
RESEAIEH CONlRll3UTIONS

Management Science
and Operations
Research

Harvely J. Greenberg
Editor

Computing Poisson
Probabilities

BENNETT L. FOX and PETER W. GLYNN

ABSTRACT: We propose an algorithm to compute the set
of individual (nonnegligible) Poisson probabilities, rigorously
bound truncation error, and guarantee no overflow or
underflow. Work and space requirements are modest, both
proportional to the square root of the Poisson parameter.
Our algorithm appears numerically stable. We know no
other algorithm with all these (good) features. Our algorithm
speeds generation of truncated Poisson variates and the
computation of expected terminal reward in continuous-
time, uniformizable Markov chains. More generally, our
algorithm can be used to evaluate formulas involving
Poisson probabilities.

1. INTRODUCTION
We give an algorithm to compute the set of individual
(nonnegligible) Poisson probabilities, needed for exam-
ple in the applications pointed out in section 1.1. To get
finite termination, we clearly have to truncate the
Poisson distribution. Unlike previous contributions, we
bound the mass in the truncated tails from above and
the remaining individual probabilities from below.
Given any “reasonable” E (see section 3) we find a left
truncation point L and a right truncation point R such

Bennett 1.. Fox’s research was supported by a grant from the Natural Sciences
and Engineering Research Council of Canada.

Peter W. ~Glynn’s research was supported by the National Science Foundation
under Crnnt EC%8404809 and the U.S. Army under Contract Number
DAAG29-80-C-0041.

0 1988 ACM OOOI-0782/88/0400-0440 $1.50

that for a Poisson random variable N with parameter X
we have P[L 5 N 5 R] 2 1 - E and R - L = O(A).
Starting from a mode m = 1x1 we recursively compute
weights w(m - l), w(m - Z), . . . , w(L) and w(m + l),
w(m + 2), . . . , w(R) such that for some constant (Y we
have w(i) = ap(i) for L I i 5 R where p(i) = P[N = i],
a! G W, and W = w(L) + . . . + w(R). Our (new) lower
bounds let us scale the weights, via the choice of w(m),
to guarantee without repeated checking that no under-
flows or overflows occur. Our (new) upper bounds let
us avoid estimating tail masses by summing estimated
probabilities in the complementary region, a computa-
tion likely to be significantly contaminated by roundoff
error. As far as we know, no other published algorithms
for computing Poisson probabilities use rigorous, practi-
cal bounds such as ours, and so these algorithms are
unsatisfactory. Such bounds do not seem readily acces-
sible elsewhere.

The overall work and space complexities are both
O(h), which lets us handle all practical X’s Our algo-
rithm does not restrict X. Today’s desktop computers
can easily handle X in the range 0 to lOlo say.. We give
a crude analysis of roundoff error that suggests that our
method is numerically stable. Possibly w (i)/W may
underflow for some i, but this is ordinarily irrelevant if
the computations are properly arranged. For (example,
we can compute a weighted sum w(L)f (L) + . . . +
w(R)f (R) and (only) then divide the sum by W. Like-
wise, the overall error in a computation is ordinarily
small even though the individual estimated probabili-
ties are all a bit off. To illustrate, we note

440 Communications of the ACM April 1988 Volume 31 Number 4

Research Contributions

PROPOSITION 1. Let f be a real-valued function with
llfll = sup(f(j): j = 0, 1, 2, . . .) and P[L 5 N 5 R] z
1 - E. In exact arithmetic,

Proof. It suffices to show that cpO] q(j) - p(j)] I 2~
where q(i) = w(i)/W = p(i)//3 with @ = p(L) + . . . +
p(R). Now

i I q(i) - A4 I 5 iL [4(i) - p(i)] + E j=O

= igL p(i) i - 1 + E 5 2~.
[I

0

For large X, our L is X - O(h) and our R is X +
O(A). This verifies that our overall work and space
complexities are both O(h). In contrast, the 1982 IMSL
routine asks the user to specify a parameter k-not
necessarily related to X-and outputs estimates of p(O),
p(l), . . . , p(k). This amounts to setting L = 0. The k
specified by any reasonable user will be O(X). Thus, in
practice the IMSL routine requires O(X) work.

1.1 Motivation
Gross and Miller [9] and Fox [4] consider problems of
this form, in which large values of X typically occur.
Given the f(j)‘s, the first summation in proposition 1
can be computed in O(A) time; without the left trun-
cation, it would take O(X) time. For the terminal-
reward problem considered by Gross and Miller [6], the
required f(j)‘s can be computed in O(h) time using
successive (matrix) squaring up to L as Fox [4] details.
On the other hand, consider using the weights to com-
pute Erlang’s loss formula (e.g., see Gross and Harris
with c servers as w(c)/[w(L) + . . . + w(c)] for L 5 c zz R.
If L = 0, the error is zero (ignoring roundoff and assum-
ing no underflow occurs) but computing the weights
then takes O(X) time. For L > 0 we do not attempt a
formal error analysis here, which would require lower
as well as upper bounds on the left tail. Our bounds
may indicate a reasonable choice of R.

For another example, suppose that we want to
generate truncated Poisson variates by (efficiently-
implemented) inversion or by the alias method. Simply
scale standard uniform variates as u c uW and then
use the w (j)‘s directly. Our algorithm reduces the setup
time from O(X) for a naive method (with no error
bounds) to O(h) with bounds on truncation error. Fox
[5] bound the loss in coverage probability for confi-
dence intervals constructed from truncated variates
with any distribution. Bratley, Fox, and Schrage [2] ar-
gue that truncation avoids statistical anomalies and al-
lows variate generation by (efficiently-implemented) in-
version in O(1) marginal time, independently of the
truncation point. Inversion is compatible with common
random numbers and antithetic variates, but rejection
methods typically are not.

1.2 Numerical Stability
The w(j)‘s are slightly inaccurate due to roundoff error.
They are all positive, so no cancellation errors occur
when adding them to get W. Thus, the additional round-
off error induced by adding the w(j)‘s is potentially
troublesome only when there are many summands
(large X). If we were simply to add from left to right say,
then for example w(f(m + R)/21) @ fi = I? in finite-
precision floating-point (@ = “add”) arithmetic for large
enough X. Here fi = w(L) + . . . + w(I(m + R)/21 - 1).
Thus, we will get W = fi though w(I(m + R)/21) + . . .
+ w(R) is not negligible. The cure is to add small weights
first. This widely applicable principle to attenuate round-
off error is also apparently used in the 1982 IMSL rou-
tine to compute Poisson probabilities.

Recursive computation of weights starting from the
mode is by itself not a new idea. What is new is its
coupling with a priori determination of truncation
points and a priori underflow checks. The obvious
choice for w(m) is one. Given the computer’s underflow
and overflow thresholds, we typically choose w(m) far
larger to avoid underflow worries.

Knusel [lo, pages 1028-10291 gives a numerically-
stable method to compute p(i) for any fixed i, though he
gives no corresponding error bounds. It would be ineffi-
cient to use that method to compute the set of probabil-
ities (p(L), . . . , p(R)]. He also gives a numerically-stable
method to estimate the masses in each tail with pre-
scribed relative error. These bounds can be transformed
into corresponding bounds on absolute error. Whether
such transformed bounds are looser or tighter than ours
is an open question. Our bounds take O(1) time to com-
pute, independently of all other parameters. The time
and space complexities to compute Kniisel’s bounds are
unspecified and unclear. Our bounds on tail masses, as
estimates of them, probably would have high relative
error. In view of proposition 1, this seems irrelevant to
the applications cited above; in other applications, how-
ever, small relative error may be important. As a check
for programming errors, our w(m)/W should be approxi-
mately Kniisel’s estimate of p(m).

1.3 Overview
In section 2, we give an algorithm to find the weights,
which requires a subroutine to find L, R, and w(m) and
to check that underflow will not occur. We sketch that
subroutine in section 3, based on bounds in sections 4
and 5. Section 6 justifies the bounds in section 5. In
section 7 we outline generalizations to other discrete
distributions.

2. COMPUTING WEIGHTS
In this section we present an easily-programmed algo-
rithm to compute the weights followed by an analysis
of roundoff error.

Algorithm. WEIGHTER (X, E, 7, a; L, R, w(L), . . . ,
w(R), W, Fl

April 1988 Volume 31 Number 4 Communications of the ACM 441

Research Contrfbutions

Inputs:
Poisson parameter
error tolerance
underflow threshold
overflow threshold

chltp11ts:

left truncation point
right truncation point
weights
total weight
flat3

x
E 2 lo-'0

n

L
R
w(L), . . . t w(R)
W
F

Subroutine required:
FINDER (X, E, 7, 9, L, R, w(m), F)-see section 3

Comments:
w(i) A p(i)W

where p(i) = Poisson probability
For X 2 400:

mass left of L 5 c/2
mass right of R 5 c/2

For 0 < X < 400:
mass left of L 5 c/2 (note: L = 0 for X 5 25)
mass right of R 5 E/Z + 6 X 10’27/Q-see section 3

Section 3 explains where the 400 comes from.
F = “true” if no underflow can occur while comput-

ing the weights
F = “false” indicates that weights are not computed

due to potential underflow
w (i)/W may underflow even when F = “true”

Initialize:
Set m c LXI (mode)
Get L, R, w(m), and F from FINDER; if F = “false”,
exit.

Down:
Setjcm
While j > L, execute

w(i - 1) + (i/UW
jcj-1

up:
If X a< 400, go to Special
Else? set j t m
While j CR, execute

wli + 11 + W(i + W(i)
j+j+l

Compute W:
[Comment: We want to compute W c w(L) + . . . +

w(R)1
[Comment: To attenuate roundoff, we add small

terms first.]
WC0
s c- L
t c- R
While s < t, execute

If w(s) I w(t) then
WtW+w(s)
ses+1

else

w + w + w(f)
tct-2

wcw+w(s)
Exit.
Special:

If R > 600, set F = “false” and then exit.
[Comment: Underflow is possible but not certain;

section 3 explains where the 600 comes from.]

Else, set j + m.
While j < R, execute

9 + h/U + 1)
Ifw(j) > 7/9,

then set w(j + 1) + 9w(j) and j + j + 1
else

set Rcj
go to Compute W

Go to Compute W.

Computing each new weight takes two floating-point
operations, accounting for the 2 in the exponents be-
low. We define the relative roundoff error to be the
maximum of the ratio of the computed result to the
true result and the reciprocal of that ratio. With multi-
plication and division, bounds on relative roundoff er-
rors multiply. Let u be the unit roundoff. Here u + 21eb
where b is the number of bits in the mantissas of the
computer’s floating-point numbers. The relative round-
off error accumulated in Down and Up is at worst
O[(l + u)‘(~-~)] and O[(l + u)‘(~-~)] respectively, likely
gross overestimates. For example, (1 + 10-7)“‘oo +
1.00010. The implicit proportionality factor associated
with estimates of roundoff error depends on whether
floating-point arithmetic chops or rounds. It is less than
1.01 in all cases, if we replace u by 10~.

Since Compute W involves only positive numbers, it
follows (from Gill, Murray, and Wright [6, pages 11-121
for example) that the associated relative roundoff error
is at worst O[(l + u)“-“1. Consider using double preci-
sion to attenuate it. The actual roundoff error is prob-
ably much less than the bound, because we add small
weights first. Pushing the principle of adding small
terms first to the limit, we could put all (initial) sum-
mands in a heap, remove the smallest two, insert their
sum in the heap, and so on, until the heap empties. In
view of Glynn’s [7] corollary 1.4 (showing roughly that
the mass in the tails does not overwhelm the next sum-
mand) such elaborate measures seem unnece:ssary and
the method in WEIGHTER looks good enough.

Even with that corollary, simply terminating when
the current weight falls below a heuristic threshold
would leave us with no rigorous error bound on the
corresponding truncated tail masses. The 1982 IMSL
routine outputs estimates of p(O), p(l), . , . , p(k + 1) with
k specified by the user. It does not check whether the
user-specified k is reasonable; for example, folr large A,
picking k = I&l or k = X2 is unreasonable. If .r(is at
least of order A, then the IMSL routine spends most of
its time computing estimates of negligible prolbabilities;
it may have to rescale often to avoid underflow.

442 Communications of the ACM April 1988 Volume 31 Number 4

Research Contribu

The roundoff error associated with L and R does not
seem severe, but analyzing it would require specifica-
tion of how the machine computes exponentials. As a
hedge against roundoff, divide the nominal E by 10 say.
If the nominal E is already small, we will see later that
this hedge does not have a major impact on L and R.

3. FINDING TRUNCATION POINTS
We now give a recipe to find L and R, given E, as
required by WEIGHTER. The heuristic choice w(m) =
Q/lO”(R - L) assures that W 5 f2/101’. The factor lOlo
typically prevents overflow when the weights are sub-
sequently used as in proposition 1 for example. To
check for underflow, we scale the lower bounds in cor-
ollaries 3 and 4 by Q/lOl’(R - L) before comparing
them to 7. Based on the discussion below, writing a
subroutine FINDER (X, E, 7, Q; L, R, w(m), F) as required
by WEIGHTER is straightforward.

If X = 0, then set L = R = 0 and F = “false”.
If 0 < X < 25, then L = 0. If e? < 7, set F = “false”
and exit. If 0 < h < 400, find R using corollary 1 of
section 4 with X = 400. Increase k through the posi-
tive integers greater than 3 until the upper bound is
less than E/Z. Set F = “true”.
If X 2: 400, use corollary 1 with the actual X and
proceed as above to find R. Evaluate the lower
bound in corollary 3 of section 5 multiplied by
Q/lO”(R - L) at the k corresponding to R. If the
result is less than 7, set F = “false” and exit. If
X 2 25, then find L using corollary 2 of section 4
with the actual h. Evaluate the lower bound in cor-
ollary 4 of section 5 multiplied by Q/lO”(R - L) at
the k corresponding to L. If the result is greater than
7, set F = “true”; else, set F = “false”.

From inspection of corollaries 1 and 2, we see that
the k’s found above are o([log(l/e)]‘/“), growing very
slowly as E decreases. In corollaries 1 and 2 the factor
exp(- k2/2) dominates, when X 2 25 say. At k = 7, this
factor equals 6.2 X lo-” approximately and we get
R - L I 20& Suppose that E = 10-l’. One routinely
checks that with k = 7, the bounds are less than 10-l’
for X 2 25. If programming in a language like Fortran
where storage for the weights must be assigned in ad-
vance, a generous rule of thumb is to allow
max(r20Jr;1,600) cells.

When X = 400, then corollary 1 applies for R 5 600
which corresponds to k = 7. This explains the 600
above. If R is not reset in special, then the mass to its
right is at most e/2; otherwise, the mass to the right of
R is at most e/2 + 600 x lO”~/fi because of our choice
for w(m).

While computing bounds, use the upper bounds on
ax, bx, and d(k, X) given in section 4 and the lower
bound on cm given in section 5. The remaining factor in
any particular bound is an exponential, say exp(- g(k)).
Multiply the bound on axd(k, X), bx, or c,,,Q/~O’~(R - L)
by exp(- g(k) + Lg(k)J). We assume (reasonably) that
there is no underflow up to this point. To avoid subse-
quent underflow, multiply the result by e-l as long as

the current product is greater than Te or until Lg(k)J
multiplications occur, whichever happens first. For cor-
ollaries 1 and 2, if underflow would occur with the
next (hypothetical) multiplication, then the bound is
less than T, hence acceptable providing E > 27 as seems
reasonable. For corollaries 3 and 4, however, if under-
flow would occur, then t is too small.

Again looking at what happens for k = 7, in corollary
3 the dominant factor is exp(- (k* + 1)‘/2) 2 2.4 X
lo-l4 for X L 25; in corollary 4, the dominant factor is
exp(- R/2 - i3/3fi) 2 2.1 X lo-l5 for X 2 196. The
discussion following corollary 4 indicates that for
k = 7 we have to deal with bounds no smaller than
lo-“’ for X C 196.

Corresponding to k = 7, we get R - L I max(l’20Jj;l,
100). In any case, underflow occurs only if a lower
bound is less than lO”(R - L)T/R.

Consider r/Q for typical computers. According to
the 1982 VAX-11 Fortran reference manual, p. 2-7,
r/n - 10-76. According to the 1982 CDC Fortran 5 ref-
erence manual, p. l-5, T/Q - 10e615. According to the
1981 Itel iAPX 86, 88 User’s Manual, p. S-6, for the 8087
Numerical Data Processor, T/Q - 1O-75 for single preci-
sion and T/Q - 10e615 for double precision. Probably
our checks for underflow and overflow are superfluous
in practice, but they are inexpensive to do and guaran-
tee that, when passed, no problems can occur.

4. BOUNDING POISSON TAILS
Let

p&(i) = e-“Xi/i!, i Zz 0

QxUl = i PXW
j=i

s
x

@(ix) = 441 dt -m
aA = (1 + l/A)e’/‘“JZ

bx = (1 + 1/X)e’/8x.

For X 2 25, we get ax or 1.57 and bx 5 1.05.
Glynn [7] proves

PROPOSITION 2. Suppose X 2 2 and 2 zz i 5 (X + 3)/2.
Then

Qx(m + i) 5 a,(1 - exp(- 2i/9))-’ . @((i - 3)/2)/ 6).

PROPOSITION 3. Suppose X > 2 and i 2 2. Then

T&n - i) 5 bx@f(i - 3/2)/h).

We reparameterize these bounds with the substitu-
tions (i - 3/2)/A = kfi and i - 3/2 = kh respec-

April 1988 Volume 31 Number 4 Communications of the ACM 443

Research Contributions

tively. This gives

Qx(rm + k&5+ 3/21)5 a&k, X)@(k)

T,(tm - kdi - 3,‘21) 5 bh@(k)

PROPOSITION 6. For 0 < i 5 X/z,

(i) ph(m - i) 2 pJm)exp
- i(i - 1) i(i -. l)(Zi - 1)
- - -

2x 6hZ >
where

d(k, A) = l/(1 - exp(- (2/9)[kfi + 3/2]))

and TX(j) = 0 for I < 0. For X 2: 25 and k z 3, we get
d(k, A) s 1.007.

From Abramowitz and Stegun [l, page 9321, we get

PROPOSITION 4. If x > 0, then @p(x) 5 4(x)/x with error
less than +(x)/x3.

Apply proposition 4 to Glynn’s reparameterized
bounds to get

COROLLARY 1. If X >- 2 and l/2+&~ 5 k 5 x&/Z&,
then

QJrm + k& + 3/21) : axd(k, A)e-‘*“/kJ2?r.

COROLLARY 2. If X 2 2 and k 2 l/a, then

T&n - kh - 3/21) 5 bhe-kz/Z/k&.

Corollary 1 does not contradict the fact that, for large
enough truncation points, the mass in the right Poisson
tail is an order of magnitude greater than the mass in
the corresponding normal tail. In corollary 1, the trun-
cation point is at most fm + h/2 + 3/21.

5. BOUNDING POISSON PROBABILITIES
We bound the Poisson probabilities p,(i) from below to
guarantee that, properly scaled, they do not underflow
for Lx 5 i 5 Rx. By the monotonicity of p,(i) to the left
and to the right of m = LXJ, it suffices to check only
p&J and px(R$. The programs Finder and Weighter use
corollaries 3 and 4 below only for A 2 25. For 0 < X <
25, we set Lx = 0 and Rh = koo. The latter is justified
since the mass in the right tail decreases with X. Weigh-
ter checks that koo 5 600; for E corresponding to k = 7,
F&o = 600. It then assures that properly-scaled proba-
bilities do not underflow, resetting RA if necessary. The
error bound is then c/2 + 101o(&oo - R&/a zs e/2 + 6
X lO’%/!L The second term is negligible when e >>
101%/12, which holds for E = lo-*’ and the computers
considered in section 3.

Let

C - (l/+/ZK)exp(m - X - 1/12m). m-

According to Feller [3, page 541, the following bound
supplements Stirling’s formula:

n! < JZG n”e-“e’/‘2”.

It readily follows that

p&n) 2 cm.

Section 6 proves

PROPOSITION 5. For i > 0,

p(m + i) Z pJm)exp(-i(i + 1)/2X)

2 c,exp(-(i + 1)‘/2X).

Zc-exp($---$),

(ii) For 0 < i 5 m,

px(m - i) 5 cm
[‘3’

1 - I
m-i-1 .

COROLLARY 3. Let k^ = k& + 3/2& Then for k > 0,

px(Lm + k&ti + 3/21) > px(Lm + l&iJ)

2 c,exp(-(l+ 1)2/2).

COROLLARY 4. Let f = k + 3/2&.
(i) For 0 < f 5 h/2,

px(rm - kJj; - 3/21) = p,(rm - i&il)

2 c,exp(- &‘/2 - E3/3JX).

(ii) For k 5 (G)/m,

ph(rm- k&&3/21)r px(rm - iT&Zil)

a,(1 --J-&=

(iii) For f 5 (G)/m,

pJm - kJr; - 3/21) 2 PA(O) = e-“.

We suggest using (i) when applicable; the bound is
then at least c,exp(-2k2/3). If only (ii) and (iii) apply,
compute both bounds and use the maximum. Since for
m large

(*I

computing the left side is numerically stable. For exam-
ple, with m = 63 and k’ = 7, (i) does not apply and

56
+ 2.6 X 10msl [see (ii)]

ee4’ A 5.2 X 10-” [see (*)I

e-63 f 4.4 X lo-*a [see (iii)].

Convergence in (*) is glacial.
For X 2 25, we get

cm 1 1/5eG 2 0.02935/J;;;

6. PROOFS OF PROPOSITIONS FIVE AND SIX
We use the following known facts:

log(1 + X) 5 X for x 2 0
log(1 - x) 5 -x - x2 for 0 5 x 5 l/2.

Right of mode:

PM + i) = p(m)exp - kiI log[(m + k)/A]
>

444 Communications of the ACM April 1988 Volume 31 Number 4

2 p (mlexp - ki, log[l + WI >

2 p(m)exp - k$ logil + VI

rp(m)exp

= p(m)exp(-i(i + l)/Zh).

Left of mode:

p(m - i) = p(m)exp i log[(m - k + 1)/X]
k=l

1)

=,.[* -&I.

7. CONCLUDING REMARKS
Our bounds probably can be tightened by more intri-
cate analysis. As they stand, they seem good enough for
practical purposes. There are similar tradeoffs between
complexity and tightness of error bounds for other dis-
crete distributions such as the binomial and hypergeo-
metric distributions. Finding good tradeoffs for such
distributions is a subject for future research. Given ap-
propriate bounds, a good strategy to compute the set of
individual, nonnegligible probabilities from these distri-
butions are similar to our strategy for the Poisson distri-
bution:

1. choose an appropriate weight for the mode or the
mean

2. find appropriate truncation points L and R from up-

Research Contributions

per bounds on the tails, possibly using a counter-
part to special

3. find lower bounds on the individual probabilities
and check for underflow at L and at R

4. compute weights recursively outwards to L and to R
5. compute the total weight by adding smallest terms

first, i.e., inwards.

In this paper we focused on the Poisson distribution
because it is most relevant to our interests (see 1.1)
among the discrete distributions for which the set of
nonnegligible individual probabilities is nontrivial to
compute.

REFERENCES
1. Abramowitz, M.. and Stegun, I.E. Handbook ojMnthemafical Func-

tions. U.S. Dept. of Commerce, National Bureau of Standards Appl.
Math. Series #55, 1972.

2. Bratley, P., Fox, B.L., and Schrage, L.E. A Guide to Simulation. 2nd
ad. Springer-Verlag, New York, 1987.

3. Feller, W. An Introduction to Probability Theory and Its Applicafions, I.
Wiley, New York, 1968.

4. Fox. B.L. Numerical methods for transient Markov chains. Technical
report, Cornell University, 1987.

5. Fox, B.L. and Glynn. P.W. Conditional confidence intervals. Techni-
cal report, Cornell University, 1988.

6. Gill, P.E., Murray, W., and Wright, M.H. Practical Optimizafion. Aca-
demic Press, London, 1981.

7. Glynn, P.W. Upper bounds on Poisson tail probabilities. Operations
Research Letters 6, 1 (March, 1987), 9-14.

8. Gross, D., and Harris, C.M. Fundamentals of Qutweing Theory. Wiley,
New York, 1985.

9. Gross, D., and Miller, D.R. The randomization technique as a model-
ing tool and solution procedure for transient Markov processes.
Operations Research 32, 2 (March-April, 1984). 343-361.

10. Kniisel, L. Computation of the chi-square and Poisson distribution.
SIAM J. Sci. Stat. Compuf. 7, 3 (July, 1986), 1022-1036.

CR Categories and Subject Descriptors: F.2.1 [Numerical Algorithms
and Problems]; G.3 [Probability and Statistics]

General Terms: Algorithms, Bounds
Additional Key Words and Phrases: Overflow, Poisson probabilities,

truncation, underflow. variate generation

Received 5/86; revised l/87: accepted 4/87

Authors’ Present Address: Bennett L. Fox. Department of Computer Sci-
ence, University of Montreal, C.P. 6128, Station “A”, Montreal, Quebec
H3C 377, Canada: Peter W. Glynn. Department of Operations Research,
Stanford University, Stanford, CA 94305-4022.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission,

In response to membership requests . . .

CURRICULA RECOMMENDATIONS FOR COMPUTING

Volume I: Curricula Recommendations for Computer Science
Volume II: Curricula Recommendations for Information Systems
Volume III: Curricula Recommendations for Related Computer Science Programs in Vocational-

Technical Schools, Community and Junior Colleges and Health Computing

Information available from the ACM Order Dept., l-800/342-6626 (in Maryland, Alaska or Canada, call (301) 528-4261).

April 1988 Volume 31 Number 4 Communications of the ACM 445

