where Fuse Mediation R
consume any messages at all.

Fuse Mediation Router 1.6.1: Specifies the key to an IN me
that contains an alternative email body. For example, if you ¢
text/html format and want to provide an alternative mail bod
email clients, set the alternative mail body with this key as a |
Mediation Router 2.0, this option has been renamed to
alternativeBodyHeader

Fuse Mediation Router 2.0: Specifies the key to an IN mess:
contains an alternative email body. For example, if you send
text/html format and want to provide an alternative mail bod
email clients, set the alternative mail body with this key as a

As of Fuse Mediation Router 1.4, it is possible to enable de
the underlying mail framework. The SUN Mail framework log
messages to System.out by default.

As of Fuse Mediation Router 1.4, the connection timeout ca
in milliseconds. Default is 30 seconds.

Milliseconds before the polling starts.

As of Fuse Mediation Router 1.4, the default consumer del
seconds. Fuse Mediation Router will therefore only poll the r

Fuse Mediation Router Component Reference Version 2.6

consumer .useFixedDelay false
mail. XXX null
maxMessagesPerPoll 0

javaMailSender null

ignoreUnsupportedCharset false

minute to avoid overloading the mail server. The default \
Mediation Router 1.3 is 500 milliseconds.

Set to true to use a fixed delay between polls, otherwise
See ScheduledExecutorService® in JDK for details.

As of Fuse Mediation Router 2.0, you can set any addit
propertiesz. For instance if you want to set a special prop
POP3 you can now provide the option directly in the URI
mail.pop3.forgettopheaders=true. You can set multi
for example:

mail.pop3.forgettopheaders=true&mail.mime.encoc

Fuse Mediation Router 2.0: Specifies the maximum nur
to gather per poll. By default, no maximum is set. Can be
of e.g. 1000 to avoid downloading thousands of files whe
up. Set a value of 0 or negative to disable this option.

Fuse Mediation Router 2.0: Specifies a pluggable
org.springframework.mail.javamail.JavaMailSende
to use a custom email implementation. If none provided,
Router uses the default,
org.springframework.mail.javamail. JavaMailSends

Fuse Mediation Router 2.0: Option to let Fuse Mediatiol
unsupported charset in the local JVM when sending mail.
unsupported then charset=XXX (where XXX represents tt
charset) is removed from the content-type and it relies
default instead.

SSL support

The underlying mail framework is responsible for providing SSL support. Fuse Mediation Router uses SUN
JavaMail, which only trusts certificates issued by well known Certificate Authorities. So if you issue your own
certificate, you have to import it into the local Java keystore file (see SSLNOTES. txt in JavaMail for details).

Defaults changed in Fuse Mediation Router 1.4

As of Fuse Mediation Router 1.4 the default consumer delay is now 60 seconds. Fuse Mediation Router will
therefore only poll the mailbox once a minute to avoid overloading the mail server. The default value in Fuse

Mediation Router 1.3 is 500 milliseconds.

! http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

http://java.sun.com/products/javamail/javadocs/index.html

Fuse Mediation Router Component Reference Version 2.6

343

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html

Chapter 54. Mail

Defaults changed in Fuse Mediation Router 1.5
In Fuse Mediation Router 1.5 the following default options have changed:

» deleteProcessedMessages is now false, as we felt Fuse Mediation Router should not delete mails on the
mail server by default.

* processOnlyUnseenMessages is now true, as we felt Fuse Mediation Router should only poll new mails by
default.

Mail Message Content

Fuse Mediation Router uses the message exchange's IN body as the MimeMessage3 text content. The body
is converted to String.class.

Fuse Mediation Router copies all of the exchange's IN headers to the MimeMessage4 headers.

The subject of the MimeMessage5 can be configured using a header property on the IN message. The code
below demonstrates this:

from("direct:a").setHeader ("subject", constant(subject)).to("smtp://james2@localhost");

The same applies for other MimeMessage headers such as recipients, so you can use a header property as
To:

Map map = new HashMap();

map.put("To", "davsclaus@apache.org");
map.put("From", "jstrachan@apache.org");
map.put("Subject", "Camel rocks");

String body = "Hello Claus.\nYes it does.\n\nRegards James.";
template.sendBodyAndHeaders("smtp://davsclaus@apache.org", body, map);

Headers take precedence over pre-configured recipients

From Fuse Mediation Router 1.5 onwards, the recipients specified in the message headers always take
precedence over recipients pre-configured in the endpoint URI. The idea is that if you provide any recipients
in the message headers, that is what you get. The recipients pre-configured in the endpoint URI are treated
as a fallback.

8 http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

344 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

In the sample code below, the email message is sent to davsclaus@apache. org, because it takes precedence
over the pre-configured recipient, info@mycompany.com. Any CC and BCC settings in the endpoint URI are also
ignored and those recipients will not receive any mail. The choice between headers and pre-configured settings
is all or nothing: the mail component either takes the recipients exclusively from the headers or exclusively
from the pre-configured settings. It is not possible to mix and match headers and pre-configured settings.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org");

template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com", "Hello
World", headers);

Multiple recipients for easier configuration

As of Fuse Mediation Router 1.5, it is possible to set multiple recipients using a comma-separated or a
semicolon-separated list. This applies both to header settings and to settings in an endpoint URI. For example:

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ; ningji
ang@apache.org");

The preceding example uses a semicolon, ;, as the separator character.

Setting sender name and email

You can specify recipients in the format, name <email>, to include both the name and the email address of
the recipient.

For example, you define the following headers on the a Message:

Map headers = new HashMap();

map.put("To", "Claus Ibsen <davsclaus@apache.org>");
map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

SUN JavaMail

SUN JavaMail® is used under the hood for consuming and producing mails. We encourage end-users to consult
these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a much more
limited set of features than IMAP.

« SUN POP3 AP/’

6 http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html

Fuse Mediation Router Component Reference Version 2.6 345

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html

Chapter 54. Mail

« SUN IMAP API®

» And generally about the MAIL Flags9

Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The email account
is the admin account on mymailserver.com.

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

In the next sample, we poll a mailbox for new emails once every minute. Notice that we use the special consumer
option for setting the poll interval, consumer . delay, as 60000 milliseconds = 60 seconds.

from("imap://admin@mymailserver.com?password=secret&processOnlyUnseenMessages=true&con
sumer .delay=60000").to("seda://mails");

In this sample we want to send a mail to multiple recipients. This feature was introduced in camel 1.4:

// all the recipients of this mail are:

// To: camel@riders.org , easy@riders.org

// CC: me@you.org

// BCC: someone@somewhere.org

String recipients = "&To=camel@riders.org, easy@riders.org&CC=me@you.org&BCC=someone@some
where.org";

from("direct:a").to("smtp://you@mymailserver.com?password=secret&From=you@apache.org" +
recipients);

Sending mail with attachment sample

O Attachments are not support by all Fuse Mediation Router

components

The Attachments API is based on the Java Activation Framework and is generally only used by the Mail API.
Since many of the other Fuse Mediation Router components do not support attachments, the attachments
could potentially be lost as they propagate along the route. The rule of thumb, therefore, is to add attachments
just before sending a message to the mail endpoint.

8 http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

346 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

The mail component supports attachments, which is a feature that was introduced in Fuse Mediation Router
1.4. In the sample below, we send a mail message containing a plain text message with a logo file attachment.

// create an exchange with a normal body and attachment to be produced as email
Endpoint endpoint = context.getEndpoint("smtp://james@mymailserver.com?password=secret");

// create the exchange with the mail message that is multipart with a file and a Hello World
text/plain message.

Exchange exchange = endpoint.createExchange();

Message in = exchange.getIn();

in.setBody("Hello World");

in.addAttachment("logo.jpeg", new DataHandler (new FileDataSource('"src/test/data/logo.jpeg")));

// create a producer that can produce the exchange (= send the mail)
Producer producer = endpoint.createProducer();

// start the producer

producer.start();

// and let it go (processes the exchange by sending the email)
producer .process(exchange);

SSL sample

In this sample, we want to poll our Google mail inbox for mails. To download mail onto a local mail client,
Google mail requires you to enable and configure SSL. This is done by logging into your Google mail account
and changing your settings to allow IMAP access. Google have extensive documentation on how to do this.

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&deleteProcessedMessages=false&processOnlyUnseenMessages=true&con
sumer .delay=60000").to("log:newmail");

The preceding route polls the Google mail inbox for new mails once every minute and logs the received
messages to the newmail logger category. Running the sample with DEBUG logging enabled, we can monitor
the progress in the logs:

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore imaps//imap.gmail.com:993
(SSL enabled), folder=INBOX

2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder: imaps//imap.gmail.com:993
(SSL enabled), folder=INBOX

2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1 messages.

2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=[332],

from=[James Bond <0@07@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage: messageNumber=[332], from=[James
Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

Fuse Mediation Router Component Reference Version 2.6 347

Chapter 54. Mail

Consuming mails with attachment sample

In this sample we poll a mailbox and store all attachments from the mails as files. First, we define a route to
poll the mailbox. As this sample is based on google mail, it uses the same route as shown in the SSL sample:

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&deleteProcessedMessages=false&processOnlyUnseenMessages=true&con
sumer .delay=60000").process(new MyMailProcessor());

Instead of logging the mail we use a processor where we can process the mail from java code:

public void process(Exchange exchange) throws Exception {
// the API is a bit clunky so we need to loop
Map<String, DataHandler> attachments = exchange.getIn().getAttachments();

if (attacments.size() > 0) {

for (String name : attachments.keySet()) {
DataHandler dh = attachments.get(name);

// get the file name

String filename = dh.getName();

// get the content and convert it to byte[]
byte[] data = exchange.getContext().getTypeConverter().con
vertTo(byte[].class, dh.getInputStream());

// write the data to a file

FileOutputStream out
out.write(data);
out.flush();
out.close();

3

new FileOutputStream(filename);

As you can see the API to handle attachments is a bit clunky but it's there so you can get the
javax.activation.DataHandler so you can handle the attachments using standard API.

348

Fuse Mediation Router Component Reference Version 2.6

Chapter 55. MINA

MINA Component

The mina: component is a transport for working with Apache MINA®

URI format

mina:tcp://hostname[:port][?options]
mina:udp://hostname[:port][?options]
mina:vm://hostname[:port][?options]

From Fuse Mediation Router 1.3 onwards you can specify a codec in the Registry using the codec option. If
you are using TCP and no codec is specified then the textline flag is used to determine if text line based
codec or object serialization should be used instead. By default the object serialization is used.

For UDP, if no codec is specified the default uses a basic ByteBuffer based codec.

The VM protocol is used as a direct forwarding mechanism in the same JVM. See the MINA VM-Pipe API
documentation for details.

A Mina producer has a default timeout value of 30 seconds, while it waits for a response from the remote
server.

In normal use, camel-mina only supports marshalling the body content—essage headers and exchange
properties are not sent. However, the option, transferExchange, does allow you to transfer the exchange
itself over the wire. See options below.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options
Option Default Description
Value
codec null As of 1.3, you can refer to a named ProtocolCodecFactory instance

in your Registry such as your Spring ApplicationContext, which is
then used for the marshalling.

! http://mina.apache.org/
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html

Fuse Mediation Router Component Reference Version 2.6 349

http://mina.apache.org/
Registry
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
Registry
http://mina.apache.org/
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html

Chapter 55. MINA

codec

disconnect

textline

textlineDelimiter

sync

lazySessionCreation

timeout

encoding

transferExchange

minalLogger

null

false

false

DEFAULT

true

See
description

30000

JVM

Default

false

false

Fuse Mediation Router 2.0: You must use the # notation to look up
your codec in the Registry. For example, use #myCodec to look up a
bean with the id value, myCodec.

Camel 2.3: Whether or not to disconnect(close) from Mina session
right after use. Can be used for both consumer and producer.

Only used for TCP. If no codec is specified, you can use this flag in 1.3
or later to indicate a text line based codec; if not specified or the value
is false, then Object Serialization is assumed over TCP.

Fuse Mediation Router 1.6.0/2.0 Only used for TCP and if

textline=true. Sets the text line delimiter to use. Possible values are:
DEFAULT, AUTO, WINDOWS, UNIX or MAC. If none provided, Fuse Mediation
Router will use DEFAULT. This delimiter is used to mark the end of text.

As of 1.3, you can configure the exchange pattern to be either InOnly
(default) or InOut. Setting sync=true means a synchronous exchange
(InOut), where the client can read the response from MINA (the
exchange Out message). The default value has changed in Fuse
Mediation Router 1.5 to true. In older releases, the default value is
false.

As of 1.3, sessions can be lazily created to avoid exceptions, if the
remote server is not up and running when the Fuse Mediation Router
producer is started. From Fuse Mediation Router 2.0 onwards, the
default is true. In Fuse Mediation Router 1.x, the default is false.

As of 1.3, you can configure the timeout that specifies how long to wait
for a response from a remote server. The timeout unit is in milliseconds,
S0 60000 is 60 seconds. The timeout is only used for Mina producer.

As of 1.3, you can configure the encoding (a charset names) to use for
the TCP textline codec and the UDP protocol. If not provided, Fuse
Mediation Router will use the JVM default Charset®.

Only used for TCP. As of 1.3, you can transfer the exchange over the
wire instead of just the body. The following fields are transferred: In
body, Out body, fault body, In headers, Out headers, fault headers,
exchange properties, exchange exception. This requires that the objects
are serializable. Fuse Mediation Router will exclude any non-serializable
objects and log it at WARN level.

As of 1.3, you can enable the Apache MINA logging filter. Apache MINA
uses s1f4j logging at INFO level to log all input and output.

8 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
4 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

350

Fuse Mediation Router Component Reference Version 2.6

Registry
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

filters null

encoderMaxLinelLength -1

decoderMaxLinelLength -1

allowDefaultCodec true

disconnectOnNoReply true

noReplyLogLevel WARN

As of 2.0, you can set a list of Mina loFilters® to register. The filters
value must be one of the following:

e Camel 2.2: comma-separated list of bean references (e.g.
#filterBeanl, #filterBean2) where each bean must be of type
org.apache.mina.common.IoFilter.

« Camel 2.0: a reference to a bean of type
List<org.apache.mina.common.IoFilter>.

As of 2.1, you can set the textline protocol encoder max line length. By
default the default value of Mina itself is used which are
Integer.MAX_VALUE.

As of 2.1, you can set the textline protocol decoder max line length. By
default the default value of Mina itself is used which are 1024.

The mina component installs a default codec if both, codec is null and
textlineis false. Setting allowDefaultCodec to false prevents the
mina component from installing a default codec as the first element in
the filter chain. This is useful in scenarios where another filter must be
the first in the filter chain, like the SSL filter.

Camel 2.3: If sync is enabled then this option dictates MinaConsumer
if it should disconnect where there is no reply to send back.

Camel 2.3: If sync is enabled this option dictates MinaConsumer which
logging level to use when logging a there is no reply to send back.
Values are: FATAL, ERROR, INFO, DEBUG, OFF.

Default behavior changed

In Fuse Mediation Router 2.0 the codec option must use # notation for lookup of the codec bean in the Registry.
In Fuse Mediation Router 2.0 the lazySessionCreation option now defaults to true.

In Fuse Mediation Router 1.5 the sync option has changed its default value from false to true, as we felt it
was confusing for end-users when they used Mina to call remote servers and Fuse Mediation Router wouldn't

walit for the response.

In Fuse Mediation Router 1.4 or later codec=text1ine is no longer supported. Use the textline=true option

instead.

5 http://mina.apache.org/iofilter.html

Fuse Mediation Router Component Reference Version 2.6 351

http://mina.apache.org/iofilter.html
Registry
http://mina.apache.org/iofilter.html

Chapter 55. MINA

Using a custom codec

See the Mina documentation® how to write your own codec. To use your custom codec with camel-mina, you
should register your codec in the Registry; for example, by creating a bean in the Spring XML file. Then use
the codec option to specify the bean ID of your codec. See HL7 on page 219 that has a custom codec.

Sample with sync=false

In this sample, Fuse Mediation Router exposes a service that listens for TCP connections on port 6200. We
use the textline codec. In our route, we create a Mina consumer endpoint that listens on port 6200:

from("mina:tcp://localhost:6200?textline=true&sync=false").to("mock:result");

As the sample is part of a unit test, we test it by sending some data to it on port 6200.

MockEndpoint mock = getMockEndpoint("mock:result");
mock .expectedBodiesReceived("Hello World");

template.sendBody("mina:tcp://localhost:6200?textline=true&sync=false", "Hello World");

assertMockEndpointsSatisfied();

Sample with sync=true

In the next sample, we have a more common use case where we expose a TCP service on port 6201 also
use the textline codec. However, this time we want to return a response, so we set the sync option to true on
the consumer.

from("mina:tcp://localhost:6201?textline=true&sync=true").process(new Processor() {
public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);
}
1)

Then we test the sample by sending some data and retrieving the response using the template.requestBody()
method. As we know the response is a String, we cast it to String and can assert that the response is, in
fact, something we have dynamically set in our processor code logic.

String response = (String)template.requestBody("mina:tcp://local
host:6201?textline=true&sync=true", "World");
assertEquals("Bye World", response);

6 http://mina.apache.org/tutorial-on-protocolcodecfilter.html

352 Fuse Mediation Router Component Reference Version 2.6

http://mina.apache.org/tutorial-on-protocolcodecfilter.html
Registry
http://mina.apache.org/tutorial-on-protocolcodecfilter.html

Sample with Spring DSL

Spring DSL can, of course, also be used for Mina. In the sample below we expose a TCP server on port 5555:

<route>
<from uri="mina:tcp://localhost:5555?textline=true"/>
<to uri="bean:myTCPOrderHandler"/>

</route>

In the route above, we expose a TCP server on port 5555 using the textline codec. We let the Spring bean
with ID, myTCPOrderHandler, handle the request and return a reply. For instance, the handler bean could be
implemented as follows:

public String handleOrder (String payload) {

return "Order: OK"

Configuring Mina endpoints using Spring bean style
Available as of Fuse Mediation Router 2.0

Configuration of Mina endpoints is now possible using regular Spring bean style configuration in the Spring
DSL.

However, in the underlying Apache Mina toolkit, it is relatively difficult to set up the acceptor and the connector,
because you can not use simple setters. To resolve this difficulty, we leverage the MinaComponent as a Spring
factory bean to configure this for us. If you really need to configure this yourself, there are setters on the
MinaEndpoint to set these when needed.

The sample below shows the factory approach:

<!-- Creating mina endpoints is a bit complex so we reuse MinaComponnet
as a factory bean to create our endpoint, this is the easiest to do -->
<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">

<!-- we must provide a camel context so we refer to it by its id -->
<constructor-arg index="0" ref="myCamel"/>

</bean>

<!-- This is our mina endpoint configured with spring, we will use the factory above

to create it for us. The goal is to invoke the createEndpoint method with the
mina configuration parameter we defined using the constructor-arg option -->
<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">
<!-- and here we can pass it our configuration -->

Fuse Mediation Router Component Reference Version 2.6 353

Chapter 55. MINA

<constructor-arg index="0" ref="myMinaConfig"/>
</bean>

<!-- this is our mina configuration with plain properties -->
<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">
<property name="protocol" value="tcp"/>
<property name="host" value="localhost"/>
<property name="port" value="1234"/>
<property name="sync" value="false"/>
</bean>

And then we can refer to our endpoint directly in the route, as follows:

<route>
<!-- here we route from or mina endpoint we have defined above -->
<from ref="myMinaEndpoint"/>
<to uri="mock:result"/>

</route>

Closing Session When Complete
Available as of Fuse Mediation Router 1.6.1

When acting as a server you sometimes want to close the session when, for example, a client conversion is
finished. To instruct Fuse Mediation Router to close the session, you should add a header with the key
CamelMinaCloseSessionwhenComplete set to a boolean true value.

For instance, the example below will close the session after it has written the bye message back to the client:

from("mina:tcp://localhost:8080?sync=true&textline=true").process(new Processor ()

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);
exchange.getOut().setHeader (MinaConsumer .HEADER_CLOSE_SESSION_WHEN_COMPLETE,
true);

}
1)

Get the loSession for message

Available since Fuse Mediation Router 2.1 You can get the loSession from the message header with this
key MinaEndpoint.HEADER_MINA_IOSESSION, and also get the local host address with the key
MinaEndpoint.HEADER_LOCAL_ADDRESS and remote host address with the key
MinaEndpoint.HEADER_REMOTE_ADDRESS.

354 Fuse Mediation Router Component Reference Version 2.6

Configuring Mina filters
Available since Fuse Mediation Router 2.0

Filters permit you to use some Mina Filters, such as Ss1Filter. You can also implement some customized
filters. Please note that codec and logger are also implemented as Mina filters of type, IoFilter. Any filters
you may define are appended to the end of the filter chain; that is, after codec and logger.

For instance, the example below will send a keep-alive message after 10 seconds of inactivity:

public class KeepAliveFilter extends IoFilterAdapter {
@Override
public void sessionCreated(NextFilter nextFilter, IoSession session)
throws Exception {
session.setIdleTime(IdleStatus.BOTH_IDLE, 10);

nextFilter.sessionCreated(session);

3

@Override
public void sessionIdle(NextFilter nextFilter, IoSession session,
IdleStatus status) throws Exception {
session.write("NOOP"); // NOOP is a FTP command for keep alive
nextFilter.sessionIdle(session, status);

3

As Fuse Mediation Router Mina may use a request-reply scheme, the endpoint as a client would like to drop
some message, such as greeting when the connection is established. For example, when you connect to an
FTP server, you will get a 220 message with a greeting (220 Welcome to Pure-FTPd). If you don't drop the
message, your request-reply scheme will be broken.

public class DropGreetingFilter extends IoFilterAdapter {

@override
public void messageReceived(NextFilter nextFilter, IoSession session,
Object message) throws Exception {
if (message instanceof String) {
String ftpMessage = (String) message;
// "220" is given as greeting. "200 Zzz" is given as a response to "NOOP" (keep
alive)
if (ftpMessage.startsWith("220") || or ftpMessage.startswWith("200 zzz")) {
// Dropping greeting
return;

}

nextFilter.messageReceived(session, message);

Fuse Mediation Router Component Reference Version 2.6 355

Chapter 55. MINA

}
Then, you can configure your endpoint using Spring DSL:

<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">
<constructor-arg index="0" ref="camelContext" />
</bean>

<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">
<constructor-arg index="0" ref="myMinaConfig"/>
</bean>

<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">
<property name="protocol" value="tcp" />
<property name="host" value="localhost" />
<property name="port" value="2121" />
<property name="sync" value="true" />
<property name="minalLogger" value="true" />
<property name="filters" ref="listFilters"/>
</bean>

<bean id="listFilters" class="java.util.ArrayList" >
<constructor-arg>
<list value-type="org.apache.mina.common.IoFilter">
<bean class="com.example.KeepAliveFilter"/>
<bean class="com.example.DropGreetingFilter"/>
</list>
</constructor-arg>
</bean>

356 Fuse Mediation Router Component Reference Version 2.6

Chapter 56. Mock

Mock Component

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock1 in that it
allows declarative expectations to be created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the expectations can be asserted in a test
case to ensure the system worked as expected.

This allows you to test various things like:

» The correct number of messages are received on each endpoint,

» The correct payloads are received, in the right order,

* Messages arrive on an endpoint in order, using some Expression to create an order testing function,

» Messages arrive match some kind of Predicate such as that specific headers have certain values, or that
parts of the messages match some predicate, such as by evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint on page 505 which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock endpoint assertions.
In other words, it's a Mock endpoint that automatically sets up its assertions from some sample messages in
a File or database on page 315, for example.

URI format
mock : someName[?options]
Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Default Description

reportGroup null A size to use a throughput logger on page 331 for reporting

! http://jmock.org

Fuse Mediation Router Component Reference Version 2.6 357

http://jmock.org
Expression
Predicate
XPath
XQuery
Expression
http://jmock.org

Chapter 56. Mock

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we set
an expectation, and then, after the test has run, we assert that our expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.expectedMessageCount(2);

// send some messages

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertlsSatisfied() method? to test that the expectations were met after running
a test.

Fuse Mediation Router will by default wait 20 seconds when the assertIsSatisfied() is invoked. This can
be configured by setting the setResultwaitTime(millis) method.

Setting expectations

You can see from the javadoc of MockEndpoint3 the various helper methods you can use to set expectations.
The main methods are as follows:

Method Description

expectedMessageCount(int)4 To define the expected message count on the endpoint.

expectedMinimumMessageCount(int)5 To define the minimum number of expected messages on the
endpoint.

expectedBodiesReceived(...)6 To define the expected bodies that should be received (in order).

expectedHeaderRe(:eived(...)7 To define the expected header that should be received

2 http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertlsSatisfied()
. http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html

Ettp://camel.apache.org/maven/currentlcameI—core/apidocs/org/apache/camel/component/mocklMockEndpoint.html#expectedMessageCount(int)
Qttp://camel.apache.0rglmaven/current/cameIcore/apidocs/org/apachelcamchomponent/mocklMockEndpoint.htmL#expectedMinimumMessageCount(int)
Dttp1lcamel.apache.org/maven/currentlcameloore/apidocs/orglapache/camel/componenrlmock/MockEndpoint.hﬂnl#expectedBodiesReceived(iava.lang.Object...)

htipzicamel.apache.orgimavenvcurrenticamet-corelapidocsiory/apachelicamelicomponentimodiMiockEndpoint himitexpectedHeaderReceived(javallang.String %620java.lang . String)

358 Fuse Mediation Router Component Reference Version 2.6

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)

expectsAscending(Expression)8 To add an expectation that messages are received in order, using
the given Expression to compare messages.

expectsDescending(Expression)9 To add an expectation that messages are received in order, using
the given Expression to compare messages.

expec’tsNoDupIicates(Expression)lo To add an expectation that no duplicate messages are received; using
an Expression to calculate a unique identifier for each message. This
could be something like the JMSMessageID if using JMS, or some
unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody", "thirdMes
sageBody");
Adding expectations to specific messages

In addition, you can use the message(int messagelndex)11 method to add assertions about a specific message
that is received.

For example, to add expectations of the headers or body of the first message (using zero-based indexing like
java.util.List), you can use the following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests.

8
Qﬁpj/camel.apache.orglmvedwnenﬂcarmkardapidomlorglapadﬂcamvenmnenﬂnmdMockEndpointhtrnl#éxpedsAsoending(org.apadE.carnel.Expression)
r11ltjlp1/camel.apad1e.org/mavernenﬂcarmlmrdapidocdorgapadwdcanEmemnenﬂnmddModErﬁpdmml#emecBDescendirg(org.aMecamel.B@ression)
http//camel.apache.org/maven/currenticamel-core/apidocs/org/apache/camel/componentimock/MockEndpoint htimitexpectsNoDuplicates(org.apache.camel Expression)

1 http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

Fuse Mediation Router Component Reference Version 2.6 359

Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

360 Fuse Mediation Router Component Reference Version 2.6

Chapter 57. MSV

MSV Component

The MSV component performs XML validation of the message body using the MSV lerary and any of the
supported XML schema languages, such as XML Schema? or RelaxNG XML Syntax

Note that the Jing on page 291 component also supports RelaxNG Compact Syntax4

URI format
msv:someLocalOrRemoteResource[?options]

Where someLocalOrRemoteResource is some URL to a local resource on the classpath or a full URL to a
remote resource or resource on the file system. For example

msv:org/foo/bar.rng

msv:file:../foo/bar.rng

msv:http://acme.com/cheese.rng

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Option Default Description

useDom true Fuse Mediation Router 2.0: Whether DOMSource/DOMResult or SaxSource/SaxResult
should be used by the validator. Note: DOM must be used by the MSV on page 361
component.

Example

The following example5 shows how to configure a route from endpoint direct:start which then goes to one of
two endpoints, either mock valid or mock:invalid based on whether or not the XML matches the given
RelaxNG XML Schema® (which is supplied on the classpath).

https /Imsv.dev.java.net/
http /lwww.w3.0rg/XML/Schema
http /Irelaxng.org/
; http://relaxng.org/compact-tutorial-20030326.html

Qttp://svn.apache.org/repos/asf/camelltrunk/componentslcamel—msv/src/test/resources/org/apache/camellcomponent/validator/msv/camelContext.xmI
http://relaxng.org/

Fuse Mediation Router Component Reference Version 2.6 361

https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/

Chapter 57. MSV

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<doTry>
<to uri="msv:org/apache/camel/component/validator/msv/schema.rng"/>
<to uri="mock:valid"/>

<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>
</camelContext>

362 Fuse Mediation Router Component Reference Version 2.6

Chapter 58. Nagios

Nagios
Available as of Fuse Mediation Router 2.3

The Nagios on page 363 component allows you to send passive checks to Nagiosl.

URI format
nagios://host[:port][?0ptions]

Fuse Mediation Router provides two abilities with the Nagios on page 363 component. You can send passive
check messages by sending a message to its endpoint. Fuse Mediation Router also provides a EventNotifer
which allows you to send notifications to Nagios.

Options

Name Default Value Description

host none This is the address of the Nagios on page 363 host where checks should
be send.

port The port number of the host.

password Password to be authenticated when sending checks to Nagios.

connectionTimeout 5000 Connection timeout in millis.

timeout 5000 Sending timeout in millis.

nagiosSettings To use an already configured
com.googlecode.jsendnsca.core.NagiosSettings object.

sendSync true Whether or not to use synchronous when sending a passive check.
Setting it to false will allow Fuse Mediation Router to continue routing
the message and the passive check message will be send
asynchronously.

Headers

‘ Name Description

! http://nagios.org
2 camel JMX

Fuse Mediation Router Component Reference Version 2.6 363

http://nagios.org
Camel JMX
http://nagios.org
Camel JMX

Chapter 58. Nagios

CamelNagiosHostName This is the address of the Nagios on page 363 host where checks should be send.
This header will override any existing hostname configured on the endpoint.

CamelNagiosLevel This is the severity level. You can use values CRITICAL, WARNING, OK. Fuse
Mediation Router will by default use oK.

CamelNagiosServiceName The servie name. Will default use the CamelContext name.

Sending message examples

You can send a message to Nagios where the message payload contains the message. By default it will be
0K level and use the CamelContext name as the service name. You can overrule these values using headers
as shown above.

For example we send the Hello Nagios message to Nagios as follows:

template.sendBody("direct:start", "Hello Nagios");
from("direct:start").to("nagios:127.0.0.1:5667?password=secret").to("mock:result");

To send a CRITICAL message you can send the headers such as:

Map headers = new HashMap();

headers.put(NagiosConstants.LEVEL, "CRITICAL");
headers.put(NagiosConstants.HOST_NAME, "myHost");
headers.put(NagiosConstants.SERVICE_NAME, "myService");
template.sendBodyAndHeaders("direct:start", "Hello Nagios", headers);

Using NagiosEventNotifer

The Nagios on page 363 component also provides an EventNotifer® which you can use to send events to Nagios.
For example we can enable this from Java as follows:

NagiosEventNotifier notifier = new NagiosEventNotifier();
notifier.getConfiguration().setHost("localhost");
notifier.getConfiguration().setPort(5667);
notifier.getConfiguration().setPassword("password");

CamelContext context = ...
context.getManagementStrategy().addEventNotifier(notifier);
return context;

3 camel IMX

364 Fuse Mediation Router Component Reference Version 2.6

CamelContext
CamelContext
Camel JMX
Camel JMX

In Spring XML its just a matter of defining a Spring bean with the type EventNotifier and Fuse Mediation
Router will pick it up as documented here: Advanced configuration of CamelContext using Spring4.

4 Advanced configuration of CamelContext using Spring

Fuse Mediation Router Component Reference Version 2.6 365

Advanced configuration of CamelContext using Spring
Advanced configuration of CamelContext using Spring

366 Fuse Mediation Router Component Reference Version 2.6

Chapter 59. Netty

Netty Component
Available as of Fuse Mediation Router 2.3

The netty component in Fuse Mediation Router is a socket communication component, based on the JBoss
Netty community offering (available under an Apache 2.0 license). Netty is a NIO client server framework which
enables quick and easy development of network applications such as protocol servers and clients. Netty greatly
simplifies and streamlines network programming such as TCP and UDP socket server.

This Fuse Mediation Router component supports both producer and consumer endpoints.

The netty component has several options and allows fine-grained control of a number of TCP/UDP
communication parameters (buffer sizes, keepAlives, tcpNoDelay etc) and facilitates both In-Only and In-Out
communication on a Fuse Mediation Router route.

URI format

The URI scheme for a netty component is as follows

netty:tcp://localhost:99999[?options]
netty:udp://remotehost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

keepAlive true Setting to ensure socket is not closed due to inactivity

tcpNoDelay true Setting to improve TCP protocol performance

broadcast false Setting to choose Multicast over UDP

connectTimeout 10000 Time to wait for a socket connection to be available. Value is in
millis.

reuseAddress true Setting to facilitate socket multiplexing

sync true Setting to set endpoint as one-way or request-response

ssl false Setting to specify whether SSL encryption is applied to this endpoint

Fuse Mediation Router Component Reference Version 2.6 367

Chapter 59. Netty

sendBufferSize

receiveBufferSize

corePoolSize

maxPoolSize

disconnect

lazyChannelCreation

transferExchange

disconnectOnNoReply

noReplyLoglLevel

allowDefaultCodec

textline

delimiter

decoderMaxLinelLength

autoAppendDelimiter

encoding

65536 bytes

65536 bytes

10

100

false

true

false

true

WARN

true

false

LINE

1024

true

null

The TCP/UDP buffer sizes to be used during outbound
communication. Size is bytes.

The TCP/UDP buffer sizes to be used during inbound
communication. Size is bytes.

The number of allocated threads at component startup. Defaults to
10

The maximum number of threads that may be allocated to this
endpoint. Defaults to 100

Whether or not to disconnect(close) from Netty Channel right after
use. Can be used for both consumer and producer.

Channels can be lazily created to avoid exceptions, if the remote
server is not up and running when the Fuse Mediation Router
producer is started.

Only used for TCP. You can transfer the exchange over the wire
instead of just the body. The following fields are transferred: In body,
Out body, fault body, In headers, Out headers, fault headers,
exchange properties, exchange exception. This requires that the
objects are serializable. Fuse Mediation Router will exclude any
non-serializable objects and log it at WARN level.

If sync is enabled then this option dictates NettyConsumer if it should
disconnect where there is no reply to send back.

If sync is enabled this option dictates NettyConsumer which logging
level to use when logging a there is no reply to send back. Values
are: FATAL, ERROR, INFO, DEBUG, OFF.

Camel 2.4: The netty component installs a default codec if both,
encoder/deocder is null and textline is false. Setting
allowDefaultCodec to false prevents the netty component from
installing a default codec as the first element in the filter chain.

Camel 2.4: Only used for TCP. If no codec is specified, you can
use this flag to indicate a text line based codec; if not specified or
the value is false, then Object Serialization is assumed over TCP.

Camel 2.4: The delimiter to use for the textline codec. Possible
values are LINE and NULL.

Camel 2.4: The max line length to use for the textline codec.

Camel 2.4: Whether or not to auto append missing end delimiter
when sending using the textline codec.

Camel 2.4: The encoding (a charset name) to use for the textline
codec. If not provided, Camel will use the JVM default Charset.

368

Fuse Mediation Router Component Reference Version 2.6

Registry based Options

Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in the Spring XML file. The values
that could be passed in, are the following:

Name

passphrase
keyStoreFormat
securityProvider
keyStoreFile
trustStoreFile
sslHandler

encoder

encorders

decoder

decoders

Description

password setting to use in order to encrypt/decrypt payloads sent using SSH
keystore format to be used for payload encryption. Defaults to "JKS" if not set
Security provider to be used for payload encryption. Defaults to "SunX509" if not set.
Client side certificate keystore to be used for encryption

Server side certificate keystore to be used for encryption

Reference to a class that could be used to return an SSL Handler

A custom Handler class that can be used to perform special marshalling of outbound
payloads. Must override org. jboss.netty.channel.ChannelDownStreamHandler.

A list of encoder to be used. You can use a String which have values separated by
comma, and have the values be looked up in the Registry. Just remember to prefix the
value with # so Fuse Mediation Router knows it should lookup.

A custom Handler class that can be used to perform special marshalling of inbound
payloads. Must override org. jboss.netty.channel.ChannelUpStreamHandler.

A list of decorder to be used. You can use a String which have values separated by
comma, and have the values be looked up in the Registry. Just remember to prefix the
value with # so Fuse Mediation Router knows it should lookup.

Netty Producer

In Producer mode, the component provides the ability to send payloads to a socket endpoint using either TCP
or UDP protocols (with optional SSL support).

The producer mode supports both one-way and request-response based operations.

Netty Consumer

In Consumer mode, the component provides the ability to:

« listen on a specified socket using either TCP or UDP protocols (with optional SSL support),

* receive requests on the socket using text/xml, binary and serialized object based payloads and

Fuse Mediation Router Component Reference Version 2.6 369

Registry
Registry
Registry

Chapter 59. Netty

» send them along on a route as message exchanges.

The consumer mode supports both one-way and request-response based operations.

A UDP Netty endpoint using Request-Reply and serialized object payload

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("netty:udp://localhost:5155?sync=true")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
Poetry poetry = (Poetry) exchange.getIn().getBody();
poetry.setPoet("Dr. Sarojini Naidu");
exchange.getOut().setBody(poetry);
}
}
}
1

A TCP based Netty consumer endpoint using One-way communication

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("netty:tcp://localhost:5150")
.to("mock:result");
3
}:

An SSLITCP based Netty consumer endpoint using Request-Reply
communication

JndiRegistry registry = new JndiRegistry(createdndiContext());
registry.bind("password", "changeit");

registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.createRegistry(registry);
context.addRoutes(new RouteBuilder() {
public void configure() {
String netty_ssl endpoint =
"netty:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password"
+ "&keyStoreFile=#ksf&trustStoreFile=#tsf";
String return_string =
"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

370 Fuse Mediation Router Component Reference Version 2.6

from(netty_ssl_endpoint)
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);

}

}
1

Using Multiple Codecs

In certain cases it may be necessary to add chains of encoders and decoders to the netty pipeline. To add
multpile codecs to a Fuse Mediation Router netty endpoint the ‘encoders’ and ‘decoders' uri parameters should
be used. Like the 'encoder’ and 'decoder’ parameters they are used to supply references (to lists of
ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be added to the pipeline. Note that
if encoders is specified then the encoder param will be ignored, similarly for decoders and the decoder param.

The lists of codecs need to be added to the Fuse Mediation Router's registry so they can be resolved when
the endpoint is created.

LengthFieldBasedFrameDecoder lengthDecoder = new LengthFieldBasedFrameDecoder (1048576, 0,
4, 0, 4);

StringDecoder stringDecoder = new StringDecoder();

registry.bind("length-decoder", lengthDecoder);

registry.bind("string-decoder", stringDecoder);

LengthFieldPrepender lengthEncoder = new LengthFieldPrepender(4);
StringEncoder stringEncoder = new StringEncoder();
registry.bind("length-encoder", lengthEncoder);
registry.bind("string-encoder", stringEncoder);

List<ChannelUpstreamHandler> decoders = new ArraylList<ChannelUpstreamHandler>();
decoders.add(lengthDecoder);
decoders.add(stringDecoder);

List<ChannelDownstreamHandler> encoders = new ArraylList<ChannelDownstreamHandler>();
encoders.add(lengthEncoder);
encoders.add(stringEncoder);

registry.bind("encoders", encoders);
registry.bind("decoders", decoders);

Spring's native collections support can be used to specify the codec lists in an application context
<util:list id="decoders" list-class="java.util.LinkedList">

<bean class="org.jboss.netty.handler.codec.frame.LengthFieldBasedFrameDecoder">
<constructor-arg value="1048576"/>

Fuse Mediation Router Component Reference Version 2.6 371

Chapter 59. Netty

<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
</bean>
<bean class="org.jboss.netty.handler.codec.string.StringDecoder"/>
</util:list>

<util:list id="encoders" list-class="java.util.LinkedList">
<bean class="org.jboss.netty.handler.codec.frame.LengthFieldPrepender">
<constructor-arg value="4"/>
</bean>
<bean class="org.jboss.netty.handler.codec.string.StringEncoder"/>
</util:list>

<bean id="length-encoder" class="org.jboss.netty.handler.codec.frame.LengthFieldPrepend
er">
<constructor-arg value="4"/>
</bean>
<bean id="string-encoder" class="org.jboss.netty.handler.codec.string.StringEncoder"/>

<bean id="length-decoder" class="org.jboss.netty.handler.codec.frame.LengthFieldBased
FrameDecoder">
<constructor-arg value="1048576"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
</bean>
<bean id="string-decoder" class="org.jboss.netty.handler.codec.string.StringDecoder"/>

</beans>

The bean names can then be used in netty endpoint definitions either as a comma separated list or contained
in a List e.g.

from("direct:multiple-codec").to("netty:tcp://localhost:5150?encoders=#en
codersé&sync=false");

from("netty:tcp://localhost:5150?decoders=#length-decoder, #string-de
coder&sync=false").to("mock:multiple-codec");

}i
}

or via spring.

372 Fuse Mediation Router Component Reference Version 2.6

<camelContext id="multiple-netty-codecs-context" xmlns="ht
tp://camel.apache.org/schema/spring">
<route>
<from uri="direct:multiple-codec"/>
<to uri="netty:tcp://localhost:5150?encoders=#encoders&ync=false"/>
</route>
<route>
<from uri="netty:tcp://localhost:5150?decoders=#length-decoder,#string-de
coder&ync=false"/>
<to uri="mock:multiple-codec"/>
</route>
</camelContext>

Closing Channel When Complete

When acting as a server you sometimes want to close the channel when, for example, a client conversion is
finished. You can do this by simply setting the endpoint option disconnect=true.

However you can also instruct Fuse Mediation Router on a per message basis as follows. To instruct Fuse
Mediation Router to close the channel, you should add a header with the key
CamelNettyCloseChannelwWhenComplete set to a boolean true value. For instance, the example below will
close the channel after it has written the bye message back to the client:

from("netty:tcp://localhost:8080").process(new Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);
// some condition which determines if we should close
if (close) {

exchange.getOut().setHeader (NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COM
PLETE, true);

}
)i

Adding custom channel pipeline factories to gain complete control over a
created pipeline

Available as of Camel 2.5

Custom channel pipelines provide complete control to the user over the handler/interceptor chain by inserting
custom handler(s), encoder(s) and decoders without having to specify them in the Netty Endpoint URL in a
very simple way.

Fuse Mediation Router Component Reference Version 2.6 373

Chapter 59. Netty

In order to add a custom pipeline, a custom channel pipeline factory must be created and registered with the
context through the context registry (JNDIRegistry,or the Spring ApplicationContextRegistry etc).

A custom pipeline factory must be constructed as follows
» A Producer linked channel pipeline factory must extend the abstract class, ClientPipelineFactory.
» A Consumer linked channel pipeline factory must extend the abstract class, ServerPipelineFactory.

» The classes can optionally override the getPipeline() method in order to insert custom handler(s),
encoder(s) and decoder(s). Not overriding the getPipeline () method creates a pipeline with no handlers,
encoders or decoders wired to the pipeline.

The example below shows how ServerChannel Pipeline factory may be created

public class SampleServerChannelPipelineFactory extends ServerPipelineFactory {
private int maxLineSize = 1024;
private boolean invoked;

public ChannelPipeline getPipeline() throws Exception {
invoked = true;

ChannelPipeline channelPipeline = Channels.pipeline();

channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
channelPipeline.addLast("decoder-DELIM", new DelimiterBasedFrameDecoder (maxLineSize,
true, Delimiters.lineDelimiter()));
channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
channelPipeline.addLast("handler", new ServerChannelHandler (consumer));

return channelPipeline;

}

public boolean isfactoryInvoked() {
return invoked;
}
1

The custom channel pipeline factory can then be added to the registry and instantiated/utilized on a camel
route as follows:

Registry registry = camelContext.getRegistry();
serverPipelineFactory = new TestServerChannelPipelineFactory();
registry.bind("spf", serverPipelineFactory);
context.addRoutes(new RouteBuilder() {
public void configure() {
String netty_ssl_endpoint =
"netty:tcp://localhost:51507?serverPipelineFactory=#spf";

374 Fuse Mediation Router Component Reference Version 2.6

String return_string =
"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

from(netty_ssl_endpoint)
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);
}
}

1

Fuse Mediation Router Component Reference Version 2.6 375

376 Fuse Mediation Router Component Reference Version 2.6

Chapter 60. NMR

NMR Component

The nmr component is an adapter to the Normalized Message Router (NMR) in ServiceMixl, which is intended
for use by Fuse Mediation Router applications deployed directly into the OSGi container. By contrast, the
JBI on page 259 component is intended for use by Fuse Mediation Router applications deployed into the
ServiceMix JBI container.

Installing

The NMR component is provided with Apache ServiceMix. It is not distributed with Fuse Mediation Router.
To install the NMR component in ServiceMix, enter the following command in the ServiceMix console window:

features install nmr

You also need to instantiate the NMR component. You can do this by editing your Spring configuration file,
META-INF/spring/*.xml, and adding the following bean instance:

<beans xmlns:osgi="http://www.springframework.org/schema/osgi" ... >
<bean id="nmr" class="org.apache.servicemix.camel.nmr.ServiceMixComponent">
<property name="nmr">
<osgi:reference interface="org.apache.servicemix.nmr.api.NMR" />
</property>
</bean>

</beéﬁé>

NMR consumer and producer endpoints
The following code:

from("nmr:MyServiceEndpoint")

Automatically exposes a new endpoint to the bus with endpoint name MyServiceEndpoint (see #URI-format).

When an NMR endpoint appears at the end of a route, for example:

to("nmr:MyServiceEndpoint")

The messages sent by this producer endpoint are sent to the already deployed JBI endpoint.

! http://servicemix.apache.org/home.html

Fuse Mediation Router Component Reference Version 2.6 377

http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html

Chapter 60. NMR

URI format

nmr :endpointName

URI Options

Option Default Value Description

synchronous false When this is set to true on a consumer endpoint, an incoming, synchronous
NMR Exchange will be handled on the sender's thread instead of being handled
on a new thread of the NMR endpoint's thread pool

Examples

from("nmr:MyServiceEndpoint")
from("nmr:MyServiceEndpoint?synchronous=true").to("nmr:AnotherEndpoint")

Using Stream bodies
If you are using a stream type as the message body, you should be aware that a stream is only capable of

being read once. So if you enable DEBUG logging, the body is usually logged and thus read. To deal with this,
Camel has a streamCaching option that can cache the stream, enabling you to read it multiple times.

from("nmr:MyEndpoint").streamCaching().to("xslt:transform.xsl", "bean:doSomething");

From Camel 1.5 onwards, the stream caching is default enabled, so it is not necessary to set the
streamCaching() option. In Camel 2.0 we store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be deleted.

378 Fuse Mediation Router Component Reference Version 2.6

Chapter 61. Pax-Logging

PaxLogging component
Available in Camel 2.6

The paxlogging component can be used in an OSGi environment to receive PaxLogging1 events and process
them.

Dependencies

Maven users need to add the following dependency to their pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-paxlogging</artifactId>
<version>${camel-version}</version>
</dependency>

where $\{camel-version\} must be replaced by the actual version of Camel (2.6.0 or higher).

URI format
paxlogging:appender

where appender is the name of the pax appender that need to be configured in the PaxLogging service
configuration.

URI options

‘Name Default value Description ‘

Message headers

‘Name Type Message Description‘

! http://wiki.ops4j.org/display/paxlogging/Pax+Logging

Fuse Mediation Router Component Reference Version 2.6 379

http://wiki.ops4j.org/display/paxlogging/Pax+Logging
http://wiki.ops4j.org/display/paxlogging/Pax+Logging

Chapter 61. Pax-Logging

Message body

The in message body will be set to the received PaxLoggingEvent.

Example usage

<route>
<from uri="paxlogging:camel"/>
<to uri="stream:out"/>
</route>

Configuration:

log4j.rootLogger=INFO, out, osgi:VmLogAppender, osgi:camel

380 Fuse Mediation Router Component Reference Version 2.6

Chapter 62. Pojo

Pojo Component
The pojo: component is now just an alias for the Bean on page 41 component.

Has been removed in Fuse Mediation Router 2.0.

Fuse Mediation Router Component Reference Version 2.6 381

382 Fuse Mediation Router Component Reference Version 2.6

Chapter 63. Printer

Printer Component
Available as of Fuse Mediation Router 2.1

The printer component provides a way to direct payloads on a route to a printer. Obviously the payload has
to be a formatted piece of payload in order for the component to appropriately print it. The objective is to be
able to direct specific payloads as jobs to a line printer in a Fuse Mediation Router flow.

This component only supports a producer endpoint.

The functionality allows for the payload to be printed on a default printer, named local, remote or wirelessly
linked printer using the javax printing API under the covers.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-printer</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format

Since the URI scheme for a printer has not been standardized (the nearest thing to a standard being the IETF
print standard) and therefore not uniformly applied by vendors, we have chosen "lpr" as the scheme.

lpr://localhost/default[?options]
lpr://remotehost:port/path/to/printer[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

’ Name Default Value Description

Fuse Mediation Router Component Reference Version 2.6 383

Chapter 63. Printer

mediaSize MediaSizeName.NA LETTER Sets the stationary as defined by enumeration settings in the
javax.print.attribute.standard.MediaSizeName API* API. The default
setting is to use North American Letter sized stationary

copies 1 Sets number of copies based on the
javax.print.attribute.standard.Copies API

sides Sides.ONE_SIDED Sets one sided or two sided printing based on the
javax.print.attribute.standard.Sides API

flavor DocFlavor.BYTE_ARRAY Sets DocFlavor based on the javax.print.DocFlavor API

mimeType AUTOSENSE Sets mimeTypes supported by the javax.print.DocFlavor API

Printer Producer

Sending data to the printer is very straightforward and involves creating a producer endpoint that can be sent
message exchanges on in route.

Example 1: Printing text based payloads on a Default printer using letter
stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)

.to("lpr://localhost/default?copies=2" +
"&flavor=DocFlavor.INPUT_STREAM&" +
"&mimeType=AUTOSENSE" +
"&mediaSize=na-letter" +
"&sides=one-sided")

33

Example 2: Printing GIF based payloads on a Remote printer using A4
stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from(file://inputdir/?delete=true)
.to("lpr://remotehost/sales/salesprinter" +
"?copies=2&sides=one-sided" +
"&mimeType=GIF&mediaSize=iso-a4" +
"&flavor=DocFlavor .INPUT_STREAM")
1

! http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/MediaSizeName.html

384 Fuse Mediation Router Component Reference Version 2.6

http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/MediaSizeName.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/MediaSizeName.html

Example 3: Printing JPEG based payloads on a Remote printer using Japanese
Postcard stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from(file://inputdir/?delete=true)
.to("1lpr://remotehost/sales/salesprinter" +
"?copies=2&sides=one-sided" +
"&mimeType=JPEG" +
"&mediaSize=japanese-postcard" +
"&flavor=DocFlavor .INPUT_STREAM")
1Y

Fuse Mediation Router Component Reference Version 2.6 385

386 Fuse Mediation Router Component Reference Version 2.6

Chapter 64. Properties

Properties Component

Available as of Fuse Mediation Router 2.3

URI format

properties:key[?options]

Where key is the key for the property to lookup

Options

Name Type Default Description

cache boolean true Whether or not to cache loaded properties.

locations String null A list of locations to load properties. You can use comma to separate multiple

locations. This option will override any default locations and only use the

locations from this option.

See also

» Jasypt on page 253 for using encrypted values (for example, passwords) in the properties

Fuse Mediation Router Component Reference Version 2.6

387

388 Fuse Mediation Router Component Reference Version 2.6

Chapter 65. Quartz

Quartz Component

The quartz: component provides a scheduled delivery of messages using the Quartz scheduler®. Each endpoint
represents a different timer (in Quartz terms, a Trigger and JobDetail).

URI format

quartz://timerName?options
quartz://groupName/timerName?options

quartz://groupName/timerName/cronExpression (@deprecated)
quartz://groupName/timerName/?cron=expression (Fuse Mediation Router 2.0)
quartz://timerName?cron=expression (Fuse Mediation Router 2.0)

The component uses either a CronTrigger or a SimpleTrigger. If no cron expression is provided, the
component uses a simple trigger. If no groupName is provided, the quartz component uses the Camel group
name.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Parameter Default Description

cron None Specifies a cron expression (not compatible with the trigger.* or
job.* options).

trigger.repeatCount 0 SimpleTrigger: How many times should the timer repeat?

trigger.repeatInterval 0 SimpleTrigger: The amount of time in milliseconds between repeated
triggers.

job.name null Sets the job name.

job. _XXX_ null Sets the job option with the _XXX_ setter name.

trigger. XXX_ null Sets the trigger option with the _XXX_ setter name.

stateful false Uses a Quartz StatefulJob instead of the default job.

fireNow false New to Camel 2.2.0, if it is true will fire the trigger when the route is
start when using SimpleTrigger.

For example, the following routing rule will fire two timer events to the mock: results endpoint:

! http://www.opensymphony.com/quartz/

Fuse Mediation Router Component Reference Version 2.6 389

http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/

Chapter 65. Quartz

from("quartz://myGroup/myTimerName?trigger.repeatInterval=2&trigger.repeat
Count=1").routeId("myRoute").to("mock:result");

When using a Stateful.]obz, the JobDataMap3 is re-persisted after every execution of the job, thus preserving
state for the next execution.

Configuring quartz.properties file

By default Quartz will look for a quartz.properties file in the root of the classpath. If you are using WAR
deployments this means just drop the quartz.properties in WEB-INF/classes.

However the Camel Quartz on page 389 component also allows you to configure properties:

Parameter Default Type Description

properties null Properties Camel 2.4: You can configure a java.util.Propoperties
instance.

propertiesFile null String Camel 2.4: File name of the properties to load from the classpath

To do this you can configure this in Spring XML as follows
<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">

<property name="propertiesFile" value="com/mycompany/myquartz.properties"/>
</bean>

Starting the Quartz scheduler
Available as of Camel 2.4

The Quartz on page 389 component offers an option to let the Quartz scheduler be started delayed, or not auto
started at all.

Parameter Default Type Description
startDelayedSeconds 0 int Camel 2.4: Seconds to wait before starting the quartz scheduler.

autoStartScheduler true boolean Camel 2.4: Whether or not the scheduler should be auto started.

To do this you can configure this in Spring XML as follows

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
<property name="startDelayedSeconds" value="5"/>
</bean>

2 http://www.quartz-scheduler.org/docs/api/org/quartz/StatefulJob.html
8 http://www.quartz-scheduler.org/docs/api/org/quartz/JobDataMap.html

390 Fuse Mediation Router Component Reference Version 2.6

http://www.quartz-scheduler.org/docs/api/org/quartz/StatefulJob.html
http://www.quartz-scheduler.org/docs/api/org/quartz/JobDataMap.html
http://www.quartz-scheduler.org/docs/api/org/quartz/StatefulJob.html
http://www.quartz-scheduler.org/docs/api/org/quartz/JobDataMap.html

Clustering
Available as of Camel 2.4

If you use Quartz in clustered mode, e.g. the JobStore is clustered. Then from Camel 2.4 onwards the
Quartz on page 389 component will not pause/remove triggers when a node is being stopped/shutdown. This
allows the trigger to keep running on the other nodes in the cluster.

When running in clustered node, no checking is done to ensure unique job name/group for endpoints.

Message Headers

Fuse Mediation Router adds the getters from the Quartz Execution Context as header values. The following
headers are added: calendar, fireTime, jobDetail, jobInstance, jobRuntTime, mergedJobDataMap,
nextFireTime, previousFireTime, refireCount, result, scheduledFireTime, scheduler, trigger,
triggerName, triggerGroup.

The fireTime header contains the java.util.Date of when the exchange was fired.

Using Cron Triggers

Avaiable as of Fuse Mediation Router 2.0 Quartz supports Cron-like expressions4 for specifying timers in
a handy format. You can use these expressions in the cron URI parameter; thougsh to preserve valid URI
encoding we allow + to be used instead of spaces. Quartz provides a little tutorial™ on how to use cron
expressions.

For example the following will fire a message every five minutes starting at 12pm (noon) to 6pm on weekdays:

from("quartz://myGroup/myTimerName?cron=0+0/5+12-18+?+*+MON-FRI").to("act
ivemqg:Totally.Rocks");

which is equivalent to using the cron expression

0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve valid URI syntax:

4 http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
5 http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html

Fuse Mediation Router Component Reference Version 2.6 391

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html

Chapter 65. Quartz

URI Character Cron character

\+ Space

Using Cron Triggers in Fuse Mediation Router 1.x

@deprecated Quartz supports Cron-like expressions6 for specifying timers in a handy format. You can use
these expressions in the URI; though to preserve valid URI encoding we allow / to be used instead of spaces
and $ to be used instead of 2.

For example, the following endpoint URI will fire a message at 12pm (noon) every day
from("quartz://myGroup/myTimerName/0/0/12/*/*/$").to("activemqg:Totally.Rocks");
which is equivalent to using the cron expression

00 12 * * 2

The following table shows the URI character encodings we use to preserve valid URI syntax:

URI Character Cron character
/ Space

$?

See also:

» Timer on page 507

6 http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html

392 Fuse Mediation Router Component Reference Version 2.6

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html

Chapter 66. Queue

Queue Component

© Deprecated

To avoid confusion with IMS queues, this component is now deprecated in 1.1 onwards. Please use the
SEDA on page 429 component instead

The queue: component provides asynchronous SEDA! behaviour so that messages are exchanged on a
BIockingQueue2 and consumers are invoked in a seperate thread pool to the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate across CamelContext
instances such as to communicate across web applications, see the VM on page 519 component.

Note also that this component has nothing to do with JIMS on page 293, if you want a distributed SEA then try
using either JMS on page 293 or ActiveMQ on page 25 or even MINA on page 349

URI format
queue: someName

Where someName can be any string to uniquely identify the endpoint within the current CamelContext

! http://www.eecs.harvard.edu/~mdw/proj/seda/
2 http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html

Fuse Mediation Router Component Reference Version 2.6 393

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
CamelContext
CamelContext
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html

394 Fuse Mediation Router Component Reference Version 2.6

Chapter 67. Quickfix

QuickFIX/J Component
Available as of Camel 2.0

The quickfix component adapts the QuickFIX/J1 FIX engine for using in Camel . This component uses the
standard Financial Interchange (FIX) protocol2 for message transport.

#* Previous Versions

The quickfix component was rewritten for Camel 2.5. For information about using the quickfix component
prior to 2.5 see the documentation section below.

Maven users will need to add the following dependency to their pom. xm1 for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-quickfix</artifactId>
<version>x.Xx.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format
quickfix:configFile[?sessionID=sessionID]

The configFile is the name of the QuickFIX/J configuration to use for the FIX engine (located as a resource
found in your classpath). The optional sessionID identifies a specific FIX session. The format of the sessionID
is:

(BeginString): (SenderCompID)[/(SenderSubID)[/(SenderLocationID)]]->(TargetCompID)[/(Target
SubID)[/(TargetLocationID)]]

Example URIs:
quickfix:config.cfg

quickfix:config.cfg?sessionID=FIX.4.2:MyTradingCompany->SomeExchange

L http://www.quickfixj.org/
2 http://www.fixprotocol.org/

Fuse Mediation Router Component Reference Version 2.6 395

http://www.quickfixj.org/
http://www.fixprotocol.org/
http://www.quickfixj.org/
http://www.fixprotocol.org/

Chapter 67. Quickfix

Endpoints

FIX sessions are endpoints for the quickfix component. An endpoint URI may specify a single session or all
sessions managed by a specific QuickFIX/J engine. Typical applications will use only one FIX engine but
advanced users may create multiple FIX engines by referencing different configuration files in quickfix
component endpoint URIs.

When a consumer does not include a session ID in the endpoint URI, it will receive exchanges for all sessions
managed by the FIX engine associated with the configuration file specified in the URI. If a producer does not
specify a session in the endpoint URI then it must include the session-related fields in the FIX message being
sent. If a session is specified in the URI then the component will automatically inject the session-related fields
into the FIX message.

Exchange Format

The exchange headers include information to help with exchange filtering, routing and other processing. The
following headers are available:

Header Name Description

EventCategory One of AppMessageReceived, AppMessageSent, AdminMessageReceived,
AdminMessageSent, SessionCreated, SessionLogon, SessionLogoff. See the
QuickfixjEventCategory enum.

SessionID The FIX message Session|D
MessageType The FIX MsgType tag value

DataDictionary Specifies a data dictionary to used for parsing an incoming message. Can be an instance
of a data dictionary or a resource path for a QuickFIX/J data dictionary file

The DataDictionary header is useful if string messages are being received and need to be parsed in a route.
QuickFIX/J requires a data dictionary to parse certain types of messages (with repeating groups, for example).
By injecting a DataDictionary header in the route after receiving a message string, the FIX engine can properly
parse the data.

QuickFIX/J Configuration Extensions

When using QuickFIX/J directly, one typically writes code to create instances of logging adapters, message
stores and communication connectors. The quickfix component will automatically create instances of these
classes based on information in the configuration file. It also provides defaults for many of the common required
settings and adds additional capabilities (like the ability to activate JMX support).

The following sections describe how the quickfix component processes the QuickFIX/J configuration. For

comprehensive information about QuickFIX/J configuration, see the QFJ user manual”.
3 http://www.quickfixj.org/quickfixj/lusermanual/usage/configuration.htmi

396 Fuse Mediation Router Component Reference Version 2.6

http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html
http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html

Communication Connectors

When the component detects an initiator or acceptor session setting in the QuickFIX/J configuration file it will
automatically create the corresponding initiator and/or acceptor connector. These settings can be in the default
or in a specific session section of the configuration file.

Session Setting Component Action

ConnectionType=initiator Create an initiator connector

ConnectionType=acceptor Create an acceptor connector

The threading model for the QuickFIX/J session connectors can also be specified. These settings affect all
sessions in the configuration file and must be placed in the settings default section.

Default/Global Setting Component Action
ThreadModel=ThreadPerConnector Use SocketInitiator or SocketAcceptor (default)

ThreadModel=ThreadPerSession Use ThreadedSocketInitiator or ThreadedSocketAcceptor

Logging

The QuickFIX/J logger implementation can be specified by including the following settings in the default section
of the configuration file. The ScreenLog is the default if none of the following settings are present in the
configuration. It's an error to include settings that imply more than one log implementation.

Default/Global Setting Component Action
ScreenLogShowEvents Use a ScreenLog
ScreenLogShowIncoming Use a ScreenLog

ScreenLogShowOutgoing Use a ScreenlLog

SLF4J3* Camel 2.6+. Use a SLF4JLog. Any of the SLF4J settings will cause this log to be
used.

FileLogPath Use a FilelLog

JdbcDriver Use a JdbcLog

Message Store

The QuickFIX/J message store implementation can be specified by including the following settings in the
default section of the configuration file. The MemoryStore is the default if none of the following settings are

Fuse Mediation Router Component Reference Version 2.6 397

Chapter 67. Quickfix

present in the configuration. It's an error to include settings that imply more than one message store
implementation.

Default/Global Setting ~ Component Action
JdbcDriver Use a JdbcStore
FileStorePath Use a FileStore

SleepycatDatabaseDir Use a SleepcatStore

Message Factory

A message factory is used to construct domain objects from raw FIX messages. The default message factory
is DefaultMessageFactory. However, advanced applications may require a custom message factory. This
can be set on the QuickFIX/J component.

JMX

Default/Global Setting Component Action
UseJmx if Y, then enable QuickFIX/J IMX

Other Defaults

The component provides some default settings for what are normally required settings in QuickFIX/J configuration
files. SessionStartTime and SessionEndTime default to "00:00:00", meaning the session will not be
automatically started and stopped. The HeartBtInt (heartbeat interval) defaults to 30 seconds.

Minimal Initiator Configuration Example

[SESSION]
ConnectionType=initiator
BeginString=FIX.4.4
SenderCompID=YOUR_SENDER
TargetCompID=YOUR_TARGET

Spring Configuration
Camel 2.6+
The QuickFIX/J component includes a Spring FactoryBean for configuring the session settings within a Spring

context. A type converter for QuickFIX/J session ID strings is also included. The following example shows a
simple configuration of an acceptor and initiator session with default settings for both sessions.

398 Fuse Mediation Router Component Reference Version 2.6

<!-- camel route -->
<camelContext id="quickfixjContext" xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="quickfix:example"/>

<filter>

<simple>${in.header.EventCategory} == 'AppMessageReceived'</simple>
<to uri="log:test"/>

</filter>

</route>

</camelContext>

<!-- quickfix component -->

<bean id="quickfix" class="org.apache.camel.component.quickfixj.QuickfixjComponent">

<property name="engineSettings">

<util:map>

<entry key="quickfix:example" value-ref="quickfixjSettings"/>

</util:map>

</property>

<property name="messageFactory">

<bean class="org.apache.camel.component.quickfixj.QuickfixjSpringTest.CustomMessage
Factory"/>

</property>

</bean>

<!-- quickfix settings -->

<bean id="quickfixjSettings"
class="org.apache.camel.component.quickfixj.QuickfixjSettingsFactory">
<property name="defaultSettings">

<util:map>

<entry key="SocketConnectProtocol" value="VM_PIPE"/>
<entry key="SocketAcceptProtocol" value="VM_PIPE"/>
<entry key="UseDataDictionary" value="N"/>
</util:map>

</property>

<property name="sessionSettings">

<util:map>

<entry key="FIX.4.2:INITIATOR->ACCEPTOR">
<util:map>

<entry key="ConnectionType" value="initiator"/>
<entry key="SocketConnectHost" value="localhost"/>
<entry key="SocketConnectPort" value="5000"/>
</util:map>

</entry>

<entry key="FIX.4.2:ACCEPTOR->INITIATOR">
<util:map>

<entry key="ConnectionType" value="acceptor"/>
<entry key="SocketAcceptPort" value="5000"/>
</util:map>

Fuse Mediation Router Component Reference Version 2.6 399

Chapter 67. Quickfix

</entry>
</util:map>
</property>
</bean>

Exception handling

QuickFIX/J behavior can be modified if certain exceptions are thrown during processing of a message. If a
RejectLogon exception is thrown while processing an incoming logon administrative message, then the logon
will be rejected.

Normally, QuickFIX/J handles the logon process automatically. However, sometimes an outgoing logon message
must be modified to include credentials required by a FIX counterparty. If the FIX logon message body is
modified when sending a logon message (EventCategory={{AdminMessageSent}} the modified message will
be sent to the counterparty. It is important that the outgoing logon message is being processed synchronously.
If it is processed asynchronously (on another thread), the FIX engine will immediately send the unmodified
outgoing message when it's callback method returns.

FIX Sequence Number Management

If an application exception is thrown during synchronous exchange processing, this will cause QuickFIX/J to
not increment incoming FIX message sequence numbers and will cause a resend of the counterparty message.
This FIX protocol behavior is primarily intended to handle transport errors rather than application errors. There
are risks associated with using this mechanism to handle application errors. The primary risk is that the message
will repeatedly cause application errors each time it's re-received. A better solution is to persist the incoming
message (database, JMS queue) immediately before processing it. This also allows the application to process
messages asynchronously without losing messages when errors occur.

Although it's possible to send messages to a FIX session before it's logged on (the messages will be sent at
logon time), it is usually a better practice to wait until the session is logged on. This eliminates the required
sequence number resynchronization steps at logon. Waiting for session logon can be done by setting up a
route that processes the SessionLogon event category and signals the application to start sending messages.

See the FIX protocol specifications and the QuickFIX/J documentation for more details about FIX sequence
number management.

Route Examples
Several examples are included in the QuickFIX/J component source code (test subdirectories). One of these

examples implements a trival trade excecution simulation. The example defines an application component
that uses the URI scheme "trade-executor".

400 Fuse Mediation Router Component Reference Version 2.6

The following route receives messages for the trade executor session and passes application messages to
the trade executor component.
from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:MARKET->TRADER").

filter (header (QuickfixjEndpoint.EVENT_CATEGORY_KEY).isEqualTo(QuickfixjEventCat
egory.AppMessageReceived)).

to("trade-executor:market");

The trade executor component generates messages that are routed back to the trade session. The session
ID must be set in the FIX message itself since no session ID is specified in the endpoint URI.

from("trade-executor:market").to("quickfix:examples/inprocess.cfg");

The trader session consumes execution report messages from the market and processes them.

from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:TRADER->MARKET").
filter (header (QuickfixjEndpoint.MESSAGE_TYPE_KEY).isEqualTo(MsgType.EXECUTION_REPORT)).

bean(new MyTradeExecutionProcessor());

QuickFIX/J Component Prior to Camel 2.5

Available since Camel 2.0

The quickfix component is an implementation of the QuickFIX/J4 engine for Java . This engine allows to
connect to a FIX server which is used to exchange financial messages according to FIX protocol5 standard.

Note: The component can be used to send/receives messages to a FIX server.

URI format

quickfix-server:config file
quickfix-client:config file

Where config file is the location (in your classpath) of the quickfix configuration file used to configure the
engine at the startup.

Note: Information about parameters available for quickfix can be found on QuickFIX/J6 web site.

The quickfix-server endpoint must be used to receive from FIX server FIX messages and quickfix-client endpoint
in the case that you want to send messages to a FIX gateway.

4 http://www.quickfixj.org/
http://www.fixprotocol.org/
http:/iwww.quickfixj.org/quickfixj/usermanual/usage/configuration.html

Fuse Mediation Router Component Reference Version 2.6 401

http://www.quickfixj.org/
http://www.fixprotocol.org/
http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html
http://www.quickfixj.org/
http://www.fixprotocol.org/
http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html

Chapter 67. Quickfix

Exchange data format

The QuickFIX/J engine is like CXF component a messaging bus using MINA as protocol layer to create the
socket connection with the FIX engine gateway.

When QuickFIX/J engine receives a message, then it create a QuickFix.Message instance which is next
received by the camel endpoint. This object is a 'mapping object’ created from a FIX message formatted initially
as a collection of key value pairs data. You can use this object or you can use the method 'toString' to retrieve
the original FIX message.

Note: Alternatively, you can use camel bindy dataformat’ to transform the FIX message into your own java
POJO

When a message must be send to QuickFix, then you must create a QuickFix.Message instance.

Samples

Direction : to FIX gateway

<route>

<from uri="activemq:queue:fix"/>

<bean ref="fixService" method="createFixMessage" /> // bean method in charge to transform
message into a QuickFix.Message

<to uri="quickfix-client:META-INF/quickfix/client.cfg" /> // Quickfix engine who will
send the FIX messages to the gateway
</route>

Direction : from FIX gateway

<route>

<from uri="quickfix-server:META-INF/quickfix/server.cfg"/> // QuickFix engine who will
receive the message from FIX gateway

<bean ref="fixService" method="parseFixMessage" /> // bean method parsing the QuickFix.Mes
sage

<to uri="uri="activemq:queue:fix"/>" />
</route>

7 bindy

402 Fuse Mediation Router Component Reference Version 2.6

bindy
bindy

Chapter 68. Ref

Ref Component

The ref: component is used for lookup of existing endpoints bound in the Registry.

URI format
ref:someName

Where someName is the name of an endpoint in the Registry (usually, but not always, the Spring registry). If
you are using the Spring registry, someName would be the bean ID of an endpoint in the Spring registry.

Runtime lookup

This component can be used when you need dynamic discovery of endpoints in the Registry where you can
compute the URI at runtime. Then you can look up the endpoint using the following code:

// lookup the endpoint
String myEndpointRef = "bigspenderOrder";
Endpoint endpoint = context.getEndpoint("ref:" + myEndpointRef);

Producer producer = endpoint.createProducer();
Exchange exchange = producer.createExchange();
exchange.getIn().setBody(payloadToSend);

// send the exchange
producer.process(exchange);

And you could have a list of endpoints defined in the Registry such as:
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<endpoint id="normalOrder" uri="activemq:order.slow"/>

<endpoint id="bigspenderOrder" uri="activemq:order.high"/>

</camelContext>

Sample

In the sample below we use the ref: in the URI to reference the endpoint with the spring ID, endpoint2:
<bean id="mybean" class="org.apache.camel.spring.example.DummyBean">

<property name="endpoint" ref="endpoint1"/>
</bean>

Fuse Mediation Router Component Reference Version 2.6 403

Registry
Registry
Registry
Registry

Chapter 68. Ref

<camelContext id="camel" xmlns="http://camel.ap
<jmxAgent id="agent" disabled="true"/>
<endpoint id="endpointl" uri="direct:start"/>
<endpoint id="endpoint2" uri="mock:end"/>

<route>
<from ref="endpoint1"/>
<to uri="ref:endpoint2"/>
</route>
</camelContext>

ache.org/schema/spring">

You could, of course, have used the ref attribute instead:

<to ref="endpoint2"/>

Which is the more common way to write it.

404

Fuse Mediation Router Component Reference Version 2.6

Chapter 69. Restlet

Restlet Component

The Restlet component provides Restlet’ based endpoints2 for consuming and producing RESTful resources.

URI format
restlet:restletUrl[?options]

Format of restletUrl:

protocol://hostname[:port][/resourcePattern]

Restletspromotes decoupling of protocol and application concerns. The reference implementation of Restlet
Engine” supports a number of protocols. However, we have tested the HTTP protocol only. The default port
is port 80. We do not automatically switch default port based on the protocol yet.

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Name Default Value

headerFilterStrategy=#refName An instance of
(2.x or later) RestletHeaderFilterStrategy

restletBindingRef (1.x), An instance of
DefaultRestletBinding

restletBinding (2.x or later), An instance of
restletBinding=#refName. DefaultRestletBinding
restletMethod GET

! http://www.restlet.org
2 Endpoint
http://www.noelios.com/products/restlet-engine

Fuse Mediation Router Component Reference Version 2.6

Description

Use the # notation
(headerFilterStrategy=#refName)
to reference a header filter strategy in
the Camel Registry. The strategy will
be plugged into the restlet binding if it
is HeaderFilterStrategyAware.

The bean ID of a RestletBinding
object in the Camel Registry.

The bean ID of a RestletBinding
object in the Camel Registry.

On a producer endpoint, specifies the
request method to use. On a
consumer endpoint, specifies that the
endpoint consumes only
restletMethod requests. The string

405

http://www.restlet.org
Endpoint
http://www.noelios.com/products/restlet-engine
http://www.noelios.com/products/restlet-engine
http://www.restlet.org
Endpoint
http://www.noelios.com/products/restlet-engine

Chapter 69. Restlet

value is converted to
org.restlet.data.Method4 by the
Method.valueOf (String) method.

restletMethod GET On a producer endpoint, specifies the
request method to use. On a
consumer endpoint, specifies that the
endpoint consumes only
restletMethod requests. The string
value is converted to
org.restlet.data.Method5 by the
Method.valueOf(String) method.

restletMethods (2.x or later) None Consumer only Specify one or more
methods separated by commas (e.qg.
restletMethods=post, put) to be
serviced by a restlet consumer
endpoint. If both restletMethod and
restletMethods options are
specified, the restletMethod setting

is ignored.
restletRealmRef (1.x), null The bean ID of the Realm Map in the
Camel Registry.
restletUriPatterns=#refName None Consumer only Specify one ore more
(2.x or later) URI templates to be serviced by a

restlet consumer endpoint, using the
notation to reference a
List<String>in the Camel Registry.
If a URI pattern has been defined in
the endpoint URI, both the URI pattern
defined in the endpoint and the
restletUriPatterns option will be

honored.
throwExceptionOnFailure (2.6 or true Producer only Throws exception on a
later) producer failure.
Fuse Mediation Router 1.x Message Headers
Name Type Description

4 http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html
5 http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html

406 Fuse Mediation Router Component Reference Version 2.6

http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html
http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html
http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html
http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html

org.

org.

org.

org.

org.

org.

apache.camel.

apache.camel.

apache.camel.

apache.camel.

apache.camel.

restlet.*

restlet.auth.login String Login name for basic authentication. It is set on

restlet.auth.password String Password name for basic authentication. It is set

restlet.mediaType String Specifies the content type, which can be set on

restlet.queryString String The query string of the request URI. It is set on

restlet.responseCode String or The response code can be set on the OUT

the IN message by the application and gets filtered
before the restlet request header by Fuse
Mediation Router.

on the IN message by the application and gets
filtered before the restlet request header by Fuse
Mediation Router.

the OUT message by the application/processor.
The value is the content - type of the response
message. If this header is not set, the
content-type is set based on the object type of
the OUT message body.

the IN message by DefaultRestletBinding
when the restlet component receives a request.

Integer message by the application/processor. The value
is the response code of the response message.
If this header is not set, the response code is set
by the restlet runtime engine.

Attributes of a restlet message that get propagated
to Fuse Mediation Router IN headers.

Fuse Mediation Router 2.0 Message Headers

Name

CamelContentType

CamelHttpMethod

Type
String

String

Description

Specifies the content type, which can be set on the OUT message
by the application/processor. The value is the content - type of the
response message. If this header is not set, the content-type is
based on the object type of the OUT message body. In Camel 2.3
onward, if the Content-Type header is specified in the Camel IN
message, the value of the header determine the content type for
the Restlet request message.nbsp; Otherwise, it is defaulted to
"application/x-www-form-urlencoded'. Prior to release 2.3, it is not
possible to change the request content type default.

The HTTP request method. This is set in the IN message header.

Fuse Mediation Router Component Reference Version 2.6 407

Chapter 69. Restlet

CamelHttpQuery String The query string of the request URI. It is set on the IN message by
DefaultRestletBinding when the restlet component receives a
request.

CamelHttpResponseCode String or The response code can be set on the OUT message by the
Integer application/processor. The value is the response code of the
response message. If this header is not set, the response code is
set by the restlet runtime engine.

CamelHttpUri String The HTTP request URI. This is set in the IN message header.

CamelRestletlLogin String Login name for basic authentication. It is set on the IN message by
the application and gets filtered before the restlet request header
by Fuse Mediation Router.

CamelRestletPassword String Password name for basic authentication. It is set on the IN message
by the application and gets filtered before the restlet request header
by Fuse Mediation Router.

org.restlet.* Attributes of a Restlet message that get propagated to Fuse
Mediation Router IN headers.

Message Body

Fuse Mediation Router will store the restlet response from the external server on the OUT body. All headers
from the IN message will be copied to the OUT message, so that headers are preserved during routing.

Restlet Endpoint with Authentication

The following route starts a restlet consumer endpoint that listens for POST requests on http://localhost:8080
® The processor creates a response that echoes the request body and the value of the id header.

from("restlet:http://localhost:9080/securedOrders?restletMethod=post&restletRealm=#realm").pro
cess(new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(
"received [" + exchange.getIn().getBody()
+ "] as an order id = "
+ exchange.getIn().getHeader("id"));
3
1)

The restletRealm setting (in Fuse Mediation Router 2.x, use the # notation, thatis, rest1letRealm=#refName)
in the URI query is used to look up a Realm Map in the registry. If this option is specified, the restlet consumer
uses the information to authenticate user logins. Only authenticated requests can access the resources. In

6 http://localhost:8080

408 Fuse Mediation Router Component Reference Version 2.6

http://localhost:8080
http://localhost:8080
http://localhost:8080

this sample, we create a Spring application context that serves as a registry. The bean ID of the Realm Map
should match the restletRealmRef.

<util:map id="realm">
<entry key="admin" value="foo" />

<entry key="bar" value="foo" />
</util:map>

The following sample starts a direct endpoint that sends requests to the server on http://localhost:8080 !
(that is, our restlet consumer endpoint).

// Note: restletMethod and restletRealmRef are stripped

// from the query before a request is sent as they are

// only processed by Camel.
from("direct:start-auth").to("restlet:http://localhost:9080/securedOrders?restletMeth
od=post");

That is all we need. We are ready to send a request and try out the restlet component:
final String id = "89531";

Map<String, Object> headers = new HashMap<String, Object>();
headers.put(RestletConstants.RESTLET_LOGIN, "admin");
headers.put(RestletConstants.RESTLET_PASSWORD, "foo");

headers.put("id", id);

String response = (String) template.requestBodyAndHeaders("direct:start-auth",
"<order foo='1'/>", headers);

The sample client sends a request to the direct:start-auth endpoint with the following headers:
» CamelRestletLogin (used internally by Fuse Mediation Router)
e CamelRestletPassword (used internally by Fuse Mediation Router)

» id (application header)

org.apache.camel.restlet.auth.login and org.apache.camel.restlet.auth.password will not be
propagated as Restlet header.

The sample client gets a response like the following:

7 http://localhost:8080

Fuse Mediation Router Component Reference Version 2.6 409

http://localhost:8080
http://localhost:8080
http://localhost:8080

Chapter 69. Restlet

received [<order foo='1'/>] as an order id = 89531

Single restlet endpoint to service multiple methods and URI templates (2.0
or later)

It is possible to create a single route to service multiple HTTP methods using the restletMethods option.
This snippet also shows how to retrieve the request method from the header:

from("restlet:http://localhost:9080/users/{username}?restletMethods=post, get")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
// echo the method
exchange.getOut().setBody(exchange.getIn().getHeader (Exchange.HTTP_METHOD,
String.class));

}
1)

In addition to servicing multiple methods, the next snippet shows how to create an endpoint that supports
multiple URI templates using the restletUriPatterns option. The request URI is available in the header of
the IN message as well. If a URI pattern has been defined in the endpoint URI (which is not the case in this
sample), both the URI pattern defined in the endpoint and the restletUriPatterns option will be honored.

from("restlet:http://localhost:9080?restletMethods=post, get&restletUriPatterns=#uriTemplates")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {
// echo the method
String uri = exchange.getIn().getHeader (Exchange.HTTP_URI, String.class);
String out = exchange.getIn().getHeader (Exchange.HTTP_METHOD, String.class);
if ("http://localhost:9080/users/homer".equals(uri)) {
exchange.getOut().setBody(out + " " + exchange.getIn().getHeader("username",
String.class));
} else if ("http://localhost:9080/atom/collection/foo/component/bar".equals(uri))
{
exchange.getOut().setBody(out + " " + exchange.getIn().getHeader("id",
String.class)
+ " " + exchange.getIn().getHeader("cid",
String.class));

3

}
1)

The restletUriPatterns=#uriTemplates option references the List<String> bean defined in the Spring
XML configuration.

410 Fuse Mediation Router Component Reference Version 2.6

<util:list id="uriTemplates">
<value>/users/{username}</value>
<value>/atom/collection/{id}/component/{cid}</value>
</util:list>

Fuse Mediation Router Component Reference Version 2.6 411

412 Fuse Mediation Router Component Reference Version 2.6

Chapter 70. RMI

RMI Component
The rmi: component binds PojoExchangesl to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply regarding what methods can be invoked. This
component supports only PojoExchanges2 that carry a method invocation from an interface that extends the
Remote® interface. All parameters in the method should be either Serializable® or Remote objects.

URI format
rmi://rmi-regisitry-host:rmi-registry-port/registry-path[?options]
For example:

rmi://localhost:1099/path/to/service

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Name Default Value Description

method null As of Fuse Mediation Router 1.3, you can set the name of the method to invoke.
Using

To call out to an existing RMI service registered in an RMI registry, create a route similar to the following:
from("pojo:foo").to("rmi://localhost:1099/f00");
To bind an existing camel processor or service in an RMI registry, define an RMI endpoint as follows:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Note that when binding an RMI consumer endpoint, you must specify the Remote interfaces exposed.

! http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/javalio/Serializable.html

Fuse Mediation Router Component Reference Version 2.6 413

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

414 Fuse Mediation Router Component Reference Version 2.6

Chapter 71. Routebox

Routebox Component
Available as of Camel 2.6

The routebox component enables the creation of specialized endpoints that offer encapsulation and a strategy
based indirection service to a collection of camel routes hosted in an automatically created or user injected
camel context.

Routebox endpoints are camel endpoints that may be invoked directly on camel routes. The routebox endpoint
performs the following key functions * encapsulation - acts as a blackbox, hosting a collection of camel routes
stored in an inner camel context. The inner context is fully under the control of the routebox component and
is JVM bound. * strategy based indirection - direct payloads sent to the routebox endpoint along a camel route
to specific inner routes based on a user defined internal routing strategy or a dispatch map. * exchange
propagation - forward exchanges modified by the routebox endpoint to the next segment of the camel route.

The routebox component supports both consumer and producer endpoints.

Producer endpoints are of two flavors * Producers that send or dispatch incoming requests to a external
routebox consumer endpoint * Producers that directly invoke routes in an internal embedded camel context
thereby not sending requests to an external consumer.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-routebox</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

The need for a Camel Routebox endpoint

The routebox component is designed to ease integration in complex environments needing * a large collection
of routes and * involving a wide set of endpoint technologies needing integration in different ways

In such environments, it is often necessary to craft an integration solution by creating a sense of layering
among camel routes effectively organizing them into * Coarse grained or higher level routes - aggregated
collection of inner or lower level routes exposed as Routebox endpoints that represent an integration focus
area. For example ||Focus Areal|Coarse grained Route Examples|| |[Department Focus|HR routes, Sales routes

Fuse Mediation Router Component Reference Version 2.6 415

Chapter 71. Routebox

etc| |Supply chain & B2B Focus|Shipping routes, Fulfillment routes, 3rd party services etc| |Technology
Focus|Database routes, JMS routes, Scheduled batch routes etc| * Fine grained routes - routes that execute
a singular and specific business and/or integration pattern.

Requests sent to Routebox endpoints on coarse grained routes can then delegate requests to inner fine grained
routes to achieve a specific integration objective, collect the final inner result, and continue to progress to the
next step along the coarse-grained route.

URI format

routebox:routeboxname[?options]

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Name

dispatchStrategy

dispatchMap

innerContext

innerRegistry

routeBuilders

416

Default
Value

null

null

auto
created

null

empty
List

Description

A string representing a key in the Camel Registry matching an object value
implementing the interface
org.apache.camel.component.routebox.strategy. RouteboxDispatchStrategy

A string representing a key in the Camel Registry matching an object value
of the type HashMap<String, String>. The HashMap key should contain strings
that can be matched against the value set for the exchange header
ROUTE_DISPATCH_KEY. The HashMap value should contain inner route
consumer URI's to which requests should be directed.

A string representing a key in the Camel Registry matching an object value
of the type org.apache.camel.CamelContext. If a CamelContext is not provided
by the user a CamelContext is automatically created for deployment of inner
routes.

A string representing a key in the Camel Registry matching an object value
that implements the interface org.apache.camel.spi.Registry. If Registry values
are utilized by inner routes to create endpoints, an innerRegistry parameter
must be provided

A string representing a key in the Camel Registry matching an object value
of the type List<org.apache.camel.builder.RouteBuilder>. If the user does
not supply an innerContext pre-primed with inner routes, the routeBuilders
option must be provided as a non-empty list of RouteBuilders containing inner
routes

Fuse Mediation Router Component Reference Version 2.6

innerProtocol

sendToConsumer

forkContext

threads

gueueSize

Direct

true

true

20

unlimited

The Protocol used internally by the Routebox component. Can be Direct or
SEDA. The Routebox component currently offers protocols that are JVM
bound.

Dictates whether a Producer endpoint sends a request to an external routebox
consumer. If the setting is false, the Producer creates an embedded inner
context and processes requests internally.

The Protocol used internally by the Routebox component. Can be Direct or
SEDA. The Routebox component currently offers protocols that are JVM
bound.

Number of threads to be used by the routebox to receive requests. Setting
applicable only for innerProtocol SEDA.

Create a fixed size queue to receive requests. Setting applicable only for
innerProtocol SEDA.

Sending/Receiving Messages to/from the routebox

Before sending requests it is necessary to properly configure the routebox by loading the required URI
parameters into the Registry as shown below. In the case of Spring, if the necessary beans are declared
correctly, the registry is automatically populated by Camel.

Step 1: Loading inner route details into the Registry

@Override

protected JndiRegistry createRegistry() throws Exception {
JndiRegistry registry = new JndiRegistry(createJndiContext());

// Wire the routeDefinitions & dispatchStrategy to the outer camelContext where the
routebox is declared
List<RouteBuilder> routes = new ArrayList<RouteBuilder>();
routes.add(new SimpleRouteBuilder());
registry.bind("registry", createInnerRegistry());

registry.bind("routes",

routes);

// Wire a dispatch map to registry
HashMap<String, String> map = new HashMap<String, String>();

map.put("addToCatalog",
map.put ("findBook",

"seda:addToCatalog");

"seda:findBook");

registry.bind("map", map);

// Alternatively wiring a dispatch strategy to the registry
registry.bind("strategy", new SimpleRouteDispatchStrategy());

Fuse Mediation Router Component Reference Version 2.6 417

Chapter 71. Routebox

return registry;

}

private JndiRegistry createInnerRegistry() throws Exception {
JndiRegistry innerRegistry = new JndiRegistry(createdndiContext());
BookCatalog catalogBean = new BookCatalog();
innerRegistry.bind("library", catalogBean);

return innerRegistry;

}

CamelContext context = new DefaultCamelContext(createRegistry());

Step 2: Optionaly using a Dispatch Strategy instead of a Dispatch Map

Using a dispatch Strategy involves implementing the interface

org.apache.camel.component.routebox.strategy.RouteboxDispatchStrategy as shown in the example below.

public class SimpleRouteDispatchStrategy implements RouteboxDispatchStrategy {

/* (non-Javadoc)

* @see org.apache.camel.component.routebox.strategy.RouteboxDispatchStrategy#selectDes

tinationUri(java.util.List, org.apache.camel.Exchange)
*/
public URI selectDestinationUri(List<URI> activeDestinations,
Exchange exchange) {
URI dispatchDestination = null;

String operation = exchange.getIn().getHeader ("ROUTE_DISPATCH_KEY", String.class);

for (URI destination : activeDestinations) {

if (destination.toASCIIString().equalsIgnoreCase('"seda:" + operation)) {

dispatchDestination = destination;
break;

3

return dispatchDestination;

418 Fuse Mediation Router Component Reference Version 2.6

Step 2: Launching a routebox consumer

When creating a route consumer, note that the # entries in the routeboxUri are matched to the created inner
registry, routebuilder list and dispatchStrategy/dispatchMap in the CamelContext Registry. Note that all
routebuilders and associated routes are launched in the routebox created inner context

private String routeboxUri = "routebox:multipleRoutes?innerRegistry=#registry&routeBuild
ers=#routes&dispatchMap=#map";

public void testRouteboxRequests() throws Exception {
CamelContext context = createCamelContext();
template = new DefaultProducerTemplate(context);
template.start();

context.addRoutes(new RouteBuilder() {
public void configure() {
from(routeboxUri)
.to("log:Routes operation performed?showAll=true");

}
1)

context.start();

// Now use the ProducerTemplate to send the request to the routebox
template.requestBodyAndHeader (routeboxUri, book, "ROUTE_DISPATCH_KEY", "addToCatalog");

Step 3: Using a routebox producer

When sending requests to the routebox, it is not necessary for producers do not need to know the inner route
endpoint URI and they can simply invoke the Routebox URI endpoint with a dispatch strategy or dispatchMap
as shown below

It is necessary to set a special exchange Header called ROUTE_DISPATCH_KEY (optional for Dispatch
Strategy) with a key that matches a key in the dispatch map so that the request can be sent to the correct
inner route

from("direct:sendToStrategyBasedRoutebox")
.to("routebox:multipleRoutes?innerRegistry=#registry&routeBuilders=#routes&dispatch
Strategy=#strategy")
.to("log:Routes operation performed?showAll=true");

from ("direct:sendToMapBasedRoutebox")
.setHeader ("ROUTE_DISPATCH_KEY", constant("addToCatalog"))

Fuse Mediation Router Component Reference Version 2.6 419

Chapter 71. Routebox

.to("routebox:multipleRoutes?innerRegistry=#registry&routeBuilders=#routes&dis
patchMap=#map")
.to("log:Routes operation performed?showAll=true");

420 Fuse Mediation Router Component Reference Version 2.6

Chapter 72. RSS

RSS Component

The rss: component is used for polling RSS feeds. Fuse Mediation Router will default poll the feed every 60th
seconds.

Note: The component currently only supports polling (consuming) feeds.
URI format

rss:rssuri

Where rssuri is the URI to the RSS feed to poll.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Property Default Description

splitEntries true If true, Fuse Mediation Router splits a feed into its individual entries
and returns each entry, poll by poll. For example, if a feed contains
seven entries, Fuse Mediation Router returns the first entry on the first
poll, the second entry on the second poll, and so on. When no more
entries are left in the feed, Fuse Mediation Router contacts the remote
RSS URI to obtain a new feed. If false, Fuse Mediation Router obtains
a fresh feed on every poll and returns all of the feed's entries.

filter true Use in combination with the splitEntries option in order to filter
returned entries. By default, Fuse Mediation Router applies the
UpdateDateFilter filter, which returns only new entries from the feed,
ensuring that the consumer endpoint never receives an entry more
than once. The filter orders the entries chronologically, with the newest
returned last.

throttleEntries true Camel 2.5: Sets whether all entries identified in a single feed poll
should be delivered immediately. If true, only one entry is processed
per consumer.delay. Only applicable when splitEntries is set to true.

lastUpdate null Use in combination with the filter option to block entries earlier than
a specific date/time (uses the entry.updated timestamp). The format
iS: yyyy-MM-ddTHH:MM:ss. Example: 2007-12-24T17:45:59.

feedHeader true Specifies whether to add the ROME SyndFeed object as a header.

Fuse Mediation Router Component Reference Version 2.6 421

Chapter 72. RSS

sortEntries false |If splitEntries is true, this specifies whether to sort the entries by
updated date.

consumer .delay 60000 Delay in milliseconds between each poll.
consumer.initialbDelay 1000 Milliseconds before polling starts.

consumer .userFixedDelay false Setto true to use fixed delay between pools, otherwise fixed rate is
used. See ScheduledExecutorService® in JDK for details.

Exchange data types

Fuse Mediation Router initializes the In body on the Exchange with a ROME SyndFeed. Depending on the
value of the splitEntries flag, Fuse Mediation Router returns either a SyndFeed with one SyndEntry or a
java.util.List of SyndEntrys.

Option Value Behavior
splitEntries true A single entry from the current feed is set in the exchange.

spliteEntries false The entire list of entries from the current feed is set in the exchange.

Message Headers

Header Description
org.apache.camel.component.rss.feed Fuse Mediation Router 1.x: The entire SyncFeed object.
CamelRssFeed Fuse Mediation Router 2.0: The entire SyncFeed object.

RSS Dataformat

The RSS component ships with an RSS dataformat that can be used to convert between String (as XML) and
ROME RSS model objects.

» marshal = from ROME SyndFeed to XML String
» unmarshal = from XML String to ROME SyndFeed

A route using this would look something like this:

from("rss:file:src/test/data/rss20.xml?splitEntries=false&consumer.delay=1000").mar
shal().rss().to("mock:marshal");

! http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

422 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

The purpose of this feature is to make it possible to use Fuse Mediation Router's lovely built-in expressions
for manipulating RSS messages. As shown below, an XPath expression can be used to filter the RSS message:

// only entries with Fuse Mediation Router in the title will get through the filter
from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100")
.marshal().rss().filter().xpath("//item/title[contains(., 'Camel')]").to("mock:result");

Filtering entries

You can filter out entries quite easily using XPathé as shown in the data format section above. You can also
exploit Fuse Mediation Router's Bean Integration” to implement your own conditions. For instance, a filter
equivalent to the XPath example above would be:

// only entries with Camel in the title will get through the filter

from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100").
filter().method("myFilterBean", "titleContainsCamel").to("mock:result");

The custom bean for this would be:
public static class FilterBean {
public boolean titleContainsCamel(@Body SyndFeed feed) {

Syndentry firstEntry = (SyndEntry) feed.getEntries().get(0);
return firstEntry.getTitle().contains("Camel");

See also

e Atom on page 35

2 Bean Integration

Fuse Mediation Router Component Reference Version 2.6 423

Bean Integration
Bean Integration

424 Fuse Mediation Router Component Reference Version 2.6

Chapter 73. Scalate

Scalate
Available as of Fuse Mediation Router 2.3

The scalate: component allows you to process a message using Scalate! template, which supports either
SSP or Scaml format templates. This can be ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>
<groupId>org.fusesource.scalate</groupId>
<artifactId>scalate-camel</artifactId>

<version>1.0</version>
</dependency>

URI format
scalate:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (eg: file://folder/myfile.ssp).

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Message Headers

The scalate component sets a couple headers on the message (you can't set these yourself and from Fuse
Mediation Router 2.1 scalate component will not set these headers which will cause some side effect on the
dynamic template support):

Header Description

CamelScalateResource The resource as an org.springframework.core.io.Resource object.

CamelScalateResourceUri The templateName as a String object.

Headers set during the Scalate evaluation are returned to the message and added as headers. Then its kinda
possible to return values from Scalate to the Message.

For example, to set the header value of fruit in the Scalate template . tm:

! http://scalate.fusesource.org/

Fuse Mediation Router Component Reference Version 2.6 425

http://scalate.fusesource.org/
Templating
http://scalate.fusesource.org/

Chapter 73. Scalate

<% in.setHeader('fruit', 'Apple') %>
The fruit header is now accessible from the message.out.headers.
Scalate Context

Fuse Mediation Router will provide exchange information in the Scalate context (just a Map). The Exchange is
transfered as:

key value
exchange The Exchange itself.
headers The headers of the In message.

camelContext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).
response The Out message (only for InOut message exchange pattern).

Hot reloading

The Scalate template resource is, by default, hot reloadable for both file and classpath resources (expanded
jar).

Dynamic templates
Fuse Mediation Router provides two headers by which you can define a different resource location for a

template or the template content itself. If any of these headers is set then Fuse Mediation Router uses this
over the endpoint configured resource. This allows you to provide a dynamic template at runtime.

Header Type Description

CamelScalateResourceUri String An URI for the template resource to use instead of the endpoint
configured.

CamelScalateTemplate String The template to use instead of the endpoint configured.

Samples

For example you could use something like

426 Fuse Mediation Router Component Reference Version 2.6

from("activemq:My.Queue").
to("scalate:com/acme/MyResponse.ssp");

To use a Scalate template to formulate a response to a message for InOut message exchanges (where there
is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination, you could use the
following route:

from("activemq:My.Queue").

to("scalate:com/acme/MyResponse.scaml").
to("activemqg:Another.Queue");

It's possible to specify what template the component should use dynamically via a header, so for example:
from("direct:in").

setHeader ("CamelScalateResourceUri").constant("path/to/my/template.scaml").
to("scalate:dummy");

It's possible to specify a template directly as a header the component should use dynamically via a header,
so for example:

from("direct:in").
setHeader ("CamelScalateTemplate").constant("<%@ attribute body: Object %>\nHi this is a

scalate template that can do templating ${body}").
to("scalate:dummy");

The Email Sample

In this sample we want to use Scalate templating for an order confirmation email. The email template is laid
out in Scalate as:

<%@ attribute in: org.apache.camel.scala.RichMessage %>
Dear ${in("lastName"}, ${in("firstName")}

Thanks for the order of ${in("item")}.

Regards Camel Riders Bookstore
${in.body}

Fuse Mediation Router Component Reference Version 2.6 427

428 Fuse Mediation Router Component Reference Version 2.6

Chapter 74. SEDA

SEDA Component

The seda: comgonent provides asynchronous SEDA! behavior, so that messages are exchanged on a
BlockingQueue® and consumers are invoked in a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate across
camelContext instances (for example, communicating between Web applications), see the VM on page 519
component.

This component does not implement any kind of persistence or recovery, if the VM terminates while messages
are yet to be processed. If you need persistence, reliability or distributed SEDA, try using either JIMS on page 293
or ActiveMQ on page 25.

The Direct on page 111 component provides synchronous invocation of any consumers when a producer sends
a message exchange.

URI format
seda:queueName[?options]
Where queueName can be any string that uniquely identifies the endpoint within the current CamelContext.

You can append query options to the URI in the following format, 2option=value&option=value&. ..

When matching consumer entpoints to producer endpoints, only the queueName is considered and any option
settings are ignored. That is, the identity of a consumer endpoint depends only on the queueName. If you want
to attach multiple consumers to the same queue, use the approach described in "Using multipleConsumers"
on page 432.

L http://www.eecs.harvard.edu/~mdw/proj/seda/
2 http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

Fuse Mediation Router Component Reference Version 2.6 429

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
CamelContext
CamelContext
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

Chapter 74. SEDA

Options

Name

size

concurrentConsumers

waitForTaskToComplete

timeout

multipleConsumers

Default
Unbounded

IfReplyExpected

30000

false

limitConcurrentConsumers true

Description

The maximum size (= capacity of the number of messages
it can max hold) of the SEDA queue. The default value in

Camel 2.2 or older is 1000. From Camel 2.3 onwards the

size is unbounded by default.

Fuse Mediation Router 1.6.1/2.0: Number of concurrent
threads processing exchanges.

Fuse Mediation Router 2.0: Option to specify whether the
caller should wait for the async task to complete or not
before continuing. The following three options are
supported: Always, Never or IfReplyExpected. The first
two values are self-explanatory. The last value,
IfReplyExpected, will only wait if the message is Request
Reply based. The default option is IfReplyExpected. See
more information about Async messaging.

Fuse Mediation Router 2.0: Timeout in millis a seda
producer will at most waiting for an async task to complete.
See waitForTaskToComplete and Async for more details.
In Camel 2.2 you can now disable timeout by using 0 or a
negative value.

Camel 2.2: Specifies whether multiple consumers are
allowed or not. If enabled, you can use SEDA on page 429
for a publish/subscribe style of messaging. Send a message
to a SEDA queue and have multiple consumers receive a
copy of the message.

Camel 2.3: Whether to limit the concurrentConsumers to
maximum 500. If its configured with a higher number an
exception will be thrown. You can disable this check by
turning this option off.

Changes in Fuse Mediation Router 2.0

In Fuse Mediation Router 2.0 the Seda component supports using Request Reply, where the caller will wait
for the Async route to complete. For instance:

from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input").to("bean:processInput").to("bean:createResponse");

430

Fuse Mediation Router Component Reference Version 2.6

Async
Async
Async

In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The request is routed
to the seda:input queue. As it is a Request Reply message, we wait for the response. When the consumer
on the seda:input queue is complete, it copies the response to the original message response.

Fuse Mediation Router 1.x does not have this feature implemented, the Seda queues in Fuse Mediation Router
1.x will never wait.

® camel 2.0 - 2.2: Works only with 2 endpoints

Using Request Reply over SEDA on page 429 or VM on page 519 only works with 2 endpoints. You cannot
chain endpoints by sending to A -> B -> C etc. Only between A -> B. The reason is the implementation logic
is fairly simple. To support 3+ endpoints makes the logic much more complex to handle ordering and notification
between the waiting threads properly.

This has been improved in Camel 2.3 onwards, which allows you to chain as many endpoints as you like.

Concurrent consumers

By default, the SEDA endpoint uses a single consumer thread, but you can configure it to use concurrent
consumer threads. So instead of thread pools you can use:

from("seda:stageName?concurrentConsumers=5").process(...)

Difference between thread pools and concurrent consumers

The thread pool is a pool that can increase/shrink dynamically at runtime depending on load, whereas the
concurrent consumers are always fixed.

Thread pools

Be aware that adding a thread pool to a SEDA endpoint by doing something like:

from("seda:stageName").thread(5).process(...)

Can wind up with two BlockQueues: one from the SEDA endpoint, and one from the workqueue of the thread
pool, which may not be what you want. Instead, you might want to consider configuring a Direct on page 111
endpoint with a thread pool, which can process messages both synchronously and asynchronously. For
example:

from("direct:stageName").thread(5).process(...)

Fuse Mediation Router Component Reference Version 2.6 431

Chapter 74. SEDA

You can also directly configure number of threads that process messages on a SEDA endpoint using the
concurrentConsumers option.

Sample

In the route below we use the SEDA queue to send the request to this async queue to be able to send a
fire-and-forget message for further processing in another thread, and return a constant reply in this thread to
the original caller.

public void configure() throws Exception {
from("direct:start")
// send it to the seda queue that is async
.to("seda:next")
// return a constant response
.transform(constant("0OK"));

from("seda:next").to("mock:result");

}
Here we send a Hello World message and expect the reply to be OK.

Object out = template.requestBody("direct:start", "Hello World");
assertEquals("OK", out);

The "Hello World" message will be consumed from the SEDA queue from another thread for further processing.
Since this is from a unit test, it will be sent to a mock endpoint where we can do assertions in the unit test.

Using multipleConsumers

Available as of Camel 2.2

In this example we have defined two consumers and registered them as spring beans.

<!-- define the consumers as spring beans -->
<bean id="consumerl" class="org.apache.camel.spring.example.FooEventConsumer"/>

<bean id="consumer2" class="org.apache.camel.spring.example.AnotherFooEventConsumer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define a shared endpoint which the consumers can refer to instead of using url --
>

<endpoint id="foo" uri="seda:foo?multipleConsumers=true"/>
</camelContext>

Since we have specified multipleConsumers=true on the seda foo endpoint we can have those two consumers
receive their own copy of the message as a kind of pub-sub style messaging.

432 Fuse Mediation Router Component Reference Version 2.6

As the beans are part of an unit test they simply send the message to a mock endpoint, but notice how we
can use @Consume to consume from the seda queue.

public class FooEventConsumer {

@EndpointInject(uri = "mock:result")
private ProducerTemplate destination;

@Consume(ref = "foo")
public void doSomething(String body) {
destination.sendBody("foo" + body);
b
3
See Also
* VM on page 519

 Direct on page 111

Fuse Mediation Router Component Reference Version 2.6 433

434 Fuse Mediation Router Component Reference Version 2.6

Chapter 75. SERVLET

Servlet Component

The servlet: component provides HTTP based endpointsl for consuming HTTP requests that arrive ata HTTP
endpoint and this endpoint is bound to a published Servlet.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-servlet</artifactId>
<version>x.Xx.x</version>
<\!-\- use the same version as your Camel core version \-->
</dependency>

URI format

servlet://relative path[?options]

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Default Value Description

httpBindingRef null Reference to an org.apache.camel.component.http.HttpBinding
in the Registry. A Ht tpBinding implementation can be used to customize
how to write a response.

matchonUriPrefix false Whether or not the CamelServlet should try to find a target consumer
by matching the URI prefix, if no exact match is found.

servletName null Specifies the servlet name that the servlet endpoint will bind to. If there

is no servlet name specified, the servlet endpoint will be bind to first
published Servlet

Message Headers

Fuse Mediation Router will apply the same Message Headers as the HTTP on page 229 component.

! Endpoint

Fuse Mediation Router Component Reference Version 2.6 435

Endpoint
Registry
Endpoint

Chapter 75. SERVLET

Fuse Mediation Router will also populate allrequest .parameter and request.headers. For example, if a
client request has the URL, http://myserver/myserver?orderid=123, the exchange will contain a header
named orderid with the value 123.

Usage

You can only consume from endpoints generated by the Servlet component. Therefore, it should only be used
as input into your Fuse Mediation Router routes. To issue HTTP requests against other HTTP endpoints, use
the HTTP Component on page 229

Sample

In this sample, we define a route that exposes a HTTP service at
http://localhost:8080/camel/services/hello. First, you need to publish the CamelHttpTransportServIet2
through the normal Web Container, or OSGi Service. Use the wWeb . xm1 file to publish the
CamelHttpTransportServIet3 as follows:

<web-app>

<servlet>
<servlet-name>CamelServlet</servlet-name>
<display-name>Camel Http Transport Servlet</display-name>
<servlet-class>
org.apache.camel.component.servlet.CamelHttpTransportServlet
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>
</web-app>

Use an Activator to publish the CamelHttpTransportServIet4 on the OSGi platform

import java.util.Dictionary;
import java.util.Hashtable;

import javax.servlet.Servlet;

2

Qttp://svn.apache.orglrepos/asf/camel/trunklcomponen1s/cameI—servIetlsrc/mainljava/org/apache/cameI/component/servlet/CameIHttpTransportSen/Iet.java
Qttp://svn.apache.orglrepos/asf/camelltrunk/componen1s/cameI—servIetlsrc/mainljava/org/apache/cameI/component/servlet/CameIHttpTransportSen/Iet.java

http://svn.apache.org/repos/asf/camel/trunk/components/camel-serviet/src/main/java/org/apache/camel/component/serviet/CamelHttp TransportServiet java

436 Fuse Mediation Router Component Reference Version 2.6

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

import
import
import
import
import
import
import
import
import

public

/**

org

org

org

.apache.camel.component.servlet.CamelHttpTransportServlet;
org.
org.
.0sgi.framework.BundleActivator;
org.
org.
org.
org.
.springframework.osgi.context.BundleContextAware;

apache.commons.logging.Log;
apache.commons.logging.LogFactory;

osgi.framework.BundleContext;
osgi.framework.ServiceReference;
osgi.service.http.HttpContext;
osgi.service.http.HttpService;

final class ServletActivator implements BundleActivator, BundleContextAware {
private static final transient Log LOG = LogFactory.getLog(ServletActivator.class);
private static boolean registerService;

* HttpService reference.

*/

private ServiceReference httpServiceRef;

/**

* Called when the 0SGi framework starts our bundle

*/

public void start(BundleContext bc) throws Exception {
registerServlet(bc);

}

/**

* Called when the 0SGi framework stops our bundle

*/

public void stop(BundleContext bc) throws Exception {

}

if

(httpServiceRef != null) {
bc.ungetService(httpServiceRef);
httpServiceRef = null;

protected void registerServlet(BundleContext bundleContext) throws Exception {
httpServiceRef = bundleContext.getServiceReference(HttpService.class.getName());

if

viceRef);

(httpServiceRef != null && !registerService) {
LOG.info("Regist the servlet service");
final HttpService httpService = (HttpService)bundleContext.getService(httpSer

if (httpService != null) {
// create a default context to share between registrations
final HttpContext httpContext = httpService.createDefaultHttpContext();
// register the hello world servlet
final Dictionary<String, String> initParams = new Hashtable<String, String>();

Fuse Mediation Router Component Reference Version 2.6 437

Chapter 75. SERVLET

initParams.put("matchOnUriPrefix", "false");
initParams.put("servlet-name", "camelServlet");
httpService.registerServlet("/camel/services", // alias
(Servlet)new CamelHttpTransportServlet(), // register servlet
initParams, // init params
httpContext // http context
)i

registerService = true;

}

public void setBundleContext(BundleContext bc) {
try {
registerServlet(bc);
} catch (Exception e) {
LOG.error("Can't register the servlet, the reason is " + e);
}

}

Then you can define your route as follows:

from("servlet:///hello?matchOnUriPrefix=true").process(new Processor() {
public void process(Exchange exchange) throws Exception {
String contentType = exchange.getIn().getHeader (Exchange.CONTENT_TYPE, String.class);

String path = exchange.getIn().getHeader (Exchange.HTTP_PATH, String.class);
assertEquals("Get a wrong content type", CONTENT_TYPE, contentType);
// assert camel http header
String charsetEncoding = exchange.getIn().getHeader (Exchange.HTTP_CHARACTER_ENCODING,
String.class);
assertEquals("Get a wrong charset name from the message header", "UTF-8", charsetEn
coding);
// assert exchange charset
assertEquals("Get a wrong charset naem from the exchange property", "UTF-8", ex
change.getProperty(Exchange.CHARSET_NAME));
exchange.getOut().setHeader (Exchange.CONTENT_TYPE, contentType + "; charset=UTF-
8");
exchange.getOut().setHeader ("PATH", path);
exchange.getOut().setBody("Hello World");
}
1)

438 Fuse Mediation Router Component Reference Version 2.6

From Camel 2.6.0, you can also publish the CamelHttpTr.':msportServIet5 as an OSGi service with help of
SpringDM like this.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframe
work.org/schema/osgi/spring-osgi.xsd">

<bean id="osgiServlet" class="org.apache.camel.component.servlet.CamelHttpTransportSer
vlet"/>

<osgi:service ref="osgiServlet">
<osgi:interfaces>
<value>javax.servlet.Servlet</value>
<value>org.apache.camel.component.servlet.CamelServletService</value>
</osgi:interfaces>
<osgi:service-properties>
<entry key="alias" value="/camel/services" />
<entry key="servlet-name" value="CamelServlet"/>
</o0sgi:service-properties>
</o0sgi:service>

</beans>

Then use this service in your camel route like this:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemalLocation="
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframe
work.org/schema/osgi/spring-osgi.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

<osgi:reference id="camelHttpTransportServlet" interface="org.apache.camel.component.ser
vlet.CamelServletService"/>

<bean id="servlet" class="org.apache.camel.component.servlet.ServletComponent">

5

http://svn.apache.org/repos/asf/camel/trunk/components/camel-serviet/src/main/java/org/apache/camel/component/serviet’CamelHttpTransportServiet java

Fuse Mediation Router Component Reference Version 2.6 439

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

Chapter 75. SERVLET

<property name = "camelServletService" ref="camelHttpTransportServlet" />
</bean>

<bean id="servletProcessor" class="org.apache.camel.itest.osgi.servlet.ServletProcessor"
/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<camel:route>
<camel:from uri="servlet:///hello"/>
<camel:process ref="servletProcessor"/>
</camel:route>
</camelContext>

</beans>

Since we are binding the HTTP transport with a published servlet, and we don't know the servlet's application
context path, the camel-servlet endpoint uses the relative path to specify the endpoint's URL. A client can
access the camel-servlet endpoint through the servlet publish address:
("http://localhost:8080/camel/services") + RELATIVE_PATH("/hello").

440 Fuse Mediation Router Component Reference Version 2.6

Chapter 76. Shiro Security

Shiro Security Component
Available as of Camel 2.5

The shiro-security component in Camel is a security focused component, based on the Apache Shiro security
project.

Apache Shiro is a powerful and flexible open-source security framework that cleanly handles authentication,
authorization, enterprise session management and cryptography. The objective of the Apache Shiro project
is to provide the most robust and comprehensive application security framework available while also being
very easy to understand and extremely simple to use.

This camel shiro-security component allows authentication and authorization support to be applied to different
segments of a camel route.

Shiro security is applied on a route using a Camel Policy. A Policy in Camel utilizes a strategy pattern for
applying interceptors on Camel Processors. It offering the ability to apply cross-cutting concerns (for example.
security, transactions etc) on sections/segments of a camel route.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-shiro</artifactId>
<version>x.Xx.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

Shiro Security Basics

To employ Shiro security on a camel route, a ShiroSecurityPolicy object must be instantiated with security
configuration details (including users, passwords, roles etc). This object must then be applied to a camel route.
This ShiroSecurityPolicy Object may also be registered in the Camel registry (JNDI or
ApplicationContextRegistry) and then utilized on other routes in the Camel Context.

Configuration details are provided to the ShiroSecurityPolicy using an Ini file (properties file) or an Ini object.
The Ini file is a standard Shiro configuration file containing user/role details as shown below

[users]

Fuse Mediation Router Component Reference Version 2.6 441

Chapter 76. Shiro Security

user 'ringo' with password 'starr' and the 'sec-levell' role
ringo = starr, sec-levell

george = harrison, sec-level2

john = lennon, sec-level3
paul = mccartney, sec-level3

[roles]

'sec-level3d' role has all permissions, indicated by the
wildcard '*'

sec-level3d = *

The 'sec-level2' role can do anything with access of permission
readonly (*) to help
sec-level2 = zonel:*

The 'sec-levell' role can do anything with access of permission
readonly
sec-levell = zonel:readonly:*

Instantiating a ShiroSecurityPolicy Object

A ShiroSecurityPolicy object is instantiated as follows

private final String iniResourcePath = "classpath:shiro.ini";
private final byte[] passPhrase = {

(byte) 0x08, (byte) 0x09, (byte) Ox0A, (byte) 0OxOB,

(byte) 0x0C, (byte) Ox0D, (byte) OXOQE, (byte) OXOF,

(byte) 0x10, (byte) 0x11, (byte) 0x12, (byte) 0x13,

(byte) 0x14, (byte) 0x15, (byte) 0x16, (byte) 0x17};
List<permission> permissionsList = new ArraylList<permission>();
Permission permission = new WildcardPermission("zonel:readwrite:*");
permissionsList.add(permission);

final ShiroSecurityPolicy securityPolicy =
new ShiroSecurityPolicy(iniResourcePath, passPhrase, true, permissionsList);

ShiroSecurityPolicy Options

Name Default Type Description

Value
iniResourcePath or none Resource String or Ini Object A mandatory Resource String for
ini the iniResourcePath or an instance

442 Fuse Mediation Router Component Reference Version 2.6

passPhrase An AES byte[]
128
based
key

alwaysReauthenticate true boolean

permissionsList none List<Permission>

cipherService AES org.apache.shiro.crypto.CipherService

of an Ini object must be passed to
the security policy. Resources can
be acquired from the file system,
classpath, or URLs when prefixed
with "file:, classpath:, or url:"
respectively. For e.g
"classpath:shiro.ini"

A passPhrase to decrypt
ShiroSecurityToken(s) sent along
with Message Exchanges

Setting to ensure re-authentication
on every individual request. If set

to false, the user is authenticated

and locked such than only requests
from the same user going forward
are authenticated.

A List of permissions required in
order for an authenticated user to
be authorized to perform further
action i.e continue further on the
route. If no Permissions list is
provided to the ShiroSecurityPolicy
object, then authorization is
deemed as not required

Shiro ships with AES & Blowfish
based CipherServices. You may
use one these or pass in your own
Cipher implementation

Applying Shiro Authentication on a Camel Route

The ShiroSecurityPolicy, tests and permits incoming message exchanges containing a encrypted SecurityToken

in the Message Header to proceed further following proper authentication.

The SecurityToken object contains

a Username/Password details that are used to determine where the user is a valid user.

protected RouteBuilder createRouteBuilder() throws Exception {

final ShiroSecurityPolicy securityPolicy =

new ShiroSecurityPolicy("classpath:shiro.ini", passPhrase);

return new RouteBuilder() {

Fuse Mediation Router Component Reference Version 2.6

443

Chapter 76. Shiro Security

public void configure() {
onException(UnknownAccountException.class).
to("mock:authenticationException");
onException(IncorrectCredentialsException.class).
to("mock:authenticationException");
onException(LockedAccountException.class).
to("mock:authenticationException");
onException(AuthenticationException.class).
to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

}i

Applying Shiro Authorization on a Camel Route

Authorization can be applied on a camel route by associating a Permissions List with the ShiroSecurityPolicy.
The Permissions List specifies the permissions necessary for the user to proceed with the execution of the
route segment. If the user does not have the proper permission set, the request is not authorized to continue
any further.

protected RouteBuilder createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =
new ShiroSecurityPolicy("./src/test/resources/securityconfig.ini", passPhrase);

return new RouteBuilder() {
public void configure() {

onException(UnknownAccountException.class).
to("mock:authenticationException");

onException(IncorrectCredentialsException.class).
to("mock:authenticationException");

onException(LockedAccountException.class).
to("mock:authenticationException");

onException(AuthenticationException.class).
to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

444 Fuse Mediation Router Component Reference Version 2.6

}i

Creating a ShiroSecurityToken and injecting it into a Message Exchange

A ShiroSecurityToken object may be created and injected into a Message Exchange using a Shiro Processor
called ShiroSecurityTokenInjector. An example of injecting a ShiroSecurityToken using a
ShiroSecurityTokenlnjector in the client is shown below

ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo", "starr");
ShiroSecurityTokenInjector shiroSecurityTokenInjector =
new ShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

from("direct:client").
process(shiroSecurityTokenInjector).
to("direct:secureEndpoint");

Sending Messages to routes secured by a ShiroSecurityPolicy

Messages and Message Exchanges sent along the camel route where the security policy is applied need to
be accompanied by a SecurityToken in the Exchange Header. The SecurityToken is an encrypted object that
holds a Username and Password. The SecurityToken is encrypted using AES 128 bit security by default and
can be changed to any cipher of your choice.

Given below is an example of how a request may be sent using a ProducerTemplate in Camel along with a

SecurityToken

@Test
public void testSuccessfulShiroAuthenticationWithNoAuthorization() throws Exception {

//Incorrect password
ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo", "stirr");

// TestShiroSecurityTokenInjector extends ShiroSecurityTokenInjector
TestShiroSecurityTokenInjector shiroSecurityTokenInjector =
new TestShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

successEndpoint.expectedMessageCount(1);
failureEndpoint.expectedMessageCount(0);

template.send("direct:secureEndpoint", shiroSecurityTokenInjector);

Fuse Mediation Router Component Reference Version 2.6 445

Chapter 76. Shiro Security

successEndpoint.assertIsSatisfied();
failureEndpoint.assertIsSatisfied();

446 Fuse Mediation Router Component Reference Version 2.6

Chapter 77. Sip

SIP Component
Available as of Camel 2.5

The sip component in Camel is a communication component, based on the Jain SIP implementation (available
under the JCP license).

Session Initiation Protocol (SIP) is an IETF-defined signaling protocol, widely used for controlling multimedia
communication sessions such as voice and video calls over Internet Protocol (IP).The SIP protocol is an
Application Layer protocol designed to be independent of the underlying transport layer; it can run on
Transmission Control Protocol (TCP), User Datagram Protocol (UDP) or Stream Control Transmission Protocol
(SCTP).

The Jain SIP implementation supports TCP and UDP only.

The Camel SIP component only supports the SIP Publish and Subscribe capability as described in the RFC3903
- Session Initiation Protocol (SIP) Extension for Event

This camel component supports both producer and consumer endpoints.

Camel SIP Producers (Event Publishers) and SIP Consumers (Event Subscribers) communicate event & state
information to each other using an intermediary entity called a SIP Presence Agent (a stateful brokering entity).

For SIP based communication, a SIP Stack with a listener must be instantiated on both the SIP Producer and
Consumer (using separate ports if using localhost). This is necessary in order to support the handshakes &
acknowledgements exchanged between the SIP Stacks during communication.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-sip</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

! http:/iwww.ietf.org/rfc/rfc3903.txt

Fuse Mediation Router Component Reference Version 2.6 447

http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt

Chapter 77. Sip

URI format

The URI scheme for a sip endpoint is as follows:

sip://johndoe@localhost:99999[?options]
sips://johndoe@localhost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.
You can append query options to the URI in the following format, ?option=value&option=values&. ..
Options

The SIP Component offers an extensive set of configuration options & capability to create custom stateful
headers needed to propagate state via the SIP protocol.

Name Default Value Description

stackName NAME_NOT_SET Name of the SIP Stack instance associated with an SIP Endpoint.

transport tep Setting for choice of transport potocol. Valid choices are "tcp" or
"udp".

fromuser Username of the message originator. Mandatory setting unless

a registry based custom FromHeader is specified.

fromHost Hostname of the message originator. Mandatory setting unless
a registry based FromHeader is specified

fromPort Port of the message originator. Mandatory setting unless a
registry based FromHeader is specified

toUser Username of the message receiver. Mandatory setting unless
a registry based custom ToHeader is specified.

toHost Hostname of the message receiver. Mandatory setting unless
a registry based ToHeader is specified

toPort Portname of the message receiver. Mandatory setting unless
a registry based ToHeader is specified

maxforwards 0 the number of intermediaries that may forward the message to
the message receiver. Optional setting. May alternatively be
set using as registry based MaxForwardsHeader

eventId Setting for a String based event Id. Mandatory setting unless
a registry based FromHeader is specified

448 Fuse Mediation Router Component Reference Version 2.6

eventHeaderName
maxMessageSize 1048576
cacheConnections false
consumer false

automaticDialogSupport off

contentType text
contentSubType xml

receiveTimeoutMillis 10000

useRouterForAlluUris false
msgExpiration 3600
presenceAgent false

Setting for a String based event Id. Mandatory setting unless
a registry based FromHeader is specified

Setting for maximum allowed Message size in bytes.

Should connections be cached by the SipStack to reduce cost of
connection creation. This is useful if the connection is used for
long running conversations.

This setting is used to determine whether the kind of header
(FromHeader,ToHeader etc) that needs to be created for this
endpoint

Setting to specify whether every communication should be
associated with a dialog.

Setting for contentType can be set to any valid MimeType.
Setting for contentSubType can be set to any valid MimeSubType.

Setting for specifying amount of time to wait for a Response and/or
Acknowledgement can be received from another SIP stack

This setting is used when requests are sent to the Presence Agent
via a proxy.

The amount of time a message received at an endpoint is
considered valid

This setting is used to distingish between a Presence Agent & a
consumer. This is due to the fact that the SIP Camel component
ships with a basic Presence Agent (for testing purposes only).
Consumers have to set this flag to true.

Registry based Options

SIP requires a number of headers to be sent/received as part of a request. These SIP header can be enlisted
in the Registry, such as in the Spring XML file.

The values that could be passed in, are the following:

Name Description

fromHeader a custom Header object containing message originator settings. Must implement the
type javax.sip.header.FromHeader

toHeader a custom Header object containing message receiver settings. Must implement the
type javax.sip.header.ToHeader

Fuse Mediation Router Component Reference Version 2.6 449

Registry

Chapter 77. Sip

viaHeaders

contentTypeHeader

callIdHeader

maxForwardsHeader

eventHeader

contactHeader

expiresHeader

extensionHeader

List of custom Header objects of the type javax.sip.header.ViaHeader. Each ViaHeader
containing a proxy address for request forwarding. (Note this header is automatically
updated by each proxy when the request arrives at its listener)

a custom Header object containing message content details. Must implement the type
javax.sip.header.ContentTypeHeader

a custom Header object containing call details. Must implement the type
javax.sip.header.CallldHeader

a custom Header object containing details on maximum proxy forwards. This header
places a limit on the viaHeaders possible. Must implement the type
javax.sip.header.MaxForwardsHeader

a custom Header object containing event details. Must implement the type
javax.sip.header.EventHeader

an optional custom Header object containing verbose contact details (email, phone
number etc). Must implement the type javax.sip.header.ContactHeader

a custom Header object containing message expiration details. Must implement the
type javax.sip.header.ExpiresHeader

a custom Header object containing user/application specific details. Must implement
the type javax.sip.header.ExtensionHeader

Sending Messages to/from a SIP endpoint

Creating a Camel SIP Publisher

In the example below, a SIP Publisher is created to send SIP Event publications to a user
"agent@Ilocalhost:5152". This is the address of the SIP Presence Agent which acts as a broker between the
SIP Publisher and Subscriber

* using a SIP Stack named client

* using a registry based eventHeader called evtHdrName

* using a registry based eventld called evtld

» from a SIP Stack with Listener set up as user2@Ilocalhost:3534

» The Event being published is EVENT_A

» A Mandatory Header called REQUEST_METHOD is set to Request.Publish thereby setting up the endpoint
as a Event publisher"

450

Fuse Mediation Router Component Reference Version 2.6

producerTemplate.sendBodyAndHeader (
"sip://agent@localhost:5152?stackName=client&eventHeaderName=evtHdrName&eventId=evt
id&fromUser=user2&fromHost=1ocalhost&fromPort=3534",
"EVENT_A",
"REQUEST_METHOD",
Request.PUBLISH);

Creating a Camel SIP Subscriber

In the example below, a SIP Subscriber is created to receive SIP Event publications sent to a user
"johndoe@Ilocalhost:5154"

« using a SIP Stack named Subscriber
* registering with a Presence Agent user called agent@localhost:5152

* using a registry based eventHeader called evtHdrName. The evtHdrName contains the Event which is se
to "Event_A"

* using a registry based eventld called evtld

@Override
protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
@Override
public void configure() throws Exception {
// Create PresenceAgent
from("sip://agent@localhost:5152?stackName=PresenceAgent&presenceAgent=true&event
HeaderName=evtHdrName&eventId=evtid")
.to("mock:neverland");

// Create Sip Consumer (Event Subscriber)
from("sip://johndoe@localhost:5154?stackName=Subscriber&toUser=agent&toHost=1oc
alhost&toPort=5152&eventHeaderName=evtHdrName&eventId=evtid")
.to("log:ReceivedEvent?level=DEBUG")
.to("mock:notification");

1

The Camel SIP component also ships with a Presence Agent that is meant to be used for Testing and
Demo purposes only. An example of instantiating a Presence Agent is given above.

Fuse Mediation Router Component Reference Version 2.6 451

Chapter 77. Sip

Note that the Presence Agentis set up as a user agent@localhost:5152 and is capable of communicating with
both Publisher as well as Subscriber. It has a separate SIP stackName distinct from Publisher as well as
Subscriber. While it is set up as a Camel Consumer, it does not actually send any messages along the route
to the endpoint "mock:neverland".

452 Fuse Mediation Router Component Reference Version 2.6

Chapter 78. Smooks

Smooks

The smooks component supports the Smooks Libraryl for EDI parsing. The camel-smooks library is provided
by the Camel Extra® project which hosts all *GPL related components for Fuse Mediation Router.

It is only the EDI parsing feature that is implemented in this component. The other features from Smooks are
covered in existing camel components. Parsing from any given data source to EDI is implemented using Fuse
Mediation Router Data Format.

@Deprecated

| The camel-smooks component is @deprecated as the Smooks Library will integrate Camel out of the box. |

L http://milyn.codehaus.org/Smooks
http://code.google.com/p/camel-extra/

Fuse Mediation Router Component Reference Version 2.6 453

http://milyn.codehaus.org/Smooks
http://code.google.com/p/camel-extra/
Data Format
http://milyn.codehaus.org/Smooks
http://code.google.com/p/camel-extra/

454 Fuse Mediation Router Component Reference Version 2.6

Chapter 79. SMPP

SMPP Component

This component provides access to an SMSC (Short Message Service Center) over the smpp? protocol to
send and receive SMS. The JSMPP? is used.

Using Fuse Mediation Router 2.2 onwards

This component is only available for Fuse Mediation Router 2.2 or newer.

URI format

smpp://[username@]hostname[:port][?options]
smpps://[username@]hostname[:port][?options]

If no username is provided, then Fuse Mediation Router will provide the default value smppclient. If no port
number is provided, then Fuse Mediation Router will provide the default value 2775.Camel 2.3: If the protocol
name is smpps, camel-smpp with try to use SSLSocket to init a connection to the server.

You can append query options to the URI in the following format, 2option=value&option=value&. . .

URI Options

Name Default Description
Value
password password Specifies the password to use to log in to the SMSC.
systemType cp This parameter is used to categorize the type of ESME (External
Short Message Entity) that is binding to the SMSC (max. 13
characters).
dataCoding 0 Camel 2.5 onwarts Defines encoding of data according the SMPP

3.4 specification, section 5.2.19. Example data encodings are: 0:
SMSC Default Alphabet 4: 8 bit Alphabet 8: UCS2 Alphabet

encoding 1S0-8859-1 Defines the encoding scheme of the short message user data.

L http://smsforum.net/SMPP_v3_4_Issuel_2.zip
2 http://code.google.com/p/jsmpp/

Fuse Mediation Router Component Reference Version 2.6 455

http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/
http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/

Chapter 79. SMPP

enquireLinkTimer

transactionTimer

initialReconnectDelay

reconnectDelay

registeredDelivery

serviceType

sourceAddr

destAddr

sourceAddrTon

456

5000

10000

5000

5000

CMT

1616

1717

Defines the interval in milliseconds between the confidence checks.
The confidence check is used to test the communication path
between an ESME and an SMSC.

Defines the maximum period of inactivity allowed after a transaction,
after which an SMPP entity may assume that the session is no
longer active. This timer may be active on either communicating
SMPP entity (i.e. SMSC or ESME).

Defines the initial delay in milliseconds after the consumer/producer
tries to reconnect to the SMSC, after the connection was lost.

Defines the interval in milliseconds between the reconnect attempts,
if the connection to the SMSC was lost and the previous was not
succeed.

Is used to request an SMSC delivery receipt and/or SME originated
acknowledgements. The following values are defined: 8: No SMSC
delivery receipt requested. 1: SMSC delivery receipt requested

where final delivery outcome is success or failure. 2: SMSC delivery
receipt requested where the final delivery outcome is delivery failure.

The service type parameter can be used to indicate the SMS
Application service associated with the message. The following
generic service_types are defined:

e CMT: Cellular Messaging

e CPT: Cellular Paging

* VMN: Voice Mail Notification

e VMA: Voice Mail Alerting

* WAP: Wireless Application Protocol

¢ USSD: Unstructured Supplementary Services Data

Defines the address of SME (Short Message Entity) which originated
this message.

Defines the destination SME address. For mobile terminated
messages, this is the directory number of the recipient MS.

Defines the type of number (TON) to be used in the SME originator
address parameters. The following TON values are defined:

¢ 0: Unknown

Fuse Mediation Router Component Reference Version 2.6

¢ 1: International

« 2: National

« 3: Network Specific

* 4: Subscriber Number
¢ 5: Alphanumeric

¢ 6: Abbreviated

destAddrTon 0 Defines the type of number (TON) to be used in the SME destination
address parameters. The following TON values are defined:

e 0: Unknown

 1: International

e 2: National

» 3: Network Specific

* 4: Subscriber Number
« 5: Alphanumeric

¢ 6. Abbreviated

sourceAddrNpi 0 Defines the numeric plan indicator (NPI) to be used in the SME
originator address parameters. The following NPI values are defined:

e 0: Unknown

« 1:ISDN (E163/E164)
e 2: Data (X.121)

e 3: Telex (F.69)

¢ 6: Land Mobile (E.212)
« 8: National

¢ 9: Private

Fuse Mediation Router Component Reference Version 2.6 457

Chapter 79. SMPP

destAddrNpi

priorityFlag

replacelfPresentFlag

458

(0]

* 10: ERMES

* 13: Internet (IP)

e 18: WAP Client Id (to be defined by WAP Forum)

Defines the numeric plan indicator (NPI) to be used in the SME
destination address parameters. The following NPI values are
defined:

0]

1:

8:

9:

1

1

1

: Unknown

ISDN (E163/E164)

: Data (X.121)

: Telex (F.69)

: Land Mobile (E.212)
National

Private

0: ERMES

3: Internet (IP)

8: WAP Client Id (to be defined by WAP Forum)

Allows the originating SME to assign a priority level to the short
message. Four Priority Levels are supported:

[0]

1

2

3

: Level O (lowest) priority
: Level 1 priority
: Level 2 priority

: Level 3 (highest) priority

Used to request the SMSC to replace a previously submitted
message, that is still pending delivery. The SMSC will replace an
existing message provided that the source address, destination

Fuse Mediation Router Component Reference Version 2.6

address and service type match the same fields in the new message.
The following replace if present flag values are defined:

« 0: Don't replace

e 1: Replace

dataCoding 0 Camel 2.5 onwarts Defines encoding of data according the SMPP
3.4 specification, section 5.2.19. Example data encodings are: 0:
SMSC Default Alphabet 4: 8 bit Alphabet 8: UCS2 Alphabet

typeOfNumber 0 Defines the type of number (TON) to be used in the SME. The
following TON values are defined:

e 0: Unknown

 1: International

e 2: National

* 3: Network Specific

* 4: Subscriber Number
« 5: Alphanumeric

¢ 6. Abbreviated

numberingPlanIndicator @ Defines the numeric plan indicator (NPI) to be used in the SME. The
following NPI values are defined:

¢ 0: Unknown

* 1:ISDN (E163/E164)

.
N

: Data (X.121)

e 3: Telex (F.69)

¢ 6: Land Mobile (E.212)
« 8: National

e 9: Private

e 10: ERMES

Fuse Mediation Router Component Reference Version 2.6 459

Chapter 79. SMPP

e 13: Internet (IP)

* 18: WAP Client Id (to be defined by WAP Forum)

You can have as many of these options as you like.

smpp://smppclient@localhost:2775?password=password&enquirelLinkTimer=3000&transaction

Timer=5000&systemType=consumer

Message Headers

The following message headers can be used to affect the behavior of the SMPP producer

Header
CamelSmppDestAddr

CamelSmppDestAddrTon

CamelSmppDestAddrNpi

460

Description

Defines the destination SME address. For mobile terminated messages,
this is the directory number of the recipient MS.

Defines the type of number (TON) to be used in the SME destination
address parameters. The following TON values are defined:

* 0: Unknown

* 1: International

» 2: National

» 3: Network Specific

* 4: Subscriber Number
 5: Alphanumeric

* 6: Abbreviated

Defines the numeric plan indicator (NPI) to be used in the SME
destination address parameters. The following NPI values are defined:

* 0: Unknown

» 1:ISDN (E163/E164)

2: Data (X.121)

3: Telex (F.69)

Fuse Mediation Router Component Reference Version 2.6

* 6: Land Mobile (E.212)
+ 8: National

* 9: Private

¢ 10: ERMES

e 13: Internet (IP)

e 18: WAP Client Id (to be defined by WAP Forum)

CamelSmppSourceAddr Defines the address of SME (Short Message Entity) which originated
this message.

CamelSmppSourceAddrTon Defines the type of number (TON) to be used in the SME originator
address parameters. The following TON values are defined:

* 0: Unknown

* 1: International

» 2: National

» 3: Network Specific

* 4: Subscriber Number
e 5: Alphanumeric

* 6: Abbreviated

CamelSmppSourceAddrNpi Defines the numeric plan indicator (NPI) to be used in the SME originator
address parameters. The following NPI values are defined:

e 0: Unknown

« 1: ISDN (E163/E164)
« 2: Data (X.121)

» 3: Telex (F.69)

* 6: Land Mobile (E.212)

« 8: National

Fuse Mediation Router Component Reference Version 2.6 461

Chapter 79. SMPP

CamelSmppServiceType

CamelSmppRegisteredDelivery

CamelSmppPriorityFlag

462

¢ 9: Private

* 10: ERMES

13: Internet (IP)

» 18: WAP Client Id (to be defined by WAP Forum)

The service type parameter can be used to indicate the SMS Application
service associated with the message. The following generic service_types
are defined:

CMT: Cellular Messaging

e CPT: Cellular Paging

* VMN: Voice Mail Notification

* VMA: Voice Mail Alerting

* WAP: Wireless Application Protocol

» USSD: Unstructured Supplementary Services Data

Is used to request an SMSC delivery receipt and/or SME originated
acknowledgements. The following values are defined:

» 0: No SMSC delivery receipt requested.

» 1: SMSC delivery receipt requested where final delivery outcome is
success of failure.

» 2: SMSC delivery receipt requested where the final delivery outcome
is delivery failure.

Allows the originating SME to assign a priority level to the short message.
Four Priority Levels are supported:

* 0: Level O (lowest) priority
e 1: Level 1 priority
e 2: Level 2 priority

» 3: Level 3 (highest) priority

Fuse Mediation Router Component Reference Version 2.6

CamelSmppScheduleDeliveryTime

CamelSmppValidityPeriod

CamelSmppReplaceIfPresentFlag

CamelSmppDataCoding

This parameter specifies the scheduled time at which the message
delivery should be first attempted. It defines either the absolute date and
time or relative time from the current SMSC time at which delivery of this
message will be attempted by the SMSC. It can be specified in either
absolute time format or relative time format. The encoding of a time
format is specified in chapter 7.1.1. in the smpp specification v3.4.

The validity period parameter indicates the SMSC expiration time, after
which the message should be discarded if not delivered to the destination.
It can be defined in absolute time format or relative time format. The
encoding of absolute and relative time format is specified in chapter 7.1.1
in the smpp specification v3.4.

The replace if present flag parameter is used to request the SMSC to
replace a previously submitted message, that is still pending delivery.
The SMSC will replace an existing message provided that the source
address, destination address and service type match the same fields in
the new message. The following values are defined:

« 0: Don't replace

e 1: Replace

The data coding according to the SMPP 3.4 specification, section 5.2.19:
0: SMSC Default Alphabet 4: 8 bit Alphabet 8: UCS2 Alphabet

The following message headers are used by the SMPP producer to set the response from the SMSC in the

message header

Header Description

sm, replace sm).

camelSmppId the id to identify the submitted short message for later use (delivery receipt, query sm, cancel

The following message headers are used by the SMPP consumer to set the request data from the SMSC in

the message header

Header

CamelSmppSequenceNumber

CamelSmppCommandId

Description

only for alert notification, deliver sm and data sm: A sequence number
allows a response PDU to be correlated with a request PDU. The
associated SMPP response PDU must preserve this field.

only for alert notification, deliver sm and data sm: The command id
field identifies the particular SMPP PDU. For the complete list of defined
values see chapter 5.1.2.1 in the smpp specification v3.4.

Fuse Mediation Router Component Reference Version 2.6 463

Chapter 79. SMPP

CamelSmppSourceAddr

CamelSmppSourceAddrNpi

CamelSmppSourceAddrTon

464

only for alert notification, deliver sm and data sm: Defines the address
of SME (Short Message Entity) which originated this message.

only for alert notification and data sm: Defines the numeric plan
indicator (NPI) to be used in the SME originator address parameters.
The following NPI values are defined:

only for alert notification and data sm: Defines the type of number
(TON) to be used in the SME originator address parameters. The
following TON values are defined:

0: Unknown

1: ISDN (E163/E164)
2: Data (X.121)

3: Telex (F.69)

6: Land Mobile (E.212)
8: National

9: Private

10: ERMES

13: Internet (IP)

18: WAP Client Id (to be defined by WAP Forum)

0: Unknown

1: International

2: National

3: Network Specific

4: Subscriber Number
5: Alphanumeric

6: Abbreviated

Fuse Mediation Router Component Reference Version 2.6

CamelSmppEsmeAddr only for alert notification: Defines the destination ESME address. For
mobile terminated messages, this is the directory number of the recipient
MS.

CamelSmppEsmeAddrNpi only for alert notification: Defines the numeric plan indicator (NPI) to
be used in the ESME originator address parameters. The following NPI
values are defined:

e 0: Unknown

+ 1: ISDN (E163/E164)
e 2: Data (X.121)

« 3: Telex (F.69)

* 6: Land Mobile (E.212)
 8: National

* 9: Private

* 10: ERMES

* 13: Internet (IP)

» 18: WAP Client Id (to be defined by WAP Forum)

CamelSmppEsmeAddrTon only for alert notification: Defines the type of number (TON) to be used
in the ESME originator address parameters. The following TON values
are defined:

e 0: Unknown

 1: International

» 2: National

« 3: Network Specific

* 4: Subscriber Number
* 5: Alphanumeric

¢ 6: Abbreviated

Fuse Mediation Router Component Reference Version 2.6 465

Chapter 79. SMPP

CamelSmppId

CamelSmppDelivered

CamelSmppDoneDate

CamelSmppStatus

CamelSmppError

CamelSmppSubmitDate

CamelSmppSubmitted

CamelSmppDestAddr

CamelSmppScheduleDeliveryTime

466

only for smsc delivery receipt and data sm: The message ID allocated
to the message by the SMSC when originally submitted.

only for smsc delivery receipt: Number of short messages delivered.
This is only relevant where the original message was submitted to a
distribution list. The value is padded with leading zeros if necessary.

only for smsc delivery receipt: The time and date at which the short
message reached it's final state. The format is as follows:
YYMMDDhhmm.

only for smsc delivery receipt and data sm: The final status of the
message. The following values are defined:

* DELIVRD: Message is delivered to destination

* EXPIRED: Message validity period has expired.

* DELETED: Message has been deleted.

e UNDELIV: Message is undeliverable

* ACCEPTD: Message is in accepted state (i.e. has been manually read
on behalf of the subscriber by customer service)

* UNKNOWN: Message is in invalid state

e REJECTD: Message is in a rejected state

only for smsc delivery receipt: Where appropriate this may hold a
Network specific error code or an SMSC error code for the attempted
delivery of the message. These errors are Network or SMSC specific
and are not included here.

only for smsc delivery receipt: The time and date at which the short
message was submitted. In the case of a message which has been
replaced, this is the date that the original message was replaced. The
format is as follows: YYMMDDhhmm.

only for smsc delivery receipt: Number of short messages originally
submitted. This is only relevant when the original message was submitted
to a distribution list. The value is padded with leading zeros if necessary.

only for deliver sm and data sm: Defines the destination SME address.
For mobile terminated messages, this is the directory number of the
recipient MS.

only for deliver sm and data sm: This parameter specifies the
scheduled time at which the message delivery should be first attempted.

Fuse Mediation Router Component Reference Version 2.6

CamelSmppValidityPeriod

CamelSmppServiceType

CamelSmppRegisteredDelivery

CamelSmppDestAddrNpi

CamelSmppDestAddrTon

CamelSmppMessageType

It defines either the absolute date and time or relative time from the
current SMSC time at which delivery of this message will be attempted
by the SMSC. It can be specified in either absolute time format or relative
time format. The encoding of a time format is specified in Section 7.1.1.
in the smpp specification v3.4.

only for deliver sm: The validity period parameter indicates the SMSC
expiration time, after which the message should be discarded if not
delivered to the destination. It can be defined in absolute time format or
relative time format. The encoding of absolute and relative time format
is specified in Section 7.1.1 in the smpp specification v3.4.

only for deliver sm and data sm: The service type parameter indicates
the SMS Application service associated with the message.

only for data sm: Is used to request an delivery receipt and/or SME
originated acknowledgements. The following values are defined: 0: No
SMSC delivery receipt requested. 1: SMSC delivery receipt requested
where final delivery outcome is success or failure. 2: SMSC delivery
receipt requested where the final delivery outcome is delivery failure.

only for data sm: Defines the numeric plan indicator (NPI) in the
destination address parameters. The following NPI values are defined:
0: Unknown 1: ISDN (E163/E164) 2: Data (X.121) 3: Telex (F.69) 6: Land
Mobile (E.212) 8: National 9: Private 10: ERMES 13: Internet (IP) 18:
WAP Client Id (to be defined by WAP Forum)

only for data sm: Defines the type of number (TON) in the destination
address parameters. The following TON values are defined: : Unknown
1: International 2: National 3: Network Specific 4: Subscriber Number 5:
Alphanumeric 6: Abbreviated

Camel 2.6 onwarts: Identifies the type of an incoming message:
AlertNotification: an SMSC alert notification batasm: an SMSC data
short message DeliveryReceipt: an SMSC delivery receipt DeliverSm:
an SMSC deliver short message

? JSMPP library

See the documentation of the JSMPP Library” for more details about the underlying library.

8 http://code.google.com/p/jsmpp/

Fuse Mediation Router Component Reference Version 2.6 467

http://code.google.com/p/jsmpp/
http://code.google.com/p/jsmpp/

Chapter 79. SMPP

Samples

A route which sends an SMS using the Java DSL:

from("direct:start")
.to("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transaction
Timer=5000&systemType=producer");

A route which sends an SMS using the Spring XML DSL:

<route>

<from uri="direct:start"/>

<to uri="smpp://smppclient@localhost:2775?password=password&nquireLinkTimer=3000&ransac
tionTimer=5000&ystemType=producer"/>
</route>

A route which receives an SMS using the Java DSL:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transaction
Timer=5000&systemType=consumer")
.to("bean:foo");

A route which receives an SMS using the Spring XML DSL:
<route>
<from uri="smpp://smppclient@localhost:2775?password=password&nquireLinkTimer=3000&rans
actionTimer=5000&ystemType=consumer"/>

<to uri="bean:foo"/>
</route>

If you need an SMSC simulator for your test, you can use the simulator provided by Logica™.

Debug logging

This component has log level DEBUG, which can be helpful in debugging problems. If you use log4j, you can
add the following line to your configuration:

log4j.logger.org.apache.camel.component.smpp=DEBUG

4 http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator

468 Fuse Mediation Router Component Reference Version 2.6

http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator
http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator

Chapter 80. SNMP

SNMP Component

The snmp: component gives you the ability to poll SNMP capable devices or receiving traps.
URI format

snmp://hostname[:port][?0ptions]

The component supports polling OID values from an SNMP enabled device and receiving traps.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options
Name Default Description
Value
type none The type of action you want to perform. Actually you can enter here POLL or TRAP. The valu
to poll a given host for the supplied OID keys. If you put in TRAP you will setup a listener for
address none This is the IP address and the port of the host to poll or where to setup the Trap Receiver. |
protocol none Here you can select which protocol to use. By default it will be udp protocol but you may w:
retries 2 Defines how often a retry is made before canceling the request.
timeout 1500 Sets the timeout value for the request in millis.
snmpVersion 0 (which Sets the snmp version for the request.
means
SNMPV1)
snmpCommunity public Sets the community octet string for the snmp request.
delay 60 Defines the delay in seconds between to poll cycles.
seconds
oids none Defines which values you are interested in. Please have a look at the Wikipedia1 togetab

provide a single OID or a coma separated list of OIDs. Example:
0ids="1.3.6.1.2.1.1.3.0,1.3.6.1.2.1.25.3.2.1.5.1,1.3.6.1.2.1.25.3.5.1.1.1,

! http://fen.wikipedia.org/wiki/Object_identifier

Fuse Mediation Router Component Reference Version 2.6 469

http://en.wikipedia.org/wiki/Object_identifier
http://en.wikipedia.org/wiki/Object_identifier

Chapter 80. SNMP

The result of a poll

Given the situation, that | poll for the following OIDs:

1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.25.3.2.1.5.1
1.3.6.1.2.1.25.3.5.1.1.1
1.3.6.1.2.1.43.5.1.1.11.1

The result will be the following:

<?xml version="1.0" encoding="UTF-8"?>
<snmp>
<entry>
<0id>1.3.6.1.2.1.1.3.0</0id>
<value>6 days, 21:14:28.00</value>
</entry>
<entry>
<0id>1.3.6.1.2.1.25.3.2.1.5.1</0id>
<value>2</value>
</entry>
<entry>
<0id>1.3.6.1.2.1.25.3.5.1.1.1</0id>
<value>3</value>
</entry>
<entry>
<0id>1.3.6.1.2.1.43.5.1.1.11.1</0id>
<value>6</value>
</entry>
<entry>
<0id>1.3.6.1.2.1.1.1.0</0id>
<value>My Very Special Printer Of Brand Unknown</value>
</entry>
</snmp>

As you maybe recognized there is one more result than requested....1.3.6.1.2.1.1.1.0. This one is filled in by
the device automatically in this special case. So it may absolutely happen, that you receive more than you
requested...be prepared.

Examples

Polling a remote device:

snmp:192.168.178.23:161?protocol=udp&type=POLL&0ids=1.3.6.1.2.1.1.5.0

Setting up a trap receiver (no OID info is needed here!):

470 Fuse Mediation Router Component Reference Version 2.6

snmp:127.0.0.1:162?protocol=udp&type=TRAP

Routing example in Java (converts the SNMP PDU to XML String):

from("snmp:192.168.178.23:161?protocol=udp&type=POLL&0ids=1.3.6.1.2.1.1.5.0").
convertBodyTo(String.class).
to("activemqg:snmp.states");

Fuse Mediation Router Component Reference Version 2.6 471

472 Fuse Mediation Router Component Reference Version 2.6

Chapter 81. Springintegration

Spring Integration Component

The spring-integration: component provides a bridge for Fuse Mediation Router components to talk to spring
integration endpointsl.

URI format

spring-integration:defaultChannelName[?options]

Where defaultChannelName represents the default channel name which is used by the Spring Integration
Spring context. It will equal to the inputChannel name for the Spring Integration consumer and the

outputChannel name for the Spring Integration provider.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Description

inputChannel The Spring integration input channel name that this endpoint wants to consume from, whe
channel name is defined in the Spring context.

outputChannel The Spring integration output channel name that is used to send messages to the Spring |

inout The exchange pattern that the Spring integration endpoint should use.

consumer .delay Delay in milliseconds between each poll.

consumer.initialbDelay Milliseconds before polling starts.

! http://camel.apache.org/springintegration.html

Fuse Mediation Router Component Reference Version 2.6 473

http://camel.apache.org/springintegration.html
http://camel.apache.org/springintegration.html
http://camel.apache.org/springintegration.html

Chapter 81. Springlntegration

consumer .userFixedDelay Specify true to use fixed delay between polls, otherwise fixed rate is used. See the
Java[ScheduledExecutorService|http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/lang
class for details.

Usage

The Spring integration component is a bridge that connects Fuse Mediation Router endpoints with Spring
integration endpoints through the Spring integration's input channels and output channels. Using this component,
we can send Camel messages to Spring Integration endpoints or receive messages from Spring integration
endpoints in a Camel routing context.

Using the Spring integration endpoint

You can set up a Spring integration endpoint using a URI, as follows:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<channel id="inputChannel"/>
<channel id="outputChannel"/>
<channel id="onewayChannel"/>

<service-activator input-channel="inputChannel"
ref="helloService"
method="sayHello"/>

<service-activator input-channel="onewayChannel"
ref="helloService"
method="greet"/>

<beans:bean id="helloService" class="org.apache.camel.component.spring.integration.Hello
WorldService"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="direct:twowayMessage"/>

<!-- Using the &as the separator of & -->

<to uri="spring-integration:inputChannel?inOut=true&nputChannel=outputChannel"/>
</route>

474 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/lang/Character.html]

<route>
<from uri="direct:onewayMessage"/>
<to uri="spring-integration:onewayChannel?inOut=false"/>
</route>
</camelContext>

<channel id="requestChannel"/>
<channel id="responseChannel"/>

<beans:bean id="myProcessor" class="org.apache.camel.component.spring.integration.MyPro
cessor'"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<!-- Using the &as the separator of & -->
<from uri="spring-integration://requestChannel?outputChannel=responseChannel&nOut=true"/>

<process ref="myProcessor"/>
</route>
</camelContext>

Or directly using a Spring integration channel name:

<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:beans="http://www.springframework.org/schema/beans"

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<channel id="outputChannel"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<!-- camel will create a spring integration endpoint automatically -->
<from uri="outputChannel"/>
<to uri="mock:result"/>
</route>
</camelContext>

The Source and Target adapter
Spring integration also provides the Spring integration's source and target adapters, which can route messages

from a Spring integration channel to a Fuse Mediation Router endpoint or from a Fuse Mediation Router
endpoint to a Spring integration channel.

Fuse Mediation Router Component Reference Version 2.6 475

Chapter 81. Springlntegration

This example uses the following namespaces:

<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel-si="http://camel.apache.org/schema/spring/integration"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://camel.apache.org/schema/spring/integration
http://camel.apache.org/schema/spring/integration/camel-spring-integration.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd

Il>

You can bind your source or target to a Fuse Mediation Router endpoint as follows:

<!-- Create the camel context here -->
<camelContext id="camelTargetContext" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:EndpointA" />
<to uri="mock:result" />
</route>
<route>
<from uri="direct:EndpointC"/>
<process ref="myProcessor"/>

</route>
</camelContext>
<!-- We can bind the camelTarget to the camel context's endpoint by specifying the

camelEndpointUri attribute -->

<camel-si:camelTarget id="camelTargetA" camelEndpointUri="direct:EndpointA" ex

pectReply="false">
<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>

</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetB" camelEndpointUri="direct:EndpointC" replyChannel="chan
nelC" expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetD" camelEndpointUri="direct:EndpointC" ex
pectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

476 Fuse Mediation Router Component Reference Version 2.6

<beans:bean id="myProcessor" class="org.apache.camel.component.spring.integration.MyPro
cessor'"/>

<!-- spring integration channels -->
<channel id="channelA"/>
<channel id="channelB"/>
<channel id="channelC"/>

<!-- spring integration service activator -->
<service-activator input-channel="channelB" output-channel="channelC" ref="helloService"
method="sayHello"/>

<!-- custom bean -->
<beans:bean id="helloService" class="org.apache.camel.component.spring.integration.Hello
WorldService"/>

<camelContext id="camelSourceContext" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:Oneway"/>
<to uri="direct:EndpointB" />
</route>
<route>
<from uri="direct:TwoWay"/>
<to uri="direct:EndpointC" />

</route>
</camelContext>
<!-- camelSource will redirect the message coming for direct:EndpointB to the spring request

Channel channelA -->

<camel-si:camelSource id="camelSourceA" camelEndpointUri="direct:EndpointB"
requestChannel="channelA" expectReply="false">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>
</camel-si:camelSource>

<!-- camelSource will redirect the message coming for direct:EndpointC to the spring request
Channel channelB

then it will pull the response from channelC and put the response message back to direct:En
dpointC -->

<camel-si:camelSource id="camelSourceB" camelEndpointUri="direct:EndpointC"
requestChannel="channelB" replyChannel="channelC" expectReply="true">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>
</camel-si:camelSource>

Fuse Mediation Router Component Reference Version 2.6 477

478 Fuse Mediation Router Component Reference Version 2.6

Chapter 82. Spring Security

Spring Security

Available as of Camel 2.3

The camel-spring-security component provides role-based authorization for Camel routes. It leverages the
authentication and user services provided by Spring Security1 (formerly Acegi Security) and adds a declarative,
role-based policy system to control whether a route can be executed by a given principal.

If you are not familiar with the Spring Security authentication and authorization system, please review the
current reference documentation on the SpringSource web site linked above.

Creating authorization policies

Access to a route is controlled by an instance of a SpringSecurityAuthorizationPolicy object. A policy
object contains the name of the Spring Security authority (role) required to run a set of endpoints and references
to Spring Security AuthenticationManager and AccessDecisionManager objects used to determine whether
the current principal has been assigned that role. Policy objects may be configured as Spring beans or by

using an <authorizationPolicy> element in Spring XML.

The <authorizationPolicy> element may contain the following attributes:

Name Default Value
id null
access null

authenticationManager

accessDecisionManager

authenticationAdapter

! http://static.springsource.org/spring-security/site/index.html

Fuse Mediation Router Component Reference Version 2.6

authenticationManager

accessDecisionManager

DefaultAuthenticationAdapter

Description

The unique Spring bean identifier which is used to
reference the policy in routes (required)

The Spring Security authority name that is passed
to the access decision manager (required)

The name of the Spring Security
AuthenticationManager object in the context

The name of the Spring Security
AccessDecisionManager object in the context

Camel 2.4 The name of a
camel-spring-securityAuthenticationAdapter
object in the context that is used to convert a
javax.security.auth.Subject into a Spring
Security Authentication instance.

479

http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html

Chapter 82. Spring Security

useThreadSecurityContext true If a javax.security.auth.Subject cannot be
found in the In message header under
Exchange. AUTHENTICATION, check the Spring
Security SecurityContextHolder for an
Authentication object.

alwaysReauthenticate false If set to true, the
SpringSecurityAuthorizationPolicy will
always call
AuthenticationManager.authenticate() each
time the policy is accessed.

Controlling access to Camel routes

A Spring Security AuthenticationManager and AccessDecisionManager are required to use this component.
Here is an example of how to configure these objects in Spring XML using the Spring Security namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:spring-security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd">

<bean id="accessDecisionManager" class="org.springframework.security.access.vote.Affirm
ativeBased">
<property name="allowIfAllAbstainDecisions" value="true"/>
<property name="decisionVoters'">
<list>
<bean class="org.springframework.security.access.vote.RoleVoter"/>
</list>
</property>
</bean>

<spring-security:authentication-manager alias="authenticationManager'">
<spring-security:authentication-provider user-service-ref="userDetailsService"/>
</spring-security:authentication-manager>
<spring-security:user-service id="userDetailsService">

<spring-security:user name="jim" password="jimspassword" authorities="ROLE_USER,

ROLE_ADMIN"/>

<spring-security:user name="bob" password="bobspassword" authorities="ROLE_USER"/>

</spring-security:user-service>

</beans>

480 Fuse Mediation Router Component Reference Version 2.6

Now that the underlying security objects are set up, we can use them to configure an authorization policy and
use that policy to control access to a route:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:spring-security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http:
http:
http:
http:
http:
http:
http://www.

//www.springframework.org/schema/beans/spring-beans.xsd
//camel.apache.org/schema/spring
//camel.apache.org/schema/spring/camel-spring.xsd
//camel.apache.org/schema/spring-security
//camel.apache.org/schema/spring-security/camel-spring-security.xsd
//www.springframework.org/schema/security
springframework.org/schema/security/spring-security-3.0.3.xsd">

<!-- import the spring security configuration -->
<import resource="classpath:org/apache/camel/component/spring/security/commonSecur

ity.xml"/>

<authorizationPolicy id="admin" access="ROLE_ADMIN"

authenticationManager="authenticationManager"
accessDecisionManager="accessDecisionManager"
xmlns="http://camel.apache.org/schema/spring-security"/>

<camelContext id="myCamelContext" xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="direct:start"/>

<!-- The exchange should be authenticated with the role of ADMIN before it is
send to mock:endpoint -->

<policy ref="admin">

<to uri="mock:end"/>

</policy>
</route>
</camelContext>

</beans>

In this example, the endpoint mock : end will not be executed unless a Spring Security Authentication object
that has been or can be authenticated and contains the ROLE_ADMIN authority can be located by the
adminSpringSecurityAuthorizationPolicy.

Authentication

The process of obtaining security credentials that are used for authorization is not specified by this component.
You can write your own processors or components which get authentication information from the exchange
depending on your needs. For example, you might create a processor that gets credentials from an HTTP
request header originating in the camel-jetty component. No matter how the credentials are collected, they

Fuse Mediation Router Component Reference Version 2.6

481

camel-jetty

Chapter 82. Spring Security

need to be placed in the In message or the SecurityContextHolder so the camel-spring-security component
can access them:

import javax.security.auth.Subject;

import org.apache.camel.*;

import org.apache.commons.codec.binary.Base64;

import org.springframework.security.authentication.*;

public class MyAuthService implements Processor {
public void process(Exchange exchange) throws Exception {
// get the username and password from the HTTP header
// http://en.wikipedia.org/wiki/Basic_access_authentication
String userpass = new String(Base64.decodeBase64(exchange.getIn().getHeader ("Author
ization", String.class)));
String[] tokens= userpass.split(":");

// create an Authentication object
UsernamePasswordAuthenticationToken authToken = new UsernamePasswordAuthentication
Token(tokens[0], tokens[1]);

// wrap it in a Subject
Subject subject = new Subject();
subject.getPrincipals().add(token);

// place the Subject in the In message
exchange.getIn().setHeader (Exchange.AUTHENTICATION, subject);

// you could also do this if useThreadSecurityContext is set to true
// SecurityContextHolder.getContext().setAuthentication(authToken);

3

The SpringSecurityAuthorizationPolicy will automatically authenticate the Authentication object if
necessary.

There are two issues to be aware of when using the SecurityContextHolder instead of or in addition to the
Exchange.AUTHENTICATION header. First, the context holder uses a thread-local variable to hold the
Authentication object. Any routes that cross thread boundaries, like seda or jms, will lose the Authentication
object. Second, the Spring Security system appears to expect that an Authentication object in the context
is already authenticated and has roles (see the Technical Overview section 5.3.1° for more details).

The default behavior of camel-spring-security is to look for a Subject in the Exchange . AUTHENTICATION
header. This Subject must contain at least one principal, which must be a subclass of
org.springframework.security.core.Authentication. You can customize the mapping of Subject to
Authentication object by providing an implementation of the

2 http://static.springsource.org/spring-security/site/docs/3.0.x/reference/technical-overview.html#tech-intro-authentication

482 Fuse Mediation Router Component Reference Version 2.6

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/technical-overview.html#tech-intro-authentication
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/technical-overview.html#tech-intro-authentication

org.apache.camel.component.spring.security.AuthenticationAdapter toyour <authorizationPolicy>
bean. This can be useful if you are working with components that do not use Spring Security but do provide
a Subject. At this time, only the camel-cxf component populates the Exchange . AUTHENTICATION header.

Handling authentication and authorization errors

If authentication or authorization fails in the SpringSecurityAuthorizationPolicy, a
CcamelAuthorizationException will be thrown. This can be handled using Camel's standard exception
handling methods, like the Exception clause®. The CamelAuthorizationException will have a reference to
the ID of the policy which threw the exception so you can handle errors based on the policy as well as the type
of exception:

<onException>
<exception>org.springframework.security.authentication.AccessDeniedException</exception>

<choice>
<when>
<simple>${exception.policyId} == 'user'</simple>
<transform>
<constant>You do not have ROLE_USER access!</constant>
</transform>
</when>
<when>
<simple>${exception.policyId} == 'admin'</simple>
<transform>
<constant>You do not have ROLE_ADMIN access!</constant>
</transform>
</when>
</choice>
</onException>

Dependencies

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-security</artifactId>
<version>2.4.0</version>
</dependency>

This dependency will also pullin org.springframework.security:spring-security-core:3.0.3.RELEASE
and org.springframework.security:spring-security-config:3.0.3.RELEASE

3 4
exception-clause

Fuse Mediation Router Component Reference Version 2.6 483

camel-cxf
exception-clause
exception-clause

484 Fuse Mediation Router Component Reference Version 2.6

Chapter 83. Spring Web Services

Spring Web Services Component

The spring-ws: component allows you to integrate with Spring Web Services™. It offers both clientside support,
for accessing web services, and serverside support for creating your own contract-first web services.

Dependencies

This component offers support for Spring-WS 1.5.9 which is compatible with Spring 2.5.x and 3.0.x. In order
to run camel-spring-ws on Spring 2.5.x you need to add the spring-webmvc module from Spring 2.5.x.

In order to run Spring-WS 1.5.9 on Spring 3.0 you need to exclude the OXM module from Spring 3.0 as this
module is also included in Spring-WS 1.5.9.

URI format

The URI scheme for this component is as follows
spring-ws: [mapping-type: Jaddress[?options]

To expose a web service, mapping-type needs to be set to one of the following values:

Mapping type Description

rootgname Offers the option to map web service requests based on the qualified name of the root element
contained in the message.

soapaction Used to map web service requests based on the SOAP action specified in the header of the
message.

uri In order to map web service requests that target a specific URI.

xpathresult Used to map web service requests based on the evaluation of an XPath expression against
the incoming message. The result of the evaluation should match the XPath result specified
in the endpoint URI.

beanname Allows you to reference a
org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher in order to

t http://static.springsource.org/spring-ws/sites/1.5/

Fuse Mediation Router Component Reference Version 2.6 485

http://static.springsource.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/

Chapter 83. Spring Web Services

integrate with existing (legacy) endpoint mappings2 like PayloadRootQNameEndpointMapping,
SoapActionEndpointMapping, etc

As a consumer the address should contain a value relevant to the specified mapping-type (e.g. a SOAP action,
XPath expression). As a producer the address should be set to the URI of the web service you are calling
upon.

You can append query options to the URI in the following format, ?option=value&option=valueg&.. ..

Options
Name Required? Description
soapAction No SOAP action to include inside a SOAP request when accessing
remote web services
wsAddressingAction No WS-Addressing 1.0 action header to include when accessing
web services. The To header is set to the address of the web
service as specified in the endpoint URI (default Spring-WS
behavior).
expression Only when XPath expression to use in the process of mapping web service
mapping-type is requests, should match the result specified by xpathresult
xpathresult

Registry based options

The following options can be specified in the registry (most likely a Spring application context) and referenced
from the endpoint URI using the #beanIb notation.

Name Required? Description

webServiceTemplate No Option to provide a custom WebServiceTempIate3. This allows for full control
over client-side web services handling; like adding a custom interceptor or
specifying a fault resolver, message sender or message factory.

messageSender No Option to provide a custom WebServiceMessageSender4. For example to
perform authentication or use alternative transports

messageFactory No Option to provide a custom WebServiceMessageFactoryS. For example when
you want Apache Axiom to handle web service messages instead of SAAJ

2 http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/client/core/WebServiceTemplate.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/transport/WebServiceMessageSender.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/WebServiceMessageFactory.html

486 Fuse Mediation Router Component Reference Version 2.6

http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/client/core/WebServiceTemplate.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/transport/WebServiceMessageSender.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/WebServiceMessageFactory.html
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/client/core/WebServiceTemplate.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/transport/WebServiceMessageSender.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/WebServiceMessageFactory.html

transformerFactory No Option to override the default TransformerFactory. The provided transformer
factory must be of type javax.xml.transform.TransformerFactory

endpointMapping Only when Reference to
mapping-type org.apache.camel.component.spring.ws.bean.CamelEndpointMapping
is rootgname, in the Registry/ApplicationContext. Only one bean is required in the registry
soapaction, toserveall Camel/Sgring-WS endpoints. This bean is auto-discovered by the

urior MessageDispatcher™ and used to map requests to Camel endpoints based
xpathresult on characteristics specified on the endpoint (like root QName, SOAP action,
etc)

Message headers

Name Type Description

CamelSpringWebserviceEndpointUri String URI of the web service you are accessing as a client;
overrides the address part of the endpoint URI.

CamelSpringwebserviceSoapAction String Header to specify the SOAP action of the message;
overrides the soapAction option, if present

CamelSpringWebserviceAddressingAction URI Use this header to specify the WS-Addressing action
of the message; overrides the wsAddressingAction
option, if present

Accessing web services
To call a web service at http://foo.com/bar simply define a route:
from("direct:example").to("spring-ws:http://foo.com/bar")

And sent a message:

template.requestBody("direct:example", "<foobar xmlns=\"http://foo.com\"><msg>test mes
sage</msg></foobar>");

Sending SOAP and WS-Addressing action headers

When a remote web service requires a SOAP action or use of the WS-Addressing standard you define your
route as:

6 http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/server/MessageDispatcher.html

Fuse Mediation Router Component Reference Version 2.6 487

http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/server/MessageDispatcher.html
http://foo.com/bar
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/server/MessageDispatcher.html

Chapter 83. Spring Web Services

from("direct:example")
.to("spring-ws:http://foo.com/bar?soapAction=http://foo.com&wsAddressingAction=ht
tp://bar.com")

Optionally you can override the endpoint options with header values:

template.requestBodyAndHeader ("direct:example",
"<foobar xmlns=\"http://foo.com\"><msg>test message</msg></foobar>",
SpringWebserviceConstants.SPRING_WS_SOAP_ACTION, "http://baz.com");

Using a custom MessageSender and MessageFactory

A custom message sender or factory in the registry can be referenced like this:

from("direct:example")
.to("spring-ws:http://foo.com/bar?messageFactory=#messageFactory&messageSender=#mes
sageSender")

Spring configuration:

<!-- authenticate using HTTP Basic Authentication -->
<bean id="messageSender" class="org.springframework.ws.transport.http.CommonsHttpMes
sageSender">
<property name="credentials">
<bean class="org.apache.commons.httpclient.UsernamePasswordCredentials">
<constructor-arg index="0" value="admin"/>
<constructor-arg index="1" value="secret"/>
</bean>
</property>
</bean>

<!-- force use of Sun SAAJ implementation, http://static.springsource.org/spring-
ws/sites/1.5/faq.html#saaj-jboss -->
<bean id="messageFactory" class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">

<property name="messageFactory">

<bean class="com.sun.xml.messaging.saaj.soap.verl_1.SOAPMessageFactoryl 1Impl"></bean>
</property>
</bean>

Exposing web services

In order to expose a web service using this component you first need to set-up a MessageDispatcher7 to look
for endpoint mappings in a Spring XML file. If you plan on running inside a servlet container you probably want
to use a MessageDispatcherServlet configured in web.xml.

7 http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html

488 Fuse Mediation Router Component Reference Version 2.6

http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html

By default the MessageDispatcherServlet will look for a Spring XML named
/WEB-INF/spring-ws-servlet.xml. To use Camel with Spring-WS the only mandatory bean in that XML file
is CamelEndpointMapping. This bean allows the MessageDispatcher to dispatch web service requests to
your routes.

web.xml

<web-app>
<servlet>
<servlet-name>spring-ws</servlet-name>
<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</ser
vlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

spring-ws-serviet.xml

<bean id="endpointMapping" class="org.apache.camel.component.spring.ws.bean.CamelEndpoint
Mapping" />

<bean id="wsdl" class="org.springframework.ws.wsdl.wsdl11l.DefaultWsdll1Definition">
<property name="schema">
<bean class="org.springframework.xml.xsd.SimpleXsdSchema">
<property name="xsd" value="/WEB-INF/foobar.xsd"/>
</bean>
</property>
<property name="portTypeName" value="FooBar"/>
<property name="locationUri" value="/"/>
<property name="targetNamespace" value="http://example.com/"/>
</bean>

More information on setting up Spring-WS can be found in Writing Contract-First Web Services®.
Endpoint mapping in routes

With the XML configuration in-place you can now use Camel's DSL to define what web service requests are
handled by your endpoint. The following route will receive all web service requests that have a root element
named GetFoo within the http://example.com/ namespace:

from("spring-ws:rootqname:{http://example.com/}GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

8 http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html

Fuse Mediation Router Component Reference Version 2.6 489

http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html
http://example.com/
http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html

Chapter 83. Spring Web Services

The following route will receive web service requests containing the http://example.com/GetFoo SOAP
action:

from("spring-ws:soapaction:http://example.com/GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The following route will receive all requests sentto http://example.com/foobar:

from("spring-ws:uri:http://example.com/foobar?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The route below receives requests that contain the element <foobar>abc</foobar> anywhere inside the
message (and the default namespace).

from("spring-ws:xpathresult:abc?expression=//foobar&endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

Alternative configuration, using existing endpoint mappings

For every endpoint with mapping-type beanname one bean of type CamelEndpointDispatcher with a
corresponding name is required in the Registry/AngicationContext. This bean acts as a bridge between the
Camel endpoint and an existing endpoint mapping™ like PayloadRootQNameEndpointMapping.

The use of the beanname mapping-type is primarily meant for (legacy) situations where you're already using
Spring-WS and have endpoint mappings defined in a Spring XML file. The beanname mapping-type allows you
to wire your Camel route into an existing endpoint mapping. When you're starting from scratch it's recommended
to define your endpoint mappings as Camel URI's (as illustrated above with endpointMapping) since it requires
less configuration and is more expressive. Alternatively you could use vanilla Spring-WS with the help of
annotations.

An example of a route using beanname:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="spring-ws:beanname:QuoteEndpointDispatcher" />
<to uri="mock:example" />
</route>
</camelContext>

<bean id="legacyEndpointMapping" class="org.springframework.ws.server.endpoint.mapping.Pay

® http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping

490 Fuse Mediation Router Component Reference Version 2.6

http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping

loadRootQNameEndpointMapping">
<property name="mappings">
<props>
<prop key="{http://example.com/}GetFuture">FutureEndpointDispatcher</prop>
<prop key="{http://example.com/}GetQuote">QuoteEndpointDispatcher</prop>
</props>
</property>
</bean>

<bean id="QuoteEndpointDispatcher" class="org.apache.camel.component.spring.ws.bean.CamelEnd
pointDispatcher" />
<bean id="FutureEndpointDispatcher" class="org.apache.camel.component.spring.ws.bean.CamelEnd
pointDispatcher" />

POJO (un)marshalling

Camel's pluggable data formats offer support for POJO/XML marshalling using libraries such as JAXB, XStream,
Castor and XMLBeans. You can use these data formats in your route to sent and receive POJOs (Plain Old
Java Objects), to and from web services.

When accessing web services you can marshal the request and unmarshal the response message:

JaxbDataFormat jaxb = new JaxbDataFormat(false);
jaxb.setContextPath("com.example.model");

from("direct:example").marshal(jaxb).to("spring-ws:http://foo.com/bar").unmarshal(jaxb);

Similarly when providing web services, you can unmarshal XML requests to POJOs and marshal the response
message back to XML:

from("spring-ws:rootgname:{http://example.com/}GetFoo?endpointMapping=#endpointMapping").un

marshal(jaxb)
.to("mock:example").marshal(jaxb);

Fuse Mediation Router Component Reference Version 2.6 491

492 Fuse Mediation Router Component Reference Version 2.6

Chapter 84. SQL Component

SQL Component

The sql: component allows you to work with databases using JDBC queries. The difference between this
component and JDBC on page 267 component is that in case of SQL the query is a property of the endpoint
and it uses message payload as parameters passed to the query.

This component uses spring-jdbc behind the scenes for the actual SQL handling.

URI format

The SQL component can only be used to define producer endpoints. In other words, you cannot define an
SQL endpoint in a from() statement.

The SQL component uses the following endpoint URI notation:

sgl:select * from table where id=# order by name[?options]

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the # symbol,
because the ? symbol is used to specify options for the endpoint. The ? symbol replacement can be configured
on endpoint basis.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Type Default Description
dataSourceRef String null Fuse Mediation Router 1.5.1/2.0: Reference to a DataSource to look
up in the registry.

placeholder String # Camel 2.4: Specifies a character that will be replaced to ? in SQL query.
Notice, that it is simple String.replaceAll() operation and no SQL
parsing is involved (quoted strings will also change)

template.<xxx> null Sets additional options on the Spring JdbcTemplate that is used behind
the scenes to execute the queries. For instance, template .maxRows=10.

Fuse Mediation Router Component Reference Version 2.6 493

Chapter 84. SQL Component

For detailed documentation, see the JdbcTemplate javadoc1
documentation.

Treatment of the message body

The SQL component tries to convert the message body to an object of java.util.Iterator type and then
uses this iterator to fill the query parameters (where each query parameter is represented by a # symbol, or
other configured placeholder, in the endpoint URI). If the message body is not an array or collection, the
conversion results in an iterator that iterates over only one object, which is the body itself.

For example, if the message body is an instance of java.util.List, the firstitem in the list is substituted into

the first occurrence of # in the SQL query, the second item in the list is substituted into the second occurrence
of #, and so on.

Result of the query

For select operations, the result is an instance of List<Map<String, Object>> type, as returned by the
JdbcTempIate.queryForList()2 method. For update operations, the result is the number of updated rows,
returned as an Integer.

Header values

When performing update operations, the SQL Component stores the update count in the following message
headers:

Header Description

SqlProducer .UPDATE_COUNT Fuse Mediation Router 1.x: The number of rows updated for update operations,
returned as an Integer object.

CamelSqlUpdateCount Fuse Mediation Router 2.0: The number of rows updated for update operations,
returned as an Integer object.

CamelSglRowCount Fuse Mediation Router 2.0: The number of rows returned for select operations,
returned as an Integer object.

Configuration in Fuse Mediation Router 1.5.0 or lower

The SQL component must be configured before it can be used. In Spring, you can configure it as follows:

; http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/Jdbc Template. htmi#queryForList(java.lang.String,%620java.lang.Object%691%693)

494 Fuse Mediation Router Component Reference Version 2.6

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)

<bean id="sqgl" class="org.apache.camel.component.sql.SqlComponent">
<property name="dataSource" ref="myDS"/>
</bean>

<bean id="myDS" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds" />
<property name="username" value="username" />
<property name="password" value="password" />
</bean>

Configuration in Fuse Mediation Router 1.5.1 or higher

You can now set a reference to a DataSource in the URI directly:

sql:select * from table where id=# order by name?dataSourceRef=myDS

Sample

In the sample below we execute a query and retrieve the result as a List of rows, where each row is a
Map<String, Object and the key is the column name.

First, we set up a table to use for our sample. As this is based on an unit test, we do it java code:

// this is the database we create with some initial data for our unit test
jdbcTemplate.execute("create table projects (id integer primary key,"
+ "project varchar(10), license varchar(5))");

jdbcTemplate.execute("insert into projects values (1, 'Camel', 'ASF')");
jdbcTemplate.execute("insert into projects values (2, 'AMQ', 'ASF')");
jdbcTemplate.execute("insert into projects values (3, 'Linux', 'XXX')");

Then we configure our route and our sql component. Notice that we use a direct endpoint in front of the sql
endpoint. This allows us to send an exchange to the direct endpoint with the URI, direct:simple, which is
much easier for the client to use than the long sql: URI. Note that the bataSource is looked up up in the
registry, so we can use standard Spring XML to configure our DataSource.

from("direct:simple")

.to("sql:select * from projects where license = # order by id?dataSourceRef=jdbc/myData
Source")

.to("mock:result");

And then we fire the message into the direct endpoint that will route it to our sql component that queries the
database.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount (1) ;

Fuse Mediation Router Component Reference Version 2.6 495

Chapter 84. SQL Component

// send the query to direct that will route it to the sql where we will execute the query
// and bind the parameters with the data from the body. The body only contains one value
// in this case (XXX) but if we should use multi values then the body will be iterated

// so we could supply a List<String> instead containing each binding value.
template.sendBody("direct:simple", "XXX");

mock.assertIsSatisfied();
// the result is a List

List received = assertIsInstanceOf(List.class, mock.getReceivedExchanges().get(0).getIn().get
Body());

// and each row in the list is a Map
Map row = assertIsInstanceOf(Map.class, received.get(0));

// and we should be able the get the project from the map that should be Linux
assertEquals("Linux", row.get("PROJECT"));

We could configure the DataSource in Spring XML as follows:
<jee:jndi-lookup id="myDS" jndi-name="jdbc/myDataSource"/>
See also:

» JDBC on page 267

496 Fuse Mediation Router Component Reference Version 2.6

Chapter 85. Stream

Stream Component

The stream: component provides access to the System.in, System.out and System. err streams as well as
allowing streaming of file and URL.

URI format

stream:in[?options]
stream:out[?options]
stream:err[?options]
stream:header[?options]

In addition, the file and url endpoint URIs are supported in Fuse Mediation Router 2.0:

stream:file?fileName=/foo/bar.txt
stream:url[?options]

If the stream:header URI is specified, the stream header is used to find the stream to write to. This option is
available only for stream producers (that is, it cannot appear in from()).

You can append query options to the URI in the following format, 2option=value&option=value&. ..

Options

Name Default Value Description

delay 0 Initial delay in milliseconds before consuming or producing the stream.

encoding JVM Default As of 1.4, you can configure the encoding (is a charset namel) to use
text-based streams (for example, message body is a String objectg. If
not provided, Fuse Mediation Router uses the JVM default Charset”.

promptMessage null Fuse Mediation Router 2.0: Message prompt to use when reading
from stream: in; for example, you could set this to Enter a command:

promptDelay 0 Fuse Mediation Router 2.0: Optional delay in milliseconds before
showing the message prompt.

initialPromptDelay 2000 Fuse Mediation Router 2.0: Initial delay in milliseconds before showing
the message prompt. This delay occurs only once. Can be used during

! http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
2 http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

Fuse Mediation Router Component Reference Version 2.6 497

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

Chapter 85. Stream

system startup to avoid message prompts being written while other
logging is done to the system out.

fileName null Fuse Mediation Router 2.0: When using the stream: file URI format,
this option specifies the filename to stream to/from.

scanStream false Fuse Mediation Router 2.0: To be used for continuously reading a
stream such as the unix tail command. Fuse Mediation Router 2.4:
will retry opening the file if it is overwritten, like tail --retry

scanStreamDelay 0 Fuse Mediation Router 2.0: Delay in milliseconds between read
attempts when using scanStream.

groupLines 0 Camel 2.5: To group X number of lines in the consumer. For example
to group 10 lines and therefore only spit out an Exchange with 10 lines,
instead of 1 Exchange per line.

Message content

The stream: component supports either String or byte[] for writing to streams. Just add either String or
byte[] content to the message.in.body. The special stream:header URI is used for custom output streams.
Just add a java.io.OutputStream object to message.in.header in the key header. See samples for an
example.

Samples

In the following sample we route messages from the direct:in endpoint to the System.out stream:

@Test

public void testStringContent() throws Exception {
template.sendBody("direct:in", "Hello Text World\n");

}

@Test
public void testBinaryContent() {

template.sendBody("direct:in", "Hello Bytes World\n".getBytes());
}

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {
public void configure() {
from("direct:in").to("stream:out");
}

}i

498 Fuse Mediation Router Component Reference Version 2.6

Exchange
Exchange

The following sample demonstrates how the header type can be used to determine which stream to use.

the sample we use our own output stream, MyOutputStream.

private OutputStream mystream = new MyOutputStream();
private StringBuffer sb = new StringBuffer();

@Test

public void testStringContent() {
template.sendBody("direct:in", "Hello");
// StreamProducer appends \n in text mode
assertEquals("Hello\n", sb.toString());

3

@Test

public void testBinaryContent() {
template.sendBody("direct:in", "Hello".getBytes());
// StreamProducer is in binary mode so no \n is appended
assertEquals("Hello", sb.toString());

3

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {
public void configure() {
from("direct:in").setHeader("stream", constant(mystream)).
to("stream:header");

}i
}

private class MyOutputStream extends OutputStream {

public void write(int b) throws IOException {
sb.append((char)b);
b

3

The following sample demonstrates how to continuously read a file stream (analogous to the UNIX tail
command):

from("stream:file?fileName=/server/logs/server.log&scanStream=true&scanStream
Delay=1000").to("bean:1logService?method=parseLogLine");

Fuse Mediation Router Component Reference Version 2.6

In

499

500 Fuse Mediation Router Component Reference Version 2.6

Chapter 86. StringTemplate

String Template

The string-template: component allows you to process a message using a String Templatel. This can be
ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-stringtemplate</artifactId>
<version>x.x.x</version>

<!-- use the same version as your Camel core version -->
</dependency>

URI format
string-template:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Default Description

contentCache false New option in Fuse Mediation Router 1.4. Cache for the resource content when its
loaded.

Headers

Fuse Mediation Router will store a reference to the resource in the message header with key,
org.apache.camel.stringtemplate.resource. The Resource is an
org.springframework.core.io.Resource object.

! http://www.stringtemplate.org/

Fuse Mediation Router Component Reference Version 2.6 501

http://www.stringtemplate.org/
Templating
http://www.stringtemplate.org/

Chapter 86. StringTemplate

Hot reloading
The string template resource is by default hot-reloadable for both file and classpath resources (expanded jar).

If you set contentCache=true, Fuse Mediation Router loads the resource only once and hot-reloading is not
possible. This scenario can be used in production when the resource never changes.

StringTemplate Attributes

Fuse Mediation Router will provide exchange information as attributes (just a java.util.Map) to the string
template. The Exchange is transfered as:

key value
exchange The Exchange itself.
headers The headers of the In message.

camelContext The Camel Context.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).
response The Out message (only for InOut message exchange pattern).
Samples

For example you could use a string template as follows in order to formulate a response to a message:
from("activemq:My.Queue").

to("string-template:com/acme/MyResponse.tm");
The Email Sample

In this sample we want to use a string template to send an order confirmation email. The email template is laid
outin StringTemplate as:

Dear $headers.lastName$, S$headers.firstName$
Thanks for the order of $headers.item$.

Regards Camel Riders Bookstore
$body$

502 Fuse Mediation Router Component Reference Version 2.6

And the java code is as follows:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();

msg.setHeader ("firstName", "Claus");
msg.setHeader ("lastName", "Ibsen");
msg.setHeader ("item", "Camel in Action");

msg.setBody("PS: Next beer is on me, James");
return exchange;

3

@Test
public void testVelocitylLetter() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount (1) ;
mock.expectedBodiesReceived("Dear Ibsen, Claus! Thanks for the order of Camel in Action.
Regards Camel Riders Bookstore PS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();

3

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
from("direct:a").to("string-template:org/apache/camel/component/stringtemplate/let
ter.tm").to("mock:result");
b
}i

Fuse Mediation Router Component Reference Version 2.6 503

504 Fuse Mediation Router Component Reference Version 2.6

Chapter 87. Test

Test Component

The test component extends the Mock on page 357 component to support pulling messages from another
endpoint on startup to set the expected message bodies on the underlying Mock on page 357 endpoint. That
is, you use the test endpoint in a route and messages arriving on it will be implicitly compared to some expected
messages extracted from some other location.

So you can use, for example, an expected set of message bodies as files. This will then set up a properly
configured Mock on page 357 endpoint, which is only valid if the received messages match the number of
expected messages and their message payloads are equal.

URI format
test:expectedMessagesEndpointUri

Where expectedMessagesEndpointUri refers to some other Component URI that the expected message
bodies are pulled from before starting the test.

Example

For example, you could write a test case as follows:

from("seda:someEndpoint").
to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertlsSatisfied(camelContext) methodl, your test case will perform
the necessary assertions.

Here is a real example test case using Mock and Spring2 along with its Spring XML,

To see how you can set other expectations on the test endpoint, see the Mock on page 357 component.

1
Qtlpﬂcamel.apacheug/mmenenﬂcarmee/apHocdorgapadwdmmvenpchmmoddModEndpdmhtrnl#aserﬂsSaﬁsﬁed(org.apadE.camel.CamelConteA)
Qttp://svn.apache.org/vievwclcamelltrunklcomponenElcamel—springlsrc/testfjavalorg/apache/camellcomponent/test/TestEndpointTest.java?vieW:markup

https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml

Fuse Mediation Router Component Reference Version 2.6 505

Component
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml

506 Fuse Mediation Router Component Reference Version 2.6

Chapter 88. Timer

Timer Component

The timer: component is used to generate message exchanges when a timer fires You can only consume
events from this endpoint.

URI format
timer:name[?options]

Where name is the name of the Timer object, which is created and shared across endpoints. So if you use the
same name for all your timer endpoints, only one Timer object and thread will be used.

You can append query options to the URI in the following format, ?option=value&option=valueé. ..

Note: The IN body of the generated exchange is null. So exchange.getIn().getBody() returns null.

? Advanced Scheduler

| See also the Quartz on page 389 component that supports much more advanced scheduling. |

? Specify time in human friendly format

In Camel 2.3 onwards you can specify the time in human friendly syntax™.

Options

Name Default Value Description

time null A java.util.Date the first event should be generated. If using the URI, the
pattern expected is: yyyy-MM-dd HH:mm:ss Or yyyy-MM-dd'T'HH:mm:ss.

pattern null Fuse Mediation Router 1.6.2/2.0: Allows you to specify a custom Date pattern
to use for setting the time option using URI syntax.

period 1000 If greater than O, generate periodic events every period milliseconds.

Howdo | specify time period in a human friendly syntax

Fuse Mediation Router Component Reference Version 2.6 507

How do I specify time period in a human friendly syntax
How do I specify time period in a human friendly syntax

Chapter 88. Timer

delay 0 The number of milliseconds to wait before the first event is generated. Should
not be used in conjunction with the time option.

fixedRate false Events take place at approximately regular intervals, separated by the specified
period.

daemon true Specifies whether or not the thread associated with the timer endpoint runs as
a daemon.

Exchange Properties

When the timer is fired, it adds the following information as properties to the Exchange:

Name Type Description

org.apache.camel. timer.name String The value of the name option.

org.apache.camel.timer.time Date The value of the time option.

org.apache.camel.timer.period long The value of the period option

org.apache.camel.timer.firedTime Date Fuse Mediation Router 1.5: The time when the consumer
fired.

Message Headers

When the timer is fired, it adds the following information as headers to the IN message

Name Type Description
firedTime java.util.Date Fuse Mediation Router 1.5: The time when the consumer fired

Sample

To set up a route that generates an event every 60 seconds:

from("timer://foo?fixedRate=true&period=60000").to("bean:myBean?method=someMethodName");

The above route will generate an event and then invoke the someMethodName method on the bean called
myBean in the Registry such as JNDI or Spring.

And the route in Spring DSL:

<route>
<from uri="timer://foo?fixedRate=true&eriod=60000"/>

508 Fuse Mediation Router Component Reference Version 2.6

Registry
Spring

<to uri="bean:myBean?method=someMethodName"/>
</route>

See also:

e Quartz on page 389

Fuse Mediation Router Component Reference Version 2.6 509

510 Fuse Mediation Router Component Reference Version 2.6

Chapter 89. Validation

Validation Component

The Validation component performs XML validation of the message body using the JAXP Validation APl and
based on any of the supported XML schema languages, which defaults to XML Schema!

Note that the Jing on page 291 component also supports the following useful schema languages:
* RelaxNG Compact Syntax2

+ RelaxNG XML Syntax®

The MSV on page 361 component also supports RelaxNG XML Syntax4.

URI format

validator:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on the classpath or a full URL to a
remote resource or resource on the file system which contains the XSD to validate against. For example:

* msv:org/foo/bar.xsd
e msv:file:../foo/bar.xsd
* msv:http://acme.com/cheese.xsd

* validator:com/mypackage/myschema.xsd

Options
Option Default Description
useDom false Fuse Mediation Router 2.0: Whether boMSource/{{DOMResult}} or

SaxSource/{{SaxResult}} should be used by the validator.

! http://www.w3.0rg/XML/Schema

2 http://relaxng.org/compact-tutorial-20030326.html
8 http://relaxng.org/

4 http://relaxng.org/

Fuse Mediation Router Component Reference Version 2.6 511

http://www.w3.org/XML/Schema
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/
http://acme.com/cheese.xsd
http://www.w3.org/XML/Schema
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/

Chapter 89. Validation

useSharedSchema true Camel 2.3: Whether the Schema instance should be shared or not. This option
is introduced to work around a JDK 1.6.x bugS. Xerces should not have this

issue.

Example

The following example6 shows how to configure a route from endpoint direct:start which then goes to one of
two endpoints, either mock:valid or mock:invalid based on whether or not the XML matches the given schema

(which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<doTry>
<to uri="validator:org/apache/camel/component/validator/schema.xsd"/>
<to uri="mock:valid"/>
<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>
</camelContext>

Z http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6773084

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml

512 Fuse Mediation Router Component Reference Version 2.6

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6773084
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6773084
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml

Chapter 90. Velocity

Velocity

The velocity: component allows you to process a message using an Apache Velocity1 template. This can be
ideal when using Templating to generate responses for requests.

URI format
velocity:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example, file://folder/myfile.vm).

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Option Default Description

loaderCache true Velocity based file loader cache.

contentCache New option in Fuse Mediation Router 1.4: Cache for the resource content when
it is loaded. By default, it's false in Fuse Mediation Router 1.x. By default, it's
true in Fuse Mediation Router 2.x.

encoding null New option in Fuse Mediation Router 1.6: Character encoding of the resource

content.

propertiesFile null New option in Camel 2.1: The URI of the properties file which is used for
VelocityEngine initialization.

Message Headers

The velocity component sets some headers on the message (you cannot set these yourself):

Header Description

org.apache.camel.velocity.resource Fuse Mediation Router 1.x: The resource as an
org.springframework.core.io.Resource object.

org.apache.camel.velocity.resourceUri Fuse Mediation Router 1.x: The templateName as a String
object.

! http://velocity.apache.org/

Fuse Mediation Router Component Reference Version 2.6 513

http://velocity.apache.org/
http://velocity.apache.org/

Chapter 90. Velocity

CamelvVelocityResource Fuse Mediation Router 2.0: The resource as an
org.springframework.core.io.Resource object.

CamelvelocityResourceUri Fuse Mediation Router 2.0: The templateName as a String
object.

In Fuse Mediation Router 1.4 headers set during the Velocity evaluation are returned to the message and
added as headers. This makes it possible to return values from Velocity to the Message.

For example, to set the header value of fruit in the Velocity template . tm:

$in.setHeader('fruit', 'Apple')
The fruit header is now accessible from the message.out . headers.
Velocity Context

Fuse Mediation Router will provide exchange information in the Velocity context (just a Map). The Exchange
is transfered as:

key value
exchange The Exchange itself.
headers The headers of the In message.

camelContext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).
response The Out message (only for InOut message exchange pattern).

Hot reloading

The Velocity template resource is, by default, hot reloadable for both file and classpath resources (expanded
jar). If you set contentCache=true, Fuse Mediation Router will only load the resource once, and thus hot
reloading is not possible. This scenario can be used in production, when the resource never changes.
Dynamic templates

Available as of Camel 2.1 Camel provides two headers by which you can define a different resource location

for a template or the template content itself. If any of these headers is set then Camel uses this over the
endpoint configured resource. This allows you to provide a dynamic template at runtime.

514 Fuse Mediation Router Component Reference Version 2.6

Header Type Description

CamelVelocityResourceUri String Camel 2.1: A URI for the template resource to use instead of the
endpoint configured.

CamelVelocityTemplate String Camel 2.1: The template to use instead of the endpoint configured.

Samples

For example you could use something like

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

To use a Velocity template to formulate a response to a message for InOut message exchanges (where there
is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination, you could use the
following route:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemqg:Another.Queue");

And to use the content cache, e.g. for use in production, where the .vm template never changes:
from("activemq:My.Queue").

to("velocity:com/acme/MyResponse.vm?contentCache=true").
to("activemqg:Another.Queue");

And a file based resource:

from("activemq:My.Queue").
to("velocity:file://myfolder/MyResponse.vm?contentCache=true").
to("activemqg:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should use dynamically via a header, so
for example:

from("direct:in").
setHeader ("CamelVelocityResourceUri").constant("path/to/my/template.vm").
to("velocity:dummy");

In Camel 2.1 it's possible to specify a template directly as a header the component should use dynamically
via a header, so for example:

Fuse Mediation Router Component Reference Version 2.6 515

Chapter 90. Velocity

from("direct:in").

setHeader ("CamelVelocityTemplate").constant("Hi this is a velocity template that can do
templating ${body}").

to("velocity:dummy");

The Email Sample

In this sample we want to use Velocity templating for an order confirmation email. The email template is laid
out in Velocity as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();

msg.setHeader ("firstName", "Claus");
msg.setHeader ("lastName", "Ibsen");
msg.setHeader ("item", "Camel in Action");

msg.setBody("PS: Next beer is on me, James");
return exchange;

3

@Test
public void testVelocitylLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");

mock.expectedMessageCount (1) ;

mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel in Ac
tion.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();

3

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception {
from("direct:a").to("velocity:org/apache/camel/component/velocity/let

516 Fuse Mediation Router Component Reference Version 2.6

ter.vm").to("mock:result");

}
}i

Fuse Mediation Router Component Reference Version 2.6 517

518 Fuse Mediation Router Component Reference Version 2.6

Chapter 91. VM

VM Component

The vm: component provides asynchronous SEDA® behavior so that messages are exchanged on a
BIockingQueue2 and consumers are invoked in a separate thread pool to the producer.

This component differs from the Seda component in that VM supports communication across CamelContext
instances, so you can use this mechanism to communicate across web applications, provided that the
camel-core.jar is on the system/boot classpath.

This component is an extension to the Seda component.
URI format
vm: someName[?options]

Where someName can be any string to uniquely identify the endpoint within the JVM (or at least within the
classloader which loaded the camel-core.jar)

You can append query options to the URI in the following format, ?option=value&option=value&. ..
Options

See the Seda component for options and other important usage as the same rules applies for this Vm
component.

Samples
In the route below we send the exchange to the VM queue that is working across CamelContext instances:
from("direct:in").bean(MyOrderBean.class).to("vm:order.email");

And then in another Camel context such as deployed as in another .war application:

from("vm:order.email").bean(MyOrderEmailSender.class);
See also:

* Seda

! http://www.eecs.harvard.edu/~mdw/proj/seda/
2 http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

Fuse Mediation Router Component Reference Version 2.6 519

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

520 Fuse Mediation Router Component Reference Version 2.6

Chapter 92. XMPP

XMPP Component

The xmpp: component implements an XMPP (Jabber) transport.

URI format

xmpp://[login@]hostname[:port][/participant][?0ptions]

The component supports both room based and private person-person conversations. The component supports
both producer and consumer (you can get messages from XMPP or send messages to XMPP). Consumer
mode supports rooms starting from camel-1.5.0.

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Options

Name Description

room If this option is specified, the component will connect to MUC (Multi User Chat). Usually,
the domain name for MUC is different from the login domain. For example, if you are
superman@jabber.org and want to join the krypton room, then the room URL is
krypton@conference.jabber.org. Note the conference part.

user User name (without server name). If not specified, anonymous login will be attempted.

password Password.

resource XMPP resource. The default is Camel.

createAccount If true, an attempt to create an account will be made. Default is false.

participant JID (Jabber ID) of person to receive messages. room parameter has precedence over
participant.

nickname Use nickname when joining room. If room is specified and nickname is not, user will be
used for the nickname.

serviceName Fuse Mediation Router 1.6/2.0 The name of the service you are connecting to. For Google
Talk, this would be gmail.com.

Fuse Mediation Router Component Reference Version 2.6 521

Chapter 92. XMPP

Headers and setting Subject or Language

Fuse Mediation Router sets the message IN headers as properties on the XMPP message. You can configure
a HeaderFilterStategy if you need custom filtering of headers. In Fuse Mediation Router 1.6.2/2.0 the
Subject and Language of the XMPP message are also set if they are provided as IN headers.

Examples

User superman to join room krypton at jabber server with password, secret:

xmpp://superman@jabber.org/?room=krypton@conference. jabber.org&password=secret

User superman to send messages to joker:

xmpp://superman@jabber.org/joker@jabber.org?password=secret

Routing example in Java:

from("timer://kickoff?period=10000").
setBody(constant ("I will win!\n Your Superman.")).
to("xmpp://superman@jabber.org/joker@jabber.org?password=secret");

Consumer configuration, which writes all messages from joker into the queue, evil. talk.

from("xmpp://superman@jabber.org/joker@jabber.org?password=secret").
to("activemqg:evil.talk");

Consumer configuration, which listens to room messages (supported from camel-1.5.0):

from("xmpp://superman@jabber.org/?password=secret&room=krypton@conference.jabber.org").
to("activemq:krypton.talk");

Room in short notation (no domain part; for camel-1.5.0+):

from("xmpp://superman@jabber.org/?password=secret&room=krypton").
to("activemq:krypton.talk");

When connecting to the Google Chat service, you'll need to specify the serviceName as well as your credentials
(as of Fuse Mediation Router 1.6/2.0):

// send a message from fromuser@gmail.com to touser@gmail.com
from("direct:start").
to("xmpp://talk.google.com:5222/touser@gmail.com?serviceName=gmail.com&user=fro
museré&password=secret").
to("mock:result");

522 Fuse Mediation Router Component Reference Version 2.6

Chapter 93. XQuery Endpoint

XQuery

The xquery: component allows you to process a message using an XQuery template. This can be ideal when
using Templating to generate respopnses for requests.

URI format

xquery:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template.

For example you could use something like this:

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery");

To use an XQuery template to formulate a response to a message for InOut message exchanges (where there
is a JMSReplyTo header).

If you want to use InOnly, consume the message, and send it to another destination, you could use the following
route:

from("activemq:My.Queue").

to("xquery:com/acme/mytransform.xquery").
to("activemqg:Another.Queue");

Fuse Mediation Router Component Reference Version 2.6 523

XQuery
Templating

524 Fuse Mediation Router Component Reference Version 2.6

Chapter 94. XSLT

XSLT

The xslt: component allows you to process a message using an xsLTt template. This can be ideal when
using Templating to generate respopnses for requests.

URI format

xslt:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template. Refer to the Spring Documentation for more detail of the URI syntax2

You can append query options to the URI in the following format, ?option=value&option=value&. ..

Here are some example URIs

URI Description

xslt:com/acme/mytransform.xs Refers to the file, com/acme/mytransform.xs1, on the classpath.
xslt:file:///foo/bar.xs Refers to the file, /foo/bar.xsl
xslt:http://acme.com/cheese/foo.xsl Refers to the remote HTTP resource.

Options
Name Default Description
Value
converter null Option to override default XmliConverter®. Will lookup for the
converter in the Registry. The provided converted must be of type
org.apache.camel.converter.jaxp.XmlConverter.
transformerFactory null New added in Fuse Mediation Router 1.6 Option to override default

TransformerFactory4. Will lookup for the transformerFactory in the
Registry. The provided transformer factory must be of type
javax.xml.transform.TransformerFactory.

! http://www.w3.0rg/TR/xslt

2 http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html

4 http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html

Fuse Mediation Router Component Reference Version 2.6 525

http://www.w3.org/TR/xslt
Templating
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://www.w3.org/TR/xslt
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html

Chapter 94. XSLT

transformerFactoryClass null New added in Fuse Mediation Router 1.6 Option to override default
TransformerFactoryS. Will create a TransformerFactoryClass
instance and set it to the converter.

uriResolver null Camel 2.3: Allows you to use a custom
javax.xml.transformation.URIResolver. Camel will by default
use its own implementation
org.apache.camel.builder.xml.XsltUriResolver which is
capable of loading from classpath.

resultHandlerFactory null Camel 2.3: Allows you to use a custom
org.apache.camel.builder.xml.ResultHandlerFactory which
is capable of using custom
org.apache.camel.builder.xml.ResultHandler types.

failonNullBody true Camel 2.3: Whether or not to throw an exception if the input body
is null.
deleteOutputFile false Camel 2.6: If you have output=file then this option dictates

whether or not the output file should be deleted when the Exchange
is done processing. For example suppose the output file is a
temporary file, then it can be a good idea to delete it after use.

output string Camel 2.3: Option to specify which output type to use. Possible
values are: string, bytes, DOM, file. The first three options
are all in memory based, where as file is streamed directly to a
java.io.File. For file you must specify the filename in the IN
header with the key Exchange . XSLT_FILE_NAME which is also
CamelXsltFileName. Also any paths leading to the filename must
be created beforehand, otherwise an exception is thrown at runtime.

contentCache true Camel 2.6: Cache for the resource content (the stylesheet file) when
itis loaded. If set to false Camel will reloader the stylesheet file on
each message processing. This is good for development.

Using XSLT endpoints

For example you could use something like

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl");

To use an XSLT template to forumulate a response for a message for InOut message exchanges (where there
is a JMSReplyTo header).

5 http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html

526 Fuse Mediation Router Component Reference Version 2.6

http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
Exchange
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html

If you want to use InOnly and consume the message and send it to another destination you could use the
following route:

from("activemq:My.Queue").

to("xslt:com/acme/mytransform.xsl").
to("activemqg:Another.Queue");

Getting Parameters into the XSLT to work with

By default, all headers are added as parameters which are available in the XSLT. To do this you will need to
declare the parameter so it is then useable.

<setHeader headerName="myParam'"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl:param name="myParam'"/>

<xsl:template ...>

Spring XML versions

To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
<to uri="activemq:Another.Queue"/>
</route>
</camelContext>

There is a test case® along with its Spring XML if you want a concrete example.
Using xsl:include
Camel 1.6.2/2.2 or older If you use xsl:include in your XSL files then in Camel 2.2 or older it uses the default

javax.xml.transform.URIResolver which means it can only lookup files from file system, and its does that
relative from the JVM starting folder.

3 http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

Fuse Mediation Router Component Reference Version 2.6 527

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

Chapter 94. XSLT

For example this include:
<xsl:include href="staff_template.xsl"/>
Will lookup the staff_tempkalte.xsl file from the starting folder where the application was started.

Camel 1.6.3/2.3 or newer Now Camel provides its own implementation of URIResolver which allows Camel
to load included files from the classpath and more intelligent than before.

For example this include:
<xsl:include href="staff_template.xsl"/>
Will now be located relative from the starting endpoint, which for example could be:

.to("xslt:org/apache/camel/component/xslt/staff_include_relative.xsl")

Which means Camel will locate the file in the classpath as
org/apache/camel/component/xslt/staff_template.xsl. This allows you to use xsl include and have xsl
files located in the same folder such as we do in the example org/apache/camel/component/xslt.

You can use the following two prefixes classpath: or file: to instruct Camel to look either in classpath or
file system. If you omit the prefix then Camel uses the prefix from the endpoint configuration. If that neither
has one, then classpath is assumed.

You can also refer back in the paths such as

<xsl:include href="../staff_other_template.xsl"/>

Which then will resolve the xsl file under org/apache/camel/component.

528 Fuse Mediation Router Component Reference Version 2.6

Index

Fuse Mediation Router Component Reference Version 2.6 529

530 Fuse Mediation Router Component Reference Version 2.6

	Component Reference
	Table of Contents
	Chapter 1. Components Overview
	List of Components

	Chapter 2. ActiveMQ
	Chapter 3. ActiveMQ Journal
	Chapter 4. AMQP
	Chapter 5. Atom
	Chapter 6. Bean
	Chapter 7. Bean Validation
	Chapter 8. Browse
	Chapter 9. Cache
	Chapter 10. Class
	Chapter 11. Cometd
	Chapter 12. Crypto (Digital Signatures)
	Chapter 13. CXF Bean Component
	Chapter 14. CXF
	Chapter 15. CXFRS
	Chapter 16. DataSet
	Chapter 17. Db4o
	Chapter 18. Direct
	Chapter 19. EJB
	Chapter 20. Esper
	Chapter 21. Event
	Chapter 22. EventAdmin
	Chapter 23. Exec
	Chapter 24. File2
	Chapter 25. FIX
	Chapter 26. Flatpack
	Chapter 27. Freemarker
	Chapter 28. FTP2
	Chapter 29. GAE
	Introduction to the GAE Components
	gauth
	ghttp
	glogin
	gmail
	gsec
	gtask

	Chapter 30. HawtDB
	Chapter 31. HDFS
	Chapter 32. Hibernate
	Chapter 33. HL7
	Chapter 34. HTTP
	Chapter 35. iBATIS
	Chapter 36. IRC
	Chapter 37. JavaSpace
	Chapter 38. Jasypt
	Chapter 39. JBI
	Chapter 40. JCR
	Chapter 41. JDBC
	Chapter 42. JDBC-AggregationRepository
	Chapter 43. Jetty
	Chapter 44. Jing
	Chapter 45. JMS
	Chapter 46. JMX
	Chapter 47. JPA
	Chapter 48. JT400
	Chapter 49. Language
	Chapter 50. LDAP
	Chapter 51. List
	Chapter 52. Log
	Chapter 53. Lucene
	Chapter 54. Mail
	Chapter 55. MINA
	Chapter 56. Mock
	Chapter 57. MSV
	Chapter 58. Nagios
	Chapter 59. Netty
	Chapter 60. NMR
	Chapter 61. Pax-Logging
	Chapter 62. Pojo
	Chapter 63. Printer
	Chapter 64. Properties
	Chapter 65. Quartz
	Chapter 66. Queue
	Chapter 67. Quickfix
	Chapter 68. Ref
	Chapter 69. Restlet
	Chapter 70. RMI
	Chapter 71. Routebox
	Chapter 72. RSS
	Chapter 73. Scalate
	Chapter 74. SEDA
	Chapter 75. SERVLET
	Chapter 76. Shiro Security
	Chapter 77. Sip
	Chapter 78. Smooks
	Chapter 79. SMPP
	Chapter 80. SNMP
	Chapter 81. SpringIntegration
	Chapter 82. Spring Security
	Chapter 83. Spring Web Services
	Chapter 84. SQL Component
	Chapter 85. Stream
	Chapter 86. StringTemplate
	Chapter 87. Test
	Chapter 88. Timer
	Chapter 89. Validation
	Chapter 90. Velocity
	Chapter 91. VM
	Chapter 92. XMPP
	Chapter 93. XQuery Endpoint
	Chapter 94. XSLT
	Index

