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ABSTRACT: We propose an algorithm to compute the set 
of individual (nonnegligible) Poisson probabilities, rigorously 
bound truncation error, and guarantee no overflow or 
underflow. Work and space requirements are modest, both 
proportional to the square root of the Poisson parameter. 
Our algorithm appears numerically stable. We know no 
other algorithm with all these (good) features. Our algorithm 
speeds generation of truncated Poisson variates and the 
computation of expected terminal reward in continuous- 
time, uniformizable Markov chains. More generally, our 
algorithm can be used to evaluate formulas involving 
Poisson probabilities. 

1. INTRODUCTION 
We give an algorithm to compute the set of individual 
(nonnegligible) Poisson probabilities, needed for exam- 
ple in the applications pointed out in section 1.1. To get 
finite termination, we clearly have to truncate the 
Poisson distribution. Unlike previous contributions, we 
bound the mass in the truncated tails from above and 
the remaining individual probabilities from below. 
Given any “reasonable” E (see section 3) we find a left 
truncation point L and a right truncation point R such 
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that for a Poisson random variable N with parameter X 
we have P[L 5 N 5 R] 2 1 - E and R - L = O(A). 
Starting from a mode m = 1x1 we recursively compute 
weights w(m - l), w(m - Z), . . . , w(L) and w(m + l), 
w(m + 2), . . . , w(R) such that for some constant (Y we 
have w(i) = ap(i) for L I i 5 R where p(i) = P[N = i], 
a! G W, and W = w(L) + . . . + w(R). Our (new) lower 
bounds let us scale the weights, via the choice of w(m), 
to guarantee without repeated checking that no under- 
flows or overflows occur. Our (new) upper bounds let 
us avoid estimating tail masses by summing estimated 
probabilities in the complementary region, a computa- 
tion likely to be significantly contaminated by roundoff 
error. As far as we know, no other published algorithms 
for computing Poisson probabilities use rigorous, practi- 
cal bounds such as ours, and so these algorithms are 
unsatisfactory. Such bounds do not seem readily acces- 
sible elsewhere. 

The overall work and space complexities are both 
O(h), which lets us handle all practical X’s Our algo- 
rithm does not restrict X. Today’s desktop computers 
can easily handle X in the range 0 to lOlo say.. We give 
a crude analysis of roundoff error that suggests that our 
method is numerically stable. Possibly w (i)/W may 
underflow for some i, but this is ordinarily irrelevant if 
the computations are properly arranged. For (example, 
we can compute a weighted sum w(L)f (L) + . . . + 
w(R)f (R) and (only) then divide the sum by W. Like- 
wise, the overall error in a computation is ordinarily 
small even though the individual estimated probabili- 
ties are all a bit off. To illustrate, we note 
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PROPOSITION 1. Let f be a real-valued function with 
llfll = sup(f(j): j = 0, 1, 2, . . .) and P[L 5 N 5 R] z 
1 - E. In exact arithmetic, 

Proof. It suffices to show that cpO ] q(j) - p(j) ] I 2~ 
where q(i) = w(i)/W = p(i)//3 with @ = p(L) + . . . + 
p(R). Now 

i I q(i) - A4 I 5 iL [4(i) - p(i)] + E j=O 

= igL p(i) i - 1 + E 5 2~. 
[ I 

0 

For large X, our L is X - O(h) and our R is X + 
O(A). This verifies that our overall work and space 
complexities are both O(h). In contrast, the 1982 IMSL 
routine asks the user to specify a parameter k-not 
necessarily related to X-and outputs estimates of p(O), 
p(l), . . . , p(k). This amounts to setting L = 0. The k 
specified by any reasonable user will be O(X). Thus, in 
practice the IMSL routine requires O(X) work. 

1.1 Motivation 
Gross and Miller [9] and Fox [4] consider problems of 
this form, in which large values of X typically occur. 
Given the f( j)‘s, the first summation in proposition 1 
can be computed in O(A) time; without the left trun- 
cation, it would take O(X) time. For the terminal- 
reward problem considered by Gross and Miller [6], the 
required f( j)‘s can be computed in O(h) time using 
successive (matrix) squaring up to L as Fox [4] details. 
On the other hand, consider using the weights to com- 
pute Erlang’s loss formula (e.g., see Gross and Harris 
with c servers as w(c)/[w(L) + . . . + w(c)] for L 5 c zz R. 
If L = 0, the error is zero (ignoring roundoff and assum- 
ing no underflow occurs) but computing the weights 
then takes O(X) time. For L > 0 we do not attempt a 
formal error analysis here, which would require lower 
as well as upper bounds on the left tail. Our bounds 
may indicate a reasonable choice of R. 

For another example, suppose that we want to 
generate truncated Poisson variates by (efficiently- 
implemented) inversion or by the alias method. Simply 
scale standard uniform variates as u c uW and then 
use the w (j)‘s directly. Our algorithm reduces the setup 
time from O(X) for a naive method (with no error 
bounds) to O(h) with bounds on truncation error. Fox 
[5] bound the loss in coverage probability for confi- 
dence intervals constructed from truncated variates 
with any distribution. Bratley, Fox, and Schrage [2] ar- 
gue that truncation avoids statistical anomalies and al- 
lows variate generation by (efficiently-implemented) in- 
version in O(1) marginal time, independently of the 
truncation point. Inversion is compatible with common 
random numbers and antithetic variates, but rejection 
methods typically are not. 

1.2 Numerical Stability 
The w( j)‘s are slightly inaccurate due to roundoff error. 
They are all positive, so no cancellation errors occur 
when adding them to get W. Thus, the additional round- 
off error induced by adding the w(j)‘s is potentially 
troublesome only when there are many summands 
(large X). If we were simply to add from left to right say, 
then for example w(f(m + R)/21) @ fi = I? in finite- 
precision floating-point (@ = “add”) arithmetic for large 
enough X. Here fi = w(L) + . . . + w(I(m + R)/21 - 1). 
Thus, we will get W = fi though w(I(m + R)/21) + . . . 
+ w(R) is not negligible. The cure is to add small weights 
first. This widely applicable principle to attenuate round- 
off error is also apparently used in the 1982 IMSL rou- 
tine to compute Poisson probabilities. 

Recursive computation of weights starting from the 
mode is by itself not a new idea. What is new is its 
coupling with a priori determination of truncation 
points and a priori underflow checks. The obvious 
choice for w(m) is one. Given the computer’s underflow 
and overflow thresholds, we typically choose w(m) far 
larger to avoid underflow worries. 

Knusel [lo, pages 1028-10291 gives a numerically- 
stable method to compute p(i) for any fixed i, though he 
gives no corresponding error bounds. It would be ineffi- 
cient to use that method to compute the set of probabil- 
ities (p(L), . . . , p(R)]. He also gives a numerically-stable 
method to estimate the masses in each tail with pre- 
scribed relative error. These bounds can be transformed 
into corresponding bounds on absolute error. Whether 
such transformed bounds are looser or tighter than ours 
is an open question. Our bounds take O(1) time to com- 
pute, independently of all other parameters. The time 
and space complexities to compute Kniisel’s bounds are 
unspecified and unclear. Our bounds on tail masses, as 
estimates of them, probably would have high relative 
error. In view of proposition 1, this seems irrelevant to 
the applications cited above; in other applications, how- 
ever, small relative error may be important. As a check 
for programming errors, our w(m)/W should be approxi- 
mately Kniisel’s estimate of p(m). 

1.3 Overview 
In section 2, we give an algorithm to find the weights, 
which requires a subroutine to find L, R, and w(m) and 
to check that underflow will not occur. We sketch that 
subroutine in section 3, based on bounds in sections 4 
and 5. Section 6 justifies the bounds in section 5. In 
section 7 we outline generalizations to other discrete 
distributions. 

2. COMPUTING WEIGHTS 
In this section we present an easily-programmed algo- 
rithm to compute the weights followed by an analysis 
of roundoff error. 

Algorithm. WEIGHTER (X, E, 7, a; L, R, w(L), . . . , 
w(R), W, Fl 
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Inputs: 
Poisson parameter 
error tolerance 
underflow threshold 
overflow threshold 

chltp11ts: 

left truncation point 
right truncation point 
weights 
total weight 
flat3 

x 
E 2 lo-'0 

n 

L 
R 
w(L), . . . t w(R) 
W 
F 

Subroutine required: 
FINDER (X, E, 7, 9, L, R, w(m), F)-see section 3 

Comments: 
w(i) A p(i)W 

where p(i) = Poisson probability 
For X 2 400: 

mass left of L 5 c/2 
mass right of R 5 c/2 

For 0 < X < 400: 
mass left of L 5 c/2 (note: L = 0 for X 5 25) 
mass right of R 5 E/Z + 6 X 10’27/Q-see section 3 

Section 3 explains where the 400 comes from. 
F = “true” if no underflow can occur while comput- 

ing the weights 
F = “false” indicates that weights are not computed 

due to potential underflow 
w (i)/W may underflow even when F = “true” 

Initialize: 
Set m c LXI (mode) 
Get L, R, w(m), and F from FINDER; if F = “false”, 
exit. 

Down: 
Setjcm 
While j > L, execute 

w(i - 1) + (i/UW 
jcj-1 

up: 
If X a< 400, go to Special 
Else? set j t m 
While j CR, execute 

wli + 11 + W(i + W(i) 
j+j+l 

Compute W: 
[Comment: We want to compute W c w(L) + . . . + 

w(R)1 
[Comment: To attenuate roundoff, we add small 

terms first.] 
WC0 
s c- L 
t c- R 
While s < t, execute 

If w(s) I w(t) then 
WtW+w(s) 
ses+1 

else 

w + w + w(f) 
tct-2 

wcw+w(s) 
Exit. 
Special: 

If R > 600, set F = “false” and then exit. 
[Comment: Underflow is possible but not certain; 

section 3 explains where the 600 comes from.] 

Else, set j + m. 
While j < R, execute 

9 + h/U + 1) 
Ifw(j) > 7/9, 

then set w(j + 1) + 9w( j) and j + j + 1 
else 

set Rcj 
go to Compute W 

Go to Compute W. 

Computing each new weight takes two floating-point 
operations, accounting for the 2 in the exponents be- 
low. We define the relative roundoff error to be the 
maximum of the ratio of the computed result to the 
true result and the reciprocal of that ratio. With multi- 
plication and division, bounds on relative roundoff er- 
rors multiply. Let u be the unit roundoff. Here u + 21eb 
where b is the number of bits in the mantissas of the 
computer’s floating-point numbers. The relative round- 
off error accumulated in Down and Up is at worst 
O[(l + u)‘(~-~)] and O[(l + u)‘(~-~)] respectively, likely 
gross overestimates. For example, (1 + 10-7)“‘oo + 
1.00010. The implicit proportionality factor associated 
with estimates of roundoff error depends on whether 
floating-point arithmetic chops or rounds. It is less than 
1.01 in all cases, if we replace u by 10~. 

Since Compute W involves only positive numbers, it 
follows (from Gill, Murray, and Wright [6, pages 11-121 
for example) that the associated relative roundoff error 
is at worst O[(l + u)“-“1. Consider using double preci- 
sion to attenuate it. The actual roundoff error is prob- 
ably much less than the bound, because we add small 
weights first. Pushing the principle of adding small 
terms first to the limit, we could put all (initial) sum- 
mands in a heap, remove the smallest two, insert their 
sum in the heap, and so on, until the heap empties. In 
view of Glynn’s [7] corollary 1.4 (showing roughly that 
the mass in the tails does not overwhelm the next sum- 
mand) such elaborate measures seem unnece:ssary and 
the method in WEIGHTER looks good enough. 

Even with that corollary, simply terminating when 
the current weight falls below a heuristic threshold 
would leave us with no rigorous error bound on the 
corresponding truncated tail masses. The 1982 IMSL 
routine outputs estimates of p(O), p(l), . , . , p(k + 1) with 
k specified by the user. It does not check whether the 
user-specified k is reasonable; for example, folr large A, 
picking k = I&l or k = X2 is unreasonable. If .r( is at 
least of order A, then the IMSL routine spends most of 
its time computing estimates of negligible prolbabilities; 
it may have to rescale often to avoid underflow. 
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The roundoff error associated with L and R does not 
seem severe, but analyzing it would require specifica- 
tion of how the machine computes exponentials. As a 
hedge against roundoff, divide the nominal E by 10 say. 
If the nominal E is already small, we will see later that 
this hedge does not have a major impact on L and R. 

3. FINDING TRUNCATION POINTS 
We now give a recipe to find L and R, given E, as 
required by WEIGHTER. The heuristic choice w(m) = 
Q/lO”(R - L) assures that W 5 f2/101’. The factor lOlo 
typically prevents overflow when the weights are sub- 
sequently used as in proposition 1 for example. To 
check for underflow, we scale the lower bounds in cor- 
ollaries 3 and 4 by Q/lOl’(R - L) before comparing 
them to 7. Based on the discussion below, writing a 
subroutine FINDER (X, E, 7, Q; L, R, w(m), F) as required 
by WEIGHTER is straightforward. 

If X = 0, then set L = R = 0 and F = “false”. 
If 0 < X < 25, then L = 0. If e? < 7, set F = “false” 
and exit. If 0 < h < 400, find R using corollary 1 of 
section 4 with X = 400. Increase k through the posi- 
tive integers greater than 3 until the upper bound is 
less than E/Z. Set F = “true”. 
If X 2: 400, use corollary 1 with the actual X and 
proceed as above to find R. Evaluate the lower 
bound in corollary 3 of section 5 multiplied by 
Q/lO”(R - L) at the k corresponding to R. If the 
result is less than 7, set F = “false” and exit. If 
X 2 25, then find L using corollary 2 of section 4 
with the actual h. Evaluate the lower bound in cor- 
ollary 4 of section 5 multiplied by Q/lO”(R - L) at 
the k corresponding to L. If the result is greater than 
7, set F = “true”; else, set F = “false”. 

From inspection of corollaries 1 and 2, we see that 
the k’s found above are o([log(l/e)]‘/“), growing very 
slowly as E decreases. In corollaries 1 and 2 the factor 
exp(- k2/2) dominates, when X 2 25 say. At k = 7, this 
factor equals 6.2 X lo-” approximately and we get 
R - L I 20& Suppose that E = 10-l’. One routinely 
checks that with k = 7, the bounds are less than 10-l’ 
for X 2 25. If programming in a language like Fortran 
where storage for the weights must be assigned in ad- 
vance, a generous rule of thumb is to allow 
max(r20Jr;1,600) cells. 

When X = 400, then corollary 1 applies for R 5 600 
which corresponds to k = 7. This explains the 600 
above. If R is not reset in special, then the mass to its 
right is at most e/2; otherwise, the mass to the right of 
R is at most e/2 + 600 x lO”~/fi because of our choice 
for w(m). 

While computing bounds, use the upper bounds on 
ax, bx, and d(k, X) given in section 4 and the lower 
bound on cm given in section 5. The remaining factor in 
any particular bound is an exponential, say exp(- g(k)). 
Multiply the bound on axd(k, X), bx, or c,,,Q/~O’~(R - L) 
by exp(- g(k) + Lg(k)J). We assume (reasonably) that 
there is no underflow up to this point. To avoid subse- 
quent underflow, multiply the result by e-l as long as 

the current product is greater than Te or until Lg(k)J 
multiplications occur, whichever happens first. For cor- 
ollaries 1 and 2, if underflow would occur with the 
next (hypothetical) multiplication, then the bound is 
less than T, hence acceptable providing E > 27 as seems 
reasonable. For corollaries 3 and 4, however, if under- 
flow would occur, then t is too small. 

Again looking at what happens for k = 7, in corollary 
3 the dominant factor is exp(- (k* + 1)‘/2) 2 2.4 X 
lo-l4 for X L 25; in corollary 4, the dominant factor is 
exp(- R/2 - i3/3fi) 2 2.1 X lo-l5 for X 2 196. The 
discussion following corollary 4 indicates that for 
k = 7 we have to deal with bounds no smaller than 
lo-“’ for X C 196. 

Corresponding to k = 7, we get R - L I max(l’20Jj;l, 
100). In any case, underflow occurs only if a lower 
bound is less than lO”(R - L)T/R. 

Consider r/Q for typical computers. According to 
the 1982 VAX-11 Fortran reference manual, p. 2-7, 
r/n - 10-76. According to the 1982 CDC Fortran 5 ref- 
erence manual, p. l-5, T/Q - 10e615. According to the 
1981 Itel iAPX 86, 88 User’s Manual, p. S-6, for the 8087 
Numerical Data Processor, T/Q - 1O-75 for single preci- 
sion and T/Q - 10e615 for double precision. Probably 
our checks for underflow and overflow are superfluous 
in practice, but they are inexpensive to do and guaran- 
tee that, when passed, no problems can occur. 

4. BOUNDING POISSON TAILS 
Let 

p&(i) = e-“Xi/i!, i Zz 0 

QxUl = i PXW 
j=i 

s 
x 

@(ix) = 441 dt -m 
aA = (1 + l/A)e’/‘“JZ 

bx = (1 + 1/X)e’/8x. 

For X 2 25, we get ax or 1.57 and bx 5 1.05. 
Glynn [7] proves 

PROPOSITION 2. Suppose X 2 2 and 2 zz i 5 (X + 3)/2. 
Then 

Qx( m + i) 5 a,(1 - exp(- 2i/9))-’ . @((i - 3)/2)/ 6). 

PROPOSITION 3. Suppose X > 2 and i 2 2. Then 

T&n - i) 5 bx@f(i - 3/2)/h). 

We reparameterize these bounds with the substitu- 
tions (i - 3/2)/A = kfi and i - 3/2 = kh respec- 
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tively. This gives 

Qx(rm + k&5+ 3/21)5 a&k, X)@(k) 

T,(tm - kdi - 3,‘21) 5 bh@(k) 

PROPOSITION 6. For 0 < i 5 X/z, 

(i) ph(m - i) 2 pJm)exp 
- i(i - 1) i(i -. l)(Zi - 1) 
- - - 

2x 6hZ > 
where 

d(k, A) = l/(1 - exp(- (2/9)[kfi + 3/2])) 

and TX(j) = 0 for I < 0. For X 2: 25 and k z 3, we get 
d(k, A) s 1.007. 

From Abramowitz and Stegun [l, page 9321, we get 

PROPOSITION 4. If x > 0, then @p(x) 5 4(x)/x with error 
less than +(x)/x3. 

Apply proposition 4 to Glynn’s reparameterized 
bounds to get 

COROLLARY 1. If X >- 2 and l/2+&~ 5 k 5 x&/Z&, 
then 

QJrm + k& + 3/21) : axd(k, A)e-‘*“/kJ2?r. 

COROLLARY 2. If X 2 2 and k 2 l/a, then 

T&n - kh - 3/21) 5 bhe-kz/Z/k&. 

Corollary 1 does not contradict the fact that, for large 
enough truncation points, the mass in the right Poisson 
tail is an order of magnitude greater than the mass in 
the corresponding normal tail. In corollary 1, the trun- 
cation point is at most fm + h/2 + 3/21. 

5. BOUNDING POISSON PROBABILITIES 
We bound the Poisson probabilities p,(i) from below to 
guarantee that, properly scaled, they do not underflow 
for Lx 5 i 5 Rx. By the monotonicity of p,(i) to the left 
and to the right of m = LXJ, it suffices to check only 
p&J and px(R$. The programs Finder and Weighter use 
corollaries 3 and 4 below only for A 2 25. For 0 < X < 
25, we set Lx = 0 and Rh = koo. The latter is justified 
since the mass in the right tail decreases with X. Weigh- 
ter checks that koo 5 600; for E corresponding to k = 7, 
F&o = 600. It then assures that properly-scaled proba- 
bilities do not underflow, resetting RA if necessary. The 
error bound is then c/2 + 101o(&oo - R&/a zs e/2 + 6 
X lO’%/!L The second term is negligible when e >> 
101%/12, which holds for E = lo-*’ and the computers 
considered in section 3. 

Let 

C - (l/+/ZK)exp(m - X - 1/12m). m- 

According to Feller [3, page 541, the following bound 
supplements Stirling’s formula: 

n! < JZG n”e-“e’/‘2”. 

It readily follows that 

p&n) 2 cm. 

Section 6 proves 

PROPOSITION 5. For i > 0, 

p(m + i) Z pJm)exp(-i(i + 1)/2X) 

2 c,exp(-(i + 1)‘/2X). 

Zc-exp($---$), 

(ii) For 0 < i 5 m, 

px(m - i) 5 cm 
[ ‘3’ 

1 - I 
m-i-1 . 

COROLLARY 3. Let k^ = k& + 3/2& Then for k > 0, 

px(Lm + k&ti + 3/21) > px(Lm + l&iJ) 

2 c,exp(-(l+ 1)2/2). 

COROLLARY 4. Let f = k + 3/2&. 
(i) For 0 < f 5 h/2, 

px(rm - kJj; - 3/21) = p,(rm - i&il) 

2 c,exp(- &‘/2 - E3/3JX). 

(ii) For k 5 (G)/m, 

ph(rm- k&&3/21)r px(rm - iT&Zil) 

a,(1 --J-&= 

(iii) For f 5 (G)/m, 

pJm - kJr; - 3/21) 2 PA(O) = e-“. 

We suggest using (i) when applicable; the bound is 
then at least c,exp(-2k2/3). If only (ii) and (iii) apply, 
compute both bounds and use the maximum. Since for 
m large 

(*I 

computing the left side is numerically stable. For exam- 
ple, with m = 63 and k’ = 7, (i) does not apply and 

56 
+ 2.6 X 10msl [see (ii)] 

ee4’ A 5.2 X 10-” [see (*)I 

e-63 f 4.4 X lo-*a [see (iii)]. 

Convergence in (*) is glacial. 
For X 2 25, we get 

cm 1 1/5eG 2 0.02935/J;;; 

6. PROOFS OF PROPOSITIONS FIVE AND SIX 
We use the following known facts: 

log(1 + X) 5 X for x 2 0 
log(1 - x) 5 -x - x2 for 0 5 x 5 l/2. 

Right of mode: 

PM + i) = p(m)exp - kiI log[( m + k)/A] 
> 
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2 p (mlexp - ki, log[l + WI > 

2 p(m)exp - k$ logil + VI 

rp(m)exp 

= p(m)exp(-i(i + l)/Zh). 

Left of mode: 

p(m - i) = p(m)exp i log[(m - k + 1)/X] 
k=l 

1) 

=,.[* -&I. 

7. CONCLUDING REMARKS 
Our bounds probably can be tightened by more intri- 
cate analysis. As they stand, they seem good enough for 
practical purposes. There are similar tradeoffs between 
complexity and tightness of error bounds for other dis- 
crete distributions such as the binomial and hypergeo- 
metric distributions. Finding good tradeoffs for such 
distributions is a subject for future research. Given ap- 
propriate bounds, a good strategy to compute the set of 
individual, nonnegligible probabilities from these distri- 
butions are similar to our strategy for the Poisson distri- 
bution: 

1. choose an appropriate weight for the mode or the 
mean 

2. find appropriate truncation points L and R from up- 

Research Contributions 

per bounds on the tails, possibly using a counter- 
part to special 

3. find lower bounds on the individual probabilities 
and check for underflow at L and at R 

4. compute weights recursively outwards to L and to R 
5. compute the total weight by adding smallest terms 

first, i.e., inwards. 

In this paper we focused on the Poisson distribution 
because it is most relevant to our interests (see 1.1) 
among the discrete distributions for which the set of 
nonnegligible individual probabilities is nontrivial to 
compute. 
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