
TiViPE - Tino’s Visual Programming Environment

Tino Lourens
Honda Research Institute Japan Co. Ltd.

8-1 Honcho, Wako-shi, Saitama, 351-0114, Japan
E-mail: tino@jp.honda-ri.com

Abstract

TiViPE [4] is a component based visual programming
environment (VPE) that enables users to build programs
by construction of a network of components interactively.
A single module (component), represented by a graphi-
cal icon, is a computational unit. Multiple icons can be
connected to each other to yield a directed graph (a net-
work) that represent a program. TiViPE is, in appear-
ance similar to programs such as AVS [9], Vee [3, 1],
OpenDX [6], Khoros [12], LabVIEW [7], NeatVision [10],
and ViPEr [8], but presents some fundamental differences.
TiViPE integrates documentation with an existing routine
call (that has been programmed in C++, C, Fortran, or
Java), and automatically generates C++ code that is com-
piled to stand-alone program. This program is able to exe-
cute the specified routine, provide a graphical icon, or give
html-formatted documentation about the routine. Hence,
within TiViPE there is no textual programming for the user.
TiViPE strongly re-uses code, which is inherent to visual
programming, and automatic code regeneration by com-
pounding a network of modules to a single module, which
leads to faster programming. TiViPE supports network-
ing and parallel processing in a natural way, and allows
the user to modify an activated network. TiViPE also aims
at rapid prototyping which demands user friendliness, pro-
gramming by existing modules for basic users, and focuses
on the documentation of a module. TiViPE has been used
in the field of computer vision, robotics, and computational
neuroscience.

1 Introduction

Visual programming has been proven to be more effi-
cient than classical textual programming. There is a strong
increase in program development (up to five times faster)
[1]. It increases the productivity of both researchers and ap-
plication developers regardless of their programming expe-
rience [12]. One aspect of increased efficiency is that a vi-

sual notation provides a intuitive organization and can make
information explicit [11]. It also is due to natural software
re-use, i.e., by using the same (graphical) module multi-
ple times. Another advantage is the possibility to bring ex-
isting programs and routine calls programmed in different
textual programming languages, together into a consistent,
standardized, and cohesive environment.

The number of users of visual programming languages,
however, is negligible compared to the users of textual pro-
gramming languages, like C++, C, Java, etc., despite the ad-
vantages. Domain specific visual programming languages
(VPLs) such as LabVIEW which allows to import existing
textual code [7] have been more successful than general-
purpose VPLs like Prograph [2]. A VPL that conforms to a
textual language standard has a much greater likelihood of
acceptance. An important reason that visual programming
has hampered is due to the migration process from a tex-
tual program to a visual program. The concept of TiViPE
is to make such migration process simple. TiViPE wraps
any routine into a graphical module by filling out a few
forms about the routine. By pushing a single button all code
is generated, compiled, and integrated in the environment,
without additional programming. This makes the migra-
tion process fast and easy. It makes TiViPE a component
based visual programming environment (like, for instance,
Java studio) that employs an information flow with unlim-
ited programming capabilities.

The paper is organized as follows: Section 2 provides an
overview of several different VPEs. Section 3 introduces
TiViPE, elaborates on the concept of visual programming,
and gives an overview of the modules that are currently
available within TiViPE. The paper finishes with a discus-
sion.

2 Overview of Visual Programming Environ-
ments

A widely used graphical programming environment is
LabVIEW [7] which is especially oriented to hardware. Its
G programming language which is used to construct block

diagrams provides a powerful tool to interact with hardware
directly. HP Vee [3], which is currently known as Agilent
Vee [1] aims at a similar group of users as LabVIEW. Vee
can execute modules by command line and has a flexible
data structure. The graphical user interface is within the
icon itself, which is helpful if modules are relatively sim-
ple and networks are small, otherwise the overview of the
network is lost. IBM’s OpenDX [6] focuses on visualiza-
tion, and includes around 180 different tools for data anal-
ysis and visualization. OpenDX is open source software
and is supported on many different platforms. The weak
point in openDX is the user friendliness, for example no
datatype is given between the connections, which implies
that the documentation needs to be addressed extensively.
Khoros [12] provides a programming environment with a
small set of modules. Due to this small set of modules,
new module development is a must. Khoros provides tools
to construct the graphical user interface for a module, nev-
ertheless still a considerable textual programming effort is
needed to construct a working icon within VPE Cantata.
A strong point of Khoros is that a network, constructed in
Cantata, can be executed as a batch file (without the use
of Cantata), since all modules are represented as executa-
bles. AVS [9] provides a programming environment with a
large set of different modules. The construction of a work-
ing icon in AVS requires a considerable effort also. AVS has
very strong visualization tools and has business solutions in
many different areas. Drawbacks of AVS are its dependency
on the environment and its inflexibility to user constructed
data structures. ViPEr [8] is a visual programming language
that uses Tcl and Python scripting. The main advantage of
these scripts are that they are platform independent. ViPEr
is clearly inspired on AVS and has a fixed set of data struc-
tures. Like AVS the data types are clearly distinguishable.
NeatVision [10] is a Java based VPE meant for image pro-
cessing. It currently contains around 200 different image
processing and analysis functions. It is an intuitive environ-
ment that uses simple icons containing low-level routines,
but it is suitable solely for image analysis.

3 TiViPE

The main drawback the author experienced by using
AVS and Khoros in the past decade was that both environ-
ments need a considerable effort to construct a graphical
module. It is one of the main reasons why users are not
migrating to a VPE.

Much of the effort in developing TiViPE has gone in
adding amoduleor adata structuretogether with theirdoc-
umentationto the environment. Wrapping existing textual
routines, that are programmed in C++, C, Fortran, or Java,
into a graphical unit is performed without additional pro-
gramming. The conditions firstly are, that a routine has been

programmed in a language that supports routines with data
typed parameters, and secondly that the routine is available
in a library. The construction of a module is a matter of
filling out a set of forms. Six of these forms are about doc-
umentation, the other four are: the name of the routine, the
used parameters of the routine, the names of the used li-
braries, and the names of the used include files.

An important difference with for example LabView is,
that a user is able to add or delete a module (icon) from a
running program, where a program is represented by a net-
work of graphical icons. Depending on the structure of the
network, modules can be restarted automatically. The latter
is essential in robotics and real world parallel processes.

Strong focus has been on the user friendliness of TiViPE,
i.e. all actions, parameter modifications, and the html doc-
umentation can be accessed within two button clicks on the
graphical icon. TiViPE provides:

1. GUI construction and modification of modules and
data structures.

2. automatic code generation and compilation to a stand-
alone executable of amodule; that is able to execute the
routine provided by the user, provide html documenta-
tion both in TiViPE and on the command line, provide
the graphical user interface to TiViPE, and give a usage
message on the command line.

3. automatic code generation and compilation of adata
structureto a library that contains a set of basic opera-
tions that can be performed on the data of the structure:
initialize, set, check availability, delete, read, write,
and retrieve html documentation about the structure.

4. simple icons with full functionality, given by 4 action
buttons.

5. input and output data types that are distinguished by
different colors.

6. build in networking and parallel processing facilities.
7. the possibility to compound a network to a new module

by scripting or automatic code regeneration.
8. the possibility to have I/O through file or memory in-

teraction.

TiViPE contains a small set of almost 60 modules for in-
formation processing, data exploration, and data visualiza-
tion. With these (general) modules, problems can be solved
in different application fields. TiViPE provides multi-di-
mensional, data manipulation operators including pointwise
arithmetic, data conversions, data organization, and size op-
erators, and includes a set of specific image processing rou-
tines.

TiViPE allows a user to run a module independently
from the environment, therefore all modules are available
as stand-alone executables. Compounding modules of a net-
work into a single module will be performed by regenera-
tion of code from the existing modules. The user will have
the choice to make a selection between multiple processes

or threading. This is different from both AVS and Khoros
that are designed to batch these modules. Hence these en-
vironments still contain a considerable computational over-
head. Compounding modules by batching has the advan-
tage that one can easily modify the structure, while for ev-
ery modification in TiViPE of a compounded network code
generation and compilation needs to be performed.

3.1 Environment

Figure 1. TiViPE with an example.

Figure 1 illustrates TiViPE with a sample network. This
network extracts a contour graph from an input image by
using modeled complex and endstopped cells of monkey
primary visual cortex, areas V1 and V2, and visualizes its
result. For details about the model, see [5].

A single module is a stand-alone executable with input,
local, and output parameters. Every module contains four
internal buttons, see Figure 3a:

• Theleft upperbutton is theexecuteor stopmodule but-
ton. Red denotes active, grey inactive.

• The left lower button indicates on whichmachinethe
module is being executed. Dark blue denotes the local
host, other colors that are provided by the user repre-
sent a different machine or processor.

• Theright upperbutton pops up or closes theparameter
windowupon pressing; Red indicates a visible param-
eter window, grey means invisible.

• The right lower button pops up or closes themodule
informationwindow upon pressing; Grey means no in-
formation, light blue means information available, pur-
ple denotes an aborted routine. Red indicates a visible
information window.

Figure 2. Parameter window of module Com-
plexAndEndstoppedResponses, which is il-
lustrated in Figure 1.

A parameter window for the moduleComplexAndEnd-
stoppedResponses, which contains 8 parameters, is illus-
trated in Figure 2. The window gives a quick overview of all
internal parameters that can be modified within the module.
TiViPE supports a small set of parameters, three of them
(integer, float, and toggle) are given in this example.

On top of every parameter window are four buttons. The
run button saves the parameters and executes the module
when the module is finished it will automatically activate
the subsequent connected modules, the ok button saves the
parameters only, and a cancel button resets the parameters
to the formerly saved state. These three buttons yield rapid
prototyping in a network as well as rapid testing for the
module itself. The help button pops up a window with
html documentation about the module. Its content has been
partly provided by the user through the available documen-
tation tabloids.

3.2 Visual Programming

The TiViPE concept of visual programming is to wrap
a routine that is constructed in a textual programming lan-
guage into a graphically represented unit. The main reason
for this concept is that there are many software libraries
available, but due to lack of documentation and a clear
structure most of these libraries remain unused. By making
all routine calls available as graphical units together with
appropriate documentation these routines can be made ac-
cessible through TiViPE.

In a C or C++ program a routine call is typically given
by a name and between brackets its parameters. These pa-
rameters can be divided into 3 groups:inputparameters that
are obtained from another routine,internal parameters that
are needed within the routine only, andoutputparameters
that are used by at least one of the subsequent routine calls.
Such routine in its general form is as follows:

f(i1, i2, . . . , iN , o1, o2, . . . , oM , p1, p2, . . . , pL) ,
(1)

wheref is the name of the routine, andi, o, p the input,

a)

Input (optional) Input (required)

Internal parameter window

Output

Execute

Host machine Information window

f

b)

// Read input data
i0 = guiGetInput (”Input0”, ANYTYPE, OPT);
i1 = guiGetInput (”Input1”, ANYTYPE);
i2 = guiGetInput (”Input2”, UCHAR);
i3 = guiGetInput (”Input3”, LONG);
p0 = guiGetInteger (”P0”, LONG);
p1 = guiGetFloat (”P1”, UCHAR);
// Routine call
f (i0, i1, i2, i3, p0, p1, o0, o1);
// Write output data
writeData (guiGetOutput (”Output0”), o0);
writeData (guiGetOutput (”Output1”), o1);

Figure 3. a) Graphical representation of the
routine given in (1) with an explanation of the
differently positioned buttons. b) C or C++
equivalent, modified from the code generated
by TiViPE and reduced to the relevant calls.

output, and internal parameters. A graphical representation
of this routine call is given in Figure 3a. A module is graph-
ically represented by an icon which is a gray rectangle with
an appropriate name, which is mostly the name of the rou-
tine call. A number ofN + 1 small colored rectangles are
given at the top of the rectangle, they represent the input pa-
rameters. The additional left most unobtrusive grey rectan-
gle is a control flow parameter to direct the activation flow.
The control flow might be needed when there are no input or
output parameters, or when parallel processing flows need
to be avoided. At the bottom of the rectangle areL + 1 col-
ored rectangles that represent the output parameters. Again,
the first rectangle is used to control the activation flow. Four
internal rectangular action buttons complete the icon.

The advantage of a graphical representation over the tex-
tual routine call is that the three types of parameters are nat-
urally subdivided. Also different data types are immediately
visible due to their difference in color. The internal param-
eters can be visualized by clicking the upper-right internal
button of the icon, a parameter window will pop up, see also
Figure 2, for an example.

Different routines in a textual program are given by a
sequence of routine calls, in a graphical programming envi-
ronment these modules are connected by a directed graph,1

where the vertices represent the icons and the edges repre-

1A graph is a set of vertices and a set of tuples of vertices that are called
edges.

a)

ReadImage

Display

b)

// ReadImage
TVPgenReadImage m1 (m1argc, m1argv);
m1.g = new GUI (m1argc, m1argv);
m1.v1 = m1.g->guiGetIO (”Inputfile”);
m1.cn = new ImageIO ();
m1.v0 = m1.cn->ReadImage (v1);
// Display
TVPgenDisplay m2 (m2argc, m2argv);
m2.g = new GUI (m2argc, m2argv);
v1 = m2.g->guiGetToggle (”Use openGL”);
m2.cn = new TVPDisplayInterface ();
m2.cn->TVPDisplayData (m1.v0, v1);

Figure 4. a) Graphical program that reads and
displays an image. The “ReadImage” param-
eter window on top allows the user to specify
the filename. The “Display” parameter win-
dow at the bottom allows the use of openGL.
b) Textual (C++) equivalent of the network,
modified from the code generated by TiViPE.

sent the connections between the icons. An example pro-
gram of reading and displaying an image in TiViPE repre-
sented by two connected icons is illustrated in Figure 4a.
Its textual equivalent, as generated by TiViPE, in Figure 4b.
This figure demonstrates the differences between the two
ways of programming. The icon’s name indicates the func-
tional role of the routine. The execution order of the icons
is determined by the way the modules are connected, i.e.,
output is connected to input. The icons hide all unneces-
sary details of a textual program, which makes a network of
icons much more intuitive than a textual program.

3.3 Architecture

The functional architecture of TiViPE is presented in
Figure 5; modification of amoduleis at the left and mod-
ification of adata structureon the right. Since both use a
similar concept only module construction or modification
will be discussed in more detail.

Two step
compilation

GUI Single structure

Structure generator

.TiViPEstructures
SystemData

<name>
GUI Module

Module generator

System data

<name>

Library

Source code

TiViPE

GUI Menu

Compile to executable

Use executable to
generate information

includes the information
Generate code that

Compile to executable

GUI Datastructure

Compile to library

.TiViPE

.TiViPEfixed

User data (CodeInfo)

Executable <name>

Source code
<name>.h
<name>.cpp
Makefile (update)

<name> −gui guidata
<name> −info info.html
<name> −usage
<name> <parameters>

Userdata (Structure)

<structure>.h
<structure>.cpp
Makefile (update)

Figure 5. Functional architecture of TiViPE.

All module entries start with “GUI Menu” (see Figure 5),
where a specific module is selected from an existing list that
has been obtained from the “System data” files. When a
single module is selected “GUI Module” will be activated.
It provides the user with a set of ten forms (6 for docu-
mentation and 4 to embed a routine call) that can be edited.
The data of these forms is stored in, and retrieved from a so
called CodeInfo file. The name denotes a blend ofsource
CodeandInformation.

Renaming, deleting, and moving a module starts with the
“Module generator”, which generates or/and deletes files,
depending on the type of action. When files are generated,
the content of the CodeInfo file is used to generate the C++
source code. After code generation has been completed a
two step compilation takes place which results in a stand-
alone executable.

The file structure used by TiViPE is given in Figure 6.
Contributions of different users are expected, hence the
file structure needs to be divided into two parts: apri-
vate (user) part and apublic (general) part. Users ini-
tially develop modules in their private directories given by
$MYTVPHOME. When these modules are tested and ap-
proved, they can be moved to the public $TVPHOME di-
rectory which is accessed by multiple users.

The names of all public and private modules are stored in
the .TiViPEfixedand.TiViPE files, respectively. These files
contain the full menu structure.

TheModulesdirectory holds the information and source
code of all modules. Thebin directory hosts an executable
for every module. When a module is modified TiViPE up-
dates the files and directories automatically. Over time, it
is expected that many modules will be made available for
TiViPE, hence a clear and flexible way to structure files is
necessary. In TiViPE the user can specify amain entry name
and up to 10 levels of sub-menus. The main entry is meant

$TVPHOME .TiViPEfixed

<Main entry name 1>

as main entry 1
The same structure

misc

as main entry 1
The same structure

<Main entry name N>

<Name module 1 entry 1>

<Name module 1 entry M>

<Name 1>

CodeInfo.idxas Name 1
The same structure

src

<Name 1>.cpp

<Name 1>.h

<Name 1>.pro

<Name 1>.ci

Makefile

obj

<Name 1>.o

Modules bin

<Name module K entry N>

<Main entry name 2>

TiViPE file structure

.TiViPEfixed <user files/directories>

install

Modules.pro

Makefile

install

Makefile

misc<Name M>

<Main entry 1>.pro

Figure 6. File structure as used by TiViPE. All
files, are maintained by TiViPE.

to specify atopic, e.g, image processing, neural networks,
finance, mechanics, etc. The sub-menus can be used to go
into more detail of the given topic. At a single level, it is
useful to specify first the modules in alphabetical order and
next to give the sub-menus in alphabetical order. This is
most convenient for searching a specific module.

Every module has a separate directory in the main entry
directory. Such a directory contains sources (<name>.ci,
<name>.h, and<name>.cpp) in thesrc directory and ob-
ject file(s) (<name>.o) in theobj directory.

The fileCodeInfo.idxin the misc directory keeps a list of
all Modules and stores the makefile directives that are used
by the module generator to construct, modify, or update the
project file in the src directory. AMakefileis generated by
qmakeand is used by the programmaketo compile and in-
stall the generated source code.

3.4 Available modules

TiViPE is set up in such a way that initially the environ-
ment is empty, i.e., there is not a single module available in
the environment. The environment provides the means to
construct a module, that is used as stand-alone executable,
with minimal effort.

Currently around 60 different modules are available,
most of them operate on the Data5D structure (a vector

specified by 5 dimensions and one out of 10 supported data
types), they are subdivided into five different groups. The
first four groups cover the general aspects of arithmetic,
data manipulation, input/output, and visualization.

Thearithmeticgroup contains, bitwise, comparison, sin-
gle and double operand, trigonometry and standard mathe-
matical function operations. On complex data the following
modules are available: splitting of real and imaginary part,
polar-complex coordinate conversion, complex conjugate,
and any normal datatype to complex conversion.

Thedata manipulationgroup contains routines for con-
version from one datatype to another, and to normalize, re-
duce, append, cut, and pad data.

The input/outputgroup contains routines, to read and
write the Data5D data structure and images in 8 different
formats.

Visualization contains modules to display or animate
data.

Around 30 different modules for image processing are
available. These modules were used for research purposes,
they include color manipulation, data manipulation, filter-
ing, graph extraction, image operations, image input and
output, and early vision operators.

4 Discussion

TiViPE is a visual programming environment, it pro-
vides both an application environment and a software de-
velopment environment for data processing, analysis, ex-
ploration, and visualization. The TiViPE environment has
been designed to enable efficient collaboration among peo-
ple with different backgrounds and interests. Within the en-
vironment this is achieved by emphasizing on ease-of-use,
scalability, and extensibility. For example, all applications
used within TiViPE, including those generated by you and
others with the TiViPE environment, can transparently ac-
cess arbitrarily data structures, distributed across a network.

TiViPE aims at different user groups:

1. All users will be able to program by using ready mod-
ules and constructing a network of these modules.

2. Programmers will in common avoid to use a graphical
environment if the effort is too big, to wrap an existing
routine. The only effort needed in TiViPE to wrap an
existing routine is to fill out a set of 10 forms. TiViPE
will then generate the code needed for the icon and
compile the code to a stand alone program. Program-
mers will benefit from the existing modules in TiViPE
that will give them the opportunity to re-use existing
code in a simple way.

3. Researchers will find TiViPE very beneficial for per-
forming experiments, since it allows simple and rapid
parameter modification.

TiViPE supports parallel programming and allows inter-
action with a running program. Its graphical structure gives
a developer a natural debugging tool, therefore TiViPE is
suitable for critical processes that can be applied in fields
like robotics and computational neuroscience.

The graphical programming environment TiViPE will
make programming faster and easier! TiViPE makes other
library routines accessible through its graphical environ-
ment. Construction of a network is a matter of selecting
icons from a menu and connecting them. Compounding
such a network to a new module is performed by pressing a
single button, TiViPE will re-use the code of all the modules
in the network and generate a new module. The ease of cre-
ating a new module and the re-use of existing code will lead
to the availability of a respectable number of modules, that
in turn can be used by others. This is the way to have many
developers using TiViPE as their environment and sharing
the constructed modules.

References

[1] Agilent Technologies Inc.Vee Pro User’s Guide, 2000.
[2] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph: A

step toward liberating the programmer from textual condi-
tioning. InIEEE Workshop in Visual Languages, pages 150–
156, 1989.

[3] R. Helsel.Visual Programming with HP VEE. Prentice Hall
PTR, 1997.

[4] T. Lourens. http://www.dei.brain.riken.go.jp/emilia/Collab-
oration/Tino/TiViPE/index.html. TiViPE Download, 2004.

[5] T. Lourens and R. P. Ẅurtz. Extraction and matching
of symbolic contour graphs. International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI),
17(7):1279–1302, November 2003.

[6] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L.
Greesh, and K. P. McAuliffe. An architecture for a scien-
tific visualization system. InProceedings of Visualization
’92, pages 107–114. IEEE Computer Society Press, October
1992.

[7] National Instruments.LabView User Manual, 2003.
[8] M. F. Sanner, D. Stoffler, and A. J. Olson. Viper a visual

programming environment for python. In10th International
Python Conference, February 2002.

[9] C. Upson, J. T. Faulhaber, D. Kamins, D. Laidlaw,
D. Schlegel, J. Vroom, R. Gurwitz, and A. van Dam. The
application visualization system: A computational environ-
ment for scientific visualization.IEEE Computer Graphics
and Applications, 9(4):32–40, July 1989.

[10] P. F. Whelan and D. Molloy.Machine Vision Algorithms
in Java: Techniques and Implementation. Springer-Verlag,
London, 2000.

[11] K. N. Whitley and A. E. Blackwell. Visual programming
in the wild: A survey of labview programmers.Journal of
Visual Languages and Computing, 12(4):435–472, 2001.

[12] M. Young, D. Argiro, and S. Kubica. Cantata: Visual pro-
gramming environment for the khoros system.Computer
Graphics, 29(2):22–24, May 1995.

