
A CEGAR Tool for the Reachability Analysis of

PLC-Controlled Plants using Hybrid Automata ?

Technical Report

Johanna Nellen, Erika Ábrahám, and Benedikt Wolters

RWTH Aachen University, Aachen, Germany
{johanna.nellen,abraham}@cs.rwth-aachen.de

benedikt.wolters@rwth-aachen.de

Abstract. In this paper we address the safety analysis of chemical
plants controlled by programmable logic controllers (PLCs). We consider
sequential function charts (SFCs) for the programming of the PLCs, ex-
tended with the speci�cation of the dynamic plant behavior. The result-
ing hybrid SFC models can be transformed to hybrid automata, opening
the way to the application of advanced techniques for their reachabil-
ity analysis. However, the hybrid automata models are often too large
to be analyzed. To keep the size of the models moderate, we propose
a counterexample-guided abstraction re�nement (CEGAR) approach,
which starts with the purely discrete SFC model of the controller and
extends it with those parts of the dynamic behavior, which are relevant
for proving or disproving safety. Our algorithm can deal with urgent
locations and transitions, and non-convex invariants. We integrated the
CEGAR approach in the analysis tool SpaceEx and present an example.

Keywords: hybrid systems, reachability analysis, CEGAR, veri�cation

1 Introduction

In automation, programmable logic controllers (PLCs) are widely used to con-
trol the behavior of plants. The industry standard IEC 61131-3 [25] speci�es
several languages for programming PLCs, among others the graphical language
of sequential function charts (SFCs).

Since PLC-controlled plants are often safety-critical, SFC veri�cation has
been extensively studied [19]. There are several approaches which consider either
a SFC in isolation or the combination of a SFC with a model of the plant [21,5].
The latter approaches usually de�ne a timed or hybrid automaton that speci�es
the SFC, and a hybrid automaton that speci�es the plant. The composition of
these two models gives a hybrid automaton model of the controlled plant. The-
oretically, this composed model can be analyzed using existing tools for hybrid

? This work was partly supported by the German Research Foundation (DFG) as
part of the Research Training Group �AlgoSyn� (GRK 1298) and the DFG research
project �HyPro� (AB 461/4-1).

2 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

automata reachability analysis. In practice, however, the composed models are
often too large to be handled by state-of-the-art tools.

In this paper we present a counterexample-guided abstraction re�nement (CE-
GAR) [12] approach to reduce the veri�cation e�ort. Instead of hybrid automata,
we use conditional ordinary di�erential equations (ODEs) to specify the plant
dynamics. A conditional ODE speci�es the evolution of a physical quantity over
time under some assumptions about the current control mode. For example, the
dynamic change of the water level in a tank can be given as the sum of the �ows
through the pipes that �ll and empty the tank. This sum may vary depending
on valves being open or closed, pumps being switched on or o�, and connected
tanks being empty or not. Modeling the plant dynamics with conditional ODEs
is natural and intuitive, and it supports a wider set of modeling techniques (e. g.,
e�ort-�ow modeling).

Our goal is to consider only safety-relevant parts of the complex system
dynamics in the veri�cation process. Starting from a purely discrete model of
the SFC control program, we apply reachability analysis to check the model for
safety. When a counterexample is found, we re�ne our model stepwise by adding
some pieces of information about the dynamics along the counterexample path.

The main advantage of our method is that it does not restart the reachability
analysis after each re�nement step but the re�nement is embedded into the reach-
ability analysis procedure in order to prevent the algorithm from re-checking the
same model behavior repeatedly.

Related work Originating from discrete automata, several approaches have
been presented where CEGAR is used for hybrid automata [10,11,2]. The work
[15] extends the research on CEGAR for hybrid automata by restricting the
analysis to fragments of counterexamples. Other works [34,26] are restricted to
the class of rectangular or linear hybrid automata. Linear programming for the
abstraction re�nement is used in [26]. However, none of the above approaches
exploits the special properties of hybrid models for plant control.

In [13] aCEGAR veri�cation for PLC programs using timed automata is pre-
sented. Starting with the coarsest abstraction, the model is re�ned with variables
and clocks. However, this work does not consider the dynamic plant behavior.

A CEGAR approach on step-discrete hybrid models is presented in [35],
where system models are veri�ed by learning reasons for spurious counterexam-
ples and excluding them from further search. However, this method was designed
for control-dominated models with little dynamic behavior.

A CEGAR-based abstraction technique for the safety veri�cation of PLC-
controlled plants is presented in [14]. Given a hybrid automaton model of the
controlled plant, the method abstracts away from parts of the continuous dynam-
ics. However, instead of re�ning the dynamics in the hybrid model to exclude
spurious counterexamples, their method adds information about enabled and
disabled transitions.

Several tools for the reachability analysis of hybrid automata have been de-
veloped [22,17,24,30,3,20,27,4,33]. We chose to integrate our approach into a tool
that is based on �owpipe-computation. Prominent candidates are SpaceEx [16]

A CEGAR Approach for Reachability Analysis 3

T1

max1

min1

V out
1 P1 V in

2

T2 max2

min2

V out
2P2V in

1

P+
1

P+
2

P−
1

P−
2

Fig. 1: An example plant and its operator panel

and Flow* [9]. For the implementation of our CEGAR algorithm we must be
able to generate a (presumed) counterexample if an unsafe state is reachable.
Moreover, our modeling approach uses urgent locations in which time cannot
elapse, and urgent transitions whose enabledness forces to leave the current lo-
cation. Although Flow* provides presumed counterexamples, we decided to
integrate our method into SpaceEx. The reason is that SpaceEx provides
di�erent algorithms for the reachability analysis. Important for us is also the
recently published PHAVer scenario [29] that supports urgent transitions and
non-convex invariants for a simpler class of hybrid automata. Furthermore, in [8]
an extension of SpaceEx for hybrid automata is presented where the search is
guided by a cost function. This enables a more �exible way of searching the state
space compared to a breath- or depth-�rst-search.

This paper is an extension of [32]. We made the approach of [32] more e�cient
by introducing urgent locations for hybrid automata, de�ning dedicated methods
to handle urgent locations, urgent transitions and non-convex invariants in the
reachability analysis, and provide an implementation of the proposed methodol-
ogy. The tool and a technical report containing further details can be accessed
from http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/.

Outline After some preliminaries in Section 2, we describe our modeling ap-
proach in Section 3. In the main Section 4 we present our CEGAR-based veri�ca-
tion method. The integration of our CEGAR-based method into the reachability
analysis algorithm, some details on the implementation, and an example are dis-
cussed in Section 5. We conclude the paper in Section 8.

2 Preliminaries

2.1 Plants

A simple example of a chemical plant is depicted in Figure 1. It consists of
two cylindrical tanks T1 and T2, with equal diameters, that are connected by

http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/

4 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

pipes. The variables h1 and h2 denote the water level in the tanks T1 and T2,
respectively. Each tank Ti is equipped with two sensors mini and maxi, at height
0 < L < U , that detect low and high water levels, respectively.

The plant is equipped with two pumps P1 and P2 which can pump water
when the adjacent valves are open. P1 pumps water from T1 to T2, decreasing
h1 and increasing h2 by k1 per time unit. P2 pumps water through a second
pipeline in the other direction, causing a height increase of k2 per time unit for
h1 and a height decrease of k2 per time unit for h2.

We overload the meaning of Pi and use it also to represent the state (on:
Pi = 1 or o�: Pi = 0) of pump i.

The pumps are manually controlled by the operator panel which allows to
switch the pumps on (P+

i) or o� (P−i). The control receives this input along
with the sensor values, and computes some output values, which are sent to the
environment and cause actuators to be controlled accordingly, by turning the
pumps on or o�. The pumps are coupled with the adjacent valves, which will
automatically be opened or closed, respectively.

We want the control program to prevent the tanks from running dry: If the
water level of the source tank is below the lower sensor the pump is switched o�
and the connected valves are closed automatically. For simplicity, in the following
we neglect the valves and assume that the tanks are big enough not to over�ow.

The state of a plant, described by a function assigning values to the physical
quantities, evolves continuously over time. The plant speci�cation de�nes a set
of initial states. The dynamics of the evolution is speci�ed by a set of conditional
ordinary di�erential equations (ODEs), one conditional ODE for each continuous
physical quantity (plant variable). Conditional ODEs are pairs of a condition
and an ODE. The conditions are closed linear predicates over both the plant's
physical quantities and the controller's variables; an ODE speci�es the dynamics
in those states that satisfy its condition. We require the conditions to be convex
polytopes, which overlap only at their boundaries. In cases, where none of the
conditional ODEs apply, we assume chaotic (arbitrary) behavior.

Example 1. For the example plant, assume k1 ≥ k2 and let ϕ1→2 ≡ P1 ∧ h1 ≥ 0
denote that pump P1 is on and the �rst tank is not empty; the meaning of
ϕ2→1 ≡ P2 ∧ h2 ≥ 0 is analogous. We de�ne the following conditional ODE
system for h1:

(c1,ODEh1
1) = (ϕ1→2 ∧ ϕ2→1, ḣ1 = k2 − k1) (1)

(c2,ODEh1
2) = (ϕ1→2 ∧ ¬P2, ḣ1 = −k1) (2)

(c3,ODEh1
3) = (¬P1 ∧ ϕ2→1, ḣ1 = k2) (3)

(c4,ODEh1
4) = (¬ϕ1→2, ḣ1 = 0) (4)

The conditional ODEs for h2 are analogous.

A CEGAR Approach for Reachability Analysis 5

off1

entry/
pump P1 off

close V out
1

close V in
2

do/

exit/

on1

entry/
open V in

2

open V out
1

pump P1 on

do/

exit/

P+
1 ∧ ¬P

−
1 ∧min1 P−

1 ∨ ¬min1

Fig. 2: SFC for pump P1

2.2 Sequential Function Charts

To specify controllers we use sequential function charts (SFCs) as given by the
industry norm IEC 61131-3 [25], with a formal semantics as speci�ed in [31] that
is based on [7,6,28] with slight adaptations to a certain PLC application.

Example 2. Figure 2 shows a possible control program for our example plant.
We specify only the control of P1, which runs in parallel with an analogous SFC
for the second pump.

A SFC has a �nite set Var of typed variables, classi�ed into input, output
and local variables. A state σ ∈ Σ of a SFC is a function that assigns to each
variable v ∈Var a value from its domain. By PredVar we denote the set of linear
predicates overVar, evaluating to true or false in a given state.

The control is speci�ed using a �nite set of steps and guarded transitions
between them, connecting the bottom of a source step with the top of a target
step. A distinguished initial step is active at start. A transition is enabled if
its source step is active and its transition guard from PredVar is true in the
current state; taking an enabled transition moves the activation from its source
to its target step. Apart from transitions that connect single steps, also parallel
branching can be speci�ed by de�ning sets of source/target steps.

A partial order on the transitions de�nes priorities for concurrently enabled
transitions that have a common source step. For each step, the enabled transition
with the highest priority is taken. Transitions are urgent, i. e., a step is active
only as long as no outgoing transition is enabled.

Each step contains a set of prioritized action blocks specifying the actions that
are performed during the step's activation period. An action block b = (q, a) is
a tuple with an action quali�er q and an action a. The set of all action blocks
using actions from the set Act is denoted by BAct.

The action quali�er q ∈ {entry, do, exit}1 speci�es when the corresponding
action is performed. When control enters a step, its entry and do actions are ex-

1 In the IEC standard, the quali�ers P1, N and P0 are used instead of entry, do and
exit. The remaining quali�ers of the industry standard are not considered in this
paper.

6 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

ecuted once. As long as the step is active, its do actions are executed repeatedly.
The exit actions are executed upon deactivation.

An action a is either a variable assignment or a SFC. Executing an assignment
changes the value of a variable, executing a SFC means activating it and thus
performing the actions of the active step.

The execution of a SFC on a programmable logic controller performs the
following steps in a cyclic way:

1. Get the input data from the environment and update the values of the input
variables accordingly.

2. Collect the transitions to be taken and execute them.
3. Determine the actions to be performed and execute them in priority order.
4. Send the output data (the values of the output variables) to the environment.

Between two PLC cycles there is a time delay δ, which we assume to be equal
for all cycles (however, our approach could be easily extended to varying cycle
times). Items 1. and 4. of the PLC cycle implement the communication with the
environment, e. g. with plant sensors and actuators, whereas 2. and 3. execute
the control.

2.3 Hybrid Automata

A popular modeling language for systems with mixed discrete-continuous behav-
ior are hybrid automata. A set of real-valued variables describe the system state.
Additionally, a set of locations specify di�erent control modes. The change of
the current control mode is modeled by guarded transitions between locations.
Additionally, transitions can also change variable values, and can be urgent.
Time can evolve only in non-urgent locations; the values of the variables change
continuously with the evolution of time. During this evolution (especially when
entering the location), the location's invariant must not be violated.

De�nition 1 (Hybrid Automaton [1]). A hybrid automaton (HA) is a tuple
HA = (Loc,Lab,Var,Edge,Act, Inv,Init,Urg) where

� Loc is a �nite set of locations;
� Lab is a �nite set of labels;
� Var is a �nite set of real-valued variables. A state ν ∈ V , ν :Var→ R assigns

a value to each variable. A con�guration s ∈Loc× V is a location-valuation
pair;

� Edge ⊆Loc × Lab × PredVar × (V → V) ×Loc is a �nite set of transitions,
where the function from V → V is linear;

� Act is a function assigning a set of time-invariant activities f : R≥0 → V to
each location, i. e., for all l ∈Loc, f ∈ Act (l) implies (f + t) ∈ Act (l) where
(f + t) (t′) = f (t+ t′) for all t, t′ ∈ R≥0;

� Inv :Loc→ 2V is a function assigning an invariant to each location;
� Init ⊆Loc× V is a set of initial con�gurations such that ν ∈ Inv(l) for each

(l, ν) ∈Init;

A CEGAR Approach for Reachability Analysis 7

� Urg : (Loc ∪ Edge)→ B (with B = {0, 1}) a function de�ning those locations
and transitions to be urgent, whose function value is 1.

The activity sets are usually given in form of an ordinary di�erential equation
(ODE) system, whose solutions build the activity set. Furthermore, it is standard
to require the invariants, guards and initial sets to de�ne convex polyhedral sets:
if they are not linear, they can be over-approximated2 by a linear set; if they are
not convex, they can be expressed as a �nite union of convex sets (corresponding
to the replacement of a transition with non-convex guard by several transitions
with convex guards, and similarly for initial sets and location invariants). In the
following we syntactically allow linear non-convex conditions, where we use such
a transformation to eliminate them from the models.

Example 3. An example HA (without invariants) is shown in Figure 4. A star ∗
in a location indicates that the location is urgent. Similarly, transitions labeled
with a star ∗ are urgent.

The semantics distinguishes between discrete steps (jumps) and time steps
(�ows). A jump follows a transition e = (l, α, g, h, l′), transforming the current
con�guration (l, ν) to (l′, ν′) = (l′, h(ν)). This transition, which has a synchro-
nization label α (used for parallel composition), must be enabled, i. e., the guard
g is true in ν and Inv(l′) is true in ν′. Time steps model time elapse; from a
state ν, the values of the continuous variables evolve according to an activity
f ∈ Act(l) with f(0) = ν in the current location l. Time cannot elapse in ur-
gent locations l, identi�ed by Urg(l) = 1, but an outgoing transition must be
taken immediately after entering the location. Control can stay in a non-urgent
location as long as the location's invariant is satis�ed. Furthermore, if an urgent
transition e, identi�ed by Urg(e) = 1, is enabled, time cannot further elapse in
the location and an outgoing transition must be taken. For the formal semantics
and the parallel composition of HA we refer to [1]. The parallel composition of a
set of locations Loc yields an urgent location, if Loc contains at least one urgent
location. Analogously, the parallel composition of a set of transitions Trans is
an urgent transition, if there is at least one urgent transition in Trans.

Though the reachability problem for HA is in general undecidable [23], there
exist several approaches to compute an over-approximation of the set of reach-
able states. Many of these approaches use geometric objects (e. g. convex poly-
topes, zonotopes, ellipsoids, etc.) or symbolic representations (e. g. support func-
tions or Taylor models) for the over-approximative representation of state sets.
The e�ciency of certain operations (i. e. intersection, union, linear transforma-
tion, projection and Minkowski sum) on such objects determines the e�ciency
of their employment in the reachability analysis of HA.

The basic idea of the reachability analysis is as follows: Given an initial
location l0, a set P0 of initial states (in some representation), a step size τ ∈ R>0

and a time bound T = nτ (n ∈ N>0), �rst the so-called �ow pipe, i. e., the set
of states reachable from P0 within time T in l0, is computed. To reduce the

2 For over-approximative reachability analysis; otherwise under-approximated.

8 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

(l0, P0)

(l0, P1) (l0, P2) (l1, P3)

(l2, P4) (l0, P5) (l1, P6)

Fig. 3: Example search tree

approximation error, this is done by computing a sequence P1, . . . , Pn of �ow
pipe segments, where for each 0 < i ≤ n the set Pi over-approximates the set
of states reachable from P0 in time [(i−1)τ, iτ] according to the dynamics in l0.
The intersection of these sets with the invariant of l0 gives us the time successors
of P0 within time T . Finally, we also need to compute for each of the �ow
pipe segments (intersected with the invariant) all possible jump successors. This
latter computation involves the intersection of the �ow pipe segments with the
transition guards, state set transformations computing the transitions' e�ects,
and an intersection computation with the target location's invariant; special
attention has to be payed to urgent locations and transitions.

The whole computation of �ow pipe segments and jump successors is applied
in later iterations to each of the above-computed successor sets (for termination
usually both the maximal time delay in a location and the number of jumps along
paths are bounded). Thus the reachability analysis computes a search tree, where
each node is a pair of a location and a state set, whose children are its time and
jump successors (see Figure 3).

Di�erent heuristics can be applied to determine the node whose children
will be computed next. Nodes, whose children still need to be computed, are
marked to be non-completed, the others completed. When applying a �xed-point
check, only those nodes which are not included in other nodes are marked as
non-completed.

In our approach, we use the SpaceEx tool [16], which is available as a stan-
dalone tool with a web interface as well as a command-line tool that provides the
analysis core and is easy to integrate into other projects. To increase e�ciency,
SpaceEx can compute the composition of HA on-the-�y during the analysis.

2.4 CEGAR

Reachability analysis for HA can be used to prove that no states from a given
�unsafe� set are reachable from a set of initial con�gurations. For complex mod-
els, however, the analysis might take unacceptably long time. In such cases,
abstraction can be used to reduce the complexity of the model at the cost of
over-approximating the system behavior. If the abstraction can be proven to be
safe then also the concrete model is safe. If the abstraction is too coarse to satisfy
the required safety property, it can be re�ned by re-adding more detailed infor-
mation about the system behavior. This iterative approach is continued until
either the re�nement level is �ne enough to prove the speci�cation correct or the

A CEGAR Approach for Reachability Analysis 9

comm

∗

cycle

ṫ = 1
v̇ = 0

read

readInput()

write

t = δ → t := 0;writeOutput()

∗
t := 0

v := vinit

Fig. 4: Hybrid automaton for PLC cycle synchronization and the user input. At
the beginning of each cycle, the input variables (including the user input) are
read. At the end of each cycle, the output variables are written.

model is fully concretized. In counterexample-guided abstraction re�nement (CE-
GAR), the re�nement step is guided by a counterexample path, leading from the
initial con�guration to an unsafe one in the abstraction (i. e., one or more states
on the abstract counterexample path get re�ned with additional information).

3 Modeling Approach

SFC-controlled plants can be modeled by a HA, built by the composition of sev-
eral HA for the di�erent system components [31]: One HA is used to synchronize
on the PLC cycle time and model the user input (see Figure 4). The control is
modeled by one HA for each SFC running in parallel (see Figure 5). The last
automaton models the plant dynamics according to a given conditional ODE
system (see Figure 7). The parallel composition of these automata gives us a
model for the controlled plant.

In the models, we use a vector vdyn of variables for the physical quantities
in the plant dynamics. A vector vsen of variables and expressions represents the
input for the SFC, containing control panel requests, actuator states and sensor
values. The input, local and output variables of the SFCs are vin, vloc and vout.

Example 4. For our example plant, we will use the following encodings:

� vdyn = (vdyn1 , vdyn2) with vdyni = hi for the water height in the tanks;
� vsen = (vsen1 , vsen2) for the input of the SFC with vseni = (∗, ∗, Pi, hi ≥ L, hi ≥
U), where the �rst two entries ∗ encode arbitrary control panel requests P+

i

and P−i , Pi is the state of pump i (0 or 1, encoding o� or on) and the values
of the sensors mini and maxi;

� vin = (vin1 , v
in
2) with vini = (P+

i ,P
−
i ,Pi,mi,Mi) for SFC input variables

receiving the values of vsen from above with the control panel requests, the
actuator state, and sensor values;

� vloc = (), i. e. there are no local SFC variables;
� vout = (vout1 , vout2) with vout = (Pon

i ,Po�
i) for the output variables of the

SFC, that control the actuators of the plant. When both commands are
active for pump i, i. e. Pon

i = Po�
i = 1, then pump i it will be switched o�.

Otherwise, Pon
i = 1 will cause pump i to be switched on and Po�

i = 1 will
lead to switching pump i o�.

10 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

PLC Cycle Synchronization. SFCs running parallel on a PLC synchronize on
reading the input and writing the output. Before each cycle the input is read,
where readInput() stores the current memory image vin to vsen. The values of
vsen are accessible for all parallel running components and will not change for
the duration of the current cycle. After a constant cycle time δ, the output is
written (e. g. commands that control the actuators of the plant are immediately
executed). We model this behavior using the HA shown in Figure 4. We use a
clock t with initial value 0 to measure the cycle time. The initial location comm
is urgent, represented by a star ∗, thus the outgoing transition to location cycle
will be taken immediately. The transition from cycle to comm is urgent, again
represented by a star ∗, forcing the writing to happen at the end of each cycle.
The synchronization labels read and write force all parallel running HA that share
those labels to synchronize on these transitions. While time elapses in location
cycle, the SFCs perform their active actions and the dynamic behavior of the
environment evolves according to the speci�ed di�erential equations. The ODE
v̇ = 0 expresses that the derivative of all involved discrete variables appearing
in vsen, vin, vloc or vout is zero. (For simplicity, here we specify the derivative 0
for all discrete variables in the PLC synchronizer model; in our implementation
the SFC variables are handled in the corresponding SFC models.)

Example 5. For the tank example, we allow arbitrary (type-correct) user input,
where we use ∗ to represent a non-deterministically chosen value. (Note, that
this ∗ has a di�erent meaning than the one used for urgency.) Reading the input
readInput() executes P+

i := ∗, P−i := ∗, Pi := Pi, mi := (hi ≥ L) and Mi :=

(hi ≥ U). Writing the output writeOutput() updates Pi := (Pi ∨ Pon
i) ∧ ¬Po�

i .

HA for SFC. In the HA model of a SFC (see Figure 5), for each step s of the
SFC there is a corresponding location pair in the HA: the location sin is entered
upon the activation of the step s and it is left for location s when the input
is read. The execution of the actions is modeled to happen at the beginning of
the PLC cycle by de�ning location s to be urgent. The outgoing transitions of
s represent the cycle execution: If s remains activated then its do actions else
its exit actions and both the entry and the do actions of the next step are
executed in their priority order. The location sin0 that corresponds to the initial
step s0 de�nes the initial location of the HA.

Example 6. The hybrid automaton model for the SFC for pump P1 in Figure 2
is modeled by the hybrid automaton depicted in Figure 6.

Plant Dynamics. Assume that the plant's dynamics is described by sets of con-
ditional ODEs, one set for each involved physical quantity. We de�ne a HA for
each such quantity (see Figure 7); their composition gives us a model for the
plant. The HA for a quantity contains one location for each of its conditional
ODEs and one for chaotic (arbitrary) behavior. The conditions specify the loca-
tions' invariants, the ODEs the activities; the chaotic location has the invariant

A CEGAR Approach for Reachability Analysis 11

s

entry/
entry(s)

do/
do(s)

exit/
exit(s)

s1
. . .

sn
. . .

. . .

. . .g1 gn

sin

s
∗

sin1 sinn

read
∧n

i=1 ¬gi → sort({do(s)});

. . .

g 1
→

so
rt
({
ex
it
(s
),
en
tr
y(
s 1
),
do
(s

1
)}
);

(∧
n
−
1

i=
1 ¬
g
i) ∧

g
n
→

sort({exit(s),en
try(s

n),do(s
n)}

);

. . .

Fig. 5: Hybrid automaton for an SFC. The actions are sorted according to a
speci�ed priority order.

o�in1
o�1

∗ onin1
on1
∗

read

vout := 0

P+
1 ∧ ¬P

−
1 ∧m1

Pon
1 := 1;Po�

1 := 0

read

vout := 0

P−1 ∨ ¬m1

Pon
1 := 0;Po�

1 := 1

Fig. 6: Hybrid automaton model of the SFC for pump P1

true. Each pair of locations, whose invariants have a non-empty intersection,
is connected by a transition. To assure that chaotic behavior is speci�ed only
for unde�ned cases, we de�ne all transitions leaving the chaotic location to be
urgent. Note that a transition is enabled only if the target location's invariant
is not violated.

Example 7. The plant dynamics of the tank example is modeled by the hybrid
automaton in Figure 8. Note that, since the conditions cover the whole state
space, time will not evolve in the chaotic location (l, 5).

Parallel Composition. Due to the parallel composition, the models can be very
large. Though some simple techniques can be used to reduce the size, the re-
maining model might still be too large to be analyzed. E. g. we can remove
from the model all locations with false invariants, transitions between locations
whose invariants do not intersect, and non-initial locations without any incoming
transitions.

12 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

l1
ODE1

c1

ln
ODEn

cn

ln+1

∗

∗
∗

. . .

Fig. 7: Hybrid automaton for the plant dynamics using the conditional ODEs
{(c1,ODE1), . . . (cn,ODEn)}

(l, 1)

ḣ1 = k2 − k1
ϕ1→2 ∧ ϕ2→1

(l, 2)

ḣ1 = −k1
ϕ1→2 ∧ ¬P2

(l, 3)

ḣ1 = k2
¬P1 ∧ ϕ2→1

(l, 4)

ḣ1 = 0
¬ϕ1→2

(l, 5)

L < h1 < U

∗

∗

∗
∗

Fig. 8: Hybrid automaton model of the plant dynamics for tank T1 with k1 ≥ k2

4 CEGAR-Based Veri�cation

In this chapter we explain our CEGAR approach for the veri�cation of SFC-
controlled plants. Besides this special application, our method could be easily
adapted to other kinds of hybrid systems.

One of the main barriers in the application of CEGAR in the reachability
analysis of hybrid systems is the complete re-start of the analysis after each
re�nement. To overcome this problem, we propose an embedding of the CEGAR
approach into the HA reachability analysis algorithm: our algorithm re�nes the
model on-the-�y during analysis and thus reduces the necessity to re-compute
parts of the search tree that are not a�ected by the re�nement. Besides this
advantage, our method also supports the handling of urgent locations and urgent
transitions, which is not supported by most of the HA analysis tools. Last but
not least, our algorithm can be used to extend the functionalities of currently
available tools to generate (at least presumed) abstract counterexamples.

A CEGAR Approach for Reachability Analysis 13

4.1 Model Re�nement

The basis for a CEGAR approach is the generation of a counterexample and
its usage to re�ne the model. Therefore, �rst we explain the mechanism for this
(explicit) model re�nement before we describe how we embed the re�nement
into the reachability algorithm to avoid restarts.

Abstraction. Intuitively, the abstraction of the HA model of a SFC-controlled
plant consists of removing information about the plant dynamics and assuming
chaotic behavior instead. Initially, the whole plant dynamics is assumed to be
chaotic; the re�nement steps add back more and more information. The idea is
that the behavior is re�ned only along such paths, on which the controller's cor-
rectness depends on the plant dynamics. Therefore, the abstraction level for the
physical quantities (plant variables) of the plant will depend on the controller's
con�guration.

The abstraction level is determined by a function active that assigns to each
location-variable pair (l, x) a subset of the conditional ODEs for variable x. The
meaning of this function is as follows: Let H be the HA composed from the PLC-
cycle synchronizer and the SFC model without the plant dynamics. Let l be a
location of H, x a dynamic variable in the plant model and let active(l, x) =
{(c1,ODE1), . . . , (cn,ODEn)}. Then the global model of the controlled plant
will de�ne x to evolve according to ODEi if ci is valid and chaotically if none
of the conditions c1, . . . , cn holds. A re�nement step extends a subset of the sets
active(l, x) by adding new conditional ODEs to some variables in some locations.

Counterexample-Guided Re�nement. The re�nement is counterexample-guided.
Since the reachability analysis is over-approximative, we generate presumed coun-
terexamples only, i. e., paths that might lead from an initial con�guration to an
unsafe one but might also be spurious. For the re�nement, we choose the �rst
presumed counterexample that is detected during the analysis using a breadth-
�rst search, i. e. we �nd shorter presumed counterexamples �rst. However, other
heuristics are possible, too.

A counterexample is a property-violating path in the HA model. For our
purpose, we do not need any concrete path, we only need to identify the sequence
of nodes in the search tree from the root to a node (l, P) where P has a non-
empty intersection with the unsafe set. If we wanted to use some other re�nement
heuristics that requires more information, we could annotate the search tree
nodes with additional bookkeeping about the computation history (e. g., discrete
transitions taken or time durations spent in a location).

We re�ne the abstraction by extending the speci�cation of the (initially
chaotic) plant dynamics with some conditional ODEs from the concrete model,
which determines the plant dynamics along a presumed counterexample path.
Our re�nement heuristics computes a set of tuples (l, x, (c,ODE)), where l is
a location of the model composed from the synchronizer and the SFC models
without the plant model, x is a continuous variable of the plant, and (c,ODE) /∈
active(l, x) a conditional ODE for x from the plant dynamics that was not yet
considered in location l.

14 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

Possible heuristics for choosing the locations are to re�ne the �rst, the last,
or all locations of the presumed counterexample. The chosen location(s) can be
re�ned for each variable by any of its conditional ODEs that are applicable but
not yet active. Applicable means that for the considered search tree node (l, P)
the ODE's condition intersects with P . If no such re�nements are possible any
more then the counterexample path is fully re�ned and the algorithm terminates
with the result that the model is possibly unsafe.

Building the Model at a Given Level of Abstraction. Let again H be the HA
composed from all HA models without the plant dynamics. Let x1, . . . , xn be
the continuous plant variables and let active be a function that assigns to each
location l of H and to each continuous plant variable xi a subset active(l, xi) =
{(ci,1,ODEi,1), . . . , (ci,ki

,ODEi,ki
)} of the conditional ODEs for xi. We build

the global HA model H ′ for the controlled plant, induced by the given active
function, as follows:

� The locations of H ′ are tuples l̂ = (l, l1, . . . , ln) with l a location of H and
1 ≤ li ≤ ki + 1 for each 1 ≤ i ≤ n. For 1 ≤ i ≤ n, li gives the index of the
conditional ODE for variable xi and li = ki +1 denotes chaotic behavior for
xi. We set Urg′(l̂) = Urg(l).

� The variable set is the union of the variable set of H and the variable set of
the plant.

� For each transition e = (l, α, g, f, l′) in H, the automaton H ′ has a transition
e′ = (l̂, α, g, f, l̂′) with Urg′(e′) = Urg(e) for all locations l̂ and l̂′ of H ′

whose �rst components are l and l′, respectively. Additionally, all locations
l̂ = (l, l1, . . . , ln) and l̂′ = (l, l′1, . . . , l

′
n) of H

′ with identical �rst components
are connected; these transitions have no guards and no e�ect; they are urgent
i� l′j = kj + 1 implies lj = kj + 1 for all 1 ≤ j ≤ n (all chaotic variables in l̂′

are also chaotic in l̂).
� The activities in location l̂ = (l, l1, . . . , ln) are the solutions of the di�erential

equations {ODEi,li | 1 ≤ i ≤ n, li ≤ ki} extended with the ODEs of H in l.
� The invariant of a location (l, l1, . . . , ln) in H ′ is the conjunction of the

invariant of l in H and the conditions ci,li for each 1 ≤ i ≤ n with li ≤ ki.
� The initial con�gurations of H ′ are those con�gurations ((l, l1, . . . , ln), ν)

for which l and ν projected to the variable set of H is initial in H, and ν
projected to the plant variable set is an initial state of the plant.

Dealing with Urgency. The hybrid automaton H resulting from a re�nement
contains urgent locations and urgent transitions. However, the available tools
SpaceEx and Flow* for the reachability analysis of hybrid automata do not
support urgency. Though a prototype implementation of PHAVer [29] supports
urgent transitions, it is designed for a restricted class of models with polyhedral
derivatives. To solve this problem, we make adaptations to the reachability anal-
ysis algorithm and apply some model transformations as follows.

Firstly, we adapt the reachability analysis algorithm such that no time suc-
cessors are computed in urgent locations.

A CEGAR Approach for Reachability Analysis 15

a)

(l, . . . , ki+1, . . .)
D
Inv

b)

(l, . . . , ki+1, . . .)
D
Inv

(l, . . . , j, . . .)
ODEi,j ∧D
Inv ∧ ci,j

*

c)

(l, . . . , ki+1, . . .)
D

Inv ∧ cl(¬ci,j)

(l, . . . , j, . . .)
ODEi,j ∧D
Inv ∧ ci,j

d)

(l, . . . , ki+1, . . .)
D

Inv ∧ cl(¬a)

(l, . . . , ki+1, . . .)
D

Inv ∧ cl(¬b)

(l, . . . , j, . . .)
ODEi,j ∧D
Inv ∧ ci,j

e)

(l, . . . , ki+1, . . .)
D

Inv ∧ cl(¬a)

(l, . . . , ki+1, . . .)
D

Inv ∧ cl(¬b)

(l, . . . , j, . . .)
ODEi,j ∧D
Inv ∧ ci,j

tz ≥ ε→

tz := 0

tz ≥ ε→
tz := 0 tz ≥ ε→

tz := 0

Fig. 9: a) Location l̂ before the re�nement; b) Re�nement using (l, (ci,j ,ODEi,j));
c) Modeling the urgency (over-approximated); d) Modeling non-convex invari-
ants (here: ¬ci,j = ¬(a ∧ b)); e) Zeno path exclusion

Secondly, for the urgent transition in the PLC synchronizer model (see Fig-
ure 4), we remove its urgency and set the time horizon T in the reachability
analysis to δ, i. e., we restrict the time evolution in location cycle to δ.

Thirdly, for the remaining urgent transitions in the plant dynamics, we use
model transformations to eliminate them: We replace urgent transitions by non-
urgent transitions and extend the source locations' invariants by additional con-
junctive terms as follows.

Remember that x1, . . . , xn are the plant variables and let active(l, xi) =
{(ci,1,ODEi,1), . . . , (ci,ki ,ODEi,ki)} be the active conditional ODEs for xi in l.
Let cl(·) denote the closure of a set.

Each urgent transition e = ((l, l1, . . . , ln), α, g, f, (l, l
′
1, . . . , l

′
n)) in the plant

model is made non-urgent. Additionally, for each variable xi which is chaotic in
the source location (li = ki+1) but not chaotic in the target location (l′i ≤ ki), we
conjugate the invariant of the source location with the negated condition of the

16 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

ODE for xi in the target location. Thus the new invariant is Inv((l, l1, . . . , ln))∧∧
1≤i≤n, li=ki+1, l′i≤ki

cl(¬ci,l′i). The resulting automaton is shown in Figure 9c.
Note that the elimination of urgent transitions is over-approximative, since in

the transformed model we can still stay in a chaotic location after the condition
of an outgoing urgent transition became true. However, in a chaotic location the
dynamics will not enter the inner part (without its boundary) of any active ODE
condition.

Dealing with Non-Convex Invariants. The above transformation of urgent tran-
sitions to non-urgent ones introduces non-convex invariants unless the conditions
of the conditional ODEs are half spaces. Since state-of-the-art tools do not sup-
port non-convex invariants, we again use a transformation step to eliminate
them.

The non-convex invariants can be represented as �nite unions of convex sets
NC = C1 ∪ . . . ∪ Ck. Thus for each location l with a non-convex invariant NC
we compute such a union. This can be obtained by computing the disjunctive
normal form NC = c1 ∨ . . .∨ ck, where each clause ci is a conjunction of convex
constraints.

The original location l is replaced by a set of locations l1, . . . , lk with invari-
ants c1, . . . , ck. The sets of incoming/outgoing transitions and the dynamics of
l are copied for each location l1, . . . , lk. To allow mode switching between the
new locations, we add a transition between each pair of di�erent locations from
l1, . . . , lk with true guard and without e�ect (see Figure 9d).

Dealing with Zeno Paths. The construction to resolve non-convex invariants
allows paths with in�nitely many mode switches in zero time. This is called
Zeno behavior which should be avoided since both the running time and the
over-approximation might increase drastically.

One possibility to avoid these Zeno behaviors is to force a minimal time
elapse ε in each cycle of a location set introduced for the encoding of a non-
convex invariant. To do so, we can introduce a fresh clock tz and modify at least
one transition e = (l, α, g, h, l′) in each cycle by an annotated variant (l, α, g ∧
tz≥ε, h ∧ tz:=0, l′). Additionally, we add the di�erential equation ṫz = 1 to the
source location of the annotated transition. The result of this transformation is
shown in Figure 9e. Note that the above transformation eliminates Zeno paths,
but it leads to an under-approximation of the original behavior.

Another possibility avoiding the introduction of a new variable is to modify
the reachability analysis algorithm such that the �rst �ow pipe segment in the
source location of such transitions e = (l, α, g, h, l′) computes time successors for
ε and from this �rst segment no jump successors are computed along e. If the
model is safe, we complete the reachability analysis also for those, previously
neglected jump successors, in order to re-establish the over-approximation.

CEGAR Iterations. For the initial abstraction and after each re�nement we
start a reachability analysis procedure on the model at the current level of ab-
straction. The re�nement is iterated until 1) the reachability analysis terminates

A CEGAR Approach for Reachability Analysis 17

without reaching an unsafe state, i. e. the model is correct, or 2) a fully re�ned
path from an initial state to an unsafe state is found. In the case of 2), the un-
safe behavior might result from the over-approximative computation, thus the
analysis returns that the model is possibly unsafe.

5 Integrating CEGAR into the Reachability Analysis

5.1 Adapting the Reachability Analysis Algorithm

Restarting the complete model analysis in each re�nement iteration leads to a re-
computation of the whole search tree, including those parts that are not a�ected
by the re�nement step. To prevent such restarts, we do the model re�nement
on-the-�y during the reachability analysis and backtrack in the search tree only
as far as needed to remove a�ected parts.

For this computation we need some additional bookkeeping: During the gen-
eration of the search tree, we label all time successor nodes (l, P) with the set V
of all plant variables, for which chaotic behavior was assumed in the �ow pipe
computation, resulting in a node (l, P, V). In the initial tree, all time successor
nodes are labeled with the whole set of plant variables. Discrete successors are
labeled with the empty set.

We start with the fully abstract model, i. e., with the composition H of the
synchronizer and the SFC models, extended with the variables of the plant. Note
that initially we do not add any information about the plant dynamics, i. e., we
allow chaotic behavior for the plant.

We apply a reachability analysis to this initial model. If it is proven to be
safe, we are done. Otherwise, we identify a path in the search tree that leads to
an unsafe set and extend the active function to active ′ as previously described.

However, instead of re-starting the analysis on the explicit model induced by
the extended active ′ function, we proceed as follows:

� Backtracking: When a re�nable counterexample is found, we backtrack in the
tree for each pair of location l and variable x with active ′(l, x)\active(l, x) 6=
∅. We delete all nodes (l, P, V) with x ∈ V , i. e. those nodes whose con�gu-
ration contains location l and for which x was assumed to be chaotic in the
�owpipe construction. We mark the parents of deleted nodes as not com-
pleted.

� Model Re�nement: After the backtracking, we re�ne the automaton model
that is used for the analysis on-the-�y, by replacing the location(s) with
chaotic behavior in newly re�ned variables x by the locations that result
from the re�nement. After this modi�cation, we can apply the unchanged
analysis algorithm on the parents of re�ned nodes to update the search tree.

� Reachability Computation: According to a heuristics, we iteratively apply
Algorithm 1 to non-completed nodes in the search tree, until we detect an
unsafe set (in which case a new re�nement iteration starts) or all nodes are
completed (in which case the model is safe).

18 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

Algorithm 1: SuccessorComputation
input :

1 SearchTree tree;
2 Node n0 = (l0, P0, V0) in tree; // non-completed node;
3 Set V of variables that are chaotic in l0;
4 Set C of the ODEs of l0;
5 Time horizon T = mτ ;

6 if l0 is not urgent then
/* compute the flow pipe segments */

7 for i = 1 to m do
8 Pi := flow(Pi−1, C, τ);
9 ni :=tree.addChild(ni−1, (l0, Pi, V));

/* compute jump successors */

10 for i = 1 to m do
11 foreach transition e = (l0, α, g, h, l) do
12 P := h(Pi ∩ g) ∩ Inv(l);
13 tree.addChild(ni, (l, P, ∅));
14 for i = 0 to m do
15 mark ni completed;
16 if l0 is urgent then

/* compute jump successors */

17 foreach transition e = (l0, α, g, h, l) do
18 P := h(P0 ∩ g) ∩ Inv(l);
19 tree.addChild(n0, (l, P, ∅));
20 mark n0 completed;

In the following we explain how Algorithm 1 generates the successors of a
tree node (l0, P0, V0).

First the algorithm computes the time successors if the location is not urgent
(lines 7-9): The set of states flow(Pi, C, τ) reachable from the node ni under
dynamics C within time τ is computed for all �ow pipe segments within the
time horizon, and added as a child of ni, with the set V of the chaotic variables
in l0 attached to it. Note that, though we use a �xed step size τ , it could also
be adjusted dynamically.

Next, the successor nodes of each �ow pipe segment ni are computed that
are reachable via a discrete transition (lines 10-13). For each transition e =
(l0, α, g, f, l), the set of states P is computed that is reachable via transition e
when starting in Pi (line 12). The successor (l, P, ∅) is inserted into the search
tree as a child of ni; it is labeled with the empty set of variables since no chaotic
behavior was involved (line 13).

Finally, since all possible successors of all ni are added to the search tree,
they are marked as completed (lines 14-15). Optionally, we can also mark all new
nodes, whose state sets are included in the state set of another node with the
same location component, as completed. Since the inclusion check is expensive,
it is not done for each new node, but in a heuristic manner.

A CEGAR Approach for Reachability Analysis 19

If the node n0 is urgent, only the jump successors are computed (lines 16-19).
In either case n0 is marked as completed since all possible successor state

have been computed (line 20).

5.2 Implementation

We integrated the proposed CEGAR-approach into the analysis tool SpaceEx.
Some implementation details are discussed in the following paragraphs.

Some SpaceEx Implementation Details. The SpaceEx tool computes the set of
reachable states in so-called iterations. In each iteration, a state set is chosen, for
which both the time elapse and the jump successors are computed. The waiting
list of states that are reachable but have not yet been analyzed, is initialized with
the set of initial states. At the beginning of an iteration, the front element w of
the waiting list is picked for exploration. First the time elapse successors T of w
are computed and stored in the set of reachable states (passed list). Afterwards,
the jump successors J are computed for each s ∈ T . These states are added to
the waiting list, as they are non-completed.

In SpaceEx, the passed and the waiting list are implemented as FIFO (�rst
in, �rst out) queues, i. e., elements are added at the end of the list and taken
from the front.

When either the waiting list is empty (i. e., a �xed-point is reached) or the
speci�ed number of iterations is completed, the analysis stops. The reachable
states are the union of the state sets in the passed and the waiting list. If bad
states are speci�ed, the intersection of the reachable and the bad states is com-
puted.

Search Tree. An important modi�cation we had to make in SpaceEx is the way
of storing reachable state sets discovered during the analysis. Whereas SpaceEx
stores those sets in a queue, our algorithm relies on a search tree. Thus we added
a corresponding tree data structure. We distinguish between jump successor
and time successor nodes which we represent graphically in Figure 10 by �lled
rectangles and �lled circles, respectively. The set of initial states are the children
of the distinguished root node, which is represented by an empty circle. Each
node can have several jump and at most one time successor nodes as children.
For a faster access, each jump successor node stores a set of pointers to the next
jump successors in its subtree (dashed arrows in Figure 10).

To indicate whether all successors of a node have been computed, we in-
troduce a completed �ag. In each iteration, we determine a non-completed tree
node. If its location is non-urgent, we compute its time successors and the jump
successors of all time successors. Afterwards, the chosen node and all computed
time successors are marked as completed. For urgent locations, only the jump
successors are computed. We use breadth-�rst search (BFS) to �nd the next
non-completed tree node. The iterative search stops if either all tree nodes are
completed or the state set of a node intersects with a given set of bad states.
The latter is followed by a re�nement and the deletion of a part of the search

20 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

e5 e6

δ δ

δ δ δ δ

e
1e 2

e
3

e
1

e
2

e
3
e
1

Fig. 10: The search tree (empty circle: distinguished root; �lled rectangle: jump
successor node; �lled circle: time successor node; dashed connections: shortcut
to the next jump successors)

tree (note, that the parents of deleted nodes are marked as non-completed). Af-
ter this backtracking we start the next iteration with a new BFS from the root
node. If the BFS gives us a node which already has some children then this node
was previously completed and some its children were deleted by backtracking.
In this case we check for each successor whether it is already included as a child
of the node before adding it to the tree.

Re�nement relies on counterexample paths, i. e. on paths from an initial
to a bad state. To support more information about counterexample paths, we
annotate the nodes in the search tree as follows. Each jump successor node
contains a reference to the transition that led to it, and each time successor
node stores the time horizon that corresponds to its time interval in the �owpipe
computation.

Urgent Locations. Our implementation supports urgent locations, for which no
time successors are computed.

Bad States. In SpaceEx, a set of bad (forbidden) states can be speci�ed by the
user. After termination of the reachability analysis algorithm, the intersection
of the reachable states with the forbidden ones are computed and returned as
output information.

In our implementation we stop the reachability computation once a reachable
bad state is found. Therefore, we perform the intersection check for each node
directly after it has been added to the tree. This allows us to perform a re�nement
as soon as a reachable bad state is detected.

Re�nement. When a counterexample is detected, a heuristics chooses a (set of)
location(s) and corresponding conditional ODEs for the re�nement. We extend
the set of active ODEs and re�ne the hybrid automaton model on-the-�y. Af-
terwards, the analysis automatically uses the new automaton model and the
backtracked search tree to continue the reachability analysis.

Backtracking. When the model re�nement is completed, we delete all nodes
(and their subtrees) whose location was re�ned. The parents of deleted nodes

A CEGAR Approach for Reachability Analysis 21

are marked as non-completed. This triggers that their successors will be re-
computed. Since we use a BFS search for non-completed nodes, �rst the succes-
sors of such nodes will be computed, before considering other nodes.

Re�nement Heuristics. We implemented a command line interface that allows
us to choose the set of locations and corresponding conditional ODEs for the
re�nement manually whenever a counterexample was detected. This provides us
with the most �exibility since any strategy can be applied. We plan to investi-
gate several heuristics and to implement automated strategies for the promising
heuristics.

Analysis Output. In case a counterexample path is detected that is fully re�ned,
we abort the analysis and output the counterexample path. It can be used to
identify the part of the model that leads to a violation of the speci�ed property.
Otherwise, the analysis is continued until either a �xed-point is found or the
number of maximal allowed iterations was computed.

5.3 Example

We use the 2-tank example from Section 2 to illustrate how the implementation
works. Up to now, we used the PHAVer scenario of SpaceEx for the reacha-
bility analysis since it computes exact results for our model and is much faster
than a reachability analysis using the LGG scenario. However, we integrated our
approach into the LGG scenario to be able to verify more complex examples in
the future.

We �rst present our integrated CEGAR method on a two tank model with a
single pump. Afterwards, we show the results for the presented two tank model.
All model �les and the SpaceEx version with the integrated CEGAR method
are available for download at http://ths.rwth-aachen.de/research/tools/
spaceex-with-cegar/.

Model with a Single Pump. First, we model a system of the two tanks without
the second pump P2. Initially, the pump P1 is switched o�, i. e., we start in the
urgent location (o�in

1 , comm). The initial variable valuation is:
Constants: k1 = 1, δ = 3, L = 2, U = 30
Pump state: P1 = 0
Continuous vars: h1 = 7, h2 = 5, t = 0

We assume that the user input is P+
1 = 1, P−1 = 0 in the beginning. We want

to prove that the water level of tank T1 will never fall below 2, i. e. we de�ne the
set of unsafe states as ϕ1 with ϕ1 := h1 ≤ 2.

� The �rst counterexample is detected by the analysis for an initial user input
P+
1 = 1 and P−1 = 0, along the location sequence (o�in

1 , comm), (o�1, cycle),
(onin1 , cycle), where h1 behaves chaotic. Thus, the unsafe states are reachable
and we re�ne the location (onin1 , cycle) with the �rst conditional ODE of h1,
which reduces to (P1 ∧ h1 ≥ 0, ḣ1 = 1).

http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/
http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/

22 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

� When the analysis reaches the location (onin1 , cycle) via the previously de-
scribed path, the behavior for h1 is speci�ed, i. e. after a cycle time of three
time units, the value of h1 has decreased from seven to four. Afterwards, the
input reading is synchronized in location (onin1 , comm). We reach again the
location (on1, cycle). For chaotic user input, both location (o�in

1 , cycle) and
(onin1 , cycle) are reachable. If (o�

in
1 , cycle) is analyzed �rst, a counterexample

is found which can be resolved using the conditional ODE (¬P1, ḣ1 = 0).
However, if location (onin1 , comm) is processed, time can elapse, which yields
h1 = 1 at the end of the second PLC cycle. A water level below L = 2
violates our property. Since the counterexample is fully re�ned, the analysis
is aborted since the model is incorrect.

The Two Tank Model. Let us now consider both pumps, which are switched o�
initially in location (o�in

1 , o�
in
2 , comm). The initial variable valuation is:

Constants: k1 = 5, k2 = 3, δ = 1, L = 1, U = 30
Continuous vars: h1 = 5, h2 = 5, P1 = 0, P2 = 0, t = 0

We want to check that the water level of the tanks is always above L, i. e. we
de�ne the set of unsafe states as ϕ1 ∧ ϕ2 with ϕ1 := h1 ≤ L and ϕ2 := h2 ≤ L.

� The �rst detected counterexample is (o�in
1 , o�

in
2 , comm), (o�1, o�2, cycle),

(onin1 , on
in
2 , cycle) for the initial user input P+

1 = 1, P−1 = 0, P+
2 = 1, and

P−2 = 0. We re�ne the last location on the path using (c1,ODEh1
1) = ϕ1→2∧

ϕ2→1, ḣ1 = k2 − k1) and (c1,ODEh2
1) = ϕ1→2 ∧ ϕ2→1, ḣ2 = k1 − k2).

� Now, time can elapse in location (onin1 , on
in
2 , cycle) and the values of h1 and

h2 are decreased or increased according to the di�erential equations. After
the �rst PLC cycle, we have h1 = 3 and h2 = 7.

� Depending on the user input, the locations each pump might be switched on
or o�, thus there are four jumps to di�erent locations possible. Depending
on the order in which they are analyzed, several re�nements are neccessary
before the case that both pumps stay switched on is processed.

• When the �rst three locations are processed, counterexamples are de-
tected which can be resolved using those conditional ODEs whose con-
ditions are enabled.
• With a user input P+

1 = P−1 = P+
2 = P−2 = 0 for the second PLC cycle,

both pumps stay switched on and time can elapse again. Thus, at the
end of the second cycle, we have h1 = 1 and h2 = 9. Since the value of
h1 is again below L, we have detected the same counterexample than in
the smaller model with only a single pump. Note that it depends on the
pumping capacity ki of the pumps and on the initial values of hi, which
tank can dry out �rst.

The models can be corrected by lifting the position of the lower sensors in
the tanks, i. e. for a new sensor position L′ > L+ 2δk1 the models are safe.

A CEGAR Approach for Reachability Analysis 23

6 User Manual

6.1 Getting Started

The Linux binaries of our tool and a benchmark set are available for download
on our website. The content of the Tarball-archive is listed in Table 2.

http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/

The binary distributable comes in a Tarball archive, which can be extracted
using:

tar xzf spaceex_cegar.tar.gz

The provided Linux binaries have been compiled on a 64bit Ubuntu 12.04 ma-
chine. To run the tool via commandline, switch to the location of the executable
and run:

./ spaceex_64bit/spaceex_cegar --config [path to config

file] -m [path to model file] --dynamics [path to

dynamics file]

We provide executable bash scripts for our benchmarks in the benchmark folder.
I. e. the CEGAR analysis is automatically started with the correct parameters
by the script. Switch to the location of the bash script, ensure that the script
�le is marked as executable by running:

chmod +x run_{instance}

The benchmark can be executed by running:

./run_{instance}

The benchmarks that we provide are listed in Table 1.

Table 1: The benchmarks that we provide.

Benchmark Manual Con-
trol

Script Name

benchmarks/

two_tank_example_single_pump
none run_without_user

chaotic run_with_chaotic_user

benchmarks/two_tank_example
none run_without_user

chaotic run_with_chaotic_user

http://ths.rwth-aachen.de/research/tools/spaceex-with-cegar/

24 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

Table 2: The content of the downloadable tar-archive.

File/Folder Description

LICENCE.txt license �le

README.txt readme �le
spaceex_64bit/spaceex_cegar bash script to run the tool

spaceex_64bit/bin/sspaceex_cegar executable of the tool

spaceex_64bit/lib folder with precompiled libraries
benchmarks/two_tank_example_single_pump/

chaotic_user

folder with the model, con�g, and
dynamics �le for the two tank ex-
ample with a single pump with
chaotic user input

benchmarks/two_tank_example_single_pump/

no_user/

folder with the model, con�g, and
dynamics �le for the two tank ex-
ample with a single pump without
user

benchmarks/two_tank_example_single_pump/

run_with_chaotic_user

bash script to run the two tank
example with a single pump with
chaotic user input

benchmarks/two_tank_example_single_pump/

run_without_user

bash script to run the two tank ex-
ample with a single pump without
user input

benchmarks/two_tank_example/chaotic_user folder with the model, con�g, and
dynamics �le for the two tank ex-
ample with chaotic user input

benchmarks/two_tank_example/no_user/ folder with the model, con�g, and
dynamics �le for the two tank ex-
ample without user

benchmarks/two_tank_example/

run_with_chaotic_user

bash script to run the two tank ex-
ample with chaotic user input

benchmarks/two_tank_example/run_without_user bash script to run the two tank ex-
ample without user input

A CEGAR Approach for Reachability Analysis 25

6.2 Input Format

Our tool needs three separate input �les: The model �le describes the analyzed
system. We did not alter the SpaceEx syntax. However, we only support sin-
gle automata instead of networks. The con�guration �le describes the analysis
parameters for SpaceEx (including initial and forbidden states) and in the dy-
namics �le a set of conditional ODEs is given, that speci�es the dynamics of the
system. All �les should be provided as commandline arguments when the tool
is started. In case no dynamics �le is given, our tool asks for it when the �rst
counterexample was detected.

Model File. A SpaceEx model �le describes a network of automata. The in-
put/output behavior between the automata is given by a set of network au-
tomata. In general, we adhere to the SpaceEx syntax for which a detailed man-
ual can be found at the SpaceEx homepage [18].
However, we do not support the on-the-�y composition of a network of automata.
Thus, we have to restrict the SpaceEx model �le to specify a single automaton
and a single network automaton that de�nes a single instance of the speci�ed
automaton.
All locations whose name includes URGENT are handled as urgent locations. Al-
though time cannot elapse in such a location, it is necessary to provide di�eren-
tial equations for all continuous variables. Otherwise, SpaceEx assumes chaotic
behavior as soon as the location is entered.

<!-- Example for an urgent location -->

<location id="1" name=" loc_URGENT">

<!-- An invariant might be specified here -->

<invariant/>

<!-- specify the dynamics for all continuous

variables -->

<flow >var1 ' == 0 & var2 ' == 0</flow >

</location >

For the re�nement and the zeno avoidance, the following variables, labels, lo-
cations and transitions are needed additionally. These elements should form a
connected component that is not reachable from any other location, i.e. they
are neglected during the analysis. However, we need them to add locations and
transitions during a re�nement step.

<!-- The following variables and transition labels

are needed for the refinement and the zeno

avoidance -->

<param dynamics ="any" name="t" controlled ="true"

local ="true" type="real" d2="1" d1="1"/>

<param dynamics ="any" name=" zeno_t" controlled ="true"

local ="true" type="real" d2="1" d1="1"/>

<param name=" copy_transition" local ="true" type="

label"/>

26 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

<!-- This location is needed for the refinement -->

<location name=" refinement_loc" id="1000" >

<!-- Insert flow equations with right -hand side '0'

for each continuous variable -->

<flow >[default flows] & t' == 1 & zeno_t ' == 0</

flow >

</location >

<!-- A transition with guard true and without

assignments is needed for the refinement -->

<transition source ="1000" target ="1000" >

<label >copy_transition </label >

</transition >

<!-- The following copy transition is needed for the

under -approximative zeno avoidance -->

<transition source ="1000" target ="1000" >

<label >copy_transition </label >

<guard >zeno_t >= epsilon </guard >

<assignment >zeno_t = 0</assignment >

</transition >

Con�guration File. A con�guration �le speci�es the analysis parameters, a set
of initial and a set of forbidden states. We list some parameters in Table 3 but
refer to the SpaceEx homepage [18] for more detailed information.
Our implementation depends on �xed values for the con�guration parameters
that are given in Table 4.

Dynamics File. The dynamics of the model are speci�ed in a .xml �le using
conditional ordinary di�erential equations. We restrict the ODEs to be linear
since the LGG scenario of SpaceEx does not support non-linear ODEs. The
doctype de�nition of the dynamics �le is given in Figure 11.
The root element of a dynamics �le is the condODEsys tag that speci�es a set of

<!ELEMENT condODEsys (condODE)+>

<!ATTLIST condODEsys refersTo CDATA #REQUIRED >

<!ELEMENT condODE (cond ,(equation)+)>

<!ELEMENT cond (# PCDATA)>

<!ELEMENT equation (# PCDATA)>

Fig. 11: Doctype de�nition of the dynamics �le.

conditional ODEs. The attribute refersTo speci�es the system model to which
the conditional ODE �le belongs, i.e. it should match the analyzed system that
is speci�ed in the model �le and marked as the analyzed system in the con�g
�le.

A CEGAR Approach for Reachability Analysis 27

Table 3: Some SpaceEx con�guration parameters.

Name Command Description

System system = tanks The analyzed system
must be a network
component.

Initial States initially ="(loc(aut)== loc1

& system.var1 == 1)"

Initial location and vari-
able constraints.

Forbidden States forbidden = "h1 <= min1" Location and variable
constraints. If no forbid-
den states are speci�ed,
a reachability analysis
is performed, i.e. no
counterexamples will be
detected.

Sampling Time sampling-time = 0.1 Discretization step of the
time horizon.

Time Horizon time-horizon = 4 Maximal time elapse in
each iteration.

Iterations iter-max = -1 Maximal number of anal-
ysis iterations. The value
-1 starts an analysis that
runs until a �xed point is
found.

Relative Error rel-err = 1.0e-12 The relative error.

Absolute Error abs-err = 1.0e-13 The absolute error.

Table 4: The SpaceEx con�guration parameters that are �xed for our tool.

Name Command Description

Scenario scenario = supp Currently, we only sup-
port the LGG Support
Function Scenario.

Representation directions = box The state set
representation.

Clustering clustering = 0 Currently, the clustering
must be set to 0.

Set-Aggregation set-aggregation = "none" Currently, the set-
aggregation must be set
to 0.

28 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

<!-- A conditional ODE system contains a set of

conditional ODEs -->

<condODEsys refersTo =" system" />

A conditional ODE contains a condition and a non-empty set of linear ODEs.

<!-- A conditional ODE consists of a condition and a

non -empty set of differential equations -->

<condODE />

A condition is a closed linear predicate over the physical quantities of the plant
and the controller's variables. It is given by a single constraint or a conjunction of
constraints. The comparison operators ==,≥,≤ are supported. Note, that strict
operators as well as negations and disjunctions are not supported, since SpaceEx
cannot handle non-convex constraints in invariants and guards. Boolean variables
can be assigned with var == 1 or var (true) or with var == 0 or NOT var

(false). An example condition is a >= 1.3 AND a == c AND NOT b.

<!-- A condition is a conjuction of constraints -->

</cond >

A linear ODE is speci�ed using the following notation: c' == 3.1a + b. The
left-hand side contains the primed continuous variable for which the dynamics is
given. The right-hand side contains a linear equation over the discrete variables
of the controller and the continuous variables that model the plant dynamics.

<!-- An equation specifies a linear differential

equation -->

<equation/>

7 Usage

After the analysis is started each time a counterexample is detected, it is printed
on the console. The locations visited along the path are given together with the
information, of this location visited as a jump successor (j) and if time elapse
has been computed (t).

Counterexample path:

{off1_in_off2_in_control1_comm_URGENT}, j, t

{off1_URGENT_off2_URGENT_control2_cycle1}, j, t

{on1_in_on2_in_control2_cycle$$0}, j, t

{on1_in_on2_in_control1_comm_URGENT}, j, t

{on1_on2_URGENT_control2_cycle}, j, t

{on1_in_on2_in_control2_cycle$$0}, j, t

If the dynamics �le location was not passed as an initial con�guration parameter,
it has to be speci�ed when the �rst counterexample is found.

Enter name of conditional ODE XML file:

[condODEs.xml]

A CEGAR Approach for Reachability Analysis 29

When a counterexample is detected, you can decide to re�ne (enter 'r') or to
continue the analysis (enter 'c'). This enables you to apply a set of re�nements
before you continue the analysis.

What 's next? (R)efine / (C)ontinue:

When (R)refine is selected, you have to choose a location that has to be re�ned.
Note, that fully re�ned locations and urgent locations are not listed. To continue,
enter the corresponding number of the location that should be re�ned, i.e. to
re�ne location loc2, enter '2'.

Choose a location to refine :

1) loc1

2) loc2

Next, you have to choose a conditional ODE that is used to re�ne the location.
This is done analogously. Note, that only those conditional ODE whose condition
intersects with the invariant of the chosen location and that have not yet been
used to re�ne this location are shown.

Afterwards, the re�nement status of the chosen location is updated:

Location: off_1_in_control2_cycle

1:[X], 2:[-], 3:[]

Table 5 explains the syntax of the re�nement status.

When (C)ontinue was selected, the selected re�nement is performed and after-

Table 5: The Re�nement status for a given location.

Notation Description

i:[X] indicates, that the i-th conditional ode is marked (or has previously
been used) for re�nement

i:[-] indicates, that the i-th conditional ode is not allowed for the re�ne-
ment of the chosen location

i:[] indicates, that the i-th conditional ode is allowed for re�nement, but
has not been chosen so far

wards, the analysis continues. Note, that the analysis is aborted, if no pair of
location and conditional ODE was marked for re�nement.

When a location loc is re�ned, several copies of the location are created. The
non-chaotic location instances are named loc$$i$, where i indicates the ith copy
of the original location. Copies with chaotic behavior are named loc$$ineg_j

where j indicates the jth chaotic location copy.

30 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

7.1 Analysis Result

The analysis is �nished if either a �xed point is computed, the maximal number
of iterations is reached or a fully re�ned counterexample is detected. In the
latter case, it is printed along with the following information: Fully refined

counterexample detected

At the end of the analysis, a short report is given which includes the following
information:
Message Description

Fully refined

counterexample detected

after 8 iterations.

A fully re�ned counterexample was detected

Iteration 8 done after 0s The number of computed iterations

Computing reachable states

done after 9.158s

The overall computation time

Performed max. number of

iterations (5)without

finding fixpoint.

A �xed point is computed

Forbidden states are

reachable.

The reachable states intersect with the for-
bidden states

8 Conclusion

In this paper we proposed a CEGAR-based framework for the analysis of SFC-
controlled chemical plants that can handle urgent locations and transitions, and
non-convex invariants. We described its implementation in SpaceEx and pre-
sented a small example. As future work, we plan to analyze a larger case study
with parallel acting controllers. Although a complex system will a�ect the run-
ning time of the analysis, we expect, that our CEGAR approach will not cause
too much overhead since the analysis is interrupted if a counterexample is de-
tected. Especially when the checked property depends only on a part of the
dynamic plant behavior, we can bene�t from the CEGAR approach since it suf-
�ces to analyze an abstraction instead of the concrete model. Moreover, we will
cover further optimizations of the presented algorithm.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3�34 (1995)

2. Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate abstraction of
hybrid systems. In: Proc. of TACAS'13. LNCS, vol. 2619, pp. 208�223. Springer
(2003)

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for veri�cation of hybrid systems.
In: Proc. of CAV'02. LNCS, vol. 2404, pp. 746�770. Springer (2002)

A CEGAR Approach for Reachability Analysis 31

4. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: A framework for reachability analysis of hybrid au-
tomata. In: Proc. of MTNS'06 (2006)

5. Baresi, L., Carmeli, S., Monti, A., Pezzè, M.: PLC programming languages: A
formal approach. In: Proc. of Automation '98. ANIPLA (1998)

6. Bauer, N.: Formale Analyse von Sequential Function Charts. Ph.D. thesis, Univer-
sität Dortmund (2004)

7. Bauer, N., Huuck, R., Lukoschus, B., Engell, S.: A unifying semantics for sequential
function charts. In: In the Final Report of the SoftSpez DFG Priority Program.
LNCS, vol. 3147, pp. 400�418. Springer (2004)

8. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podel-
ski, A., Wehrle, M.: Abstraction-based guided search for hybrid systems. In: Proc.
of SPIN'13. LNCS, vol. 7976, pp. 117�134. Springer (2013)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. of CAV'13. LNCS, vol. 8044, pp. 258�263. Springer (2013)

10. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and counterexample-guided re�nement in model checking of hybrid
systems. Int. Journal of Foundations of Computer Science 14(04), 583�604 (2003)

11. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Veri�-
cation of hybrid systems based on counterexample-guided abstraction re�nement.
In: Proc. of TACAS'03. LNCS, vol. 2619, pp. 192�207. Springer (2003)

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction re�nement. In: Proc. of CAV'00. LNCS, vol. 1855, pp. 154�169. Springer
(2000)

13. Dierks, H., Kupferschmid, S., Larsen, K.: Automatic abstraction re�nement for
timed automata. In: Proc. of FORMATS'07. LNCS, vol. 4763, pp. 114�129.
Springer (2007)

14. Engell, S., Lohmann, S., Stursberg, O.: Veri�cation of embedded supervisory con-
trollers considering hybrid plant dynamics. Int. Journal of Software Engineering
and Knowledge Engineering 15(2), 307�312 (2005)

15. Fehnker, A., Clarke, E., Jha, S., Krogh, B.: Re�ning abstractions of hybrid systems
using counterexample fragments. In: Proc. of HSCC'05. LNCS, vol. 3414, pp. 242�
257. Springer (2005)

16. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable veri�cation of hybrid systems.
In: Proc. of CAV'11. LNCS, vol. 6806, pp. 379�395. Springer (2011)

17. Frehse, G.: PHAVer: Algorithmic veri�cation of hybrid systems past HyTech. Int.
Journal on Software Tools for Technology Transfer 10, 263�279 (2008)

18. Frehse, G.: An Introduction to SpaceEx v0.8. Verimag, France
(2010), http://spaceex.imag.fr/documentation/user-documentation/

introduction-spaceex-27
19. Frey, G., Litz, L.: Formal methods in PLC programming. In: Proc. of SMC'00.

vol. 4, pp. 2431�2436. IEEEXplore (2000)
20. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-

tems. TAC'07' 52(5), 782�798 (2007)
21. Hassapis, G., Kotini, I., Doulgeri, Z.: Validation of a SFC software speci�cation by

using hybrid automata. In: Proc. of INCOM'98. pp. 65�70. Pergamon (1998)
22. Henzinger, T.A., Ho, P., Wong-Toi, H.: Hytech: A model checker for hybrid sys-

tems. Int. Journal on Software Tools for Technology Transfer 1(1-2), 110�122 (1997)
23. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What's decidable about hybrid

automata? Journal of Computer and System Sciences 57(1), 94�124 (1998)

http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27
http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27

32 Johanna Nellen, Erika Ábrahám, Benedikt Wolters

24. Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-Parametric Toolbox 3.0.
In: Proc. of the ECC'13. pp. 502�510. Zürich, Switzerland (2013)

25. Int. Electrotechnical Commission: Programmable Controllers, Part 3: Program-
ming Languages, 61131-3 (2003)

26. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid
automata using iterative relaxation abstraction. In: Proc. of HSCC'07. pp. 287�300.
LNCS, Springer (2007)

27. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal toolbox. Tech. rep., EECS, UC Berkeley
(2006)

28. Lukoschus, B.: Compositional Veri�cation of Industrial Control Systems - Methods
and Case Studies. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2005)

29. Minopoli, S., Frehse, G.: Non-convex invariants and urgency conditions on linear
hybrid automata. In: Legay, A., Bozga, M. (eds.) Formal Modeling and Analysis of
Timed Systems. LNCS, vol. 8711, pp. 176�190. Springer International Publishing
(2014)

30. Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems. In:
Proc. of HSCC'00. LNCS, vol. 1790, pp. 310�323. Springer (2000)

31. Nellen, J., Ábrahám, E.: Hybrid sequential function charts. In: Proc. of MBMV'12.
pp. 109�120. Verlag Dr. Kovac (2012)

32. Nellen, J., Ábrahám, E.: A CEGAR approach for the reachability analysis of PLC-
controlled chemical plants. In: Proc. of FMi'14 (2014)

33. Platzer, A., Quesel, J.D.: Keymaera: A hybrid theorem prover for hybrid systems.
In: Proc. of IJCAR'08. LNCS, vol. 5195, pp. 171�178. Springer (2008)

34. Prabhakar, P., Duggirala, P., Mitra, S., Viswanathan, M.: Hybrid-automata-based
CEGAR for rectangular hybrid systems. In: Proc. of VMCAI'13. LNCS, vol. 7737,
pp. 48�67. Springer (2013)

35. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Proc. of CAV'07.
LNCS, vol. 4590, pp. 433�448. Springer (2007)

	A CEGAR Tool for the Reachability Analysis of PLC-Controlled Plants using Hybrid Automata
	Introduction
	Preliminaries
	Plants
	Sequential Function Charts
	Hybrid Automata
	CEGAR

	Modeling Approach
	CEGAR-Based Verification
	Model Refinement

	Integrating CEGAR into the Reachability Analysis
	Adapting the Reachability Analysis Algorithm
	Implementation
	Example

	User Manual
	Getting Started
	Input Format

	Usage
	Analysis Result

	Conclusion

