
1

User’s Manual

Printed in Japan
©

CA830, CA850
C COMPILER PACKAGES

OPERATION (Windows TM BASED)

Target Device
V800 Series TM

Compatible Compilers
CA830 Ver.1.10 or later
CA850 Ver.2.00 or later

Document No. U12827EJ1V0UM00 (1st edition)
Date Published November 1997 N

1997

2

[MEMO]

3

Trademarks

• V800 Series, V810 Family, V830 Family, V850 Family, V810, V830, V851, and V850E are trademarks of NEC

Corporation.

• Windows, Windows NT, Win32s, Win32, and MS-DOS are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

• The other company names and product names appearing in this document are the trademarks of their respective

companies.

4

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

5

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J97. 8

6

Revision History

Edition Date of Issue Description (reason)

01 November, 1997 First edition

7

INTRODUCTION

[Target Device]

The V800 SeriesTM C Compiler Package creates the object codes for the NEC’s V800 Series RISC microprocessors,

which are compatible with each family.

The V830 FamilyTM inherits the basic instruction set of the V810 FamilyTM. Therefore, the software resource

of the V810 Family can be used without modification.

[Target Users]

This manual is intended for users who develop application systems using the V800 Series C Compiler Package

under WindowsTM.

[Objective]

This manual explains how to operate the commands, which are included in C compiler and assembler in each

package, under Windows.

A Project Manager is included in these C compiler packages. For operation methods for integrated development,

refer to the User’s Manual of Project Manager.

For operation of Windows, refer to the function guide or others including in the Windows.

[Organization]

This manual consists of the following contents.

• Overview of this compiler package

• How to use this compiler package via Project Manager

• How to use this compiler package in a command line

• Command functions, options, and output messages

Commands Included in Package

C compiler (ca)

Assembler (as)

Link editor (ld)

Archiver (ar)

Hex converter (hx)

Dump command (dump)

Disassembler (dis)

ROM-storing processor (romp)

Section file generator (sf) * V850

8

[Cautions]

• This document describes two families (CA830 and CA850). The functions peculiar to a certain family are

specified by title names and symbols in the text such as * V830 and * V850 . Unless otherwise specified,

the description in this document apply to all the families.

A description using a command name of a specific family is also applied to all the families unless otherwise

specified.

• In a description that applies to all the families, the package name and directory name are abbreviated as

“ca” and “libxxx”. These package names and file names should be taken as follows, depending on the

device used.

Package name CA : CA830 or CA850

Command name ca : ca830 or ca850

as : as830 or as850

:

Directory name libxxx : lib830 or lib850

• The functions peculiar to “V850ETM” in the V850 FamilyTM are specified by title name or the symbol such as

“* V850E ”.

[Related Documents]

• V800 Series C Compiler Package User’s Manual - C Language

• CA830 C Compiler Package User’s Manual - Assembly Language

• CA850 C Compiler Package User’s Manual - Assembly Language

• V800 Series Microprocessor User’s Manual

• Project Manager User’s Manual

Published by NEC Corporation

• Attached manuals to MicrosoftTM Windows such as Microsoft Windows Operating System Function Guide

Published by Microsoft Corporation

• Programming Language C, 2nd edition, conforming to ANSI standard

B.W. Kernihang, D.M. Riche, translated by Haruhisa Ishida

Published by Kyoritsu Publishing Co.

9

CONTENTS

VOLUME 1 GENERAL ... 21

CHAPTER 1 OVERVIEW ...22
1.1 Organization of This Manual ... 22
1.2 Features of CA Windows-based Compiler Package ... 23

CHAPTER 2 INSTALLATION25
2.1 Operating Environment .. 25
2.2 Installation .. 26
2.3 Directory Configuration .. 27
2.4 Library File .. 28
2.5 Cautions .. 29

VOLUME 2 OPERATION METHODS ... 31

CHAPTER 1 OVERVIEW OF OPERATIONS ...32

CHAPTER 2 OPERATIONS USING THE PROJECT MANAGER ...33
2.1 What is the Project Manager? ... 33
2.2 Activation of Project Manager .. 34
2.3 Project Settings ... 35
2.4 Project Manager and CA .. 37
2.5 Dialogs for Setting CA Command Options ... 39

2.5.1 Setting compiler options .. 39

Setting input options .. 42

Setting pre-processor options .. 44

Setting language options ... 46

Setting optimization options ... 48

Setting output 1 options ... 50

Setting output 2 options ... 53

Setting message options .. 56

Setting other options .. 58

2.5.2 Setting assembler options ... 60

Setting option 1 .. 61

Setting option 2 .. 63

Setting other options .. 66

2.5.3 Setting link editor options ... 68

Setting files ... 69

Setting options ... 71

Setting other options .. 74

2.5.4 Setting ROM-storing processor options ... 76

Setting options ... 77

Setting other options .. 79

2.6 Creating and Building Make Files .. 80
2.6.1 Using menu to create make files .. 80

2.6.2 Auto generation of make file via build function .. 81

10

CHAPTER 3 USE OF COMMAND SHELL ..84
3.1 What is VSH? .. 84
3.2 Activation of VSH .. 84
3.3 Function of VSH ... 85

3.3.1 Command line editing function ... 86

3.3.2 Scroll functions .. 87

3.3.3 History function ... 88

3.3.4 Alias function ... 89

3.3.5 Menus ... 90

3.4 Activation of Commands from VSH ... 99
3.4.1 Operations related to internal commands only ... 99

3.4.2 Operations related to external commands only .. 100

3.4.3 Operations related to all commands .. 100

3.5 VSH Internal Commands .. 102
3.6 Activation of CA Commands ... 137

3.6.1 Activation from command line .. 137

3.6.2 Output file specification in VSH ... 138

CHAPTER 4 USE OF MAKE UTILITY139
4.1 What is VMAKE? .. 139
4.2 Features of VMAKE ... 139
4.3 Operation ... 140

4.3.1 VMAKE input syntax .. 140

4.3.2 List of options .. 141

4.4 Make Files ... 142
4.4.1 Comments ... 142

4.4.2 Continuation of lines ... 142

4.4.3 Description of targets ... 142

4.4.4 Command lines ... 144

4.4.5 Macros .. 144

VOLUME 3 HANDLING C COMPILER ... 147

CHAPTER 1 OVERVIEW ...148
1.1 Flow of Operation .. 148
1.2 Handling File .. 150
1.3 Execution Object Creating Pattern .. 151

CHAPTER 2 OPERATION...153
2.1 Command Input Format from VSH Command Line .. 153
2.2 Types and Features of Options .. 153

2.2.1 Option list .. 153

(1) Input options ... 153

(2) Preprocessing options .. 154

(3) Language options ... 155

(4) Optimization option .. 156

(5) Output options .. 156

(6) Message options ... 158

(7) Other options ... 159

11

2.2.2 Efficient use of optimization ... 162

2.2.3 Effects of debugging on optimization ... 165

2.2.4 Output of bdld instruction * V830 ... 166

2.2.5 Argument of -W option ... 172

2.3 Cautions on Specifying Options .. 174
2.4 Example ... 174

CHAPTER 3 MESSAGES175
3.1 Message Format ... 175
3.2 Messages .. 176

VOLUME 4 HANDLING ASSEMBLER ... 199

CHAPTER 1 OVERVIEW ...200
1.1 Flow of Operation .. 200
1.2 Handling File .. 200

CHAPTER 2 OPERATION...201
2.1 Command Input Format from VSH Command Line .. 201
2.2 Types and Features of Options ... 201

2.2.1 Option list .. 201

(1) Optimization option .. 201

(2) Output options .. 202

(3) Message options ... 203

(4) Other options ... 204

2.3 Example ... 207

CHAPTER 3 ASSEMBLE LIST208

CHAPTER 4 MESSAGES210
4.1 Message Format ... 210
4.2 Messages .. 210

VOLUME 5 HANDLING LINK EDITOR .. 217

CHAPTER 1 OVERVIEW ...218
1.1 Flow of Operation .. 218

1.1.1 Link procedure ... 220

CHAPTER 2 OPERATION...222
2.1 Command Input Format from VSH Command Line .. 222
2.2 Types and Features of Options .. 222

2.2.1 Option list .. 222

(1) File options .. 223

(2) Check options ... 224

(3) Message options ... 224

(4) Other options ... 225

2.2.2 Using options ... 226

CHAPTER 3 LINK DIRECTIVE254
3.1 Feature of Link Directive .. 254
3.2 Configuration of Link Directive .. 255

12

3.3 Section and Segment .. 256
3.3.1 Type of section ... 257

3.3.2 Examples of mapping image ... 259

3.4 Segment Directive ... 264
3.4.1 Feature of segment directive ... 264

3.4.2 Configuration of segment directive ... 264

3.4.3 Explanation of each item that can be specified for segment directive 266

3.4.4 Using segment directive ... 274

3.5 Mapping Directive .. 278
3.5.1 Feature of mapping directive .. 278

3.5.2 Configuration of mapping directive ... 278

3.5.3 Explanation of each item that can be specified for mapping directives 279

3.5.4 Using mapping directive .. 286

3.6 Symbol Directive .. 290
3.6.1 Feature of symbol directive ... 290

3.6.2 Configuration of symbol directive .. 292

3.6.3 Explanation of each item that can be specified for symbol directives 294

3.6.4 Using symbol directive ... 296

3.6.5 tp symbol offset in label reference .. 302

3.7 Default Link Directive ... 305
3.8 Using Default Link Directive ... 315
3.9 Syntax of Link Directive ... 316

CHAPTER 4 LINK MAP318

CHAPTER 5 SUPPLEMENT320
5.1 Using Archive File ... 320
5.2 Reserved Symbols ... 320
5.3 File Name in Link Directive ... 322
5.4 Link between V850 Family Object File and V850E Object File 322

CHAPTER 6 MESSAGES323
6.1 Message Format ... 323
6.2 Messages .. 324

VOLUME 6 HANDLING ARCHIVER .. 335

CHAPTER 1 OVERVIEW ...336
1.1 Flow of Operation .. 336
1.2 Handling File .. 336

CHAPTER 2 OPERATION...337
2.1 Command Input Format from VSH Command Line .. 337
2.2 Types and Features of Keys/Options .. 337

2.2.1 Key list ... 337

2.2.2 Option list .. 338

2.3 Examples of Use .. 338

CHAPTER 3 MESSAGES339
3.1 Message Format ... 339
3.2 Messages .. 339

13

VOLUME 7 HANDLING HEX CONVERTER .. 341

CHAPTER 1 OVERVIEW ...342
1.1 Flow of Operation .. 342
1.2 Handling File .. 343

CHAPTER 2 OPERATION...344
2.1 Command Input Format from VSH Command Line .. 344
2.2 Types and Features of Options .. 344

2.2.1 Option list .. 344

2.3 Examples of Use .. 345

CHAPTER 3 TYPES OF OUTPUT FILES ..346
3.1 Intel Expanded Hex Format ... 346
3.2 Motorola S Type Hex Format ... 349
3.3 Expanded Tek Hex Format ... 352

CHAPTER 4 MESSAGES356
4.1 Message Format ... 356
4.2 Messages .. 356

VOLUME 8 HANDLING DUMP COMMAND .. 359

CHAPTER 1 OVERVIEW ...360
1.1 Flow of Operation .. 360

CHAPTER 2 OPERATION...361
2.1 Command Input Format from VSH Command Line .. 361
2.2 Types and Features of Options .. 361

2.2.1 Option list .. 361

2.3 Examples of Use .. 362

CHAPTER 3 DISPLAY FORMAT363
3.1 Archive Header ... 363
3.2 Archive Symbol Table ... 363
3.3 Archive String Table ... 363
3.4 ELF Header ... 364
3.5 Program Header Table .. 364
3.6 Section Header Table .. 364
3.7 String Table ... 365
3.8 Symbol Table .. 365
3.9 Relocation Information ... 365
3.10 Register Mode Information .. 365
3.11 Global Pointer Table ... 366
3.12 Line Number Information ... 366
3.13 Debug Information ... 366
3.14 PROGBITS Data ... 366
3.15 Element Values and Meanings .. 367

CHAPTER 4 MESSAGES369
4.1 Message Format ... 369
4.2 Messages .. 369

14

VOLUME 9 HANDLING DISASSEMBLER ... 371

CHAPTER 1 OVERVIEW ...372
1.1 Flow of Operation .. 372

CHAPTER 2 OPERATION...373
2.1 Command Input Format from VSH Command Line .. 373
2.2 Types and Features of Options .. 373

2.2.1 Option list .. 373

2.3 Cautions .. 374
2.4 Examples of Use .. 374
2.5 Output Example ... 375

CHAPTER 3 MESSAGES376
3.1 Message Format ... 376
3.2 Messages .. 376

VOLUME 10 HANDLING ROM-STORING PROCESSOR .. 377

CHAPTER 1 OVERVIEW ...378
1.1 Flow of Operation .. 378
1.2 Types of Sections to Be Packed ... 380
1.3 Procedure of Storing to ROM .. 381

CHAPTER 2 OPERATION...384
2.1 Command Input Format .. 384
2.2 Types and Features of Options .. 384

2.2.1 Option list .. 384

(1) Output options .. 384

(2) Other options ... 385

2.3 Examples of Use .. 385

CHAPTER 3 ALLOCATING AREA OF rompsec SECTION AND LINK PROCEDURE........................386
3.1 Allocation Area of rompsec Section .. 386
3.2 rompsec Section and Link Directive ... 387

CHAPTER 4 COPY ROUTINE ...391

CHAPTER 5 MESSAGES394
5.1 Message Format ... 394
5.2 Messages .. 394

VOLUME 11 HANDLING SECTION FILE GENERATOR .. 397

CHAPTER 1 OVERVIEW ...398
1.1 Flow of Operation .. 398
1.2 Sequence to Use Section File ... 400

CHAPTER 2 OPERATION...402
2.1 Command Input Format .. 402
2.2 Types and Features of Options .. 402

2.2.1 Option list .. 402

2.3 Examples of Use .. 404

15

CHAPTER 3 MESSAGES405
3.1 Message Format ... 405
3.2 Messages .. 405

APPENDIX .. 407

APPENDIX A SECTION FILES408

APPENDIX B FORMAT OF OBJECT FILE ..41 2
B.1 Structure of Object File .. 412
B.2 ELF Header ... 413
B.3 Program Header Table .. 414
B.4 Section Header Table .. 415

B.4.1 Section type .. 416

B.4.2 Constituents dependent on section type (link/info) ... 417

B.5 Section ... 418
B.5.1 Symbol table ... 419

B.5.2 String table .. 420

B.5.3 Reserved section ... 421

B.6 Segment ... 422

INDEX ..423

16

LIST OF FIGURES

Figure No. Title Page

VOLUME 1 GENERAL

1-1. Package Organization Figure ... 24

2-1. Directory Configuration ... 27

VOLUME 2 OPERATION METHODS

1-1. Outline of CA Package Operations .. 32

2-1. Project Manager and Development Tools .. 33

2-2. Window for Activation of Project Manager ... 34

2-3. Outline of CA Option Specification from Project Manager .. 37

2-4. Window for Setting Project File .. 38

2-5. Project Manager’s Option Menu (after setting project) ... 38

2-6. Delete Source Option Button .. 40

2-7. Input Option Settings Dialog ... 42

2-8. Pre-processor Option Settings Dialog .. 44

2-9. Language Option Settings Dialog .. 46

2-10. Optimization Option Settings Dialog .. 48

2-11. Output 1 Option Settings Dialog ... 50

2-12. Output 2 Option Settings Dialog ... 53

2-13. Message Option Settings Dialog .. 56

2-14. Other Option Settings Dialog (C Compiler) ... 58

2-15. Delete Source Option Button .. 60

2-16. Option 1 Settings Dialog (Assembler) .. 61

2-17. Option 2 Settings Dialog (Assembler) .. 63

2-18. Other Option Settings Dialog (Assembler) ... 66

2-19. File Settings Dialog ... 69

2-20. Option Settings Dialog (Link Editor) ... 71

2-21. Other Option Settings Dialog (Link Editor) .. 74

2-22. Option Settings Dialog (ROM-Storing Processor) ... 77

2-23. Other Option Settings Dialog (ROM-Storing Processor) ... 79

3-1. VSH Window ... 84

3-2. History Search Examples ... 89

3-3. Example of CA Command Activation from VSH .. 137

4-1. Position of VMAKE .. 139

VOLUME 3 HANDLING C COMPILER

1-1. Operation Flow of ca ... 149

17

LIST OF FIGURES

Figure No. Title Page

2-1. Optimization Levels and Parameters ... 162

VOLUME 4 HANDLING ASSEMBLER

1-1. Flow of Operation of as .. 200

2-1. Image of Creating Common Object with as ... 205

3-1. Example of Output Assemble List .. 208

VOLUME 5 HANDLING LINK EDITOR

1-1. Flow of Operation by ld ... 219

1-2. Example of Image of Operation by ld .. 219

2-1. Image of Memory Location of gp Offset Reference Section ... 226

3-1. Section and Segment .. 256

3-2. Memory Location of Reserved Section .. 258

3-3. Example of Mapping Image 1 ... 259

3-4. Example of Mapping Image 2 ... 260

3-5. Example of Mapping Image 3 ... 261

3-6. Example of Mapping Image 4 ... 262

3-7. Example of Mapping Image 5 ... 263

3-8. Configuration of Segment Directive ... 264

3-9. General Format of Allocation with Address Specified ... 274

3-10. Example of Allocation Display with Address Specified.. 274

3-11. Example of Allocation with Address Specified ... 275

3-12. General Format of Allocation with Alignment Condition Specified ... 275

3-13. Example of Allocation Display with Alignment Condition Specified .. 276

3-14. Example of Allocation with Alignment Condition Specified ... 276

3-15. General Format of Allocation with Creating Hole Specified .. 277

3-16. Example of Allocation with Creating Hole Specified ... 277

3-17. Configuration of Mapping Directive .. 278

3-18. General Format to Link Object Files .. 289

3-19. Example of Commands for Linking Object Files ... 289

3-20. Example of Linking Object Files ... 289

3-21. Configuration of Symbol Directive .. 292

3-22. Rules to Determine gp Symbol Value .. 293

3-23. General Format to Create tp/gp/ep Symbols ... 296

3-24. Example of Commands for Creating One Each of tp/gp/ep Symbols .. 297

3-25. Example of Creating One Each of tp/gp/ep Symbols .. 298

3-26. Example of Commands for Creating Two or More tp/gp Symbols ... 300

18

LIST OF FIGURES

Figure No. Title Page

3-27. Example of Creating Two or More tp/gp Symbols ... 301

3-28. Example of Link Directive Where label Reference is tp Symbol Offset ... 302

3-29. Example of Assembler Codes of a.o through c.o .. 303

3-30. Default Link Directive (CA830: V830) .. 306

3-31. Memory Location by Default Link Directive (CA830) .. 308

3-32. Default Link Directive with SIDATA (CA850: V851) ... 310

3-33. Memory Location by Default Link Directive (CA850: with internal ROM) 311

3-34. Default Link Directive without SIDATA (CA850: V851) .. 312

3-35. Memory Location by Default Link Directive (CA850: with internal ROM) 313

4-1. Output Example of Link Map .. 318

VOLUME 6 HANDLING ARCHIVER

1-1. Flow of Operation of ar ... 336

VOLUME 7 HANDLING HEX CONVERTER

1-1. Flow of Operation of hx .. 342

3-1. File Configuration in Intel Expanded Hex Format ... 346

3-2. File Configuration in Motorola S Type Hex Format ... 349

3-3. File Configuration in Expanded Tek Hex Format ... 352

VOLUME 8 HANDLING DUMP COMMAND

1-1. Flow of Operation of dump ... 360

VOLUME 9 HANDLING DISASSEMBLER

1-1. Flow of Operation of dis .. 372

VOLUME 10 HANDLING ROM-STORING PROCESSOR

1-1. Flow of Operation of romp .. 378

1-2. Example of Using Copy Routine _rcopy .. 381

1-3. Image of ROM Storing (example of V830 Family) .. 382

1-4. Image of ROM Storing (example of V850 Family) .. 383

VOLUME 11 HANDLING SECTION FILE GENERATOR

1-1. Flow of Operation of sf ... 398

19

LIST OF FIGURES

Figure No. Title Page

APPENDIX

B-1. Structure of Object File ... 412

B-2. Relationships between Index and Character String in String Table ... 420

20

LIST OF TABLES

Table No. Title Page

VOLUME 2 OPERATION METHODS

3-1. Edit Key Lists .. 86

3-2. Keys for Operating Vertical Scroll Bar ... 87

3-3. Keys for Operating History Function .. 88

3-4. List of VSH Internal Commands ... 102

VOLUME 4 HANDLING ASSEMBLER

3-1. Section Attributes and Their Meanings .. 209

VOLUME 5 HANDLING LINK EDITOR

3-1. Types of Sections .. 257

3-2. Items That Can Be Specified and Their Specification Formats .. 264

3-3. Default Value of Each Item ... 265

3-4. Segment Attributes and Their Meanings .. 268

3-5. Items That Can Be Specified and Their Specification Formats .. 278

3-6. Section Attributes and Their Meanings .. 282

5-1. Special Symbols in Normal Object File .. 321

VOLUME 10 HANDLING ROM-STORING PROCESSOR

1-1. Reserved Sections Packed by romp .. 380

APPENDIX

A-1. Format of Section File ... 409

A-2. Section Types Specifiable by CA830 ... 409

A-3. Section Types Specifiable by CA850 ... 410

B-1. Constituents of ELF Header and Their Meanings ... 413

B-2. Constituents of Program Header Table Entry and Their Meanings .. 414

B-3. Constituents of Section Header Table Entry and Their Meanings .. 415

B-4. Section Types and Their Meanings .. 416

B-5. Meanings of link and info .. 417

B-6. Constituents of Symbol Table Entry and Their Meanings ... 419

B-7. Reserved Sections .. 421

21

VOLUME 1

GENERAL

22

CHAPTER 1 OVERVIEW

This chapter explains the organization of this manual and the features of the CA WindowsTM-based compiler

packages.

1.1 Organization of This Manual

This manual consists of the following volumes and appendix.

VOLUME 1 GENERAL

Explains the organization of this manual and the operating environment of the CA830/CA850 compiler packages.

VOLUME 2 OPERATION METHOD

Explains the handling method of the CA830/CA850 compiler packages for Windows and the Make Utility

(VMAKE) of the command line interface.

VOLUME 3 HANDLING C COMPILER

Explains the C compiler (ca).

VOLUME 4 HANDLING ASSEMBLER

Explains the assembler (as).

VOLUME 5 HANDLING LINK EDITOR

Explains the link editor (ld).

VOLUME 6 HANDLING ARCHIVER

Explains the archiver (ar).

VOLUME 7 HANDLING HEX CONVERTER

Explains the hex converter (hx).

VOLUME 8 HANDLING DUMP COMMAND

Explains the dump command (dump).

VOLUME 9 HANDLING DISASSEMBLER

Explains the disassembler (dis).

VOLUME 10 HANDLING ROM-STORING PROCESSOR

Explains the ROM-storing processor (romp).

VOLUME 11 HANDLING SECTION FILE GENERATOR

Explains the section file generator (sf).

APPENDIX

Explains the format of the section file and object file.

23

1.2 Features of CA Windows-based Compiler Package

The CA830/CA850 Compiler Packages have the following features:

• Language specifications conforming to ANSI standard

The C language specifications conform to the ANSI standard and are also compatible with the conventional

C language (K&R specifications).

• High-level optimization

The C compiler/assembler provide multi-level optimization.

• Features for embedded control

A utility is provided to facilitate storing the application system to ROM.

• Easy description

The expanded language specifications facilitate the description of programs in C language.

The CA830/CA850 Windows-based C compiler packages are provided with the following operating features.

• Activation from Project Manager

CA can be activated from efficient integrated environment (Project Manager).

The Project Manager is a control software that allows tools operating in Windows to activate efficiently and

is included in this compiler package.

• Shell function added

Because shell function (VSH) is added in CA, the activation from command interface is possible.

24

Figure 1-1. Package Organization Figure

The Project Manager runs on Windows and supplies graphical application development environments, so that

an application load module can be created by specifying an option of the C compiler, assembler, or link editor can

be specified from the Project Manager to automatically execute their commands.

The V800 Series C compiler package also supplies a shell (VSH) function as an application development

environment on the command line. VSH allows utility tools such as archiver and hex converter, in addition to the

C compiler, assembler, link editor, and ROM-storing processor, to run like the command line of MS-DOSTM prompt.

Project Manager

Tool DLL

Specifying Option

Shell for CA (VSH)

Command line initiation

CA Package Command

C Compiler
Assembler
Link Editor
ROM-storing processor

Archiver
Hex converter
Disassembler
Dump command
Section file generator
* V850

25

CHAPTER 2 INSTALLATION

This chapter explains the operating environment, installation of supplied medium and points to be noted of this

compiler package.

2.1 Operating Environment

This compiler package runs in the following environments:

Machine Machine which can operate Microsoft Windows 95

Operating System Microsoft Windows 95

Hard Disk 10 MB of empty capacity

Operating Memory 32 MB

[Cautions]

• Microsoft Windows 95 creates swap file in windows folder when various tools are operated. Always keep

enough empty capacity in the drive where the windows folder is installed.

• The operation of CA is not guaranteed in Microsoft Windows for OS/2TM.

For the processing of the CA command, a device file (refer to -cpu option on page 159) dependent on the

target device is necessary1.

1 The device file is separately available.

26

2.2 Installation

This package consists of six FDs2.

The read-out method of the files of the C compiler package (including Project Manager) is explained below.

(1) Insert Setup Disk 1 (1/6) of the C compiler package into the FD drive of the host machine.

(2) Execute the SETUP.EXE command, which is in the root directory of the FD, with Explorer in Windows.

Install the C compiler following the instructions.

(3) Set the command search path. Set the bin directory under install directory to the environmental variable

PATH in batch file autoexec.bat. In the PATH of autoexec.bat, add the bin directory under the install

directory or the following description after environmental variable PATH3. Note that the environmental

variable PATH recognizes up to 128 characters.

PATH %PATH%;A\NECTOOLS\BIN

(4) Restart Windows.

By restarting Windows, new autoexec.bat is executed, necessary device drivers are set, and Project

Manager and CA can be used.

2 7 FDs for Japanese version.
3 The mark “ ” indicates a blank space.

27

2.3 Directory Configuration

The configuration of the directory of the files read from the supply media as a result of installing this compiler

package is shown in Figure 2-14.

The default of install directory is "\NECTOOLS" in the drive where the Windows system is located.

Figure 2-1. Directory Configuration

Be sure to set the above bin directory to the command search path when installing the compiler package (refer

to page 26).

The old function calling is not supplied in the CA830.

The library/start-up module for the old function calling specification is not included in the supply media of the

CA830.

Even in the CA850, the old function calling is not supplied when the V850ETM is used for the target device.

4 In this compiler package, directory libxxx and r32 under libxxx in Figure 2-1 is called the standard directory for the library, directory incxxx is
called the standard directory for the include file, and the standard directory for the device file becomes the dev directory in the same level.

Install directory

bin

incxxx

lib

doc

r22

r26

r32

Command group, VSH, VMAKE,
and project manager

Include file group

[New function calling specification]

[Old function calling specification] * V850

Release note (.txt file)

Library (for 22-register mode)
start-up module

Library (for 26-register mode)
start-up module

Library (for 32-register mode)
start-up module

Modules internally called by C compiler

libxxx

r22old

r26old

r32old

Library (for 22-register mode)
start-up module

Library (for 26-register mode)
start-up module

Library (for 32-register mode)
start-up module

smpxxx Sample of link directive

hlp On-line manual

caxxx

28

2.4 Library File

The header files and standard/mathematical libraries of this compiler package are “libc” in the following copyright

statement transplanted by Cygnus Support for the V810 Family and then by NEC Corporation for the V830

Family and V850 Family.

Copyright 1992, 1993, 1994, Cygnus Support

“libc” includes software developed by Berkley University in California, and others.

Copying this document and distributing the copy are permitted only if the copyright statement and

this permission statement remain in all copies.

The permission to copy and distribute copies of the revised edition of this document verbatim is

granted under the conditions of the GNU General Public License. This GNU General Public License

includes a stipulation that all the results obtained by using “libc” are to be distributed according to

the same permission statement.

The permission to translate this document into other languages and to copy and distribute the copy

of the translated version is granted under the condition of the revised edition mentioned above.

“This document” in the above mentioned statement means an explanation of each function included in the

standards and mathematical libraries explained in V800 Series C Compiler Package User’s Manual-C language.

The ROM-storing library as well as the run-time library and emulation library added to the standard library are

the original functions of NEC Corporation.

29

2.5 Cautions

• This compiler package creates a temporary file used internally under the following directory (The number

indicates the priority).

– To start from Project Manager

1. Work directory set by <<Other settings>> of <<Project Manager option setting>> dialog which is

displayed by Option → Project Manager Options...

2. Directory specified by environmental variable TEMP

3. Root directory of current drive

– To start from the VSH command line

1. Directory specified by -temp option of C compiler (ca)

2. Directory specified by environmental variable TEMP

3. Root directory of current drive

• When file name is specified by the ca or ld, both of “/” and “\” (“¥”) are regarded as delimiter of directory path.

When the drive name is omitted, the files is searched in the following drives.

– To start from Project Manager (The number indicates the priority)

1. Drive of work directory specified by <<Other settings>> of <<Project Manager option setting>> dialog

2. Drive of project directory specified by <<Project Setup>> dialog

– To start from the VSH command line

Drive of current directory

30

[MEMO]

31

VOLUME 2

OPERATION METHODS

32

CHAPTER 1 OVERVIEW OF OPERATIONS

Volume 2 describes how to operate these compiler packages from the Project Manager and the VSH (shell

function).

When using the CA to generate application load modules (i.e., compile/assemble source files, link object files,

and create ROM-storing object file), there are two methods (shown in Figure 1-1): operating from the Project

Manager as part of an integrated environment or operating from the VSH’s command line interface.

Figure 1-1. Outline of CA Package Operations

Chapter 2 describes how to operate the compiler package from the Project Manager.

Chapter 3 describes the functions of VSH and how to operate the compiler package from the command line

interface of VSH, and Chapter 4 describes the functions and operations of the make utility VMAKE that runs on

VSH.

For details of CA command functions, options, etc., see the command-specific descriptions in Volume 3 and

later volumes.

Windows

Specify options for
ca/as/ld/romp

Project Manager

MAKE
for Project Manager

ca/as/ld/romp activation

Stand-alone activation of
ca/as/ld/romp

 (option specification)

VSH

Activation of all commands

Stand-alone activation of
ar/dis/dump/hx

 (option specification)

VMAKE

33

CHAPTER 2 OPERATIONS USING THE PROJECT MANAGER

This chapter describes the use of the Project Manager to specify CA command options and to generate make

files.

2.1 What is the Project Manager?

The Project Manager is a control software program that helps Windows-based programs run more efficiently,

and enables various operations—from editing a source program to compiling, executing, and debugging—to be

performed in a series (see Figure 2-1).

Figure 2-1. Project Manager and Development Tools

For details of the Project Manager, refer to the “Project Manager User’s Manual.”

Option settings for compiling
Editor setting
Additional source files

Reference and edit
source files

Build (make) project

Project settings

Activate debugger

Project Manager

34

2.2 Activation of Project Manager

To activate the Project Manager, use the <<Project Manager>> icon that was registered when this compiler

package was installed.

Figure 2-2. Window for Activation of Project Manager

35

2.3 Project Settings

The Project Manager manages the application modules to be developed and development environments in

units of “projects”.

The Project Manager also manages settings for a project by recording them into a “project file”. By “setting

a project”, “a project file is generated” by Project Manager.

The settings listed below, which are required for creating application load modules, are automatically recorded

in the Project Manager.

• Required source files

• Target device to be used

• Editor and tools to be used

• Compile option

By opening the project file with the Project Manager, these settings are automatically repeated, enabling

restart of development with the same settings as when Project Manager was ended previously.

The following describes a newly created sample project entitled “test4”.

For details of project-related operations, refer to “Project Manager User’s Manual”.

(1) Click New Ctrl+N in the Project menu to open the <<Project Setup>> dialog.

(2) Set the project file name, title, project directory, series name, and device name for the project to be

created, then click the OK button.

36

(3) Click Source Files... in the Project menu to open the <<Source Files Setup>> dialog.

Since this is a new project, nothing is shown in the source file list. Click Add... to open the << Source

Files>> dialog for setting the source file to be used for the project.

Click the source file to be used on the list of the <<Source Files>> dialog. The source file is actually

added by clicking Add . When the <<Source Files Setup>> dialog is displayed again by clicking

11Close , the added file will be displayed on the list.

OKCheck that all of the desired source files have been set from the source file list, then click the

button to set project “test4” before exiting. In the title bar of the Project Manager, the project file name

“test4.prj” is displayed.

"Add"

Select + "Add"
↓

"Close"

37

2.4 Project Manager and CA

The Project Manager can specify the options of the C compiler, assembler, link editor, and ROM-storing processor

for the source file to be used for the target project.

It is also possible to automatically create a make file based on the above selection.

Figure 2-3. Outline of CA Option Specification from Project Manager

If you set a project file via the Project menu, the project file name will be shown in the “Titles” area as

shown in Figure 2-4.

The option of the C compiler, assembler, link editor, and ROM-storing processor are set by displaying the

corresponding option setting dialog box from the Option menu after the project has been set.

MAKE for
Project Manager

CA option
specification

Object creation
 .OUT

CA command activation

Project
Manager

Auto generation
of make file

project-name .MAK

file-name

… ……
… ……
… ……

38

Figure 2-4. Window for Setting Project File

The items shown in Figure 2-5 will be displayed when you click the Project Manager’s Option menu. Use

this menu to open the dialogs for setting CA command options.

Figure 2-5. Project Manager’s Option Menu (after setting project)

To open command option
setting dialog of CA

A menu of CA command is added via project setup

Project file name of set project

39

2.5 Dialogs for Setting CA Command Options

This section explains each dialog that sets the command option of the CA for the source file of the target

project.

[Cautions]

• The option names used to activate commands from the VSH command line are displayed in square brackets

“[]”.

• For details of the various command functions, see the command-specific descriptions in Volume 3 and later

volumes.

• Volume 3 and later volumes contain lists of options for the various commands, including some options that

are not shown in the dialogs. These include options that do not have to be activated from the Project

Manager and options that cannot be specified from the Project Manager because they are fixed (refer to

page 29 for work directory description).

For example, the device specification “-cpu” that is in the option list for the ca and as commands is not

included since the device specification is already made when setting a project via the Project Manager.

• Debugger options (such as -g of ca and as) are not included in the option dialog described in the next

section. With the Option menu, the debug mode can be switched. Checking the Debug on the menu

sets the debug mode and not checking sets the non-debug mode. The default setting is debug mode.

2.5.1 Setting compiler options

The C compiler option setting dialog box for the C source file can be displayed by performing either of the

following operations after a project has been set with the Project Manager.

• Click the Option menu

→ Click Compiler Options...

• Click the Option menu

→ Click Source List

→ Click the source file for which options are to be set

→ Click the Options... button

The former is the setting for the C source file for the all target projects and the latter is the individual setting

for that C source file1. When source file-specific settings are made, overall option settings become invalid for the

particular source file.

If the Delete Source Option button is clicked on the setting dialog of each source, the option set for

each source file is deleted, and the option for the all projects set by the former method becomes valid.

1 “*” mark is appended to the file that is set to the individual option setting in <<Source List>>.

40

Figure 2-6. Delete Source Option Button

Eight option buttons are displayed at the upper part of the C compiler option setting dialog. By selecting an

option button, the display of the dialog is changed.

Invalid when setting options of entire project

Valid when setting individual options in Source List

41

(1) Option buttons for displaying option setting dialogs

1 Input Opens the dialog box that is used to set the options

related to input to the C compiler (refer to page

42).

2 Preprocessor Opens the dialog box that is used to set pre-

processor-related options (refer to page 44).

3 Language Opens the dialog box that is used to switch language

specifications (refer to page 46).

4 Optimization Opens the dialog box that is used to set the

optimization level and type (refer to page 48).

5 Output 1 Opens the dialog box that is used to make output

object-related settings such as data allocation to

.sdata/.sbss sections and kanji code specifications

of the target (refer to page 50).

6 Output 2 Opens the dialog box that is used to make output

object-related settings such as register mode and

ROM-storing object creation specification (refer

to page 53).

7 Message Opens the dialog box that is used to set the level

and item of warning message to be output (refer

to page 56).

0 Others Opens the dialog box that is used to set the other

parameters (refer to page 58).

42

◊ Setting input options ◊

Figure 2-7. Input Option Settings Dialog

(1) Options

Kanji Code Specifies the character code to be used for Japanese

comments and character strings2 in the input file.

Error message is output if the codes other than

the specified code exists in the input file. If <<None>>

is specified, the code cannot be guaranteed. The

<<Default>> setting is Shift JIS.

Section Data File Specifies a section file name to allocate data to a

section by using an option, instead of #pragma

(refer to page 397). By checking <<Use File >>,

a file name can be set in the text box. Be sure to

specify a file name when <<Use File>> is checked.

Since a section file is divided into several files,

delimit each file names with “;” from others when

specifying two or more file names.

This option cannot be set independently for each

source file, and is always used for all files.

This area is in the form of a drop-down list, and a

file once specified is registered to the list (up to

10 files). This option can be selected by clicking

or arrow key.

2 Refer to the section of the V800 Series C Compiler Package User's Manual - C Language that describes character strings and comments
in the language specifications.

43

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

44

◊ Setting pre-processor options ◊

Figure 2-8. Pre-processor Option Settings Dialog

(1) Options

Include Search Path [-I] This specifies one or more directories to be searched

before the standard directory when searching for

header files. When specifying several paths, use

a semicolon “;” to separate the path specifications.

This area uses the “drop-down list” type of display

to list all directories that have been specified at

least once (up to 10 paths). To select a directory,

either click on the desired directory or use the arrow

keys to select it.

When this option is omitted, only the standard

directory3 will be searched4.

Define Macro [-D] Uses the “macro_name name = definition_value

def” format to define macro names. If the “= def”

specification is omitted, a value of 1 is assumed

as “def”.

(Example) test = 2

It is assumed that “#define name def” is entered

before a C-language program.

When specifying several macros, separate them

with a semicolon “;”.

3 The standard directory is the installation directory (\incxxx).
4 In the format that encloses a file name with ‘"’, the directory where the source file exists is searched first. For the details of file search of

header file loading, refer to V800 Series C Compiler Package User’s Manual - C Language .

45

This area uses the “drop-down list” type of display

to list all macros that have been specified at least

once (up to 10 macros). To select a macro, either

click the desired macro or use the arrow keys to

select it.

Undefine Macro [-U] Use this to specify the macro name name to be

rendered invalid. It is assumed that “#undef name”

is entered before a C-language source program.

When specifying several macros to be rendered

invalid, separate them with a semicolon “;”.

This area uses the “drop-down list” type of display

to list all macros that have been rendered invalid

(up to 10 macros). To select a macro, either click

the desired macro or use the arrow keys to select

it.

Limit of Number of Specifies the upper limit of the number of macro

identifiers with a decimal number of up to 32767.

The default value is 2047.

Use Trigraph [-t] Replaces the trigraph series.

Use C++ Style Comment In addition to ordinary comments, this allows any

text from “//” to the end of the line to be handled

as comments (C++ comment style).

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

Macro [-Xm]

 [-Xcxxcom]

46

◊ Setting language options ◊

Figure 2-9. Language Option Settings Dialog

(1) Options

Sign of Bit field ‘int’ [-Xbitfield] This area is used to specify the signed or unsigned

status of an integer type bit field for which the signed/

unsigned status has not been specified. The default

setting is “signed”.

Sign of ‘char’ [-Xchar] This area is used to specify the signed or unsigned

status of simple char type for which the signed/

unsigned status has not been specified. The default

setting is “signed”.

Strict ANSI C Rule [-ansi] Check this box to compile strictly according to the

language specification in the ANSI standards (refer

to page 155).

(In the case of CA850)

47

Strict Integer Extension [-Xe] When this box is checked, ___mul/___mulu and

___div/___divu from the runtime library5 are used

instead of mulh and divh instructions for integers

having data lengths of 16 bits or less.

Multiplication and division are performed strictly

according to the ANSI standards, although this slows

down the processing speed.

If this check box is not selected, the mulh and

divh instructions are used.

* V850

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager's <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

5 The runtime library in the CA850 is provided as this compiler’s standard library in order to fulfill the ANSI standards with regard to instructions
that are not included in the V850 Family architecture.
For details of the runtime library, refer to V800 Series C Compiler Package User’s Manual - C Language .

48

◊ Setting optimization options ◊

Figure 2-10. Optimization Option Settings Dialog

(1) Options

Optimization Level [-O] Use this area to specify the optimization level and

related items (refer to page 156). The default setting

is level 1.

Optional Optimization [-Ol] Check this box to perform optional optimization.

This emphasizes optimization measures such as

code scheduling and redundant instruction

elimination. However, the compiling speed is

reduced. This box can be selected where

optimization level 2 or above, or execution time-

priority or size-priority optimization is selected.

Code Threshold [-Wp, -N] Limits the intermediate language size of a function

subject to inline expansion to the specified number

of bytes and does not execute inline expansion a

function exceeding this number of bytes. For the

guideline of the length, refer to “Output Function

Report”. The default size is 128. This option can

be specified only when execution time-priority

optimization is specified.

49

Stack Threshold [-Wp, -G] Limits the stack length in the intermediate language

of a function subject to inline expansion to the

specified number of bytes and does not execute

inline expansion a function exceeding this number

of bytes. For the guideline of the length, refer to

<<Output Function Report>>. The default size is

32. This option can be specified only when execution

time-priority optimization is executed.

Expand Static Function [-Wp, -S] Performs inline expansion of static functions that

are referenced only once.

Output Function Report [-Wp, -I] Displays information on functions. The displayed

information serves as a guideline for specifying

the upper limits of <<Code Threshold>> and <<Stack

Threshold>>.

(Output example)

function name code stack

------------- 15 4

Number of Loop Unrolling Specifies the number of loop unrolling (refer to

page 173). This option can be selected only when

execution time-priority optimization is specified.

Pack Alignment [-Wi, -P] Suppresses optimization that aligns labels. As a

result, this enables a smaller code length.

This option can be specified where optimization

level is 2 or above, and when execution time-priority

optimization is selected. When size-priority

optimization is selected, however, this option appears

dimmed because this option function is included

and therefore, this option cannot be specified.

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager's <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

[-Wo, -Ol]

50

◊ Setting output 1 options ◊

Figure 2-11. Output 1 Option Settings Dialog

(1) Options

Frequency Information File Clicking <<Create File>> creates a frequency

information file that is necessary for creating a

section file that allocates sections by using the

section file generator (sf) (refer to page 397). If

<<Specify File>> is not clicked, the frequency

information file is created under the name with .c

of the source file changed to .sec. If <<Specify

File>> is clicked, a file name can be specified in

the text box. In this case, be sure to specify a file

name. This area uses the "drop-down list" type

of display to list all files that have been specified

at least once (up to 10 files). Either click the desired

file or use the arrow keys to select it.

* V850

When specifying an information file name for each of two or more source files, do not specify

a file name with an option that is related to all the projects, but specify a file name by using

an option that is related to each source file.

This option also outputs the frequency information on the variables in the C source file. It

does nothing to the assembler source file.

CAUTIONS

51

sdata/sbss Allocation [-G] Use this area to specify the length of data allocated

to the .sdata/.sbss section.

If all data allocations are cancelled, input to the

text box for specifying the data length is enabled.

Data of the specified size (in bytes) or less is allocated

to the .sdata or .sbss section. However, data for

which the .sdata or .sbss section is specified by

the #pragma section directive6 or section file (refer

to page 408) is allocated to the .sdata or .sbss

section regardless of its size.

Kanji Code of Target Japanese character strings are converted into

specified codes and output7. This conversion is

convenient when converting Kanji codes that were

used in application development, in the target. Codes

are not converted when <<None>> or <<Default>>

is specified.

The comment output by the specification of [Output

Source Comment] is not converted in spite of this

option.

If code other than the default (shift JIS) are used in the input file whose code is to be

converted by the specification of [Kanji Code of Target], specify the code being used with

[Kanji Code] of the [Input] option.

Unless specified, the code is not converted because the input default is recognized as shift

JIS.

Output Assemble List [-a] The assembly list is output to a file whose extension

.c is changed to .v (refer to page 208).

6 Refer to the data section allocation in the V800 Series C Compiler Package User’s Manual - C Language .
7 Refer to the section of the V800 Series C Compiler Package User’s Manual - C Language that describes character strings and comments

in the language specifications.

CAUTIONS

Input file
EUC

Output file
Shift JIS

[Input] [Output 1]
Kanji Code Kanji Code of Target
 EUC Shift JIS

52

Output Source Comment [-Xc] Outputs a C-language source program to the

assembler source file to be output as comments.

This option can be specified only when [Output

Assemble List] is specified.

The comments that are output, however, are only

for reference and may not strictly correspond to

the codes. For example, the output position of

the global variables, local variables, and function

declaration may be shifted. In addition, the codes

may be deleted and only comments may remain

because of optimization.

Use Performance Checker [-Xpc] This box cannot be selected at present.

Output Information for Analyzer This box cannot be selected at present.

[-Xaz]

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

53

◊ Setting output 2 options ◊

Figure 2-12. Output 2 Option Settings Dialog

(1) Options

Register Mode The number of registers used by ca can be set by

the user as 26 or 22 only8. The default setting is

32 registers.

Because the setting by this option is also recognized

by the link editor, the library in an appropriate mode

is referred.

Output of bdld Instruction [-Xbdld] When a 16-byte or larger static structure or external

structure variable value, which is allocated to the

section for external memory, is substituted as a

variable to the .sidata section allocated to internal

data RAM, the bdld instruction is generated in

assembly language using ca and output (refer to

page 166). * V830

8 This switches the register mode of the software register bank function. Refer to V800 Series C Compiler Package User’s Manual - C
Language for the software register bank function.

(Add "Output of bdld Instruction [-Xbdld]" in the case of CA830)

54

Inline Expansion of strcpy () [-Xi] The function call of the strcpy() function is converted

into block transfer. This causes the object execution

speed to become higher, but the code size also

becomes larger.

However, conversion is performed only when the

second argument of strcpy () is a character string.

Moreover, the first argument must be 4-byte aligned

by the program (as the second argument is a

character string, the C compiler has already aligned

the second argument).

Change Jump Code of Interruption This option changes the instruction for branching

to the interrupt function from the jr instruction to

the jmp instruction (refer to page 157).

When the function itself is in the range where

branching from the jr instruction is not possible

and ld outputs an error, recompilation is performed

using this option.

Use Mask Register [-Xmask_reg] This option sets the use of the mask register function9.

Specifying this option automatically sets the check

during linking by link editor, and an error results

if a mask-register-enabled object and mask-register-

disabled object coexist.

This option cannot be selected separately for each

source file setting. This option is always set as

the overall option.

Even in applications where both the C source file and assembler source file are used, or in

applications where only the assembler source file is used, [Use Mask Register] must be

specified by both the C compiler option and assembler option.

Use Old Style Function Call This option outputs the codes that comply with

the old-version call specifications of the C compiler.

By specifying this option, the specification of [Use

Mask Register] becomes invalid. The old style

library is referenced automatically in library

references by a link editor.

This option cannot be selected separately for each

source file setting. This option is always set as

the overall option. * V850

This option cannot be specified when using the

V850E for the target device.

If one wishes to use the old style call specifications, this option must be specified with C

compiler option, even in application using both C source files and assembler source files,

or only assembler source files, in order to reference the old style library.

[-Xj]

CAUTIONS

[-Xold_fcall]

CAUTIONS

9 Refer to V800 Series C Compiler Package User’s Manual - C Language .

55

Create Object for ROM [-Xr] This option is required when creating an object to

be stored in ROM. Following link processing, the

processor for ROM writing is started. The generated

object file (.out file) contains ROM writing information.

The label of the first argument of __rcopy should

be designed so as to indicate the first address10

after the .text section end in the object. In addition,

this option indicates that rompcrt.o file and libr.a

file are to be linked with ld11. This option cannot

be selected separately for each source file setting.

This option is always set as the overall option.

Use Word Switch Table This option creates a branch table for the case

label in the switch statement in 4 bytes per label.

Specify this option if compile errors due to long

switch statements occur.

If this option is not specified, the branch table is

generated in 2 bytes.

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s << Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

[-Xword_switch]

10 Aligned with 4-byte alignment condition
11 Refer to page 386.

56

◊ Setting message options ◊

Figure 2-13. Message Option Settings Dialog

(1) Options

Warning Level Use this area to set the level of warning messages

to be output.
No Output [-w]: Suppress warning messages
Level 1: Output ordinary warning messages (default)

Level 2 [-w2]: Output detailed warning messages

Verbose Mode [-v] Displays execution status in C compiler.

Individual Warnings Specifies output or suppression of output of a warning
message of each item, regardless of the level. The

warning message is output when the check box
in this area is checked. The warning message is
not output when the check box is displayed in gray.

Bit Field Alignment [-wbitfield_align] Outputs a warning message if the member of a
bit field is allocated from the next boundary because

it exceeds the boundary of alignment condition.

Call of Not Declared Function Outputs a warning message if a function not declared

[-wcallnodecl] is called.

Use of Non PIC [-wnopic] When this box is selected, a warning is output upon

initialization of a pointer type external variable which
uses a variable’s address that is not an automatic
variable or which uses a function’s address.

57

Unrecognized ‘#pragma’ Outputs a warning message if description of #pragma
[-wpragma] that cannot be executed is found.

Non White Space before Sharp Outputs a warning message in respect to # character

appearing in the middle of the source line.

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

[-wsharp]

58

◊ Setting other options ◊

Figure 2-14. Other Option Settings Dialog (C Compiler)

(1) Options

Any Option The following options can be specified in the text

box.

Optimization Enhancement To perform the data flow analysis precisely, “-Wi,

-O4” can be described12.

CPU Fault Prevention Option To prevent CPU faults13, options:

“-Xnoabcond” (page 157) or “-Xnopldsr” (page 157)

in CA830

“-Xv850patch” (page 157) in CA850 can be

described.

Options Common to Family Options are passed to the assembler, because

objects are shared in the family14. “-Wa, -cn” can

be described. In the CA850, the “-Wa, -cnv850e”

option can also be described.

Option

12 Refer to pages 162 and 173.
13 To check whether the fault that has occurred applies to the CPU used, refer to the documents supplied with the CPU.
14 Refer to page 205.

59

Use Temporary Command File In the Windows environment, the length of character

strings used to specify options for command is

restricted (to 126 characters). If this check box is

selected, the option character string is temporarily

output to a command file (refer to page 161), which

enables the operation to be completed without

observing the restriction on the character string

length.

This option is checked as default assumption.

Command Line Options Displays C compiler options set in each dialog with

the command line options. This area is for reference,

and writing is disabled.

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

60

2.5.2 Setting assembler options

The assembler option setting dialog box for the assembler source file can be displayed by performing either

of the following operations after a project has been set with the Project Manager.

• Click the Option menu

→ Click Assembler Options...

• Click the Option menu

→ Click Source List

→ Click the source file for which options are to be set

→ Click the Options... button

The former is the setting for the assembler source file for the all target projects and the latter is the individual

setting for that source file15. When source file-specific settings are made, overall option settings become invalid

for the particular source file.

If the Delete Source Option button is clicked on the setting dialog of each source, the option set for each

source file is deleted, and the option for all the projects set by the former method becomes valid.

Figure 2-15. Delete Source Option Button

Invalid when setting options of entire project

Valid when setting individual options in Source List

15 “*” mark is appended to the file that is set to the individual option setting in <<Source List>>.

61

Three option buttons are displayed at the upper part of the assembler option setting dialog. The display of the

dialog is changed depending on which option button is selected.

(1) Option buttons for displaying option setting dialogs

1 Option 1 Opens the dialog box that is used to set the path

of the include file in assembler (refer to page 61).

2 Option 2 Opens the dialog box that is used to set the ordinary

options of the assembler (refer to page 63).

0 Others Opens the dialog box that is used to set the other

parameters (refer to page 66).

◊ Setting option 1 ◊

Figure 2-16. Option 1 Settings Dialog (Assembler)

(1) Options

Include Search Path [-I] Specifies a directory that is searched for the file

specified by the file input directive16 prior to the

directory where the source file is placed. When

specifying several paths, use a semicolon ";" to

separate the path specifications.

This area uses a "drop-down list" type of display

to list all directories that have been specified once

(up to 10 files). To select a directory, either click

on the desired directory or use the arrow keys to

select it.

When this option is omitted, only the directory where

the source file is placed is searched.

16 Refer to User’s Manual - Assembly Language of each family.

62

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s << Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

63

◊ Setting option 2 ◊

Figure 2-17. Option 2 Settings Dialog (Assembler)

(1) Options

sdata/sbss Allocation [-G] Generates a machine language instruction on the

assumption that all data of the specified size (byte)

or smaller are allocated to the sdata/sbss-attribute

section in response to external label access17.

If <<Allocate All Data>> is cancelled, input to the

text box for specifying the data length is enabled.

On the other hand, for data whose sdata option is

specified by the .option pseudo-instruction18, a

machine language instruction is generated on the

assumption that the data is allocated to the sdata-

attribute section or sbss-attribute section regardless

of its size.

Magic Number Specifies magic number of the object. By selecting

<<Common to V850 Family>>, objects that are

common in the V850 Family are created. Similarly,

by selecting <<Common to V830 Family>>, objects

that are common in the V830 Family are created.

If <<Common to V850E Family>> is selected,

common items are limited to the V850E in the V850

Family19. * V850

The default is fixed for the device. If fixed for the

device, linking to other objects fixed to the device

is impossible.

("Unique to Device" and "Common to V830 Family[-cn]" in the case of CA830)

17 If as is activated from ca at the VSH command line, the -Gnum option specified for ca will be passed even if this option is not specified for
as, but only the settings made via this dialog are valid for assembly source files. This does not affect the <<sdata/sbss Allocation>> setting
made via the compiler option settings dialog.

18 Refer to User’s Manual - Assembly Language .
19 Refer to page 202.

64

Output Assemble List [-a -l] Outputs the assemble list. Unlike the “-a -l”

specification for “as” in the VSH command line

base, processing of the “-a” in the ca command is

executed (refer to page 157). In other words, the

assemble list is output to a file whose extension

is changed to “.v”.

Do Optimization [-O] Executes optimization, which rearranges instructions

to avoid register and flag hazards. Optimization

by assembler is not compatible with the debugger20.

When the debug mode (-g option) is specified in

the Project Manager [Option] → [Debug]

specification; the debug mode is ignored if there

is a debug information section in the source file.

Optimization is ignored and the debug mode is

valid if there is no debug information section.

Verbose Mode [-v] This displays execution status of assembler.

Suppress Warning [-w] Warning messages are not output when r1 has

been specified as the source register or destination

register, when r20 or r21 has been specified as a

destination register when the mask register function

has been used, when r0 has been specified as

the destination register, or when r30 has been

specified as the destination register for the mul/

mulu/div/divu instructions in V830 Family.

Use Mask Register [-m] Creates an object file having information that the

mask register function21 is used. When <<Use

New Style Function Call>> is specified, this option

can be specified. It is valid when an assembler

source file created with the old version of the C

compiler is used.

This option cannot be selected for each source

file and is always selected for all source files.

In an application where both the C source file and assembler source file are used or in an

application where only the assembler source file is used to specify checking during linking,

[Use Mask Register] must be specified by both the C compiler option and assembler option.

20 Refer to -g option on page 202.
21 Refer to V800 Series C Compiler Package User’s Manual - C Language .

CAUTIONS

65

Use New Style Function Call [-f] Creates an object file having information of “calling

function of new version”.

This option is valid when using an assembler source

file created with the old version of the C compiler

of the V850 Family, or when using the assembler

source file created with the old version of the C

compiler of the V810 Family in the V830 Family22.

When this option is specified, specification of [Use

Mask Register] is available.

This option cannot be selected for each source

file and is always selected for all source files.

In an application where both the C source file and assembler source file are used or in an

application where only the assembler source file is used, and if this option is not specified

and assembly is executed with the calling specifications of the old version when the V850

Family is used, the “Use Old Style Function Call” option must be specified by the C compiler

option to reference the library of the old version.

(2) Buttons

OK Enables the option that was selected via the dialog

and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

CAUTIONS

22 Refer to V800 Series C Compiler Package User’s Manual - C Language .

66

◊ Setting other options ◊

Figure 2-18. Other Option Settings Dialog (Assembler)

(1) Options

Any Option To avoid CPU fault, “-P” option can be described

(refer to page 206)23. * V850

The other descriptions are not supported at present.

Use Temporary Command File In the Windows environment, the length of character

strings used to specify options for command is

restricted (to 126 characters). If this check box is

selected, the option character string is temporarily

output to a command file (refer to page 161), which

enables the operation to be completed without

observing the restriction on the character string

length.

This option is checked as default assumption.

Command Line Options Displays assembler options set in each dialog with

the command line options. This area is for reference,

and writing is disabled.

23 For whether the fault that has occurred is of the CPU used, refer to the documents supplied with the CPU.

67

(2) Buttons

OK Enables the specified items and closes the dialog.

 Delete Source Option This button appears dimmed and cannot be selected

when options for the overall project have been

specified. It can be selected when options are

specified by selecting source files via the Project

Manager’s <<Source List>> dialog.

When it is selected, this button deletes any options

specified for a particular source file and applies

only overall options.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

68

2.5.3 Setting link editor options

The link editor option setting dialog box can be displayed by performing the following operation after a project

has been set with the Project Manager.

• Click the Option menu

→ Click Linker Options...

Since the link editor needs to be activated only once per project, there are no file-specific settings.

The names of executable object files that can be output by the link editor is the first filename (minus the

extension) shown in the <<Source List>> dialog, to which the extension “.OUT” is added. The output filename

cannot be specified (there is no specification method that corresponds to the “-o” specification to activate from

the VSH command line).

Three option buttons are displayed at the upper part of the link editor option setting dialog. By selecting an

option button, the display of dialog is changed.

(1) Option buttons for displaying option setting dialogs

1 File Opens the dialog box that is used to set the options

related to the files to be referenced or linked by

the link editor (refer to page 69).

2 Option Opens the dialog box that is used to set the ordinary

options of the link editor (refer to page 71).

0 Others Opens the dialog box that is used to set the other

parameters (refer to page 74).

69

◊ Setting files ◊

Figure 2-19. File Settings Dialog

(1) Options

Library [-l] Specifies the “string” portion of the archive file (library

file) libstring.a to be accessed. When specifying

several files, separate each name with a semicolon

(such as “m;usr”).

This area uses the “drop-down list” type of display

to list all libraries that have been specified once

(up to 10 libraries). To select a library, either click

the desired library or use the arrow keys to select

it.

The specified archive file is searched from the

standard directory24 of the directory or library

specified by <<Library Search Path>>. The link

editor outputs no message and continues linking

even if the specified file is not found.

The standard library (“c”) is referenced as default assumption even if it is not specified.CAUTIONS

24 Install directory \libxxx and install directory \libxxx\r32.

70

Library Search Path [-L] Specifies the directory where the archive file (library

file) to be accessed is stored. When specifying

several libraries, separate each name with a

semicolon “;”.

This area uses the “drop-down list” type of display

to list all directories that have been specified once

(up to 10 directories). To select a directory, either

click the desired directory or use the arrow keys

to select it.

If a directory is specified by this option, the library

is searched from the specified directory before the

standard directory of the library. If two or more

libraries are specified, the library is searched in

the sequence in which they have been specified

in the text box.

Link Directive File [-D] This specifies the link directive file to be accessed

(refer to page 254). This area uses the “drop-

down list” type of display to list all directive files

that have been specified once (up to 10 files). Either

click the desired directive file or use the arrow

keys to select it.

Startup File This specifies the start-up module’s file25. When

creating a final object file via the build/rebuild function

(in other words, in cases other than when creating

a file whose target specification in building is “.o

file”), if this start-up file specification is omitted,

the supplied start-up module26 is linked.

This area uses the “drop-down list” type of display

to list all files that have been specified once (up

to 10 files). Either click the desired file or use the

arrow keys to select it.

If the path is not specified in the link directive file or start-up module, “project directory” that

is specified during project creation is searched. If the file locates in other directory path,

specify the absolute path name or relative path name from the project directory.

(2) Buttons

OK Enables the specified items and closes the dialog.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

25 Refer to V800 Series C Compiler Package User’s Manual - C Language .
26 Install directory \libxxx\ rxx\crtN.o

CAUTIONS

71

◊ Setting options ◊

Figure 2-20. Option Settings Dialog (Link Editor)

(1) Options

Entry Symbol [-e] Use this text box to specify a symbol to be set as

the entry point address. If the specified symbol

is not found, the link editor outputs a message

and stops linking.

This area uses the “drop-down list” type of display

to list all symbol names that have been specified

once (up to 10 symbol names). Either click on

the desired symbol name or use the arrow keys

to select it.

If this option is not specified, the entry point address

value is determined by the following rules.

• Value of symbol _start if the symbol exists.

• The first address of the text-attribute section

allocated to the lowest part in the object file created

if symbol _start does not exist.

• 0 if the text-attribute section does not exist.

72

Filling Number of Hole [-f] Specifies the filling value of a hole to be created

as a 4-digit hexadecimal number (2 bytes).

Specification by this option takes precedence over

the filling value specified by the link directive file

(refer to page 254).

Specify a filling value according to the following

rules.

• If the value is of less than 4 digits, prefix as

many 0 as required.

• If the size of the hole is less than 2 bytes, take

out the necessary number of the low-order digits

from the specified filling value.

• If the filling value is omitted, the default value

is 0x0000.

Output Link Map [-m] Outputs a link map (refer to page 318) that shows

the allocation of memory space in the input and

output sections.

Strip Debug Information [-s] Creates an object file without the debug information,

line number information, and global pointer table.

This option can be specified only in the non-debug

mode. If Debug is selected from the

Option menu, this option appears dimmed

and cannot be specified.

Verbose Mode [-v] Displays the execution status of link editor.

Suppress Warning [-w] Suppresses output of warnings. Only messages

concerning fatal errors will be output.

Ignore Relocation Error [-E] Ignores errors relating to relocation. When the

value resulting from an address calculation for an

undetermined external reference is judged as invalid,

that value is not entered (i.e. is ignored) and the

previous value is left in place.

• The value of the result of address calculation

which has been judged invalid is not entered

for unresolved external reference that is judged

as an error, and the original value remains.

• If this option is omitted, linking is stopped.

Check All Multi-Defined Symbol Outputs a message describing all external symbols

[-M] that have duplicate definitions and stops linkage.

If this option is not specified, a message describing

only the first external symbol with a duplicate

definition that is encountered is output and linkage

is stopped.

73

Ignore Undefined External Ignores checking the size and sequence

requirements for linkage of undefined external

symbols. If this option is omitted, the symbol size

and alignment condition are checked. If a difference

is found, a warning message is output and linking

continues.

The link editor supports multiple definition of undefined external symbols. The defined

multiple external symbols are allocated to the .sbss or .bss section after they have been

linked. If the symbol size or alignment condition of the symbols to be linked differ, the

maximum size of the symbols to be linked is used as the size and the least common multiple

of the alignment condition is used as the alignment condition.

Ignore External Symbol Error [-T] This suppresses checking size when linking

undefined external symbols. If this option is omitted,

the size is checked. If a difference in size is detected,

a warning message is output and linking continues.

At this time, the symbol size of a file for which a

symbol is actually defined is valid.

Check Function Call Style [-fc] Checks whether the calling specifications27 of the

old version and the calling specifications of the

new version do not exist in mix in all input object

files. If this option is not specified, only the object

file created from the C source file is checked.

(2) Buttons

OK Enables the specified items and closes the dialog.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

CAUTIONS

Symbol Error [-t]

27 Refer to V800 Series C Compiler Package User’s Manual - C Language .

74

◊ Setting other options ◊

Figure 2-21. Other Option Settings Dialog (Link Editor)

(1) Options

Any Option This is not supported at present.

Use Temporary Command File In the Windows environment, the length of character

strings used to specify options for command is

restricted (to 126 characters). If this check box is

selected, the option character string is temporarily

output to a command file (refer to page 161), which

enables the operation to be completed without

observing the restriction on the character string

length.

This option is checked as default assumption.

Command Line Options Displays link editor options (excluding library-related

options) set in each dialog with the command line

options. This area is for reference, and writing is

disabled.

Library Options Displays library-related options set in the file option

dialog with the command line options. This area

is for reference, and writing is disabled.

75

(2) Buttons

OK Enables the specified items and closes the dialog.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

76

2.5.4 Setting ROM-storing processor options

The ROM-storing processor option setting dialog box can be displayed by performing the following operation

after a project has been set with the Project Manager.

• Click the Option menu

→ Click ROM Processor Options...

Since the ROM-storing processor needs to be activated only once per project, there are no file-specific settings.

The name of executable object file that can be output by the ROM-storing processor is the first filename

(minus the extension) shown in the <<Source List>> dialog, to which the extension “.OUT” is added, and is the

same object file name output by the link editor. The ROM-storing processor is started up by the Project Manager

only when <<Create Object for ROM>> has been specified as a C compiler option. At that time, the object file

output by the link editor is a temporary file which is deleted when the ROM-storing processor is terminated.

The output object file name cannot be specified (there is no specification method that corresponds to the “-

o” specification to activate from the VSH command line).

Two option buttons are displayed at the upper part of the ROM-storing processor option setting dialog. By

selecting an option button, the display of dialog is changed.

(1) Option buttons for displaying option setting dialogs

1 Option Opens the dialog box that is used to set the ordinary

options of the ROM-storing processor (refer to page

77).

0 Other Opens the dialog box that is used to set the other

parameters (refer to page 79).

77

◊ Setting options ◊

Figure 2-22. Option Settings Dialog (ROM-Storing Processor)

(1) Options

Packing Section [-p] The contents of the specified section and the

corresponding address and size data are entered

in the rompsec section. If the specified section

does not exist in the object file, a message is output

and processing is stopped. If this option is omitted,

it is assumed that all sections that contain a data

attribute or sdata attribute have been specified.

In addition, for the CA830, the text-attribute section

for the interrupt allocated to on-chip instruction

RAM and the .itext section is also assumed as

being specified.

When several sections have been specified, use

a semicolon (;) to separate the specified sections.

The specified sections are entered to the rompsec

section in the order they were specified.

This area uses the “drop-down list” type of display

to list all sections that have been specified once

(up to 10 sections). Either click on the desired

section or use the arrow keys to select it.

Entry Label [-b] The specified label value is used as the first address

of the created rompsec section. If the specified

label does not exist in an object file, a message

is output and processing is stopped.

If this option is omitted, it is assumed that __S_romp

has been specified.

This area uses the “drop-down list” type of display

to list all labels that have been specified once (up

to 10 labels). Either click on the desired label or

use the arrow keys to select it.

78

Delete ‘text’ Attribute Section [-d] This creates an object file that contains only a

rompsec section, without entering a section that

contains a text attribute in the created file.

If this option is omitted, a section that contains a

text attribute is entered.

Ignore Address Repetition [-i] A duplication check is not performed between the

addresses of input files and output files.

Output Memory Map [-m] A memory map of the created object file is output

to standard output.

(2) Buttons

OK Enables the specified items and closes the dialog.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

79

◊ Setting other options ◊

Figure 2-23. Other Option Settings Dialog (ROM-Storing Processor)

(1) Options

Any Option This is not supported at present.

Use Temporary Command File In the Windows environment, the length of character

strings used to specify options for command is

restricted (to 126 characters). If this check box is

selected, the option character string is temporarily

output to a command file (refer to page 161), which

enables the operation to be completed without

observing the restriction on the character string

length.

This option is checked as default assumption.

Command Line Options Displays ROM-storing processor options set in each

dialog with the command line options. This area

is for reference, and writing is disabled.

(2) Buttons

OK Enables the specified items and closes the dialog.

Cancel Ignores the specified items and closes the dialog.

Help Opens the Help window.

80

2.6 Creating and Building Make Files

The Project Manager can be used to create make files that incorporate the options specified in each dialog

of the C compiler, assembler, link editor, or ROM-storing processor by a menu.

When build of the application load module is specified, the building starts after creating the make file automatically.

For details of the menu items or the build function, refer to Project Manager User’s Manual .

2.6.1 Using menu to create make files

The following operation will create a make file from a menu of the Project Manager.

• Click the Project menu

→ Click Make a Make File Ctrl+M

If the information required for creating a make file has not been set, the menu item

appears dimmed and cannot be selected.

When Make a Make File Ctrl+M has been selected, a make file is generated based on the option information

set via the CA command’s option dialog.

While the make file is being generated, the message “Generating make file” is displayed in the status bar, and

once the make file has been generated, the status bar message changes to “Make file generation completed.”

The filename of the generated make file is “projectname + .MAK”. In addition to the make file, another file

named “projectname + .SDB” is simultaneously generated for managing information related to the source file.

Make a Make File Ctrl+M

81

2.6.2 Auto generation of make file via build function

Make files can be automatically generated by executing “build” from the Project Manager. There are three

types of “build” specifications: “build”, “rebuild”, and “build specified target”.

(1) Build

Build can be selected via either of the following operations.

• Click the Run menu

→ Click Build Ctrl+B

• Click the button

When this build function is selected, a make file is generated in the same way as when

 is selected. Depending on the make file generated by the build function,

C compiler, assembler, link editor, or ROM-storing processor is executed and an executable object file is

created as the make target.

A window <<PRJTMAKE>> displaying the build execution conditions and status is opened, and this is

where any error messages output by the CA command are displayed. The contents shown in this window

are output to a file in the project directory called “(projectname).PLG.”

To abort build, click the “!” mark button in the execution display window <<PRJTMAKE>>, or click the

 Run menu and Stop Build in the Project Manager.

Make a Make File Ctrl+M

82

(2) Rebuild

The rebuild function can be selected via the following operation.

• Click the Run menu

→ Click Rebuild

When the rebuild function is selected, a make file is generated and all objects that are make targets are

newly generated. This function is the same as the build function except that make files are generated

unconditionally, i.e., regardless of whether or not the source files and option settings have been changed.

83

(3) Build specified target

This function can be selected via the following operation.

• Click the Run menu

→ Click Build Target...

→ Click target for build using the displayed dialog.

→ Click Build

When “build specified target” has been selected, a make file is generated and only the make target that

has been specified (among the several make targets) is newly generated. This function is the same as

the build function except that only the specified target is generated unconditionally.

84

CHAPTER 3 USE OF COMMAND SHELL

This chapter describes how to operate the VSH command shell and activate the VSH internal command and

CA command.

3.1 What is VSH?

VSH is a utility that is provided for activating the CA commands, which are applications, by the command line

interface on Windows.

Activate VSH on the Windows to open the VSH window, and the CA commands, internal commands of VSH,

and execution commands of Windows can be used on the command line.

3.2 Activation of VSH

To activate VSH, click the VSH icon twice that was registered when this compiler package was installed.

Figure 3-1. VSH Window

It is not possible to activate more than one VSH shell at the same time.

85

3.3 Function of VSH

VSH includes the following features.

• Enables command line editing

• Enables displays that can be scrolled vertically and horizontally

• Includes a history function to recall previous input

• Includes an alias function to assign aliases for command names

• Supports 31 types of internal commands (refer to page 102)

• Supports commands from MS-DOS applications that include Windows-type executable files and PIF (program

information files) as external commands

Note that although VSH is a shell like a command.com of MS-DOS, it is a Windows-based utility, which means

that MS-DOS commands cannot be activated directly from the VSH shell.

86

3.3.1 Command line editing function

When the VSH window is displayed, internal commands, execution commands of Windows, and CA commands

can be input via the command line interface at the blinking cursor position.

From the VSH window, ordinary character keys and several edit keys can be used for command line editing.

Table 3-1 lists the edit keys.

• Command line editing’s scope is limited to the client area. Therefore, it is not possible

to edit beyond the client area.

• If the window is resized during an editing operation, the editing operation will be cancelled.

Table 3-1. Edit Key Lists

Keys Function

← , CTRL + B Moves character cursor one character forward.

→ , CTRL + F Moves character cursor one character backward.

BS , CTRL + H Deletes the character before the character cursor position.

DEL , CTRL + D Deletes the character at the character cursor position.

CTRL + K Deletes all characters from the character cursor position to the end of the current line.

INS Toggles between insert and overwrite modes. When in insert mode, the character cursor is the

same size as the characters and when in overwrite mode the character cursor is an underscore

mark.

When the VSH is activated, insert mode is set.

HOME , CTRL + A Moves the character cursor to the start of the current line.

HELP , CTRL + E Moves the character cursor to the end of the current line.

CAUTIONS

87

3.3.2 Scroll functions

(1) Vertical scroll

When the display of the entered command line or command output cannot fit in the client area, a vertical

scroll bar appears in the VSH window so that the display can be scrolled back to view previous output.

When scrolling back, the character cursor is temporarily deleted. Pressing a character key or edit key

returns the display to the original position to enable ordinary input and editing operations.

The vertical scroll bar can also be operated from the keyboard.

Table 3-2 lists the scroll keys.

Table 3-2. Keys for Operating Vertical Scroll Bar

Keys Function

↓ Scrolls one line downward

↑ Scrolls one line upward

ROLL DOWN Scrolls one page downward

ROLL UP Scrolls one page upward

CTRL + HOME Scrolls to top of scroll area

CTRL + HELP Scrolls to bottom of scroll area

(2) Horizontal scroll

When the entire width of the contents cannot be displayed in the window, such as when the window is

resized to a narrower width, a horizontal scroll bar appears in the VSH window to enable the hidden

contents to be viewed.

When scrolling backward, the character cursor is temporarily deleted. Pressing a character key or edit

key returns the display to the original position to enable ordinary input and editing operations.

The horizontal scroll bar cannot be operated from the keyboard.

88

3.3.3 History function

The history function enables commands previously input from the command line to be recalled and reactivated.

This function can be executed from the keyboard or via a menu.

The following describes the keyboard operation for executing this function. The menu-based operation is

described in page 90.

Table 3-3 lists the keyboard operations.

Table 3-3. Keys for Operating History Function

Keys Function

CTRL + P Displays the history contents.

If the character cursor is at the start of the command line, the immediately previous command

input contents are shown. If the character cursor is not at the start of the command line, the

same command input contents in which the character cursor is at the start of the command line

are selected from among the previous command input contents listed in the history information.

CTRL + N This shows the next command input contents in the history information. This operation can be

used when the user has gone back beyond the desired command input contents in the history

information.

If the character cursor is at the start of the command line, the next command input contents are

displayed. If the character cursor is not at the start of the command line, the same command

input contents in which the character cursor is at the start of the command line are selected

from among the next command input contents listed in the history information.

89

When searching the history information for command input contents in which the character cursor is not at the

start of the command line, when the target history information is found it is displayed with the character cursor

at the end of the command line.

In subsequent searches, if the character cursor position is not moved, the character string range used in the

subsequent search operation will be the same range as was used in the previous search rather than the character

string that goes to the end of the line. If the character cursor position is moved, the range of characters over

which it was moved becomes the character string that is used in the subsequent search.

Figure 3-2. History Search Examples

3.3.4 Alias function

The alias function enables other names (aliases) to be established for commands (including arguments).

Frequently used commands thus can be activated using abbreviated character strings.

Aliases are set up via menus. The setup method is described in page 91.

> ca850 -cpu 3000 main.C ...

 . . .

> ca850 -V

 . . .

> ca850 -cpu 3001 file.C ...

 . . .

> ca850 -cpu

(3) Move the cursor to the position before "3" and
 press Ctrl+P (search using "ca850 -cpu").

(3) Press Ctrl+P without moving the cursor
 (search using "ca850 ").

(2) The cursor is at the end of the line.

(1) Press Ctrl+P when the cursor is at this position
 (search using "ca850").

90

3.3.5 Menus

This section describes the menus supported by the VSH window.

(1) Edit

Edits the line displayed on the VSH command line.

Copy Ctrl+C Copies the selected portion to the clipboard. This

option is valid when any line is selected on the

command line.

Select All Select all the lines displayed on the VSH.

(2) His tory

Opens a dialog box to display the history information.

To select history information...

Double-click a history information (to highlight) or select it to click the OK button.

The dialog box is closed and the selected history item is displayed on the command line.

Click Cancel to close the dialog box without selecting the history item.

Operation

91

(3) Alias

Opens a dialog box to display a list of aliases.

Add... Opens the dialog box for setting up aliases.

Edit... After clicking the item to be changed from among

the items listed, click the Edit... button to open

the dialog box for changing the name.

92

Delete Click this button to delete the highlighted alias.

Close Click this button to confirm the displayed alias and

close the alias dialog.

Help Opens the Help window.

When setting up an alias...

In the dialog box opened via the Add... button, which is in the dialog box that had been

opened via the Alias menu, enter an alias in the text box under <<Name>>

and enter the corresponding command (including arguments) in the text box under <<Definition>>.

Click the OK button to set the alias and close the dialog box.

In the dialog box opened via the Edit... button, enter corresponding command (including

arguments) in the text box under <<Definition>>. Click the OK button to set the alias

and close the dialog box.

Click the Cancel button to close the dialog box without making a selection.

• Alias specifications are case-sensitive.

• To use an existing alias instead of entering a new alias, enter a blank space at the start

of the text box.

CAUTIONS

Operation

93

(4) Set

 Window Size... Opens the dialog box for setting the window size.

To change the VSH window size...

Drag the width/height scroll button to the desired setting. Or, from the keyboard, use arrow

keys to change the setting incrementally. The unit of measurement is the number of characters.

Click the OK button to change the VSH window size and close the dialog box. Click

the Cancel button to close the dialog box without changing the VSH window size.

If the VSH window size has been maximized, its size cannot be changed via this dialog box.

Operation

CAUTIONS

94

 Scroll... Opens the dialog box for setting the number of lines to

scroll backward and for setting the scroll interval.

To set up scrolling...

Drag the scroll button used for the scroll size and interval to the desired setting. Or, from

the keyboard, use arrow keys to change the setting incrementally. The unit of measurement

is the number of lines.

Click the OK button to change the scrollable number of lines and the scroll interval

before closing the dialog box. Click the Cancel button to close the dialog box without

making any changes.

These scroll settings are ignored when copying or moving an internal command or when

executing an external command. In such cases, scrolling is always one line at a time.

Operation

CAUTIONS

95

 Prompt... Opens the dialog box for changing the VSH window’s prompt.

To change the prompt...

Enter a character string from the keyboard to the dialog box’s command line.

Click the OK button to change the prompt and close the dialog box. The new prompt

will be shown starting from the next input line. Click the Cancel button to close the

dialog box without changing the prompt.

In addition to ordinary characters such as alphanumeric characters, the character string

can include special character strings that automatically convert to other meanings.

Special character strings are listed below. The default character string is “NG”.

$$: “$” character

$B : “|” character

$D : Current date (according to computer)

$G : “>” character

$H : Backspace

$L : “<“ character

$N : Current drive

$P : Current directory in current drive

$Q : “=” character

$T : Current time (according to computer)

Operation

96

 History... Opens the dialog box for setting the history memory size

(the maximum number of commands to be shown in the

history information in VSH activated) and the history save

size (the number of histories to be saved to activate VSH

next time) (refer to page 90).

To set the memory size...

Drag the scroll button to the desired setting. Or, from the keyboard, use arrow keys to

change the setting incrementally. The unit of measurement is the number of commands.

Click the OK button to change to the specified memory size and close the dialog

box. Click the Cancel button to close the dialog box without making any changes.

To set the save size...

Drag the scroll button to the desired setting. Or, from the keyboard, use arrow keys to

change the setting incrementally. The unit of measurement is the number of commands.

However, more histories than the number of histories specified by memory size cannot be

saved. Click the OK button to change to the specified save size and close the

dialog box. Click the Cancel button to close the dialog box without making any changes.

To actually save histories, it is necessary to select <<Save Exit Status>> from the Option

menu and then <<Save History>> (refer to page 97).

 Color Sets character color and background color.

If use of the system color is selected, however, the specified

character color and background color are not used, but

the system color of Windows is used. If use of the system

color is selected, "√" mark appears. Use of the system

color is specified in toggle mode (i.e., the system color is

alternately selected and cancelled each time the button is

clicked).

Operation

Operation

97

(5) Option

The option menu executes the commands related to display of VSH. A check mark “√” is shown to the left

of commands displayed in a language other than English, when they are displayed.

These commands are toggled (switched between select/cancel modes).

 Show Current Directory This displays the current directory name in the title bar.

 Save Exit Status Saves settings such as the window size/position settings

when exiting. The same settings will be used the next

time the window is opened.

 Save History Saves the history. When VSH is activated next time, the

current history contents are saved by the number specified

on the setting menu. This can be set only when <<Save

Exit Status>> is set.

98

(6) Help

Uses the help function. For details of using Windows-based help functions, refer to Microsoft Windows

Operating System Function Guide .

 Contents Displays a list of help topics.

 Search for Help on... F1 Opens a dialog box to search for a particular topic.

 How to Use Help Opens descriptions of how to use the help function. Select

this item when first using the on-line help function.

 About vsh... Opens a dialog box displaying the VSH version and copyright

information28.

28 This dialog is just an example; it does not show the actual version number.

99

3.4 Activation of Commands from VSH

This section describes the VSH particular methods for activating various commands from the command line.

In this description, operations are divided into three categories: (1) operations related to internal commands

only, (2) operations related to external commands only, and (3) operations relating to internal commands, external

commands, and CA commands.

See the Windows Manual concerning operations relating to external commands that are not covered in this

chapter. For operations relating to CA commands that are not covered in this chapter, see the various command

descriptions in Volume 3 and subsequent volumes.

3.4.1 Operations related to internal commands only

(1) Delimiters for options and directories

In internal commands, options are preceded by “/”, “-”, or “+”.

Option specifications that begin with “/” are not case-sensitive but those (except ATTRIB) that begin with

“-” or “+” are case-sensitive.

When specifying a command that does not have any option specifications that begin with “/”, “/” can be

used as the delimiter for directories.

(2) Option specification sequence

The sequence in which options for internal commands are specified is not significant unless otherwise

stated in a caution note.

If a function activated by an option specification conflicts with another function, only the most recently

specified option is valid.

(3) Wild cards

“Wild cards” can be used when specifying file names in cases where the internal command can be specified

for several files.

This “wild card” function is the same as that implemented in MS-DOS.

* ... Indicates “any character string”

? ... Indicates “any single character”

100

3.4.2 Operations related to external commands only

(1) Command input method

Executable files that operate under Windows and PIF files (with .pif extension) that operate under MS-

DOS can be specified as external commands.

Specifications are not case-sensitive. Also, “/” can be used as the delimiter for directories.

The input format for external commands is shown below29.

[drive_name:] [path_name] filename [command_parameters]...

3.4.3 Operations related to all commands

(1) Forced termination of command execution

During the execution of a command from VSH, if a mouse pointer is displayed in the VSH window, pressing

the following keys will force termination of the command being executed.

PC-9800 Series : STOP , CTRL + C

IBM PC/AT compatibles : Ctrl + Break , Ctrl + C

For a table of correspondences with keys in other types of computers, see the Windows Manual.

(2) Temporary pause of command output

During the execution of a command from VSH, if a mouse pointer is displayed in the VSH window, pressing

the following keys will temporarily pause output to the VSH window from the command being executed.

This output can be restarted by pressing the same key again.

PC-9800 Series : CTRL + S

IBM PC/AT compatibles : Ctrl + S

For a table of correspondences with keys in other types of computers, see the Windows Manual.

29 The contents in brackets can be omitted. indicates one or more blank spaces.

101

(3) Command files

Files that are specified directly after parameters that begin with “@” are handled as command files. However,

use of command files is not possible for the ECHO command.

For details of command files, refer to the description on page 161.

(4) Redirect

The following specification methods redirect the contents output by a command to VSH so that those

contents can be handled as a file.

>filename ... The contents output to VSH are output to the file specified by “filename” as

contents beginning at the start of the file.

>>filename ... The contents output to VSH are output to the file specified by “filename” as

contents appended to the end of the file.

Note that input redirect and pipe operations are not supported.

Example:

A> ca830 -cpu 5100 -lm -v file.c > logfile ← ca830’s output contents are output to logfile

Note that, within VSH, there is no distinction in output between standard output and standard error output.

Therefore, when redirecting output contents to a file, the command output may become mixed with messages.

To avoid mixing the command output and messages, such as when using “hx”, specify an output destination

with command option instead of using the redirect operation (refer to page 138).

(5) Windows-based device files

“NUL” is supported as a device file30, which is when a peripheral device is handled as a file. Other device

file names are not supported.

When specifying “NUL”, the command’s output contents are not output to any destination.

30 In this case, device files indicate destinations for input and output under Windows, and thus these device files are different from devices files
that are “machine-dependent data files” read by ca.

102

3.5 VSH Internal Commands

This section describes the functions of VSH internal commands.

Table 3-4 contains a list of internal commands.

Table 3-4. List of VSH Internal Commands

Command Description Page

ATTRIB Change/view file attributes 104

CAT Concatenate files 105

CD Change/display current directory 106

CHDIR Change/display current directory 107

COPY Copy file 108

CP Copy file 109

DATE Display date 110

DEL Delete file 111

DELTREE Delete file/directory 112

DIR Display file list 113

DIRS Display directory stack 115

DUMP File binary dump 116

ECHO Display character string 117

ERASE Delete file 118

EXIT Exit VSH 119

LS Display file list 120

MD Create directory 121

MKDIR Create directory 122

MOVE Move file 123

MV Move file 125

POPD Pop directory stack 126

PUSHD Save/push directory stack 127

PWD Display current directory 128

RD Remove directory 129

REN Rename file 130

RENAME Rename file 131

RENDIR Rename directory 132

RM Remove file 133

RMDIR Remove directory 134

TIME Display time 135

TYPE Display contents of text file 136

103

These commands are described in alphabetical order on the following pages.

Note that internal command names are not case-sensitive.

Each internal command description uses the following format.

COMMAND NAME Description of command COMMAND NAME

COMMAND NAME

Summary

A summary description of each command’s function is given.

Synopsis

Each command’s specification syntax is given.

Options

Options are listed.

Description

A more detailed description of each command function is given.

Examples

An example is given.

The following symbols are used in Synopsis.

[] : Text enclosed in square brackets can be omitted

| : Indicates a delimiter between option arguments

... : Indicates that the previous pattern can be repeated

: Indicates one or more blank spaces

104

ATTRIB

Summary

Change/view file attributes

Synopsis

ATTRIB[option]...[[drive:][path]filename]...

Options

+A Sets archive file attribute to ON.

-A Sets archive file attribute to OFF.

+H Sets hidden file attribute to ON.

-H Sets hidden file attribute to OFF.

+R Sets read-only file attribute to ON.

-R Sets read-only file attribute to OFF.

+S Sets system file attribute to ON.

-S Sets system file attribute to OFF.

/S Applies processing to all files included in all directories in the path.

None Displays file attributes.

Description

Changes or displays the attribute set in the file.

When the filename is omitted, the specified change/view attributes are applied to all files in the current

directory.

The following characters are used when displaying file attributes.

A Archive file

H Hidden file

R Read-only file

S System file

Examples

A> ATTRIB C:\KEY.TBL ← Indicates KEY.TBL attribute of C drive.

A C:\KEY.TBL

A> ATTRIB +R C:\KEY.TBL ← Adds R attribute to KEY.TBL of C drive.

ATTRIB Change/view file attributes ATTRIB

105

CAT

Summary

Concatenate files

Synopsis

CAT[option]... [drive:][path]filename...

Options

-b Assigns line numbers to all lines except blank lines.

-e Assigns “$” to the end of each line as an addition to the -v option.

-n Assigns line numbers to all lines.

-s Outputs several continuous blank lines as a single blank line.

-t Outputs “^I” for each tab character as an addition to the -v option.

-v Outputs all non-printing characters except tab characters and line feed characters as identifiable

characters.

Description

This command concatenates (links) files for output.

Examples

A> CAT -n A.C B.C > C.C ← Links A.C and B.C, assigns line numbers, and outputs both

as C.C.

CAT Concatenate files CAT

106

CD

Summary

Change/display current directory

Syntax

(1) CD [drive:]path

(2) CD

Description

When using (1) in Synopsis, this command changes the current directory to the directory in the specified

path.

When using (2) in Synopsis, this command displays the absolute path in the current directory.

The Synopsis (1) and (2) are the same as those in the CHDIR command.

The Synopsis (2) is the same as the one in the PWD command.

Examples

A> CD B: ← Changes the current directory to the root directory in the

drive B.

A> CD B:\WORK ← Changes the current directory to the \WORK directory in

the drive B.

B> CD ← Displays the current directory.

B:\WORK

CD Change/display current directory CD

107

CHDIR

Summary

Change/display current directory

Synopsis

(1) CHDIR [drive:]path

(2) CHDIR

Description

When using (1) in Synopsis, this command changes the current directory to the directory in the specified

path.

When using (2) in Synopsis, this command displays the absolute path in the current directory.

The Synopsis (1) and (2) are the same as those in the CD command.

The Synopsis (2) is the same as the one in the PWD command.

Examples

A> CHDIR B: ← Changes the current directory to the root directory in the

drive B.

A> CHDIR B:\WORK ← Changes the current directory to the \WORK directory in

the drive B.

B> CHDIR ← Displays the current directory.

B:\WORK

CHDIR Change/display current directory CHDIR

108

COPY

Summary

Copy file

Synopsis

(1) COPY[option] [drive:][path]filename1 [drive:][path]filename2

(2) COPY[option] [drive:]path1 [drive:]path2

(3) COPY[option] [drive:][path]filename... [drive:]path

Options

/Y Replaces existing file(s) without prompting for confirmation.

/-Y Opens a dialog box to prompt for confirmation before replacing existing file(s) (default setting).

Description

When using (1) in Synopsis, this command copies filename1 to filename2.

When using (2) in Synopsis, this command copies all files in the directory specified by path1 to the directory

specified by path2.

When using (3) in Synopsis, this command copies the specified file(s) to the directory specified by “path”.

Examples

A> COPY FILE.C B:\WORK ← Copies FILE.C in the current directory to the \WORK directory

in the drive B.

COPY Copy file COPY

109

CP

Summary

Copy file

Synopsis

(1) CP[option]... [drive:][path]filename1 [drive:][path]filename2

(2) CP[option]... [drive:]path1 [drive:]path2

(3) CP[option]... [drive:][path]filename... [drive:]path

Options

-R Same as the -r option

-i Opens a dialog box to prompt for confirmation before replacing existing file(s).

-p Suppresses updating the “last revised” time for the copied file.

-r Recursively copies the contents of the source subdirectory. Valid only for the Synopsis (2).

Description

When using (1) in Synopsis, this command copies filename1 to filename2.

When using (2) in Synopsis, this command copies all files in the directory specified by path1 to the directory

specified by path2. If the -r option (or -R option) has been specified, the contents of all subdirectories in the

directory specified by path1 are recursively copied to the directory specified by path2.

When using (3) in Synopsis, this command copies the specified file(s) to the directory specified by “path”.

Examples

A> CP \WORK B:\WORK2 ← Copies all files in the \WORK directory to the \WORK2 directory

in the drive B.

A> CP -p \WORK\FILE1.C \WORK2 ← Copies FILE1.C in the \WORK directory to the \WORK2

directory in the drive A. The last revised time is not updated.

CP Copy file CP

110

DATE

Summary

Display date

Synopsis

DATE

Description

Displays the current date.

Examples

A> DATE ← Displays the current date.

Current date is Wed 05-24-1995.

DATE Display date DATE

111

DEL

Summary

Delete file

Synopsis

DEL[option] [drive:][path]filename...

Options

/Y Deletes without opening a dialog box to prompt for confirmation.

/-Y Opens a dialog box to prompt for confirmation before deleting (default).

Description

This command deletes the specified file(s).

The DEL command contains the same function as the ERASE command does.

Examples

A> DEL \WORK\FILE.C ← Deletes FILE.C in the \WORK directory.

A> DEL /Y B:\WORK\FILE.C ← Deletes FILE.C in the \WORK directory of the drive B. A

dialog box does not open to prompt for confirmation before

deleting.

DEL Delete file DEL

112

DELTREE

Summary

Delete file/directory

Synopsis

(1) DELTREE[option] [drive:]path

(2) DELTREE[option] [drive:][path]filename...

Options

/Y Deletes without opening a dialog box to prompt for confirmation.

/-Y Opens a dialog box to prompt for confirmation before deleting (default).

Description

When using (1) in Synopsis, this command deletes the directory specified by “path”. All files in the specified

directory and its subdirectories will be deleted.

When using (2) in Synopsis, this command deletes the specified file.

Examples

A> DELTREE \WORK ← Deletes all files under the \WORK directory.

A> DELTREE \WORK\FILE.C ← Deletes FILE.C file in the \WORK directory.

DELTREE Delete file/directory DELTREE

113

DIR

Summary

Display file list

Synopsis

(1) DIR[option]...[[drive:]path]

(2) DIR[option]...[[drive:][path]filename...]

Options

/A: (attribute) Displays only the filename(s) or directory name(s) with the specified attribute.

The specifiable attributes are listed below. Several can be specified at the same

time.

A File for which the archive file attribute is set.

-A File for which the archive file attribute is not set.

D Subdirectory(ies).

-D File(s).

H File for which the hidden file attribute is set.

-H File for which the hidden file attribute is not set.

R File for which the read-only file attribute is set.

-R File for which the read-only file attribute is not set.

S File for which the system file attribute is set.

-S File for which the system file attribute is not set.

/B Displays only filename(s) or directory name(s).

/L Displays using lowercase letters.

/O: (Classification Specifies the sequence in which the filenames and directory names are classified

sequence) when displayed. The specifiable classification sequences are listed below. Several

classification sequences can be specified at the same time.

D Sequence of date and time, with earliest first.

-D Sequence of date and time, with latest first.

E Alphabetic order by extension.

-E Reverse alphabetic order by extension.

G Group directories before files.

-G Group files before directories.

N Alphabetic order by filename or directory name.

-N Reverse alphabetic order by filename or directory name.

S Size, with smallest first.

-S Size, with largest first.

/S Displays directory and all files in subdirectory.

/W Displays several filenames or directory names in one line.

DIR Display file list DIR

114

DIR Display file list DIR

Description

When using (1) in Synopsis, this command displays a list of the directories specified by “path”. If the path

specification is omitted, it displays a list of all files and directories in the current directory.

When using (2) in Synopsis, this command displays a list of specified filenames. If the filename specification

is omitted, it displays a list of all files and directories in the current directory.

If no options are specified for the Synopsis (1) and (2), this command displays the name, size, and last

revised date and time for one file or directory per line.

Examples

A> DIR /A:R /O:N ← Displays a alphabetical list of read-only files in the current

Directory is A:\ directory.

DBLSPACE BIN 65270 95-01-12 06:20

IO SYS 65536 95-01-12 06:20

MSDOS SYS 39664 95-01-12 06:20

115

DIRS

Summary

Display directory stack

Synopsis

DIRS

Description

This command displays the contents of the directory stack31.

Examples

A> DIRS ← Displays the directory stack.

a:/windows c:/work/tmp

DIRS Display directory stack DIRS

31 The output is displayed in lowercases.

116

DUMP

Summary

File binary dump

Synopsis

DUMP[option] [drive:][path]filename[startaddress[endaddress]]

Options

/D Regards the address specification as a decimal number.

If omitted, the address specification is regarded as a hexadecimal number.

Description

This command displays file contents using numbers and ASCII characters.

When addresses are specified, the contents within the specified address range are displayed. If a start

address is specified, an end address specification cannot be omitted.

Examples

A> DUMP A.OUT ← Displays the complete contents of the A.OUT file in the

00000000 7F 45 4C 46 01 01 ... current directory.

A> DUMP /D MAIN.o 80 ← Displays (using decimal numbers) the contents from address

00000050 00 30 06 50 23 FF ... 80 to the end of the MAIN.O file in the current directory.

DUMP File binary dump DUMP

117

ECHO

Summary

Display character string

Synopsis

ECHO character string...

Description

This command displays the specified character string.

Examples

A> ECHO ABCde ← Displays “ABCde”.

ABCde

ECHO Display character string ECHO

118

ERASE

Summary

Delete file

Synopsis

ERASE[option] [drive:][path]filename...

Options

/Y Deletes without opening a dialog box to prompt for confirmation.

/-Y Opens a dialog box to prompt for confirmation before deleting (default).

Description

This command deletes the specified file(s).

The ERASE command contains the same function as the DEL command does.

Examples

A> ERASE B:\WORK\FILE.C ← Deletes FILE.C in the \WORK directory of the drive B.

A> ERASE /Y \WORK\FILE.C ← Deletes FILE.C in the \WORK directory of the drive A. A

dialog box does not open to prompt for confirmation before

deleting.

ERASE Delete file ERASE

119

EXIT

Summary

Exit VSH

Synopsis

EXIT

Description

This command exits the VSH shell to close the VSH window.

It closes the VSH window.

Examples

A> EXIT ← Exits VSH.

EXIT Exit VSH EXIT

120

LS

Summary

Display file list

Synopsis

(1) LS[option]...[[drive:]path]

(2) LS[option]...[[drive:][path]filename]...

Options

-A Also displays file for which the hidden file attribute is set.

-F Adds a “/” after each directory name and a “*” after each executable filename in the output list.

-R Recursively displays the contents of the subdirectory.

-a Also displays the contents of hidden files and directory names that include “.” or “..”.

-l Displays the name, attribute(s), size, and last revised date and time for one file or directory per

line.

-r Displays filenames in reverse alphabetic order. If the -t option is also specified, -t has priority.

-t Displays filenames with most recently revised files first.

Description

When using (1) in Synopsis, this command displays a list of directories specified by “path”. If “path” is

omitted, it displays a list of all files and directories under the current directory.

When using (2) in Synopsis, this command displays a list of specified filenames. If the filename(s) specification

is omitted, it displays a list of all files and directories under the current directory.

If all options are omitted for the Synopsis (1) and (2), this command displays (on one line) several filenames

or directory names.

Examples

A> LS ← Displays a list of files in the current directory.

a.bat main.c test.sdb test3.prj

a.s main.o test1.mak test3.sdb

...

A> LS -l -r \WORK ← Displays a detailed list of files in the \WORK directory, arranged

in reverse alphabetic order.
- rw - rw - rw - 1 root 12009 Apr 13 09:43 /work/win.ini
- rw - rw - rw - 1 root 1818 Oct 3 13:09 /work/test4.sdb

...

LS Display file list LS

121

MD

Summary

Create directory

Synopsis

MD[drive:]path...

Description

This command creates a directory in the specified path.

The MD command contains the same function as the MKDIR command does.

Examples

A> MD \TMP ← Creates the \TMP directory in the drive A.

A> MD B:\WORK\TMP ← Creates the \WORK\TMP directory in the drive B.

MD Create directory MD

122

MKDIR

Summary

Create directory

Synopsis

MKDIR[drive:]path...

Description

This command creates a directory in the specified path.

The MKDIR command contains the same function as the MD command does.

Examples

A> MKDIR B:\TMP ← Creates the \TMP directory in the drive B.

A> MKDIR \TMP\SRC ← Creates the \TMP\SRC directory in the drive A.

MKDIR Create directory MKDIR

123

MOVE

Summary

Move file

Synopsis

(1) MOVE[option] [drive:][path]filename1 [drive:][path]filename2

(2) MOVE[option] [drive:]path1 [drive:]path2

(3) MOVE[option] [drive:][path]filename... [drive:]path

(4) MOVE[option] [drive:]path1 path2

(5) MOVE[option] [drive:][path]filename1 filename2

Options

/Y Replaces existing file(s) at move destination without prompting for confirmation.

/-Y Opens a message box to prompt for confirmation before replacing existing file(s) at move destination

(default setting).

Description

When using (1) in Synopsis, this command moves the specified filename1 to filename2.

When using (2) in Synopsis, this command moves all of the files in the directory specified by “path1” to the

directory specified by “path2”.

When using (3) in Synopsis, this command moves the file specified by “filename” to the directory specified

by “path”.

When using (4) in Synopsis, this command changes the directory name specified by “path1” to “path2” in the

same drive.

When using (5) in Synopsis, this command changes the file specified by “filename1” to “filename2” in the

same drive and the same path.

When using (5) in Synopsis, this command is the same as the RENAME and REN commands.

MOVE Move file MOVE

124

Examples

A> MOVE FILE1.C \TMP\FILE2.C ← Moves FILE1.C to FILE2.C in the \TMP directory.

A> MOVE B:\WORK \TMP ← Moves all files in the \WORK directory of the drive B to the

\TMP directory of the drive A.

A> MOVE B:\WORK\FILE.C \TMP ← Moves FILE.C in the \WORK directory of the drive B to the

\TMP directory of the drive A.

A> MOVE \WORK \TMP ← Changes the \WORK directory in the drive A to \TMP directory

in the same drive.

A> MOVE \WORK\FILE1.C FILE2.C ← Changes FILE1.C in the \WORK directory of the drive A to

FILE2.C in the same directory.

MOVE Move file MOVE

125

MV

Summary

Move file

Synopsis

(1) MV[option] [drive:][path]filename1 [drive:][path]filename2

(2) MV[option] [drive:]path1 [drive:]path2

(3) MV[option] [drive:][path]filename... [drive:]path

(4) MV[option] [drive:]path1 path2

(5) MV[option] [drive:][path]filename1 filename2

Options

-f Forcibly moves file even when move destination file is a read-only file.

-i Opens a dialog box to prompt for confirmation before replacing existing file(s) at move destination.

Description

When using (1) in Synopsis, this command moves the specified filename1 to filename2.

When using (2) in Synopsis, this command moves all of the files in the directory specified by “path1” to the

directory specified by “path2”.

When using (3) in Synopsis, this command moves the file specified by “filename” to the directory specified

by “path”.

When using (4) in Synopsis, this command changes the directory name specified by “path1” to “path2”.

When using (5) in Synopsis, this command changes the file specified by “filename1” to “filename2”.

Examples

A> MV FILE1.C \TMP\FILE2.C ← Moves FILE1.C to FILE2.C in the \TMP directory.

A> MV B:\WORK \TMP ← Moves all files in the \WORK directory of the drive B to the

\TMP directory in the drive A.

A> MV -f B:\WORK\FILE.C \TMP ← Forcibly moves FILE.C in the \WORK directory of the drive

B to the \TMP directory in the drive A.

A> MV \WORK \TMP ← Changes the \WORK directory in the drive A to \TMP directory

in the same drive.

A> MV -i B:\FILE1.C FILE2.C ← Changes FILE1.C in the root directory of the drive B to

FILE2.C in the same drive and the same directory. If FILE2.C

already exists, it opens a dialog box to prompt for confirmation

before replacing existing file(s).

MV Move file MV

126

POPD

Summary

Pop directory stack

Synopsis

POPD[option]

Options

+n Pops (removes) the contents of the nth stack. Specify a decimal integer value of 1 or greater

as n.

If this option is omitted, the contents of the first stack are popped.

Description

This command pops the contents of a directory stack and changes the current directory to the path of the first

stack following the one that was popped. It also displays the contents of the current directory and stack32.

Examples

A> POPD ← Pops the contents of the first directory stack.

a:/tmp a:/work a:/nectools Changes the current directory.

A> POPD +2 ← Pops the contents of the second directory stack.

a:/tmp a:/work Changes the current directory.

POPD Pop directory stack POPD

32 The output is displayed in lowercases.

127

PUSHD

Summary

Save and push directory stack

Synopsis

(1) PUSHD[[drive:]path]

(2) PUSHD[option]

Options

+n Pushes (enters) the contents of the nth stack to the start of the stack. Specify a decimal integer

value of 1 or greater as n.

Description

When using (1) in Synopsis, this command pushes the specified path to the start of the directory stack and

changes the current directory to the directory specified by “path”.

When using (2) in Synopsis, this command replaces the stack contents and changes the current directory to

the path of the new start of the stack.

If both “path” and “option” are omitted, the current directory contents are pushed onto the start of the stack

and the current directory is changed. In either case, this command displays the current directory and stack

contents33.

Examples

A> PUSHD +2 ← Changes the current directory to the contents of the second

c:/work a:/tmp a:/windows directory stack.

A> PUSHD a:\WORK ← Changes the current directory to the \WORK directory in

a:/work c:/work a:/tmp a:/windows the drive A.

PUSHD Save and push directory stack PUSHD

33 The output is displayed in lowercases.

128

PWD

Summary

Display current directory

Synopsis

PWD

Description

This command displays the current directory’s absolute path.

This command is the same as Synopsis (2) of the CD and CHDIR commands34.

Examples

A> PWD ← Displays the absolute path in the current directory.

a:/windows

PWD Display current directory PWD

34 Note that the output in the PWD command is displayed in lowercases.

129

RD

Summary

Remove directory

Synopsis

RD [drive:]path...

Description

This command removes the directory specified by “path”.

However, the directory to be removed must be empty. The directory where the system file or hidden attribute

file exists cannot be removed. The current directory cannot be removed, either.

This command contains the same function as the RMDIR command does.

Examples

A> RD \TMP ← Removes the empty \TMP directory in the drive A.

A> RD B:\TMP ← Removes the empty \TMP directory in the drive B.

RD Remove directory RD

130

REN

Summary

Rename file

Synopsis

REN [drive:][path]filename1 filename2

Description

This command changes the specified “filename1” to “filename2”.

This command contains the same function as the RENAME command and Synopsis (5) of the MOVE command.

Examples

A> REN OLD.C NEW.C ← Renames the filename OLD.C as the filename NEW.C.

A> REN B:\WORK\OLD.C NEW.C ← Renames the filename OLD.C in the \WORK directory of

the drive B as the filename NEW.C in the same location.

REN Rename file REN

131

RENAME

Summary

Rename file

Synopsis

RENAME [drive:][path]filename1 filename2

Description

This command changes the specified “filename1” to “filename2”.

This command is the same as the REN command and the Synopsis (5) of the MOVE command.

Examples

A> RENAME OLD.C NEW.C ← Renames the filename OLD.C as the filename NEW.C.

A> RENAME B:\WORK\OLD.C NEW.C ← Renames the filename OLD.C in the \WORK directory of

the drive B as the filename NEW.C in the same location.

RENAME Rename file RENAME

132

RENDIR

Summary

Rename directory

Synopsis

RENDIR [drive:]path1 path2

Description

This command changes the specified “path1” to “path2”.

Examples

A> RENDIR DIR DIR2 ← Renames the directory name DIR as DIR2.

A> RENDIR C:\DIR DIR2 ← Renames the directory name DIR in drive C as DIR2. The

drive is not changed.

RENDIR Rename directory RENDIR

133

RM

Summary

Delete file

Synopsis

(1) RM[option] [drive:][path]filename...

(2) RM -r[option] [drive]path

Options

-f Forcibly removes read-only files. No error message is output if the specified file does not exist.

-i Opens a dialog box to prompt for confirmation of removal.

-r Recursively removes subdirectory contents.

Description

When using (1) in Synopsis, this command removes the file specified by “filename”.

When using (2) in Synopsis, this command removes the entire contents of the directory specified by “path”.

To do this, the -r option must be specified.

Examples

A> RM -f TMP\FILE.C ← Forcibly removes FILE.C from the TMP directory.

A> RM -r B:\TMP ← Removes the entire contents of the \TMP directory in the

drive B including any subdirectories.

RM Remove file RM

134

RMDIR

Summary

Remove directory

Synopsis

RMDIR [drive:]path...

Description

This command removes the directory specified by “path”.

However, the directory to be removed must be empty. The directory where the system file or hidden attribute

file exists cannot be removed. The current directory cannot be removed, either.

This command contains the same function as the RD command does.

Examples

A> RMDIR \TMP ← Removes empty \TMP directory in drive A.

A> RMDIR B:\TMP ← Removes empty \TMP directory in drive B.

RMDIR Remove directory RMDIR

135

TIME

Summary

Display time

Synopsis

TIME

Description

This command displays the current time.

Examples

A> TIME ← Displays the current time.

Current time is 17:05:09.00

TIME Display time TIME

136

TYPE

Summary

Display contents of text file

Synopsis

TYPE [drive:][path]filename

Description

This command displays the contents of the specified text file.

Examples

A> TYPE FILE.C ← Outputs the contents of FILE.C.

A> TYPE B:\WORK\FILE.C ← Outputs the contents of FILE.C in the \WORK directory of

the drive B.

TYPE Display contents of text file TYPE

137

3.6 Activation of CA Commands

This section describes how to activate the commands included in this compiler package (i.e., CA commands)

from the VSH shell.

3.6.1 Activation from command line

CA commands can be activated using the command line in the VSH window.

Figure 3-3. Example of CA Command Activation from VSH

For details of CA command options, etc., refer to the command-specific descriptions in Volume 3 and later

volumes.

138

3.6.2 Output file specification in VSH

When a command output to the VSH is redirected (refer to page 101) to a file, a command message is also

output to the standard output35. The commands that the result is output to the standard output by default contain

the result and message together.

Therefore, when executing file output to reference or use command output results to VSH, the following should

be done with regard to ca preprocessing and hx output.

• Specify -P when outputting results of ca preprocessing only to a file.

Example

ca830 -P file.c ← Outputs results of preprocessing only to file.i.

• Specify -o when outputting hx results to a file.

Example

hx830 -o file.hx a.out ← Outputs hx results to file.hx.

35 Unlike in UNIX-based systems, there is no standard error output.

139

CHAPTER 4 USE OF MAKE UTILITY

This chapter describes how to use VMAKE and how to enter make file descriptions.

4.1 What is VMAKE?

VMAKE is a utility that operates in the VSH shell and is used for managing, updating, and regenerating application

programs. This utility references make-related script files (called “make files”) and automatically activates programs

such as the C compiler (ca), assembler (as), link editor (ld), or ROM-storing processor (romp) according to the

rules specified in the make files.

Figure 4-1. Position of VMAKE

4.2 Features of VMAKE

VMAKE includes the following features.

• Includes a command interpreter to enable direct execution of CA commands and internal commands.

• Supports description and macros for basic dependencies.

ca
as
ld

romp
.
.
.

Command shell
VSH

Make file

… ……
… ……
… ……

CA commands

Internal commands

Make utility

VMAKE

140

4.3 Operation

This section describes how to use VMAKE.

VMAKE is activated from the VSH window’s command line.

4.3.1 VMAKE input syntax

VMAKE[option]...[target]...[macro]...

[] : Text enclosed in square brackets can be omitted

... : Indicates that the previous pattern can be repeated

: Indicates one or more blank spaces

In the above synopsis, “target” specifies the name of the object file or source file to be generated by the

command that is activated from VMAKE. This name is specified in a make file.

Examples

A> vmake -f make.org userlm ← References the make.org file and generates the target

userlm .

A> vmake userlm ← References the makefile file and generates the target

userlm .

141

4.3.2 List of options

The types of options and their functions are listed below.

Option Specification Function

-V -V This displays the VMAKE version. It is not executed.

-d -d This displays the reason for generating a target.

-f -f file This specifies the file “file” as a make file. If this option is omitted, the specification “makefile”

is assumed.

-i -i This generates a target without referring to the activated command’s termination status.

If this option is omitted, it refers to the termination status.

-n -n This displays the command for generating the target. It is not executed.

-p -p This displays all macro definitions and command descriptions. It is not executed.

If this option is omitted, execution is performed without displaying macro definitions and

command descriptions.

-q -q This returns a “0” if the target has been revised and returns a “1” if it has not been revised.

It is not executed.

-s -s This performs execution without displaying the command.

Specify the name of the target to be generated as “target”. If this specification is omitted, the first target

written in the make file is generated.

For “macro”, enter the macro to be defined, using the syntax “macro=macrocharacterstring”.

However, when defining a macro from the command line, blank characters cannot be included in macro character

strings (for example, “CA=ca830 -g” is invalid). Use a make file to make such definitions (refer to page 144).

142

4.4 Make Files

This section describes the rules for describing make files that are used by VMAKE.

Note that VMAKE is not able to use make files that were generated via the Project Manager.

4.4.1 Comments

The “#” symbol is used to indicate comments.

Lines that begin with “#” are regarded as comments, which are ignored during execution. When a “#” appears

anywhere in a line, the rest of the line is regarded as a comment.

4.4.2 Continuation of lines

“\(¥)” is used to indicate continuation of a line.

If a “\(¥)” appears at the end of a line (other than a comment line), the line is regarded as being continued onto

the next line. In such cases, any blank spaces before the “\(¥)” in the first continuation line, the “\(¥)” itself, and

any blank spaces in the next line are converted to a single blank space.

4.4.3 Description of targets

The dependency among targets to be generated is described in the following syntax.

target[target]...[]: dependent_filename [dependent_filename]...

The command line described in page 144 is entered after the above line.

For “dependent_filename”, specify the filename needed to generate the desired target.

When specifying several targets, it is assumed that all of the described targets will be generated from the

same file.

Example

object : main.o func.o usrlib.a

(Command line in page 144)

143

Note the following caution points.

• Do not enter a tab character at the start of the above line.

• It is not possible to use different rules when making several specifications of the same target.

• It is not possible to recursively describe a target and a dependent file.

[Special-function targets]

Unlike ordinary targets, the following targets can be used to provide special functions.

• .IGNORE:

The target is generated without regard to the activated command’s termination status. This is the same as

the -i option.

Example>

.IGNORE :

a.o : a.c

ca850 -cpu 3000 -0 -c a.c

• .SILENT:

Execution is performed without displaying the command.

This is the same as the -s option.

Example>

.SILENT :

a.o : a.c

ca850 -cpu 3000 -0 -c a.c

As shown in the above examples, command lines cannot be described for the .IGNORE and .SILENT targets.

144

4.4.4 Command lines

The activation commands that are used to generate targets are described via the following syntax.

Be sure to begin each command line with a tab character.

tab_character[][-|@|-@|@-]command[option]...

- ... Ignores command termination status.

@ ... Command is not displayed unless the -n option in VMAKE has been specified.

Example

(Target description)

ca850 -cpu 3000 main.c -0s -Wl, -D, ldir

4.4.5 Macros

Macros can be defined and referenced in make files.

(1) Macro definitions

Macro definitions are described via the following synopsis.

macro_name[]=[]macro_character_string

The following can be specified as “macroname” (all are half-size characters).

• English alphabet

• Numerals

• Periods

• Underscore

The blank spaces before and after the equal sign (=) between “macro_name” and “macro_character_string”

are removed during make execution.

Example

CA = ca850 -cpu 3000 -g -0 -v -c

Note the following caution points.

• Do not enter a tab character at the start of the above line.

• It is not possible to recursively describe a target and a dependent file.

145

(2) Macro references

Macro references can be described using any of the following synopsis.

(a) $macro_name

(b) $(macro_name)

(c) ${macro_name}

Example

$(CA) main.c

The operation is the same for all synopsis.

However, the synopsis (a) can only be specified when “macro_name” has only one character.

(3) Internal macros

VMAKE includes the following two internal macros to facilitate description of rules for generating targets.

Note that internal macros are valid only in command lines.

(a) $@

Indicates the complete target name of the target being revised.

Example

object : file.c

$(CA) file.c -o $@ ← “$@” indicates object

(b) $?

Indicates a list of files requiring revision among the dependent files of the target being revised.

In other words, this basically lists the files that must be regenerated to enable revision of the target.

Example

lib.a : file1.o file2.o file3.o

ar850 rv $@ $? ← The “$?” indicates a file list updated following lib.a

in file1.o through file3.o during make execution.

146

[MEMO]

147

VOLUME 3

HANDLING C COMPILER

148

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, and output messages of the C compiler (ca) included in this

compiler package.

1.1 Flow of Operation

The ca creates relocatable object files and object files executable on the target system from C source programs

described in C source files. The ca plays a role of the driver of the modules included in the package and performs

operations such as macro expansion, comment processing, merging intermediate-language files, optimization,

creation and conversion of assembly-language source programs into machine language instructions, and linking

object files. The ca performs processing in the following sequence1 (refer to Figure 1-1).

(1) The front end (cafe) performs macro expansion and comment processing of a C source program, and

converts the program into an intermediate-language, OPTIC program.

(2) The pre-optimizer (popt) re-arranges the functions in the intermediate-language OPTIC program. If this

command is activated from the VSH command line, and if size-priority or execution speed-priority optimization

is specified, two or more intermediate-language OPTIC programs are merged into one2. If execution

speed-priority optimization is specified, inline expansion of the functions in the intermediate-language

OPTIC program is executed.

(3) The global optimization module (opt) optimizes the intermediate-language OPTIC program.

(4) The code generation module (cgen) converts the intermediate-language OPTIC program into an assembly-

language source program.

(5) The machine-dependent optimization module (impr) optimizes the assembly-language source program.

(6) The assembler (as) converts the assembly-language source program into machine language instructions

and creates a relocatable object file.

(7) The link editor (ld) links the relocatable object file, and creates an executable object file3.

1 The processing flow slightly differs depending the specified optimization level, as shown in Figure 1-1.
2 Because one file is compiled at a time when it is compiled from the Project Manager, files are not merged.
3 When created from the Project Manager, the object file becomes the name which is omitted the suffix of the first file of the source list and is

added “.OUT”. When created from VSH command start, it becomes a.out at the default. The -o option can be used if the name of an object
file is desired to be specified when started from VSH (refer to page 160).

149

The global optimization module and the machine-dependent optimization module are called only when the

optimization option is specified (refer to Figure 1-1). It is assumed that the modules of (1) front end (cafe)

through (5) machine-dependent optimization module (impr) are started from the ca. If any of these modules is

started alone, therefore, the operation is not guaranteed.

Figure 1-1. Operation Flow of ca

.c

Front end

.ic

-Os/
-Ot

Other than
-Os/-Ot

End
of processing of

input file

NO

YES

Pre-optimizer

.ic

-O0

Global optimization module

Other than -O0

.ic

Code generation module

.s

Only -O
or -O3/
-Os/-Ot

Not -O,
or -O0, 1

Machine-dependent
optimization module

.s

Assembler

.o

Other than
-Os/-Ot

NO

-Os/-Ot

End of
processing of

input file

YES

.a Link editor

.out

150

1.2 Handling File

The ca can specify the following files as input files.

file.c ... C source file (called .c file)

file.ic ... OPTIC file (called .ic file)

file.s ... assembler source file (called .s file)

file.o ... object file (called .o file)

file.a ... archive file (called .a file)

• If only one of the .c, .ic, or .s files is specified on starting the ca, the ca links the relocatable object file that

has been internally generated for that file, by using the ld and then deletes the relocatable object file.

• If multiple .c, .ic, or .s files are specified on starting the ca, the ca links the relocatable object file that has

been internally generated for that file, by using the ld and preserves this file as a file from the name of the

input file (by replacing .c, .ic, or .s with .o). However, if compiling is executed by specifying options of size

priority optimization or execution speed priority optimization, the ca shares the information of the specified

multiple .c and .ic files. If even one of the specified .c and .ic files is changed or modified, all the files must

be re-compiled.

• The .s file is passed to the as as it is (a source program directly described in an assembly language does

not go through the machine-dependent optimization module).

• All the files other than .c, .ic., and .s files, such as the a. file and .o file are all passed as ld.

Caution The input file names supported by Windows can be specified. However, ‘@’ cannot be used at the

head of a file name with the CA because it is judged as a command option.

151

1.3 Execution Object Creating Pattern

As explained in 1.1, the ca can read a C source file and create an executable object file all at once because

it start as and ld. Besides the processing can be stopped before the as and ld are started by specifying VSH

command line option and can output a compiler code or create a relocatable object file before linking.

The former is suitable when an option specification is not complicated at the start from VSH command line.

The latter is suitable when a lot of options are specified for the as and ld, or independent .o files is desired to

create in order.

In Project Manager, normally <<Build>>/<<Rebuild>> of execution menu starts to ld and employs the method

of which the build specifying “.o file” by <<Target specification build>> creates an individual object (-c option of

command line). (Refer to VOLUME 2 and User’s Manual of Project Manager) Awareness of the start of as or

ld is not required as in VSH but an option stopping before as start is not supported in compiler option on the

Project Manager.

Examples of start from VSH command line are shown below (Refer to the next chapter on details of option).

(1) To execute everything from ca 4

> ca850 -cpu 3000 file.c obj.o

Reads file.c and obj.o to create executable object file a.out. At this time, crtN.o is linked as the start-up

module and libc.a is referenced.

> ca850 -cpu 3000 -R org_crt.o file.c obj.o

Reads file.c and obj.o to create executable object file a.out. At this time, org_crt.o is linked as the start-

up module and libc.a is referenced.

4 For the start-up module in the above example, refer to V800 Series C Compiler Package User’s Manual - C Language .

152

(2) To start from ca to as, and to start ld alone

> ca850 -cpu 3000 -c file.c asm.s

Reads file.c and asm.s to create relocatable object files file.o and asm.o.

> ld850 org_crt.o file.o asm.o obj.o -lc

Links org_crt.o, file.o, asm.o, and obj.o to create executable object file a.out. At this time, libc.a is referenced.

(3) To start ca, as, and ld alone

> ca850 -cpu 3000 -c file.c

Reads file.c to create relocatable object file file.o.

> as850 -cpu 3000 asm.s

Reads asm.s to create relocatable object file asm.o.

> ld850 org_crt.o file.o asm.o -lc

Links org_crt.o, file.o, and asm.o to create executable object file a.out. At this time, libc.a is referenced.

153

CHAPTER 2 OPERATION

This chapter explains how to operate the ca.

2.1 Command Input Format from VSH Command Line

ca [option] ... file name [file name or option] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists the options of the ca.

When starting from VSH, if an option not listed in this table is given, that option is regarded as the option of

the ld, and is passed to the ld as it is.

“-Wl” must be specified to pass the options marked “**” in the option list of the ld on page 222 from the ca to

the ld as they are.

Below listed options are available which are not existed in option dialog in Project Manager. Specify ca from

VSH when these option specification is required.

(1) Input options

These specifications set options related to ca input.

Specification Format Feature

–Xk=code This option specifies the character code to be used for Japanese comments or character strings in

input files5. An error message is output if a code other than the specified code exists. The following

can be specified as code.

e | euc EUC

n | none Code is not guaranteed

s | sjis Shift JIS

The “|” indicates that either left or right of it must be specified.

If this option is omitted, shift JIS is assumed.

–Xsec_file=file This option specifies the name of the section file (refer to page 408) that is used to specify section

allocation of data when the C compiler is started.

Be sure to specify this file name.

This option can be specified several times and several section files can be input.

* V850

5 Refer to the section of the V800 Series C Compiler Package User’s Manual - C Language that describes character strings and comments
in the language specifications.

154

(2) Preprocessing options

These specifications set options related to preprocessing during compilation.

Specification Format Feature

–Dname[=def] When this option is specified, it is assumed that #define name def is entered before the C source

program.

If the =def specification is omitted, def is assumed to be 1.

–Idir This option specifies searching first in the directory dir and then in the standard directory6 when

searching for the header file7.

If this option is omitted, only the standard directory is searched.

–Uname When this option is specified, it is assumed that #undef name is entered before the C source program.

–Xcxxcom In addition to ordinary comments, this interprets all characters that appear after “// ” and before the

end of the line as comments (C++ comment style).

–Xmnum This option specifies an upper limit for the number of macro identifiers. A decimal value up to 32767

can be specified as num.

A default value of 2047 is used if this option is omitted.

–t This option replaces a trigraph sequence8.

6 The installation directory is /incxxx directory.
7 When the file name is enclosed in double quotation marks (“), the directory where the source file exists is searched first. For details of file

searching to fetch header files, refer to V800 Series C Compiler Package User’s Manual - C Language .
8 This is a three-character (trigraph) sequence that is replaced by single characters as stipulated in the ANSI standard. Refer to the documents

related to the ANSI standard.

155

(3) Language options

These specifications set options related to switches available in the C language.

Specification Format Feature

–Xbitfield=string This option specifies whether specifications in int type bit fields that do not indicate the type specifier

(signed or unsigned) are regarded as signed or unsigned specifications.

The following can be specified as string.

s Regarded as signed

signed Regarded as signed

u Regarded as unsigned

unsigned Regarded as unsigned

A warning message is output when the specification is regarded as unsigned.

The specification is regarded as signed if this option is omitted.

–Xchar=string This option specifies whether char type specifications that do not indicate the type specifier (signed

or unsigned) are regarded as signed or unsigned specifications.

The following can be specified as string.

s Regarded as signed

signed Regarded as signed

u Regarded as unsigned

unsigned Regarded as unsigned

The specification is regarded as signed if this option is omitted.

–Xe * V850 This option specifies that a runtime library9 ___mul/___mulu or ___div/___divu will be used instead

of the mulh and divh instructions for integers corresponding to data that is 16 bits or less.

This option slows the processing speed but strictly complies with the multiplication and division processing

under the ANSI standard.

The mulh and divh instructions are used if this option is omitted.

–ansi This option outputs an error message or warning message corresponding to the returned symbol so

that ca’s processing strictly complies with the ANSI standard.

All extensions other than the _asm extension are recognized10.

Specifying this option defines the macro name __STDC__.

Strict ANSI compliance cannot be guaranteed if this option is omitted11.

9 The CA850’s runtime library is used as a standard library for this compiler to meet the ANSI standard for instructions that are not included in
the V850 Family architecture. For details of the runtime library, refer to V800 Series C Compiler Package User’s Manual - C Language .

10 For details of how processing of the supplied extension symbol and the defined macro name differs according to whether or not this option
has been specified, refer to V800 Series C Compiler Package User’s Manual - C Language .

11 To maintain compatibility with previous C language specifications, a warning message is output and processing continues.

156

(4) Optimization option

These specifications set options related to the optimization levels and items.

Specification Format Feature

–O[c] This option specifies the optimization level.

Numbers and characters that can be specified as c are as follows12.

0 No optimization

1 Optimizes within basic block

2 Also starts machine-dependent optimization module

3 Also starts interfunctional optimization and optimization by as (refer to page 201)

s Optimizes based on object size

t Optimizes based on execution speed

l Forcibly optimizes code scheduling and redundant instruction elimination (valid at level 2

or above)

Note that this slows the compilation speed.

If the c specification is omitted, c is assumed to be 3.

If this option is omitted, -O1 is assumed as the specified value.

(5) Output options

These specifications set options related to assembly language output by ca.

Specification Format Feature

–Gnum Data that is less than num bytes13 is allocated to the .sdata section or the .sbss section.

If this option is omitted, all data is allocated to the .sdata section or the .sbss section.

However, any data that is specified for a .sdata or .sbss section in a #pragma section directive14

or a section file (refer to page 408) is allocated to the .sdata or .sbss section regardless of the data

size.

–Xbdld * V830 If the values for static structures or external structure variable exceeding 16 bytes that are allocated

to sections in external memory are substituted with values of .sidata section variables from RAM, the

bdld instruction will be output when ca performs an assembly language creation (refer to page 166).

–Xc This option outputs the C language source programs as comments to the assembler source file to be

output15.

–Xcre_sec_data This option outputs a variable frequency data file used with section file generator (refer to page

397)16.

If =file is specified, the specified file name is output. If =file is omitted, the same file name is output,

but with .sec as the extension instead of .c.

When several C source files exist, and a frequency information file is to be created with a file name

specified for each file, the Project Manager opens the option dialog for each C source file from the

source file list, and specifies a file name when the frequency information file is created. The VSH

specifies this option with =file for each C source file. The C source file is compiled one at a time (with

-c specified).

12 For details of using the optimization function, refer to page 162.
13 Specify a decimal number as the num value. The range of values that can be specified as num are output by the ld “-A” option.
14 Refer to V800 Series C Compiler Package User’s Manual - C Language .
15 The output comments are for reference only and do not necessarily correspond exactly to the code. For example, comments concerning

global variables, local variables, function declarations, etc., may be output to incorrect positions. If the optimization level is 1, the code may
be deleted and only the comment will remain.

16 Frequency data for variables in C source files is output. Nothing is done to an assembler source file.

[=file] * V850

157

Specification Format Feature

–Xi This option sets a four-byte alignment condition for arrays (including character strings) and structures

and converts strcpy() function calls to block transfers17. This increases the object’s execution

speed but it also increases the code size.

–Xj This option uses the jmp instruction to perform a branch for an ordinary interrupt function defined in

C language or for the RTOS interrupt handler18.

If the number of functions is in the range that cannot be branched by the jr instruction, and ld outputs

an error, this option can be used to restart compilation. The jr instruction is used if this option is

omitted.

–Xkt=code This option converts and outputs Japanese character strings to the specified code. This is valid for

converting kanji code used when developing an application to a different code in a target application

(refer to Caution on page 161). The following can be specified as code.

e | euc EUC

n | none No code conversion

s | sjis Shift JIS

The “| ” indicates that either left or right of it must be specified.

Comments output by specifying -Xc are not converted regardless of this option’s specification.

If this option is omitted, code is not converted.

–Xmask_reg This option specifies use of the mask register function19.

When this option has been specified, -m is automatically set for the as.

–Xnoabcond * V830 This option does not output abcond instruction during assembly language creation by ca20.

–Xnopldsr * V830 This option outputs two nop instructions immediately before the ldsr instruction during assembly

language creation by ca20.

–Xold_fcall * V850 This option outputs code according to an old version’s function call specification19.

If the V850E is used as the target device, this option cannot be specified.

–Xr The label of the first argument for _rcopy specifies the first address (aligned according to the four-

byte alignment condition) that exceeds the end of the .text section in the object.

When ld is started by ca, the rompcrt.o file and libr.a file are specified to be linked by ld21.

–Xv850patch This option specifies the -p[num] option for as850 according to the num specification for an assembler

source file output by the ca850 to output a code corresponding to a CPU fault (refer to page 206).

The specifiable range for num is 1 to 3.

–Xword_switch This option creates one four-byte branch table per case label in a switch statement. Specify this

option to prevent compile errors that would otherwise occur when the switch statement is long.

Two-byte branch tables are created if this option is omitted.

–a This option outputs an assemble list to a file whose extension .c is changed to .v (refer to page 208).

–g This option outputs information for the source debugger. When as is started by ca, specifying this

option is handled the same as when -g has been specified for as22.

This is equivalent to specifying “Debug” from the Option menu when the Project Manager is used.

–regn This option limits the number of registers used by ca as n registers23.

22 22 registers

26 26 registers

32 registers are specified if this option is omitted.

[=num] * V850

17 This conversion is performed only when the second argument in strcpy() is a character string. In addition, the first argument may required
four-byte alignment by the program (the C compiler aligns the second argument since it is a character string).

18 Refer to the descriptions of interrupt/exception handlers and RTOS interrupt handlers in V800 Series C Compiler Package User’s Manual
- C Language .

19 Refer to V800 Series C Compiler Package User’s Manual - C Language .
20 This option is intended to prevent CPU faults. Refer to the CPU documents to determine whether or not the CPU is susceptible to such faults.
21 This option is used to store the object file to ROM. For details of using this option, refer to page 386.
22 If an assembler source file is input when ca is started, assembler source debugging is performed by the debugger.
23 This option switches the register mode of the software register bank function. For details of the software register bank function, refer to V800

Series C Compiler Package User’s Manual - C Language .

158

(6) Message options

These specifications set options related to messages that are output during compilation.

Specification Format Feature

–Xd This option outputs a warning message in response to initialization of a pointer type external variable

which uses a variable address that is not an automatic variable or which uses a function address.

–v This option displays ca’s execution status.

–w This option suppresses output of warning messages.

–wnum This option specifies the level of the warning message.

The following numbers can be specified as num.

0 Suppress message (same as -w)

1 Output ordinary warning message

2 Output detailed warning message

The -w1 specification is assumed if this option is omitted.

–wstring+ This option specifies outputting or suppressing a warning message for each parameter regardless of

the level. A warning message is output when “+” has been specified or is suppressed when “-” has

been specified.

The following character strings can be specified as string.

bitfield_align When bit field members have exceeded the boundary set by the alignment

condition and have been allocated starting from the next boundary

callnodecl When calling an undeclared function

nopic When using a variable address that is not an automatic variable or a

function address to initialize a pointer type external variable

pragma When a non-executable #pragma description appears

sharp When a sharp symbol (#) appears in a source line

An error occurs if neither “+” nor “-” has been specified.

The specification is according to the -wnum level if this option is omitted.

–wstring-

159

(7) Other options

These specifications set other options.

These options specify ca’s operation stage, reference files, etc.

Specification Format Feature

–C This option includes source program comments in C language source program preprocessing output.

This option can be specified only when either the -E option or the -P option has been specified.

This option can be specified only when starting from VSH.

–E This option executes preprocessing only for a C language source program and outputs the results to

standard output.

The results include the line number display and file name display of the source program.

This option can be specified only when starting from VSH.

–Ldir This option searches the library starting in the directory dir, then in the standard directories24, 25.

Only the standard directories are searched if this option is omitted.

–P This option executes preprocessing only for a C language source program and outputs the results to

a file whose name is the C source file name plus .i as the extension instead of .c.

The source program’s line number display and file name display are not output.

This option can be specified only when starting from VSH.

–R file When startup goes as far as ld, the startup module26 to be used is indicated to ld as file.

If this option is omitted, crtN.o in the standard directory27 is used as the startup module.

This option is equivalent to the “file” option of the ld when started from the Project Manager.

–S This option outputs a created assembly language source program without executing any modules

after startup of as. The output file name is the C source file name plus .s as the extension instead

of .c.

Modules after startup of as will be executed if this option is omitted.

This option can be specified only when starting from VSH.

–V This option outputs this compiler package’s version number to standard output.

It does not execute compilation.

This option can be specified only when starting from VSH.

–Wc,arg1[,arg2] ... This option passes arguments arg1, arg2, and so on, to module c28.

The following can be specified as module c.

p Pre-optimizer

o Global optimization module

i Machine-dependent optimization module

a Assembler

l Link editor

–c This option outputs the object file as a file whose extension is .o instead of .c or .s without starting

the ld.

The ld is started if this option is omitted.

When the Project Manager is used, this option is automatically specified for all compilation. Accordingly,

ld is not started if an individual “.o” file is specified in <<Build Target>> specification.

–cpu devicename This option specifies the target device29. When using the Project Manager, this is equivalent to

specifying the device during a project setup.

If this option is omitted and nothing has been specified by the #pragma directive, compilation is

stopped.

24 These are the \libxxx directory and the \libxxx\r32 directory, both of which are under the installation directory. However, if register mode has
been specified, the r22 or r26 directory is searched in the same order instead of the r32 directory.

25 Refer to the description of the -L option for the ld.
26 Refer to V800 Series C Compiler Package User’s Manual - C Language .
27 Installation directory \libxxx\r32 (r26, r22)
28 Refer to page 172 for a description of the option that enables arguments to be passed to each module.
29 This has the same function as “#pragma cpu devicename”.

There are two methods: specification by the -cpu option or specification by the #pragma directive. If both are specified but have different
contents, the specification by the -cpu option takes priority.
Refer to the device file’s User’s Manual for description of device types that can be specified as devicename.
For details of the #pragma directive, refer to V800 Series C Compiler Package User’s Manual - C Language .

160

Specification Format Feature

–devpath=dir This option searches for the device file starting in the directory dir, then in the standard directories30.

Only the standard directories are searched if this option is omitted.

When the command is started from the option dialog, the device file’s installation directory is automatically

set for this option, so this option can be specified only when starting from VSH.

–help This option outputs a description of option to standard error output.

–Istring This option specifies the archive file that is referenced by the ld31.

Nothing is referenced if this option is omitted32.

–m This option only executes the front end, creates an .ic file, and then terminates processing.

If this option is omitted, modules after the front end are also executed.

This option can be specified only when starting from VSH.

–o outfile This option specifies the object file name for outputting outfile.

When there are several output files, this option is ignored.

If this option is omitted, a.out is regarded as the executable object file name33.

This option can be specified only when starting from VSH.

–temp=dir This option specifies the working directory for creating temporary files that are used internally (refer

to page 29).

This option can be specified only when starting from VSH.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

Cautions 1. Some of the above mentioned options become invalid if specified simultaneously with another

option.

Of the following options, those on the right of “>” become invalid if they are specified with the

options shown on the left of “>”.

• -E > -P

• -U > -D

• -E/P > -G/L/O/R/S/Wc/a/c/l/m/o

Because execution is terminated after preprocessing has been performed, the options related

to the modules following the front end are invalid.

• -S > -L/R/W/[a|l]/a/c/l/o

Because execution is terminated at the machine-dependent optimization module, the options

related to the modules following the as are invalid.

• -V/help

The option that is specified later is invalid. Furthermore, if this option is specified, all the

other options become invalid.

• -c > -L/R/Wl/l/o

Because execution is terminated at the as, the options related to the modules following the

ld are invalid.

• -m > -G/L/O/R/S/Wc/a/c/l/o

Because execution is terminated at the front end, the options related to the modules following

pre-optimizer are invalid.

• -O [0-3st]

The option that is specified later is valid.

• -w/w[1|2]

The option specified first is invalid.

30 ca handles the directory at the ..\dev position from the ca’s installation directory as the standard directory of the device file.
31 Refer to the description of the library specification (-l) option for the ld.
32 When ld is started from ca, ca automatically passes the standard library link (-lc) specification to ld.
33 The executable object file name to be output cannot be specified from the Project Manager’s option dialog. Instead, the “.out” extension is

added to the first file in the source list, from which the suffix has been removed.

161

2. If a code other than the default code (shift JIS) is used in the input file to be code-converted by

specifying the -Xkt option, then use the -Xk option to specify the code to be used.

If the code to be used is not specified, the default code (shift JIS) will be used and the code will

not be converted.

3. A command file does not specify options and file names for commands as the arguments of the

command line, but specifies them by describing them in a file. The ca treats the contents of the

command file as if they were the arguments of the command line. In the command file, the

arguments to be specified can be described over multiple lines. However, options and file

names must not be described over more than one line. The command file cannot be nested.

Example of command file

-Dtest ... Describes #define test .

-o object ... Specifies object file name.

a.c ... Specifies file to be compiled.

Example of specifying command file

> cat cfile

-cpu 3000 -c -0s file.c ← Contents of command file

> ca850 @cfile ← Same operation as ca732 -cpu 3000 -c -0s file.c

Input file
EUC

Output file
Shift JIS

-Xk = euc -Xkt = sjis

162

2.2.2 Efficient use of optimization

The optimization levels that can be specified by the -O option are described below along with instructions on

using optimization efficiently.

Figure 2-1. Optimization Levels and Parameters

0 : Does not execute optimization.

1 : Executes optimization in the basic block34.

Optimization in basic block is to execute optimization by using the information that can be obtained in

the basic block. This includes constant folding, simplify expressions, common subexpression elimination

in the basic block, and copy propagation in the basic block.

<Example> To replace an operation expression of only constants with the constants of the result

upon compiling.

2 : In addition to the above, invokes the machine-dependent optimization module.

Optimization such as deleting unreferenced labels, redundant instruction elimination, and peephole

optimizations (replacing instruction sequence with more efficient ones) is executed to an assembly-

language source program output by the code generation module.

<Example> To delete meaningless branch instructions.

3 : In addition, executes interfunctional optimization and optimization by the as. Optimization, such as

copy propagation in a function, common subexpression elimination, redundant assignment elimination,

loop invariant motion, operation strength reduction, induction variable substitution, and code hoisting,

is performed by using the information that can be grasped in a function.

In addition, sophisticated register allocation that gives consideration to the frequency of referencing

variables is performed by using coloring technique.

Moreover, optimization by the as is also executed (refer to page 201).

<Example> To move a substitution statement whose value in a loop is not changed to outside the

loop.

34 Maximum instruction arrangement that is always executed from the first instruction and from which execution does not branch from any
instruction other than the last instruction.

Inline expansion size
(-Wp, -N/-G)

No. of loop unrolling
(-Wo, -Ol) Optional (-Ol)

Optimization
Strong

Optimization
Weak

Time priority (-Ot) Size priority (-Os)

Level 3 (-O3/-O)

Level 2 (-O2)

Level 1 (-O1)

Not optimization

163

s : Executes object size-priority optimization. This is the most valid optimization in the normal application.

Executes interfunctional optimization by merging two or more files, re-arranging functions in merged

files, and information on optimized functions, in addition to optimization by -O3. Also suppresses 4-

byte alignment at the label or beginning of function. Although inline expansion or loop unrolling that

increases the size is not performed, the loop that is executed only once is expanded to prevent overhead

of the end condition judgment.

t : Executes execution speed-priority optimization. However, the size increases.

In addition to -O3 optimization, executes interfunctional optimization of -Oz, and also executes tail

recursion optimization, inline expansion, and loop unrolling.

If the return statement at the end of a function calls the function itself, tail recursion optimization

converts the function into a loop to reduce the stack required for calling the function.

Inline expansion expands the entity of a function at a part calling the function, increasing the possibility

of optimization and decreasing the overhead from the call.

Loop unrolling expands the entity of a loop two or more times, increasing the possibility of optimization

and decreasing the overhead from condition judgment and branch.

Although the code size increases when inline expansion and loop unrolling are executed, the execution

speed is expected to increase.

If -Ot is specified and a function including the asm statement35 which defines label is used, the same

label is defined in the definition of the function and at the part where inline expansion is executed. In

this case, a label multiple defined error occurs.

The functions specified by #pragma block-interrupt , #pragma interrupt , #pragma

rtos_interrupt , #pragma rtos_task , #pragma text , and #pragma itext 35 do not execute

inline expansion. At this time, messages are not output.

l : Executes optional optimization.

Execute powerful optimization such as code scheduling and redundant instruction elimination. However,

the compile speed drops.

-Ol is valid when specified with optimization level 2 or above.

Caution Source file are compiled from the Project Manager one file at a time. Therefore, the source files

are not merged and optimized even if size-priority (-Os) or execution time-priority (-Ot) optimization

is specified.

On the other hand, when source files are compiled from the VSH command line with -Os or -Ot

specified with two or more source files input, the files are merged and optimized. In other words,

the sequence of the functions of the other files are re-arranged, and the functions of the other files

are expanded in line. To merge files, compile the files on the VSH command line.

As shown above, although there are many levels and parameters involved in optimization of ca, the basic

methods when specifying optimization are as follows.

• Emphasize size.

• Emphasize execution speed, even at the expense of size.

Although nearly all of the optimization functions both reduce size and increase execution speed, for some

functions the user must decide a trade-off between size and execution speed.

Among the options described above, “-Os” and “-Ot” are used to make this specification.

35 Refer to V800 Series C Compiler Package User’s Manual - C Language .

164

(1) Size-priority optimization: -Os -Ol

Specify both the “size priority” option (-Os) and the “optional optimization” option (-Ol). The system will

specify the stronger optimization option. Among the types of optimization supported by ca, all types of

optimization that do not increase the code size should be performed so as to keep the code size as small

as possible.

Depending on the application, the following functions may be used in addition to the options described

above to further strengthen the optimization.

• Specify -Wi, -O4 (refer to page 173)

This performs a data flow analysis to further strengthen optimization. However, this may result in a

much longer compilation time.

• Use mask register function

If the application includes a lot of mask code for processing of unsigned char and unsigned short types,

using the mask register function36 can reduce the code size.

However, using the mask register function means that two fewer registers will be available to be used

for register variables.

• Use a section file

The code size can be reduced and the execution speed increased by allocating data between on-chip

memory and the section referenced by gp/r0 for one instruction. If the section allocation36 of data is not

performed by the program, it will be allocated during compilation by the section file37 as [tidata]

(* V850), [sidata], [sedata], [sconst], [sdata].

(2) Execution time-priority optimization: -Ot, -Ol

Specify both the “time priority” option (-Ot) and the “optional optimization” option (-Ol). To have the application

(such as a data processing application) shorten the execution time even at the expense of the code size,

use the -Ot option to perform inline expansion and loop unrolling. In this case also, optimization is further

strengthened by specifying the optional optimization option.

Caution If using the execution time-priority optimization option causes the code size to become much too

big, use the “-Wp, -Gnum” or “-Wo, -Ol” option (refer to page 172) to adjust the inline expansion

and/or loop unrolling results.

To specify inline expansion of specified functions only regardless of the options, use #pragma

inline 36. This will continue to specify “size-priority” but will still give priority to fast execution

times for the specified function calls only.

Depending on the application, the mask register function may be used as in “(1) Size-priority optimization”

to strengthen optimization. In addition, the following function may be used to further strengthen execution

time-priority optimization.

• Expansion of strcpy()

If the target application makes frequent use of the strcpy() function for copying character strings, specifying

the -Xi option to perform “expansion of strcpy” can shorten execution time. However, it will increase the

code size.

36 Refer to V800 Series C Compiler Package User’s Manual - C Language .
37 Refer to page 408.

165

(3) Reducing code size during execution time-priority optimization: -Ot -Wp, -r

In some cases, merging of source files during inline expansion results in the generation of unnecessary

functions. In such cases, specifying the “-Wp, -r” options (refer to page 172) can reduce unnecessary

functions and thereby reduce the code size.

2.2.3 Effects of debugging on optimization

Note with caution that optimization can have the following effects when using the source debugger.

[Optimization level 1 (-O1)]

(1) Copy propagation and common subexpression elimination can eliminate “variable references” where they

appear in the source program and have an effect on the debugging information that the debugger uses.

[Optimization level 2 (-O2)]

(1) The line number information is also changed for lines which contained statements that have been deleted

or rearranged. The variables’ range of existence38 and positions39 may have changed, which can have

an effect on the debugging information that the debugger uses.

[Optimization level 3 (-O3)/ Execution time-priority optimization (-Ot)/ Size-priority optimization (-Os)]

(1) Break points cannot be set for statements where deletions have occurred.

(2) The transfer, splitting, and merging of statements may have rearranged the sequence of executable instructions40,

in which cases the lines between lines which have been rearranged may be handled as a single line for

which break points, step execution, etc., can no longer be set.

(3) If the sequence of executable instructions for if-else statements has been rearranged or if loop unrolling

has caused a sequence of executable instructions to be rearranged, step execution may no longer be

possible, as in (2) above.

(4) The entire function is regarded as the valid range (scope) for all automatic variables. However, if automatic

variables have been allocated to registers, even when they are within the scope, they can be deleted or

otherwise rendered invisible by optimization. This can be due to the variables being used as “local variables”

within the scope or being assigned as local variables as a result of optimization.

Example)

int f(){

int a; ← Valid within function

...

 (Address 1)

... ← a is used only in the range from address 1 to address 2

 (Address 2)

...

}

38 The range in the program within which the variables can be referenced
39 Position in a register or in memory
40 The address of an executable instruction within a line of source code may be smaller than the address of an executable instruction in a

previous line or may be greater than the address of an executable instruction in a subsequent line.

166

In the above example, the scope of “a” is the entire function f(). However, “a” is used only between

address 1 and address 2. In this case, if “a” is allocated to a register and optimization causes it to be

deleted from the stack frame, “a” will become invisible outside of the area between address 1 and address

2. This phenomenon occurs in order to make more efficient use of registers by making the register where

“a” has been allocated available (except for the section between address 1 and address 2) for allocation

of other variables.

(5) Note that since the debugger does not support optimization results from the assembler, such results

cannot be used as information for debugging.

(6) During compilation, the processing of debugging information uses a large amount of memory, which may

cause an “out of memory ” condition to occur.

(7) Step execution cannot be performed when using sections that have been merged into one line during

inline expansion.

(8) Step execution cannot be performed when using sections that have been merged into one main loop

section during loop unrolling. Also, the merging of loops into one main loop section means that the

number of loops that exist after expansion rather than the number of loops that had existed before expansion.

2.2.4 Output of bdld instruction * V830

When the -Xbdld option has been specified, static structures or external structure variable values greater than

16 bytes, which have been allocated to a section in external memory, are assigned to variables in the .sidata

section allocated in on-chip data RAM, and output bdld instructions during ca’s assembly language creation.

This results in the following effects.

• The size of the command code needed for transferring is reduced.

• If the external memory data to be transferred is not in a cache, it can be transferred more quickly.

• If the target data size is a multiple of 16 bytes, the cache contents do not change.

[Description example of bdld instruction output using option]

struct data {

 int i[4];

};

struct test {

 struct data image;

};

#pragma section sidata begin

struct data a; ← Transfer destination (allocated to .sidata section by C compiler)

#pragma section sidata end

struct test b;

void

func(){

 a = b.image;

}

167

[Output assembly language]

.sbss

.com _b, 16, 16

.sidata

.align 16

.globl _a, 16

_a:

.space 16

.text

_func:

 ...

movea !_a, zero, r10

movea $_b, gp, r11

bdld [r11], [r10]

 ...

Cautions

• When this option has been specified, not only static structures and external structures that are at least 16

bytes long but also static arrays and external arrays that are at least 16 bytes long are aligned into 16-byte

segments. Accordingly, some of the data area is wasted, which may increase the overall code size.

• If all of the external memory data to be transferred is in the cache, specifying this option will slow down the

transfer speed.

• If the data size is not a multiple of 16 bytes, the ld/st instruction will be output to transfer the fractional parts.

Since the ld instruction performs caching to access cacheable external memory, the cache contents will

change.

• Assignments that use pointers are not subject to bdld instruction output.

168

[Description example in which use of pointer excludes bdld instruction output]

struct data {

 int i[4];

};

struct test {

 struct data image;

};

#pragma section sidata begin

struct data a;

#pragma section sidata end

struct test *b; ← Pointer variable

void

func(){

 a = b->image; ← Assigned by pointer

}

169

[Output assembly language]

.sbss

.com _b, 16, 16

.sidata

.align 16

.globl _a, 16

_a:

.space 16

.text

_func:

 ...

movea !_a, zero, r10

ld.w $_b, r11

ld.w [r11], r12

st.w r12, [r10]

ld.w 4[r11], r13

st.w r13, r[r10]

ld.w 8[r11], r14

st.w r14, 8[r10]

ld.w 12[r11], r15

st.w r15, 12[r10]

 ...

170

• When structures are nested and the members have not been aligned into multiples of 16 bytes, those

members are not subject to bdld instruction output.

[Description example in which nesting of structures excludes bdld instruction output]

struct data {

 int i[4];

};

struct test {

 char header;

 struct data image; ← Member image is not aligned into 16-byte segments

};

#pragma section sidata begin

struct data a;

#pragma section sidata end

struct test b;

void

func(){

 a = b.image;

}

171

[Output assembly language]

.sbss

.com _b, 20, 16

.sidata

.align 16

.globl _a, 16

_a:

.space 16

.text

_func:

 ...

movea !_a, zero, r11

ld.w $_b+4, gp, r12 ← Member image is displayed as offset from the fourth byte

of the structure

ld.w [r12], r13

st.w r13, [r11]

ld.w 4[r12], r14

st.w r14, r[r11]

ld.w 8[r12], r15

st.w r15, 8[r11]

ld.w 12[r12], r16

st.w r16, 12[r11]

 ...

172

2.2.5 Argument of -W option

This section explains the option to be passed by the ca as an argument to each module.

For the options of the assembler (as) and link editor (ld)41, refer to the explanation on the options on page 201

and page 222.

• Pre-optimizer (popt: -Wp)

-D : Reduces the capacity of the memory used for compiling.

-Gnum : Limits the stack size of the function subject to inline expansion to the size num in intermediate

language, and does not execute inline expansion of a function greater than num. For the

criterion of num, refer to the explanation on the -l option below. If this option is not specified,

-G32 is assumed.

-Nnum : Limits the intermediate language size of the function subject to inline expansion to num,

and does not execute inline expansion of a function greater than num.

For the criterion of num, refer to the explanation of the -l option below.

If this option is not specified, -N128 is assumed.

-S : Unconditionally executes inline expansion of static functions that are referenced only once.

-l : Displays information on functions.

The displayed information serves as the criteria of the values specified by the -G and -N

options mentioned above.

For example, if the stack size of a called function is less than the value specified by -G,

inline expansion is executed. If the code size of a called function is less than the value

specified by -N, inline expansion is executed.

-r[funcname]: Using function funcname as an entry function, deletes the unnecessary functions of those

called from the entry function after expansion.

Specify funcname by prefixing “_” to a function name.

If funcname is not specified, “_main” is assumed.

(Caution)

Note that the function called only by an assembler statement is not recognized to be

called, as a result, the function is deleted as an unnecessary function.

41 To start the ld from the ca, -lc is passed to the ld as default assumption, even if it is not specified by the -W option.

173

• Global optimization module (opt: -Wo)

-Ol[num] : Expands a loop such as for and while num times42, 43.

Execution of a loop which is executed N times (N is a constant) is converted into execution

of a loop including both the execution of a code the number of times equal to the result

of N ÷ num and the codes expanded num times.

If 0 or 1 is specified as num, expansion is suppressed44. If num is not specified, 4 is

assumed.

<Example> To expand 4 times a loop which is executed 10 times.

i=0;

while(i<10) {

(processing)

++i;

}

↓
i=0;

(processing)

i=1;

(processing)

i=2;

while(i<10) {

(processing)

++i;

(processing)

++i;

(processing)

++i;

(processing)

++i;

}

• Machine-dependent optimization module (impr: -Wi)

-D : Can reduce the memory capacity required for compiling.

-O4 : Executes data flow analysis precisely and enhances optimization. However, compiling

speed drops. Specify only when enhanced data flow analysis is required after -Ol specification.

-P : Suppresses optimization of aligning labels. This can reduce the code size.

42 Specify num in decimal number.
43 A complicated loop such as the one that internally includes another loop may not be expanded.
44 This is useful for not executing loop unrolling with optimization level t specified.

174

2.3 Cautions on Specifying Options

The following specification sequence is applied to the options specified when starting the compiler.

The options specified with -W option are allocated at the end of a command line other than the -W option45.

Example>

> ca850 -cpu 3000 file.o -Wl, -D, dfile, -ol

Arguments are passed as follows upon starting ld .

ld850 \nectools\lib850\r32\crtN.o -o a.out file.o -lc -D dfile -ol

(However, it is assumed that ld850 is placed in \nectools\bin .)

Caution Since the mathematical library references the standard library, make sure that “-lc” is placed after

“-lm”46.

2.4 Example

Here are some examples of using the ca.

• To start from ca to ld to create an executable object

ca850 -cpu 3000 -Utest -o object a.c

C source file a.c is compiled and executable object file object is created. At this time, it is assumed that

#undef test is described before the C source program in a.c. The V851 is used as the target device.

ca850 -cpu 3000 -Wl, -D, dirc file.c -lm

C source file file.c is compiled and executable object file a.out is created. At this time, directive file dirc

is instructed to the ld, and mathematical library libm.a is linked.

• To start from ca to as, but not ld, to create relocatable object file

ca850 -cpu 3000 -c file.c

C source file file.c is compiled and relocatable object file file.o is created.

45 To start ld from ca in VSH, -lc is passed to the ld as the default assumption, even if it is not specified by the -W option.
To start ld from ca, start-up module crtN.o is passed to the ld as the default assumption unless -R is specified.

46 Refer to V800 Series C Compiler Package User’s Manual - C Language .

175

CHAPTER 3 MESSAGES

This chapter explains the messages output by the ca.

3.1 Message Format

Example

E 2 1 0 3

Error code

Error occurs in front end.

Error due to syntax error or violation of compiler limit

The name of the module responsible for the error is appended to the error message output by the ca.

If the name of a file or the number of the line where the error occurred can be identified, the file name and line

number are appended also along with a message number.

The message number indicates the level of the error that has occurred, and the module in which the error

occurred.

The meaning of the initial character of a message number indicating the error level is as follows:

F ... Fatal error. Compiling is always stopped.

Example> Memory capacity runs short.

E ... Error due to violation of syntax or compiler limit. If errors of this type occur exceeding the specified

number, compiling is stopped.

Example> Undefined variable.

W ... Warning. Compiling continues.

Example> A variable is referenced before a value is set to it.

The number following the above-mentioned characters indicates the module where the error occurred.

1 ... ca driver module (ca)

2 ... front end (cafe)

5 ... global optimization module (opt)

6 ... code generation module (cgen)

7 ... pre-optimizer (popt)

176

3.2 Messages

This section lists the error messages in the alphabetical order of the error number level from the lowest error

number toward the highest.

Note that some messages are not output depending on the family used.

The italic characters in the output messages and explanatory statements are determined during command

processing.

E1305: cannot remove temporary directory ‘ dir ’

The work directory dir prepared for creating a temporary file cannot be deleted.

E1307: cannot unlink temporary file ‘ file ’

Temporary file file cannot be deleted.

E2103: illegal header name

The character string of the header name specified by #include is incorrect.

E2104: cannot find include file ‘ file ”

The file file specified by the #include directive cannot be found.

E2111: illegal token ‘ token ’

An illegal token token is recognized.

E2113: unexpected EOF

The file ends at a position not permitted by syntax.

E2114: non-terminated comment

“*/” that closes the comment is missing.

E2116: illegal expression syntax

The description of the expression in preprocessing control is incorrect.

E2117: compiler limit: too long identifier ‘ name ...’ [num]

The name of the identifier is too long. The maximum value of this processing system is 1023 in the

case of the internal identifier and 1022 in the case of the external identifier.

E2118: compiler limit: too many characters in string literal [num]

The character string literal is too long. The maximum value of this processing system is 4045.

E2123: compiler limit: too many macro parameters [num]

Too many macro parameters are used. The maximum value of this processing system is 31.

E2124: illegal macro name ‘ name ’

The macro name name is incorrect.

E2125: System reserved macro ‘ name ’ must not be redefined.

Macro name must not be re-defined because it is reserved for the system.

177

E2126: System reserved macro ‘ name ’ must not be undefined.

Macro name definition reserved for the system cannot be canceled.

E2129: illegal macro parameter ‘ name ’

The parameter name of the macro is incorrect.

E2130: macro ‘ name ’: mismatch number of parameters

The number of parameters of macro name does not agree.

E2131: macro ‘ name ’: missing ‘)’

“)” is missing from the macro name definition that has a parameter.

E2133: illegal operand for ‘#’ operator

Something other than a parameter is specified for the ‘#’ operator in macro definition.

E2134: compiler limit: too long stringizing result [num]

The character string is too long.

The maximum value of this processing system is 4045.

E2135: illegal operand for ‘##’ operator

The description of connection of tokens in macro definition is incorrect.

E2136: illegal pasting result

The result of connection tokens is incorrect.

E2137: compiler limit: too long pasting result [num]

The result of connection tokens is too long.

The maximum value of this processing system is 4045.

E2151: illegal preprocessing directive

The description of the preprocessing directive is wrong.

E2152: illegal number ‘ name ’ in conditional inclusion.

name that is not an integer must not be specified in an expression following #if .

E2155: compiler limit: too many conditional inclusion nestings [num]

The number of times of nesting between “#if ” and “#endif ” exceeds the limit.

The maximum value of this processing system is 255.

E2156: misplaced ‘ #else ’ or ‘ #elif ’

The position of “#else ” or “#elif ” is inappropriate.

E2157: misplaced ‘ #endif ’

The position of “#endif ” is inappropriate.

E2159: illegal include directive syntax

The description of #include is not correct.

178

E2170: illegal integral/floating constant

The notation of the integer/floating-point constant is incorrect.

E2171: constant out of range

The range in which a constant value can be expressed is exceeded.

E2173: illegal octal digit

The description of an octal number is incorrect.

E2174: illegal hexadecimal digit

The description of a hexadecimal number is incorrect.

E2175: octal digit out of range

The range that can be expressed in octal number is exceeded.

E2177: empty character constant

The character constant is vacant.

E2180: Code of file ' file ' is not code (data).

Code in file file is not code code. A character that is illegal as a Japanese character code exists.

E2210: name : not defined

name is not defined.

E2211: redeclaration of name

name is re-declared.

E2213: Declarator not specified

No declarator is specified.

E2214: Void object is not allowed.

void object is not allowed.

E2220: Both ‘signed’ and ‘unsigned’ are specified.

Both “signed ” and “unsigned ” are specified.

E2221: illegal type specifier combination

The combination of type-specifiers is incorrect.

E2236: Typedef declaration must not have initializer.

typedef declaration must not include an initializer.

E2237: too many initializers

Too many initializers are used.

E2238: illegal initializer

The initializer is incorrect.

179

E2240: Local static function is not allowed.

The static function must not be declared in local scope.

E2250: Array size is not given.

The size of the array is not given.

E2251: Array size must not be zero.

The size of the array must not be zero.

E2252: Array type has incomplete element type.

The type of the array element is incomplete.

E2260: compiler limit: complicated type modifiers [num]

Too many derivative modifiers are used.

The maximum value of this processing system is 16.

E2261: illegal storage class specifier combination

The combination of storage class specifiers is incorrect.

E2262: illegal use of ‘enum’

Type specifier “enum” is incorrectly used.

E2263: illegal use of ‘ struct ’

Type specifier “struct ” is incorrectly used.

E2265: illegal use of ‘union’

Type specifier “union ” is incorrectly used.

E2266: illegal use of ‘auto’

Storage area class specifier “auto ” is incorrectly used.

E2267: illegal use of ‘static’

Storage area class specifier “static ” is incorrectly used.

E2269: illegal use of ‘register’

Storage area class specifier “register ” is incorrectly used.

E2270: illegal use of ‘extern’

Storage area class specifier “extern ” is incorrectly used.

E2280: Void function cannot return value.

A return value is specified for a void type function.

E2281: Function has illegal storage class.

The storage class specified for the function is incorrect.

E2282: Array of function is now allowed.

An array of functions is disallowed.

180

E2283: illegal return type: function

The return value of a function must not be used as a function type.

E2284: illegal return type: array

The return value of a function must not be used as an array type.

E2285: ‘Void’ in parameter list

void type is specified within the arrangement of the argument declaration of the function declaration.

void type can be used only singly.

E2286: Function requires return value.

No return value is specified for a function having a return value.

E2288: return type mismatch type1 (type2)

The type of return value type2 indicated by the return statement does not match return type type1

of the function.

E2290: argument type mismatch type1 (type2)

The type of actual argument type 2 does not match the type of dummy argument type1 at the time

of the function declaration.

E2292: Argument name is missing.

Dummy argument name name declared in the function definition cannot be found.

E2296: illegal first argument ‘...’, requires a named argument

“...” cannot be used as the first argument of a function.

E2300: ‘Struct’/‘union’ size must not be zero.

The size of a structure/union must not be zero.

E2301: illegal bit-field type

A type which must not be specified for a bit field is specified.

E2303: illegal bit-field size

The value of a constant expression that specifies the width of a bit field must not exceed the number

of bits constituting the object of the specified type.

E2304: ‘ name ’ has incomplete type.

The type of name is incomplete.

E2305: Field ‘ name ’ declared as a function.

The type of member name is a function type.

E2401: syntax error

The syntax is incorrect.

E2402: Label ‘ label ’ not defined

Label label is not defined.

181

E2411: label is not in switch

The case label or default label is missing from the switch statement.

E2412: duplicate ‘case num :’ in switch

The case label num in the switch statement is duplicated.

num may be expanded as a numeric value.

E2413: duplicate ‘default:’ in switch

The default label is duplicated in the switch statement.

E2414: ‘break’ not in loop nor switch

“break ” is outside a repeat statement or a switch statement.

E2415: ‘continue’ not in loop

“continue ” is outside a repeat statement.

E2420: argument num expected for function call function

The argument following num is not specified in function call function.

E2421: unexpected argument num for function call function

Excess argument is specified after num in function call function.

E2422: undefined static function ‘ function ’

Called static function function is not defined in a file.

E2510: cannot cast: type1 to type2

Casting from type1 to type2 cannot be executed.

E2511: expression must be arithmetic or pointer type.

expression must be of arithmetic or pointer type.

E2512: expression must be arithmetic type.

expression must be of arithmetic type.

E2513: expression must be pointer type or zero.

expression must be of pointer type or zero.

E2515: expression must be integral type.

expression must be of integer type.

E2516: expression must be constant expression.

expression must be a constant expression.

E2517: One of the operands for ‘[]’ must be pointer type and the other must be of integral type.

One of the operands for “[]” must be of pointer type and the other must be of integer type.

E2518: illegal operand for unary ‘&’

The operand of the unary operand “&” is incorrect.

182

E2519: exception has occurred at compile time.

Exception exception related to floating-point operation occurred during compiling.

E2522: name is not a member.

name is not a member of a set.

E2523: illegal LHS of ‘ operator ’ operator (must be modifiable L value)

An illegal substitution destination is described to the left of operator operator.

E2524: illegal type combination for ‘ operator ’ (type1 , type2)

The combination of types for the operator operator (type1 and type2) is incorrect.

E2526: Operands of ‘ operator ’ operator must have same type (type1 , type2).

Use the same type (type1 and type2) for the right and left of the operator operator.

E2530: Operand of ‘()’ must be function type.

The operand of the “()” operator must be a function.

E2532: Operand of ‘ operator ’ must be pointer type.

The operand of the operator operator must be of pointer type.

E2533: Operand of ‘.’ must be ‘struct’/‘union’ object.

Use the “. ” operator for a structure or union.

E2535: Operand of ‘ -> ’ must be pointer to ‘struct’/‘union’ object.

Use the “-> ” operator for the pointer to a structure or union.

E2550: Operand of ‘sizeof’ must not be function nor bit-field.

The operand of “sizeof ” cannot specify a function or bit field.

E2551: unknown size (‘struct’, ‘union’ or array)

A set whose size is unknown is specified for an operator requiring object size.

E2552: unknown size (function)

A function whose size is unknown is specified for an operator requiring for object size.

E2553: cannot convert non-L value array to pointer

An array which is not a left-side value cannot be converted into a pointer.

E2630: unrecognized interrupt request name ‘ name ’

An illegal interrupt request is specified by the #pragma directive.

E2631: Interrupt request name ‘ name ’ is already specified.

Interrupt request name name has already been specified.

E2632: illegal directive ‘#pragma interrupt’, function name must be specified

A function name is necessary for declaration of an interrupt handler by the #pragma directive.

183

E2633: cannot specify interrupt attribute ‘direct’, function ‘ function ’ is already defined.

An interrupt handler cannot be directly located and specified after function definition.

E2636: Multiple interrupt request names are specified for function ‘ function ’, ‘direct’ cannot be specified.

Two or more interrupt requests are specified for function function.

Direct location (direct) cannot be specified for a function for which two or more interrupts are specified.

E2638: Interrupt function must be void type.

The return type of a function declared as an interrupt must be of void type.

E2639: illegal function type for software interrupt function, must be void (unsigned int).

A function declared as a software exception interrupt (trap interrupt) can only have one unsigned int

type as the argument.

E2640: illegal function type for interrupt function, must be void (void)

A function declared as an interrupt (except software exception) cannot have an argument.

E2641: cannot call interrupt function

A function declared as an interrupt cannot be called.

E2642: Function ‘ function ’ is already defined, ‘block_interrupt’ must be specified before function

definition.

Interrupts cannot be disabled after the function definition.

E2644: Function ‘ function ’ is already defined without ‘_interrupt’.

Although function function is specified as an interrupt handler, function has been already defined

without interrupt specification.

E2646: Both interrupt and RTOS interrupt attributes are specified.

The normal interrupt and RTOS interrupt must not be specified at the same time.

E2647: Specifying interrupt name ‘ name ’ is not allowed.

RESET and RST must not be specified as an interrupt request name.

E2648: unknown cpu type, cannot use interrupt request name

An interrupt request name cannot be used because no device is specified.

E2649: Interrupt function ‘ function ’ with ‘direct’ is undefined.

Function function that is specified to be located directly is not defined in the file.

E2650: illegal directive ‘#pragma section’, section name must be specified

A section name is not specified in section allocation by the #pragma directive.

E2651: illegal directive ‘#pragma section’, unrecognized section name ‘ name ’

An illegal section name name is specified in section allocation by the #pragma directive.

E2652: illegal directive ‘#pragma section’, ‘begin’ or ‘end’ must be specified

“begin” and “end” are necessary for section allocation by the #pragma directive.

184

E2653: Directive ‘#pragma section’ is nested.

Section allocation specification by the #pragma directive is nested.

E2654: inconsistent section for ‘ symbol ’

The section contradicts symbol symbol.

E2655: misplaced ‘#pragma section section end’

The position of “#pragma section section end ” is inappropriate.

E2660: cannot write, read only I/O register ‘ regname ’

Data cannot be written to internal peripheral function register regname that has only a read attribute.

E2661: cannot read, write only I/O register ‘ regname ’

Data cannot be read from internal peripheral function register regname that has only a write attribute.

E2662: cannot access for I/O register bit number ‘ regname ’

A position that cannot be accessed is specified in the description of the bit access to internal peripheral

function register regname.

E2663: I/O register bit number must be integral type.

Describe the specification of the bit position for an internal peripheral function register with an integer

value.

E2664: Specifying bit number for I/O register ‘ regname ’ is not allowed.

Bit access cannot be specified for a bit of internal peripheral function register regname.

E2665: unknown cpu type, cannot use I/O register

The internal peripheral function register cannot be used because the target device is unknown.

E2666: illegal operand (I/O register ‘ regname ’) for unary ‘&’

The address of internal peripheral function register regname cannot be obtained.

E2670: unexpected EOF, missing ‘#pragma endasm’

Specification of the final assembler insertion cannot be found.

E2680: illegal argument for __set_il (unsigned int)

The argument of the function that sets an interrupt level is wrong.

Specify only one integer type as an argument. * V830

E2681: First argument for __set_il is out of range.

The value of an interrupt level exceeds the range that can be specified.

An integer of 0 to 16 can be set as an interrupt level. * V830

E2681: First argument for __set_il is out of range.

The value of an interrupt level exceeds the range that can be specified.

An integer of –1 to 8 can be specified as an interrupt level. * V850

185

E2682: Second argument for __set_il must be string literal.

Specify a character string indicating an interrupt request name as the second argument of the function

that sets an interrupt level. * V850

E2685: illegal argument for __set_il (int, char*)

The argument of the function that sets an interrupt level is wrong. Specify an integer type as the first

argument, and an interrupt request name as the second argument. * V850

E2692: Both interrupt attribute and ‘rtos_task’ are specified.

An RTOS task and an interrupt cannot be specified for a function at the same time.

E2693: Function ‘ function ’ is already defined, ‘rtos_task’ must be specified before function definition.

A function must not be specified as an RTOS task after the function definition.

E2694: Function ‘ function ’ is already defined without ‘__rtos_interrupt’.

Although function function is specified as an interrupt handler, function has been already defined

without interrupt specification for RTOS.

E2695: cannot call rtos_task function

A function that is specified as an RTOS task cannot be called.

E2696: Rtos system call ‘ function ’ is already defined, cannot specify ‘#pragma kind ’

A function having the same name as function function has already been defined or declared.

The RTOS system call cannot be validated by the pragma specification of the RTOS function.

E2697: Rtos system call ‘ name ’ is called in the function, for which rtos interrupt attribute is not

specified.

RTOS system call name is called by a function for which an RTOS interrupt is not specified.

name is regarded as a normal function call.

E2698: cannot call rtos_interrupt function

A function that is specified as an RTOS interrupt handler cannot be called.

E2701: Duplicated GP symbol for RTOS interrupt function ‘ function ’

Another gp symbol has already been allocated to function function specified as an RTOS interrupt

handler.

E2702: Specifying interrupt name ‘ name ’ is not allowed for rtos_interrupt.

name must not be specified as an interrupt request name.

E2712: unexpected end-of-line (missing ‘]’)

Enclose a section name in a section file with “[]”.

E2713: unexpected character(s) ‘ token ’

An unnecessary token token exists in the section file. Check the format of the section file.

E2714: Variable, function or file name is missing.

The description of the variable information of the section file is illegal.

186

E2715: illegal function/variable name ‘ symbol ’

Symbol symbol is an illegal function name or variable name.

E2716: Section name is not specified.

A section name is not specified.

E2717: unrecognized section name ‘ section ’

Illegal section name section is specified.

E2745: Both ‘text’ and ‘itext’ are specified.

Both text and itext section allocation cannot be specified for a function. * V830

E2746: Too long section name [256]

The section name is too long. Specify the name with 256 characters or shorter.

E2747: inconsistent section name for ‘ symbol ’

The section name contradicts symbol symbol.

E7201: multiple defined symbol ‘ symbol ’

Multiple-defined symbol symbol exists.

E7202: redeclaration of ‘ symbol ’

symbol is re-declared.

E7203: undefined symbol ‘ symbol ’

symbol is undefined.

E7204: undefined label (.L num)

The label .Lnum is undefined.

E7205: Argument type mismatch is detected where ‘ caller ’ calls ‘ callee ’.

The argument types of caller and callee differ during inline expansion.

E7206: Return value type mismatch is detected where ‘ caller ’ calls ‘ callee ’.

The types of the return values of caller and callee differ during inline expansion.

E7207: interrupt request ‘ name ’ already specified.

Interrupt request name name has already been specified.

E7208: inconsistent section for ‘ symbol ’

The section contradicts symbol.

F1001: out of memory

The memory capacity has run short.

F1002: cannot recover from previous errors

Processing cannot continue as a result of an error that previously occurred.

187

F1102: invalid argument of option ‘ option ’

The argument of option option is illegal.

F1103: nested command file ‘ file ’

Command file file is nested. It must not be nested.

F1104: Argument of -reg option requires 26 or 22.

Specify either 26 or 22 as the argument of the -reg option.

F1105: cannot use ‘ option1 ’ option with ‘ option2’ option

Options option1 and option2 must not be specified at the same time.

F1106: cannot specify output file name of –Xcre_sec_data with many source files.

When inputting two or more source files, the output file name of option –Xcre_sec_data must not be

specified. * V850

F1201: fork failed

The fork of the process failed.

F1202: module : not found

module module that must be started cannot be found.

F1203: module : exec failed

Execution of module module has failed.

F1292: too long argument

Arguments exceed 128 bytes when starting module.

The arguments must be command file.

F1302: ‘ file ’: illegal output file name

The output file name file specified by the -o option must not be the same as an input file name.

Change file.

F1303: cannot open file ‘ file ’

File file cannot be opened.

F1304: cannot create temporary directory

A work directory for creating the temporary file cannot be created.

F1306: cannot open temporary file ‘ file ’

Temporary file file cannot be opened.

F1309: ‘ file ’: illegal output file name of –Xcre_sec_data

The output file name file specified by option –Xcre_sec_data must not be the same as an input file

name. Change file. * V850

F2001: illegal command path

The specified command path is incorrect.

188

F2002: compiler limit: too long command path [num]

Compiler limit: The length of the specified path exceeds the limit.

The maximum value of this processing system is 1024.

F2003: out of memory

The memory capacity has run short.

F2004: too many errors

Compiling has stopped because errors exceeding the specified number of times have occurred.

F2005: cannot open output file ‘ file ’

Output file file cannot be opened.

F2006: cannot open input file ‘ file ’

Input file file cannot be opened.

F2007: cannot write file ‘ file ’ (errno= num)

Error of error number num occurs while file file is written.

F2010: illegal option ‘ option ’

The specification of option option is not correct.

F2011: compiler limit: too many option options [num]

The number of times option option is specified exceeds the limit.

The maximum value of this processing system is num.

F2020: compiler limit: scope level too deep [num]

The depth of the scope level exceeds the limit.

The maximum value of this processing system is 50.

F2040: compiler limit: too many parameters [num]

The number of the dummy arguments of the function is too many.

The maximum value of this processing system is 255.

F2105: compiler limit: too long file name ‘ file ’ [num]

The name of the file file is too long.

The maximum value of this processing system is 1024.

F2106: Non empty file must end in new-line character.

A file that is not vacant must be terminated with a carriage return.

F2110: unknown character ‘ character ’

An illegal character character is used.

F2112: compiler limit: too many characters in logical source line [num]

The number of characters in the logical source line exceeds the limit.

The maximum value of this processing system is 4047.

189

F2115: non-terminated string literal

“” ” closing a character string is missing.

F2120: compiler limit: preprocessor token buffer overflow [num]

The length of the expanded character string in macro definition exceeds the limit (the buffer capacity

has run short by num characters).

F2121: compiler limit: too many macro definitions [num]

The number of macro definitions exceeds the limit.

The maximum value of this processing system is num.

F2122: compiler limit: too long macro name ‘ name ’ [num]

The length of the macro name name is too long.

The maximum value of this processing system is 1023.

F2128: redeclared macro parameter ‘ name ’

The parameter name of a macro is re-defined.

F2153: unexpected non-whitespace before preprocessing directive

A character other than a blank character space exists before a preprocessing directive.

F2154: undefined control

The description of the preprocessing directive following “#” is incorrect.

F2158: compiler limit: too many include nestings [num]

The number of times of nesting of the #include directive exceeds the limit.

The maximum value of this processing system is 50.

F2160: errmsg

The error indicated by errmsg has occurred.

This message is displayed if the #error directive is used in the source program.

F2230: compiler limit: initialization nests too deep [num]

The nesting of the initializer list is too deep.

The maximum value of this processing system is 100.

F2410: compiler limit: too many case labels [num]

The number of case labels in the switch statement exceeds the limit.

The maximum value of this processing system is 1025.

F2608: cannot recover from earlier errors

The processing cannot continue as a result of the error that previously occurred.

F2620: unknown cpu type, cannot compile

Compiling cannot be executed because a target device is not specified.

F2622: duplicated cpu type

A target device specifications is duplicated by an option or the #pragma directive.

190

F2623: cannot find device file

A device file corresponding to the specified target device is not found, or a wrong target device has

been specified.

F2624: device file read error

Reading of the device file has failed.

The device file may have been destroyed.

F2625: illegal placement ‘#pragma cpu’

The position of the #pragma directive that specifies a device name is illegal.

Describe the device specification before the syntax of the C language.

F2626: illegal cpu type: type

Correspondence of device specification is not established.

Specify a device corresponding to the C compiler that is used.

F5001: unknown option ‘ option ’

An illegal option option is specified.

F5005: invalid argument of option ‘ option ’

The argument of option option is illegal.

F5104: out of memory

The memory capacity has run short.

F5106: exception exception occurred at compile time.

An exception exception related to floating-point operations occurred during compiling.

F5901: cannot open file ‘ file ’

File file cannot be opened.

F5902: cannot write file ‘ file ’ (errno= num)

Error of error number num occurs while file file is written.

F6000: cannot open file ‘ file ’

File file cannot be opened.

F6002: cannot unlink file ‘ file ’

File file cannot be deleted.

F6005: cannot write file ‘ file ’ (errno= num)

Error of error number num occurs while file file is written.

F6203: out of memory

The memory capacity has run short.

F6300: ‘-Xold_fcall’ option is not supported for V850E.

-Xold_fcall option is invalid for the V850E. * V850

191

F7000: too many errors

Compiling has stopped because errors exceeding the specified limit have occurred.

F7001: unknown option ‘ option ’

An illegal option ‘option’ has been specified.

F7002: invalid argument of option ‘ option ’

The argument of the option option is illegal.

F7003: nested command file ‘ file ’

The command file file is nested. It must not be nested.

F7004: no input file

No input file is specified.

F7005: cannot open file ‘ file ’

File file cannot be opened.

F7006: archive symbol table and archive member mismatch

An abnormality occurred in the archive symbol table.

F7007: unknown file type ‘ file ’

The file type of file is not known.

F7009: out of memory

The memory capacity has run short.

F7010: multiple defined symbol ‘ symbol ’

Multiple-defined symbol symbol exists.

F7011: duplicated cpu type

A target device is specified in duplicate by an option or the #pragma directive.

F7012: cannot write file ‘ file ’ (errno= num)

Error of error number num occurs while file file is written.

W1111: sorry, not implemented option ‘ option ’, ignored

Option option is not supported. It is ignored.

W1112: -G option needs size (>=0): ignored

Size must be specified for the -G option.

It is assumed that ∞ has been specified.

W1114: file ‘ file ’ with unknown suffix passed to ld

File file is a file with an unknown suffix. It is passed to ld.

W1116: sorry, ‘ suffix ’ file not supported, ignored

File with suffix suffix is not supported. It is ignored.

192

W1119: option1 option overrides option2 option.

Option option2 becomes invalid because option option1 is specified.

W1120: option1 option obsolete, use option2 instead

Option option1 is an option of the old version.

Use option option2.

W1122: –Ol option is valid only when optimization level is –O2 or higher.

The –Ol option is valid only if the optimization level is 2 or higher.

W1308: output file of option1 overrides output file of option2

The output file of option option1 is overwritten because the output file of option option2 is specified.

W2042: illegal argument for _rcopy()

The argument of copy routine _rcopy() is illegal.

W2127: redefined macro name ‘ name ’

Macro name name is re-defined.

The name defined later is valid.

W2132: macro recursion ‘ name ’. Macro is expanded only one time.

Macro recursion is found.

The macro is expanded only once.

W2150: unexpected character(s) following directive ‘ directive ’

An unnecessary token is found after preprocessing directive directive.

The unnecessary token is ignored.

W2161: unexpected non-whitespace before preprocessing directive

A character other than a blank character space exists before a processing directive.

W2162: unrecognized pragma directive ‘#pragma directive ’, ignored

#pragma directive is not recognized.

This pragma directive is ignored.

W2172: constant out of range

The constant value exceeds the range in which it can be expressed.

It is assumed that only the lower valid number of digits has been specified.

W2176: hexadecimal digit out of range

The range in which a hexadecimal value can be expressed is exceeded.

The last two characters are valid with this processing system.

W2212: Declaration of name hides parameter.

Because a symbol name identifical to that of the argument exists, the symbol is assumed to be valid,

and declaration of the argument is hidden.

This warning message is error message E2211 when the -ansi option is specified.

193

W2215: Undeclared function ‘ function ’ is called.

Function function that is not declared is called.

W2222: Plain int bit field is treated as unsigned int.

The bit field of plain int is regarded as unsigned int.

W2231: Initialization of non-auto pointer using non-number initializer is not position independent.

The code for an initialization directive using an initial value other than that of a pointer variable that

is not automatic variable is not position-independent.

W2244: 'Asm declaration' used out of function is not supported completely.

Use of assembler description asm described outside the function, and the assembler description

between #pragma asm and #pragma endasm is limited47.

W2245: If you want to use asm statement, use __asm().

_asm must not be used for description of an assembler instruction when the –ansi option strictly

conforming to the language specifications is used. Use __asm.

W2268: illegal use of ‘static’

Storage area class specifier “static ” is not correctly used.

W2287: Function requires return value.

No return value is specified for a function having a return value.

It is assumed that 0 is specified as the return value.

F2289: return type mismatch type1 (type2)

Type type2 of the return value indicated by the return statement does not agree with the return type

type1 of the function.

W2291: argument type mismatch type1 (type2)

Type type2 of an actual argument does not agree with type1 of the dummy argument upon declaration

of a function.

W2293: Type specifier of argument name is missing.

The type specifier of dummy argument name declared in the function definition is omitted. int type

is assumed.

This warning message is error message E2292 when the -ansi option is specified.

W2302: illegal bit-field type

A type that cannot be specified with the ANSI specifications is specified for a bit field.

Padding is executed under the alignment condition of the specified type.

This warning message is error message E2301 when the -ansi option is specified.

W2306: The bit-field object ‘ name ’ is put into the next unit.

Bit field name is located in the next area because it exceeds the boundary.

47 Refer to V800 Series C Compiler Package User’s Manual - C Language .

194

W2520: Immediate for shift operator is out of range.

The immediate value specified for the shift instruction exceeds the value of the range that can be

specified.

It is assumed that only the lower valid digits have been specified.

W2521: division by zero

Division by zero is executed during the operation of a constant expression that is executed upon

compiling.

It is assumed that 0 is specified for the constant expression.

W2525: illegal type combination for ‘ operator ’ (type1 , type2)

The combination of types (type1, type2) for operator operator is not correct. Type-conversion is

executed and processing continues.

This warning message is error message E2524 when the -ansi option is specified.

W2527: Operands of ‘ operator ’ operator must have same type (type1 , type2).

The types to the left and the right of operator operator must be the same (type1, type2).

W2554: cannot convert non-L value array to pointer

An array that is not at the left side cannot be converted into a pointer.

This warning message is error message E2553 when the -ansi option is specified.

W2555: expression expression must have enumeration type.

expression must be enum type.

W2600: ignored option ‘ option ’

Option option is ignored.

W2601: category is not supported now.

The feature indicated by category is not supported at present.

W2606: Wide-character is not supported.

The wide character is not supported and is ignored.

W2607: Multibyte-character is not supported.

The multi-byte character is not supported and is ignored.

W2621: duplicated cpu type, command line option is used

A target device is specified in duplicate. The target device specified by the -cpu option is valid.

W2634: Interrupt attribute is specified for function ‘ function ’, previously specified ‘block_interrupt’

is ignored.

Function function that is disabled from interrupts is specified as an interrupt handler.

Because the interrupt handler is disabled from interrupt, unnecessary interrupt prohibition specification

is ignored.

W2635: Interrupt attribute is already specified for function ‘ function ’, ‘block_interrupt’ is ignored.

Function function has been already declared as an interrupt handler.

Because the interrupt handler is disabled from interrupt, unnecessary interrupt prohibition specification

is ignored.

195

W2637: Interrupt function cannot be inlined, ‘inline’ is ignored.

“inline ” must not be specified for a function declared as an interrupt. The inline specification is

ignored.

W2643: Interrupt attribute is specified for function ‘ function ’, previously specified ‘inline’ is ignored.

Function function for which inline was specified is specified as an interrupt handler. The inline

specification is ignored.

W2671: Function ‘ function ’ is already defined, directive ‘#pragma inline’ is ignored.

The inline specification must be described before the function definition.

The inline specification is ignored.

W2672: ‘#pragma itext function-name’ must be placed before the function’s definition. ‘#pragma itext

function ’ is ignored.

The itext specification must be described before the function definition.

The itext specification is ignored. * V830

W2673: Function specified as ‘direct’ can not be allocated in itext. ‘#pragma itext function ’ is ignored.

Function specified as an interrupt handler in direct location cannot be allocated to .itext section.

The itext specification is ignored. * V830

W2674: Function allocated in itext can not be specified as ‘direct’. Previously specified ‘#pragma

itext function ’ is ignored.

Function specified as itext is specified as an interrupt handler in direct location.

The itext specification is ignored. * V830

W2675: Function allocated in itext can not be inlined. ‘#pragma inline function ’ is ignored.

inline cannot be specified for a function specified as itext.

The inline specification is ignored. * V830

W2676: Function allocated in itext can not be inlined. Previously specified ‘#pragma inline function ’

is ignored.

itext is specified to a function specified as inline.

The inline specification is ignored. * V830

W2683: Second argument ‘ name ’ for __set_il is not interrupt request name.

name specified as the second argument of a function that sets an interrupt level is not an interrupt

request name.

The interrupt level is not set.

W2684: cannot set interrupt level for ‘ name ’

An interrupt level cannot be set for interrupt request name name.

The interrupt level is not set.

W2690: ‘Rtos_task’ is specified for function ‘ function ’, previously specified ‘inline’ is ignored.

A function for which inline is specified is specified as a task for the RTOS. The inline specification

is ignored.

196

W2691: Startup routine for RTOS task cannot be inlined, ‘inline’ is ignored.

Inline expansion must not be specified for a function specified as a task for the RTOS.

The inline specification is ignored.

W2699: Function ‘ function ’ is undefined, previously specified GP symbol for rtos_interrupt is ignored.

The function specified as an interrupt handler with a gp symbol specified is not defined in the file.

The interrupt handler specification is invalid.

W2700: cannot specify gp symbol, function ‘ function ’ is already defined

The gp symbol cannot be specified for a function already defined.

The gp symbol specification is ignored.

W2703: GP symbol is not specified for RTOS interrupt function ‘ function ’

A gp symbol is not specified for a function function specified as an RTOS interrupt handler.

W2704: Function ‘ function ’ is undefined, previously specified ‘rtos_task’ is ignored.

Function function specified as an RTOS task is not defined in the file. The rtos_task specification

is invalid.

W2710: Section ‘ section1 ’ is already specified for ‘ symbol ’. ‘ section2 ’ is ignored.

section1 has been already specified in a section file for symbol symbol. section2 that has been

specified later is ignored.

W2711: Different section is specified for ‘ symbol ’ in source file (section1) and section file (section2).

Source file specification is ignored.

Section specification (section1) for the source file and section specification (section2) for the section

file for symbol symbol differ. The section specification (section1) for the source file is ignored.

W2730: Block interrupt function cannot be installed, ‘inline’ is ignored.

“inline ” must not be specified for a function declared to disable interrupts. inline specification is

ignored.

W2731: Block interrupt attribute is specified for function ‘ function ’, previously specified ‘inline’ is

ignored.

Function function specified as “inline ” is specified to disable interrupts. inline specification is

ignored.

W2740: ‘#pragma text function-name’ must be placed before the function’s definition. ‘#pragma text

function ’ is ignored.

The text section must be specified before the function definition. The text section specification for

a function function is ignored.

W2741: Function specified as ‘direct’ can not be allocated in text. ‘#pragma text function ’ is ignored.

The text section cannot be specified for a function specified as interrupt in direct location (direct).

The text section specification for a function function is ignored.

W2742: Function allocated in text can not be specified as ‘direct’. Previously specified ‘#pragma text

function ’ is ignored.

Function specified as text section cannot be specified as interrupt in direct location (direct). The

text section specification for a function function already specified is invalid.

197

W2743: Function allocated in text can not be inlined. ‘#pragma inline function ’ is ignored.

“inline ” cannot be specified for a function specified as text section.

The inline specification for a function function is ignored.

W2744: Function allocated in text can not be inlined. Previously specified ‘#pragma inline function ’

is ignored.

text section is specified to a function specified as inline.

The inline specification for a function function already specified is invalid.

W2748: Section name is not specified.

The section name is not specified between “ ” ” when specifying the section name of #pragma

section . It is assumed that no section name is specified, and allocated to the reserved section

of the specified attribute.

W5009: sorry, not implemented option ‘ option ’, ignored

Option option is not supported at present and is ignored.

W6101: immediate for shift operator is out of range

The value of the immediate value specified for the shift instruction exceeds the range of the value

that can be specified.

It is assumed that only the lower valid digits have been specified, and processing continues.

W6102: first argument of _rcopy() is illegal

The first argument of copy routine _rcopy() is illegal.

W7101: sorry, not implemented option ‘ option ’, ignored

Option option is not supported at present and ignored.

W7102: redeclaration of ‘ symbol ’

symbol is re-declared.

W7103: Symbol ‘ symbol ’ has different size (num1 and num2).

Different sizes (num1 and num2) of data symbol symbol are merged.

W7104: Symbol ‘ symbol ’ has different alignment size (num1 and num2). Changed to least common

multiple value (num3).

Different alignment size (num1 and num2) of data symbol symbol is merged. The size is changed

to the maximum common multiple num3.

W7105: cannot hide symbol ‘ symbol ’

Symbol symbol cannot be hidden.

W7106: Argument type mismatch is detected where ‘ caller ’ calls ‘ callee ’.

The types of the arguments of caller and callee differ during inline expansion.

If the types can be changed, they are converted into the types for definition; if not, the inline expansion

is ignored.

198

W7107: Return value type mismatch is detected where ‘ caller ’ calls ‘ callee ’.

The types of the return values of caller and callee differ during inline expansion.

If the type of callee can be changed, it is converted into the type of caller; if not, the inline expansion

is ignored.

199

VOLUME 4

HANDLING ASSEMBLER

200

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, assemble list, and output messages of the assembler (as) included

in this compiler package.

1.1 Flow of Operation

The as assembles an assembly-language source program in a specified assembler source file and creates a

relocatable object file (refer to Figure 1-1).

Figure 1-1. Flow of Operation of as

1.2 Handling File

With the as, the following file can be specified as an input file.

file.s ... assembler source file (called .s file)

• The relocatable object file created by the as has a name created from the name of the input file1 (by replacing

.s with .o).

• If the relocatable object file created by the as includes an unresolved external reference, the relocation for

it remains unresolved.

• An executable object file resolving all relocations (called execution format) is created by linking the relocatable

object file by using the link editor (ld) included in this compiler package.

1 If the specified file is not an .s file, .o is suffixed to the name of the specified file.

as

Assembler source file Relocatable object file

201

CHAPTER 2 OPERATION

This chapter explains how to operate the as.

2.1 Command Input Format from VSH Command Line

The as is started from the ca as the default assumption. It can also be started in the following format.

as [option] ... file name

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists the options of the as.

To pass the following options from the ca to as as they are, “-Wa” must be specified with the ca when starting

from VSH.

Some options, which are listed on the following options but not present in the option dialog in the Project

Manager, exist. When such options are required to be specified, start the as from VSH.

(1) Optimization option

This specification sets option related to optimization.

Specification Format Feature

–O Performs optimization to rearrange instructions while avoiding hazards related to registers and flags

(refer to -g option).

202

(2) Output options

These specifications set options related to object code that is output by the assembler.

Specification Format Feature

–E * V830 This option specifies inheritance of V810 Family instructions for assembly.

The output instruction code is the same as the V810 Family’s floating-point operation instruction and

bit string instruction and an emulation library is used for processing.

If this option is omitted, the V810 Family’s floating-point operation instruction and bit string instruction

produce an error.

This option can be specified only when starting from VSH.

–Gnum This option specifies that machine-language instructions are created5 based on the assumption that

“all data whose size is no larger than num bytes2 is allocated either to an sdata-attribute section3 or

a sbss-attribute section4” when accessing external labels.

If this option is omitted, num is regarded as infinity (∞).

However, in the case of data for which the sdata option has been specified by the .option pseudo-

instruction6, this option specifies that machine-language instructions are created based on the assumption

that all data, regardless of its size, is allocated either to an sdata-attribute section or a sbss-attribute

section.

–a This option creates an assemble list.

However, if the -O option has also been specified, the code scheduling may produce unreliable results

in at least part of the output assemble list.

–cn This option embeds a family’s “common magic number” value as the magic number for the object

being created. This means that the object can be used as a common object within that family (refer

to page 205).

If this option is omitted, the object becomes fixed as a device type so a magic number defined for a

specific model will be embedded.

–cnv850e * V850 This option embeds a “common magic number” value for the V850E as the magic number for the

object being created. This means that the object can only be used as a common object belonging

to the V850E (refer to page 205).

If this option is omitted, the object becomes fixed as a device type so a magic number defined for a

specific model will be embedded.

–f This option creates an object file that includes the information “this is a function call for a new format”.

This is valid when using an assembler source file that was created for the V850 Family by an old

version of the C compiler or when using an assembler source file that was created for the V850

Family by an old version of the C compiler under the V810 Family7.

–g This option outputs information for the debugger.

This option is ignored if the -O option has also been specified and if the source file contains debugging

information sections8. If it does not contain debugging information sections, this option is valid but

the -O option is ignored.

This is equivalent to specifying “Debug” from the Option menu when the Project Manager is used.

2 Specify a decimal number for num.
3 Section having section type PROGBITS and section attribute AWG
4 Section having section type NOBITS and section attribute AWG
5 If activated from the C compiler (ca), the -Gnum option that was specified during C compiler startup is passed.
6 Refer to User’s Manual - Assembly Language .
7 Refer to V800 Series C Compiler Package User’s Manual - C Language .
8 The sections are defined by the pseudo-instructions .vline , .vdebug , and .vdbstrtab (refer to User’s Manual - Assembly Language). Debugging

information sections are always created for assembler source that are output by ca by specifying the -g option. as ignores the -g option and
regards the -O option as valid when the assembler source code has been output by ca or includes intentionally defined debugging information
sections. In all other cases, the -O option is ignored and the -g option is regarded as valid.

203

Specification Format Feature

–m This option creates an object file that contains information that a mask register function7 is being

used. This is valid when using an assembler source file that was created by an old version of the C

compiler.

–p[num] * V850 This option outputs code that avoids CPU faults. The type of code that can be output is specified as

num (refer to page 206).

If num is omitted, output of all three types of code is set by default.

The -O option is ignored when this option has been specified.

(3) Message options

These options are set for messages output during assembly.

Specification Format Feature

–V This option outputs the as’s version number to standard output and then terminates processing.

This option can be specified only when starting from VSH.

–v This option outputs the as’s execution status.

–w This option does not output warning message when r1 has been specified as the source register or

the destination register, when r0 has been specified as the destination register, when r20 or r21 has

been specified as the destination register when using the mask register function, or, under as830,

when r30 has been specified as the destination register for the mul, mulu, div, or divu instruction.

204

(4) Other options

These specifications set other options.

Specification Format Feature

–F devpath This option sets the device file search to begin in the devpath directory before going to the standard

directories9.

If this option is omitted, the search goes directly to the standard directories.

If the as is started from the ca, ca’s -devpath is specified.

When the command is started from the option dialog, the device file’s installation directory is automatically

set for this option, so this option can be specified only when starting from VSH.

–I dir This option sets a search for any file input by the .include or .binclude pseudo-instruction10 to begin

in the dir directory before going to the directory where the source files are placed.

If this option is omitted, only the directory where the source files are placed is searched.

–cpu devicename This option specifies the target device. When using the Project Manager, this is equivalent to specifying

the device during a project setup.

If this option is omitted, assembly is stopped unless this option has been specified by the .option

pseudo-instruction11.

–l lfile lfile specifies the name of a file which receives the assemble list that is created when the -a option

has been specified.

If the -a option has not been specified, this option is invalid.

If this option is omitted and the -a option has been specified, the created assemble list is output to

standard output.

–o ofile This is the name of the object file from which ofile is created. If this option is omitted, the extension

.s is replaced by .o so that the created object file name is created from the name of the input file12.

This option can be specified only when starting from VSH.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

9 The as handles the directory at the ..\dev position from the as’s installation directory as the standard directory of the device file.
10 Refer to User’s Manual - Assembly Language .
11 This option can be specified by the -cpu option or the .option pseudo-instruction. If both are specified but have different contents, specification

by the -cpu option takes priority. For details of pseudo-instructions, refer to C Compiler Package User’s Manual - Assembly Language of
each family.
Refer to the device file’s User’s Manual for description of devices that can be specified as devicefile.

12 The output object name cannot be specified from the Project Manager’s option dialog. The file name is always created from the name of input
file by replacing the .s extension with .o.

205

[-cn option]

Information indicating the target devices for an object are automatically embedded into objects created by the

assembler. A “model-specific magic number” is embedded if only a particular type of device is the target device.

If an entire family of devices can serve as target devices, then a “common magic number” is embedded.

An object that has been assembled by as when the -cn option has been specified contains a common magic

number and therefore can be linked to other objects for which a different device type has been specified as long

as the specified device belongs to the same family (ld does not output an error when they are linked). Consequently,

any object that is created after the -cn option has been specified can be used as an object common to any device

in the specified device’s family.

Figure 2-1. Image of Creating Common Object with as

Cautions

• It is not possible to link only these types of objects to create an “executable” object file. An executable

object file must contain an object file that includes a model-specific magic number.

• Common (same-family) magic numbers and model-specific magic numbers are defined for various device

files to establish relationships among the device files. The as references the device files and embeds the

magic numbers.

• Object files that operate device-specific peripheral function registers, etc., should not be used as common

files within the same family.

• The V850E is upwardly compatible with the V850 Family. Source files that are used with the V850 Family

(such as the V853) can be used with the V850E CPU (such as the V850E/MS1).

In such cases, specify the “-cn” option or the “-cnv850e” option before creating an object. The created

object can be linked with a device-specific object whose target device is a V850E.

Note that an object that is created with “-cnv850e” cannot be linked with a device-specific object whose

target device is anything other than a V850E.

as850 -cn

.o

Device specification A
Common magic number:

0x70FF

.o

Device specification C
Model-specific magic number:

0x70D1

.o.o

Device specification B
Model-specific magic number:

0x70D0

Link

Link

Executable
object file

206

as850 -cnv850e

Common to V850E

.o.o

.o.o

as850 -cpu 3101

as850 -cn

as850 -cpu 3000

Common to V850 Family

V850E device specification V851 device specification

[–p option] * V850

The CA850 supplies –Xv850patch option to the ca850 and –p option to the as850 to avoid the faults of the

V850 Family CPU. If the –Xv850patch option is specified with the ca850 when starting the as850 from the ca850,

the –p option having the same num is automatically set by the as850 to the assembler source file output by the

ca850.

Cautions

• For whether the fault that has occurred is of the CPU used, refer to the documents supplied with the CPU.

• If the –p option and –O option for optimization of the as are specified at the same time, –p takes precedence,

and –O is ignored.

• If a code pattern that generates a fault straddles over different sections, the function of this option is invalid.

The type and meaning of num are as follows.

For the instructions and registers, refer to the manual of each CPU.

1 (–Xv850patch = 1 → –p1)

Insert a nop instruction immediately after the first ld.w in respect to the combination of "ld.w instruction +

(st.[b|h|w]/sst.[b|h|w] instruction + ld.[b|w]/sld.[b|w] instruction) + branch instruction".

Example>

ld.w ld.w

ld.w → nop

jarl ld.w

jarl

2 (–Xv850patch = 2 → –p2)

Insert a nop instruction between the load/store instruction and branch instruction in respect to the combination

of "ld.w/sld.w/st.w/sst.w instruction + branch instruction".

Example>

ld.w ld.w

jarl → nop

jarl

If the pattern of num = 1 is processed at the same time, the pattern of num = 2 is searched and processed first.

An unnecessary nop instruction needs not to be inserted.

207

3 (–Xv850patch = 3 → –p3)

Insert the clr1 instruction in respect to the corresponding interrupt control register immediately before the reti

instruction.

Example>

reti → clr1 5, P0IC0

reti

None (–Xv850patch → –p)

Inserts each code to all the types 1 through 3.

2.3 Example

Here are some examples of using the as:

• To create assemble list

as850 -cpu 3000 -a -l afile a.s

Assembler source file a.s is assembled and object file a.o is created. At this time, an assemble list is

created and included in a file named afile. The V851 is used as the target device.

• To specify created object file name

as850 -cpu 3000 -o aobj a.s

Assembler source file a.s is assembled and object file aobj is created.

208

CHAPTER 3 ASSEMBLE LIST

This chapter explains the assemble list output by the as.

The as outputs an assemble list by specifying a option.

When specifying with option dialog, the assemble list is output to the file which has the file name with its

extension replaced with .v. When starting from VSH, if -l option is specified, the assemble list is output to the file

specified by -l option. If -l option is not specified, the assemble list is output to standard output.

Figure 3-1 shows an example of the assemble list that is output by compiling C source program “main(){int

a;} ” and then assembling the output assembly-language source program.

Figure 3-1. Example of Output Assemble List

(1) (2) (3) (4) (5)

 :

A-X- 00000000 16 .file "a.c"

A-X- 00000000 17 .align 4

A-X- 00000000 18 #@BF

A-X- 00000000 19 .frame _main, .F2

A-X- 00000000 20 .globl _main

A-X- 00000000 21 _main:

A-X- 00000000 0C8A 22 jbr .L4

A-X- 00000002 23 .L5:

A-X- 00000002 4001 24 mov r0, r10

A-X- 00000004 E3CF0000 25 ld.w –4+.F2[sp], lp

A-X- 00000008 6444 26 add .F2, sp

A-X- 0000000A 1F18 27 jmp [lp] --1

A-X- 0000000C 28 .L4:

A-X- 0000000C 29 sub .F2, sp

A-X- 0000000C 2440 -- mov 0x4,r1

A-X- 0000000E 6108 -- sub r1,sp

A-X- 00000010 E3DF0000 30 st.w lp, -4+.F2[sp]

A-X- 00000014 EE8B 31 jbr .L5

A-X- 00000016 32 #@FUNC_ARG

209

The following information is indicated in the assemble list.

(1) Section attribute

The section attribute of the section to which the codes created for the source program on a given line are

stored (refer to Table 3-1).

Table 3-1. Section Attributes and Their Meanings

Section Attribute Meaning

A Section occupying memory

W Section that can be written

X Executable section

G Section allocated to memory range that can be referenced by using global pointer (gp) and 16-bit displacement

(2) Value of location counter

The value of the location counter for the beginning of the code created for the source program on a given

line.

(3) Code

The code13 created for the source program on a given line with each byte expressed as a 2-digit hexadecimal

number.

(4) Line number

The line number of a given line in decimal number.

(5) Source program

The source program on a given line. If instruction expansion14 is executed to the instruction on that line,

the result of disassembling the instruction string of the machine language instructions created as a result

of the instruction expansion is indicated following – –.

13 Machine language instruction or data
14 Refer to C Compiler Package User’s Manual - Assembly Language of each family.

210

CHAPTER 4 MESSAGES

This chapter lists the messages output by the as in alphabetical order. Some messages are not output depending

on the family used. The italic characters in the output messages and explanatory statements are determined

during command processing.

4.1 Message Format

The as outputs the messages in the following formats.

as: file name

message

4.2 Messages

$ must be followed by defined symbol

An identification name other than a symbol or undefined symbol name is specified after “$”.

.else unexpected

The pseudo-instruction corresponding to the .else pseudo-instruction does not exist.

.endif unexpected

The pseudo-instruction corresponding to the .endif pseudo-instruction does not exist.

.endif unmatched

The pseudo-instruction corresponding to the conditional assemble pseudo-instruction does not exist.

.endm unexpected

The pseudo-instruction corresponding to the .endm pseudo-instruction does not exist.

.exitm not in .repeat/.irepeat

The .exitm pseudo-instruction is not enclosed by repetitive assemble pseudo-instructions.

.exitma not in .repeat/.irepeat

The .exitma pseudo-instruction is not enclosed by repetitive assemble pseudo-instructions.

.if, .ifn, etc. too deeply nested

A conditional assemble pseudo-instruction is nested 17 times or more.

.option volatile not found

The assembler control pseudo-instructions .option volatile (nooptimize) and .option novolatile

(optimize) are not used in correct correspondence.

.tidata size overflow

The total size of the .tidata.byte section, .tidata.word section, and .tidata section exceeds 256 bytes. * V850

211

.tidata.byte size overflow

The size of the .tidata.byte section exceeds 128 bytes. * V850

.tidata.word size overflow

The size of the .tidata.word section exceeds 256 bytes. * V850

can not find device file

Either the device file corresponding to the specified target device is missing, or the specified device is

wrong. Or, no device is specified.

can not open file file

File file cannot be opened.

close error

The file cannot be closed.

The chances are that the disk capacity has run short.

duplicated cpu type

A target device is specified in duplicate by an option or pseudo-instruction.

duplicated cpu type, ignored .option cpu

The target device specified by the -cpu option differs from that specified by the .option pseudo-instruction.

The -cpu option takes precedence, and the target device specified by the .option pseudo-instruction is

ignored.

floating exception (function)

An error of a floating-point operation occurs in the function function of the floating-point operation library

internally used by the as.

illegal alignment value

The specification of the alignment condition contains an error.

illegal bit width

The bit width specified by the .byte, .hword, or .word pseudo-instruction is wrong.

illegal character

A character that cannot be handled appears.

illegal expression

The syntax of the expression is incorrect.

illegal expression (string)

The element string of the expression is erroneous.

illegal expression (-label)

An expression in the format of (-label) is used.

illegal expression (-label -label)

An expression in the format of (-label -label) is used.

212

illegal expression (-label or symbol -label)

An expression in the format of (-label) or (symbol - label) is used.

illegal expression (label + label)

An expression in the format of (label + label) is used.

illegal expression (labels have different reference types)

An operation is specified between label references of different formats (#label, label, and $label).

illegal expression (labels in different sections)

An operation is specified between labels belonging to different sections.

illegal expression (labels must be defined)

Define an operation between labels in the same file.

illegal expression (not + nor –)

An operation other than + and – is used.

illegal operand (cannot use r0 as destination in V850E mode)

When the target device is V850E, the zero register (r0) cannot be used for the destination register.

illegal operand (inconsistent bit position)

The bit position is inconsistent.

illegal operand (identifier is reserved word)

Reserved word identifier is used as a name.

illegal operand (label - label)

An expression in the format of (label - label) is specified for a branch instruction.

illegal operand (label not allowed)

A label is specified for an instruction for which a label must not be specified as an operand.

illegal operand (label not allowed for setf/shl ...)

A label is specified for the setf or shift instruction.

illegal operand (label reference for jmp must be #label)

Absolute address reference (#label) is not specified for the jmp instruction.

illegal operand (must be evaluated positive or zero)

The result of evaluating an expression is negative.

illegal operand (must be even displacement)

An odd displacement is specified.

illegal operand (must be immediate, label or symbol for hi/lo/hi1)

Immediate, label, or symbol is not specified for hi, lo, and hi1.

213

illegal operand (must be register)

A register is not specified.

illegal operand (needs base register)

A base register must be specified.

illegal operand (range error in displacement)

The value specified as displacement exceeds the range of the value that can be specified.

illegal operand (range error in immediate)

The value specified as immediate exceeds the range of the value that can be specified.

illegal origin value (value)

The value specified (value) for the .org pseudo-instruction is wrong.

illegal section

An instruction that must not be described in the current section is described.

illegal section kind

The specified type of the section of the .section pseudo-instruction is wrong.

illegal size value

The specified size is wrong.

illegal symbol reference ($symbol)

“$” is specified for a symbol.

illegal symbol reference (#symbol)

“#” is specified for a symbol.

include nest over

The .include statements are nested nine times or more.

identifier is reserved word

Reserved word identifier is used at a location where reserved words must not be used.

label identifier redefined

Label identifier is defined more than once.

memory allocation fault

The memory capacity runs short.

memory allocation fault (icode)

Allocating an internal data area (intermediate code) has failed.

memory allocation fault (icode table)

Allocating an internal data area (intermediate code table) has failed.

214

memory allocation fault (section list)

Allocating an internal data area (section list) has failed.

memory allocation fault (section name buffer)

Allocating an internal data area (section name buffer) has failed.

memory allocation fault (section table)

Allocating an internal data area (section table) has failed.

memory allocation fault (source file buffer)

Allocating an internal data area (source file buffer) has failed.

memory allocation fault (string table)

Allocating an internal data area (string table) has failed.

memory allocation fault (symbol table)

Allocating an internal data area (symbol table) has failed.

nested command file file

Command file file is nested.

It must not be nested.

overflow error (exprtab)

The work area for processing an expression has run short.

Simplify the expression.

overflow error (too many expression items)

The work area for processing an expression has run short.

Simplify the expression.

parameter mismatch

The number of actual parameters is insufficient for macro call.

parameter table overflow

More than 33 actual parameters are used.

read error

The file cannot be read.

seek error

The file cannot be sought.

symbol already defined as label

The specified symbol has been already defined as a label.

syntax error

The syntax is wrong.

215

syntax error string

The syntax of string is wrong.

token too long

The length of the token exceeds the limit. The limit value is 1024.

too many files

Two or more files must not be specified.

identifier undefined

Undefined identifier identifier is referenced.

unexpected EOF in .macro

The corresponding .endm pseudo-instruction does not exist.

unexpected EOF in .repeat/.irepeat

The corresponding .endm does not exist.

unknown cpu type

Assembly cannot be executed because no target device is specified.

unreasonable macro_call nesting

The currently defined macro in a macro body is called.

usage: as [-cpu cpuname][-F devicefile][-Gnum][-cn][-OVavw][-l listfile][-o output file] file

Input the command line like this.

volatile option must be cleared before section change

Do not execute section change in a range in which volatile or nooptimize is specified.

Warning: base register is ep (r30) only

A register other than ep is specified as the base register of the sld/sst instruction.

Warning: illegal operand (range error in displacement)

The value of the displacement exceeds the range of the value that can be specified.

It is assumed that only the lower valid digits have been specified, and assembly continues.

Warning: illegal operand (range error in immediate)

The value of the immediate exceeds the range of the value that can be specified.

It is assumed that only the lower valid digits have been specified, and assembly continues.

Warning: illegal operand (range error in immediate for setf/shl...)

The value of the immediate specified for the setf or shift instruction exceeds the range of the value that can

be specified.

It is assumed that only the lower valid digits have been specified, and assembly continues.

Warning: illegal regID for ldsr

A reserved register number or a register number inhibited from being accessed is specified as the second

operand of the ldsr instruction.

216

Warning: illegal regID for stsr

A reserved register number is specified as the first operand of the stsr instruction.

Warning: mask register r20 or r21 used as destination register

A mask register (r20 or r21) is used as a destination register when the mask register function is used.

Warning: register r0 used as destination register

The zero register (r0) is used as a destination register.

Warning: register r1 used as destination register

An assembler-reserved register (r1) is used as a destination register.

Warning: register r1 used as source register

An assembler-reserved register (r1) is used as a source register.

Warning: register r30 used as destination register of mul/div/mulu/divu instruction

An instruction work register (r30) is used as the destination register of the mul, div, mulu, or divu instruction.

* V830

Warning: sorry, string option not implemented, ignored

The string option is not implemented and is ignored.

write error

The file cannot be written.

217

VOLUME 5

HANDLING LINK EDITOR

218

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, link directive, link map, supplementary information, and output

messages of the link editor (ld) included in this compiler package.

1.1 Flow of Operation

Generally, an application program of a certain size is divided into several source files and codes so that it can

be easily handled.

Because the ca starts the as and ld internally, an executable object file can be created by inputting two or

more source files and (relocatable) object files. However, each source file can also be compiled and assembled

without starting the as and ld. When each source file is compiled and assembled, the created object files are

linked by starting the ld.

In the Project Manager, normally, <<Build>> or <<Rebuild>> is activated to the ld and the build specifying

“o.file” by <<Build Target>> makes each object (refer to Volume 2 and Project Manager User’s Manual). Attention

should not be paid as much as when starting from VSH.

The feature of the ld is to link specified object files in accordance with an explicitly specified link directive or

the default link directive and a device file, resolve addresses, and create an executable object file.

To resolve an unresolved external reference1, a specified archive file (library file) is searched, and only the

necessary object files are linked to create an executable object file2, a.out3 (refer to Figures 1-1 and 1-2).

1 Symbol having the binding class of GLOBAL and the section header table index of UNDEF.
2 When starting from VSH, a relocatable object file can be also created by using the -r option.
3 When starting from VSH, the name of the default if a.out, however, creating executable object file name can be specified by using -o option.

When starting from Project Manager, the creating executable file name is file name with “.OUT” at the top of <<source list>>.

.c

.s

.o

ca

.s .o

as ld
a.out

.c

.s

.o

ca

as
.o

ld
a.out

Batch processing Modular processing

219

Figure 1-1. Flow of Operation by ld

Figure 1-2. Example of Image of Operation by ld

In the case of > ld a.o b.o c.o lib.a

Section 1
Section 2

a.o

Section 1
Section 2

b.o

Section 1
Section 3

c.o

Section 1
Section 2

lib.a

Id

Directive file Device file

a.out

Segment 1

Segment 2

Segment 3

Section 1 of lib.a
Section 1 of c.o
Section 1 of b.o
Section 1 of a.o

Section 2 of lib.a
Section 2 of b.o
Section 2 of a.o

Section 3 of c.o

Higher

Lower

Higher

Lower
Establishes relation between
sections and segments, and
references address

Object file

Object file

Archive file

Directive file Device file

ld

Object file

220

1.1.1 Link procedure

The procedure of link by the ld is as follows:

(1) Links a section (input section) included in a specified object file in accordance with an explicitly specified

or default link directive and device file, and creates an output section organizing an object file to be

created (refer to 3.5 on page 278).

4 The minimum unit for loading a program to memory, it is reflected in the program header of the created object file.

(2) Links the output section created in the above mentioned step in accordance with an explicitly specified or

default link directive and creates a segment4 (refer to 3.4 and 3.5 on pages 264 and 278).

(3) Allocates the segment created in the above mentioned step to the memory space of the target machine

in accordance with an explicitly specified or default link directive and device file (refer to 3.4 on page 264).

.text section

Input object file

.sdata section

.text section

.sbss section

file.o

In
pu

t s
ec

tio
n

func.o
in lib.a

.text section

Output object file

.sbss section

.sdata section

O
ut

pu
t s

ec
tio

n

a.out

O
ut

pu
t s

ec
tio

n

Output object file
a.out

.sdata section

.sbss section

a.out

.sbss section

.sdata section DATA segment

.text section .text section TEXT segment

0xFF0000

0x100000

221

(4) Resolves unresolved external reference in the output section.

(5) Creates the following three types of symbols for the subject segment in accordance with an explicitly

specified or default link directive5 (refer to 3.6 on page 290):

• Text pointer symbol having an address value to be set to the text pointer (tp)

• Global pointer symbol having an address value to be set to the global pointer (gp), or an offset value

from the text pointer (tp) of the address value to be set

• Element pointer symbol having an element pointer (ep * V850) as the address value to be set

(6) Creates reserved symbols having the values of the first address of each output section, the first address

(aligned under a 4-byte alignment condition) that exceeds the end of each output section, and the first

address (aligned under a 4-byte alignment condition) that exceeds the end of the created and executable

object file (refer to 5.2 on page 320).

5 These symbols are used to set appropriate values to the text pointer (tp), global pointer (gp), and element pointer (ep) before executing the
codes created by this compiler package (e.g., in the start-up module). The element pointer symbol is set by the ld by reading the values
peculiar to the target device from a specified device file.

222

CHAPTER 2 OPERATION

This chapter explains how to operate the ld.

2.1 Command Input Format from VSH Command Line

ld [option]... file name[file name]...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists the options of the ld.

For the details of each option, refer to 2.2.2 on page 226.

The options marked “**” require “-Wl” to be specified for the ca when the ld is started from the ca by VSH

command line or when these options are to be passed from the ca to ld (refer to page 153).

Some options, which are listed on the following options but not present in the option dialog in the Project

Manager, exist. When such options are required to be specified, start the ld from VSH.

223

(1) File options

These specifications set options related to files referenced by the ld.

Specification Format Feature

–D dfile** When this option has been specified, links are made according to the link directive in the directive

file dfile.

If this option is omitted, the default link directive is used.

–F devpath This option sets the device file search to begin in the devpath directory before going to the standard

directories6.

If this option is omitted, the search goes directly to the standard directories.

If the ld is started from the ca, the ca’s -devpath is specified.

When the command is started from the option dialog, the device file’s installation directory is automatically

set for this option, so this option can be specified only when starting from VSH.

–Ldir If the -l option is specified with this option (or after this option in the case of VSH), the archive file

(also called library file) specified by the -l option is searched for in the directory dir first and then in

the standard directories7.

If this option is omitted, only the standard directories are searched.

–cpu devicename This option specifies that the device file for the target device specified by devicename will be read8.

When using the Project Manager, this is equivalent to specifying the device during a project setup.

If this option is omitted, the device file for the target device specified when the .o file was created will

be read.

–lstring When resolving an unresolved external symbol reference, this option references archive file libstring.a.

If several archive files are specified by this option, the files are searched in the order of their specification9.

–ol * V850 This option references the library containing old function call specifications10.

If this option is omitted, it references the library containing new function call specifications.

This option can be specified only when starting from VSH.

@cfile** This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

6 ld handles the directory at the ..\dev position from the ld’s installation directory as the standard directory of the device file.
7 ld handles all directories from the ld’s installation directory to the directory at the ..\libxxx position and the directory at the ..\libxxx\r32 position

as the standard directories for libraries.
8 Refer to the device file’s User’s Manual for description of device types that can be specified as devicename.
9 Specify library links after the object file links. Also, specify the “-lc” link for standard libraries after the “-lm” link for mathematical libraries (in

the order of “m;c” in the option dialog).
10 Refer to V800 Series C Compiler Package User’s Manual - C Language .

224

(2) Check options

These specifications set check-related options for linking.

Specification Format Feature

–E** This option ignores several kinds of errors that occur during relocation processing.

If this option is omitted, a message is output and link processing stops.

–M This option outputs a message to all external symbols defined in duplicate and stops link processing.

If this option is omitted, a message is output to the first external symbol defined in duplicate and link

processing is stopped.

–T This option does not check symbol size and alignment condition during linkage of external symbols.

–fc This option checks whether or not old call specifications11 are mixed with new call specifications in

all input object files.

If this option is omitted, only the object files created from the C source files are checked.

–mc This option checks whether or not the files that use the mask register function11 are mixed with files

that do not use this function when linking the object files created from the C source files. Link

processing is stopped if they are found to be mixed.

This option can be specified only when starting from VSH.

–t** This option does not check symbol size and alignment condition during linkage of undefined external

symbols12.

(3) Message options

These options are set in relation to messages output during linkage.

Specification Format Feature

–v This option outputs ld’s execution status.

–w This option does not output a warning message.

11 Refer to V800 Series C Compiler Package User’s Manual - C Language .
12 Symbols having the binding class of GLOBAL and section header table index of GPCOMMON or COMMON

225

(4) Other options

These specifications set other options.

Specification Format Feature

–A This option outputs to standard output information that can be used as a criterion for setting num in

the -Gnum option that can be specified for ca and as when compiling and assembling source files13.

This option can be specified only when starting from VSH.

–V** This option outputs ld’s version number to standard output and then terminates processing.

This option can be specified only when starting from VSH.

–e symbol** This is the entry point address value for the object file from which a symbol value symbol is created.

If this option is omitted, the symbol ___start value or the lowest address value from the created

object file is used as the entry point address value.

–f num This option uses a two-byte num value (a four-digit hexadecimal number) as a filling value for any

holes that occur in created object files.

If this option is omitted, 0x0000 is assumed.

–help** This option outputs a description of options to standard output.

This option can be specified only when starting from VSH.

–m** This option outputs a link map showing the location of sections to standard output.

–o ofile This option specifies ofile as the name of the object file to be created.

If this option is omitted, a.out is assumed14.

This option can be specified only when starting from VSH.

–r This option creates a relocatable object file.

If this option is omitted, an executable object file is created.

This option can be specified only when starting from VSH.

–regnum This option specifies the register mode15 of the library to be referenced. The following numbers can

be specified as num.

22 22-register mode

26 26-register mode

If this option is omitted, the 32-register mode library is referenced.

–s This option creates an object file, removing the debug information, line number information, and

global pointer table, in creating the object file.

13 If started from the ca, the -A option that was specified during ca startup is passed.
14 The executable object file name to be output cannot be specified from the Project Manager’s option dialog. Instead, the “.out” extension is

added to the first file in the source list, from which the suffix has been removed.
15 Refer to V800 Series C Compiler Package User’s Manual - C Language .

226

2.2.2 Using options

This section explains how to use each option.

(1) A: Output of information on -G num option for compiler and assembler

Format

-A

• This option can be specified only at the start from VSH.

Feature

Outputs to the standard output the information that can be used as criteria on the value to be set to

num of the -Gnum option that can be specified for ca and as when the source file16 is compiled and

assembled.

• The ca and as included in this compiler package generates machine language instructions as follows:

– For data to be allocated to the sdata-attribute section17 or sbss-attribute section18 (called sdata/

sbss-attribute section), generates a machine language instruction that is assumed to be allocated

to a memory range that can be referenced by using the global pointer (gp) and 16-bit displacement.

– For data to be allocated to the gp relative section21 of the data-attribute section19 or bss-attribute

section20 (called data/bss-attribute section), generates a machine language instruction that is

assumed to be allocated to a memory range that can be referenced by using the global pointer

(gp) and 32-bit displacement (consisting of two or more instructions).

Figure 2-1. Image of Memory Location of gp Offset Reference Section

Therefore, the more the data are allocated to the sdata/sbss-attribute section that can be referenced

with a single instruction, the higher is the execution efficiency of the generated machine language

instruction and the object efficiency. However, because a memory range that can be referenced by

using 16-bit displacement is limited (totalling 64 Kbytes), if the sdata/sbss-attribute section is allocated

exceeding that range22, the assumption of ca and as is not satisfied.

16 C source file or assembler source file used to create a specified object file
17 Section having section type PROGBITS and section attribute AWG
18 Section having section type NOBITS and section attribute AWG
19 Section having section type PROGBITS and section attribute AW
20 Section having section type NOBITS and section attribute AW
21 For example, .data and .bss sections. .sconst, etc., of r0 relative are excluded.
22 In this case, the ld outputs no special message. For confirmation, use the link map, etc. (refer to Chapter 4 on page 318). The ld outputs a

message during relocation and stops linking if data allocated to an area exceeding this range is referenced.

Higher address

bss-attribute section

sbss-attribute section

sdata-attribute section

data-attribute section

Lower address

gp

Data without initial value

Data with initial value
* gp indicates the position of

the first of the sdata-attribute
section + 32 Kbytes.

227

• To solve this problem, the ca allocates data of less than num bytes to the sdata/sbss-attribute section

when the -Gnum option is specified, and the as generates a machine language instruction that

assumes that data of more than num bytes is allocated to the sdata/sbss-attribute section.

By using this feature, as many data as possible can be allocated to the sdata/sbss-attribute section

if all data cannot be allocated to that section.

If this option is specified, the ld outputs information that can be used as the criteria upon setting

num. By using this information, you can reduce the number of trials and errors, and enhance the

efficiency for the series of processes.

Explanation on output information

An example of output information where this option is specified when creating an executable object file

(without the -r option specified) and an example of output information when this option is specified

when a relocatable object file (with the -r option specified) is created are shown below.

Example of output information on executable object file>

******** LINK EDITOR GP INFORMATION ********

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

_gp_DATA

.sdata 0x000af10

0x00002000 4 *OK*

0x00003450 8 *OK*

0x00004430 12 *OK*

0x000050a8 16 *OK*

0x00007b40 20 *OK*

0x0000a010 24

0x0000af10 32

.sbss 0x00012050

0x00000050 4 *OK*

0x00002050 16 *OK*

0x00007050 512 *OK*

0x00010050 1024

(a) (b) (c) (d) (e) (f)

228

Example of output information on relocatable object file 23>

******** LINK EDITOR GP INFORMATION ********

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

(NOT AVAILABLE)

.sdata 0x000af10

0x00002000 4 *OK*

0x00003450 8 *OK*

0x00004430 12 *OK*

0x000050a8 16 *OK*

0x00007b40 20 *OK*

0x0000a010 24

0x0000af10 32

.sbss 0x00002050

0x00000050 4 *OK*

0x00002050 16 *OK*

GpCommon 0x00010000

0x00005000 512 *OK*

0x00010000 1024

(a) (b) (c) (d) (e) (f)

The meaning of each item of the output information is as follows:

(a) Name of global pointer symbol

The name of the global pointer symbol (refer to 3.6 on page 290) used for link. If the created object

file is relocatable, “*(NOTAVA ILABLE)*” is displayed.

(b) Section name

The name of the sdata/sbss-attribute section to which data are allocated. Because a relocatable

object file cannot determine allocation of an undefined external symbol to a section, the ld internally

creates a virtual section “*GpCommon*” and temporarily allocates the data to this section.

(c) Actual size of section

The actual size of the section for which the area of the hole generated due to data alignment is

considered.

(d) Assumed size of section

The size of the section that is assumed if the ca is started with the -Gnum option specified with the

value shown in the column at the right to this column is specified as num. Because the calculation

of this size assumes an alignment condition of more than 4 bytes without taking the actual alignment

condition into consideration, the value shown in this column does not necessarily agree with the

actual size of the section actually created.

23 Object file with the -r option specified

229

(e) Value of num of -G num option assumed

The value of the -Gnum option num upon starting ca and as that is assumed as a result of calculating

“assumed size of section” shown on the column at the left to this column.

(f) Judgment result

Result of judgment as to whether the size of the section falls in a range of 15 bits (0x0 to 0x7fff)

if the ca is started with the -Gnum option specified with the value shown in the column at the left

to this column as specified as num24. If the size falls in the range, “*OK*” is displayed; if it does

not, nothing is displayed.

Default assumption

Does not output.

Caution

• The information output by this option is only a criterion, and the result of the judgment may not be

correct, for example, in the following cases:

– If a section that creates a hole is specified by a link directive, etc.

– If an address is directly specified for a global pointer symbol.

– If data is allocated to the .sdata/.sbss section by the #pragma section directive25.

Example

• ld850 -A file1.o file2.o

file1.o and file2.o are linked and information that can be used as a criterion upon setting num of the

-Gnum option that can be specified for the ca or as upon compiling or assembling is output to the

standard output.

24 Because this compiler package usually assumes that the sections to which data are allocated are allocated from the lower address in the order
of data/sdata/sbss/bss-attribute sections, and that the global pointer (gp) is set by the start-up module so that it indicates it can be considered
first address of the sbss-attribute section + 32 Kbytes, if this judgment results in OK that the sdata/sbss-attribute section is allocated to a
memory range that can be referenced by using 16-bit displacement.

25 Refer to V800 Series C Compiler Package User’s Manual - C Language .

230

(2) D: Specifies link directive

Format

-D dfile

• -D must be followed by a blank space.

Feature

Links object files in accordance with the link directive in directive file dfile.

• For the feature and configuration of the link directive, refer to Chapter 3 on page 254.

Default assumption

Links object files in accordance with the default link directive (refer to pages 306, 310, and 312) of each

family.

Example

• ld850 -D dfile file1.o file2.o

Links object files file1.o and file2.o in accordance with the link directive in directive file dfile.

231

(3) E: Specifies ignoring error during relocation

Format

-E

Feature

A message such as that shown below is output and linking continues if the value resulting from calculation

of an address of an unresolved external reference is illegal, or if the relation between the value and the

located section is illegal.

warning: relocated value (value) of relocation entry

(file: file, section: section, offset: offset, type: relocation type)

overflowed relocation field.

• The value resulting from an address calculation that is judged to be illegal is not used for an unresolved

external reference that is considered as an error, and the original value remains.

Default assumption

Outputs a message and stops linking if the above mentioned error occurs.

Example

• ld850 -E file1.o file2.o

Outputs a message in response to a relocation error in the linking of file1.o and of file2.o and continues

the link processing.

232

(4) F: Specifies directory from which device file is searched

Format

-F devpath

• -F must be followed by a blank space.

• The number of characters of devpath should be less than 512.

• This option can be specified only at the start from VSH.

Feature

Searches directory devpath and the standard directory26, in that order, for a device file specified by the

-cpu option.

• If this option is specified more than once, the directories are searched in the order in which they are

specified.

• When starting command from the option dialog, the device files are searched only in standard directory.

This option does not function in this start.

Default assumption

The standard directory is searched.

Example

• ld850 -cpu 3000 -F dev file1.o file2.o

Object files file1.o and file2.o are linked. At this time, the directory dev below the current directory

first is searched for device file corresponding to device name 3000 (V851). If the device file is not

found there, the standard directory is searched.

26 The ld treats the directory at the ..\dev position from the directory to which the ld has been installed as the standard directory of the device
file.

233

(5) L: Specifying directory from which archive file is searched

Format

-Ldir

• -L must not be followed by a blank space.

• The number of characters of dir should be less than 512.

Feature

If the -l option is specified with this option, directory dir and then the standard directory27 are searched

in that order for the archive file (also called a library file) specified by the -l option.

• If the ld is started from VSH command line, this option must be specified before the -l option.

• If this option is specified more than once, the directories are searched in the order in which they are

specified.

Default assumption

The standard directory is searched.

Example

• ld850 -Llib file1.o file2.o -lc

Object files file1.o and file2.o, and (as necessary) the object file in archive file libc.a are linked. At

this time, the directory lib below the current directory is searched for archive file libc.a. If the archive

file is not found there, the standard directory is searched.

27 The ld treats the directory at the ..\libxxx position from the directory to which the ld has been installed and the directory at the ..\libxxx\r32
position from the install directory as the standard directory for the library.

234

(6) M: Specifies output of message to all multiple-defined external symbols

Format

-M

Feature

Outputs the following message to all the multiple-defined external symbols and stops linking28.

 error: multiple defined symbol.

symbol defined file previous defined file

symbol file_name file_name

Default assumption

Outputs the message only to the first multiple-defined external symbol and stops linking.

Example

• ld850 -M file1.o file2.o

Outputs the message to all the multiple-defined external symbols in the linking of object files file1.o

and file2.o, and stops linking.

28 The object file is not created.

235

(7) T: Does not specify checking the external symbol size

Format

-T

Feature

Does not check the size of external symbols when they are linked.

Default assumption

Checks the size of external symbols when they are linked. If a difference in size is detected, the

following message is output and linking continues normally. At this time, the symbol size of the file to

which a symbol is actually defined is valid.

warning: symbol “ symbol” has different size in file “ file”.

Example

• ld850 -T file1.o file2.o

Does not check the multiple-defined external symbol in linking object files file1.o and file2.o.

236

(8) V: Outputs version number

Format

-V

• This option can be specified only at the start from VSH.

Feature

Outputs the version number of the ld to the standard output.

Default assumption

Does not output.

Example

• ld850 -V

Outputs the version number of the ld850 to the standard output.

237

(9) cpu: Specifies target device

Format

-cpu devicename

• -cpu must be followed by a blank space.

Feature

Reads the contents of the device file of the target device specified by devicename and uses them for

processing such as memory allocation.

• Linking is stopped if a target device is specified different from that specified by the -cpu option of

the ca or as, the #pragma cpu directive in the C source file, or .option pseudo-instruction in the

assembler source file.

• When using the option dialog in the project manager, this is equivalent to the device specification

performed in project setting.

• For the device type that can be specified as devicename, refer to the User’s Manual of each device

file.

Default assumption

Reads the device file of the target device specified upon creating the .o file.

Example

• ld850 -cpu 3000 file1.o file2.o

Links object files file1.o and file2.o. At this time, the contents of the device file corresponding to

device name 3000 (V851) are read.

238

(10) e: Sets entry point address

Format

-e symbol

• -e must be followed by a blank space.

Feature

Uses the value of symbol symbol as the entry point address value29 of the object file to be created.

• If the specified symbol symbol is not found, the ld outputs the following message and stops linking.

fatal error: can not find entry point symbol “ symbol” specified

with “-e” option.

Default assumption

The entry point address value of the object file to be created is determined by the following convention.

• The value of symbol __start if the symbol exists.

• First address of a text-attribute30 section allocated to the lowest address of the object file to be

created if __start does not exist.

• 0 if a text-attribute section does not exist.

Example

• ld850 -e __my_start file1.o file2.o

Uses the value of symbol __my_start as the entry point address value of the object file to be created

after linking object files file1.o and file2.o.

29 This value is used as an entry address value by the hex converter (hx) included in this compiler package.
30 Section having section type PROGBITS and section attribute AX

239

(11) f: Sets filling value

Format

-f num

• -f must be followed by a blank space.

Feature

Uses a 2-byte value specified by 4-digit hexadecimal number num as the filling value of the hole31

created in the object file to be created. The specification by this option takes precedence over the

filling value specified by a link directive.

• If num is of less than 4 digits, it is assumed that as many 0s as the deficient digits are specified at

the beginning.

• If the size of the hole is less than 2 bytes, only the necessary number of digits is taken out from the

lower part of the specified filling value for initialization.

Default assumption

0x0000 is assumed.

Example

• ld850 -f 0xffff file1.o file2.o

Object files file1.o and file2.o are linked with a filling value of 0xffff.

31 Includes both the hole created to satisfy the alignment condition of a segment and section and the hole explicitly specified to be created by
a link directive.

240

(12) fc: Checks mixing of calling specifications

Format

-fc

Feature

Checks all the input object files whether the old calling specifications32 and new calling specifications

exists in mix.

Default assumption

Only checks the object file created from the C source file.

Example

• ld850 -fc file1.o file2.o

Checks mixing of calling specifications when object files file1.o and file2.o are linked, regardless of

whether they have been created from a C source file or assembler source file.

32 Refer to V800 Series C Compiler Package User’s Manual - C Language .

241

(13) help: Explains options

Format

-help

• This option can be specified only at the start from VSH.

Feature

Outputs the explanation of the options of the ld to the standard output.

Default assumption

Does not output.

Example

• ld850 -help

Outputs the explanation of the options of the ld850.

242

(14) l: Specifies archive file

Format

-lstring

• -l must not be followed by a blank space.

Feature

References archive file libstring.a to resolve an unresolved external symbol reference.

• If the -L option is specified before this option, the ld searches the directory specified by the -L option

for archive file (also called a library file) libstring.a. If the archive file is not found in that directory,

the ld searches the standard directory33. If the -L option is not specified before this option, the ld

searches the standard directory.

• If the archive file specified by using this option is not found in the above mentioned directories, the

ld outputs no message and continues linking.

Default assumption

Does not reference.

Caution

• The ld references only the archive file specified for an external reference that is not resolved at the

point where this option is specified. Therefore, specify this option after the object file that references

the specifying archive file when starting from the VSH command.

• The mathematical library supplied by this compiler references libc.a of the standard library. Therefore,

when command is started from VSH, specify “-lc” that specifies reference of the standard library

after “-lm” specifying reference of the mathematical library. In the option dialog, specify in the order

of “m;c”.

Example

• ld850 file1.o file2.o -lc

Links object files file1.o and file2.o, and the object file in archive file libc.a (necessary for resolving

an unresolved external reference in file1.o and file2.o) placed in the standard directory34.

33 The ld treats the directory at the ..\libxxx position from the directory to which the ld has been installed, and the directory at the ..\libxxx\r32
position from the install directory as the standard directory for the library.

34 This is equivalent to directly specifying archive file libc.a in the standard directory without using this option.

243

(15) m: Outputs link map

Format

-m

Feature

Outputs to the standard output the link map that indicates allocation of the section (input section)

included in the specified object file to a memory space, and the allocation of a section (output section)

that constitutes an object file created by linking the input file to a memory space (refer to Chapter 4 on

page 318).

Default assumption

Does not output.

Example

• ld850 -m file1.o file2.o

Links object files file1.o and file2.o and outputs the link map of the input and output sections to the

standard output.

244

(16) mc: Checks mixing of mask register function

Format

-mc

• This option can be specified only at the start from VSH.

Feature

Checks whether a file using the mask register function35 and a file not using the mask register function

exist in mix in the object file created from the C source file.

Default assumption

Does not check.

Example

• ld850 -mc file1.o file2.o

Checks whether a file using the mask register function and a file not using the mask register function

exist in mix when object files file1.o and file2.o are linked.

35 Refer to V800 Series C Compiler Package User’s Manual - C Language .

245

(17) o: Specifies name of object file to be created

Format

-o ofile

• ofile must be permitted by the Windows as a file name.

• -o must be followed by a blank space.

• This option can be specified only at the start from VSH.

Feature

Uses ofile as the name of the object file to be created.

The option dialog does not have this option. The name always becomes the name which is omitted the

suffix of the first file in source list and is added “.OUT”.

Default assumption

Assumes that a.out is specified.

Example

• ld850 -o ofile file1.o file2.o

Links object files file1.o and file2.o and uses ofile as the name of the object file to be created.

246

(18) ol: Library reference of old function calling specifications * V850

Format

-ol

• This option can be specified only at the start from VSH.

Feature

References the library of the old function calling specifications36.

Default assumption

References the library of the new function calling specifications.

Example

• ld850 -ol file1.o file2.o -lc

References the standard library of the old function calling specifications and links object files file1.o

and file2.o.

36 Refer to V800 Series C Compiler Package User’s Manual - C Language .

247

(19) r: Specifies retention of relocation information

Format

-r

• This option can be specified only at the start from VSH.

Feature

Creates a relocatable object file.

• If this option is specified, the ld does not output a message and normally terminates linking, even

if an unresolved external reference remains after linking.

Default assumption

Tries to create an executable object file.

• If an unresolved external reference remains after linking, the ld outputs the following message and

stops linking. If this happens, the object file is not created.

fatal error: undefined symbol.

symbol referenced in “ file”

Caution

• To specify an object file created by the ld for re-linking by the ld, specify this option to create the

object file to be re-linked.

• If the -r option is specified, only the type/attribute of the mapping directive part of the link directive

is valid, and the others are ignored.

• If the -r option is specified, the ld does not create reserved symbols.

Example

• ld850 -r file1.o file2.o

Links object files file1.o and file2.o to create a relocatable object file.

248

(20) reg: Specifies register mode for referencing libraries

Format

-regnum

• 22 or 26 can be specified as num.

• -reg must not be followed by a blank space.

Feature

Searches specified register mode37 directory to reference the supplied library.

Default assumption

Searches the 32-register mode directory.

Example

• ld850 -reg22 file1.o file2.o -lc

References standard library for 22-register mode and links object files file1.o and file2.o.

37 Refer to V800 Series C Compiler Package User’s Manual - C Language .

249

(21) s: Specifies deletion of debug information, line number information, and global pointer table

Format

-s

Feature

Creates an object file from which the debug information, line number information, and global pointer

table are deleted.

Default assumption

Creates an object file in which the debug information, line number information, and global pointer table

remain.

Example

• ld850 -s file1.o file2.o

Links object files file1.o and file2.o to create an object file from which the debug information, line

number information, and global pointer table are deleted.

250

(22) t: Does not specify checking of size and alignment condition in linking undefined external symbols

Format

-t

Feature

Does not check the symbol size and alignment condition in linking undefined external symbols38.

Default assumption

Checks the symbol size and alignment condition in linking undefined external symbols. If a difference

is found, either of the following messages is output and linking continues normally.

warning: symbol “ symbol” has different size in file “ file”.

warning: symbol “ symbol” has different align-size in file “ file”.

Caution

• The ld supports multiple definition of undefined external symbols. The multiple-defined undefined

external symbols are allocated to the .sbss section39 or .bss section40 after link. If the symbol size

or alignment condition to be linked differs, the maximum size of the symbol among those to be

linked is assumed as the size, and the maximum common multiple of the alignment condition of the

symbols having the same name of the symbols to be linked is assumed as the alignment condition.

Example

• ld850 -t file1.o file2.o

Does not check the size and alignment condition in linking undefined external symbols while linking

object files file1.o and file2.o .

38 Symbol having a binding class of GLOBAL and section header table index of GPCOMMON or COMMON
39 Reserved section having a section name of .sbss, section type of NOBITS, and section attribute of AWG
40 Reserved section having a section name of .bss, section type of NOBITS, and section attribute of AW

251

(23) v: Outputs execution status

Format

-v

Feature

Outputs the version number and execution status of the ld.

Default assumption

Does not output.

Example

• ld850 -v file1.o file2.o

Outputs the version number of the ld850 and the execution status of linking of object files file1.o and

file2.o.

252

(24) w: Suppresses output of warning message

Format

-w

Feature

Does not output warning messages. Outputs only fatal error messages.

Default assumption

Outputs warning messages.

Example

• ld850 -w file1.o file2.o

Does not output warning messages while linking object files file1.o and file2.o.

253

(25) @: Specifies command file

Format

@cfile

• @ must not be followed by a blank space.

• Arguments to be specified can be described over two or more lines in the command file (refer to

page 161), but options and file names must be described on one line.

Feature

Treats cfile as the command file.

• Describes the character string specified on the command line in the command file, and specifies

according to this command file.

Default assumption

Assumes that a command file is not specified.

Example

• ld850 @cfile

Links cfile as a command file.

The contents of cfile are as follows:

-o ofile file1.o file2.o

254

CHAPTER 3 LINK DIRECTIVE

This chapter explains the link directives that can be used as instructions to the ld.

3.1 Feature of Link Directive

A link directive41 can be used to give the following information to the ld.

(1) Configuration and attribute of an output section that is created by linking input sections (sections included

in specified object files or in the corresponding object file in a specified archive file) and constitutes an

output object file.

(2) Configuration and attribute of a segment created by linking the output sections created in the above step.

(3) Address and alignment condition used to allocate the segment created in the above step to the memory

space of the target machine.

(4) Size of the hole created (as necessary) when sections and segments are allocated to a memory space.

(5) Filling value of the hole that is created during allocation of sections and segments.

(6) Creation of a text pointer symbol having an address value to be set to the text pointer (tp), a global pointer

symbol having the address value to be set to the global pointer (gp) or the offset value of the address

value to be set from the text pointer (tp), and an element pointer symbol having the address value to be

set to the element pointer (ep * V850).

Reference

This compiler package includes the file of sample link directive (refer to 3.7 on page 305) as follows.

Installation directory \smpxxx\caxxx*.dir

When describing the link directive, refer to the sample link directive.

41 A link directive is explicitly specified by using the -D option upon starting the ld.

255

3.2 Configuration of Link Directive

Link directives are divided into three types: segment directives, mapping directives, and symbol directives.

Information item (1) explained above is given by a mapping directive; (2), (4), and (5) are given by a segment

directive and mapping directive; (3) is given by a segment directive; and (6) is given by a symbol directive.

• To specify a segment name, section name, file name, and symbol name for a link directive, use the following

characters.

– Numerals (0 to 9)

– Uppercase characters (A to Z)

– Lowercase characters (a to z)

– Underscore (_)

– Dot (.)

– Back slash, yen mark (\, ¥)

– Colon (:)

• “#” in the link directive indicates the beginning of a comment. A comment starts with “#” and ends at the

end of the line.

256

3.3 Section and Segment

Here, let’s discuss the types and attributes of the “sections” and “segments” handled by the ld. For the internal

configuration of a section, refer to APPENDIX B . For the details of section allocation by program, refer to V800

Series C Compiler Package User’s Manual - C Language/Assembly Language .

Section Basic unit configuring a program. Sections (input sections) included in two or more object files

and having the same type and attribute are linked and sections (output sections) constituting a

segment are created. A section name, attribute, and address to which a program is loaded can

be freely specified by a link directive.

Segment A cluster of sections having the same attribute and type, and is a basic unit in which a program

is loaded to memory. A segment name, attribute, and address to which a program is loaded can

be freely specified by a link directive.

Figure 3-1. Section and Segment

file1.o

(NOBITS AW)

(NOBITS AWG)

(PROGBITS AWG)

(PROGBITS AW)

(PROGBITS AX)

file2.o

(NOBITS AW)

(NOBITS AWG)

(PROGBITS AX)

file3.o

(PROGBITS AWG)

(PROGBITS AW)

(PROGBITS AX)

.bss

.sbss

.sdata

.data

.text

DATA → RAM

__gp_DATA

__tp_TEXT

TEXT → ROM

Input section Output section Segment

257

3.3.1 Type of section

Sections come in six types depending on the combination of a section type (refer to page 281) and section

attribute (refer to page 282).

Each type of section has a reserved section name. Some reserved sections can be used commonly with all

the families, and the others are peculiar to a specific family.

Table 3-1. Types of Sections

Type of Section Meaning Corresponding Reserved

Section Name

bss Section having section type NOBITS and section attribute AW .bss, .sebss, .sibss

(bss-attribute section) .tibss, .tibss.byte,

.tibss.word

const Section having section type PROGBITS and section attribute A .sconst, .const

(const-attribute section)

data Section having section type PROGBITS and section attribute AW .data, .sedata

(data-attribute section) .sidata

.cdata1, .cdata2, .cdata3,

.udata1, udata2, .udata3

.tidata, .tidata.byte,

.tidata.word

sbss Section having section type NOBITS and section attribute AWG .sbss

(sbss-attribute section)

sdata Section having section type PROGBITS and section attribute AWG .sdata

(sdata-attribute section)

text Section having section type PROGBITS and section attribute AX .text

(text-attribute section) .itext

Figure 3-2 shows the memory location of sections having reserved section names. For the nature of each

section, refer to the explanation of data allocation to sections in V800 Series C Compiler Package User’s

Manual - C Language .

258

Figure 3-2. Memory Location of Reserved Section

CA830 CA850

...
...

...
...

...

...
...

...

0x0

Interrupt

.sconst section

.const section

.text section

.sdata section

.data section

.sbss section

.itext section

Interrupt function

.bss section

.sedata section

.sibss section

.sidata section

.udata3 section

.udata2 section

.udata1 section

.cdata3 section

.cdata2 section

.cdata1 section

.sebss section

Peripheral I/O register

.sibss section

.const section

.bss section

.sdata section

.data section

.sbss section

.text section

.sconst section

Interrupt

.sidata section

.tibss section

.tidata section

.tibss.word section

.tidata.word section

.tibss.byte section

.tidata.byte section

.sebss section

.sedata section

259

3.3.2 Examples of mapping image

Here, examples of mapping image by link directives are shown. For the specific description rules, refer to

3.3.3 and following sections.

(1) In an application where sections having the same type and same attribute are mapped as one segment

If sections having the same type are combined into one, the input section name and file name need not

be specified by using the mapping directive, except a section whose correspondence between an I/O

section name and a segment name is fixed (section such as .sconst and .sedata. Refer to pages 266/

279).

Figure 3-3. Example of Mapping Image 1

TEXT:!LOAD ?RX V0xfffc0000 {
.text = $PROGBITS ?AX;

};
 . . .

Input sequence

1

2

3

.text

.text

text2

.text

TEXT

0xFFFC0000

0x0

260

(2) In an application where sections having the same type and attribute have the same section name in all

object files but cannot be combined into one segment

Specify a file name by using the mapping directive to allocate a section in a certain object file to another

segment when the assembly-language program does not have a description specifying a section name,

even though the method in (1) allocates sections to the same segment.

Figure 3-4. Example of Mapping Image 2

TEXT1:!LOAD ?RX V0xfffc0000 {
 .text = $PROGBITS ?AX {file1.o file2.o};
};

TEXT2:!LOAD ?RX V0xfffffe00 {
 .text = $PROGBITS ?AX {file3.o};
};
 . . .

Input sequence

1

2

3

.text

.text

.text

.text
TEXT1

0xFFFC0000

0x0

.text TEXT2
0xFFFFFE00

261

(3) In an application where a section having a different name exists among the sections having the same type

and same attribute, and the sections cannot be combined into one segment

Specify a section name by using the mapping directive to allocate that section to a segment different from

the one to which the sections having the same type and same attribute are allocated when the assembly-

language program has description specifying a section name.

Figure 3-5. Example of Mapping Image 3

TEXT1:!LOAD ?RX V0xfffc0000 {
 .text = $PROGBITS ?AX .text:
};

TEXT2:!LOAD ?RX V0xfffffe00 {
 hdlr = $PROGBITS ?AX hdlr:
};
 . . .

Input sequence

1

2

3

.text

.text

hdlr

.text
TEXT1

0xFFFC0000

0x0

hdlr TEXT2
0xFFFFFE00

262

(4) When one symbol is created in an application to set values to tp and gp

If the tp and gp need not be changed during application execution, one each of the tp and gp symbols is

created by specifying two or more segments or omitting specification of a segment by using the symbol

directive.

The created symbol is used to set tp and gp upon starting the program (by the start-up routine, etc.).

If a section of data/bss attribute and r0 or ep relative reference, such as .sedata section, exits in the

application, and if a segment name are omitted in creating the gp symbol, the segments to which that

section is to be allocated are subjected to the gp symbol creation, and an unexpected value is set to the

gp symbol.

To prevent this error, specify the targeted segment name in directing creation of the gp symbol.

Figure 3-6. Example of Mapping Image 4

 . . .
DATA1:!LOAD ?RW V0x100000 {
 .data = $PROGBITS ?AW;
 .sdata = $PROGBITS ?AWG;
};
DATA2:!LOAD ?RW {
 .sbss = $NOBITS ?AWG;
 .bss = $NOBITS ?AW;
};

TEXT:!LOAD ?RX V0xfffc0000 {
 .text = $PROGBITS ?AX;
};
 . . .
__tp_TEXT@% TP_SYMBOL;
__gp_DATA@% GP_SYMBOL &__tp_TEXT {DATA1 DATA2 };

Input
sequence

1

2

3

.data

.text

.data

.text

.sbss

.sdata

.bss
.data

.text

.sbss

.sdata

.bss

.data

TEXT

DATA2

DATA1

__tp_TEXT

0xFFFC0000

__tp_TEXT
 +__gp_DATA

0x100000
0x0

263

(5) To create a symbol for each segment to set values to tp and gp

If it is necessary to change the tp and gp during application execution, specify a segment by the symbol

directive to create two or more tp and gp symbols. The tp and gp are changed by program by using the

created symbol.

Figure 3-7. Example of Mapping Image 5

 . . .
DATA1:!LOAD ?RW V0x100000 {
 .data = $PROGBITS ?AW;
 .sdata = $PROGBITS ?AWG;
};
DATA2:!LOAD ?RW V0x200000 {
 .sbss = $NOBITS ?AWG;
 .bss = $NOBITS ?AW;
};

TEXT:!LOAD ?RX V0xfffc0000 {
 .text = $PROGBITS ?AX;
};
 . . .
__tp_TEXT @% TP_SYMBOL ;
__gp_DATA1 @% GP_SYMBOL {DATA1 };
__gp_DATA2 @% GP_SYMBOL {DATA2 };

Input sequence

1

2

3

.bss

.text

DATA1

0x200000

TEXT
__tp_TEXT

DATA2

0xFFFC0000

__gp_DATA2

0x100000

__gp_DATA1

0x0

.sbss

.sdata

.data

.text

.data

.text

.bss

.sbss

.sdata

.data

.data

264

3.4 Segment Directive

This section explains the feature, configuration, and usage of the segment directive.

3.4.1 Feature of segment directive

The segment directive can be used to specify the following items.

• Configuration and attribute of a segment created by linking sections

• Address and alignment condition for allocating a segment to a memory space

• Size of the hole created (as necessary) for allocating a segment to a memory space

• Filling value of the hole created as a result of allocating a segment or a hole explicitly specified to be

created

3.4.2 Configuration of segment directive

The configuration of the segment directive is as follows:

Figure 3-8. Configuration of Segment Directive

segment name: !segment type ?segment attribute[V address]

[L maximum memory size][H hole size][F filling value]

[A alignment condition]{mapping directive ...};

• Sequentially describe the segment directives from the directive for the segment that is allocated to the

lowest address to the directive for the segment that is allocated to the highest address.

• The items that can be specified for a segment directive and their specification formats are shown in Table

3-2.

Table 3-2. Items That Can Be Specified and Their Specification Formats

Item Specification Format

Segment name Segment name

Segment type !LOAD

Segment attribute ?[R] [W] [X]

Address V address

Maximum memory size L maximum memory size

Hole size H hole size

Filling value F filling value

Alignment condition A alignment condition

265

– These items are delimited by a blank space.

Example 42>

SEG : !LOAD ?RX V0x0 L0xffffffff H0x0 A0x8 {};

– Specification of a segment type and segment attribute must not be omitted.

– The other items may be omitted. If an item is omitted, the ld executes linking by using the default value

shown in Table 3-3.

– Be sure to end a segment directive with “;”.

Table 3-3. Default Value of Each Item

Item Default Value

Address Address 0x0 for first segment, and values following end of segment for other segments

Maximum memory size 0x100000

Hole size 0x0

Filling value 0x0000

Alignment condition 0x8

42 In some examples of the segment directive given later, specification of the mapping directive is omitted. This is only for simplifying the
explanation. In actuality, if the mapping directive was not specified, the segment directive would be ignored.

266

3.4.3 Explanation of each item that can be specified for segment directive

(1) Segment name

Specify the name of a segment to be created.

• Because the address allocated to a segment is dependent on the sequence in which the segment is

described, it is recommended that, if the segment name to be described is that of a segment whose

address is fixed, the sequence be the same as the segment sequence of the default link directive (refer

to pages 307 through 313).

• To specify addresses for segments, sequentially describe them from the allocated one to the lowest

one (refer to page 269).

• An identifier of an appropriate length consisting of appropriate characters shown on page 255 can be

used for a segment name.

• A segment name does not remain as information in the output object file.

• The segment names for the segments to which the following reserved sections are allocated are fixed.

The other segment names must not be used.

.sidata section, .sibss section, .tidata section, .tibss section,

.tidata.byte section, .tibss.byte section, .tidata.word section, → SIDATA segment

.tibss.word section

.sedata section, .sebss section → SEDATA segment

.sconst section → SCONST segment

.const section → CONST segment

.cdata1 section → CDATA1 segment

.cdata2 section → CDATA2 segment

.cdata3 section → CDATA3 segment

.udata1 section → UDATA1 segment

.udata2 section → UDATA2 segment

.udata3 section → UDATA3 segment

.itext section → ITEXT segment

For the details of the section type, refer to page 257, V800 Series C Compiler Package User’s Manual

- C Language , and C Compiler Package User’s Manual - Assembly Language of each family.

267

(2) Segment type

Specify the segment type of a segment to be created.

• The segment type that can be specified is only LOAD that is the segment type loaded to memory. If

any other segment type is specified, the ld outputs the following message and stops linking.

syntax error: line num: illegal segment type “ string”.

• Specification of a segment type must not be omitted. If omitted, the ld outputs the following message

and stops linking.

fatal error: segment directive of segment “ segment” needs SEGMENT TYPE.

• Start specifying a segment type with “!”.

• “!” must not be followed by a blank space.

• The uppercase and lowercase characters are not distinguished in specifying a segment type. Therefore,

LOAD can be uppercase or lowercase characters.

268

(3) Segment attribute

Specify the segment attribute of a segment to be created.

• Table 3-4 shows the segment attributes that can be specified and their meanings.

Table 3-4. Segment Attributes and Their Meanings

Segment Attribute Meaning

R Segment that can be read

W Segment that can be written

X Executable segment

• Specification of a segment attribute must not be omitted. If omitted, the ld outputs the following message

and stops linking.

fatal error: segment directive of segment “ segment” needs SEGMENT ATTRIBUTE.

• Start specifying a segment attribute with “?”.

• “?” must not be followed by a blank space.

Example>

SEG : !LOAD ?RX {};

• R, W, or X can be specified in any sequence.

• R, W, or X can be specified more than once when specifying a segment attribute once. In terms of

meaning, however, it is the same as specifying R, W, or X only once.

Example>

SEG : !LOAD ?RXRX {};

• If a segment attribute is specified more than once in one segment directive, the ld outputs the following

message and stops linking.

syntax error: line num: SEGMENT ATTRIBUTE specified to segment

“ segment” more than once in same or other directive.

Mistake example>

SEG : !LOAD ?RX ?RW {};

269

(4) Address

Specify an address from which the created segments are allocated to a memory space. Sequentially

specify addresses starting from the lower address. Describe the segments from the allocated one to the

lowest address.

Specifying addresses can be omitted. If omitted, the segments are allocated to a memory space starting

from address 0x0 in the sequence in which the segments are described in the directive file. If the address

for the second segment or those that follow is omitted, the segments are allocated starting from the end

address of the immediately preceding segment.

The segments for which addresses are fixed, such as those in the internal memory and those of r0 relative

that referenced by one instruction, must be allocated to addresses in the same manner as the memory

location of the microprocessor. Specify the addresses and attributes of these segments by referring to

the User’s Manuals of the microprocessor and device files, and default directive (refer to 3.7 on page

305).

[Example of segment requiring address specification or with fixed description location]

• To create SCONST segment to be allocated to internal ROM with V851 with internal ROM as the target

device

Allocates the segments to the internal ROM by specifying an address less than address 0x7fff or by

describing the segments before. If described at the beginning without specifying an address, and if the

interrupt processing to be executed at reset or start-up module is not located at address 0x0, the data

of the SCONST segment is allocated to handler address 0x0.

SCONST : !LOAD ?R V0x160{

.sconst = $PROGBITS ?A .sconst;

};

• To create DATA segment to be allocated to external memory with V851 with internal ROM as the target

device

Specify the first address of the external memory, 0x100000.

SCONST : !LOAD ?RW V0x00000{

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

• To create SCONST segment of r0 relative and referenced by one instruction with the V830 Family

Set address 0xffff8000 within –32 KB from r0.

SCONST : !LOAD ?R V0xffff8000{

.sconst = $PROGBITS ?A .sconst;

};

270

If two or more segments exist, and an address is specified for one of them, the segment for which an

address is specified is allocated from the specified address, unless the specified address overlaps the

address of the previously specified segment. If overlapping occurs, the ld outputs the following message

and stops linking.

fatal error: start address (number1) of segment “ segment” overlaps previous

segment ended before address (number2).

Specify the address in the following format.

• Specify an even address. If an odd address is specified, the ld outputs the following message and

continues linking, assuming that an address of the specified address plus 1 is specified.

warning: line num: aligned odd value (number1) to be even value (number2).

• Start specifying an address with “V”.

• “V” must not be followed by a blank space.

• “V” may be uppercase or lowercase.

• Do not use an expression to specify an address.

[Automatic location of interrupt handler]

The ld adds a link directive to allocate an interrupt handler to the specified directive file in accordance with

the interrupt request name defined in the device file.

If an interrupt handler is specified by the “#pragma ” directive or “#pragma rtos_interrupt ” directive43

in the C source file, or a section that specifies an interrupt request name by using the “.section ” pseudo-

instruction44 is defined in an assembler source, the section defined as an interrupt handler is allocated to

the address stipulated by the device file.

At this time, locating the interrupt handler takes precedence over locating the other segments.

#pragma interrupt INTP00 func ← Branch to func becomes INTP00 section

.section ''INTP01'', text ← Defines INTP01 section

(Internally added directive)

INTP00 : !LOAD ?R V0x120{

INTP00 = $PROGBITS ?AX INTP00;

};

INTP01 : !LOAD ?R V0x130{

INTP01 = $PROGBITS ?AX INTP01;

};

In the above example, if direct is specified for the #pragma interrupt , the function becomes the

INTP00 section instead of branching to the function func .

43 Refer to V800 Series C Compiler Package User’s Manual - C Language .
44 Refer to User’s Manual - Assembly Language of each family.

271

(5) Maximum memory size

Set the maximum value of the memory size of the segment to be created.

If the memory size specified for the segment to be created exceeds the maximum memory size, the link

editor outputs the following message and stops linking.

fatal error: memory size (number1) of segment “ segment” overflowed specified or

default maximum memory size (number2).

• Specifying the maximum memory size can be omitted. If omitted, 0x100000 is used as the default

value (refer to Table 3-3 on page 265).

• Start specifying the maximum memory size with “L”.

• “L” must not be followed by a blank space.

• “L” may be uppercase or lowercase.

• Do not use an expression to specify the maximum memory size.

The maximum memory size must not exceed the intended size. If the actual size is less than the specified

maximum memory size, the address of the segment located relatively rearward immediately follows the

address to which the preceding segment is actually allocated.

(6) Hole size

Specify the size of the hole to be created. The specified hole is created at the end of the specified

segment45. Specify the hole size in the following format.

• Specifying the hole size can be omitted. If omitted, 0x0 is used as the default value (refer to Table 3-

3 on page 265).

• Start specifying the hole size with “H”.

• “H” must not be followed by a blank space.

• “H” may be uppercase or lowercase.

• Do not use an expression to specify hole size.

45 A hole area is appended to the specified segment.

272

(7) Filling value

Specify a value (called a filling value) used to fill the hole area of the hole which is created in allocating

segments or is explicitly specified to be created46. Specify the filling value in the following format.

• Specifying a filling value can be omitted. If omitted, 0x0000 is used as the default value (refer to Table

3-3 on page 265).

• If the filling value (-f) is specified, the ld outputs the following message, ignores the filling value specified

by the link directive, and continues linking.

warning: line num: FILLING VALUE is illegal when “-f” option specified,

ignored.

• Specify the filling value as a 2-byte 4-digit hexadecimal number.

• If the filling value is of less than 4 digits, the higher digits are assumed to be 0.

• If the hole is less than 2 bytes, the required digits are taken out of the lower value of the specified filling

value.

• Start specifying the filling value with “F”.

• “F” must not be followed by a blank space.

• “F” may be uppercase or lowercase.

• Do not use an expression to specify a filling value.

46 This filling value is used if a filling value is not explicitly specified for a section to be allocated to that segment.

273

(8) Alignment condition

Specify the alignment condition of the specified segments in allocating the segments to a memory space.

The alignment condition can be omitted. If omitted, 0x847 is used as the default value (refer to Table

3-3 on page 265).

Specify the alignment condition in the following format.

• Specify an alignment condition as an even number. If an odd number is specified, the ld outputs the

following message, assumes that the specified alignment condition plus 1 is specified, and continues

linking.

warning: line num: aligned odd value (number1) to be even value (number2).

• If an address is specified, the specified address takes precedence, and the specified alignment condition

is ignored.

• Start specifying an alignment condition with “A”.

• “A” must not be followed by a blank space.

• “A” may be uppercase or lowercase.

• Do not use an expression to specify an alignment condition.

(9) Mapping directive

Specify allocation of the input section to a segment.

For the details of the mapping directive, refer to 3.5 on page 278.

• If the mapping directive is not specified for the segment directive, the ld ignores the segment directive48.

47 8-byte boundary (double-word boundary)
48 It is assumed that the segment directive is not specified.

274

3.4.4 Using segment directive

(1) Allocating segment to specified address

When allocating a segment to a memory space by specifying an address, specify the address by using the

segment directive that defines the segment.

For segments other than those for which addresses are fixed such as the segments to be placed in the

internal ROM, any address in the memory space can be specified if all the segments are allocated within

the memory space without overlapping.

Figure 3-9 shows the general format of allocation with an address specified.

Figure 3-9. General Format of Allocation with Address Specified

segment name : !LOAD ? segment attribute V address {

mapping directive

};

For example, if object files file1.o, file2.o, and file3.o including the sections in the sequence shown in

Figure 3-11 are linked with the directive shown in Figure 3-10 specified, segment49 SEG1 to which section

sec1 is to be allocated is allocated from address 0 , segment SEG2 to which section sec2 is to be allocated

is allocated from address 0x10000, and segment SEG3 to which sections sec3 and sec4 are to be allocated

is allocated immediately after the preceding segment SEG2 (refer to Figure 3-11).

Figure 3-10. Example of Allocation Display with Address Specified

SEG1 : !LOAD ?RX {

sec1 = $PROGBITS ?AX sec1 { file1.o file2.o file3.o };

};

SEG2 : !LOAD ?RW V0x10000 {

sec2 = $PROGBITS ?AW sec2 {file1.o file3.o };

};

SEG3 : !LOAD ?RW {

sec3 = $PROGBITS ?AWG sec3 { file2.o };

sec4 = $NOBITS ?AW sec4 { file2.o };

};

SCONST : !LOAD ?R V0xffff8000{

.sconst = $PROGBITS ?A .sconst;

};

__tp_TEXT @ %TP_SYMBOL { SEG1 };

__gp_DATA @ %GP_SYMBOL &__tp_TEXT { SEG2 SEG3 };

49 For allocation of a section to a segment, refer to 3.5.4 on page 286.

275

Figure 3-11. Example of Allocation with Address Specified

(2) Allocating segment with specified alignment condition satisfied

To allocate a created segment to a memory space with the alignment condition of n-byte boundary (n is

a multiple of 2), specify n as an alignment condition by using the segment directive that defines the

segment.

Figure 3-12 shows the general format of allocation with an alignment condition specified.

Figure 3-12. General Format of Allocation with Alignment Condition Specified

segment name: !LOAD ?segment attribute A alignment condition {

mapping directive

};

For example, when object files file1.o, file2.o, and file3.o including the sections in the sequence shown

in Figure 3-14 are linked with the directive shown in Figure 3-13 specified, segments SEG2 and SEG3 are

allocated with the alignment condition of 0x10 satisfied (refer to Figure 3-14).

sec2

sec1

.sconst

sec4

sec3

sec1

sec2

sec1

.sconst

file1.o

file2.o

file3.o

sec4

sec3

sec2

sec1

.sconst

SEG3
segment

SEG2
segment

SEG1
segment

SCONST
segment

Lower address

Address
0xffff8000

Address
0x10000

276

Figure 3-13. Example of Allocation Display with Alignment Condition Specified

SEG1 : !LOAD ?RX {

sec1 = $PROGBITS ?AX sec1 { file1.o file2.o file3.o };

};

SEG2 : !LOAD ?RW A0x10 {

sec2 = $PROGBITS ?AW sec2 { file1.o file3.o };

};

SEG3 : !LOAD ?RW A0x10 {

sec3 = $PROGBITS ?AW sec3 { file2.o };

sec4 = $NOBITS ?AW sec4 { file2.o };

};

__tp_TEXT @ %TP_SYMBOL { SEG1 };

__gp_DATA @ %GP_SYMBOL &__tp_TEXT { SEG2 SEG3 };

Figure 3-14. Example of Allocation with Alignment Condition Specified

sec2

sec1

sec4

sec3

sec1

sec2

sec1

file1.o

file2.o

file3.o

sec4

sec3

sec2

sec1

SEG3
segment

SEG2
segment

SEG1
segment

Address
0x10 × n

Lower address

Address
0x10 × m

277

(3) Creating hole

Creating a certain area (called a hole) between segments50 and filling that area with a certain value

(called a filling value51) is called “creating a hole”.

To create a hole between segments, specify the hole size and, as necessary, a filling value by using the

segment directive that defines the segment with the address lower than that of the created hole.

Figure 3-15 shows the general format of allocation with creating a hole specified.

Figure 3-15. General Format of Allocation with Creating Hole Specified

segment name : !LOAD ? segment attribute H hole size {

mapping directive

};

For example when object files are linked with the directive shown in Figure 3-16 specified, a hole of 0x50

bytes is created after segment TEXT, and segment DATA is allocated after the hole.

Figure 3-16. Example of Allocation with Creating Hole Specified

TEXT : !LOAD ?RX V0x0 H0x50 {

.text = $PROGBITS ?AX;

};

DATA : !LOAD ?RW A0x8 {

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT;

50 A hole can be also created between sections (refer to page 283).
51 The default filling value is 0x0000.

278

3.5 Mapping Directive

This section explains the feature, configuration, and usage of the mapping directive.

3.5.1 Feature of mapping directive

The mapping directive is used to instruct the following item of information.

• Configuration and attribute of an output section constituting the object file created by linking input sections

(sections included in specified object files or in object files within a specified archive file)

3.5.2 Configuration of mapping directive

The configuration of the mapping directive is shown below.

Figure 3-17. Configuration of Mapping Directive

section name = $ section type ? section attribute [section name]

[V address][H hole size][A alignment condition]

[{file name[file name] ... }];

• The items that can be specified by the mapping directive and their formats are shown in Table 3-5.

Table 3-5. Items That Can Be Specified and Their Specification Formats

Item Specification Format

Section name Section name

Section type $PROGBITS or $NOBITS

Section attribute ?[A] [W] [X] [G]

Address V address

Hole size H hole size

Alignment condition A alignment condition

File name File name

– Delimit each of these items from the others by a blank space.

– Specifying of a section type and a section attribute must not be omitted.

– If the same item is specified more than once for the same output segment, the ld stops linking.

• Be sure to end the mapping directive with “;”.

279

3.5.3 Explanation of each item that can be specified for mapping directives

(1) Section name

Specify the name of a section (output section) to be included in the created object file on the left of “=”.

On the right of “=”, specify the name of an input section to be allocated to the specified output section

(section included in the specified object files and the object files in the specified archive file). Note,

however, that an input section name starting with V/v/H/h/A/a must not be specified.

• If the section name (input section name) on the right of “=” is omitted, all the sections having the

specified section type and section attribute are allocated to the section (output section) on the left of

“=”.

• The section name on the left of “=” (output section name) must not be omitted. If omitted, the ld outputs

the following message, and stops linking.

syntax error: line num: section name is expected at the beginning of section

directive.

• The same output section name must not be specified for two or more mapping directives. If specified,

the ld outputs the following message and stops linking.

syntax error: line num: section “ section” already defined at line (num).

• The correspondence between the section name on the left of “=” (output section name) and the section

name on the right of “=” (input section name) is fixed for the following section names. For example,

do not allocate the .sedata section to an output section with a different name.

.tidata section → .tidata

.tibss section → .tibss

.tidata.byte section → .tidata.byte

.tibss.byte section → .tibss.byte

.tidata.word section → .tidata.word

.tibss.word section → .tibss.word

.sidata section → .sidata

.sibss section → .sibss

.sedata section → .sedata

.sebss section → .sebss

.sconst section → .sconst

.const section → .const

.cdata1 section → .cdata1

.cdata2 section → .cdata2

.cdata3 section → .cdata3

.udata1 section → .udata1

.udata2 section → .udata2

.udata3 section → .udata3

.itext section → .itext

280

For example, if “data” is specified as the section type, such as by “.section “sec”, data” , by the

.section pseudo-instruction of the assembly language, this “sec ” section must not be allocated to the

.sedata section. If there is no mapping directive for “sec ” section, “sec ” section appears first in the

directive, and is allocated to the data-attribute section for which no input section name is specified.

To allocate a section to a segment area the same as the .sedata section, a mapping directive must be

added for “sec ” section.

Example>

SEDATA : !LOAD ?RW {

.sedata = $PROGBITS ?AW .sedata;

sec = $PROGBITS ?AW sec; ← directive to allocate sec section

};

For the contents of section type, refer to page 257, V800 Series C Compiler Package User’s Manual -

C Language , and C Compiler Package User’s Manual - Assembly Language of each family.

281

(2) Section type

Specify the section type of the input section to be allocated to the output section.

• Either of the following section types can be specified.

PROGBITS : section type of the section having the actual value in the object file (= data with text and

initial value)

NOBITS : section type of the section not having the actual value in the object file (= data without

initial value)

If any section type other than these is specified, the ld outputs the following message and stops linking.

syntax error: line num: illegal section type “ string”.

• The section type must not be omitted. If omitted, the ld outputs the following message and stops

linking.

syntax error: line num: section directive of section “ section” needs SECTION

TYPE.

• Be sure to start specifying a section type with “$”. If only “$” is specified, however, the ld stops linking.

• “$” must not be followed by a blank space.

282

(3) Section attribute

Specify the section attribute of the input section to be allocated to the output section.

• Table 3-6 shows the section attributes that can be specified and their meanings.

Table 3-6. Section Attributes and Their Meanings

Section Attribute Meaning

A Section occupying memory

W Section that can be written

X Executable section

G Section allocated to memory range that can be referenced by using global

pointer (gp) and 16-bit displacement

• The section attribute must not be omitted. If omitted, the ld outputs the following message, and stops

linking.

syntax error: line num: section directive of section “ section” needs SECTION

ATTRIBUTE.

• If this mapping directive is specified in a segment directive, the specified section attribute must match

the section attribute specified in that segment directive52

• Start specifying the section attribute with “?”.

• “?” must not be followed by a blank space.

Example>

sec = $PROGBITS ?AX

• A, W, X, and G can be specified in any sequence.

• A, W, X, or G can be specified more than once in specifying an section attribute once. In terms of

meaning, however, it is the same as when specifying A, W, X, or G only once.

Example>

sec = $PROGBITS ?AXAX;

• If a section attribute is specified more than once in one mapping directive, the ld outputs the following

message and stops linking.

syntax error: line num: SEGMENT ATTRIBUTE specified to section “ section” more

than once in same or other directive.

Mistake example>

sec = $PROGBITS ?AX ?AW;

52 Ignore section attribute G, and section attributes A, W, and X must match segment attributes R, W, and X.

283

(4) Address

Specify the address from which allocating of the specified output section is started.

Usually, an address is specified for each segment, but a specific section can be allocated to a specific

address.

The address specification format conforms to the address specification format of the segment directive

(refer to page 270).

Automatic location of interrupt handler

The ld adds a link directive to allocate an interrupt handler to the specified directive file in accordance

with the interrupt request name defined in the device file.

Refer to page 270 for details.

(5) Hole size

Specify the size of the hole to be created. The specified hole is created at the end of the specified

section53.

Specification format of the hole size conforms to specification format of the hole size of the segment

directive (refer to page 271).

(6) Alignment condition

Specify the alignment condition that must be satisfied when the specified section is allocated54.

The alignment condition can be omitted. If omitted, the default values are as follows.

.tidata.byte/.tibss.byte section: 0x1 bytes * V850

.text section: 0x4 bytes * V830

.text section: 0x2 bytes * V850

Others: 0x4 bytes

The specification format of the alignment condition conforms to the specification format of the alignment

condition of the segment directive (refer to page 273). However, odd-numbered values can be specified

in alignment conditions for the .tidata.byte/.tibss.byte section only. These odd values are not compensated

to become even values.

(7) File name

Specify an object file that includes an input section to be allocated to the output section. If a file name

is specified, only the input section that is included in the specified file and has the corresponding section

type and section attribute is allocated to the output section.

• In specifying a file name, enclose the object file name to be specified in “{” and “}”.

• To specify two or more file names, delimit each from the others by a blank space.

Example>

sec = $PROGBITS ?AX { file1.o file2.o file3.o };

53 A hole area is appended to the specified section.
54 If the specified alignment condition value differs from a previously set alignment condition for the specified section, the least common multiple

of the both values is taken as the alignment condition.

284

• To specify an object file in an archive file (.a file), enclose the archive file name including a path in "()".

The path must be the same as the one specified by the path specification (-L) option of the library (if

no path is specified, the path of the standard directory is assumed).

Example>

sec = $PROGBITS ?AX { strcmp.o(a:\nectools\lib850\r32\libc.a) };

• Specifying of a file name may be omitted.

Example>

sec = $PROGBITS ?AX;

• If the file name is omitted, the ld assumes that all the object files are specified.

For example, the above example is equivalent to the example below if the ld is started with object files

file1.o, file2.o, file3.o, and file4.o specified.

Example>

sec = $PROGBITS ?AX { file1.o file2.o file3.o file4.o };

In the next example, the section with section type $PROGBITS and section attribute ?AX in all the files

is equivalent to sec1, and section sec2 is not created.

Example>

sec1 = $PROGBITS ?AX;

sec2 = $PROGBITS ?AX {file1.o};

If two or more file names are specified, the specified file names are allocated from the lower address

toward the higher address in the sequence in which the file names are specified.

If the sequence of the files specified by arguments on starting the ld differs from the sequence specified

by the link directive, the file name sequence specified by the argument takes precedence.

Example of sequence specified by argument that takes precedence>

link directive

sec = $PROGBITS ?AX {file1.o file2.o file3.o};

command specification

ld732 file3.o file2.o file1.o

↓
file3.o, file2.o, and file1.o are allocated in that order starting from the lower address

285

[Caution]

If allocation to an expected section is not carried out even when an object file name or archive file name is

described, the link map is referenced.

Output the link map by using an option of the link editor, describe a name exactly the same as the file name

displayed on the link map, including the path name, to the directive file, and execute linking again.

286

3.5.4 Using mapping directive

(1) Mapping of sections

• Specify the section type, section attribute and (as necessary) section name, and file name of the section

to be allocated in a mapping directive that is specified in a segment directive.

For example, to allocate a section having section type PROGBITS and section attribute AX in object

files file1.o and file2.o to segment SEG, the following directive can be used.

Example>

SEG : !LOAD ?RX {

sec = $PROGBITS ?AX { file1.o file2.o };

};

To allocate a section having section type PROGBITS, section attribute AX, and section name usrsec

in object files file1.o and file2.o to segment SEG, the following directive can be used.

Example>

SEG : !LOAD ?RX {

usrsec = $PROGBITS ?AX usrsec { file1.o file2.o };

};

287

• Two or more mapping directives can be specified in one segment directive55.

For example, to allocate data-attribute section56 and bss-attribute section57 in object files file1.o and

file2.o to segment SEG, the following directives can be used.

Example>

SEG : !LOAD ?RW {

sec1 = $PROGBITS ?AW { file1.o file2.o };

sec2 = $NOBITS ?AW { file1.o file2.o };

};

To allocate data-attribute section and sdata-attribute section58 in object files file1.o and file2.o to segment

SEG, the following directives can be used.

Example>

SEG : !LOAD ?RW {

.data = $PROGBITS ?AW { file1.o file2.o };

.sdata = $PROGBITS ?AWG { file1.o file2.o };

};

55 If a section having section type NOBITS is specified before a section having section type PROGBITS, a portion that does not have an actual
value is sandwiched between these sections in the object file. Consequently, the contents of the segment cannot be loaded by using the value
of the program header table entry. If it is necessary to load the segment contents by using the program header table entry value, specify the
section having section type NOBITS after the section having section type PROGBITS.

56 Section having section type PROGBITS and section attribute AW
57 Section having section type NOBITS and section attribute AW
58 Section having section type PROGBITS and section attribute AWG

288

• If the same section type, section attribute, input section name (can be omitted), and input file name

(can be omitted) are specified for two or more segments, and if the corresponding section exists, the

section is allocated to the segment specified first.

For example, if no input file name is specified or if the same file name is specified for two segments,

and if the same section types and section attributes are specified for both the segments, the sections

are allocated to the segment specified first, and not to the segment specified last. At this time, the ld

outputs no message.

For example, if the following directive is specified, sections are allocated to segment TEXT1, but not

to segment TEXT259.

Example>

TEXT1 : !LOAD ?RX {

.text1 = $PROGBITS ?AX { file1.o file2.o };

};

TEXT2 : !LOAD ?RX

.text2 = $PROGBITS ?AX { file1.o file2.o };

}; ← Because section types, section attributes, and input file names

are the same as TEXT1, TEXT2 is not created.

DATA : !LOAD ?RW {

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

__tp_symbol @ %TP_SYMBOL;

__gp_symbol @ %GP_SYMBOL &__tp_symbol;

__ep_DATA @ %EP_SYMBOL;

59 Segment TEXT2 is not created.

289

(2) Linking object files

To link two or more object files in section units, use the mapping directive to specify the file names of the

object files to be linked, and the section names to be linked.

To link all the sections having the same type and same attribute in two or more object files in the sequence

in which they are included in the files, the section names need not be specified (refer to Figure 3-3 on

page 259).

The linking sequence is in accordance with the sequence specified by the mapping directive, and from the

lower address toward the higher address. If the sequence of the file names specified by an argument

upon starting the ld is different from the sequence specified by the mapping directive, the sequence

specified by the argument takes precedence.

Figure 3-18. General Format to Link Object Files

output section name = section type section attribute input section name

{file name[file name]...};

For example, when object files file1.o, file2.o, and file3.o that include the sections in the sequence shown

in Figure 3-20 are linked by specifying the directive shown in Figure 3-19, the object files are linked in the

format shown in Figure 3-2060.

Figure 3-19. Example of Commands for Linking Object Files

SEG : !LOAD ?RW {

sec1 = $PROGBITS ?AW sec1 { file1.o file3.o file2.o };

sec3 = $PROGBITS ?AWG sec3 { file2.o };

sec4 = $NOBITS ?AW sec4 { file2.o };

};

Figure 3-20. Example of Linking Object Files

60 A segment is not created for section sec2 but is linked after segment SEG in the sequence in which it appears.

sec2

sec1

sec4

sec3

sec1

sec2

sec1

file1.o

file2.o

file3.o

sec4

sec3

sec2

sec1

SEG
segment

Lower address

290

3.6 Symbol Directive

This section explains the feature, configuration, and usage of the symbol directive.

3.6.1 Feature of symbol directive

The symbol directive can be used to instruct the following item of information.

Note that the element pointer (ep) exists only in the V850 Family.

• Creating a text pointer symbol (tp symbol) having the address value to be set to the text pointer (tp) as a

value

• Creating a global pointer symbol (gp symbol) having the address value to be set to the global pointer (gp)

or the offset value from the address to be set to the text pointer (tp) of the address to be set

TEXT

tp

Sets tp symbol value to tp

 mov #__tp_TEXT, tp

Higher address

Lower address

.sbss

gp

.sdata

Sets gp symbol value (address) to gp,
or tp symbol value + gp symbol value (offset)
 mov #__gp_DATA, gp
 or
 mov #__gp_DATA, gp
 add tp, gp

Higher address

Lower address

64 KB

32 KB

291

• Creating an element pointer symbol (ep symbol) having the address value to be set to the element pointer

(ep) * V850

The tp symbol, gp symbol, and ep symbol are used to set appropriate values to the text pointer, global

pointer, and element pointer by using the start-up routine that is started before execution of the program.

This compiler package assumes that a reference not dependent on the position of the text (position-independent)

is executed by using the text pointer. Data are also referenced independently61 of position by using the

offset value from the global pointer.

In referencing data, the data can be referenced at high speeds or the codes can be reduced by using gp

relative access that places data62 in “the sdata-attribute section and sbss-attribute section in the range that

can be referenced by using the global pointer and one instruction” and by using ep relative access (* V850)

that places data in “the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, and .tibss sections in the

range that can be referenced by the element pointer and a load/store instruction63 with a short instruction

length”.

Cautions

• One each tp symbol and gp symbol is always created internally by the ld to resolve addresses, and

values must be set to tp and gp by using these symbols upon starting the program.

• The ld850 reads the contents of the device file used and automatically sets the first address of the

internal RAM to the element pointer (ep) of the V850 Family. Therefore, only whether a symbol is

created or not is specified for the ep symbol.

Addresses or alignment conditions cannot be specified for the ep symbol.

61 If a section allocated to a segment in the internal RAM or internal ROM is used, the position-independent code is not used because the
addresses to which the section is allocated are fixed.

62 Allocate data to each section by describing #pragma section (refer to V800 Series C Compiler Package User’s Manual - C Language) or
section definition pseudo-instruction (refer to User’s Manual - Assembly Language of each family), or by specifying the size with the -G
option of ca (refer to page 156). The data can also be allocated with a section file (refer to page 408).

63 sld/sst instruction

Internal RAM

tp

Sets ep symbol value to ep

 mov #__ep_DATA, ep

Higher address

Lower address

292

3.6.2 Configuration of symbol directive

The configuration of the symbol directive is as follows.

Figure 3-21. Configuration of Symbol Directive

symbol name @ %symbol type [&base symbol name][V address]

[A alignment condition][{segment name[segment name] ... }];

• The value of the created gp symbol is determined by the following rules (refer to Figure 3-22).

– Specified address if an address is specified.

– Offset from the address specified by the following rules from an address indicated by a tp symbol if an

address is not specified, if the tp symbol is specified by specification of a base symbol name, and if the

specified tp symbol exists

* An address of the first address of an sdata-attribute section64 + 32 Kbytes allocated to the lowest

address of the subjected segment if the sdata-attribute section exists in the segment

* An address of the first address of an sbss-attribute section65 + 32 Kbytes allocated to the lowest

address of the subjected segment if the above condition is not satisfied and if the sbss-attribute

section exists in the segment

* An address of the first address of a data-attribute section66 + 32 Kbytes allocated to the lowest address

of the subjected segment if the above condition is not satisfied and if the data-attribute section exists

in the segment

* An address of the first address of a bss-attribute section67 + 32 Kbytes allocated to the lowest address

of the subjected segment if the above condition is not satisfied and if the bss-attribute section exists

in the segment

* 0x0 if none of the sbss-, bss-, sdata-, and data-attribute sections exist

– Address determined by the above five rules if no address is specified and if the tp symbol is not specified

by specification of a base symbol name or if the tp symbol does not exist even if it is specified

• Be sure to end the symbol directive with “;”.

64 Section having section type PROGBITS and section attribute AWG
65 Section having section type NOBITS and section attribute AWG
66 Section having section type PROGBITS and section attribute AW
67 Section having section type NOBITS and section attribute AW

293

Figure 3-22. Rules to Determine gp Symbol Value

Specifies addess gp symbol value = specified address value

sdata-attribute
section exists

Specifies base
symbol name

gp symbol value =
 "offset" to an address of first
 address of lowest sdata-
 attribute section + 32 Kbytes in
 subjected segment

gp symbol value =
 an address of first address of
 lowest sdata-attribute section
 + 32 Kbytes in subjected
 segment

sbss-attribute
section exists

Specifies base
symbol name

gp symbol value =
 "offset" to an address of first
 address of lowest sbss-
 attribute section + 32 Kbytes in
 subjected segment

gp symbol value =
 an address of first address of
 lowest sbss-attribute section
 + 32 Kbytes in subjected
 segment

data-attribute
section exists

Specifies base
symbol name

gp symbol =
 "offset" to an address of first
 address of lowest data-
 attribute section + 32 Kbytes in
 subjected segment

gp symbol value =
 an address of first address
 of lowest data-attribute section
 + 32 Kbytes in subjected
 segment

bss-attribute
section exists

Specifies base
symbol name

gp symbol value =
 "offset" to an address of first
 address of lowest bss-
 attribute section + 32 Kbytes in
 subjected segment

gp symbol value = 0x0

gp symbol value =
 an address of first address
 of lowest bss-attribute section
 + 32 Kbytes in subjected
 segment

Yes

No

294

3.6.3 Explanation of each item that can be specified for symbol directives

(1) Symbol name

Specify the name of the created tp symbol, gp symbol, or ep symbol (* V850).

• An identifier consisting of appropriate characters shown on page 255 and with any length can be used

for a symbol name.

• This symbol name is in the symbol table of the output object file.

(2) Symbol type

Specify whether the tp symbol, gp symbol, or ep symbol (* V850) is to be created.

• The type of symbol that can be specified is only TP_SYMBOL that is the symbol type of the tp symbol,

GP_SYMBOL that is the symbol type of the gp symbol, or EP_SYMBOL that is the symbol type of the

ep symbol.

• Specification of the symbol type must not be omitted.

(3) Base symbol name

Specify the tp symbol that is used to determine the gp symbol value in creating the gp symbol.

• If the base symbol name is omitted, the gp symbol value is the address determined by the rules on

page 292.

• If a base symbol name is specified in creating the tp symbol, the ld outputs no message and ignores

the specification.

(4) Address

Specify the tp symbol or gp symbol value. Address specification may be omitted. If omitted, the tp symbol

value is the first address of the text-attribute section68 allocated to the lowest address in the subjected

segment if a text-attribute section exists in the segment. If the text-attribute section does not exist in the

segment, the ld outputs a message and stops linking. For the gp symbol value when address specification

is omitted, refer to the explanation on page 292.

The address specification format conforms to the address specification format of the segment directive

(refer to page 270).

(5) Alignment condition

This is used to specify the alignment condition for setting the value of the tp symbol or gp symbol. Specification

of the alignment condition may be omitted.

If omitted, 0x4 is assumed as the default alignment condition.

The alignment condition specification format conforms to the alignment condition specification format of

the segment directive (refer to page 273).

68 Section having section type PROGBITS and section attribute AX
The reserved section includes the .text section and .itext section (CA830).

295

(6) Segment name

This is used to specify the segment to be created in creating the tp symbol or gp symbol.

• Specify a segment of gp relative reference as the subjected segment name of the gp symbol.

For example, do not specify a segment that allocates the .sedata/.sebss section.

• Specification of the subjected segment may be omitted. If omitted, all the sdata/data/sbss/bss-attribute

sections in the object file are subjected.

If omitted, and if a section of data/bss-attribute such as .sedata/.sebss section, and r0 relative or ep

relative reference is created, that segment is also subjected to gp symbol creation, and the value of the

gp symbol can differ from that that has been expected.

When creating a section other than that of gp relative, be sure to specify an appropriate segment as

the subjected segment name of the gp symbol.

• To specify two or more segment names, delimit each from the others by a blank space.

296

3.6.4 Using symbol directive

The tp symbol and gp symbol are created as follows.

• One each of the symbols is created for two or more segments.

• A segment is specified for one each of the symbols, and one each of the symbols is created for each of

those segments.

Only one ep symbol is created because it is an address of the internal RAM.

Figure 3-23. General Format to Create tp/gp/ep Symbols

symbol name @ %TP_SYMBOL [V address]

[A alignment condition][{segment name[segment name] ... }];

symbol name @ %GP_SYMBOL [& base symbol name][V address]

[A alignment condition][{segment name [segment name]...}];

symbol name @ %EP_SYMBOL;

(1) To create a symbol subjected to two or more segments

To create one each of the tp, gp, and ep symbols in an output object file, specify two or more segments

in the symbol directive, or omit specification of the segment name.

For example, if object files crtN.o, main.o, and func.o, and object file libfunc.o in archive file a:\usrlib\libusr.a

are linked by specifying the directive shown in Figure 3-24, one tp symbol __tp_TEXT is created for three

segments, TEXT1, TEXT2, and TEXT3, and one gp symbol __gp_DATA is created for three segments

DATA1, DATA2, and DATA3 (refer to Figure 3-25).

Note that the example in Figure 3-25 is for the CA850 and that the SIDATA segment is subject to the ep

symbol.

297

Figure 3-24. Example of Commands for Creating One Each of tp/gp/ep Symbols

TEXT1 : !LOAD ?RX {

text1 = $PROGBITS ?AX { crtN.o main.o } ;

};

TEXT2 : !LOAD ?RX {

text2 = $PROGBITS ?AX { func.o };

};

TEXT3 : !LOAD ?RX {

text3 = $PROGBITS ?AX { libfunc.o(a:\usrlib\libusr.a) };

};

DATA1 : !LOAD ?RW {

sdata = $PROGBITS ?AWG;

};

DATA2 : !LOAD ?RW {

sbss1 = $NOBITS ?AWG { crtN.o };

};

DATA3 : !LOAD ?RW {

sbss2 = $NOBITS ?AWG;

};

SIDATA : !LOAD ?RW {

.tidata = $PROGBITS ?AW .tidata;

.sidata = $PROGBITS ?AW .sidata;

};

__tp_TEXT @ %TP_SYMBOL{ TEXT1 TEXT2 TEXT3 };

__gp_DATA @ %GP_SYMBOL &__tp_TEXT { DATA1 DATA2 DATA3 };

__ep_DATA @ %EP_SYMBOL;

298

Figure 3-25. Example of Creating One Each of tp/gp/ep Symbols

.sbss

.text

crtN.o

SIDATA
segment

DATA3
segment

__ep_DATA

.tidata

.sbss

.sdata

.text

main.o

.sidata

.sbss

.sdata

.text

func.o

.sbss

.sdata

.text

libfunc.o

__tp_TEXT+
__gp_DATA

DATA2
segment

DATA1
segment

TEXT3 segment

TEXT2 segment

TEXT1 segment

__tp_TEXT

Lower address

.sidata

.tidata

sbss2

sbss1

.sdata

text3

text2

text1

299

(2) Creating a symbol with each segment specified

To create the tp and gp symbols for each of two or more segments, specify each of the segment names

by the symbol directive.

For example, when object files crtN.o, main.o, and func.o, and object file libfunc.o in archive file a:\usrlib\libusr.a

are linked with the directive shown in Figure 3-26, tp symbols __tp_symbol1, __tp_symbol2, and __tp_symbol3

are created for the three segments, TEXT1, TEXT2, and TEXT3, and gp symbols __gp_symbol1, __gp_symbol2,

and __gp_symbol3 are created for another three segments, DATA1, DATA2, and DATA3 (refer to Figure

3-27).

Note that the example in Figure 3-27 is for the CA850, and that the SIDATA segment is subjected to the

ep symbol.

To create two or more symbols, normally the tp and gp values must be explicitly changed by the application

program. When the RTOS is used as the target environment, the RTOS changes the gp value69.

69 Refer to V800 Series Real-Time Operating System User’s Manual .

300

Figure 3-26. Example of Commands for Creating Two or More tp/gp Symbols

TEXT1 : !LOAD ?RX {

text1 = $PROGBITS ?AX { crtN.o main.o };

};

TEXT2 : !LOAD ?RX {

text2 = $PROGBITS ?AX { func.o };

};

TEXT3 : !LOAD ?RX {

text3 = $PROGBITS ?AX { libfunc.o(a:\usrlib\libusr.a) };

};

DATA1 : !LOAD ?RW {

sdata = $PROGBITS ?AWG;

};

DATA2 : !LOAD ?RW {

sbss1 = $NOBITS ?AWG { crtN.o };

};

DATA3 : !LOAD ?RW {

sbss2 = $NOBITS ?AWG;

};

SIDATA : !LOAD ?RW {

.tidata = $PROGBITS ?AW .tidata;

.sidata = $PROGBITS ?AW .sidata;

};

__tp_symbol1 @ %TP_SYMBOL { TEXT1 };

__tp_symbol2 @ %TP_SYMBOL { TEXT2 };

__tp_symbol3 @ %TP_SYMBOL { TEXT3 };

__gp_symbol1 @ %GP_SYMBOL &__tp_symbol1 { DATA1 };

__gp_symbol2 @ %GP_SYMBOL &__tp_symbol2 { DATA2 };

__gp_symbol3 @ %GP_SYMBOL &__tp_symbol3 { DATA3 };

__ep_DATA @ %EP_SYMBOL;

301

Figure 3-27. Example of Creating Two or More tp/gp Symbols

.sbss

.text

crtN.o

SIDATA
segment

DATA3
segment

__ep_DATA

.tidata

.sbss

.sdata

.text

main.o

.sidata

.sbss

.sdata

.text

func.o

.sbss

.sdata

.text

libfunc.o

DATA2
segment

DATA1
segment

TEXT3 segment

TEXT2 segment

TEXT1 segment

__tp_symbol1

Lower address

.sidata

.tidata

sbss2

sbss1

.sdata

text3

text2

text1

__tp_symbol3+
__gp_symbol3

__tp_symbol2+
__gp_symbol2

__tp_symbol3

__tp_symbol2

__tp_symbol1+
__gp_symbol1

302

3.6.5 tp symbol offset in label reference

The C compiler (ca) assumes that the text pointer (tp) has the first address of the segment to which the text-

attribute section is allocated (for example, the TEXT segment of the default link directive) as a value. Therefore,

the following code is output when a label defined in the text-attribute section is referenced (referencing the switch

table, etc.).

movea _label, tp, r10

Usually, the assembler (as) and link editor (ld) set an offset in the label in the section where the label is defined

as a label value for a label reference70 without a symbol such as $ or % appended as shown above. However,

if the label is defined in the text-attribute section, and if the tp symbol is created by the link directive for the

segment to which the section is allocated, the offset from the tp symbol is set as a label value.

In other words, a label reference in a segment where the tp symbol is created is processed as a tp symbol

offset, rather than as an offset in a section.

Figure 3-28 shows an example of a link directive that references the tp symbol offset.

Figure 3-28. Example of Link Directive Where label Reference is tp Symbol Offset

TEXT1 : !LOAD ?RX {

text1 = $PROGBITS ?AX text1 { a.o };

text2 = $PROGBITS ?AX text2 { b.o };

text3 = $PROGBITS ?AX text3 { c.o };

};

TEXT2 : !LOAD ?RX {

.text = $PROGBITS ?AX .text;

};

__tp_TEXT @ %TP_SYMBOL { TEXT1 TEXT2 };

At this time, suppose that the assembler codes of the object files a.o through c.o specified for the mapping

directive in the example in Figure 3-28 are as shown in Figure 3-29.

70 Refer to C Compiler Package User’s Manual - Assembly Language of each family.

303

Figure 3-29. Example of Assembler Codes of a.o through c.o

a.s:

.section "text1"

 ...

movea _label1, tp, r10

 ...

_label1: .word 0x10

b.s:

.section "text2"

 ...

movea _label2, tp, r10

 ...

_label2: .word 0x20

c.s:

.section "text3"

 ...

movea _label3, tp, r10

 ...

_label3: .word 0x30

Because tp symbol “__tp_TEXT” is created for the TEXT1 segment to which text1 through text3 sections are

allocated in Figure 3-28, the values of _label1 through _label3 in Figure 3-29 are the offsets from the value of the

tp symbol “__tp_TEXT” to the definition position of each label. This makes it possible to access the labels in

text1 through text3 sections with one tp symbol “__tp_TEXT”.

On the other hand, if the TEXT1 segment is not specified for creating the tp symbol “__tp_TEXT” in Figure 3-

28, the values of labels _label1 through _label3 are the offsets from the first address of each section, and access

by the tp symbol cannot be executed.

[Caution]

The processing that uses a label reference (without a symbol) as the tp symbol offset, instead of as an

offset in a section, is always executed if the label in the text-attribute section allocated to the segment that

creates the tp symbol is label-referenced. Therefore, if a register other than those to which the tp symbol

value is set is used in combination with a label reference in an assembly-language source program, the

correct value cannot be obtained.

304

Mistake example>

(link directive)

TEXT1 : !LOAD ?RX {

text1 = $PROGBITS ?AX text1 {a.o};

text2 = $PROGBITS ?AX text2 {b.o};

text3 = $PROGBITS ?AX text3 {c.o};

};

...

__tp_TEXT @% TP_SYMBOL{ TEXT1 TEXT2 };

(b.s)

.section "text2"

start : mov #start, r10

ld.w t_lab[r10], r20

...

t_lab : .word 0x20 ← Value of t_lab is offset from __tp_TEXT .

In the above example, the value of t_lab is not an offset from the first address of the text2 section, but an

offset from the __tp_TEXT value. Therefore, the program cannot run correctly as it is. In this case, either

of the following corrections must be made.

• Exclude b.o from the TEXT1 segment and allocate it to a segment that does not create the tp symbol.

(link directive)

TEXT1 : !LOAD ?RX {

text1 = $PROGBITS ?AX text1 {a.o};

text3 = $PROGBITS ?AX text3 {c.o};

};

...

TEXTB : !LOAD ?RX {

text2 = $PROGBITS ?AX text2 {b.o};

};

...

__tp_TEXT @% TP_SYMBOL{ TEXT1 TEXT2 };

• Reference by combining a register to which the corresponding tp symbol value is set and the label reference

(b.s)

.section "text2"

start : mov #__tp_TEXT, r10

ld.w t_lab[r10], r20

...

t_lab : .word 0x20

The ca always outputs codes by using a label reference that uses tp as a base for the label reference in

the text-attribute section. In the case of a C source program, therefore, the above error does not occur as

long as the tp symbol is created for the segment to which that section is allocated by the link directive.

305

3.7 Default Link Directive

If the link directive is not specified upon starting the ld, the ld links object files by using the default link directive

the ld has as internal information.

This compiler package includes the sample file of default link directive as a reference for creating link directive.

• Installation directory \smpxxx\caxxx*.dir file

Each segment described in the default link directive is created, allocated starting from the lower addresses in

the sequence in which the corresponding input sections, if any, appear.

Some segments are allocated to addresses in the sequence in which the segments are described by the link

directive, and the others are allocated in accordance with the contents of the device file71 or the ld’s internal

information.

If an interrupt handler is defined by using an interrupt request name defined in the device file, a link directive

that allocates the function to predetermined handler addresses is automatically created inside the ld, regardless

of whether the default directive or a specified directive is used.

Caution

The *.dir file shown above is only a sample file. This file is not actually referenced by the ld if no link directive

has been specified. If no link directive has been specified, the ld references the device file and follows the

default memory addresses allocation that is defined for each target device.

71 For the details of the device file, refer to the User’s Manual of the device file.

306

(1) With CA830

• Segments are sequentially allocated starting from address 0x0, in the sequence described by the default

link directive. The address of the default link directive is determined by referencing the device file

(Figure 3-30 shows an example of the V830).

• The CA830 includes v830def.dir file for a sample, which is the default directive when the target device

is the V830.

Figure 3-30. Default Link Directive (CA830: V830) (1/2)

SIDATA : !LOAD ?RW V0x0{

.sidata = $PROGBITS ?AW .sidata;

.sibss = $NOBITS ?AW .sibss;

};

SEDATA : !LOAD ?RW V0x1000{

.sedata = $PROGBITS ?AW .sedata;

.sebss = $NOBITS ?AW .sebss;

};

CDATA1 : !LOAD ?RW V0x8000{

.cdata1 = $PROGBITS ?AW .cdata1;

 };

CDATA2 : !LOAD ?RW V0x10000000{

.cdata2 = $PROGBITS ?AW .cdata2;

 };

CDATA3 : !LOAD ?RW V0x20000000{

.cdata3 = $PROGBITS ?AW .cdata3;

 };

UDATA1 : !LOAD ?RW V0x40000000{

.udata1 = $PROGBITS ?AW .udata1;

 };

UDATA2 : !LOAD ?RW V0x50000000{

.udata2 = $PROGBITS ?AW .udata2;

 };

307

Figure 3-30. Default Link Directive (CA830: V830) (2/2)

UDATA3 : !LOAD ?RW V0x60000000{

.udata3 = $PROGBITS ?AW .udata3;

 };

DATA : !LOAD ?RW V0x80000000{

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

ITEXT : !LOAD ?RX V0xfe000100{

.itext = $PROGBITS ?AX .itext;

};

TEXT : !LOAD ?RX V0xfe001000{

.text = $PROGBITS ?AX;

};

CONST : !LOAD ?R {

.const = $PROGBITS ?A .const;

};

SCONST : !LOAD ?R V0xffff8000{

.sconst = $PROGBITS ?A .sconst;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

308

Figure 3-31. Memory Location by Default Link Directive (CA830)

.const

.text

.bss

.data

.udata3

.udata2

.sconst

.text

.sbss

.sdata

.sebss

.sedata

.sibss

.sidata

__tp_TEXT +
__gp_DATA

__tp_TEXT

.text

.itext

.udata1

.cdata3

.cdata2

.cdata1

0xFFFFFFFF

0xFFFF8000

0xFE000100

0x80000000

0x60000000

0x50000000

0x40000000

0x20000000

0x10000000

0x00008000

0x00001000

Interrupt

.sconst

 .itext

Interrupt

.udata3

.udata2

.udata1

.cdata3

.cdata2

.cdata1

.sebss

.sedata

.sibss

.sidata

SCONST
segment

CONST
segment

DATA
segment

TEXT
segment

UDATA3
segment

0xFE001000

ITEXT
segment

UDATA2
segment

UDATA1
segment

CDATA3
segment

CDATA2
segment

CDATA1
segment

SEDATA
segment

SIDATA
segment

0x0

.bss

.sbss

.sdata

.data

.const

.text

309

(2) With CA850

• If the SIDATA segment is created (refer to Figure 3-33 on page 311)

– The SIDATA segment is allocated to the first address of the internal RAM.

– The DATA segment is allocated to an address suitable for the type of the device in accordance with

the device file.

For example, in the V851 that has an internal ROM, the DATA segment is allocated to the first

address of the external memory.

– The SEDATA segment is allocated to an address lower than the first address of the internal RAM.

– The CA850 includes v850def.dir file for a sample, which is the default directive when the target

device is the V851.

• If the SIDATA segment is not created (refer to Figure 3-35 on page 313)

– The DATA segment is allocated to the first address of the internal RAM.

– The CONST segment is allocated to an address suitable for the type of the device in accordance with

the device file.

For example, in the V851 that has an internal ROM, the CONST segment is allocated to the first

address of the external memory.

– The SEDATA segment is allocated to an address lower than the first address of the internal RAM.

– The CA850 includes v850def2.dir file for a sample, which is the default directive when the target

device is the V851.

The segments other than mentioned above are allocated to addresses in the sequence in which the

segments are described.

310

Figure 3-32. Default Link Directive with SIDATA (CA850: V851)

SCONST : !LOAD ?R {

.sconst = $PROGBITS ?A .sconst;

};

TEXT : !LOAD ?RX {

.text = $PROGBITS ?AX;

};

DATA : !LOAD ?RW V0x100000{

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

CONST : !LOAD ?R {

.const = $PROGBITS ?A .const;

};

SEDATA : !LOAD ?RW V0xff6000 {

.sedata = $PROGBITS ?AW .sedata;

.sebss = $NOBITS ?AW .sebss;

};

SIDATA : !LOAD ?RW V0xffe000{

.tidata.byte = $PROGBITS ?AW .tidata.byte;

.tibss.byte = $NOBITS ?AW .tibss.byte;

.tidata.word = $PROGBITS ?AW .tidata.word;

.tibss.word = $NOBITS ?AW .tibss.word;

.tidata = $PROGBITS ?AW .tidata;

.tibss = $NOBITS ?AW .tibss;

.sidata = $PROGBITS ?AW .sidata;

.sibss = $NOBITS ?AW .sibss;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

311

Figure 3-33. Memory Location by Default Link Directive (CA850: with internal ROM)

If SIDATA segment is created

.const

.bss

.data

.text

.sebss

.sedata

.sbss

.sdata

.text

.sconst

.tidata.byte

.tibss.byte

.tidata.word

.tibss.word

.tidata

.tibss

.sidata

.sibss

.text

.sibss

.sidata

.tibss

.tidata

.tibss.word

.tidata.word

.tibss.byte

.tidata.byte

.sebss

.sedata

.const

.bss

.sbss

.sdata

.data

.text

.sconst

Interrupt

__tp_TEXT +
__gp_DATA

0x100000

__tp_TEXT

0x0

SIDATA
segment

SEDATA
segment

__ep_DATA

CONST
segment

DATA
segment

TEXT
segment

SCONST
segment

0xFFE000

0xFF6000

312

Figure 3-34. Default Link Directive without SIDATA (CA850: V851)

SCONST : !LOAD ?R {

.sconst = $PROGBITS ?A .sconst;

};

TEXT : !LOAD ?RX {

.text = $PROGBITS ?AX;

};

CONST : !LOAD ?R V0x100000 {

.const = $PROGBITS ?A .const;

};

SEDATA : !LOAD ?RW V0xff6000 {

.sedata = $PROGBITS ?AW .sedata;

.sebss = $NOBITS ?AW .sebss;

};

DATA : !LOAD ?RW V0xffe000 {

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT { DATA };

__ep_DATA @ %EP_SYMBOL;

313

Figure 3-35. Memory Location by Default Link Directive (CA850: with internal ROM)

If SIDATA segment is not created

.const

.bss

.data

.text

.sebss

.sedata

.sbss

.sdata

.text

.sconst

.text

0xFFE000

0xFF6000

0x100000

__tp_TEXT +
__gp_DATA

__tp_TEXT

0x0

.bss

.sbss

.sdata

.data

.sebss

.sedata

.const

.text

.sconst

Interrupt

DATA
segment

__ep_DATA

SEDATA
segment

CONST
segment

TEXT
segment

SCONST
segment

314

Each family performs the following processing by using the default link directive.

• If only the symbol directive of the link directives specified upon starting the ld is specified, linking is executed

by using the segment directive section of the default directive and the specified symbol directive.

• If the symbol directive is not specified by the link directive specified upon starting the ld, the default text

pointer symbol (__tp_TEXT), global pointer symbol (__gp_DATA), and element pointer symbol (__ep_DATA)

are not created72.

• The directive for an interrupt handler is automatically created and added to the default link directive, based

on the information read from the device file.

• If an interrupt handler is specified by the “#pragma ” directive73 in the C source program, or an interrupt

handler is specified by the “.section ” pseudo-instruction74 in the assembly-language source program,

the interrupt handler is allocated in accordance with the added directive.

• The default link directive specifies the following output section names corresponding to the following segment.

Sections having other names are not allocated to each segment.

.sconst section → SCONST segment

.const section → CONST segment

.sedata, .sebss section → SEDATA segment

.sidata section, .sibss section, .tidata section, .tibss section,

.tidata.byte section, .tibss.byte section, .tidata.word section, → SIDATA segment

.tibss.word section

.cdata1 section → CDATA1 segment

.cdata2 section → CDATA2 segment

.cdata3 section → CDATA3 segment

.udata1 section → UDATA1 segment

.udata2 section → UDATA2 segment

.udata3 section → UDATA3 segment

.itext section → ITEXT segment

The output sections other than the above are allocated to the TEXT segment or DATA segment by the section

type and section attribute.

In the above segments, the input section names are fixed to the same names of the output sections.

72 In the example of the start-up module (crtN.s) included in this compiler package, the text pointer symbol (__tp_TEXT), global pointer symbol
(__gp_DATA), and element pointer symbol (__ep_DATA) created by the default link directive are used.

73 Refer to V800 Series C Compiler Package User’s Manual - C Language .
74 Refer to User’s Manual - Assembly Language of each family.

315

3.8 Using Default Link Directive

In describing a link directive, some items must be described in the same manner as the default link directive

(refer to page 305).

The items of each family are explained below.

(1) With CA830

The valid address range is fixed for the segment corresponding to the internal memory or chip select

signal. The address range of the default directive conforms to the memory location of the V830.

When creating and specifying a directive file, specify an address suitable for the memory location of the

microprocessor as the address of the segment to be created, by referring to the User’s Manual of the

microprocessor used, or the User’s Manual of the device file.

For example, when creating the ITEXT segment with the V830 as the target device, specify address

0xfe000100.

The input/output section names for SEDATA, CONST, SCONST, SIDATA , CDATA1, CDATA2, CDATA3,

UDATA1, UDATA2, UDATA3, and ITEXT are fixed to the same name as the default names and must not

be omitted.

(2) With CA850

The valid address range is fixed for the segment placed in the internal memory or the segment that is

placed at an address determined by the ld850, such as SEDATA. When creating and specifying a directive

file, specify an address suitable for the memory location of the microprocessor as the address for the

segment to be created, by referring to the User’s Manual of the microprocessor used or device file.

For example, if the V851 with internal ROM is used as the target device and if the SIDATA segment is to

be created, specify 0xffe000 as the address.

The input/output section names of SEDATA, CONST, SCONST, and SIDATA are fixed to the same name

as the default names and must not be omitted.

[Caution]

If the SIDATA segment is not created and, for example, a data segment such as the DATA segment for the

default directive is allocated to the internal RAM, a warning message indicating that “the DATA segment

does not fit in the internal RAM area” is output almost every time if the start-up module or library supplied

with this compiler package are used.

In this case, specify an external memory address for the segment by using the directive file, and allocate

the DATA segment to the external memory.

316

3.9 Syntax of Link Directive

The syntax of the link directive when described by the BNF method is as shown below.

<directive_file> ::= Not described

| <directives>

<directives> ::= <segment_directive>

| <section_directive>

| <symbol_directive>

| <directives>

<segment_directive> ::= Not described

| <segment_name> <segdir_specifier> <segment_type>

 <memory_attribute> <seg_parameters> <directive_end>

<seg_parameters> ::= Not described

| <seg_parameters>

| <address>

| <alignment>

| <hole_size>

| <fill>

| <length>

| <region_begin> <section_map> <region_end>

<section_map> ::= Not described

| <section_map>

| <section_directive>

<section_directive> ::= Not described

| <output_section_name> <scndir_specifier> <section_type>

 <section_attribute> <scn_parameters> <directive_end>

<scn_parameters> ::= Not described

| <scn_parameters>

| <address>

| <alignment>

| <hole_size>

| <input_section_name>

| <region_begin> <files> <region_end>

<symbol_directive> ::= Not described

| <symbol_name> <symdir_specifier> <symbol_type>

 <symbol_parameters> <directive_end>

<symbol_parameters> ::= Not described

| <symbol_parameters>

| <region_begin> <names> <region_end>

<address> ::= [‘V’|‘v’]<value>

<alignment> ::= [‘A’|‘a’]<value>

<hole_size> ::= [‘H’|‘h’]<value>

<fill> ::= [‘F’|‘f’]<value>

<length> ::= [‘L’|‘l’]<value

<memory_attribute> ::= ‘?’<seg_attribute>

<section_attribute> ::= ‘?’<scn_attribute><target_own_attr>

<segment_type> ::= ‘!’["LOAD"|"load"]

317

<section_type> ::= ‘$’["PROGBITS"|"progbits"|"NOBITS"|"nobits"|]

<symbol_type> ::= ‘%’<target_own_type>

<output_section_name> ::= <section_name>

<input_section_name> ::= <section_name>

<seg_attribute> ::= Not described

| [‘R’|‘r’]

| [‘W’|‘w’]

| [‘X’|‘x’]

| <seg_attribute>

<scn_attribute> ::= Not described

| [‘A’|‘a’]

| [‘W’|‘w’]

| [‘X’|‘x’]

| <scn_attribute>

<target_own_attr> ::= Not described

| [‘G’|‘g’]

<target_own_type> ::= ["TP_SYMBOL"|"tp_symbol"|"GP_SYMBOL"|"gp_symbol"

 |"ep_symbol"|"EP_SYMBOL"]

<files> ::= Not described

| <files>

| <file_name>

<names> ::= Not described

| <names>

| <segment_name>

<segment_name> ::= Legal segment name character string

<section_name> ::= Legal section name character string

<file_name> ::= Legal file name character string

<symbol_name> ::= Legal symbol name character string

<value> ::= Legal octal/decimal/hexadecimal number character string

<segdir_specifier> ::= ‘:’

<scndir_specifier> ::= ‘=’

<symdir_specifier> ::= ‘@’

<region_begin> ::= ‘{’

<region_end> ::= ‘}’

<directive_end> ::= ‘;’

318

CHAPTER 4 LINK MAP

This chapter explains the link map output by the ld.

If the ld is started with the display option (-m) of the link map specified, it outputs a link map indicating the

locations of sections to the standard output.

Figure 4-1 shows an output example of the link map that is output if object files crtN.o, main.o, and func.o are

linked with specified reference of archive file libc.a.

Figure 4-1. Output Example of Link Map

 ******** LINK EDITOR ALLOCATION MAP ********

OUTPUT INPUT VIRTUAL SIZE INPUT

SECTION SECTION ADDRESS FILE

.text 0x00000000 0x00000082

.text 0x00000000 0x0000001a crtN.o

.text 0x0000001c 0x0000002c main.o

.text 0x00000048 0x00000018 func.o

.text 0x00000060 0x00000022 strcmp.o(..\lib830\r32\libc.a)

.sdata 0x00000088 0x0000000e

.sdata 0x00000088 0x0000000e main.o

.sbss 0x00000098 0x00000008

.sbss 0x00000098 0x00000004 func.o

.sbss 0x0000009c 0x00000004 *(nil)*

.symtab 0x00000000 0x000001a0

.symtab 0x00000000 0x000001a0 *(nil)*

.strtab 0x00000000 0x000000b5

.strtab 0x00000000 0x000000b5 *(nil)*

.shstrtab 0x00000000 0x0000002e

.shstrtab 0x00000000 0x0000002e *(nil)*

 (1) (2) (3) (4) (5)

319

To this link map, the following items of information are output.

(1) Output section

Name of the output section constituting the object file to be created.

(2) Input section

Name of the input section allocated to each output section.

(3) Address

First address of the output section and the input section.

(4) Size

Size of the output section and the input section.

(5) Input file

Name of the object file to which the input section belongs.

The section created with the ld as well as .symtab, .strtab, and .shstrtab created by the as included in this

compiler package are marked “*(nil)*”.

If the object file to which the input section belongs is an object file in the archive file, the name of the

archive file is also displayed in the format “object file name (archive file name)”.

320

CHAPTER 5 SUPPLEMENT

This chapter explains the supplementary information on the ld.

5.1 Using Archive File

The archive file is created by linking two or more object files with the archiver (ar).

The ld searches the archive file for an unresolved external reference at the point where the archive file has

been specified75, and links only the necessary object files.

The archive file can be also specified in the mapping directive of the link directive. If the archive file is also

specified in the mapping directive, it is searched for unresolved external reference at that specified point, and

only the necessary object files76 are linked.

5.2 Reserved Symbols

In processing linking, the ld creates reserved symbols having the first address of each output section, the first

address (aligned under a 4-byte alignment condition) exceeding the termination of each output section, and first

address (aligned under a 4-byte alignment condition) exceeding the termination of a created and executable

object file as values.

If the user defines a symbol having the same name as any of these reserved symbols, the ld uses the defined

symbol, and does not create its own symbol.

As the reserved symbol that has the first address of a section as a value, a symbol having the name constituted

by prefixing “__s” to the name of the output section is used. If this section name begins with “.”, “.” is taken out

and then “__s” is prefixed as a symbol name.

As the reserved symbol that has the first address (aligned under a 4-byte alignment condition) exceeding the

termination of a section as a value, a symbol name with “__e” prefixed to the name of that output section is used.

If the section name begins with “.”, however, “ .” is taken out and then “__e” is prefixed as a symbol name.

As the reserved symbol having the first address (aligned under a 4-byte alignment condition) exceeding the

termination of a created executable object file, __end is used.

75 The archive file has a symbol table of the symbols belonging to the object files of the archiver, and the archive file is repeatedly searched until
the unresolved external reference is no longer resolved.

76 Object file defining a referenced symbol

321

The default link directive of the ld uses the following reserved sections as output sections:

.text, .data, .sdata, .sbss, .bss, .sconst, .const, .sedata, .sebss, .sidata, .sibss (both families)

.itext, .cdata1, .cdata2, .cdata3, .udata1, .udata2, .udata3 (CA830 only)

.tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, tibss.word (CA850 only)

Therefore, the ld usually creates the following reserved symbols.

Table 5-1. Special Symbols in Normal Object File

__end

__ebss __sbss

__ecdata1 __scdata1 * V830

__ecdata2 __scdata2 * V830

__ecdata3 __scdata3 * V830

__econst __sconst

__edata __sdata

__eitext __sitext * V830

__esbss __ssbss

__esconst __ssconst

__esdata __ssdata

__esebss __ssebss

__esedata __ssedata

__esibss __ssibss

__esidata __ssidata

__etext __stext

__etibss __stibss * V850

__etibss.byte __stibss.byte * V850

__etibss.word __stibss.word * V850

__etidata __stidata * V850

__etidata.byte __stidata.byte * V850

__etidata.word __stidata.word * V850

__eudata1 __sudata1 * V830

__eudata2 __sudata2 * V830

__eudata3 __sudata3 * V830

322

5.3 File Name in Link Directive

Even if an object file or archive file to be allocated to a section is specified in the directive file, they may not

be allocated to the expected sections depending on how the file name is described.

In this case, specify the directive file with the file name displayed on the link map and with the identical name

including the path name for re-linking, while referring to the link map (-m).

5.4 Link between V850 Family Object File and V850E Object File

The V850E is upward-compatible with the other V850 Family microprocessors. The source program used in

the V850 Family can be used in the V850E. In this case, create the V850 Family object file as an object file

common to the family with the as option (refer to page 205).

The object file created as “common within V850E” cannot link with the object file other than the V850E (refer

to Cautions on page 205).

323

CHAPTER 6 MESSAGES

This chapter explains the messages output by the ld. The italic characters in the output messages and explanatory

statements are determined during command processing.

6.1 Message Format

The ld outputs the following two types of messages.

With file name displayed

ld “file name”: level: message

Without file name

ld: level: message

level in the above formats indicates the type of the error that has occurred. The correspondence between the

type of level and the remedial action performed by the ld is shown below.

warning

Warning77. The ld continues linking normally.

fatal error

Fatal error. The ld stops linking.

syntax error

Error concerning syntax of link directive. The ld stops linking.

77 The ld does not output the messages of this type if it has been started with the -w option specified.

324

6.2 Messages

The messages output by the ld are shown below in alphabetical order. Note that some messages are not

displayed depending on the family used.

‘-’ is illegal.

Only “-” cannot be specified.

can not allocate hash table.

Allocating the hash table has failed.

can not allocate memory (number).

Allocated memory of number bytes has failed.

can not allocate memory (builtin new error).

Allocating of a memory area has failed.

can not allocate symbol table entry page.

Allocating of a symbol table entry page has failed.

can not allocate vector table.

Allocating of a vector table has failed.

can not create output file “ file ”.

Output file file cannot be created.

can not find archive file “ file ”.

Archive file file cannot be found.

can not find archive member at offset (offset) specified in archive symbol table entry.

An archive member is not found at the position of the offset offset specified by the archive symbol table

entry. The chances are that the contents of the archive symbol table have been destroyed.

can not find devicefile.

The device file cannot be found.

can not find entry point symbol “ symbol ” specified with “-e” option.

Symbol symbol specified by entry point address specification option (-e) cannot be found.

can not find output section needed in deciding TP (GP) symbol’s symbol value in segment “ segment ”.

The output section necessary for determining the value of the tp (gp) symbol for segment segment is not

found.

can not find number th symbol table entry for relocation of reference at offset (offset) in “ section ”

section, this relocation is ignored.

The numberth symbol table entry to relocate a reference existing in offset offset of section section is not

found. This relocation is ignored.

325

can not get raw data of section “ section ”.

Getting the raw data of section section has failed.

can not get size of directive file “ file ”.

Getting the size of directive file file has failed.

can not link mask reg using objects with mask reg not using objects. “ file ” is mask reg using object.

An object file using the mask register and an object file not using the mask register cannot be linked.

File file is an object file using the mask register.

can not link new_fcall objects with old_fcall objects. “ file ” is new_fcall object.

An object file of the new function calling specifications and an object file of the old function calling specifications

cannot be linked.

File file is an object file of the new function calling specifications.

This message is output when option -ol that specifies linking of the library of the old version is specified.

* V850

can not link old_fcall objects with new_fcall objects. “ file ” is old_fcall object.

An object file of the new function calling specifications and an object file of the old function calling specifications

cannot be linked.

File file is an object file of the old function calling specifications.

can not link V850E common objects with V850 objects. “ file ” is V850E common object.

A common object file for the V850E Family cannot be linked with an object file whose target device is fixed

as the V850.

The file file is a common object file for the V850E Family.

A common object file for the V850E Family can be linked with an object file whose target device is fixed as

the V850E or with an object file that is common to both the V850 and V850E Families. * V850

can not open command file “ file ”.

Command file file cannot be opened.

can not open directive file “ file ”.

Directive file file cannot be opened.

can not open input file “ file ”.

Input file file cannot be opened.

can not open output file “ file ”.

Output file file cannot be opened.

can not read directive file “ file ”.

Directive file file cannot be read.

can not seek output file “ file ”.

Output file file cannot be sought.

can not truncate output file “ file ” to have size (number).

The size of output file cannot be changed to number bytes.

326

can not write output file “ file ”.

Output file file cannot be written.

duplicated cpu type

A target device is specified in duplicate.

Different target devices are specified in the object files to be linked.

EP symbol is needed for using SIDATA/SEDATA segment.

The ep symbol is not created. Create the ep symbol to use the SIDATA or SEDATA segment. * V850

Error Number (number).

An error of error number number occurs in the object file I/O library internally used by the ld.

The chances are that the contents of the object file are illegal or destroyed.

This message is also output if a work memory area cannot be allocated in this library.

failed to get section header.

Getting a section header has failed.

failed to get section name string.

Getting a section name has failed.

failed to get section name string table section.

Getting the string table section of the section name has failed.

fail to get symbol name string.

Getting a symbol name character string has failed.

fail to get symbol name string table section.

Getting a string table section has failed.

failed to get number th symbol name string.

Getting the numberth symbol name character string has failed.

ignored -ol option. all object files follow new_fcall convention.

All the input files are of the new function calling specifications. The -ol option that specifies linking of

libraries of the old specifications is ignored. * V850

illegal character (number) in filling value field.

Illegal character number (ASCII code) is used to specify a filling value.

illegal ELF file type, must be relocatable or shared library file.

The file types of the object file that can be treated as an input file are only the relocatable object file or

library file.

illegal ELF version.

The ELF version of the specified object file is not the version that can be handled by the ld.

327

illegal linkage status (number)

Illegal linkage status number occurs.

The chances are that the symbol type of the symbol table entry is illegal.

illegal operand (access width mismatch)

An internal peripheral function register with a different access width is specified as the operand.

illegal operand (cannot read I/O register which does not have read access)

The internal peripheral function register specified as the operand is inhibited from being read.

illegal operand (cannot use bit I/O register)

A flag bit of an internal peripheral function register must not be specified as an operand.

illegal operand (cannot write I/O register which does not have write access)

The internal peripheral function register specified as the operand is inhibited from being written.

illegal operand (inconsistent bit position)

The bit position specified by the bit manipulation instruction contradicts.

illegal target machine byte order.

The byte order of the input file is not the byte order that can be handled by the ld.

illegal target machine class.

The class of the input file cannot be handled by the ld.

illegal target machine type.

The type of the input file cannot be handled by the ld.

string in segment directive of non LOAD segment is illegal.

string must not be specified in the segment directive that does not specify LOAD as the segment type.

input files have different register modes.

A file with a different register mode is input.

library path is too long. path maximum size is 576.

The path for search is too long. The path for specification should be 576 characters or less.

line num : ‘}’ is expected.

“}” is necessary.

line num : ‘:’, ‘=’ or ‘@’ is expected to follow name.

The name that begins a directive must be followed by “:”, “=”, or “@”.

line num : ‘;’ is expected at the end of directive.

“;” is necessary at the end of the directive.

line num : ‘=’ is expected to follow section name.

“=” is necessary at the end of an output section name.

328

line num : aligned odd value (number1) to be even value (number2).

Odd value number1 is aligned to even value number2.

line num : illegal character (number)

An illegal character (number) exists in the link directive.

line num : illegal section attribute ‘ character ’.

character that must not be specified as a section attribute is specified.

line num : illegal section type “ string ”.

string that must not be specified as a section type is specified.

line num : illegal segment type “ string ”.

string that must not be specified as a segment type is specified.

line num : string in section directive is illegal when “-r” option specified, ignored.

string must not be specified in the section directive and is ignored if the -r option is specified.

line num : string in segment directive is illegal when “-r” option specified, ignored.

string must not be specified in the segment directive and is ignored if the -r option is specified.

line num : string is illegal in file name field.

string must not be specified in the portion that specifies a file name.

line num : string is illegal in section directive.

string must not be specified in the section directive.

line num : string is illegal in segment directive.

string must not be specified in the segment directive.

line num : string is illegal in segment name field.

string must not be specified in the portion that specifies a segment name.

line num : string is illegal in symbol directive.

string must not be specified in the symbol directive.

line num : string is illegal when “-f” option specified, ignored.

string must not be specified and is ignored when the filling value specification option (-f) is specified.

line num : name is expected at the beginning of directive.

Start a directive with a name.

line num : section “ section ” already defined at line (number).

Section section has been already defined on the numberth line.

line num : section directive of section “ section ” needs string .

Section directive needs string.

329

line num : section name is expected at the beginning of section directive.

Start a section directive with a section name.

line num : segment “ segment ” already defined.

Segment segment has been already defined.

line num : string specified in EP symbol directive, ignored.

string must not be specified in ep symbol directive and is ignored. * V850

line num : string specified to section “ section ” more than once in same or other directive.

string has been specified more than once in the same section directive or another section directive for

section section.

line num : string specified to segment “ segment ” more than once in same or other directive.

string has been specified more than once in the same segment directive or another segment directive for

segment segment.

line num : string specified to symbol “ symbol ” more than once in same or other directive.

string has been specified more than once in the same symbol directive or another symbol directive for

symbol symbol.

line num : symbol “ symbol ” already defined at line (number).

Symbol symbol has been already defined on the numberth line.

line num : symbol directive of symbol “ symbol ” needs string .

string is necessary for the symbol directive of symbol symbol.

line num : symbol kind “ string ” specified more than once in same or other directive.

Symbol-type string has been defined more than once in the same or another directive.

line num : too many ‘}’.

Too many “}” are specified for “{”.

line num : unknown symbol kind “ string ”.

string that must not be specified as a symbol type is specified.

linking of symbol “ symbol ” in sdata or sbss attribute section in “ file1 ” and in other attribute section

in “ file2 ” is attempted.

Symbol symbol allocated to the sdata- or sbss-attribute section in file1 and symbol symbol allocated to a

section other than the sdata- and sbss-attribute section in file2 are linked.

memory size (number1) of segment “ segment ” overflowed specified or default maximum memory size

(number2).

Memory size number1 of segment segment exceeds the explicitly specified maximum memory size or default

maximum memory size.

multiple inclusion of same file attempted, ignored.

The same file is specified more than once as an input file.

330

nesting of command file “ file ” in command file is not supported.

Command file file is specified in a command file.

Nesting of command files is not supported.

no archive symbol table, ignored this archive file.

An archive symbol table does not exist in the specified archive file.

Specification of this archive file is ignored.

no GP symbol for relocation by relocation entry (section: section , offset: offset , type: relocation type),

GP symbol’s symbol value (0x0) is assumed.

The gp symbol that serves as a basis by a calculating the relocation value in relocation by a relocation entry

(section section, offset offset, and relocation type relocation type) is not specified.

Calculation is performed assuming that the gp symbol value is 0x0.

no LOAD segments exist for mapping input section “ section ” in file “ file ”, this section is mapped to

non-LOAD *DUMMY* segment with no program header.

A segment having segment type LOAD to which section section in file file can be allocated does not exist.

This section is allocated to the dummy segment that does not have a program header and cannot be

loaded.

number specified in filling value field must begin with “0x” or “0X”.

Start the number to be specified as a filling value with either 0x or 0X.

“ string ” option ignored.

string option is ignored.

“ string1 ” option is illegal when “ string2 ” option specified, ignored.

string1 option must not be specified when string2 option is specified.

string1 option is ignored.

“ string ” option must be specified before files.

Specify string option before specifying a file.

“ string ” option needs argument, ignored.

string option needs an argument and is ignored.

relocated value (value) of relocation entry (file: file , section: section , offset: offset , type: relocation

type) for branch command become odd value.

Value value relocated by the branch relocation entry (file file, section section, offset offset, relocation type

relocation type) is an odd number.

relocated value (value) of relocation entry (file: file , section: section , offset: offset , type: relocation

type) overflowed relocation field.

The value value relocated by a relocation entry (file file, section section, offset offset, relocation type relocation

type) exceeds the range of the relocation field.

The chances are that the sdata/sbss-attribute section is allocated exceeding the memory range that can be

referenced by 16-bit displacement (refer to page 226).

331

relocation entry in relocation section “ section1 ” used to relocate section “ section2 ” has illegal r_offset

(offset), ignored.

The entry in relocation information section section1 used for relocation of section section2 has illegal relocation

offset offset.

This entry is ignored.

relocation entry in section “ section ” has unknown relocation type (number), ignored this entry.

The relocation entry in section section has an illegal relocation type number. This entry is ignored.

section attribute ‘ attribute ’ of section “ section ” and segment attribute ‘ attribute ’ of segment “ segment ”

do not match.

The section attribute attribute of section section does not agree with the segment attribute of segment

segment to which this section is specified to be allocated78.

section “ section ” has unknown section type (number).

Section section has illegal section type number.

section “ section ” with section type (section type) not supported, ignored.

Section with section name section having section type section type is not supported by the ld and is ignored.

segment directive of segment “ segment ” needs string .

string is necessary for the segment directive of segment segment.

segment “ segment ” (number1 - number2) must be in EP-relative-address-able range (number3 - number4).

The area to which segment segment is specified to be allocated (number1 - number2) exceeds the range

that can be referenced by ep relative (number3 - number4)79. * V850

segment “ segment ” (number1 - number2) must be in r0-relative-address-able range (number3 - number4).

The area to which segment segment is specified to be allocated (number1 - number2) exceeds the range

that can be referenced by r0 relative (number3 - number4)79.

segment “ segment ” overflowed highest address of target machine.

The area to which segment segment is specified to be allocated exceeds the range of the internal memory

of the target machine.

segment “ segment ” (number1 - number2) overflowed highest or lowest address of internal memory

(number3 - number4).

The area to which segment segment is specified to be allocated (number1 - number2) exceeds the range

of the internal memory of the target machine (number3 - number4).

segment “ segment ” (number1 - number2) overlaps guarded area (number3 - number4).

The area to which segment segment is specified to be allocated (number1 - number2) overlaps the guard

(use prohibited) area (number3 - number4).

segment “ segment1 ” overlaps previous segment “ segment2 ”.

The area to which segment segment1 is specified to be allocated overlaps the area to which preceding

segment segment2 is allocated.

78 Ignore section attribute G, and match section attributes A, W, and X with segment attributes R, W, and X, respectively.
79 If this message is output, the correct memory address may not be referenced. Be sure to modify to the correct allocation.

332

sorry, archive file “ file ” in directive not supported.

The feature to specify an archive file in the link directive is not supported.

sorry, “ string ” option not implemented, ignored.

string option is not implemented and is ignored.

sorry, shared library not supported.

A shared library is not supported.

start address (number1) of section “ section ” overlaps previous section ended before address (number2).

The first address number1 of section section overlaps the area of the section allocated up to address

number2.

start address (number1) of segment “ segment ” overlaps previous segment ended before address (number2).

The first address number1 of segment segment overlaps the area of the segment allocated up to address

number2.

string buffer overflow.

The area of the string buffer has run short.

symbol “ symbol ” has different align-size in file “ file ”.

Link occurs in symbol symbol but differs in alignment condition from the symbol having the same name

defined in file.

symbol “ symbol ” has different size in file “ file ”.

Link occurs in symbol symbol but differs in size from the symbol having the same name defined in file.

symbol “ symbol ” has incompatible type in file “file”.

Link occurs in symbol symbol but differs in type from the symbol having the same name defined in file.

symbol “ symbol ” has unknown binding class (number).

Symbol symbol has illegal binding class number.

symbol “ symbol ” multiply defined.

Symbol symbol is multiple-defined.

string symbol multiply defined, first defined symbol “ symbol ” used.

string symbol is multiple-defined.

string symbol symbol that is defined first is used.

string symbol multiply defined to segment “ segment ”, first defined symbol “ symbol ” used.

string symbol is multiple-defined for segment segment. Symbol symbol that is defined first is used as string

symbol for segment segment.

symbol table overflow.

The symbol table area has run short.

TP symbol “ symbol1 ” specified as GP symbol “ symbol2 ” ’s base symbol is not found.

tp symbol symbol1 specified as the base symbol of gp symbol symbol2 is not found.

333

undefined symbol.

symbol referenced in “ file ”

Symbol symbol referenced in file file is not defined.

unknown cpu type.

Specify a target device.

This message is output if an attempt is made to create an executable object file by linking only the file

specifying the -cn option of the as when a relocatable object file is created.

unknown format type file “ file ”.

Specified file file has an illegal file format.

unknown option “ string ”.

Illegal option string is specified.

weak symbol “ symbol ” not supported.

Symbol symbol having binding class WEAK is not supported.

zero size sbss or bss attribute symbol “ symbol ”.

The size of symbol symbol to be allocated to the sbss- or bss-attribute section is 0.

334

[MEMO]

335

VOLUME 6

HANDLING ARCHIVER

336

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, and output messages of the archiver (ar) included in this compiler

package.

ar starts from the VSH command line.

1.1 Flow of Operation

The ar links specified relocatable object files to create one archive file (also called a library file) (refer to

Figure 1-1).

If two or more object files whose functions are related to each other are linked to one archive file in an application

system, the archive file can be used as an independent library.

Figure 1-1. Flow of Operation of ar

1.2 Handling File

The archive file created by the ar can be specified as an input file for the link editor (ld) included in this

compiler package. When an archive file is specified, the ld searches the specified archive file for necessary

object files, and links only the object files that have been found.

By linking two or more object files related to each other to one archive file by using the ar, the object files can

be treated as one library.

ar

Object file

Object file

Archive file

337

CHAPTER 2 OPERATION

This chapter explains the operations of the ar.

2.1 Command Input Format from VSH Command Line

ar key [option][member name1] archive file name[member name or file name] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Keys/Options

Only one key can be specified on starting the archiver. Options may be omitted.

2.2.1 Key list

The following table lists keys of the ar.

Specification Format Feature

V This option outputs the ar version number to standard output and then terminates processing.

d This option deletes the specified member from the specified archive file.

m This option moves the specified member to the end of the specified archive file.

ma member This option moves the specified member to the position immediately after the member member in the

specified archive file.

If the member is omitted, processing is stopped.

mb member This option moves the specified member to the position immediately before the member member in

the specified archive file.

If the member is omitted, processing is stopped.

q This option adds the specified file to the end of the specified archive file2.

If the specified archive file does not exist, a new archive file is created and contains the specified file.

r This option exchanges the specified file with the member having the same name in the specified

archive file3.

ra member This option exchanges the specified file with the member having the same name in the specified

archive file, and then moves the specified file to the position immediately after the member member4.

If the member is omitted, processing is stopped.

rb member This option exchanges the specified file with the member having the same name in the specified

archive file, and then moves the specified file to the position immediately before the member member4.

If the member is omitted, processing is stopped.

ru If the specified file has been updated more recently than the member having the same name in the

specified archive file, this option replaces member with the specified file3.

1 A file is called a member when it is linked in an archive file. A member has the same name as that before the file is linked.
2 Whether or not a member with the same name as the specified file exists is not checked.
3 If the member with the same name as the specified file does not exist in the specified archive file, the specified file is added to the end of the

specified archive file. If the specified archive file does not exist, a new archive file is created and contains the specified file.
4 If the member with the same name as the specified file does not exist in the specified archive file, the specified file is added to the end of the

specified archive file.

338

Specification Format Feature

t If a member name has been specified, this option outputs only the member name of member existing

in the specified archive file. If a member name has not been specified, this option outputs (to standard

output) the member names of all members existing in the specified archive file.

x If a member name has been specified, and if the specified member exists in the specified archive file,

this option extracts that member and creates a file having the same name. If a member name has

not been specified, this option extracts all of the members existing in the specified archive and creates

files having the same names. The contents of the archive file are not changed.

2.2.2 Option list

The following table lists options of the ar.

Specification Format Feature

c This option does not output message.

v This option outputs this archiver’s execution status using the format “[a|d|q|m|r|x] - file name”.

a - file name Add

d - file name Delete

q - file name Create new

m - file name Move

r - file name Replace

x - file name Extract

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

2.3 Examples of Use

Here are examples of using the ar.

• To update a member

ar850 ru file.a a.o

If object file a.o is updated more recently than the member a.o of archive file file.a, object file a.o replaces

member a.o of archive file file.a.

• To extract a member

ar850 xv file.a a.o

Member a.o is extracted from archive file file.a and object file a.o is created. At this time, the execution

status is output in the format of x - a.o .

339

CHAPTER 3 MESSAGES

This chapter explains the output messages of the ar (in alphabetical order). The italic characters in the output

messages and explanatory statements are determined during command processing.

3.1 Message Format

The ar outputs the messages in the following format.

ar: message

3.2 Messages

bad key character - use [dm(a|b)qr(a|b|u)txV]

character must not be specified as a key.

bad option character - use [cv]

character must not be specified as an option.

can not close file file

File file cannot be closed.

can not create file file

File file cannot be created.

can not find file file

File file cannot be read.

can not find member member

Member member does not exist in the archive file.

can not nest command file file

Command file file is nested. It must not be nested.

can not open file file

File file cannot be opened.

can not read archive header file

The header of archive file file cannot be read.

can not read file file

Data cannot be read from file file.

can not seek file file

File file cannot be sought.

340

can not write file file

File file cannot be written.

creating file

Archive file file is being created.

file name name is too long

The length of file name name exceeds the limit.

file has no member

No member exists in archive file file.

file is not archive file

file is not an archive file.

malformed archive file file

The contents of archive file file may be destroyed.

memory allocation fault

The memory capacity has run short.

string table error file

The contents of the archive string table in archive file file may be destroyed.

symbol table error file

Creating an archive symbol table in archive file file has failed.

symbol table limit error file (number1) - limit is number2

The number of symbols number1 in archive file file exceeds the limit. The limit value is number2.

usage: ar [dm(a|b)qr(a|b|u)txV][cv][key-member]archive-file file ...

Input the command line like this.

version error file

The version of the format of specified file file is not the version that can be handled by this archiver.

341

VOLUME 7

HANDLING HEX CONVERTER

342

CHAPTER 1 OVERVIEW

This volume explains the outline, operations, output file format, and output messages of the hex converter (hx)

included in this compiler package.

hx starts from the VSH command line.

1.1 Flow of Operation

The hx inputs an executable object file1 output by the link editor (ld) included in this compiler package, converts

the format of that file into a hex format, and outputs the hex-format file to the standard output2 (refer to Figure

1-1).

When loading an application to the target machine, the file format that can be input to an in-circuit emulator,

monitor, or ROM writer used for loading may be the hex format only. In this case, convert the object file into a

hex-format file by using the hx.

Figure 1-1. Flow of Operation of hx

1 An object file in which an unresolved external reference does not exist
2 By using the -o option, the hex-format file can be output to a specified file.

Executable
object file

hx

Intel hex
Motorola hex
Tektro hex
 format file

343

1.2 Handling File

As the hex formats, the following formats can be specified.

(1) Intel hex format

• Intel expanded hex format

(2) Tektro hex format

• Expanded Tek hex format

(3) Motorola hex format

• S type format (standard address)

• S type format (32-bit address)

344

CHAPTER 2 OPERATION

This chapter explains the operations of the hx.

2.1 Command Input Format from VSH Command Line

hx [option] ... file name

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists options of the hx.

Specification Format Feature

–F devpath This option searches for the device file first in the directory devpath, then in the standard directories3.

If this option is omitted, only the standard directories are searched.

–Iname This option converts and outputs code in the section specified by the section name name4.

If this option is omitted, it converts code in all sections which correspond to a section type other than

NOBITS and which have section attribute A5.

–R This option sorts and outputs sections in the ascending order of addresses.

–S This option converts and outputs the symbol table sections.

This option is valid only when expanded Tek hex format has been specified (-fT has been specified).

–Unum This option converts and outputs all of the code in the ROM area defined by the device file to Intel

expanded hex format.

Any unused area is filled with num. num specifies a hexadecimal number that begins with either 0x

or 0X.

If num is omitted, the unused area is filled with 0xff.

–V This option outputs hx’s version number to standard output and then terminates processing.

–bnum The decimal number specified as num is regarded as the maximum block length value (or, in the

case of the Intel expanded hex format or the Motorola S type hex format, the number of code bytes

indicated in one data record)6.

If this option is omitted, the default value7 for each hex format is used.

–dnum This option offsets the address to be output from num.

For num, specify either a decimal number or a hexadecimal number that begins with either 0x or 0X.

–fc This option uses the hex format8 specified by character c.

If this option is omitted, the Motorola S type hex format (standard address) is used.

3 hx handles the directory at the ..\dev position from the hx’s installation directory as the standard directory of the device file.
4 If a section (section having section type NOBITS and section attribute A) is specified for the data for which no initial value has been specified,

null characters (\0) are created corresponding to the section’s size.
5 hx converts in section units rather than segment units.
6 The range of specifiable values is 1 to 255 for Intel expanded hex format, 1 to 251 for Motorola S type hex format (standard address), 1 to

250 for Motorola S type hex format (32-bit address), and 16 to 255 for expanded Tek hex format.
7 The default value is 31 for Intel expanded hex format, 80 for Motorola S type hex format, and 255 for expanded Tek hex format.
8 I: Intel expanded hex format, S: Motorola S type hex format (standard address), s: Motorola S type hex format (32-bit address), T: Expanded

Tek hex format

345

Specification Format Feature

–o ofile This option outputs to a file called ofile.

If this option is omitted, it outputs to standard output.

–x This option sets local symbols as targets for symbol table conversion and output.

This option is valid only when specified with the -S option.

If this option is omitted, only global symbols are targets.

–z This option creates null characters (\0) to fill the section size for section having section type NOBITS

and section attribute A (section for data with initial value not specified, such as .bss section and .sbss

section).

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

2.3 Examples of Use

Here are examples of using the hx.

• To output converted hex format to a specified file

hx850 –fT –Sxz –o tek.hex a.out

Converts object file a.out to the expanded Tek hex format and outputs the file to file tek.hex. At this time,

the symbol table, including the local symbols, is also converted and output. Moreover, as many null

characters (\0) as the size of a section for data with no initial value specified (for example, .bss section

and .sbss section) are generated.

• To output converted hex format to standard output

hx850 –fI –I.text a.out

Converts the code of the .text section in object file a.out into the Intel expanded hex format, and outputs

it to the standard output.

346

CHAPTER 3 TYPES OF OUTPUT FILES

This chapter explains the type of the output files of the hx.

3.1 Intel Expanded Hex Format

A file in the Intel expanded hex format consists of four types of records9: start address record, expanded

address record, data record, and end record.

Figure 3-1 shows the file configuration in the Intel expanded hex format.

Figure 3-1. File Configuration in Intel Expanded Hex Format

9 Each record is output in ASCII code.
10 The expanded address record and data record are repeated.

Start address record

Expanded address record10

Data record10

Data record

Expanded address record

Data record

Data record

End record

. . .
. . .

347

Each record consists of fields as follows.

: CC AAAA TT [field] ... SS NL

(a) (b) (c) (d) (e) (f)

(a) ... Record mark

(b) ... Number of bytes (number of bytes that are expressed as 2-digit hexadecimal numbers of [field] ...)

(c) ... Location address

(d) ... Record type11

(e) ... Checksum (value expressed as 2-digit hexadecimal number in records (other than :, SS, and NL)

sequentially subtracted from initial value 0 and that lower 1 byte expressed as a 2-digit hexadecimal

number)

(f) ... New line (\n)

(1) Start address record

Indicates an entry point address.

: 04 0000 03 PPPP OOOO SS NL

(a) (b) (c) (d) (e)

(a) ... Number of bytes is fixed to 04.

(b) ... Fixed to 0000

(c) ... Record type is 03.

(d) ... Paragraph value12 of entry point address

(e) ... Offset value of entry point address

(2) Expanded address record

Indicates the paragraph value of a load address13.

: 02 0000 02 PPPP SS NL

(a) (b) (c) (d)

(a) ... Number of bytes is fixed to 02.

(b) ... Fixed to 000

(c) ... Record type is 02.

(d) ... Paragraph value of segment

11 03 ... start address record, 02 ... expanded address record, 00 ... data record, 01 ... end record
12 The address is calculated by (paragraph value << 4) + offset value.
13 The paragraph value is output if the segment is renewed at the beginning of a segment (when the data record is output) or when the offset

value of the load address of the data record exceeds the maximum value of 0xffff.

348

(3) Data record

Indicates the value of a code.

: CC AAAA 00 DD ... DD SS NL

(a) (b) (c) (d)

(a) ... Number of bytes14

(b) ... Location address

(c) ... Record type is 00.

(d) ... Code (each byte of code expressed as 2-digit hexadecimal number)

Example>

: 04 0100 00 3C58E01B 6C NL

(a) (b) (c) (d) (e)

(a) ... Number of bytes of 3C58E01B expressed as 2-digit hexadecimal number is 04.

(b) ... Location address is 0100.

(c) ... Record type is 00.

(d) ... Code

(e) ... Check sum is 6C which is the lower 1 byte of 2’s complement E6 of 04 + 01 + 00 + 00 + 3C + 58

+ E0 + 1B = 194 expressed as a 2-digit hexadecimal number.

(4) End record

Indicates the end of a code.

: 00 0000 01 FF NL

(a) (b) (c) (d)

(a) ... Number of bytes is fixed to 00.

(b) ... Fixed to 0000

(c) ... Record type is 01.

(d) ... Check sum is fixed to FF.

14 Limited to the range of 0x1 to 0xff (the minimum value of the number of bytes of the code indicated by one data record is 1 and the maximum
value is 255).

349

3.2 Motorola S Type Hex Format

A file in the Motorola S type hex format consists of five records15: S0 record as a header record, S2/S3 records

as data records, and S8/S7 records as end records16.

Figure 3-2 shows the file configuration in Motorola S type hex format.

Figure 3-2. File Configuration in Motorola S Type Hex Format

15 Each record is output in ASCII code.
16 The Motorola S type hex formats are divided into two types: (24-bit) standard address and 32-bit address types. The format of the standard

address type consists of S0, S2, and S8 records, and the format of the 32-bit address type consists of S0, S3, and S7 records.
17 1

Each record consists of fields as follows:

ST LL field [field] ... SS NL

(a) (b) (c) (d)

(a) ... Record type

(b) ... Record length (number of bytes of field [field] ... expressed as 2-digit hexadecimal number + number

of bytes expressed by SS17)

(c) ... Check sum (Lower 1 byte expressed as 2-digit hexadecimal number of 1’s complement of total of

number of bytes in records (other than ST, SS, and NL) expressed as 2-digit hexadecimal number)

(d) ... New line (\n)

S0 record

S2/S3 record

. . .

S2/S3 record

S8/S7 record

350

(1) S0 record

Indicates a file name.

S0 LL FF ... FF SS NL

(a) (b)

(a) ... Record type is S0.

(b) ... File name (specified file name indicated in ASCII code)

(2) S2 record

Indicates the value of a code.

S2 LL AAAAAA DD ... DD SS NL

(1) (2) (3)

(1) ... Record type is S2.

(2) ... Load address (24 bits18)

(3) ... Code (1 byte expressed as 2-digit hexadecimal number)

(3) S3 record

Indicates the value of a code.

S3 LL AAAAAAAA DD ... DD SS NL

(a) (b) (c)

(a) ... Record type is S3.

(b) ... Load address (32 bits19)

(c) ... Code (1 byte expressed as 2-digit hexadecimal number)

(4) S7 record

Indicates an entry point address.

S7 LL AAAAAAAA SS NL

(a) (b)

(a) ... Record type is S7.

(b) ... Entry point address (32 bits20)

18 Range of 0x0 to 0xffffff
19 Range of 0x0 to 0xffffffff
20 Range of 0x0 to 0xffffffff

351

(5) S8 record

Indicates an entry point address.

S8 LL AAAAAA SS NL

(a) (b)

(a) ... Record type is S8.

(b) ... Entry point address (24 bits21)

21 Range of 0x0 to 0xffffff

352

3.3 Expanded Tek Hex Format

The file in the expanded Tek hex format consists of three types of blocks: data block, symbol block, and

termination block.

Figure 3-3 shows the file configuration in the expanded Tek hex format.

Figure 3-3. File Configuration in Expanded Tek Hex Format

22 6 ... data block, 3 ... symbol block, 8 ... termination block
23 The value for each character is determined as follows: 0 to 9 ... 0 to 9, A to Z ... 10 to 35, $... 36, % ... 37, 38, _ ... 39, a to z ... 40 to

65).

Each block consists of fields as follows:

% LL T SS field [field] ... NL

(a) (b) (c) (d) (e)

(a) ... Header character

(b) ... Block length (number of characters in blocks other than % and NL)

(c) ... Type of block22

(d) ... Check sum (value of remainder resulting from dividing total value23 of characters in blocks other than

%, SS, and NL, by 256 and expressed as 2-digit hexadecimal number)

(e) ... New line (\n)

Data block

. . .
. . .

Data block

Symbol block

Symbol block

Termination block

353

(1) Data block

Indicates the value of a code.

% LL T SS L A ... A D ... D NL

(a) (b) (c)

(a) ... Block type is 6.

(b) ... Number of digits of load address and the load address

(c) ... Code (1 byte of code expressed as 2-digit hexadecimal number)

Example>

% 15 6 1C 3 100 020202020202 NL

(a) (b) (c) (d) (e)

(a) ... Block length is 15.

(b) ... Block type is 6.

(c) ... Check sum is 1C which is remainder expressed as 2-digit hexadecimal number resulting from

dividing 1 + 5 + 6 + 3 + 1 + 0 + 0 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 = 28 by 256.

(d) ... Number of digits of load address is 3, and load address is 100.

(e) ... Code

(2) Symbol block

Indicates the value of a symbol.

% LL T SS L N ... N [section definition field24] (cont’d to next line)

(a) (b) (A)

symbol definition field [symbol definition field] ... NL

(B)

(a) ... Block type is 3.

(b) ... Number of characters of the section name and the section name

(A) Section definition field

0 L B ... B L L ... L

(a) (b) (c)

(a) ... Indicates that this field is a section definition field.

(b) ... Number of digits of the base address of a section and the base address of the section

(c) ... Number of digits of the length of a section and the length of the section

24 One section definition field must exist in each section. A section definition field can be followed by or follow any of symbol definition fields.

354

(B) Symbol definition field

T L S ... S L V ... V

(a) (b) (c)

(a) ... Type of symbol25

(b) ... Number of characters of symbol and the symbol

(c) ... Number of digits of symbol value and value of symbol

Example 1>

% 37 3 60 8SVCSTUFF0 02402C6 22CR1D14OPEN25014READ25815WRITE260 NL

(a) (b) (c) (d) (e) (f)

(a) ... Block length is 37.

(b) ... Block type is 3.

(c) ... Check sum is 60.

(d) ... Number of characters of a section is 8 and the section name is SVCSTUFF.

(e) ... Section definition field (number of digits of the base address of the section is 2, the base address

of the section is 20, the number of digits of the length of the section is 2, and the length of the

section is C6)

(f) ... Symbol definition field (22CR1D/14OPEN250/14READ258/15WRITE260)

Example 2>

% 37 3 C8 8SVCSTUFF0 15CLOSE26814EXIT27029BUFLENGTH28013BUF278 NL

(a) (b) (c) (d) (e)

(a) ... Block length

(b) ... Block type is 3.

(c) ... Check sum

(d) ... Number of characters of section name is 8 and section name is SVCSTUFF.

(e) ... Symbol definition field (15CLOSE268/14EXIT270/29BUFLENGTH280/13BUF278)

25 1 ... global address (symbol having binding class GLOBAL and type other than ABS), 2 ... global scalar (symbol having binding class GLOBAL
and type ABS), 5 ... local address (symbol having binding class LOCAL and type other than ABS), 6 ... local scalar (symbol having binding
class LOCAL and type ABS)

355

(3) Termination block

Indicates an entry point address.

% LL T SS L A ... A NL

(a) (b)

(a) ... Block type is 8.

(b) ... Number of digits of entry point address and the entry point address

Example>

% 08 8 1A 2 80 NL

(a) (b) (c) (d)

(a) ... Block length is 8.

(b) ... Block type is 8.

(c) ... Check sum is 1A.

(d) ... Number of digits of entry point address is 2, and entry point address is 80.

356

CHAPTER 4 MESSAGES

This chapter explains the output messages of the hx (in alphabetical order).

The italic characters in the output messages and explanatory statements are determined during command

processing.

4.1 Message Format

The message of hx is basically output in the following format.

hx: message

However, a command name is not output to the warning message.

4.2 Messages

cannot create HEX rom data, because there is no memory information

ROM data cannot be created because there is no memory information.

cannot find device file

The device file cannot be found.

cannot open file file

File file cannot be opened.

cannot open output file file

Output file file cannot be opened.

close error

The file cannot be closed.

expect block length after -b

Specify a block length after -b.

expect disp value after -d

Specify an offset value after -d.

expect format type [ITSs] after -f

Specify I, T, S, or s after -f.

expect input file

Specify an input file name.

expect output file -o

Specify an output file name after -o.

357

expect section name after -I

Specify a section name after -I.

file name name is too long

The length of file name name exceeds the limit.

illegal fill value

The filling value is illegal.

illegal option -character

-character must not be specified as an option.

file is archive file

File file is an archive file and must not be specified.

file is not ELF file

File file is not an object file in the ELF format.

memory allocation fault

The memory capacity has run short.

nested command file file

Command file file is nested. It must not be nested.

section : No such section

Specified section section cannot be found.

read error

Data cannot be read from the file.

seek error

The file cannot be sought.

too many input files

Two or more input files must not be specified.

too many output files

Two or more output files must not be specified.

usage: hx[-f[ITSs]][-F dir][-I name][-U[num]][-zxRSV][-b num] [-d num] [-o file] input-file

Input the command line like this.

Warning: -S expect -fT

The -S option is valid only when the expanded Tek hex format is specified (when -fT is specified).

Warning: -U option overrides -f option

The -f option is invalid because the -U option is specified.

358

Warning: -x expect -S and -fT

The -x option is valid only when specified with the -S and -fT options.

Warning: address is too long

The address exceeds the maximum value of the address that can be expressed in the specified hex format26.

Warning: block length is set. Length => length

The maximum value of the block length is changed from the default value to length and processing is

continued27.

Warning: expect command file after @, ignored

Specify command file after @. @ option is ignored.

Warning: symbol block length exceed default value

The block length of the symbol block exceeds the maximum value of the specified block.

Warning: too large block length. Length => length

The maximum value of the specified block length is too big.

The value is changed to the maximum value length that can be specified and processing is continued.

Warning: too small block length. Length => length

The maximum value of the specified block length is too small.

The value is changed to the default value length and processing is continued.

26 This message may be output in the Intel expanded hex format or Motorola S type hex format (standard address). After outputting this
message, the hx continues processing, outputting as an address the lower 20 bits in the case of the Intel expanded hex format and the lower
24 bits in the case of the Motorola S type hex format (standard address).

27 This message is output if a value that can be specified is specified when the -b option is specified.

359

VOLUME 8

HANDLING DUMP COMMAND

360

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, display format, and output messages of the dump command

(dump) included in this compiler package.

dump starts from the VSH command line.

1.1 Flow of Operation

The dump command displays the contents of a specified object file or archive file1 in a format easy to see

(refer to Figure 1-1). The displayed contents can be selected by an option that is specified upon starting the

dump command.

This command is used to check the information on a section or segment, such as the address, attribute, and

symbol name, by displaying the contents of the section header table or symbol table in a created object file or

archive file.

Figure 1-1. Flow of Operation of dump

1 If a member that is not an object file exists in a specified archive file (except when the -e option is specified), the dump command outputs a
warning message and proceeds to the processing of the next member.

Object file
or
archive file

Outputs contents of
input file to standard
output

dump

361

CHAPTER 2 OPERATION

This chapter explains the operations of the dump command.

2.1 Command Input Format from VSH Command Line

dump [option] ... file name [file name] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

If no option is specified, it is assumed that the -A option is specified2.

2.2.1 Option list

The following table lists the option of the dump.

Specification Format Feature

–A This option displays the entire contents of the specified object file or archive file.

–T This option does not display the member update date among the displayed archive header contents.

–V This option outputs the dump version number to standard output and then terminates processing.

–a This option displays the archive header contents of all members existing in the specified archive file.

–b This option displays the contents of debug information.

–c This option displays the contents of string table.

–d num This option displays data from the section indicated by num3.

+d num This option displays data up to the section indicated by num3.

–e This option displays the contents of members (other than archive symbol table, archive string table,

and object file) existing in the specified archive file.

–f This option displays the ELF header contents of all members existing in the specified archive file.

–g This option displays the external symbol4 contents of the archive symbol table existing in the specified

archive file.

–h This option displays the contents of all section headers existing in the specified archive file.

–i This option displays the contents of all program headers existing in the specified archive file.

–k This option displays the contents of the global pointer table.

–l This option displays the line number information.

–m This option displays the contents of strings existing in the archive string table in the specified archive

file.

–n name This option displays the contents of the section indicated by section name name.

2 Specifying the -A option is equivalent to specifying -abcfghiklmrst.
3 num is the section header table index.
4 Symbol having binding class of GLOBAL

362

Specification Format Feature

–p This option does not display the title.

–r This option displays the contents of relocation information.

–s This option displays the contents of section.

–t [num] This option displays the contents of symbol table starting from the numth symbol table entry.

If num is omitted, the display starts from the first symbol table entry.

+t num This option displays the contents of symbol table up to the numth symbol table entry.

–v This option displays a value of section attribute, etc., with the character string which indicates meaning

of the value rather than a number (refer to page 367).

–z name [num] This option displays contents of line number information for the function name, starting from the

numth line number entry.

If num is omitted, the display starts from the first line number entry.

+z num This option displays contents of line number information, up to the numth line number entry.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

2.3 Examples of Use

Here are examples of using the dump.

• To display contents of object file in meaning

dump850 -ftv a.out

The contents of ELF header and symbol table existing in the object file a.out are displayed with a character

which indicates meaning, not a numerical value.

• To specify a section name

dump850 -n .text a.out

The contents of the .text section in the object file a.out are displayed.

363

CHAPTER 3 DISPLAY FORMAT

This chapter explains the display format of the dump command.

3.1 Archive Header

ARCHIVE HEADER

Displays contents of archive header

Date Uid Gid Mode Size Member Name

0x3158DE73 2165 188 0100664 0x2B8 atof.o

Date of updating User ID Group ID Permission of file Total number of Member name

member bytes of member

3.2 Archive Symbol Table

ARCHIVE SYMBOL TABLE

Displays contents of archive symbol table

Offset Name

0x1f3c -abs

Offset in file to member Symbol name

including symbol

3.3 Archive String Table

ARCHIVE STRING TABLE

Displays contents of archive string table

Offset Name

0x1100 foo.o

Offset Member name

364

3.4 ELF Header

ELF HEADER

Displays contents of ELF header

Class Data Type Machine Version

Entry Phoff Shoff Flags Ehsize

Phentsize Phnum Shentsz Shnum Shstrndx

1 1 1 070377 1

0x0 0x0 0x2A4 0x84 0x34

0x20 0 0x28 6 5

Class Byte order Type Processor Version number

Entry point Offset in file of Offset in file of Flag Size of ELF header

address program header section header

table table

Entry size of Number of entries Entry size Number of entries Section header table

program of program header of section header of section header index of string table

header table table table table holding section name

3.5 Program Header Table

PROGRAM HEADER

Displays contents of program header table

No. Type Offset Vaddr Paddr

Filesz Memsz Flags Align

1. 0 0x0 0x0 0x0

0x0 0x0 0x0 0x0

Index Segment type Offset in file Virtual address Physical address

File size Memory size Segment attribute Alignment condition

3.6 Section Header Table

SECTION HEADER

Displays contents of section header table

No. Type Flags Addr Offset Size Name

Link Info Adralgn Entsize

1. 0x1 0x6 0x0 0xB4 0x7556 .text

0x0 0x0 0x4 0x0

Index Section type Section First address Offset in file Size Section name

attribute

Section header Information Alignment Size of entry

table index link condition

365

3.7 String Table

STRING TABLE INFORMATION

Displays contents of string table

Index String

0x1 .text

Index Character string

3.8 Symbol Table

SYMBOL TABLE INFORMATION

Displays contents of symbol table

No. Value Size Bind Type Other Shndx Name

1. 0x0 0x0 0 3 0 0x1 .text

Index Value Size Binding Type Other Section header Section name

class table index

3.9 Relocation Information

RELOCATION INFORMATION

Displays contents of relocation information5

Offset Sym Type Addend

0x20 6 0x23 0x0

Offset Symbol table index Relocation type Addend constant

3.10 Register Mode Information

REGISTER MODE INFORMATION

Displays contents of register mode information

SymIdx TmpReg ParReg

0x1 0x5 0x5

Symbol table index Number of work registers Number of registers for register variables

5 Array of relocation entries

366

3.11 Global Pointer Table

GPTAB INFORMATION

Displays contents of global pointer table

Gnum Gsize

0x4 0xC

Size of num/data of -Gnum Size when aligned by 0/word

3.12 Line Number Information

LINE NUMBER INFORMATION

Displays contents of line number information

Bfunc Maddr Daddr Pad Function Name

0x0 0xA2 0xE28 0x0 _main

Beginning of Address of function Address of debug Padding Function name

subsection information

Num Snum Offset Flags

0x5 0x0 0x0 0x1

Line number Position of statement Offset Flag

3.13 Debug Information

DEBUG INFORMATION

Displays contents of debug information

Tag Attr Aux

0x0016

size 0x00000026

0x000C 0x00000E1C

Tag Attribute Auxiliary information

3.14 PROGBITS Data

PROGBITS DATA in HEX 6

0x00000000 : 40 0E 00 00 21 2E 00 00 ...

Displays in hexadecimal number the contents of raw data of section having section type PROGBITS

6 If the -D option is specified, the result of disassembling the contents of the section is displayed after the title ***TEXT DATA*** for a section
having section attribute X.

367

3.15 Element Values and Meanings

When the -v option has been specified, the following information indicates that character strings are used

instead of numerical values to indicate the meaning of the value for some elements.

• ELF header

• Program header table

• Section header table

• Symbol table

• Relocation information

• Debug information

The following table lists the values7, display when -v is specified, and meaning of those elements which are

displayed as character strings when -v has been specified.

(1) “Flags” in ELF headers

Value Display when -v is specified Meaning

1 L_______ .vline section exists

2 _D______ .vdebug section exists

4 __P_____ Object is a PIC (Position Independent Code) object

10 ___R____ Register mode is 22-register mode or 26-register mode

20 ____d___ Different register modes are mixed

40 _____r__ Object is output by romp

80 ______N_ Default function call specification (call does not use old specification)

100 _______M Uses mask register function

(2) “Type” in program header table

Value Display when -v is specified Meaning

1 Load Segment is loaded into memory

4 Note Segment including supplemental information

7 The value is displayed using the number base output by dump.

368

(3) “Type” in section header table

Value Display when -v is specified Meaning

0x1 Progbits Section that corresponds to an entity that contains an actual value in an

object file (machine language instruction and data with initial value)

0x2 Symtab Symbol table

0x3 Strtab String table

0x4 Rela Relocation information

0x8 Nobits Section that corresponds to an entity that does not contain an actual value

in an object file (data without initial value)

0x9 Rel Relocation information

0x70000000 Gptab Global pointer table (in which the first entry contains a num of -Gnum specified

for ca or as, and the 0th, 2nd, and subsequent entries indicate the size

when aligned with data size and word)

0x70000001 Regmode Section that exists in a relocatable object file created using the register

mode function8

(Information concerning the number of registers used internally by the ca is

stored)

(4) “Bind” in symbol table

Value Display when -v is specified Meaning

0 Local Symbol that is not used to resolve external reference

1 Global Symbol that is used to resolve external reference

(5) “Type” in symbol table

Value Display when -v is specified Meaning

1 Object Ordinary object (label)

2 Func Function name

3 Section Section

4 File Ordinary file name

13 Devfile Device file name

(6) “Shndx” in symbol table

Value Display when -v is specified Meaning

0 Undef Undefined symbol

65280 GpCommon Undefined external symbol that is referenced by global pointer (gp) and 16-

bit displacement

65521 Abs Symbol indicating constant

65522 Common Undefined external symbol that is referenced by global pointer (gp) and 32-

bit displacement

8 Refer to -reg option of ca.

369

CHAPTER 4 MESSAGES

This chapter explains the output messages of the dump command (in alphabetical order).

The italic characters in the output messages and explanatory statements are determined during command

processing.

4.1 Message Format

The message of dump is basically output in the following format.

dump: message

4.2 Messages

archive string table not exist

The archive string table is missing.

archive symbol table not exist

The archive symbol table is missing.

can not open file file

File file cannot be opened.

close error

The file cannot be closed.

convert error

Conversion cannot be executed.

empty in archive file

The archive file has no content.

illegal option string

string must not be specified as an option.

file is not ELF nor archive file

File file is neither an object file nor an archive file.

memory allocation fault

The memory capacity has run short.

nested command file file

Command file file is nested. It must not be nested.

not enough argument

The argument is insufficient.

370

not enough argument for string

The argument for the option string is insufficient.

read error

Data cannot be read from the file.

seek error

The file cannot be sought.

usage: dump [options] file ...

options:

–abcefghiklmprsvxATV

–d number

+d number

–n name

–t [index]

+t index

–z name [number]

+z number

Input the command line like this.

371

VOLUME 9

HANDLING DISASSEMBLER

372

CHAPTER 1 OVERVIEW

This volume explains the outline, operation, an output example, and output messages of the disassembler

(dis) included in this compiler package.

dis starts from the VSH command line.

1.1 Flow of Operation

The dis inputs an object file or archive file, converts the data of text attribute into assembly language codes,

and outputs them to the standard output (refer to Figure 1-1).

The dis is used to reference the corresponding assembly-language source program from a created object file

or archive file.

Figure 1-1. Flow of Operation of dis

Object file
or
archive file

Outputs assembly
language to standard
output

dis

373

CHAPTER 2 OPERATION

This chapter explains the operations of the dis command.

2.1 Command Input Format from VSH Command Line

dis [option] ... file name [file name] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

If no option is specified, the –o option is assumed.

2.2.1 Option list

The following table lists the option of the dis.

Specification Format Feature

–A Specifying this option is equivalent to specifying the option -aoptr.

–F devpath This option searches for the device file first in the directory devpath, then in the standard directories1.

If this option is omitted, only the standard directories are searched.

–V This option outputs the dis version number to standard output and then terminates processing.

–a This option displays addresses.

–c This option displays code2.

–e address This option specifies an end address. address is specified as a decimal number or as a hexadecimal

number starting with 0x.

If this option is omitted, it is assumed that 0xffffffff has been specified.

–l size This option specifies the display size. size is specified as a decimal number or as a hexadecimal

number starting with 0x.

If this option is omitted, it is assumed that 0xffffffff has been specified.

–m This option displays the assembler source format.

If this option is omitted, it is displayed with a symbol offset, etc.

–o This option displays the offset from symbols.

If this option is omitted, symbols are displayed unless the -a option or the -m option has been specified.

–p This option displays code3 that has been arranged according to the processor’s instruction format.

However, the -c option takes priority if it has been specified.

1 dis handles the directory at the ..\dev position from the dis’s installation directory as the standard directory of the device file.
2 Machine language instruction or data
3 Machine language instruction or data

374

Specification Format Feature

–r This option displays registers r0, r2, r3, r4, r5, and r31 as zero, hp, sp, gp, tp, and lp.

In the V850 Family, r30 is also displayed as ep. * V850

If this option is omitted, all registers are displayed in rnum format, in which num is a value from 0 to

31.

–s address This option specifies a start address. address is specified as a decimal number or as a hexadecimal

number starting with 0x.

If this option is omitted, it is assumed that 0x0 has been specified.

–t This option displays a title indicating the displayed contents.

–v This option displays comments, etc.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

2.3 Cautions

• If labels of the same address exist in the object file, the label appearing latter in the symbol table takes

precedence.

• If the program starts from address 0 and if output of the symbol at address 0 is necessary upon output for

an object that does not have a symbol indicating address 0, “__dummy” may be output as the symbol of

address 0.

2.4 Examples of Use

Here are examples of using the dis.

• To display with codes

dis850 -aoct a.out

Inputs object file a.out and displays addresses, offsets from symbols, codes, and titles with assembly

language instructions.

• To output version number

dis850 -V

Outputs the version number of the dis850 that has been started to the standard output and terminates

the dis850.

375

2.5 Output Example

Here is an output example of the dis.

> dis830 -A a.out ← Displays addresses, offsets, codes in accordance with the instruction format,

and titles with assembly language instructions, and displays in another name

of the register.

 Address Offset Opecode

 _main:

0x00000000 : 0x00000000 : A0200018 movea 0x18, zero, r1

0x00000004 : 0x00000004 : 0861 sub r1, sp

0x00000006 : 0x00000006 : DFE30014 st.w lp, 0x14[sp]

0x0000000A : 0x0000000A : 8A48 br _main + 0x52

0x0000000C : 0x0000000C : D0040060 st.b zero, 0x60[gp]

0x00000010 : 0x00000010 : 03A0 mov zero, r29

0x00000012 : 0x00000012 : 4FAA cmp 0xa, r29

0x00000014 : 0x00000014 : 9C2A bge _main + 0x3e

0x00000016 : 0x00000016 : A1440000 movea 0x0, gp, r10

0x0000001A : 0x0000001A : 00CA mov r10, r6

0x0000001C : 0x0000001C : A164FE64 movea -0x19c, gp, r11

0x00000020 : 0x00000020 : 00EB mov r11, r7

0x00000022 : 0x00000022 : 011D mov r29, r8

0x00000024 : 0x00000024 : AC00008C jal _sprintf

0x00000028 : 0x00000028 : A1840060 movea 0x60, gp, r12

0x0000002C : 0x0000002C : 00CC mov r12, r6

0x0000002E : 0x0000002E : A1A40000 movea 0x0, gp, r13

0x00000032 : 0x00000032 : 00ED mov r13, r7

0x00000034 : 0x00000034 : AC0000C8 jal _strcat

0x00000038 : 0x00000038 : 47A1 add 0x1, r29

0x0000003A : 0x0000003A : 4FAA cmp 0xa, r29

0x0000003C : 0x0000003C : 8DDA blt _main + 0x16

0x0000003E : 0x0000003E : 40CA mov 0xa, r6

0x00000040 : 0x00000040 : AC000018 jal _f

0x00000044 : 0x00000044 : CFA30010 ld.w 0x10[sp], r29

0x00000048 : 0x00000048 : CFE30014 ld.w 0x14[sp], lp

376

CHAPTER 3 MESSAGES

This chapter explains the output messages of the dis.

The italic characters in the output messages and explanatory statements are determined during command

processing.

3.1 Message Format

dis messages are basically output in the following format.

dis: message

3.2 Messages

file : bad magic file

The specified file is not an object file of the V800 Series.

can not open file file

File file cannot be opened.

file is not ELF nor archive file

File file is neither an object file in the ELF format nor an archive file.

memory allocation error

The memory capacity has run short.

nested command file file

Command file file is nested. It must not be nested.

377

VOLUME 10

HANDLING ROM-STORING PROCESSOR

378

CHAPTER 1 OVERVIEW

This volume explains the outline, procedure of storing to ROM, operation, rompsec section, copy routine, and

output messages of the ROM-storing processor (romp) included in this compiler package.

1.1 Flow of Operation

The romp inputs an executable object file whose relocation has been resolved, and creates initialization data

to be stored to ROM and an object file having information necessary for the copy routine that is used to store a

program to ROM (refer to Figure 1-1).

Figure 1-1. Flow of Operation of romp

Copy routine

+

Source program

ROM-storing area allocation code
ROM-storing library

Link

Compile with ROM-storing
specification option

Executable
object file

romp

ROM-storing
object file

379

In the case of an embedded system, an application program that has been debugged is usually written to the

ROM area on the target system. In this case, the initialization information on the data that is rewritten by the

application processing as well as the instruction to be located on the high-speed internal RAM of the sections that

are stored to ROM must be copied to a RAM area on the target.

The romp packs the sections to be located on the RAM of the target system as a rompsec section to store

them in ROM and creates initialization information as well as an object file having module-copying processing.

Consequently, you do not have to be aware of storing to ROM while developing the application.

The first address of the rompsec section of the object file created by the romp is the address indicated by a

specified label or by “__ S_romp”.

Text

Constant data

Data with initial value
Text located on RAM

Data without initial value

Combined to be
stored to ROM

ROM

ROM

RAM

Copied upon
executionRAM for execution

380

1.2 Types of Sections to Be Packed

Data to be packed as a rompsec section are the data allocated to the section having an attribute that can be

written1. As the types of the sections, the sdata-attribute section and data-attribute section are used (refer to

page 257).

With the V830 Family, the section of the module to be located in the internal instruction RAM is packed in

addition to the above2.

Specify the sdata attribute or data attribute in the following reserved section and assembly-language program

by using the .section pseudo-instruction. The section created with an arbitrary name given is packed.

Table 1-1. Reserved Sections Packed by romp

CA830 CA850

.data section .data section

.sdata section .sdata section

.sedata section .sedata section

.sidata section .sidata section

.cdata1 section .tidata section

.cdata2 section .tidata.byte section

.cdata3 section .tidata.word section

.udata1 section

.udata2 section

.udata3 section

.itext section

With the CA830, the sections of the interrupt handler located in the internal instruction RAM (addresses 0xfe000000

through 0xfe0000ff) are packed in addition to the above2.

By referencing the object file created through romp with dump, it can be confirmed that the rompsec section

has been created instead of the .data, .sdata, or .itext section.

1 The bss-attribute section and sbss-attribute section that can be written but do not have an initial value are not packed.
2 romp830 allows the first address of each section to align in word size when packing the section located in the internal instruction RAM (such

as .itext section or interrupt handler). As a result, a padding area may be generated, and the object size may become larger accordingly.

381

1.3 Procedure of Storing to ROM

The procedure of storing a program to ROM by using the romp is shown below.

(1) Start copy routine _rcopy() holding the necessary arguments within the program to be stored to ROM

when that program is started (refer to Figure 1-2 and CHAPTER 4).

Figure 1-2. Example of Using Copy Routine _rcopy

#define ALL_COPY (-1)

extern unsigned long _S_romp;

main()

{

int ret;

ret = _rcopy(&_S_romp, ALL_COPY);

...

}

(2) Create an object file by specifying the ROM-storing option of the ca.

• When using the Project Manager, also specify the <<Output 2>> of the C compiler → [Create Object for

ROM].

• When using the VSH, also specify the -Xr option of the C compiler

At this time, link the codes that are used to allocate an area for the rompsec section by specifying reference

of the ROM-storing library. Also reference the link directive that takes the area for the rompsec section

into consideration (refer to CHAPTER 3).

(3) By using the romp, create an object file having a section with the data or sdata attribute having an initial

value and placed in a RAM, and the rompsec section, instead of the section (such as interrupt handler

section and .itext section)3 placed in the internal instruction RAM (with the V830 Family).

(4) Create hex data by starting the hx from the VSH command line.

(5) Load created hex data to the ROM of the target system (refer to Figures 1-3 and 1-4).

3 Refer to page 380.

382

Figure 1-3. Image of ROM Storing (example of V830 Family)

(Executable object output by ca)

Interrupt (external memory)

.sconst section

.const section

.udata* section

.cdata* section

.sedata section

.sidata section

.data section

0x0

__S_romp

(Executable object output by romp)

Interrupt (external memory)

.sconst section

.const section

.itext section

Interrupt (internal instruction RAM)

.data section

.sdata section

 Copy information

.udata* section

.cdata* section

.sedata section

.sidata section

romp830

__S_romp

0x0

hx830

ROM

Target system

.text section

.itext section

Interrupt (internal instruction RAM)

.sdata section

 .text section

Hex file

ROM writer

rompsec
section

383

Figure 1-4. Image of ROM Storing (example of V850 Family)

(Executable object output by ca)

Peripheral I/O

.text section
__S_romp

(Executable object output by romp)

Peripheral I/O

.data section

.sidata section

 Copy information

.tidata sectionromp850

__S_romp

hx850

ROM

Target system

Hex file

ROM writer

.sidata section

.tidata section

.sedata section

.sdata section

.data section

.const section

.sconst section

Interrupt
0x0 0x0

.text section

.const section

.sconst section

Interrupt

.sedata section

.sdata section

rompsec
section

384

CHAPTER 2 OPERATION

This chapter explains the operations of the romp.

2.1 Command Input Format

romp [option] ... file name [file name] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists the romp options.

(1) Output options

These specifications set options that change the contents of objects output by romp.

Specification Format Feature

–b label The label label is used as the first address of the created rompsec section. If the specified label does

not exist in the object file, or if the -b option has been specified several times, a message is output

and processing is stopped.

If this option is omitted, it is assumed that __S_romp has been specified.

–d This option creates an object file that contains only the rompsec section and does not contain any

sections that have the text attribute.

If this option is omitted, a section that has the text attribute is also included.

–p section This option includes the contents of the section name section along with its address and size information

in the rompsec section. If this option is specified more than once, these items are included in the

rompsec section in the order of their specification. If the specified section does not exist in an object

file, a message is output and processing is stopped.

If this option is omitted, it is assumed that all of the sections that have the data or sdata attribute, and

(with the CA830) the text-attribute section and .itext section for interrupts which have been located

to internal instruction RAM have been specified.

385

(2) Other options

These specifications set other options.

Specification Format Feature

–F devpath This option searches for the device file first in the directory devpath, then in the standard directories4.

If this option is omitted, only the standard directories are searched.

This option can be specified only when starting from VSH.

–V This option outputs the ROM-storing processor’s version number to standard output and then terminates

processing.

This option can be specified only when starting from VSH.

–help This option outputs a description of options for the ROM-storing processor to standard output.

This option can be specified only when starting from VSH.

–i This option does not check duplication of addresses of input file and output file.

–m This option outputs the memory map of the object file to be created to standard output.

–o ofile This option specifies ofile as the name of the created object file.

If this option is omitted, it is assumed that romp.out has been specified5.

This option can be specified only when starting from VSH.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

2.3 Examples of Use

Here are examples of using the romp.

• Basic usage

romp850 a.out

Includes all the data sections having the data or sdata attribute in the a.out file in the rompsec section

of the default output file romp.out.

• To specify output file name

romp850 –o new.out a.out

The output file name is assumed to be new.out.

• To specify first label

romp850 –b _romstart a.out

Uses the value of label _romstart as the first address of the rompsec section to be created.

• To specify section

romp850 –p data1 –p data3 a.out

Includes the two sections (data1, data3) in the a.out file in the rompsec section of the default output file

romp.out.

4 romp handles the directory at the ..\dev position from the romp’s installation directory as the standard directory of the device file.
5 The output object file name cannot be specified from the Project Manager’s option dialog. The file name always becomes the name which

is omitted the suffix of the first file in source list and is added “.out” (the same naming convention is used for the ld).

386

CHAPTER 3 ALLOCATING AREA OF rompsec SECTION AND LINK PROCEDURE

This chapter explains the codes used to create sections to be stored to ROM and how the addresses of ROM-

storing objects are resolved.

3.1 Allocation Area of rompsec Section

The romp packs the data section having the initial value in the input section (section having the data or sdata

attribute), and the .itext section and interrupt handler section located in the internal instruction RAM (with the

CA830), and creates an object file having a text-attribute section named rompsec section that incudes the contents

of the above mentioned sections and the address information on these sections (refer to pages 382 and 383).

Here is an example of a code (rompcrt.s)6 to allocate the area for the rompsec section supplied by this compiler

package:

Example of rompcrt.s>

.file “rompcrt.s”

.text

.align 4

.globl __S_romp

__S_romp:

When the ca is started with the [Create Object for ROM] (-Xr) option specified, a code is generated in the

manner that a label called __S_romp indicates the first address8 exceeding the end of the .text section7 within

the object as an absolute address.

By linking this code lastly, an area for the rompsec section is allocated immediately after the .text section.

When romp is started from the Project Manager, libr.a and rompcrt.o are linked automatically with ld by using

the [Create Object for ROM] option of the ca.

Even when starting from VSH, if ld is started from ca, the ca specifies to link libr.a and rompcrt.o with ld by

using the -Xr option. In either case, rompcrt.o is linked lastly.

6 If this code is customized, create a relocatable object (rompcrt.o) by using the assembler (as), and place the object in the directory at the
..\libxxx\r32, ..\libxxx\r26, ..\libxxx\r22 position from the directory to which the C compiler driver (ca) has been installed.

7 Section name defined in the second line of the above mentioned code
8 Aligned under a 4-byte alignment condition

387

3.2 rompsec Section and Link Directive

When storing a program to ROM, a link directive9 is necessary that takes addition of the rompsec section to

the .text section into consideration. Specify addresses suitable for RAM and ROM locations of the target system

so that the address range of the memory to which the rompsec section is allocated does not overlap the address

range of the next segment or overflow from the segment of the text as a result of the rompsec section.

The size of the rompsec section to be created can be calculated by the following expression (decimal, in byte

units).

Size of rompsec section =

8 + 16 × number of sdata/data-attribute sections + size of sdata/data-attribute sections * V850

Size of rompsec section =

8 + 16 × (number of sdata/data-attribute sections + number of sections located in internal instruction RAM10)

+ size of sdata/data-attribute sections + size of section located in internal instruction RAM + padding size11

* V830

For example, if a 50-byte .sedata section, 30000-byte .sdata section, and 10000-byte .data section exist, the

size of the rompsec section is as follows:

Size of rompsec section = 8 + 16 × 3 + 50 + 30000 + 10000 = 40106

An example of changing the link directive is shown below.

9 For the details of the link directive, refer to CHAPTER 3 LINK DIRECTIVE in VOLUME 5 HANDLING LINK EDITOR .
10 All sections that are allocated to internal instruction RAM by link directive such as interrupt handler sections corresponding to handler addresses

in internal instruction RAM and .itext section
11 The padding size is from 0 to 6 bytes per section allocated to internal instruction RAM. To add a precise amount of size of rompsec section,

first use a directive with an estimated size value to create an object, then execute romp830. Next, use dump830 to check the object file
created by romp830, adjust the size in the rompsec section and use another directive with that precisely adjusted size to create another object.

388

Link directive before ROM-storing processing

SEDATA : !LOAD ?RW {

.sedata = $PROGBITS ?AW .sedata;

};

TEXT : !LOAD ?RX V0x10000{

.text = $PROGBITS ?AX; ← Size of .text is checked by dump

}; (e.g., if size is 0x10000)

DATA : !LOAD ?RW { ← DATA from address 0x20000

.data = $PROGBITS ?AW;

.sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?AWG;

.bss = $NOBITS ?AW;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

389

Link directive for ROM-storing processing

SEDATA : !LOAD ?RW {

 .sedata = $PROGBITS ?AW .sedata;

};

TEXT : !LOAD ?RX V0x10000{

 .text = $PROGBITS ?AX; ← Data is packed after .text section as rompsec

}; section

DATA : !LOAD ?RW V0x29CAC{ ← Specify address taking size of rompsec section

 .data = $PROGBITS ?AW; into consideration (4-byte alignment)

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBITS ?AWG;

 .bss = $NOBITS ?AW;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

A command startup example for creating a rompsec section is shown below.

[Command startup from Project Manager (PM)]

(1) Go to the PM’s Option menu and select Compiler Options… .

(2) Select the <<Output 2>> option button.

(3) Check the [Create Object for ROM] box.

(4) When specifying an option for romp, go to the PM’s Option menu and select ROM Processor Options… .

(5) After the above options have been set and a build is started from the PM, romp is automatically started

after ca, as, and ld, and an object file that contains the ROM-storing information is created. During the

build operation, linking of libr.a and rompcrt.o is automatically specified.

The ld’s output file is deleted as a temporary file.

Caution

When romp is started from the PM, the output object file name is “the first file name in source list + .out”,

which is the same naming convention for the ld. The file name is not “romp.out” which is the default name

when romp is started from the VSH.

Create Object for ROM [-Xr]

390

[Command startup from VSH]

Example in which ld is started from ca>

> ls

ldir sample.c

> ca830 -cpu 5100 -Wl,-D,ldir -Xr sample.c

> ls

a.out ldir sample.c

> romp830 a.out

> ls

a.out ldir romp.out sample.c

>

If the -c option of the ca is specified, directly link libr.a and rompcrt.o with the ld. In this case, be sure to

specify the -Xr option of the ca to call the copy routine (_rcopy) in a C source program.

Example in which ld is started by itself>

> ls

ldir sample.c

> ca830 -cpu 5100 -c -Xr sample.c

> ls

ldir sample.c sample.o

> ld830 -D ldir \nectools\lib830\r32\crtN.o sample.o -lr -lc

\nectools\lib830\r32\rompcrt.o

> ls

a.out ldir sample.c sample.o

> romp830 a.out

> ls

a.out ldir romp.out sample.c sample.o

>

Caution

When romp is started from the VSH, the default name for the output object file is “romp.out”.

391

CHAPTER 4 COPY ROUTINE

This chapter explains the copy routine (_rcopy) necessary for the program to be stored to ROM.

Outline

_rcopy – Copies initial value data/RAM text12

Format

int _rcopy (&label,number)

unsigned long label;

long number;

Explanation

_rcopy(&label, number) copies the initial value data and text to be located in the internal RAM (in the

rompsec section) indicated by number to an area prior to ROM storing, based on the information in the

rompsec section existing at addresses following the address indicated by label. Copying is not executed

if a magic number that indicates an object created by the romp does not exist in a 4-byte area following

the address indicated by label.

Specify the number of the section13 to be copied as number. To copy all the sections in the rompsec

section, specify –1. If any other number is specified, copying is not executed. Copying is not executed

also if overwrite occurs as a result of copying.

Return value

_rcopy returns 0 if copying has been correctly executed. If copying has not been executed, –1 is returned.

12 Data section with initial value located in RAM, and text section for internal RAM
13 This section number is a positive integer starting from 1. If the -p option is specified, sections are allocated in the sequence in which they have

been specified. If the -p option is not specified, sections are allocated in the sequence in which they appear in the input file.

392

Cautions

• _rcopy executes copying only in accordance with the information created by the romp. Processing

such as to add an offset to the copy destination address cannot be performed upon execution of

_rcopy.

• Specify a global label having an absolute value or an absolute address as the first argument label

of _rcopy. If any other thing is specified, the result is not guaranteed.

Example of incorrect specification 1>

extern unsigned long _S_romp;

char *cp;

func()

{

int ret;

cp = &_S_romp; ← First argument is gp relative value because

ret = _rcopy(cp, -1); copying to variable is executed.

}

Example of incorrect specification 2>

extern unsigned long _S_romp;

int i;

func()

{

int ret;

i = 0x100; ← First argument is gp relative value because

ret = _rcopy(i, -1); copying to variable is executed.

}

393

Example of description

extern unsigned long _S_romp;

main()

{

int ret;

ret = _rcopy(&_S_romp, –1); ← -Xr specifies global label having

} absolute value.

The label references an absolute address when the ROM-storing option of the ca is specified as

shown above. Therefore, the compiler makes the following output if _rcopy () is called by an assembly

language source14 program.

Compiler output of above example (with –Xr specified)

.extern __S_romp, 4 ← Declared as external label

...

mov #__S_romp, r6 ← Calls _rcopy with absolute address of __S_romp as first

mov –1, r7 argument and –1 as second argument

jal __rcopy

 ...

14 When calling from the start-up module

394

CHAPTER 5 MESSAGES

This chapter explains the output messages of the romp (in alphabetical order). The italic characters in the

output messages and explanatory statements are determined during command processing.

5.1 Message Format

romp messages are basically output in the following format.

romp: message

5.2 Messages

-option unknown option

Option option must not be specified.

@ option needs argument, ignored

The argument for the @ option is insufficient. @ option is ignored.

address of symbol symbol must be same in all files

The address of symbol must be the same in all of the input files.

b option is specified more than once

The -b option is specified more than once.

b option needs one argument

The argument for the -b option is insufficient.

file bad magic

The input file (file) is illegal and cannot be input.

cannot find device file

The device file cannot be found.

cannot open command file file

The command file file cannot be opened.

file name name is too long

The length of file name name exceeds the limit.

file : illegal input file name

The input file file cannot be input because its name is the same as the output file.

illegal input file type. file (file) is archive file

The input file file cannot be input because it is an archive file.

395

memory allocation fault

Allocating of a memory area has failed.

nested command file file

The command file file is nested. It must not be nested.

file : not absolute object

A relocatable object (file) is specified as an input file.

o option needs one argument

The argument for the -o option is insufficient.

p option needs one argument

The argument for the -p option is insufficient.

packing section not found

The specified section is not found in the object file.

processor type must be same in all files

An illegal input file is specified.

section1 section and section2 section overlapped

Sections section1 and section2 overlap.

file : section section can not be packed

Section section in file cannot be specified by the -p option.

section section is already defined by -p option and therefore this section is ignored

Section section has been already specified by the -p option and is ignored.

section section not found

Section section specified by the -p option is not found.

section section overflowed highest address of target machine

section exceeds the upper limit of the memory as a result of creating the rompsec section.

symbol (start_label) must be word alignment

Make sure that start_label label is at an address of a 4-byte boundary.

file : “ symbol ” symbol not found

Specified symbol is not found in object file file.

unknown option argument

An argument that must not be specified for the option is specified.

396

[MEMO]

397

VOLUME 11

HANDLING SECTION FILE GENERATOR

398

CHAPTER 1 OVERVIEW

This volume explains the outline of the section file generator (sf) included in this compiler package, sequence

to use the section file, sf operation, and output messages.

sf is supplied only to the CA850 at present.

Activate sf on the VSH command line.

1.1 Flow of Operation

sf reads the frequency information file (.sec file) output by the ca through option specification, and outputs a

section file that is used to allocate variable data that are frequently referenced to the .tidata section that can be

referenced at high speed (refer to Figure 1-1)1.

Figure 1-1. Flow of Operation of sf

1 The section file can be output to a specified file by using the -o option.

ca

C source file

sf ca

Frequency information file
(.sec file)

Section file Object file changing
allocation to
.tidata section

Inputs section file
and re-compiles

Specifies output of
frequency information file

399

This compiler package supports the following three methods to specify allocation of data sections for the C

source program.

• Specify the size of data to be allocated to the .sdata or .sbss section by using an option (-G) of the C

compiler2.

• Allocate each variable to any section by using the pragma directive3.

• Change the section allocating the specified variable by using the section file when the C compiler is started.

If a section file satisfies the file format requirements, it can be coded and used freely, but for .tidata section

it is useful to use section files output by sf.

For details of the format of output section files, refer to page 408.

sf creates a section file according to the frequency at which variables are referenced. The section file is a text

file and allocation to the section can be freely changed according to the file format.

If specification of allocation by the pragma directive to a different section exists for the same variable in the

C source program, specification by the section file takes precedence.

2 Refer to <<sdata/sbss Allocation>> on page 51 and -G option on page 156.
3 Refer to V800 Series C Compiler Package User’s Manual - C Language .

ca

#pragma section ...

Object file

ca

Object file

Allocation to section
by section file

Allocation to section
by C source program

Specify section
file by option

[tidata]
...

Addition of
description

400

1.2 Sequence to Use Section File

The sequence to use the section file by using sf is as follows.

(1) Compile the file by specifying option <<Frequency Information File>> (-Xcre_sec_data) of the C compiler.

As a result of compiling, a file with extension .sec (with a specified file name if a file name is specified)

having information on the frequency at which each variable in the C source file is referenced is created.

Example of specification from PM4)

Example of activation from VSH5)

>ca850 -Xcre_sec_data a.c b.c c.c

(2) When sf is started with the created .sec file input, a section file that specifies section allocation to the

.tidata section is created.

Example of activation from VSH)

>sf850 a.sec b.sec c.sec -o secfile

(3) Because all variables are allocated to the .tidata section as default assumption, modify the section file as

necessary.

If the -O option is specified on activating sf, the variables that can be accommodated in the memory range

of the .tidata section can be automatically selected in sequence, starting from the one that is referenced

most.

(4) Re-compile the file by specifying option <<Section Data File>> (-Xsec_file) of the C compiler. An object

file allocated to the section is created in accordance with the input section file.

Example of specification from PM6)

Example of activation from VSH7)

>ca850 -Xsec_file=secfile a.c b.c c.c

4 Refer to <<Frequency Information File>> on page 50.
5 Refer to _Xcre_sec_data option on page 156.
6 Refer to <<Section Data File>> on page 42.
7 Refer to -Xsec_file option on page 153.

Frequency Information File
Create File [-Xcre_sec_data]
Specify File [-Xcre_sec_data=]

File Name:

Section Data File
 Use File [-Xsec_file=]
File Name

secfile

401

[Cautions]

• The variables that can be specified to be located are external variables, static variables in file, and static

variables in function. Character string constants are not located.

• When compiling each of two or more C source files and linking them to create an object file, compile each

file by specifying its frequency information output, and creating two or more .sec files. When creating a

section file, however, .sec files must be input to sf all at once and integrated. Otherwise, the variable

information for the external variables will not be integrated, and the valid section file cannot be created.

• The variable specified by the section file is equivalent to specifying “#pragma section ”. Therefore,

temporary definition of an external variable is treated as “definition”. If the external variable is temporarily

defined by two or more files, an error occurs during linking. In this case, extern must be always declared

in a file that references external variables.

• sf outputs a section file directing that all variables be allocated to the .tidata section as default assumption.

However, because the memory range to which the .tidata section is allocated is 256 bytes, the memory

range must be adjusted on judgment of the user in case the section does not fit in the above range.

If the -O option is specified by sf, however, only variables that can fit in the range of .tidata section are

output in the sequence of frequency at which the variables are used (refer to the option list on page 402).

• Only the frequency information file in the status in which it has been output by the ca can be input by sf. If

the frequency information file whose contents have been changed is input, the operation is not guaranteed.

402

CHAPTER 2 OPERATION

This chapter explains the operation of the sf.

2.1 Command Input Format

sf850 [option] ... file name [file name] ...

[] : Can be omitted

... : Pattern in [] immediately before can be repeated.

: One or more blank spaces

2.2 Types and Features of Options

2.2.1 Option list

The following table lists the option of the sf.

Specification Format Feature

–O This option specifies that only the number of variables that can be allocated to the .tidata section will

be selected in order of highest use frequency and output.

The maximum data size that can be allocated to the .tidata section is 256 bytes, which are internally

divided into .tidata.byte byte data (128 bytes) and .tidata.word word data. When this option is specified,

variables are selected until the total section size of 256 bytes is reached and output to the section

file. However, selection is stopped if the byte data have reached 128 bytes.

If this option is omitted, all variables that have appeared are output to the section file.

–V This option outputs the section file generator’s version number to standard output and then terminates

processing.

–cl num This option specifies the comment level of the section file to be output8. The following values can be

specified as num.

0 No comment output

1 Outputs file creation information (date, etc.) and variable information and its explanation.

The variable information includes the section name, size, and use frequency.

If the section name is not determined by an external variable, “—” is output.

2 Outputs a format guide in addition to level 1.

If -O has been specified, variables judged not to fit in the .tidata section are output as

comments.

If this option is omitted, comment level 1 is assumed.

–h This option outputs a description of the section file generator’s options to standard output and then

terminates processing.

–help This option is the same as the -h option.

–ns This option arranges variable names in section files to be output in the order they appear instead of

sorting them.

If this option is omitted, the variable names are arranged in order of highest use frequency. If two

variable names have the same amount of use frequency, they are arranged so that the smaller of the

two is first.

–o name This option specifies the section file name for output of name.

If this option is omitted, the section file is output to standard output.

8 For details of comments, refer to page 403.

403

Specification Format Feature

–sname This option arranges the variable names in section files to be output in the order of the dictionary of

the variable names.

If two variables have the same name, they are arranged in the order of the dictionary of their file

names and function names.

–ssection This option arranges the variable names in section files to be output in the order of the dictionary of

the section names where they are allocated.

If two variables have the same section name, they are arranged in the order of their highest use

frequency.

–ssize This option arranges the variable names in section files to be output according to their size (smallest

first).

If two variables have the same size, they are arranged in the order of their highest use frequency.

–v This option displays the execution process of the section file generator.

@cfile This option handles cfile as a command file (refer to page 161).

If this option is omitted, it is assumed that no command file has been specified.

Caution:

Some of the above options are invalid if specified with the other options at the same time.

• If two or more options related to sorting, -o and -cl, are specified, the one specified later is valid and the

others are invalid.

• If -V, -h, and -help are specified at the same time, the one specified first is valid, and the others are invalid.

• If -O and an option related to sorting are specified at the same time, -O is valid and the option related to

sorting is invalid.

[Contents of comments of sf]

sf outputs comments in the section file as default assumption. The detail level of the comment can be specified

by the -cl option.

The meanings of three data of comments output by sf are as follows.

section : Section to which allocation of a variable is explicitly indicated

“-” is displayed for a variable not explicitly indicated.

size : Size of variable (in bytes)

“0” is displayed if the size is unknown.

frequency : Reference frequency of variable

Indicated by the number of times the load/store instructions have appeared for the variable.

Example of section file output by s f

// Created by sf850. at Sat Mar 2 17:26:25 1996

[tidata]

// [file:[func:]]variable // section size frequency

a.c:si1 // data 4 10

a.c:si2 // data 4 8

a.c:f1:sfi1 // - 4 8

i // - 4 3

j // - 2 1

404

2.3 Examples of Use

Here are some examples of using the sf.

• To optimize allocation of data to sections so that the .tidata section does not overflow

sf850 -O a.sec b.sec c.sec -o secfile

Frequency information files output by the C compiler, a.sec, b.sec, and c.sec are input, and the section file

whose data allocation is optimized so that the memory range of the .tidata section does not overflow is

output. The output file name is secfile.

• To sort variable names by size

sf850 -ssize a.sec b.sec c.se c

Frequency information files output by the C compiler, a.sec, b.sec, and c.sec are input, and the names of

the variables in the section file to be output are arranged in sequence, starting from the variable smallest

in size. Because no output file name is specified, the section file is output to the standard output.

405

CHAPTER 3 MESSAGES

This chapter explains the output messages of the sf (in alphabetical order).

The italic characters in the output messages and explanatory statements are determined during command

processing.

3.1 Message Format

The sf messages are basically output in the following format.

sf: messag e

3.2 Messages

-cl level out of range (0-2)

The numeric value specified by the -cl option is incorrect.

cannot calculate nam e’s frequency

The frequency of variable name cannot be calculated.

cannot open input file fil e

Input file file cannot be opened.

cannot open output file fil e

Output file file cannot be created.

not enough memory

The memory capacity runs short.

optio n option needs subargument

Option option needs an argument.

too many input files

Too many input files are specified.

unknown option optio n

Option option must not be specified.

you use -O option, sorting option ignored

Because the -O option is specified, the sorting option is ignored.

406

[MEMO]

407

<APPENDIX>

408

APPENDIX A SECTION FILES

Section files are text files that are input during compilation and that revise sections used for allocating variables.

An allocation specification using a section file takes priority over a #pragma section directive in a C language

source program.

In the CA850, section files that are output by the sf can be used. The sf merges information from several input

files and outputs a single section file as specified by the ca’s options.

Example of section file output by sf 9

// Created by sf850. at Sat Mar 2 17:26:25 1996

[tidata]

// [file:[func:]]variable // section size frequency

a.c:si1 // data 4 10

a.c:si2 // data 4 8

a.c:f1:sfi1 // - 4 8

i // - 4 3

j // - 2 1

After the section file in the above example has been specified and recompiled, variables si1 and si2, which

had been allocated to the .data section, and variables sfi1, i, and j, which had not been allocated to a specific

section, are allocated to the .tidata section.

In the CA830, there is no sf, but like the CA850, the CA830 can use section files to revise sections.

The format of section files accepted by the ca830 and ca850 are described below along with some caution

points.

9 For the comment output levels and the meanings, refer to the description of the sf’s -cl option.

Section file is specified and recompiled

–

.data

.tidata

j

i

sfi1

si2

si1

j

i

sfi1

si2

si1

409

Table A-1. Format of Section File

[Section type]

file name: function name: variable name ← specification of static variable in function

file name: variable name ← specification of static variable in file

variable name ← specification of external variable

 // comment

The following character strings can be specified as the section type10.

Table A-2. Section Types Specifiable by CA830

Character String Specifying Type Allocated Section(s)

data If an initial value has been set, allocated to the .data section. If it has not been set,

allocated to the .bss section.

sdata If an initial value has been set, allocated to the .sdata section. If it has not been set,

allocated to the .sbss section.

sedata If an initial value has been set, allocated to the .sedata section. If it has not been set,

allocated to the .sebss section.

sidata If an initial value has been set, allocated to the .sidata section. If it has not been set,

allocated to the .sibss section.

const Allocated to the .const section.

cdata1 Allocated to the .cdata1 section.

cdata2 Allocated to the .cdata2 section.

cdata3 Allocated to the .cdata3 section.

udata1 Allocated to the .udata1 section.

udata2 Allocated to the .udata2 section.

udata3 Allocated to the .udata3 section.

10 The specifiable section types are the same as the specifiable section types for the #pragma section . For details of each section’s
characteristics, refer to the description of section allocation of data in V800 Series C Compiler Package User’s Manual - C Language .

410

Table A-3. Section Types Specifiable by CA850

Character String Specifying Type Allocated Section(s)

tidata The byte data with the initial value set is allocated to the .tidata.byte section. The data

that is more than a half word with the initial value set is allocated to the .tidata.word

section.

The byte data not setting the initial value is allocated to the .tibss.byte section. The

data that is more than a half word not setting the initial value is allocated to the .tibss.word

section.

data If an initial value has been set, allocated to the .data section. If it has not been set,

allocated to the .bss section.

sdata If an initial value has been set, allocated to the .sdata section. If it has not been set,

allocated to the .sbss section.

sedata If an initial value has been set, allocated to the .sedata section. If it has not been set,

allocated to the .sebss section.

sidata If an initial value has been set, allocated to the .sidata section. If it has not been set,

allocated to the .sibss section.

const Allocated to the .const section.

sconst Allocated to the .sconst section.

[Cautions]

• Do not insert blank spaces before or after a section name when specifying the section name in square

brackets ([]).

For example, in the case of [tidata] , blank spaces cannot be inserted before or after “tidata ”.

• Only one variable can be used per line. Two or more variables must not be described on one line. Neither

should one variable specification be indicated on two or more lines.

• Do not insert blank spaces before or after ‘:’.

• Do not specify the path when specifying file names.

• If a function or variable definition is included in a header file, the “file name” in the section file is not the

header file name, but the C source file name that includes the header file.

• Comments in the form of “/* */ ” or “// ” can be inserted. However, a section name or variable name must

not be delimited by a comment. A blank space is necessary immediately after a variable name.

ASCII code and EUC (Japanese) code can be used in comments.

• If a variable for which “data” has been specified as the section type in a section file is referenced by another

assembler source file, use the .option pseudo-instruction11 to specify “data” so that the assembler will be

notified of the data/bss attribute.

Also, if a variable for which “sdata” has been specified is referenced by another assembler source file, use

the .option pseudo-instruction to specify “sdata” so that the assembler will be notified of the sdata/sbss

attribute.

11 Refer to User’s Manual - Assembly Language of each family.

411

Description examples

(Section file)

[data]

a.c:dat1 ← With initial value, allocation is to .data section.

b.c:dat2 ← Without initial value, allocation is to .bss section.

[sdata]

a.c:sdat1 ← With initial value, allocation is to .sdata section.

b.c:sdat2 ← Without initial value, allocation is to .sbss section.

(Assembler source file)

.option data _dat1

.text

mov $_dat1, r11 ← Instruction is expanded, assuming that allocation is to .data section.

.option data _dat2

.text

mov $_dat2, r12 ← Instruction is expanded, assuming that allocation is to .bss section.

.option sdata _sdat1

.text

mov $_sdat1, r13 ← Instruction is not expanded, assuming that allocation is to .sdata section.

.option sdata _sdat2

.text

mov $_sdat2, r14 ← Instruction is not expanded, assuming that allocation is to .sbss section.

412

APPENDIX B FORMAT OF OBJECT FILE

This Appendix explains the format of the object file used with this compiler package.

B.1 Structure of Object File

The format of the object file used with this compiler package conforms to the ELF format, which is one of the

standard object file formats.

The structure of an object file in this format slightly differs between a relocatable object file and an executable

object file (refer to Figure B-1). The relocatable object file has the information necessary for creating an executable

object file, and the executable object file has the information necessary for executing the object file.

In the sections that follow, the ELF header, program header table, section header table, section, and segment,

which are constituents of the object file in the ELF format, are explained.

Figure B-1. Structure of Object File

Relocatable object file Executable object file

ELF header (First) ELF header

Section 1 Program header table

. . . Segment 1

. . .

.

. . . Segment n

. . .

Section n Other information

Section header table Section header table

413

B.2 ELF Header

This section explains the ELF header that constitutes an object file in the ELF format.

The ELF header is at the beginning of the object file and has the information necessary for interpreting the

object file or for accessing the other constituents included in the object file (refer to Table B-1).

Table B-1. Constituents of ELF Header and Their Meanings

Constituent Meaning

ident[CLASS] Class of this object file

ident[DATA] Byte order of data in this object file (2MSB in big endian/2LSB in little endian)

type Type of this object file

machine Processor to which this object file is subjected

version Version number of this object file

entry Entry point address

phoff Offset in file of program header table

shoff Offset in file of section header table

flags Flag peculiar to processor in which this object file runs

ehsize Byte size of this ELF header

phentsize Size of entry of program header table

phnum Number of entries of program header table

shentsize Size of entry of section header table

shnum Number of entries of section header table

shstrndx Section header table index of string table .shstrtab holding section name

414

B.3 Program Header Table

This section explains the program header table that constitutes an object file in the ELF format.

The program header table is an array of program header table entries having information on all the segments

included in the object file (refer to Table B-2). An index12 to this array is called a program header table index, and

the program header table entries are referenced by using this program header table index.

Table B-2. Constituents of Program Header Table Entry and Their Meanings

Constituent Meaning

type Segment type of corresponding segment (LOAD if segment is loaded to memory/NOTE if segment

has auxiliary information)

offset Offset in file of corresponding segment

vaddr Virtual address of corresponding segment

paddr Physical address of corresponding segment

filesz Size of corresponding segment on file13

memsz Size of corresponding segment on memory

flags Segment attribute of corresponding segment (R for segment that can be read/W for segment

that can be written/X for executable segment)

align Alignment condition of corresponding segment

12 Subscript
13 If a section having section type NOBITS (section not having an actual value in the object file) is allocated to the corresponding segment, a

value different from memsz is set (refer to page 287).

415

B.4 Section Header Table

This section explains the section header table that constitutes an object file in the ELF format.

The section header table is an array of section header table entries having information on all the sections

included in the object file (refer to Table B-3). An index14 to this array is called a section header table index, and

the section header table entries are referenced by using this section header table index.

Table B-3. Constituents of Section Header Table Entry and Their Meanings

Constituent Meaning

name Name of corresponding section (index to string table .shstrtab holding section name)

type Section type of corresponding section (Refer to B.4.1.)

flags Section attribute of corresponding section (A for section occupying memory/W for section that

can be written/X for executable section/G for section that is allocated to memory range that

can be referenced by using global pointer (gp) and 16-bit displacement)

addr First address of corresponding section

offset Offset in file of corresponding section

size Size of corresponding section

link Section header table index link of corresponding section (Refer to B.4.2 .)

info Information dependent on section type of corresponding section (Refer to B.4.2 .)

addralign Alignment condition of corresponding section

entsize Size of entry of corresponding section

14 Subscript

416

B.4.1 Section type

The section types indicated by constituent type of the section header table and their meanings are shown in

Table B-4.

Table B-4. Section Types and Their Meanings

Section Type Meaning

GPTAB Global pointer table (size with first entry aligned with num of -Gnum specified for compiler and

assembler and 0 and second entry and those that follow aligned with size and word of data)

NOBITS Section for data not having actual value in object file (e.g., data for which no initial value is

specified)

PROGBITS Section for data having actual value in object file (e.g., data for which machine language instruction

or initial value is specified)

REGMODE Section existing in relocatable object file created by using register mode feature15 (information

on number of registers internally used by C compiler is stored)

REL16 Relocation information

RELA Relocation information

SYMTAB Symbol table (Refer to B.5.1 .)

STRTAB String table (Refer to B.5.2.)

15 Refer to the explanation on the -reg option of the ca.
16 This section is not used with this compiler package at present.

417

B.4.2 Constituents dependent on section type (link/info)

The meanings of the constituents of the section header table, link and info, that are dependent on section type

type, are shown in Table B-5.

Table B-5. Meanings of link and info

Section Type Meaning of link Meaning of info

GPTAB – Section header table index of section to which

corresponding data is allocated

REL17 Section header table index of corresponding Section header table index of section to be relocated

symbol table

RELA Section header table index of corresponding Section header table index of section to be relocated

symbol table

SYMTAB Section header table index of corresponding string Symbol table index of symbol that appears first and

table is not local

17 This section type is not used by this compiler package at present.

418

B.5 Section

This section explains the section that constitutes an object file in the ELF format.

A section is a major constituent of the object file, containing a machine language instruction, data, symbol

table, string table, debug information, and line number information as its contents.

A section satisfies the following conditions:

(1) One section header table entry corresponding to the section header table exists in each section.

(2) In some cases, a section for which only the section header table entry exists but that does not have an

actual value in the object file exists (section having section type NOBITS).

(3) A section having an actual value in the object file occupies a contiguous area in the object file.

(4) A section does not share an area in the object file. In other words, there is no area that belongs to two

or more sections.

419

B.5.1 Symbol table

This section explains the symbol table that is a type of a section.

The symbol table is a section having section type SYMTAB and is an array of symbol table entries having

information on all the symbols included in the object file (refer to Table B-6). An index18 to this array is called

a symbol table index, and the symbol table entries are referenced by using this symbol table index19.

Table B-6. Constituents of Symbol Table Entry and Their Meanings

Constituent Meaning

name Name of corresponding symbol (index to string table .strtab)

value Value of corresponding symbol

size Size of corresponding symbol

BIND(info) Binding class of corresponding symbol (GLOBAL for symbol used to resolve external reference/

LOCAL for symbol not used to resolve external reference)

TYPE(info) Type of corresponding symbol (FILE in case of normal file name/FUNC in case of function

name/NOTYPE in case of undefined symbol/OBJECT in case of symbol indicating normal label/

SECTION in case of section name/DEVFILE in case of device file name)

other –

shndx Section header table index of section corresponding to corresponding symbol (which takes

following value: ABS in case of symbol indicating constant/COMMON in case of undefined

external symbol that is referenced by using global pointer (gp) and 32-bit displacement/GPCOMMON

in case of undefined external symbol that is referenced by using global pointer (gp) and 16-bit

displacement/UNDEF in case of undefined symbol)

18 Subscript
19 An entry with symbol table index 0 is reserved, and each constituent has the value of 0.

420

B.5.2 String table

This section explains the string table which is a type of a section.

The string table is a section having section type STRTAB and consists of a character string that ends with a

null character (\0). This character string is referenced by using an index that is an offset from the beginning of

the string table20 (refer to Figure B-2).

The object file in the ELF format uses this character string to hold the names of symbols and sections. For

example, constituent name of the section header table entry has an index to string table .shstrtab that holds a

section name.

Figure B-2. Relationships between Index and Character String in String Table

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e . \0 V a r

10 i a b l e \0 a b l e

20 \0 \0 x x \0

Index Character string

0 no name

1 name.

7 Variable

11 able

16 able

24 null string

20 It is stipulated that the first 1 byte expressed by index 0 is a null character.

421

B.5.3 Reserved section

In the ELF object file format, several sections are reserved as reserved sections. Table B-7 lists the names,

section types, and section attributes of the reserved sections.

Table B-7. Reserved Sections

Name21 Contents Section Type Section Attribute

.bss .bss section NOBITS AW

.cdata1 .cdata1 section PROGBITS AW

.cdata2 .cdata2 section PROGBITS AW

.cdata3 .cdata3 section PROGBITS AW

.const .const section PROGBITS A

.data .data section PROGBITS AW

.gptabname Global pointer table22 GPTAB None

.itext .itext section PROGBITS AX

.regmode Register mode information REGMODE None

.relname Relocation information REL None

.relaname Relocation information RELA None

.sbss .sbss section NOBITS AWG

.sconst .sconst section PROGBITS A

.sdata .sdata section PROGBITS AWG

.sebss .sebss section NOBITS AW

.sedata .sedata section PROGBITS AW

.shstrtab String table holding section name STRTAB None

.sibss .sibss section NOBITS AW

.sidata .sidata section PROGBITS AW

.strtab String table STRTAB None

.symtab Symbol table SYMTAB None

.text .text section PROGBITS AX

.tibss .tibss section NOBITS AW

.tibss.byte .tibss.byte section NOBITS AW

.tibss.word .tibss.word section NOBITS AW

.tidata .tidata section PROGBITS AW

.tidata.byte .tidata.byte section PROGBITS AW

.tidata.word .tidata.word section PROGBITS AW

.udata1 .udata1 section PROGBITS AW

.udata2 .udata2 section PROGBITS AW

.udata3 .udata3 section PROGBITS AW

.vdbstrtab Symbol table for debug information STRTAB None

.vdebug Debug information PROGBITS None

.vline Line number information PROGBITS None

21 name of .gptabname, .relname, and .relaname indicates the names of the sections corresponding to the respective sections.
22 Information used for the processing of the -A option of the link editor

422

B.6 Segment

This section explains the segment that constitutes an object file in the ELF format.

A segment is the minimum unit in which a program is loaded to memory and consists of two or more linked

sections each having the same attribute (refer to page 264).

423

INDEX

A
A attribute .. 282

Alias ... 91

Alignment condition .. 211

check ... 250

Archive header ... 363

Archive string table .. 363

Archive symbol table .. 363

Assemble list .. 202, 208

Assembler-reserved register (r1) 216

ATTRIB .. 104

Auto generation of make file 81

Automatic location of interrupt handler 270,

283, 305

B
Binary dump .. 116

Binding class ... 419

.bss section .. 250, 321, 345

bss-attribute section 257, 287, 292

Build ... 81

Build specified target ... 83

C
CAT .. 105

CD .. 106

.cdata1 section 266, 279, 314, 321

.cdata2 section 266, 279, 314, 321

.cdata3 section 266, 279, 314, 321

Change/display current directory 106, 107

Change/view file attributes 104

CHDIR ... 107

Code generation module 148, 175

Color .. 96

Command file 101, 161, 204, 223, 253, 338,

345, 362, 374, 385, 403

Common object ... 205

Concatenate files .. 105

.const section 266, 279, 314, 321

const-attribute section .. 257

COPY... 108

Copy file ... 108, 109

CP .. 109

Create directory ... 121, 122

D
.data section ... 321

data-attribute section 257, 287, 292

DATE ... 110

Debug information ... 249, 366

Debug mode ... 39

Default link directive .. 305

DEL ... 111

Delete (remove) file 111, 118, 133

Delete file/directory .. 112

Delete source option 43, 62, 65

Delimiter of directory path ... 29

DELTREE .. 112

Device file ... 25

DIR ... 113

Directory configuration ... 27

DIRS .. 115

Display character string ... 117

Display contents of text file 136

Display current directory .. 128

Display date .. 110

Display directory stack ... 115

Display file list .. 113, 120

Display time .. 135

Drive .. 29

DUMP .. 116

E
ECHO .. 117

Edit ... 90

Edit key ... 86

Effects of debugging .. 165

Element pointer .. 221

Element pointer symbol 221, 254, 291, 314

ELF header .. 364, 413

Entry point address ... 225, 238

EP_SYMBOL... 294

ERASE... 118

Example of mapping image 259

EXIT ... 119

Exit VSH .. 119

External command ...85, 100

External symbol 224, 234, 235

424

F
File name .. 150

Filling value .. 225, 239, 254

Flow of operation .. 148

Forced termination ... 100

Front end .. 148, 160, 175

G
G attribute ... 282

Global optimization module 148, 159, 173, 175

Global pointer .. 221, 226, 254

Global pointer symbol 221, 254, 290, 314

Global pointer table 249, 366, 416

gp symbol value ... 292

GP_SYMBOL .. 294

H
Help ... 98

Hex file output .. 138

Hex format .. 343

Expanded Tek hex format 352

data block .. 353

symbol block ... 353

termination block ... 355

Intel expanded hex format 346

data record .. 348

end record ... 348

expanded address record 347

start address record 347

Motorola S type hex format 349

History ... 90

History memory size .. 96

History save size .. 96

Hole .. 277

Horizontal scroll .. 87

I
.i file output ... 138

Input file .. 150

Input section 220, 243, 254, 256, 273, 278,

279, 319

Instruction work register .. 216

Internal command .. 85, 99, 102

Delimiter for option and directory 99

Option specification sequence 99

Wild card .. 99

.itext section 266, 279, 314, 321

K
Key list

ar .. 337

L
label reference .. 302

Level of warning message....................................... 158

Library file ... 28

Line number information 249, 366

Link directive ... 254

comment ... 255

file name ... 322

syntax ... 316

Link map ... 225, 243, 318

LOAD .. 264, 267

LS ... 120

M
Machine-dependent optimization module 148, 159,

173

Magic number .. 202, 205

Make file (for VSH) .. 142

Make target ... 140

Mapping directive ... 255

address ... 283

alignment condition ... 283

file name ... 283

hole size ... 283

section attribute ... 282

section name .. 279

section type .. 281

MD ... 121

Member .. 337, 361

Messages

ar .. 339

as .. 210

ca .. 176

dis.. 376

dump ... 369

hx .. 356

ld .. 323

romp .. 394

sf .. 405

MKDIR ... 122

MOVE .. 123

Move file ... 123, 125

MV .. 125

425

N
NOBITS ... 281

Non-debug mode .. 39

NUL .. 101

O
Operating environment .. 25

Optimization level .. 156, 162

Option .. 97

Option list

ar .. 338

as .. 201

ca .. 153

dis.. 373

dump ... 361

hx .. 344

ld .. 222

romp .. 384

sf .. 402

Option not shown in dialogs 39, 153, 201, 222

Option priority .. 160, 403

.option pseudo-instruction 204

Output of bdld instruction .. 166

Output pause .. 100

Output section 220, 254, 256, 278, 279, 319

P
POPD... 126

Pop directory stack .. 126

Pre-optimizer 148, 159, 172, 175

PROGBITS .. 281

Program header table 364, 414

Project Manager ... 23, 33

Prompt ... 95

PUSHD .. 127

PWD... 128

R
R attribute ... 268

_rcopy .. 391

RD .. 129

Rebuild .. 82

Redirect ... 101

Reference of library ... 242

Register mode .. 53

Register mode information 365

Relocation information ... 365

Remove directory .. 129, 134

REN ... 130

RENAME ... 131

Rename directory ... 132

Rename file .. 130, 131

RENDIR ... 132

Reserved section 257, 321, 421

Reserved symbol ... 221, 320

RM ... 133

RMDIR ... 134

ROM-storing .. 378

rompsec section ... 386

S
__S_romp .. 379

Save/push directory stack 127

.sbss section 156, 250, 321, 345

sbss-attribute section 202, 226, 257, 292

.sconst section 266, 279, 314, 321

Scroll .. 94

.sdata section .. 156, 321

sdata-attribute section 202, 226, 257, 287, 292

Search file ... 29

.sebss section 266, 279, 314, 321

Section.. 256, 418

Section attribute ... 415

Section file .. 408

Section header table .. 364

Section header table index...................................... 419

Section type ... 416, 417

.sedata section 266, 279, 314, 321

Segment ... 256, 422

Segment attribute ... 414

Segment directive .. 255, 264

address .. 269, 305

alignment condition 273, 275

filling value .. 272, 277

hole size ... 271

mapping directive .. 273

memory size ... 271

segment attribute ... 268

segment name ... 266

segment type ... 267

Segment overflow (CA850) 315

Segment specification of symbol 296

Segment type .. 414

Set .. 93

Setting assembler options ... 60

Setting compiler options .. 39

426

Setting files ... 69

Setting input options .. 42

Setting language options ... 46

Setting link editor options .. 68

Setting message options ... 56

Setting optimization options 48

Setting option 1 (assembler) 61

Setting option 2 (assembler) 63

Setting options (link editor) 71

Setting options (ROM-storing processor) 77

Setting other options (assembler) 66

Setting other options (C compiler) 58

Setting other options (link editor) 74

Setting other options (ROM-storing processor) 79

Setting output 1 options... 50

Setting output 2 options... 53

Setting pre-processor options 44

Setting ROM-storing processor options 76

.sibss section 266, 279, 314, 321

.sidata section 266, 279, 314, 321

Software register bank53, 157

Special-function target ... 143

Standard directory of device file 160, 204, 223,

232, 344, 373, 385

Standard directory of include file 154

Standard directory of library 223, 233, 242

String table ... 365, 420

Structure of object file .. 412

Suppression of warning message........................... 158

Symbol directive ... 255

address ... 294

alignment condition ... 294

base symbol name .. 294

segment name ... 295

symbol name .. 294

symbol type .. 294

Symbol table .. 365, 419

Symbol table entry ... 419

T
Target ... 140

Temporary file ... 29

text-attribute section 257, 294

Text pointer .. 221, 254

Text pointer symbol 221, 254, 290, 314

.text section ... 321

.tibss section 266, 279, 314, 321

.tibss.byte section 266, 279, 314, 321

.tibss.word section 266, 279, 314, 321

.tidata section 266, 279, 314, 321

.tidata.byte section 266, 279, 314, 321

.tidata.word section 266, 279, 314, 321

TIME .. 135

tp symbol ... 292

tp symbol offset .. 302

TP_SYMBOL ... 294

TYPE ... 136

Type of section ... 257

U
.udata1 section 266, 279, 314, 321

.udata2 section 266, 279, 314, 321

.udata3 section 266, 279, 314, 321

Undefined external symbol 250, 419

Use temporary command file59, 66, 74, 79

V
V810 inheriting option .. 202

Vertical scroll .. 87

VMAKE .. 139

VSH.. 23, 84

activation .. 84

menus ... 90

output file specification 138

W
-W option .. 172, 174

W attribute .. 268, 282

Warning messages for each parameter 158

Window size .. 93

Windows-based device files 101

Work directory ... 29

X
X attribute ... 268, 282

Z
Zero register (r0) ... 212, 216

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 97.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Revision History
	INTRODUCTION
	VOLUME 1 GENERAL
	CHAPTER 1 OVERVIEW
	1.1 Organization of This Manual
	1.2 Features of CA Windows-based Compiler Package

	CHAPTER 2 INSTALLATION
	2.1 Operating Environment
	2.2 Installation
	2.3 Directory Configuration
	2.4 Library File
	2.5 Cautions

	VOLUME 2 OPERATION METHODS
	CHAPTER 1 OVERVIEW OF OPERATIONS
	CHAPTER 2 OPERATIONS USING THE PROJECT MANAGER
	2.1 What is the Project Manager?
	2.2 Activation of Project Manager
	2.3 Project Settings
	2.4 Project Manager and CA
	2.5 Dialogs for Setting CA Command Options
	2.5.1 Setting compiler options
	Setting input options
	Setting pre-processor options
	Setting language options
	Setting optimization options
	Setting output 1 options
	Setting output 2 options
	Setting message options
	Setting other options

	2.5.2 Setting assembler options
	Setting option 1
	Setting option 2
	Setting other options

	2.5.3 Setting link editor options
	Setting files
	Setting options
	Setting other options

	2.5.4 Setting ROM-storing processor options
	Setting options
	Setting other options

	2.6 Creating and Building Make Files
	2.6.1 Using menu to create make files
	2.6.2 Auto generation of make file via build function

	CHAPTER 3 USE OF COMMAND SHELL
	3.1 What is VSH?
	3.2 Activation of VSH
	3.3 Function of VSH
	3.3.1 Command line editing function
	3.3.2 Scroll functions
	3.3.3 History function
	3.3.4 Alias function
	3.3.5 Menus

	3.4 Activation of Commands from VSH
	3.4.1 Operations related to internal commands only
	3.4.2 Operations related to external commands only
	3.4.3 Operations related to all commands

	3.5 VSH Internal Commands
	3.6 Activation of CA Commands
	3.6.1 Activation from command line
	3.6.2 Output file specification in VSH

	CHAPTER 4 USE OF MAKE UTILITY
	4.1 What is VMAKE?
	4.2 Features of VMAKE
	4.3 Operation
	4.3.1 VMAKE input syntax
	4.3.2 List of options

	4.4 Make Files
	4.4.1 Comments
	4.4.2 Continuation of lines
	4.4.3 Description of targets
	4.4.4 Command lines
	4.4.5 Macros

	VOLUME 3 HANDLING C COMPILER
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Handling File
	1.3 Execution Object Creating Pattern

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list
	(1) Input options
	(2) Preprocessing options
	(3) Language options
	(4) Optimization option
	(5) Output options
	(6) Message options
	(7) Other options

	2.2.2 Efficient use of optimization
	2.2.3 Effects of debugging on optimization
	2.2.4 Output of bdld instruction V830
	2.2.5 Argument of -W option

	2.3 Cautions on Specifying Options
	2.4 Example

	CHAPTER 3 MESSAGES
	3.1 Message Format
	3.2 Messages

	VOLUME 4 HANDLING ASSEMBLER
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Handling File

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list
	(1) Optimization option
	(2) Output options
	(3) Message options
	(4) Other options

	2.3 Example

	CHAPTER 3 ASSEMBLE LIST
	CHAPTER 4 MESSAGES
	4.1 Message Format
	4.2 Messages

	VOLUME 5 HANDLING LINK EDITOR
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.1.1 Link procedure

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list
	(1) File options
	(2) Check options
	(3) Message options
	(4) Other options

	2.2.2 Using options

	CHAPTER 3 LINK DIRECTIVE
	3.1 Feature of Link Directive
	3.2 Configuration of Link Directive
	3.3 Section and Segment
	3.3.1 Type of section
	3.3.2 Examples of mapping image

	3.4 Segment Directive
	3.4.1 Feature of segment directive
	3.4.2 Configuration of segment directive
	3.4.3 Explanation of each item that can be specified for segment directive
	3.4.4 Using segment directive

	3.5 Mapping Directive
	3.5.1 Feature of mapping directive
	3.5.2 Configuration of mapping directive
	3.5.3 Explanation of each item that can be specified for mapping directives
	3.5.4 Using mapping directive

	3.6 Symbol Directive
	3.6.1 Feature of symbol directive
	3.6.2 Configuration of symbol directive
	3.6.3 Explanation of each item that can be specified for symbol directives
	3.6.4 Using symbol directive
	3.6.5 tp symbol offset in label reference

	3.7 Default Link Directive
	3.8 Using Default Link Directive
	3.9 Syntax of Link Directive

	CHAPTER 4 LINK MAP
	CHAPTER 5 SUPPLEMENT
	5.1 Using Archive File
	5.2 Reserved Symbols
	5.3 File Name in Link Directive
	5.4 Link between V850 Family Object File and V850E Object File

	CHAPTER 6 MESSAGES
	6.1 Message Format
	6.2 Messages

	VOLUME 6 HANDLING ARCHIVER
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Handling File

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Keys/Options
	2.2.1 Key list
	2.2.2 Option list

	2.3 Examples of Use

	CHAPTER 3 MESSAGES
	3.1 Message Format
	3.2 Messages

	VOLUME 7 HANDLING HEX CONVERTER
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Handling File

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list

	2.3 Examples of Use

	CHAPTER 3 TYPES OF OUTPUT FILES
	3.1 Intel Expanded Hex Format
	3.2 Motorola S Type Hex Format
	3.3 Expanded Tek Hex Format

	CHAPTER 4 MESSAGES
	4.1 Message Format
	4.2 Messages

	VOLUME 8 HANDLING DUMP COMMAND
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list

	2.3 Examples of Use

	CHAPTER 3 DISPLAY FORMAT
	3.1 Archive Header
	3.2 Archive Symbol Table
	3.3 Archive String Table
	3.4 ELF Header
	3.5 Program Header Table
	3.6 Section Header Table
	3.7 String Table
	3.8 Symbol Table
	3.9 Relocation Information
	3.10 Register Mode Information
	3.11 Global Pointer Table
	3.12 Line Number Information
	3.13 Debug Information
	3.14 PROGBITS Data
	3.15 Element Values and Meanings

	CHAPTER 4 MESSAGES
	4.1 Message Format
	4.2 Messages

	VOLUME 9 HANDLING DISASSEMBLER
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation

	CHAPTER 2 OPERATION
	2.1 Command Input Format from VSH Command Line
	2.2 Types and Features of Options
	2.2.1 Option list

	2.3 Cautions
	2.4 Examples of Use
	2.5 Output Example

	CHAPTER 3 MESSAGES
	3.1 Message Format
	3.2 Messages

	VOLUME 10 HANDLING ROM-STORING PROCESSOR
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Types of Sections to Be Packed
	1.3 Procedure of Storing to ROM

	CHAPTER 2 OPERATION
	2.1 Command Input Format
	2.2 Types and Features of Options
	2.2.1 Option list
	(1) Output options
	(2) Other options

	2.3 Examples of Use

	CHAPTER 3 ALLOCATING AREA OF rompsec SECTION AND LINK PROCEDURE
	3.1 Allocation Area of rompsec Section
	3.2 rompsec Section and Link Directive

	CHAPTER 4 COPY ROUTINE
	CHAPTER 5 MESSAGES
	5.1 Message Format
	5.2 Messages

	VOLUME 11 HANDLING SECTION FILE GENERATOR
	CHAPTER 1 OVERVIEW
	1.1 Flow of Operation
	1.2 Sequence to Use Section File

	CHAPTER 2 OPERATION
	2.1 Command Input Format
	2.2 Types and Features of Options
	2.2.1 Option list

	2.3 Examples of Use

	CHAPTER 3 MESSAGES
	3.1 Message Format
	3.2 Messages

	APPENDIX
	APPENDIX A SECTION FILES
	APPENDIX B FORMAT OF OBJECT FILE
	B.1 Structure of Object File
	B.2 ELF Header
	B.3 Program Header Table
	B.4 Section Header Table
	B.4.1 Section type
	B.4.2 Constituents dependent on section type (link/info)

	B.5 Section
	B.5.1 Symbol table
	B.5.2 String table
	B.5.3 Reserved section

	B.6 Segment

	INDEX

