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Implementation of DSP Receiver 

Abstract 

 

The purpose of the project is to implement a multi-demodulation radio receiver using a 

Digital Signal Processor (DSP) board. The platform for the radio receiver is the Dalanco 

Avr-32 board whose major components are TMS 320C32 DSP and Xilinx Virtex Field 

Programmable Gate Array (FPGA).  

 

DSPs have become more popular and cost effective since their inception in implementing 

communication systems. The DSP chip is able to substitute the micro-controller in 

performing vital computations such as multiplication in lesser time than the traditional 

computers. Secondly, it can also substitute the analog signal processing by doing the 

same tasks as analog electronic systems in the discrete time. Until recently, analog 

receivers were the prevalent means for electronic communication. However, the advances 

in digital technology used in hi-speed modems, spread-spectrum systems and 3G cellular 

radios mean that now increasingly, communication system algorithms are implemented in 

digital technology. 

 

Using the flexibility of traditional DSP boards, both analog and digital demodulators can 

be implemented in hardware such as TMS 320C32 on AVR-32. This project however is 

limited to implementing a DSP receiver that demodulates Amplitude Modulation (AM), 

Single Sideband (SSB) and Frequency Modulation (FM) schemes. Thus a DSP radio 

receiver is a versatile device as it implements multiple demodulation schemes by using 

software only. 

 

The DSP board uses an analog to digital (ADC) converter to change the received 

continuous time signals to discrete samples which are then processed by the 

demodulation programs before being sent to the digital to analog converter (DAC) for 

output. 
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Chapter 1   

Introduction 

 

1.1 Project Objective 

The project objective is essentially to implement the DSP aspect of a radio receiver on 

the Avr-32 DSP board for several analog modulation schemes. The communication and 

signal processing algorithms of the following schemes have been implemented: 

 

a. Amplitude modulation (AM) 

b. Single Sideband modulation. SSB includes both USB and LSB (upper and lower 

sideband respectively) 

c. Frequency modulation (FM) 

 

1.2 Analog demodulation in digital domain  

AM demodulation 

Using square-law approach of envelope detection we can do AM demodulation (Tretter, 

129). This approach is a DSP implementation of analog envelope detection. Initially the 

signal is squared. Then it is passed through a low pass filter. Finally, the under-root 

operation is performed on the signal to get the demodulated output. Thus, the input signal 

s=A[1+km(t)]cos ω t   is squared to  s2=A2[1+km(t)] 2cos2ω t 

 

After passing through the lowpass filter, the output is 0.5A2 [1+km(t)] 2. Square-root 

would yield us the desired result but with a DC offset (that can be removed by a simple 

high pass filter if required). 
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SSB demodulation 

Using phasing method, we can implement the SSB demodulation (Rohde, 571). The Q 

channel signal is passed through a Hilbert transform FIR filter to further shift it by 90 

degrees. The I channel is delayed by an amount equal to the fixed delay of the Q-channel 

filter of (N-1)/2 samples. 

 

Then the I and Q channels are subtracted to get the LSB (lower sideband) signal. They 

are added to get the USB (upper sideband). 
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FM demodulation 

FM demodulation begins by detecting the phase of the incoming signal (Rohde, 572). 

Using the In-phase (I) and Quadrature (Q) channels we can compute the angle using the 

equation y[n]=tan-1(Q[n]/I[n]) 

 

Here we can use a look-up table to compute the arc tangent. After passing the result of 

the above equation through a differentiator filter, we get the demodulated FM signal. 
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1.3 System Overview 

A diagrammatic representation of the DSP receiver in relation to the Personal Computer 

(PC) in which it resides is provided below.  
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Chapter 2  

The Avr-32 Board and Utilities 

 

2.1 Installation of Avr-32 board & its software 

The Dalanco Avr-32 board is a Peripheral Control Interface (PCI) device. The hardware 

of the board itself comprises the Texas Instruments Digital Signal Processor 

TMS320C32, Xilinx Virtex Field Programmable Gate Array (FPGA), Flash memory, 

Direct Digital Synthesizer (DDS), Analog to Digital and Digital to analog converters 

(ADC and DAC) and a host of high-speed buffers and numerous ports to connect the 

board to the PC itself or to auxiliary devices. 

 

The Avr-32 device driver was installed using the ‘windriver’ folder on the software 

package disk. The software package is distributed into different folders each having its 

own special contents and read-me file. The ‘Utilities’ folder, for example, provides 

applications like the debugger or utilities to install an Assembly program into Flash or 

compile its code into the DSP. The ‘Examples’ folder provides Assembly or C programs 

on how to run the DSP algorithms or to test the board’s functionalities.  

2.2 Hardware features onboard the Avr-32 

The Dalanco board comprises the following hardware elements:  

 

TMS320C32 

Texas Instruments TMS320C32 floating point digital signal processor (DSP). 

It can run at a speed of 60 MHz in two modes; boot loader (When being switched on, the 

DSP self-configures and automatically runs from the data stored on the Flash) and 

microprocessor (being controlled and run from the PC). 
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Field Programmable Gate Array (FPGA) 

Virtex 2.5V Field Programmable Gate Arrays, Xilinx 

It is loaded with the Hex file that configures the input and output from the A/D and D/A 

converters and connects the data to the General purpose ATA-IDE, auxiliary digital I/O 

or to the local bus on DSP board. It runs the operations using the clock output from the 

Direct Digital Synthesizer (coming). 

  

Flash Memory 

The Avr-32 has 512 Kbytes of Flash memory which could include initialization code, an 

entire application and the data that the application requires. It resides in the 

TMS320C32’s memory space at address 900000H. 

 

Analog to Digital Converter (ADC) 

It is the 12 bit Analog Devices AD9223. In Virtex test3b mode, it is wired to the upper 12 

bits of a 16 bit data word and is clocked by the signal A/D Clock from the FPGA at 2 

MSPS (mega-samples per second). 

 

Digital to Analog Converter (DAC) 

It is the 12 bit Analog Devices AD9762. In Virtex test3b mode, it is wired to the upper 12 

bits of a 16 bit data word and is clocked by the signal D/A Clock from the FPGA.  

 

Direct Digital Synthesizer (DDS) 

It is the AD 9850 and provides a high-precision clock output for sampling input and 

output with a maximum frequency of 2 MHz. 

 

SRAM 

The Static Random Access Memory has 512 Kbytes of memory 

 

Peripheral Control Interface (PCI) Bridge 
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Its particular specifications are V350EPC, V360EPC Local Bus to PCI Bridge, V3 

Semiconductor.  

 

It can work in both master or slave mode. In addition to the above mentioned devices, the 

Avr-32 also has a host of Input/Output (I/O) ports such as the General Purpose ATA-

IDE, DSP serial port, Emulator port and Auxiliary Digital I/O.  

2.3 Overview of functionalities of the Dalanco Avr-32 Utilities  

D300 

The Dalanco debugger D300 is an easy way to become familiar with the TMS320 DSP 

aspects of the Avr-32. The feature is used to write and debug simple Assembly programs. 

It also allows the user to view the memory contents in real-time. More importantly, this is 

the utility to run a program that has been already compiled and loaded into the DSP. 

  

LDDS 

This utility allows the user to operate the DDS (Direct Digital Synthesizer) that is a high 

precision programmable clock. Upon running the LDDS, the user is prompted to enter the 

desired frequency (at which an analog input is sampled in and its processed output is 

sampled out). The program then informs the user of the actual frequency that does not 

differ by 0.015 Hz from the desired value.  

 

A300 

This is the assembler for the Avr-32. Its command line of ‘>A300 {-output mode} 

infield’ can generate an outfile with a ‘.COFF’, ‘.ASCII’ or ‘.FLA’ extension. 

 

ASM32 

An Assembly language program with a ‘.ASM’ extension is compiled and loaded into the 

DSP using this utility. The command ASM 32 is typed in followed by the name of the 

program to be compiled and the Assembler either loads it into the system for running or 

gives a compile-time error depending on some syntax error. 
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LOADVIR 

This loads the hex file containing the Virtex configuration information into the FPGA. 

The Hex file is created by the Xilinx PromptFile Formatter. The default configuration is 

the test3b.hex file provided on the installation disk. 

 

LOADCOFF 

This utility loads COFF .out files made by the A300 or by the Texas Instruments Linker 

into the Avr-32. This utility gives the user the ability to control TMS320 execution. A 

complete Loadcoff command follows a special format of preload/postload/output options 

for execution of the input file.  

 

LOADF 

A program is assembled with the flash flag using the >A300 –f prog1 command. After 

erasing any previous code on the flash ‘loadf prog1’ command writes data to the Flash 

memory.  

 

LFV 

Similar to loadf command, a hex file too can be written to the Flash using this utility. An 

additional command called ‘lfvcheck’ ensures that Flash memory has been filled by a 

Xilinx hex file. 

 

FLASHE 

The utility erases the entire Flash memory. 

 

RDFLASH & WRFLASH 

Theses are the reading and writing utilities for the Flash memory 

 

CLRVIR 

This program clears the configuration loaded into the Virtex FPGA. 
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2.4 Issues in DSP Initialization 

At the start of the project, the assumption was that the DSP board would be plugged into 

the PC and then it will be up and running in a couple of days. However, operating the 

hardware through the utilities proved to be a major hassle.  

 

The electronics and systems lab was initially chosen as the venue of the project. The 

Pentium-2 PC with the XP Operating system that was proved too slow and consumed a 

lot of time in booting up or opening up the Dalanco software package installed on its hard 

drive. 

 

The second major difficulty was that the Dalanco user manual was not very useful in 

enabling a complete beginner to work on the board. The manual presented the entire 

features of the board without coherency. Even some of the names of utility programs on 

the manual were different from that on the installation disk. Because of this, there was a 

feeling that the Avr-32 software package was too difficult to comprehend. 

 

Due to these difficulties, the vendor was contacted and assistance was frequently sought 

on how to operate and use the board. The project venue too was eventually shifted to the 

RICE lab with a Windows 98 based Pentium-4. 

 

A summary of the main issues that arose in initiation of the board is given below: 

1.  Problems with the installation of the device driver in the correct system path caused 

some major delays. The XP based PC would not register the Avr-32 device driver in the 

system. This problem was solved by changing the PC and installing Windows 98 

Operating System. 

 

2. Understanding the work of the debugger was cumbersome. The user manual example 

code was difficult to understand and re-implement with changes in the code. Long hours 

on the debugger helped get the feel in how to run and work on the D300 debugger. 
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3. It was also not clear how to program the TMS320C32 DSP with our assembly 

programs. The use of the assembler A300 and the process of loading a program into the 

TMS320C32 for running became clear after a lot of trial and error. In this regard the help 

of the project supervisor Dr. Masud was instrumental in solving the problem and making 

the Asm32 up and running. The A300 utility and its complicated usage was avoided by 

simply compiling and loading any Assembly program into the DSP by the command 

‘>Asm32 myprog’ where myprog is an ‘.ASM’ Assembly program file. 

 

4. Another major problem that was encountered initially was that the Avr-32 would 

suddenly ‘freeze’ whilst running the debugger code or some Assembly program and the 

whole system would need to be re-booted. Fixing this problem consumed many sessions. 

The solution to this problem was to ensure in the Assembly program or the debugger 

code that the DSP continued looping in an infinite loop after executing the desired 

program.  Once these issues were resolved, the process to write programs for the 

demodulation schemes began. 

 

 

  

 

   

 

 

 

 

 

 

Fig. 5 The actual system setup 
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Chapter 3   

Signal Processing 

 

3.1 Reading Input and Output signaling   

The system involves reading in an analog signal and then processing it in the digital 

domain. For this purpose, the Dalanco board’s has plenty of provisions. The 12 bit 3 

MHz AD converter reads data from Port 14 of the J10 jumper. The converter’s output is 

then fed into the Xilinx FPGA which contains the I/O configuration. The data is then sent 

to the TMS320C32 DSP. Here our assembled program processes the digital data and 

outputs it back to the FPGA. From here on the Digital to Analog converter converts the 

data back to analog and outputs it from Port 25. 

 

The control and configuration for the analog input/output of the Avr-32 is done by the 

FPGA. The manufacturer provides a Hex file ‘test3b’ to configure it. Additionally it also 

provides an Assembly language program ‘addaint.asm’ that performs simple A/D to D/A 

pass through - basically, analog signal is read in, converted to digital and from digital 

back to analog before being output from Port 25 (a simple pass through).  

 

The ADC and DAC work using the DDS (direct digital synthesizer) which is simply a 

precise high speed clock. Once the analog signal is connected to the board, the DDS 

samples the signal at the specified frequency. The DDS is run using the ‘Ldds’ command. 

 

Using that program as the basis, the code to process the signals in Assembly language 

was further developed. Obviously, it is also possible to change the Xilinx-loaded Hex file 

and consequently the configuration of the FPGA. However, for the purpose of simplicity, 

the configuration provided by ‘test3b’ was maintained. An additional Hex file called 

‘test3’ allowed us to configure the FPGA without involving the DSP. It was a direct pass 

through between the ADC and DAC. 
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Initially, a couple of tests were performed before analog input yielded analog output via 

the Avr-32 PCI board. The manufacturer recommended these simple tests to perform 

both types of pass-through between the ADC and DAC. 

 

Test 1 

 

;Connect signal generator to port 14 and CRO to port 25. Max Voltage between _+2.5V 

;no DSP involved 

 

>Loadvir test3 

 

>Ldds (frequency being kept around 1 MHz) ctrl- c (to exit) 

 

; Observe the cathode ray oscilloscope (CRO) 

 

Test 2  

 

; DSP involved 

>Loadvir test3b 

 

>Ldds (frequency being kept around 1 MHz) ctrl- c 

 

>Asm32 addaint 

 

>D300 

 

-g                ; DSP run to execute pass through 

 

;Observe the cathode ray oscilloscope (CRO) 
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3.2 Calibration of the Cathode Ray Oscilloscope 

The next major issue involving the input and output of the signal was to calibrate the 

ADC and DAC with the Cathode ray oscilloscope (CRO). The DSP works on both 

integer and floating point format and initially it was not obvious if the analog signal was 

converted to floating points or simply to integers. This led to some programming 

problems.  

 

Modifications to ‘addaint.asm’ program were made that would do simple processing of 

the input signal. However, none of the initial modifications worked and two complete 

sessions of work spent trying to figure out the exact problem.  

 

The modifications included storing in memory a certain number of data samples from the 

analog signal and adding or subtracting some value from each of the data sample. The 

output of the process in real time was sent to the DAC for output. The data samples 

apparently matched to the variations in the analog input. For example, if a sinusoid 

analog input with peak to peak value of 1.5 V was applied, the data stored in memory 

varied between 1.00346 and 1.00478 with increments of around 0.00003. Addition or 

subtraction of values like 0.002 or even 1.00000 to the stored values made no difference 

to the analog output. 

 

After much trial and error it was revealed that the problem lay in the debugger D300 

command of ‘d.xx’. The symbol ‘xx’ is the memory location where the sample is stored 

as a floating point. Thus it should have been ‘dxx’. This also revealed that the analog 

signal was being output from the ADC in integer format and it was between the values of 

FFFFH and 000FH. The last ‘F’ in the hexadecimal number is reserved for the format of 

the FIFO storage configuration of the analog signal.  

 

Hence, a maximum voltage of 2.25 V would get converted to FFFH while a minimum     

-2.19 V voltage would generate 000H. Similarly, by trial and error, the zero volts turned 
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out to be 80BH. A negative number like -1 is represented on the DSP Assembly by 

FFFFFFFFH since it follows a 32 bit format. 

 

The whole rage of values generated on the CRO was consequently calibrated with the 

hexadecimal numbers generated by the ADC. The next step was to generate an analog 

signal of a specific RMS (root mean square) voltage without any input. A square wave 

was generated by simply coding two alternating sequences of constant hexadecimal 

values that met the desired value (Appendix 1, Square Wave Generation).  

3.3 Development of Demodulation Code 

The Dalanco Avr-32 board allows the user to implement DSP algorithms in both 

Assembly and C. It further allows us to integrate the FPGA and Flash memory into the 

development of any communication system. 

 

Because of flexibility and greater control over any communication system software, 

Assembly language was used in implementing the algorithms. The Dalanco software 

provides examples of simple Assembly programs to read input, do processing on it and 

then output it. Using such example programs as the basis, the project-specific code was 

developed. 

 

The programs consist of two types of portions. One pertains to manipulating the data and 

the other about reading the data from input. The data manipulation comprises simple 

load, store, add and multiply instructions to and from registers and RAM memory. The 

input/output commands include controlling the pulses to the ADC and DAC and placing 

the data in pre-determined memory locations. The FIFO buffers of ADC and DAC have 

to be configured to send and receive data. The default FPGA program ‘test3b’ provides 

for this. 

 

The code development of the demodulation schemes was divided into several stages. For 

each demodulation scheme different code components were needed to do particular tasks. 

The tasks are shown below (Rohde, 571): 
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Amplitude Demodulation 

1. Squaring the input 

2. Low pass filtering 

 

Frequency Demodulation 

1. Generation of I and Q channel streams 

2. Dual filtering 

3. Division of I and Q streams 

4. Arc tangent of two data streams  

5. Differentiation of the data stream 

 

Single Side Band Demodulation 

1. Generation of I and Q channel streams 

2. Dual filtering 

3. Addition or subtraction depending on LSB or USB 
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3.4 DSP algorithms programming and sampling issues 

3.4.1 FIR filter  

The development of a finite impulse response (FIR) filter is critical to implementing a 

communications system. The convolution operation is carried out by the FIR filter.  

 

An FIR is mathematically represented by its transfer function: 

 

H(z)=1+a × z -1 + b × z -2 + c × z -3 +…y × z - n                   nth  order filter 

Or  h[n]={1,a,b,c,d,…,y} 

 

An input sequence x[n] is convolved with h[n] to yield the output y[n]. The exact 

relationship is: 

 

      ∑
=

−×=
N

K
nkxkhny

0
][][][  

z-1 represents a delay of one sample. Any output sample is the weighted sum of the 

previous n inputs as shown by the above equation.  

  

Typical frequency-selective filters or others like Hilbert filter can be built by simply 

altering the weights of an FIR filter. For example, a low pass filter that attenuates 

frequencies above a certain digital cutoff frequency ωc, is readily implemented using 

weights based on the sinc function.  

 

π= 3.14156 

H(z)=1 for |n|<ωc  H(z)=0 for |n|> ωc        Ideal case 

Or  
n

ncnh
×

××
=

π
πω )sin(][  

Note that the digital frequency, ωc, is the ratio of analog frequency of input signal to the 

sampling frequency multiplied by 2π.  
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We need to convert the non-casual and infinite length h[n] into finite length casual low 

pass filter by delaying its output by M samples and taking a rectangular window to 

obtain: 

 

)(
))(sin(][

Mn
Mncnh

−×
−××

=
π

πω     0<n<x where n is the desired number of taps 

 

The sequence of h[n] provide the weights of the filter delay coefficients in the H(z) 

equation presented above. Similarly, the Hilbert filter is a 90 degree phase shifter (Mitra, 

449). Its discrete sample representation is: 

 

)(
))(cos(1][

Mn
Mnnh

−×
−−

=
π

π        

 

A causal bandpass filter with cutoff frequencies around 1cω  and 2cω  has the following 

coefficients formula (Mitra, 448): 

π
ωω 121][ ccnh −

−=                        for n=0 

)(
))(2sin(
)(

))(1sin(][

Mn
Mnc
Mn

Mncnh

−×
−××

−

−×
−××

=

π
πω
π

πω

           n>0 

 

Once an FIR code has been written and programmed, these filter coefficients have to be 

scaled to fit the system design and then placed in the memory for the DSP to read. 

 

Writing the Assembly language code to implement an FIR is complicated. Firstly, we 

need to have a program that does simple convolution of integers. Secondly, we have to 

insert the code that can read and write data in real-time. Due to the limited number of 

registers available for specific tasks such as pipelined multiplication or storing A/D data, 

the program has to be coded very carefully to optimize register use. 

 

 21



Implementation of DSP Receiver 

The first task was implemented with the help of FIR code provided in the Texas 

Instruments website (Texas Instruments, User Guide). However, the code itself was not 

self-explanatory. The other guide on DSP algorithm implementation (Bhaskar, 232) also 

provided a program that did not compile on Dalanco Avr-32 Assembler. Thus 

modifications had to be made to convolve two sequences using the algorithm concepts 

provided in these two references. The resulting program was a static integer convolution 

program with a fixed number of inputs (Appendix 1, Static Finite Input FIR Filter).  

 

The second task was to change the filter to convolve integers in real time. As the 

equations above would suggest this is a very computation-intensive operation. Analog 

signal is digitized and each value is stored at a particular memory location. All values are 

then passed through the filter (i.e. convolved) to generate the output values. 

 

The process in real-time involves taking a window of say 1000H data samples from the 

input and storing them in a certain memory region. As the first filter calculations are 

performed on the data this region quickly fills up. When the 1000H locations are filled 

up, a routine called ‘revolver’ that takes the last few data samples then stores them into 

the memory region’s start in order to start all over again. 

 

Many changes to the original FIR filter had to be made to be able to perform 

computations correctly. In fact, the main problem in dealing with real time sequence of 

integers is the calibration of analog output in volts with the data values generated as part 

of the Assembly program. Care is needed while multiplying real time data values with 

some filter coefficients. We need to ensure that the convolved product of x[n] and h[n] 

will be less than 0fffH (4095 decimals) otherwise the output gets clamped and the DAC 

stops generating more data samples.  
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Following is an example of a single 25 Tap FIR memory usage. An additional FIR filter 

inside the same program would have similar memory usage except that it would start at 

other locations like 16A0H for h[n] and 16F0H for x[n].  

 
Pre-programmed 
25 tap 
coefficients 
written to 25 
locations 
between 100H 
and 118H. 
These locations 
are tapped every 
time an output is 
to be calculated 

h[0]      100H 

h[1]     101H 

h[2]     102H 

. 

. 

h[24]   118H 

. 

x[-24]   137H 

. 

x[-21]  13AH   

. 

x[-3]    14DH 

x[-2]    14EH 

x[-1]    14FH 

x[0]      150H 

x[1]      151H 

x[2]     152H 

x[3]     153H 

. 

. 

x[4432]    

1150H 

 . 

 
 

h[n] 
starts 
at 
100H 

All these 
locations 
are 
initialized 
to zero as 
dummy 
inputs 

 
25 input 
memory 
locations 
used in 
producing
every 
output. 
This time 
it is y[3]. 
       

Example y[3] for x[3] 
 
y[3] = x[3].h[0] + 
x[2].h[1] + x[1].h[2] + 
x[0].h[3] + x[-1].h[4] 
+…x[-21].h[24] 
 
The convolution 
equation: 
 

∑
=

−×=
N

K

nkxkhny
0

][][][
 

Input x[n] 
fills in 
this 
direction 
for 
1000H 
locations 

Maximum address for 
input storage 

 

Fig. 7  DSP RAM Memory 
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h[0]      100H 

h[1]     101H 

h[2]     102H 

. 

. 

h[24]   118H 

. 

x[-24]   137H 

. 

. 

. 

x[-3]    14DH 

x[-2]    14EH 

x[-1]    14FH 

x[0]      150H 

x[1]      151H 

. 

x[4407]    1137H 

. 

x[4431]    114FH 

x[4432]    1150H 

. 

 

Last 25 memory 
locations 
containing the 
latest input values 
are revolved back 
to the initialized 
locations that 
originally held 
zeros 

Once 1000H memory 
locations are filled up its 
time to re-start from the 
original locations since the 
DSP memory is limited.   

h[n] 
starts 
at 
100H 

Initialized 
dummy 
inputs 
locations 
are now 
filled up 

Input x[n] 
fills in 
this 
direction 

 

 

Fig. 8 ‘Revolver’ re-initializes the convolution from original memory locations 
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Fig. 9 Actual lowpass filtering. The lower wave is the input and the upper one is the 

attenuated output with a frequency more than the cutoff 

3.4.2 Magnitude scaling of real-time FIR 

Since the DSP algorithms are implemented using integers, it is not possible to obtain 

precise decimal point accuracies for the division or re-scaling of numbers. Appropriate 

scaling of filter taps of necessary in order to get the desired response. We assume that the 

peak to peak input is 4.0 V and the output is also around 4.0 V maximally. 

 

For every n taps we keep the range of the weights to be between n and -n. If programmed 

with a sinc function for a 25 tap filter, the maximum weight should be 25 and the 

minimum -8. Additionally, if all taps are filled with the maximum weight of ‘n’, the 

combined sum for every sample would be n2 implying that every input sample gets 

multiplies with n2 or ‘processed output = input* n2’.  

 

If the product ‘input* n2’ is a sample of a non-attenuated frequency component being sent 

to the DAC then that means that we need to divide every processed output by n2 to get a 

peak to peak value from the DSP board output equal to the input voltage levels. 
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But we also need to scale down this value to between the desired levels of 0cffH (+2.0 V) 

and 100H (-2.0 V) to get a total of 4.0 V peak to peak. For our n tap filter, we need to 

right shift every processed sample prior to being sent to the DAC that would wholly 

divide n2. 

 

# Right shifts, k = log (n2)/log(2) 

 

Since every right rotation is a division by two, the number n2 becomes one if divided by 

k. This mechanism ensures that we are able to get the desired response within acceptable 

peak to peak voltage levels of around 4 V if un-attenuated. The above formula is usable 

just for a one-filter system. For specific demodulation schemes with multiple filters and 

the I and Q channels, there is a larger value of ‘k’.  

 

 

AM demodulation scheme  

 

K = log(2* n2)/log(2)  
 

SSB demodulation scheme  

 

 K =  log( c × 2 ×  n2)/log(2)  

 

c = sinusoidal computation steps for I or Q stream 

 

FM demodulation scheme  

 

In case of the FM, the tasks of division of I and Q channels and subsequent processing of 

arc-tangent and differentiation were not completed by the end of the project and hence a 

formula cannot be given.  

3.4.3 ADC sampling rates and program speed 
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The number of clock cycles performed in order to correctly produce one output sample 

for every input sample is the requisite of selecting the maximum sampling rate for the 

receiver system. Since high digital frequencies (digital frequency = input frequency / 

sampling rate × 2 × π) imply less quantization noise and are desirable hence we would 

like to keep the sampling rates to as close to 2 MHz (maximum sampling rate) as 

possible. Furthermore, since keeping in view that the message or broadcast riding on the 

carrier waves would have a range of 20 Hz to 5 KHz, we would also like to sample 

sufficiently fast so that the original message is recovered from the carrier. 

We have two programs; one for AM demodulation and the other one for the SSB. Since 

clock cycles per instruction were not provided in the Texas Instruments manual, the 

number of cycles per instruction had to be estimated. 

Clock cycles per instruction 

1) Br                            4                 branch 

2) Ash                       1           arithemetic shift   

3) ldi,sti                       1           load, store   

4) mul,addi, subi       1                  multiply, add, subtract 

5) mul3, addi3, subi3         2                  multiply, add, subtract  

6) FIR Filter                       N+11          N is number of taps (Texas Instruments) 

By counting the lines of code and multiplying each line with its corresponding clock 

cycles we derive: 

AM cycles: 

93+ n    

SSB cycles: 

133+ 2n 
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FM cycles (an estimated value is derived since this demodulation program was not 

completed): 

200 +3n 

Since each clock cycle is at 60 MHz , it means that between every data sample, the DSP 

spends (200+3n)/60M seconds for the most computation-intensive scheme like the FM. 

Hence the maximum clock sample is 6000000/(200+3n) or 220 KHz for FM with 25 taps. 

The 220 KHz rate easily satisfies the Nyquist criterion for the human voice up to 5 KHz. 

Obviously high quality and minimal quantized error are not the objectives for this radio 

system. 

If we exceed this sampling rate and we will be doing decimation of output frequency. For 

each input sample, its processed output sample appears after several more input samples 

have already appeared. The overall frequency of the output signal is thus less than that of 

the input signal. 

3.4.4 I/Q Channel Generation using Digital Oscillator 

We need two sequences of sinusoidal waves out of phase by 90 degrees that are 

multiplied by the incoming data sequence to generate the I and Q channels. Although the 

theoretical procedure for I and Q generation was provided in the references (Rohde, 571) 

and (Mitra, 407) but their actual implementation in integer format proved to be 

complicated. The problem was compounded by the fact that there is no straight forward 

way to divide two integers or floating point numbers. Hence ways and means had to be 

found to overcome the problem of multiplying an integer with a fraction.  

 

Mathematically, the In-phase (I) and Quadrature (Q) channels can be represented as 

(Rohde, 571):  

 

Q[n] =  x[n] ×  - sin (2πnω)       

 

I[n] =  x[n] × cos (2πnω) 
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ω=digital frequency = f/F × 2π where f is incoming signal frequency and F is the 

sampling rate 

 

Initially, simultaneous sine and cosine waves were generated. The next step was to 

multiply in real time the incoming data sequence and pass it through lowpass filters to be 

able to generate the two sequences I and Q. 

 

There were two approaches to this. One was to write a code that computed sinusoidal 

hexadecimal values that would be converted to analog equivalent. The other was to read 

into the DSP a sinusoidal signal and store its contents in memory as part of a lookup 

table. Then using this lookup table, the I and Q channels could be generated. Both the 

approaches were tried but it turned out that first method was accurate and easier, though 

more computation-intensive than the lookup table’s method. 

 

The first approach was implemented by implementing a digital sine-cosine generator 

(Mitra, 405). Mathematically, a sine-cosine generator is given by: 

 

s1[n] = a × sin(nθ)      s1[0]  set to an initial value of 64H 

s2[n] =  b × cos(nθ)    s2[0]  set to an initial value of 0H 

 

s1[n+1]= cos θ × s1[n] + (cos θ +1) × s2[n]  

s2[n+1]= (cos θ -1) × s1[n] + cos θ × s2[n] 
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A diagrammatic representation of the sine-cosine generator is provided below. 

 
 

A digital sine-cosine generator initially involves taking the cosine θ value that represents 

the digital frequency of the wave to be produced. Using the above iterative algorithm, an 

Assembly program on DSP was written to produce sine and cosine values. However, this 

was not a straightforward implementation. The algorithm had to implement division of 

two integers to get the product of cos θ × (s1+s2). It also had to have provisions to divide 

negative numbers.  

 

Initially, the rotate right (‘ror’) Assembly language instruction was used in performing 

division. However, this was a very inefficient way of rotating right since to rotate ten or 

twelve times, one clock cycle was used for every rotation. Fortunately just in the final 

days as the code was being optimized so as to minimize the programs’ clock cycles, an 

alternative to the ‘ror’ was found in form of the ‘ash’ instruction (Bhaskar, 203) 

 

The ‘ash’ instruction arithmetically performs a shift right or left in a sign-extended 

manner depending on the value stored in the register. Thus through such an instruction, 

the program can save a dozen or so clock cycles!  

 

The division feature was developed using the ‘ash Rx’ command that shifted the contents 

of a processor register right by one bit catering for the sign of the value stored in Rx. For 

× cos θ

Add 

Add 

× cos θ

Sub 

S1 

S2 

Fig. 10   Flowchart of the digital oscillator 
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example, to multiply (s1+s2) by a given value of cos θ like 0.875 meant that we had to 

write the following Assembly code: 

 

; r3  contains the value of s1 +s2 that is say 64H or100 decimal 

ldi r3,r4       ;make a substitution 

ldi 3,r2         ;factor of division 

ash r2,r3   ; shift right the value in r3 by amount stored in r2 

;r3 now has 8H 

 subi r3,r4 

;       r4 now has a value 88d or 58H (0.875 * 100 decimal =88 d) 

 

As for the negative numbers, they are also automatically catered for due to sign 

extension. If the value stored in r2 is negative then instead of division, multiplication is 

performed since a left shift is performed. 

 

Using the product of the above equation, new values of s1 and s2 are calculated. These 

can be fed into the output register for analog signal generation of sinusoid waves.  

 

The value ‘cos θ’ is a measure of the digital frequency. If ‘cos θ’ had a low value around 

0.5 then a less quantized sinusoid wave was seen on the CRO whereas a higher value of 

0.875 created a greatly quantized and random noise-like wave.  

3.4.5 Rescaling the sine and cosine values 

Using an oscillator algorithm (Mitra, 407) we generate the digital cosine and sine waves. 

However, the two were initially not equal in their peak to peak values since sine value 

ranged up to 3.84 V whereas cosine was around 85 mV.  Thus cosine was to be 

multiplied with a factor of 46 to get both the sinusoids in the desired range.  

 

The second approach of I and Q generation would have involved making a lookup table. 

Since no sinusoids are being calculated, such an approach is computationally quicker. In 

essence all that has to be done is the generation and storage of the desired sinusoid table – 
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a goal that can be performed by an initializing program that is also tasked with burning 

the tap coefficients into the memory. Then, in theory at least, once the actual receiver 

program runs, it will merely pick all those stored values from memory locations and 

produce digital oscillation for generating I and Q channels. 

 

However, contrary to expectation this task proved to be very challenging and was 

eventually dropped in favor of the first approach. Maintaining the 90 degree phase 

difference between sine and cosine waves was a very complex task whilst the digital 

frequency was varying.  

 

The digital frequency is the scaled ratio of input frequency (which can obviously change) 

and sampling rate (which is more or less fixed). The sinusoid lookup table generated by 

the initializing program could not be adaptively sampled to generate the desired 

frequency. Suppose that for a ω (digital frequency) of 0.9 rad/sec the initializing program 

created 1000 digital oscillation samples and burned them onto the memory. If ω changed 

to say 0.4 rad/sec (which it would as we would change the input frequency) then this 

means that we need to pick every (0.9/0.4)=2.25 alternate samples from the table. 

Clearly, it would be impossible to create an accurate sine or cosine wave using a table 

with a limited number of entries.  

3.4.6 Integration of I/Q channels and dual filters 

Multiplying the sinusoids with the input involved using an instruction like ‘mul’ that 

could multiply the values stored in two registers - one having a sinusoid sequence value 

and the other having the input value from ADC. However, this did not produce the 

correct output without some important modifications being made. 

 

The original output was a very random signal with a peak to peak often exceeding 4.5 V. 

Quite often a couple of seconds after the I/Q channel generator started running, the DAC 

of the DSP would become flat-lined. This was an indication that the output was actually 

much in excess of the maximum values (peak to peak of 4.48 V) that the DAC could 

send. 
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This problem was resolved by scaling down the product stored by the internal sinusoidal 

and input multiplication. For example, if an input processed after the A/D conversion 

with a value of  0BFFH was multiplied with a sinusoidal value of 0A00H then the output 

is 77f600H - a value simply too large for DAC (that can process a maximum of 0FFFH). 

Thus by arithmetically right shifting the value 77F600H by 12 times we obtain 77FH, a 

value feasible for the DAC. 

 

The output on the CRO for an internal sinusoid multiplying with an external sinusoid was 

a rapidly modulating signal. If an input signal of 2 Hz was provided, then we could 

observe on the CRO that a sinusoid wave was rising and falling at a rate of 2 peaks per 

second. At one moment its peak to peak was say 3.1 V while the next moment around 3.7 

V and so on. Finally within a second it would come back to the original value of 3.1 V. 

 

By now, either the I/ Q channels or the filters could be run by a single program but not 

both. The challenge was to place both the channels and the filters within the same 

program. This was problematic because the use of registers had to be optimized. Some 

registers also did not work correctly (coming). However by modularizing the FIR filter 

code, a few registers were saved in order to producing the second channel.  

 

When it was being developed, the program was tested as every important line or a block 

of code was added. The actual output was matched with the desired output to find out any 

problems. The register r9, as mentioned earlier, was not working at all (could not be used 

for adding, multiplying or loading) in the second filter. Despite a lot of effort being made 

to understand why this was so, no solution was found. Consequently, r9 was not used in 

the second filter code. 

 

Once the multiple filters and the digital oscillator were programmed inside a single 

master-program, a series of tests were performed to ascertain that they were functioning 

correctly. These tests are discussed under the subsequent title ‘Testing Phase’.  

 

 33



Implementation of DSP Receiver 

3.4.7 Initializing program 

The running of FIR filters requires burning tap coefficient weights in the memory. Since 

we mainly use two 25 Tap filters it was very cumbersome to manually enter the weight 

values each time a demodulating or filtering program was run. Hence, an initializing 

program called the ‘tapburner.asm’ was written that would be run before  any filtering or 

demodulating program was started. 

 

The task of the ‘tapburner.asm’ would simply be to place the values of the weight 

coefficients in the memory locations from which the FIR filters would read their taps. 

Hence if the coefficients for a filter were to reside at locations 200 H to 219H then the 

initializing program would store pre-determined values (as set by the programmer) onto 

those locations. Such initialization substantially sped up the work of fine-tuning the 

operations of the demodulation programs. 

3.4.8 System modularization  

The generic DSP radio receiver has four primary modules that generate I and Q channels 

and apply filters; -sine multiplier, cosine multiplier, FIR1 (first filter) and FIR2 (second 

filter).  

 

The digital oscillator generates −sine and cosine waves that are multiplied with the 

incoming input sequence. The filters FIR1 and FIR 2 are two 25 tap FIR filters that can 

be programmed to do lowpass, bandpass or Hilbert filtering.  
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 -sin (2πnω) 

  
 

In case that a module is de-activated (bypassed essentially), the data stream from the 

ADC continues to pass through it without being affected by the module itself. Hence if 

the ‘cos(2π ω)’ and ‘FIR1’ modules are non-active, the input signal will continue to be 

processed by ‘FIR2’ and ‘-sin (2πnω)’ as if ‘cos(2πnω)’ and ‘FIR1’ were not present. 

 

 

 

 

 

 

 

 

 

 
cos(2πnω) 

FIR 1 

 
FIR 2 

Digital 
Oscillator

I[n] De-
formatted 
input 
from 
ADC 

Q[n] 

Fig. 11 The DSP receiver system as modules 
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Chapter 4   

Demodulation Algorithms 
 

Following are the algorithms of the various programs that have been written to 

demodulate the input signals. They are a crude approximation to the actual Assembly 

code. The actual code is provided in Appendix A.  

 

4.1 AM Demodulation Algorithm 

initialize registers & mailboxes 

 

loop: 

 

read input from ADC 

 

square the input 

 

goto FIR1 for lowpass filtering 

 

output the output of FIR 1  to DAC 

Branch to loop if fewer than1000H input values processed 

//if 1000H  input values stored in DSP memory. Since DSP cannot store a real-time data 

input in its memory  it is time to revolve the last few filters’ inputs back to the original 

locations.  

Revolver: 

 

Transfer the  last 25 I and Q channel values back to original memory locations 

 

br loop 
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Fig 12. The first CRO wave is the simulated squared AM signal. The second CRO wave 

is the demodulated DC component after lowpass filtering of the same wave. 

4.2 SSB Demodulation Algorithm 

initialize registers & mailboxes 

 

loop: 

 

read input from ADC 

 

generate sine and cosine 

 

multiply input with the two sinusoids 

 

goto FIR1 for low-passing I channel 
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goto FIR for Hilbert-filtering Q channel 

 

add (subtract) output from I and Q  

 

output to DAC 

 

Branch to loop if fewer than1000H input values processed 

//if 1000H  input values stored in DSP memory. Since DSP cannot store a real-time data 

input in its memory  it is time to revolve the last few filters’ inputs back to the original 

locations.  

Revolver: 

transfer last 25 I and Q channel values back to original memory locations 

br loop 

 

 

 
 

Fig. 13 The first figure above is the simulated wave for the USB signal. The second 

sinusoidal CRO wave is the recovered message from the signal. 
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Fig. 14 The above CRO waves show the effect of a Hilbert filter. Notice the 900 phase 

difference between the input and the output. 

4.3 FM Demodulation Algorithm 

(Not fully developed) 

 

initialize registers & mailboxes 

 

loop: 

 

read input from ADC 

 

generate sine and cosine 

 

multiply input with the two sinusoids 

 

goto FIR1 for low-passing I channel 

 

goto FIR for Hilbert-filtering Q channel 
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divide I channel with Q channel 

 

use lookup table to find the arc tangent of the value (I/Q) 

 

output to DAC 

 

Branch to loop if fewer than1000H input values processed 

//if 1000H  input values stored in DSP memory. Since DSP cannot store a real-time data 

input in its memory it is time to revolve the last few filters’ inputs back to the original 

locations.  

Revolver: 

transfer last 25 I and Q channel values back to original memory locations 

br loop 
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Chapter 5   

Testing Phase 
 

The overall system testing phase is the process by which the correctness of the system 

software is verified. Since this project is oriented more towards the DSP side, emphasis 

was placed on developing the Assembly programs for the demodulation schemes. It was 

not possible to obtain the radio transmitters that would be processed by the DSP radio 

receiver and hence verification if the software was working correctly had to be done by 

alternative methods. 

 

The testing approach that was adopted can be described as modular or as Bottom-Up 

approach if a software engineering term is to be borrowed. The programs would be 

verified and corrected module by module as the scope of the testing expanded. Once each 

module was functioning correctly, their working as parts of an integrated system was 

checked. Since each module was functioning properly independently, the testing phase 

was about incorporating them in an integrated program and verifying correct operation. 

 

The development of real time filters and the In-phase and Quadrature channels has been 

described earlier. These modules were embedded in three separate programs for AM, 

SSB and FM demodulation. The desired output was generated by MATLAB (see 

Appendix B) and was compared with the actual output. If there was a 100 percent match 

then the demodulation programs were working fine.   

 

The testing plan for each demodulation scheme is described below. 

5.1 Single filter operations 

 FIR1 enabled; all other modules disabled 
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Following test is repeated for the second filter by switching the tap values and same 

results obtained 

 

Input:  Sinusoid with frequency 1000 Hz 

 

FIR 1 Taps:  0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 

 

FIR 2 Taps:  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (25 taps) 

 

I/Q channels Active: No 

 

Desired Output: A delayed version of input with same peak to peak voltage 

 

Test Output: As desired 

5.2 Digital Oscillator operation 

FIR1, FIR2 disabled; I and Q modules enabled 

 

Following test is repeated for the sine by switching the output and same results obtained 

as below 

 

Input:  None needed 

 

FIR 1 Taps:  None needed 

 

FIR 2 Taps:  None needed 

 

I/Q channels Active: Yes 

 

Desired Output: A sinusoid wave with an output peak to peak of around 4 V generated of 

a cosine. 
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Test Output: As desired with the peak to peak around 3.84 V for both sinusoids 

5.3 I channel operation 

FIR1, digital cosine enabled; all other modules disabled 

 

Following test is repeated for the Q channel by swapping the tap values between FIR 1 

and FIR 2. Same results are obtained as below. 

 

Input:  Sinusoid with frequency 1000 Hz 

 

FIR 1 Taps:  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 

 

FIR 2 Taps:  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (25 taps) 

 

I/Q channels Active: Yes 

 

Desired Output: Depending on input frequency, an oscillating sinusoid generated with the 

frequency of oscillation equal to input frequency. The fluctuating value of peak to peak 

voltage of the output depends on the amplitude of the input  

 

Test Output: As desired 

5.4 Operation of the filter for AM demodulation  

All other modules enabled 

 

Input:  A 1.0 V peak to peak sinusoid provided  

 

FIR 1 Taps:  -3    -5    -5    -5    -4    -1     3     8    13    18    22     24    25    24    22    18    

13     8     3    -1    -4    -5     -5    -5    -3   (25 taps) 
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FIR 2 Taps:  None needed 

 

I/Q channels Active: No 

 

Desired Output: A large amplitude 180 degree wave followed by another 180 degree 

lower amplitude wave should be observed at frequencies less than 5 KHz with the waves 

attenuating to a DC value after 10 KHz 

 

Test Output: As desired but with a cut off around 7.0 KHz and a DC around 15 KHz 

(This experiment proved AM demodulation was occurring) 
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Fig. 15 The transfer function of the 25 tap lowpass filter 

5.5 Filtering and the I/Q channels for LSB (DC input) 

FIR 1 enabled; all other modules disabled 

Input squared 

 

Input:  A DC value of 1.0 V provided 

 

FIR 1 Taps:  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 
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FIR 2 Taps:  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 

 

I/Q channels Active: Yes 

 

Desired Output: The sum of I and Q channels should be a 1.86 V peak to peak sinusoid 

(This is the test for LSB where I and Q channels are added) 

 

Test Output: As desired with a peak to peak sinusoid of 1.84 V! 

(This experiment proved that both the filters alongside the digital oscillators were 

working as part of an integrated system) 

 

5.6 Filtering and the I/Q channels for LSB (AC input) 

FIR 1 enabled; all other modules disabled 

Input squared 

 

Input:  A sinusoid with a 1.0 V peak to peak sinusoid provided 

 

FIR 1 Taps:  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 

 

FIR 2 Taps:  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  (25 taps) 

 

I/Q channels Active: Yes 

 

Desired Output: The sum of I and Q channels should be an oscillating sinusoid (This is 

another test for LSB where I and Q channels are added) 

 

Test Output: As desired with a peak to peak sinusoid of 1.4 V 

(This experiment proved that both the filters alongside the digital oscillators were 

working as part of an integrated system) 
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5.7 Operation of the filters and the I/Q channels for Band Pass filtering 

FIR 1 enabled; all other modules disabled 

Input squared 

 

Input:  A sinusoid with a 1.0 V peak to peak sinusoid provided 

 

FIR 1 Taps:     -1    -9     1    10    -1   -10     1    10    -1   -10     1     11    -1   -11     1    11    

-1   -11     1    12    -1   -12  1        (25 taps) 

 

FIR 2 Taps:  None needed 

 

I/Q channels Active: No 

 

Desired Output: The a sinusoidal wave should be generated between 4 to 7 KHz 

 

Test Output: Not As desired but with a band-pass range of 16.0 to 20 KHz. If the number 

of taps is increased substantially only then will the desired response will be achieved. 

 

5.8 Operation of the filters and the I/Q channels for Hilbert filtering 

FIR 1 enabled; all other modules disabled 

Input squared 

 

Input:  A sinusoid with a 1.0 V peak to peak sinusoid provided 

 

FIR 1 Taps:      -1     0    -1     0    -2     0    -2     0    -4     0    -8      0    25     0     5     0     

3     0     2     0     1     0      1     0     1  (25 taps) 
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FIR 2 Taps:  None needed 

 

I/Q channels Active: No 

 

Desired Output: The a sinusoidal wave should be out of phase with the input by 90 

degrees 

 

Test Output: As desired 
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Chapter 6 

Filter Specifications And Weight Calculations Using 
MATLAB 

 

MATLAB was frequently used to get the values for the various types of filters – Low-

pass, Band-pass and Hilbert. The programs are provided in the Appendix B. 

 

The formulas provided in texts (Mitra, 448) were used in MATLAB to get approximate 

filters’ tap coefficients. If the FFTs (Fast Fourier Transforms) of the computed tap values 

for the filters matched the specifications then they were used on the DSPs. Using 

‘tapburner.asm’ program, these values were encoded on the DSP memory. Following are 

the Discrete Fourier Transform plots of the following FIR-implemented filters. 

 

Lowpass: Cutoff at 5Khz  Sampling=40 KHz 

 

 
 

Fig. 16 Y axis denotes the FFT value and the X axis denotes the frequency bins; 
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Bandpass:  Band region from 5 to 7 KHz   Sampling=40 KHz 

 

 
 

Fig. 17  Y axis denotes the FFT value and the X axis denotes the frequency bins; 

 

 

Hilbert: 90 degree Phase shifter   Sampling=40 KHz 

 
 

Fig. 18  Y axis denotes the FFT value and the X axis denotes the frequency bins; 
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Chapter 7   

Project Expansion and Assessment 
 

7.1 Integration of analog electronic hardware with the DSP Board 

An addition to the project (though not part of the stated objectives) would involve 

amalgamating the DSP part and the analog electronics to capture a signal and to produce 

the voice output. 

 

The typical frequencies for AM radio stations range between 100 KHz to 2 MHz and are 

far high for the Avr-32 ADC. Hence a signal captured by the system’s antenna would 

have to be translated to a frequency of around  20 KHz . Such a sampling value is chosen 

because of the fundamental limits imposed by the inter-sampling computational rate of 

around 220 KHz (see ‘ADC sampling rates & program speed’ above). Similarly, the 

frequency ranges of the FM and the SSB (88 MHz to 110 MHz and 10 MHz to 30 MHz 

respectively) are also far too high for the ADC even if it were operating at its maximum 

limit of 2 MHz. The use of a frequency down-converter is inevitable. 

 

The analog components include the following items: 

1. Antenna 

2. Pre-amplifier and amplifier stages  

3. Earphones to listen to the output 

4. Tunable frequency translator or down-converter 

Additionally the following electronic circuit was built and used for testing the analog 

signal for amplitude demodulation (Cappels, September 2002).  It however suffered from 

the problem of being simply too fast for the DSP even when its crystal was changed from 

4 MHz to 455 KHz.   
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Fig. 19 Amplitude Modulated Oscillator 

7.2 The generic DSP radio as a digital receiver 

The testing phase of the project demonstrated that demodulation schemes for both AM 

and SSB (both USB and LSB) were completed with work for the FM partially done. With 

some additional time the FM demodulation scheme would have been completed too. 

Thus two out of three goals as stated in the ‘Project Objectives’ earlier have been met.  

 

The goal and direction of any future project based on the current project could be to 

develop a complete communication system that can also be programmed as a digital 

receiver. The program written for the SSB can be modified to become a generic digital 

communications receiver in DSP. It has a digital oscillator and two initial filters that yield 

I and Q channels for demodulation. In fact our DSP radio receiver is not very different 

from the following digital receiver (Digital Receivers Bring DSP to Radio Frequencies). 
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Fig. 20 The scope of the project in relation to a digital demodulation receiver 

 

 

 

 

 

 

 

The expanse of the double-sided arrow shows the extent to which the project 
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Appendix 1: DSP programs in Assembly 

1. Square Wave Generation (Ad3.asm)  

The following program generates a square wave with pre-determined maximum voltage 

and frequency. No input is provided.  

 
; addaint.asm 

Reset  .word   start  ; location 0 

  .aorg  2 

  .word Int1handler 

 

  .aorg   40H 

CTRL  .word 808000H 

STRB0_CNTRL .word 0F1018H ; 0 ws 

IOSTRB_CNTRL .word 018H ; 7 ws 

TIME            .word   3H 

ADDA            .word   220000H  ; 810000H 

ADDAFIFOSTAT   .word   220001H  ; 810000H 

MEMLOC  .word  100H 

MASK     .word   2      ; 2 for INT1 

POS             .word   1000H   

POS2            .word   1020H 

 

 

start:  LDP 0H  

 LDI 200H,SP   ; SET STACK POINTER; 

 LDI 5800H,ST  ; CACHE DISABLE 

 LDI @CTRL,AR0 

 LDI @STRB0_CNTRL,R0  ; SET WAIT STATES  

 STI R0,*+AR0(64H) 

 LDI @IOSTRB_CNTRL,R0 ; SET WAIT STATES  

 STI R0,*+AR0(60H) 

        LDI     @ADDA,AR2 

        LDI     @ADDAFIFOSTAT,AR3 

        LDI     @MEMLOC,AR4 
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 LDI     @POS, AR5 

        LDI    @POS2,AR6 

 

        LDI    30,BK 

 

;unmask interrupts                     "TMS320C32" 

 LDI     @MASK,IE 

 OR      2000h,ST     ; global interrupt enable. 

 

Main: br @Main 

 

Int1handler: 

aa: 

 

 ldi 0,r0  ; acknowledge interrupt 

 sti r0, *ar3 

 ldi *ar2,r0  

        ;% do all signal processing here to value in r0 

       ldi 7fffh,r1 

   xx:    ldi 0000ffffh,r0 

          sti     r0, *ar3 

            

          sti    r0, *ar2 

 

          sti     r0,*ar5++(1)% 

          subi 1,r1 

          bnz xx 

          ldi 1900h,r1 

          yy:  ldi 0000fffh,r0 

               mpyi -1,r0 

               mpyi 10H,r0 

               OR 0000000FH,r0 

 

               sti     r0, *ar3 

               sti    r0, *ar2 

 

               sti     r0,*ar5++(1)% 
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               subi 1,r1 

               bnz yy 

 

  br aa 

               sti     r1,*ar6++(1)% 

reti 

        .end 

  

2. Static Finite Input FIR Filter (f3.asm) 

The following program does not do real-time signal processing. Rather it picks some 

stored values from memory (h[n] at 350H and x[n] at 360H) and performs convolution on 

them and stores the results to 370H. The user needs to enter the tap and inputs from the 

locations specified. 
Reset           .word  start            ; location 0 

 

temp1            .word  350H  ;x 

temp2            .word  360H    ;h 

temp3            .word  370H      ;y 

 

start: 

 ldi @temp1,ar1    ; x 

 ldi @temp3,ar2       ;y 

ldi 0aH,r5  ; value of r5 is the number of inputs .Infinite in case of realtime signal 

 ldi 0,r6 

 

loop:    ; start loop to convolve data 

    ldi @temp1,ar1       ;x .Store every new real time signal point here   

   ; addi ar1++(1)% 

 

    addi r6,ar1          ; keep moving forward 

    addi 1,r6            ; necessary in real time too  

 

    ldi @temp2,ar0       ;h   

  

    ldi 0,r0 
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    LDI 3,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 5,BK         ;load n which is the total number of delay taps+1 i.e 4+1 

    br FIR     

    ret: 

 

    ;addi 3,ar1  ;increment x[i]  i.e read further data 

    subi 1,r5     ; decrement and see if there's end of data line 

    bnz loop       ; in real time signals keep looπng and no subi 1,r5 

    jj: 

    br jj 

   FIR: 

       mpyi3 *ar0++(1),*ar1--(1),r0 

        ldi 0,r2 

        RPTS RC 

         MPYI3 *AR0++(1),*AR1--(1),R0 

        || ADDi3 R0,R2,R2 

        ADDi3 R0,R2,R0 

        STi R0,*AR2++(1) 

        br ret 

.end  

3. Real Time FIR Filter (rtfir10.asm) 

This performs filtering based on the FIR algorithm in real-time. Stored values start from 

100H for h[n]. Alternatively he can run the program ‘tapburner.asm’ to place pre-

determined at the specified locations.  Input start getting placed from 150H for x[n]. After 

the ‘revolver’ runs, the inputs get placed from location (150 – N) Hex onwards. (N is the 

number of taps in hexadecimal).  

 
   

Reset  .word   start  ; location 0 

                .aorg   2 

  .word Int1handler 

;f3.asm 

                .aorg   40H 

CTRL  .word 808000H 
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STRB0_CNTRL .word 0F1018H ; 0 ws 

IOSTRB_CNTRL .word 018H ; 7 ws 

TIME            .word   3H 

ADDA            .word   220000H  ; 810000H 

ADDAFIFOSTAT   .word   220001H  ; 810000H 

MEMLOC  .word  100H 

MASK     .word   2      ; 2 for INT1 

temp1            .word  150H  ;x 

temp2            .word  100H    ;h 

temp3            .word  400H      ;y 

temp4          .word 14fH   ;temp4=temp1-1 

 

 

start:  LDP 0H  

 LDI 200H,SP   ; SET STACK POINTER; 

 LDI 5800H,ST  ; CACHE DISABLE 

        LDI     @CTRL,AR6 

        LDI     @STRB0_CNTRL, R0         ; SET WAIT STATES  

        STI     R0,*+AR6(64H) 

        LDI     @IOSTRB_CNTRL, R0        ; SET WAIT STATES  

        STI     R0,*+AR6(60H) 

        LDI     @ADDA,AR2 

        LDI     @ADDAFIFOSTAT, AR3 

 LDI     @MASK,IE 

 OR      2000h,ST     ; global interrupt enable. 

 

Main: br @Main 

 

Int1handler: 

 

ldi @temp1,ar1       ;x(0) 

 ldi @temp4,ar7       ;x(0) 

 ldi @temp3,ar5 

 

LPF: 

ldi 1000H,r5  ; value of r5 is the number of inputs  

 ldi 1,r4   ;r4 is increments to x[n+r4] 
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loop:    ; start loop to convolve data 

 

    LDI 23,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 25,BK         ;load n which is the total number of delay taps+1  

    ldi     0,r0            ; acknowledge interrupt 

    sti     r0, *ar3 

    ldi     *ar2,r0  

    ldi r0,r1 

         AND 00000fff0h,r1 

    ror r1 

    ror r1 

    ror r1 

    ror r1 

 

    subi 80bH,r1  ;r0 stripped of all formalities 

    sti  r1,*ar1 

     

    ldi @temp2,ar0       ;h 

    br FIR 

    ret: 

 

    ldi @temp1,ar1       ;x 

    addi r4,ar1 

    addi 1,r4 

 

    subi 1,r5     ; decrement and see if there's end of input seq 

    bnz loop 

   br revolver 

revolverback : 

 

   br lpf 

    jj: 

    br jj 

   FIR: 

         mpyi3 *ar0++(1),*ar1--(1),r1 

        ldi 0,r2 

       RPTS RC 
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                MPYI3 *AR0++(1),*AR1--(1),r1 

        || ADDi3 r1,R2,R2 

        ADDi3 r1,R2,r1 

         ldi r1,r9 

    ror r9 

    ror r9 

    ror r9 

    ror r9 

    ror r9 

    ror r9 

    ror r9 

       ror r9 

    ror r9 

    ror r9 

        AND 0000FFFFH,r9 

        addi 80bH,r9 

        mpyi 10h,r9 

          ldi r9,r0 

          sti r0, *ar1     ;store this in order to re-process the signal 

          sti r0, *ar2 

         br ret 

      ;  RETSU 

revolver: 

LDI     @temp4,ar7 

LDI     @temp1,ar1 

LDI     0,r4 

 

ldi 0fffH,r8    ; n is sample inputs 

addi r8,ar1 

 

ldi 24,r1                     ;no of taps -1 

alpha: 

        ldi *ar1--(1),r6 

        sti r6,*ar7--(1) 

        subi 1,r1 

        bnz alpha 

         ldi @temp1,ar1       ;x(0) 
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LDI     0,r4 

br lpf 

.end  

 

4. Digital Oscillator (finalIqi.asm) 

This program internally generates -sine and cosine waves but only one of them can be 

output at a time. Externally it outputs the product of the input signal and one of the 

sinusoids. 

 
; addaint.asm 

Reset  .word   start  ; location 0 

  .aorg  2 

  .word Int1handler 

  .aorg   40H 

CTRL  .word 808000H 

STRB0_CNTRL .word 0F1018H ; 0 ws 

IOSTRB_CNTRL .word 018H ; 7 ws 

TIME            .word   3H 

ADDA            .word   220000H  ; 810000H 

ADDAFIFOSTAT   .word   220001H  ; 810000H 

MEMLOC  .word  100H 

MASK     .word   2      ; 2 for INT1 

POS             .word   350H   

POS2            .word   351H 

 

start:  LDP 0H  

 LDI 200H,SP   ; SET STACK POINTER; 

 LDI 5800H,ST  ; CACHE DISABLE 

 LDI @CTRL,AR0 

 LDI @STRB0_CNTRL,R0  ; SET WAIT STATES  

 STI R0,*+AR0(64H) 

 LDI @IOSTRB_CNTRL,R0 ; SET WAIT STATES  

 STI R0,*+AR0(60H) 

        LDI     @ADDA,AR2 

        LDI     @ADDAFIFOSTAT,AR3 
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        LDI     @MEMLOC,AR4 

 LDI     @POS, AR5 

        LDI    @POS2,AR6 

        LDI    180,BK 

;unmask interrupts                     "TMS320C32" 

 LDI     @MASK,IE 

 OR      2000h,ST     ; global interrupt enable. 

Main: br @Main 

Int1handler: 

        ldi 0,r9     ;0fff 

        ldi 64H,r2     ;1->900f ->F5H 

        ldi 100,r5 

aa: 

 

 ldi 0,r0  ; acknowledge interrupt 

 sti r0, *ar3 

 ldi *ar2,r0  

 

        ;% do all signal processing here to value in r0 

        ldi r0,r1 

        ;AND 0000fff0H,r1 

;ldi 1,r1     ; Uncomment this instruction if no input is 

required and only a sinusoid is to be seen on CRO 
 

        ldi 4,r7 

        mpyi -1,r7 

        ash r7,r1 

        subi 80bH,r1 

        ldi 3,bk 

 

sinusoid: 

           ldi  r9,r4 

           addi3 r9,r2,r3 

  rolmanu: 

  ldi r3,r7 
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  ldi 13,r8 

  mpyi -1,r8 

  ash r8,r7 

           subi3 r7,r3,r3   ;cosx=0.875 

            mpyi -1,r4 

           addi3 r3,r2,r9 

           addi3 r4,r3,r2 

           ldi r9,r6        ;r2 makes cosine r9 makes sine 

 

 ; IF INPUT CABLE CONNECTED THEN OUTPUT TENDS TO AMPLIFY 

 ; THUS ROR IS THERE TO ATTENUATE IT 

;multiply the input with the cosine wave to get the In-

;phase below for ‘mpyi r1,r6’ 

; alternatively change the register in the following 

;instruction to r2 if the input is to be multiplied with the 

;–sine to obtain the Quadrature (i.e ‘mpyi r1,r2’) 
        ;  mpyi r1,r6 ;………………………..This instruction……………… 

          ldi 4,r8 

          mpyi -1,r8 

          ash r8,r6 

           ldi  80bH,r8 

           addi  r8,r6 

                    

           mpyi 10H,r6 

          ldi    r6,r0 

          sti    r0, *ar3 

          sti    r0, *ar2 

               q: 

    br q 

reti 

        .end 
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5. AM Demodulator (smartam.asm) 

This program incoporates the salient features of the above programs to demodulate a real-

time AM signal. 
                       

Reset  .word   start  ; location 0 

                .aorg   2 

  .word Int1handler 

;f3.asm 

                .aorg   40H 

CTRL  .word 808000H 

STRB0_CNTRL .word 0F1018H ; 0 ws 

IOSTRB_CNTRL .word 018H ; 7 ws 

TIME            .word   3H 

ADDA            .word   220000H  ; 810000H 

ADDAFIFOSTAT   .word   220001H  ; 810000H 

MEMLOC  .word  100H 

MASK     .word   2      ; 2 for INT1 

temp1            .word  150H  ;x 

temp2            .word  100H    ;h 

temp3            .word  400H      ;y 

temp4          .word 14fH   ;temp4=temp1-1 

temp5     .word  16f0H    ;x2[n] 

temp6     .word  16a0H       ;h2[n] 

temp7     .word  16efH 

 

start:  LDP 0H  

 LDI 200H,SP   ; SET STACK POINTER; 

 LDI 5800H,ST  ; CACHE DISABLE 

        LDI     @CTRL,AR6 

        LDI     @STRB0_CNTRL, R0         ; SET WAIT STATES  

        STI     R0,*+AR6(64H) 

        LDI     @IOSTRB_CNTRL, R0        ; SET WAIT STATES  

        STI     R0,*+AR6(60H) 

        LDI     @ADDA,AR2 

        LDI     @ADDAFIFOSTAT, AR3 

 LDI     @MASK,IE 
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 OR      2000h,ST     ; global interrupt enable. 

Main: br @Main 

Int1handler: 

ldi @temp1,ar1       ;x(0) 

 ldi @temp4,ar7       ;x(0) 

  

 ldi @temp5,ar5 

 

LPF: 

ldi 2000H,r5  ; value of r5 is the number of inputs  

 ldi 1,r4   ;r4 is increments to x[n+r4] 

loop:    ; start loop to convolve data 

    LDI 23,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 25,BK         ;load n which is the total number of delay taps+1  

    ldi     0,r0            ; acknowledge interrupt 

    sti     r0, *ar3 

    ldi     *ar2,r0  

    ldi r0,r1 

    ldi 4,r2 

    mpyi -1,r2 

    ash r2,r1 

    subi 80bH,r1  ;r0 stripped of all formalities 

   ldi r1,r2 

   mpyi r2,r1 

    sti  r1,*ar1 

    sti  r1,*ar5 

    ldi @temp2,ar0       ;h 

    br FIR 

    ret: 

    br next 

    ldi @temp6,ar4       ;h2 

    br FIR2 

    ret2: 

next: 

    br output 

    ret3: 

    ldi @temp1,ar1       ;x 
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    addi r4,ar1 

    ldi @temp5,ar5       ;x2 

    addi r4,ar5 

    addi 1,r4 

    subi 1,r5     ; decrement and see if there's end of input seq 

    bnz loop 

   br revolver 

revolverback : 

   br lpf 

    jj: 

    br jj 

 

   FIR: 

        mpyi3 *ar0++(1),*ar1--(1),r1 

     

        ldi 0,r2 

        RPTS RC 

     

        MPYI3 *AR0++(1),*AR1--(1),r1 

        || ADDi3 r1,R2,R2 

        ADDi3 r1,R2,r1 

        ldi r1,r9 

       br ret 

   FIR2: 

    LDI 23,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 25,BK         ;load n which is the total number of delay taps+1  

        mpyi3 *ar4++(1),*ar5--(1),r1 

        ldi 0,r2 

        RPTS RC 

        MPYI3 *AR4++(1),*AR5--(1),r1 

        || ADDi3 r1,R2,R2 

        ADDi3 r1,R2,r1 

        ldi r1,r8 

        br ret2 

 

output: 

    ldi 23,r2 
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    mpyi -1,r2 

    ash r2,r9 

        addi 80bH,r9 

        mpyi 10h,r9 

         ldi r9,r0 

          sti r0, *ar1     ;store this in order to re-process the signal 

          sti r0, *ar2 

         br ret3 

revolver: 

LDI     @temp4,ar7 

LDI     @temp1,ar1 

LDI     0,r4 

LDI     @temp7,ar4 

LDI     @temp5,ar5 

ldi 1fffH,r8    ; n is sample inputs 

addi r8,ar1 

ldi 24,r1                     ;no of taps -1 

alpha: 

        ldi *ar1--(1),r6 

        sti r6,*ar7--(1) 

        subi 1,r1 

        bnz alpha 

         ldi @temp1,ar1       ;x(0) 

         ldi @temp5,ar5 

LDI     0,r4 

br lpf 

.end  

 

6. SSB Demodulator (smartssb.asm)  

This program also incorporates the salient features of the above programs to demodulate 

a real-time SSB signal. It can be modified easily to demodulate both LSB and USB. 
                       

Reset  .word   start  ; location 0 

                .aorg   2 

  .word Int1handler 
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;f3.asm 

                .aorg   40H 

CTRL  .word 808000H 

STRB0_CNTRL .word 0F1018H ; 0 ws 

IOSTRB_CNTRL .word 018H ; 7 ws 

TIME            .word   3H 

ADDA            .word   220000H  ; 810000H 

ADDAFIFOSTAT   .word   220001H  ; 810000H 

MEMLOC  .word  100H 

MASK     .word   2      ; 2 for INT1 

temp1            .word  150H  ;x 

temp2            .word  100H    ;h 

temp3            .word  400H      ;y 

temp4          .word 14fH   ;temp4=temp1-1 

temp5     .word  16f0H    ;x2[n] 

temp6     .word  16a0H       ;h2[n] 

temp7     .word  16efH 

start:  LDP 0H  

 LDI 200H,SP   ; SET STACK POINTER; 

 LDI 5800H,ST  ; CACHE DISABLE 

        LDI     @CTRL,AR6 

        LDI     @STRB0_CNTRL, R0         ; SET WAIT STATES  

        STI     R0,*+AR6(64H) 

        LDI     @IOSTRB_CNTRL, R0        ; SET WAIT STATES  

        STI     R0,*+AR6(60H) 

        LDI     @ADDA,AR2 

        LDI     @ADDAFIFOSTAT, AR3 

;;        LDI     @MEMLOC,AR4 

;unmask interrupts                     "TMS320C32" 

 LDI     @MASK,IE 

 OR      2000h,ST     ; global interrupt enable. 

Main: br @Main 

Int1handler: 

ldi @temp1,ar1       ;x(0) 

 ldi @temp4,ar7       ;x(0) 

 ldi @temp5,ar5 

ldi 64H,r3 ; cosine modulator for IQ 
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ldi 0,r7  ;  sine  modulator for IQ 

LPF: 

ldi 1000H,r5  ; value of r5 is the number of inputs  

 ldi 1,r4   ;r4 is increments to x[n+r4] 

loop:    ; start loop to convolve data 

    LDI 23,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 25,BK         ;load n which is the total number of delay taps+1  

    ldi     0,r0            ; acknowledge interrupt 

    sti     r0, *ar3 

    ldi     *ar2,r0  

    ldi r0,r1 

    AND 00000fff0h,r1 

    ror r1 

    ror r1 

    ror r1 

    ror r1 

    subi 80bH,r1  ;r0 stripped of all formalities 

    br inphase_quadrature   ;compute x[n]*cos(n*wc) and place results in memory 

    iq: 

    ldi @temp2,ar0       ;h 

    br FIR              ;result of filtering stored in r9 

    ret: 

    ldi @temp6,ar4       ;h2 

    br FIR2         ; result of filtering stored in r8 

    ret2: 

    ;r8 has the filtered I channel 

    ;r9 has the filtered Q channel 

    ;here the tangent function can step in  

    ;************* 

                ;*  PLACE YOUR DIGITAL RECEIVER DEMODULATION 

    addi r8,r9 ; addi implies USB and change this to subi if 

;LSB is needed 
                ;*  SCHEME/PROGRAME HERE  

                ;* 

    ;************* 

    br output   ;data sent to DAC using r9 

 68



Implementation of DSP Receiver 

    ret3: 

    ldi @temp1,ar1       ;x 

    addi r4,ar1 

    ldi @temp5,ar5       ;x2 

    addi r4,ar5 

    addi 1,r4 

    subi 1,r5     ; decrement and see if there's end of input seq 

    bnz loop 

   br revolver 

revolverback : 

   br lpf 

    jj: 

    br jj 

   FIR: 

        mpyi3 *ar0++(1),*ar1--(1),r1 

        ldi 0,r2 

        RPTS RC 

          MPYI3 *AR0++(1),*AR1--(1),r1 

        || ADDi3 r1,R2,R2 

        ADDi3 r1,R2,r1 

        ldi r1,r9 

       br ret 

   FIR2: 

    LDI 23,RC         ; load n-2 where n is the number of taps including the first non-delay one too 

    LDI 25,BK         ;load n which is the total number of delay taps+1  

        mpyi3 *ar4++(1),*ar5--(1),r1 

       ldi 0,r2 

        RPTS RC 

        MPYI3 *AR4++(1),*AR5--(1),r1 

        || ADDi3 r1,R2,R2 

        ADDi3 r1,R2,r1 

        ldi r1,r8 

        br ret2 

    output: 

    ldi 24,r2 

    mpyi -1,r2 

    ash r2,r9 
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        AND 0000FFFFH,r9 

        addi 80bH,r9 

        mpyi 10h,r9 

          ldi r9,r0 

          sti r0, *ar1     ;store this in order to re-process the signal 

          sti r0, *ar2 

         br ret3 

revolver: 

LDI     @temp4,ar7 

LDI     @temp1,ar1 

LDI     0,r4 

LDI     @temp7,ar4 

LDI     @temp5,ar5 

ldi 0fffH,r8    ; n is sample inputs 

addi r8,ar1 

ldi 0fffH,r8    ; n is sample inputs 

addi r8,ar5 

ldi 24,r1                     ;no of taps -1 

alpha: 

        ldi *ar1--(1),r6 

        sti r6,*ar7--(1) 

        ldi *ar5--(1),r6 

        sti r6,*ar4--(1) 

        subi 1,r1 

        bnz alpha 

         ldi @temp1,ar1       ;x(0) 

         ldi @temp5,ar5 

LDI     0,r4 

br lpf 

inphase_quadrature:           ;inphase_quadrature routine 

    ldi r7,r6 

    addi3 r7,r3,r2 

    ldi r2,r9 

    ldi 13,r8 

    mpyi -1,r8 

    ash r8,r9 

    subi3 r9,r2,r2 
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    mpyi -1,r6 

    addi3 r3,r2,r7     ;sine  wave 

    addi3 r6,r2,r3     ;cosine wave 

    mpyi r7,r1     ;quadrature modulation 

    mpyi -1,r1     ;to make it -sine 

    ldi r1,*ar1    ;memory placement of x[n]*cos(wc*n) 

    mpyi r3,r1     ;inphase modulation 

    ldi r1,ar*5    ;memory placement of x[n]*-sin(wc*n) 

br iq 

reti 

.end  

 

7. Filter Weights Burning (tapburner.asm) 

The following program places the tap coefficients at 100H as well as 16a0H for the two 

FIR filters. Additionally it also initializes the necessary input memory space as zeros 

around 150 H and 16f0H. 

 
 
Reset  .word   start  ; location 0 
  .aorg  2 
  .word Int1handler 
 
;f3.asm 
                .aorg   40H 
CTRL  .word 808000H 
STRB0_CNTRL .word 0F1018H ; 0 ws 
IOSTRB_CNTRL .word 018H ; 7 ws 
TIME            .word   3H 
ADDA            .word   220000H  ; 810000H 
ADDAFIFOSTAT   .word   220001H  ; 810000H 
;MEMLOC          .word   100H 
MASK     .word   2      ; 2 for INT1 
temp1            .word  300H  ;x 
temp2            .word  16a0H 
temp3            .word  100H 
start:  LDP 0H  
lookup: 
   ldi @temp3,ar1  
 
Int1handler: 
       ;% FOR LOWPASS FILTER WITH CUTOFF AT 16 KHZ 
 
loop:    ; start loop to convolve data 
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    ;**************LOWPASS FILTER CUSTOMIZED VALUES****** 
    ldi  5,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
     
    ldi  4,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  2,r1 ; 
    sti r1,*ar1++(1) 
    ldi  5,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  9,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  13,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  17,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  21,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  23,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  25,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  25,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  25,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  23,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  21,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  17,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  13,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  9,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  5,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  2,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  4,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ;3 
    mpyi -1,r1 
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    sti r1,*ar1++(1) 
    ldi  5,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    ;ZERO FILLING 
    ldi 50H,r2 
    j: 
 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    subi 1,r2 
    bnz j 
 
   ldi @temp2,ar1  
 
    ; BAND-PASS FILTER SECOND FILTER TAP WEIGHTS BEING BURNED IN 
    ldi  1,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    sti r1,*ar1++(1) 
       
    ldi  3,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  3,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  1,r1 ; 
    sti r1,*ar1++(1) 
    ldi  2,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  7,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  16,r1 ;3 
   sti r1,*ar1++(1) 
    ldi  23,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  25,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  23,r1 ;3 
    sti r1,*ar1++(1) 
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    ldi  16,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  7,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  1,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  5,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  2,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  3,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  3,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  1,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  1,r1 ; 
    mpyi -1,r1 
    sti r1,*ar1++(1) 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    ldi 50H,r2 
    jj: 
    ldi  0,r1 ;3 
    sti r1,*ar1++(1) 
    subi 1,r2 
    bnz jj 
   x: 
   br x 
.end  
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Appendix 2: MATLAB simulation code 

1. Lowpass 

clear 
samp=100000; 
fq1=4000;   %for 4000 Hz cutoff for fir 1 on DSP with  actual cutof happening at 
wc1=fq1/samp*2*pi; 
maxsample=301; 
m=maxsample/2; 
 
for n=1:maxsample 
%h(n)=(sin(wc1*(n-m))/(pi*(n-m)))-(sin(wc2*(n-m))/(pi*(n-m))); 
h(n)=sin(wc1*(n-m))/(pi*(n-m)); % 
end 
 q(1:25)=0; 
 q=h(113:3:185); 
 m1=min(q); 
 m2=max(q); 
 q=2*(q-m1)/(m2-m1)-1; 
 q=round(25*q); 
 stem(abs(fft(q))); 
    

2. Bandpass 

clear 

samp=100000; 

fq2=7000; %upper cutoff frequency 

fq1=4000;   %for 4000 Hz cutoff for fir 1 on DSP with  actual cutof happening at 

 

wc1=fq1/samp*2*pi; 

wc2=fq2/samp*2*pi; 

maxsample=301; 

m=maxsample/2; 

 

for n=1:maxsample 

h(n)=(sin(wc1*(n-m))/(pi*(n-m)))-(sin(wc2*(n-m))/(pi*(n-m))); 

%h(n)=sin(wc1*(n-m))/(pi*(n-m)); % 

end 
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 q(1:25)=0; 

 q=h(113:3:185); 

 m1=min(q); 

 m2=max(q); 

 q=2*(q-m1)/(m2-m1)-1; 

 q=round(25*q); 

 stem(abs(fft(q)));   

3. Hilbert 

clear 

clear 

maxsample=301; 

m=maxsample/2; 

 

for n=1:maxsample 

 if rem(n,2)==0  

     h(n)=0; 

 else h(n)=(1-cos(pi*(n-m)))/(pi*(n-m));%2/(pi*(n-m));  %Hilbert transform 

 end 

end 

 

q=h(138:1:162); 

m1=min(q); 

m2=max(q); 

q=(q-m1)/(m2-m1); 

q=2*q-1; 

q=q*25; 

q=round(q) 

plot(q) 
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