
USO0RE3 6422E

United States Patent
Pazel

[19] [11] E

[45] Reissued Date of Patent: Nov. 30, 1999

Re. 36,422 Patent Number:

[54] DEBUGGING SYSTEM WHEREIN
MULTIPLE CODE VIEWS ARE
SIMULTANEOUSLY MANAGED

[75] Inventor: Donald P. Pazel, Montrose, NY.

[73] Assignee: International Business Machines
Corporation, Armonk, NY.

[21] Appl. No.: 08/663,346

[22] Filed: Jun. 13, 1996

Related US. Patent Documents
Reissue of:
[64] Patent No.: 5,410,648

Issued: Apr. 25, 1995
Appl. No.: 07/753,358
Filed: Aug. 30, 1991

[51] Int. Cl.6 G06F 17/30

[52] US. Cl. 707/104; 395/704; 395/183.22;
345/346; 364/192

[58] Field of Search 395/615, 704,

395/183.22; 707/104; 345/346; 364/192

[56] References Cited

U.S. PATENT DOCUMENTS

5,175,856 12/1992 Van Dyke et al. 395/704
5,179,702 1/1993 Spix et a1. 395/672

5,548,717 8/1996 Wooldridge et al. 395/704
5,560,009 9/1996 Lenkov et al. 395/704

OTHER PUBLICATIONS

Ambler et al., “In?uence of Visual Technology On the
Evolution of Language Environments”, Computer, Oct.
1989, pp. 19—22.

Leonard I. Vanek et al., Static Analysis of Program Source
Code Using EDSA, Array Systems Computing (Canada,
1989) pp. 192—199, Jan. 1989.

Logitech Inc. “Multiscope Debugger User’s Manual”, Jul.
1989, pp. 1—8, 23—82.

Microsoft Corporation, Advanced Programming Tech
niques, pp. 185—205, Jan. 1990.

Parker, Tim, “C Development Environments”<Computer
Language, vol. 7, No. 5, May, 1990, pp. 97—110.

Primary Examiner—Paul R. LintZ
Attorney, Agent, or F irm—Sterne, Kessler, Goldstein & Fox,
PLLC; Joseph Villela, Esquire

[57] ABSTRACT

A computer-implemented method is described for display
ing on a screen, a plurality of vieWs of a software code

listing. The method includes the steps of displaying a ?rst
vieW-type of at least a portion of the software code listing
and selecting and displaying additional vieW-types of the
softWare code listing. The system includes a prioritized
listing of vieW-types, each vieW-type providing a different
presentation of a code listing. When a program listing in one
?le presents a call to another ?le, the system automatically
presents a Window including the called code listing, With the
vieW-type automatically selected in accordance With the
preestablished priority listing. Windows/code vieWs are
handled as objects, and are thus immediately recallable
using a graphical interface.

33 Claims, 5 Drawing Sheets

SOURCE=F|LE 2

SOURCE=F|LE N

D|SASSEMBLY= FILE N MIXED = FILE N

FLOW GRAPH= FILE N

_____.___.
COMPRESSED = FILE N

U.S. Patent N0v.30, 1999 Sheet 1 of5 Re. 36,422

FiG. I

I4\ / '0 /|6
R_A|V|_

PROGRAM
ROM ALU HE'EUG'"

PROGRAM

< \ 9
l2

?l8

DISPLAY

FIG. 2

DEBUG FRAME

r30
OPEN F|LES= PROGRAM

0 SOURCE F||_E |
El DISASSEMBLY /F“_E 2

U -_\ //é/|/l:/é//é
El FLOW GRAPH 33 32
D COMPRESSED

c1 KEEP _

c1 DISCARD \ 34 FILE N
m ICON

U.S. Patent N0v.30, 1999 Sheet 2 of5 Re. 36,422

F I G. 3
SOURCE= FILE 2

FILE QREAKPOINTS y_ARIABLES EEATURESiBUN QPTIONS_\
25 - — -- -—— i 40

26 -- - -— - - L_ _ _ _ _ _ _

27 —-——— — -

23 "‘ ' "' —

o=b+c

@,9,LF,£9f,=,9b9,£,)J7/////////////////////////////////%\
2'2 42

i
|

FIG. 4 FIG. 5

M OPTIONS QPTIONS

EBOEEE
STEP INTO CT RL+O /

" 4:’. --__

T T

U.S. Patent N0v.30, 1999 Sheet 3 of5 Re. 36,422

FIG. 6
SOURCE= FILE N

FILE BREAKPOINTS VARIABLES FEATURES RUN OPTIONS

2 I: :1
7 _ __ ._

8 _ _ ._ . _

qg,’g,3§7/// A
:2‘ 511.
I3 - - - - -

FIG. 7

f W
SOURCE=F|LE 2

_ _ _ _ ‘ FLOW GRAPH= FILE N

__ _‘ SOURCE FILE N

/ \ \
DISASSEMBLY= FILE N MIXED=FILE N COMPRESSED= FILE N
______ _-_______

U.S. Patent N0v.30, 1999 Sheet 4 of5 Re. 36,422

FIG. 8
MULTI-VIEW DEBUG, SINGLE FILE

DISPLAY FILE /‘ 5°

52
SPECIFIED

YES VIEW-TYPE

SELECT HIGHEST PRIORITY _/ 54
VIEW-TYPE AVAILABLE
FOR FILE

56
I S

FILE-VIEW
ALREADY ON
SCREEN

FINISHED

RETRIEVE STORED ATTRIBUTES /-_ 58
IF ANY EXIST, ELsE USE
DEFAULT ATTRIBUTES

I
DISPLAY SELECTED —/ 59
VIEW-TYPE WINDOW

I
FINISHED

U.S. Patent N0v.30, 1999 Sheet 5 of5 Re. 36,422

FIG. 9

MULTI -VIEW DEBUG, PLURAL FILES

DISPLAY CURRENT FILE ,_ 6O
VlEW-TYPEIS)

FOR EACH CURRENT FILE VIEW TYPE 64

IF KEEP SELECTED-DO NOTHING /

IF I N SELECTED=SAVE wmoow a CONTENTS
g‘o‘EsAv CURRENT SCROLL POSITION ,wmoow
sIzE AND POSITION ON SCREEN REMOVE
WINDOW AND PUT ICON ON sc’REEN

IF DISCARD SELECTED‘ SAVE WINDOW 8|
CONTENTS, REMOVE WINDOW FROM SCREEN

66
I 8

NEW FILE
VIEW ALREADY
ON SCREEN

_? [68
SELECT HIGHEST PRIORITY -UPDATE NEW FILE VIEW,
VIEW-TYPE AVAILABLE "T 70 MOVE CURRENT CODE LINE ,
FOR NEW FILE HIGHLIGHT AND SCROLL

RETRIEVE STORED ATTRIBUTES EXIT
OF NEW FILE VIEW TYPE WINDOW V 72
AND SCROLL , I F NECESSARY, TO
CURRENT LINE AND HIGHLIGHT

DISPLAY SELECTED 74
VIEW-TYPE WINDOW *’

; EXIT |

Re. 36,422
1

DEBUGGING SYSTEM WHEREIN
MULTIPLE CODE VIEWS ARE
SIMULTANEOUSLY MANAGED

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue speci?
cation; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

This invention relates to methods and systems in the ?eld
of software programing development, and more particularly,
to a debugging system which provides the user with an
ability to display and correct software programs.

BACKGROUND OF THE INVENTION

Typically, a programmer develops and tests a software
program for a computer by producing and entering source
code into ?les through the use of an editor program. The
computer then creates an executable program by translating
the source code listing into machine code by running a series
of programs which typically include various preprocessors,
a compiler, a linker, etc. During the conversion of the source
code listing to machine code, intermediate code listings may
be created, eg a disassembly code describing subtasks
within tasks de?ned by lines of source code; a mixed
source/disassembly listing wherein both source lines and
disassembly lines are sequentially listed, and other types of
intermediate code structures.

Editors are programs which are used to enter or change
source code and must, therefore, have the capability to
display the source code for the user.

The term “line of code” will be used hereinafter and refers
to (approximately) a complete instruction in the particular
code language. A line of code will generally display as one
line on a user display device.

A debugging system is a combination of computer hard
ware and debugger software which executes a user’s pro
gram in a controlled manner. Debuggers aid a user in
identifying and correcting mistakes in an authored program
and allow the program to be executed in small segments
until speci?ed machine addresses (breakpoints) are encoun
tered or until certain events occur (exception events). During
operation of a debugger, the executing code listing is
displayed, with the active line of code highlighted or oth
erwise indicated. The “active” line of code, in this instance,
refers to a line of code which executes its de?ned function
when the user steps to a next line of code.

Debugging software systems exist in the prior art. One
such debugging system is described by Vanek et al. in “Static
Analysis of Program Source Code Using EDSA”, Proceed
ings of Conference on Software Maintenance, pages
192—199, October, 1989. Vanek et al. describe a debugging
system wherein the user is enabled to view displayed code
listings. All views disclosed by Vanek et al. have identical
display characteristics. Each view can contain a subset of
lines of the original source program and may show only
declarations, only statements at or above a given level of
syntactic nesting, all statements that assign a value to a given
variable etc. New views may be inserted by logical opera
tors. The EDSA system, further, is tied to the program being
analyzed since it must have access to the complete details of
the program which it, in turn, represents as a syntax tree and
which it stores in a ?le.

Logitech Inc., 1235 Pear Avenue, No. 111 Mountain View,
Calif. 94043 markets a window-based debugging program

10

15

25

35

45

55

65

2
entitled “MultiScope” for debugging the programs written to
operate in the OS/2 system program environment. The
MultiScope debugging system includes both run-time and
post-mortem debuggers which employ either a presentation
manager or text mode interface.

MultiScope has two windows to show program codes.
One window is called the Source window, and the other is
called the Assembler window. The Source window shows
the current code line in a high level language,and the
assembler window shows it in one of several possible
variants of a disassembly view. As one steps through
execution, the current line shows highlighted in both views
and moves with execution. The contents of the Source
window can be changed to show other ?le/views in the
appropriate higher level language. If the higher level view
does not exist, an error message is placed in the Source
window. The Assembler window can, as well, be reset to
show a disassembly view of another source ?le.

Codeview, a debugger marketed by the Microsoft
Corporation, Redmond, Wash., runs in a character mode
within an OS/2 session window. Codeview has two windows
to show program code. From either window, one may see
different ?les in different views (source, assembler, etc.).
However, only one of the windows will show the current
line, i.e. the “active” window. So, if some ?le/view has the
current line of execution, and it is showing in the active
window, the appropriate line will be highlighted. But if the
same view is in the other window, the current line is not
highlighted. In both windows, the user may change the
window contents to show different ?le/views.

Both MultiScope and Codeview handle the window, per
se, as a separate object, independent of the code view
displayed therein. Thus, if the user “closes” a window, there
is no retention of the window and its contents as an object.
When a user wishes to resurrect the window, both the ?le to
be displayed and the code lines to be shown must be
remembered and speci?ed. Otherwise the window displays
the initial lines of the code listing, rather than the code listing
that was last shown. Furthermore, both MultiScope and
Codeview are limited to two windows, and have no capa
bility for further views.

Accordingly, it is an object of this invention to provide an
improved debugging system which enables plural code
listings to be simultaneously viewed, closed and recalled.

It is another object of this invention to provide an
improved debugging system which enables simultaneous
viewing and view management of different language mani
festations of a code listing.

SUMMARY OF THE INVENTION

A computer-implemented method is described for dis
playing on a screen, a plurality of views of a software code
listing. The method includes the steps of displaying a ?rst
view-type of at least a portion of the software code listing
and selecting and displaying additional view-types of the
software code listing. The system includes a prioritized
listing of view-types, each view-type providing a different
presentation of a code listing. When a program listing in one
?le presents a call to another ?le, the system automatically
presents a window including the called code listing, with the
view-type automatically selected in accordance with the
preestablished priority listing. Windows/code views are
handled as objects, and are thus immediately recallable
using a graphical interface.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high level block diagram of a data processing
system wherein the debugging invention herein described
may be employed.

Re. 36,422
3

FIG. 2 illustrates a Debug Frame presented to the viewer
that enables selection of a particular ?le and its vieW-type.

FIG. 3 shoWs a vieW of a source code listing.

FIG. 4 shoWs a pull-doWn menu illustrating various Run
selections.

FIG. 5 shoWs a pull-doWn menu illustrating Options
available Which enable a display priority order to be iden
ti?ed and changed.

FIG. 6 illustrates a vieW of a source code listing from a ?le
other than that shoWn in FIG. 3.

FIG. 7 illustrates the display of a plurality of source
listings and further indicates the various additional types of
code vieW-types Which can be simultaneously displayed.

FIG. 8 is a high level How diagram of the debug invention
Wherein multiple vieWs may be simultaneously presented for
a code listing appearing in a single ?le.

FIG. 9 is a high level How diagram of the debug invention
Wherein multiple vieWs may be simultaneously presented for
code listings appearing in plural ?les.

DETAILED DESCRIPTION OF THE
INVENTION

In this description the terms “vieW” and “vieW-type” Will
be employed. A “vieW” of a program listing may be either
a sequence of lines of teXt depicting the program listing, a
graphical representation of a portion of the program listing,
or a combination of the tWo. A “vieW-type” of a program is
a vieW Wherein the program listing is shoWn as either a
source code listing; a disassembled source code listing; a
mixture of source and disassembled source code; a control
How graph; or a compressed program vieW.

A source vieW-type is the highest level language that is
translated to machine language before the program can be
run. It Will generally be presented as a series of lines of
source code statements, each line being sequentially num
bered. Adisassembled source code vieW-type is one Wherein
various subtasks Within a task (as de?ned by a source line)
are shoWn in an intermediate language in lieu of the source
line. A miXed source/disassembly vieW-type is one Wherein
both source lines and disassembled source lines are shoWn
together. A control How graph is a vieW-type Wherein the
softWare program is depicted as a graphical ?oW-diagram. A
compressed program vieW-type is one Wherein the program
listing is shoWn as though vieWed from a long distance
aWay, Wherein individual lines of teXt cannot be discerned.
The vieW, hoWever, shoWs the overall arrangement of the
lines of text, indentations, spaces etc. and may, in addition,
indicate a boX shoWing Where, in the overall code sequence,
a particular active line of code eXists.

Referring noW to FIG. 1, a high level block diagram is
shoWn of a data processing system that is adapted to operate
the multi-vieW debugging system of this invention. An
arithmetic logic unit 10 communicates via a bus 12 With a
read only memory (ROM) 14, random access memory
(RAM) 16 and a display 18. RAM 16 contains both the
program being debugged, its various vieW-types, and a
softWare listing of the debug program.

The debug program is initially operated by a user to
compile in RAM 16 a table that lists the source code
?les/modules in the program to be debugged. If no source
listing is available, the debug program can construct a
disassembly set of source statements from an object code
listing. Thus, While a disassembly listing Will alWays be
available, source code listings may not be. For instance,
many programs contain ?les produced in response to a

10

15

35

45

55

65

4
source code listing but, in themselves, have no controlling
source code statements. They are internally produced Within
the machine for use as an invisible “utility” or for another
similar function.

In the process of debugging, the user vieWs the program
on display 18 and steps from line of code to line of code to
determine Where a crash (or crashes) occur. It is often the
case that the user Wishes to vieW a code listing other than a
source listing and further, Wishes to have multiple, simul
taneous vieWs of the executing softWare, at various levels.
Such vieWs potentially enable faster troubleshooting and
rapid debugging of the softWare.

In FIG. 2, a vieW is shoWn of a Debug Frame Wherein
menus appear that enable function and presentation vieW
type to be user-selected. The Debug Frame is a WindoW in
the debugger softWare Which acts as the master control for
the debugger.
WindoW 30 in the Debug Frame provides a listing of ?les

in the program to be debugged. A highlight line 32 may be
stepped doWn the listing of ?les to enable selection of one
for debugging. WindoW 33 enables the user to select one of
?ve listed vieW-types that are available in the system (as
de?ned above). If the user chooses a source listing and such
is not available, the system automatically provides the neXt
loWer priority listing, i.e. disassembly. In WindoW 33, the
vieW-types are listed in priority order, hoWever, it is to be
understood that any priority can be arbitrarily assigned by
the system user. The user’s choice of vieW-type for the
highlighted ?le in WindoW 30 is only applicable to that ?le
and to no others. Thus, as Will be seen hereafter, if a source
code listing for a portion of ?le 2 presents a call for a code
listing in another ?le, the system automatically chooses the
highest priority vieW-type available for the called listing,
irrespective of the vieW-type chosen for ?le 2.

Afurther WindoW 34 is contained Within the Debug Frame
and contains three additional user choice ?elds, i.e., Keep,
Discard, and Icon. These ?elds come into use When one
program listing in a ?le calls a line of code in a program
listing in another ?le. Aselection of the “Keep” ?eld results
in a displayed vieW-type being retained on the screen, While
a neW code listing vieW is simultaneously displayed. A
“Discard” selection causes the current vieW-type on the
screen to be removed and discarded. A selection of the
“Icon” indication causes the vieW-type on the screen to be
removed from the screen and replaced by an icon. At that
time, a further vieW-type can be displayed and the
“iconiZed” vieW-type is again displayable on the screen
simply by a selection of the icon (by a mouse or other

indicator).
As above indicated, vieWs may and Will be replaced,

discarded, etc. by the user from the screen. It is often the
case, hoWever, that the user Wishes to retrace steps and to
resurrect discarded vieWs. In contrast to the prior art, this
invention enables the user to accomplish this Without requir
ing detailed record-keeping on the part of the user. In this
system, each ?le has an associated WindoW (or WindoWs),
Which, in combination With its current vieW, is maintained as
an object. Thus, When a WindoW is removed from the screen,
its scroll position, WindoW siZe, WindoW position, and other
display attributes are stored. By simply recalling the WindoW
associated With a ?le, the “saved” WindoW and its contents
are displayed, Without further user intervention. No user
initiated editing is required to reestablish a previous Win
doW’s contents.

Turning noW to FIG. 3, a representative source code
listing in ?le 2 is illustrated. A selection bar 40 runs across

Re. 36,422
5

the top of the screen and contains a plurality of selection
items, each one of Which results in the display of a pull
doWn WindoW (see FIGS. 4 and 5). A plurality of source
code lines are shoWn on the screen, With lines 29 and 30
illustrating a simple function (A=B+C), followed by a
conditional call to a subroutine “Q” if A=B. Subroutine Q is
not present in ?le 2. It is to be noted that line 30 (Wherein
the call to subroutine Q is indicated) is highlighted as shoWn
at 42, but the functions called for by the statement there
indicated have not yet been executed. That execution only
occurs When the user steps the source listing to line 31.

As shoWn in FIG. 4, a selection of the “run” indication in
selection bar 40 of FIG. 3 causes a pull-doWn menu to
appear that designates a number of options available to the
user to increment through the code listing. In this instance,
it is assumed that the “step” indication 43 has been selected
(by the highlight). This indication enables the user to incre
ment one line of code under control of simultaneous actua
tion of tWo keyboard keys (control and S). At FIG. 5, a
pull-doWn is shoWn Which results When the options indica
tion is chosen on selection bar 40. The pull-doWn shoWs that
a “display order” select function 45 is available. The selec
tion of this line enables the priority order shoWn at WindoW
33 in FIG. 2 to be revised.

Referring noW back to FIG. 3, it is assumed that the user
steps highlight bar 42 from line 30 to line 31. This imme
diately results in a neW ?le vieW, i.e., “?le n” (FIG. 6) being
displayed on the screen. Subroutine Q appears at line 9 and
its initial code line is highlighted, folloWed by its subsidiary
source code statements. At this stage, line 9 in FIG. 6 is the
“active” code line and Will be executed if the highlight bar
is stepped to line 10. If there is no source listing for “?le n”,
then a disassembly vieW-type is presented instead.

The above description, at a high level, indicates the vieWs
Which are presented to a user as lines of code are stepped in
a code listing of a program. It is often important for the user
to have available, alternative presentations of the code
listing for both comparison and fault analysis purposes. It is
advantageous if those presentations can be simultaneously
vieWed on a screen so as to enable side-by-side comparison
of code sequences. Ascreen presentation is shoWn in FIG. 7
Wherein source code listings shoWn in FIGS. 3 and 6 are
simultaneously presented for vieWing by the user. As Will be
hereinafter understood, the invention enables the source
listing for ?le n to be vieWed; and/or for a disassembly
listing of ?le n to be vieWed, and/or for a mixed source/
assembly listing to be vieWed, and/or for compressed-vieW
or How graph versions of ?le n to also be vieWed. In
addition, in lieu of displaying ?le n, if source ?le 2 is the
only vieW-type on the screen, the user can call one of the
other vieW-types of ?le 2 to be simultaneously displayed,
thereby providing tWo different code listings for the program
contained Within ?le 2. Furthermore, as many WindoWs as
desired can be displayed to provide further debugging
capabilities.

Referring to FIG. 8, a How diagram is shoWn Which
presents the method for managing simultaneous presentation
of a pair of vieW-types from a single ?le on a screen.
Initially, the screen displays the current ?le vieW-type (Box
50) for user interaction. Subsequently, if the user requests
another vieW (Box 52) but does not specify the vieW-type,
the procedure selects the highest priority vieW-type available
for the ?le (Box 54).

At this point, the procedure determines Whether the user
selected neW vieW-type is already on the screen (Box 58). If
so, the subroutine exits (and the user must specify a new

10

15

25

35

45

55

65

6
vieW type). OtherWise, stored attributes (or default
attributes) are accessed (Box 58) and the selected vieW-type
is displayed in WindoW format (Box 59).

Turning to FIG. 9, a procedure is shoWn Where a debug
action is in process and plural ?les are involved. Initially, a
current ?le vieW-type (or types) is (are) displayed on the
screen (Box 60). The user then steps a code line causing a
neW code line to be highlighted. The procedure determines
Whether the neW code line calls for a neW ?le (decision box
62) and if yes, it proceeds to select one of the three functions
indicated in box 64. If Keep is selected, nothing occurs and
the procedure continues. If Icon has been selected, the
current ?le vieW-type WindoW and its contents are saved,
including the current scroll position, WindoW siZe and its
position on the screen. The WindoW is removed and a small
Icon is placed on the screen instead. If Discard is selected,
the WindoW is saved as With the Icon selection, and the
WindoW is removed from the screen.

Before placing a neW ?le vieW on the screen, the proce
dure determines Whether such a vieW is already present on
the screen (decision box 66). If such a vieW is found on the
screen, the procedure moves to box 68 Where the neW ?le
vieW is updated by scrolling (if necessary) to bring the
currently active code line into the WindoW and the active line
is highlighted.

If the neW ?le vieW is found not to be present on the
screen, then the program proceeds to select the highest
priority vieW-type available for the neW ?le. Generally, this
Will either be a source code listing or an assembly code
listing. The stored attributes of the highest priority vieW-type
are noW retrieved and the code lines are scrolled, if
necessary, to the currently active line, Which line is then
highlighted. The selected vieW-type WindoW is then dis
played (box 74). In this manner, the vieW-type WindoW
displays are managed, With a minimum of user-interaction,
With automatic selection of prioritiZed vieW-types and With
WindoW recall ability that automatically re-displays the
WindoW as it last appeared.

It should be understood that the foregoing description is
only illustrative of the invention. Various alternatives and
modi?cations can be devised by those skilled in the art
Without departing from the invention. Accordingly, the
present invention is intended to embrace all such
alternatives, modi?cations and variances Which fall Within
the scope of the appended claims.

I claim:
1. A computer system for performing a method for

displaying, on a screen, a plurality of vieWs of softWare code
listings, said computer system including a prioritiZed listing
of vieW-types, each said vieW-type providing a different
presentation of a code listing, said method comprising the
steps of:

displaying a ?rst vieW-type of at least a portion of a
softWare code listing in a ?rst ?le;

stepping through code lines in said portion of said soft
Ware code listing;

When a call is found in said ?rst ?le for a code listing in
another ?le, displaying a highest priority vieW-type
available in said computer system of said code listing
in said another ?le Where said highest priority vieW
type of said another ?le is independent of highest
priority vieW-type of said ?rst ?le; and

upon a determination that a vieW-type is to be removed
from said screen, and saving a WindoW in Which said
vieW-type is displayed and its contents as an object,
Whereby said removed WindoW and its contents are

Re. 36,422
7

recallable as said object and When so recalled are
displayed on said screen.

2. The method as de?ned in claim 1 Wherein said vieW
type of said code listing from said another ?le is simulta
neously displayed With said ?rst vieW-type of said software
code listing of said ?st ?le.

3. The method as recited in claim 2 comprising the step of:
determining if said highest priority vieW-type from said

another ?le is already displayed on said screen, and if
so, updating said displayed highest priority vieW-type
to shoW a currently active code line.

4. The method of claim 3 Wherein said prioritized listing
of said vieW-types includes a source code listing as the
highest priority.

5. The method of claim 4 Wherein a vieW-type having a
loWer prioritiZation is a disassembly code listing.

6. The method of claim 5 Wherein another said prioritized
vieW-type includes both source code and disassembly code
combined.

7. The method of claim 6 Wherein another said prioritized
vieW-type includes a compressed image of said source code
listing.

8. The method of claim 7 Wherein another said vieW-type
includes a How graph of said source code, Which graphically
illustrates said source code.

9. The method of claim 1, Wherein the steps of the method
are performed under the control of a debugging program.

10. A computer system for performing a method for
displaying, on a screen, a plurality of vieWs of a softWare
code listing, said computer system including a prioritized
listing of vieW-types, each said vieW-type providing a dif
ferent presentation of a code listing, said method comprising
the steps of:

displaying a ?rst vieW-type of at least a portion of a
softWare code listing in a ?rst ?le;

stepping through code lines in said portion of said soft
Ware code listing;

When a call is found in said ?rst ?le for a code listing in
another ?le, displaying a highest priority vieW-type
available in said computer system of said code listing
in said another ?le Where said highest priority vieW
type of said another ?le is independent of highest
priority vieW-type of said ?rst ?le; and

upon a determination that said ?rst vieW-type is to be i)
kept on the screen, ii) removed from the screen and
replaced by an icon, or iii) discarded from the screen,
and if said ?rst vieW-type is to be replaced by an icon
or discarded,

saving as an object, a WindoW in Which said ?rst vieW
type is displayed and its contents by recording said
softWare code listing’s scroll position, siZe of the
WindoW and position of the WindoW on the screen,
Whereby, in case it is discarded, said WindoW and its
contents may be recalled by reference to the ?le and an
indication of vieW-type or in case said WindoW is
replaced by an icon, said WindoW may be recalled by
selecting said icon.

11. The method as recited in claim 10 comprising the step
of:

determining if said highest priority vieW-type from said
another ?le is already displayed on said screen, and if
so, updating said displayed highest priority vieW-type
to shoW a currently active code line.

12. A computer program product for use with a computer
system, comprising:

a computer usable medium having computer readable
program code means embodied in said medium for

10

15

25

35

45

55

65

8
displaying, on a screen, a plurality of views of software
code listings, said computer program product including
a prioritized listing of view-types, each said view-type
providing a dijferent presentation of a code listing, said
computer usable medium comprising:
?rst means for displaying a ?rst view-type of at least a

portion of a software code listing in a ?rst ?le,‘
second means for stepping through code lines in said

portion of said software code listing,‘
third means for displaying a highest priority view-type

available of a code listing in another ?le when a call
is found in said ?rst ?le for said code listing in
another ?le, where said highest priority view-type of
said another ?le is independent of highest priority
view-type of said ?rst ?le,‘ and

fourth means for determining that a view-type is to be
removed from said screen, and saving a window in
which said view-type is displayed and its contents as
an object, whereby said removed window and its
contents are recallable as said object and when so
recalled are displayed on said screen.

13. A computer program product according to claim 12,
wherein said view-type of said code listing from said another
?le of said third means is simultaneously displayed with said
?rst view-type of said software code listing of said ?rst ?le.

14. A computer program product according to claim 13,
further comprising ?fth means for determining if said high
est priority view-type from said another ?le is already
displayed on said screen, and if so, updating said displayed
highest priority view-type to show a currently active code
line.

15. A computer program product according to claim 14,
wherein said prioritized listing of said view-types includes a
source code listing as the highest priority.

16. A computer program product according to claim 15,
wherein a view-type having a lower prioritization is a
disassembly code listing.

17. A computer program product according to claim 16,
wherein another said prioritized view-type includes both
source code and disassembly code combined.

18. A computer program product according to claim 17,
wherein another said prioritized view-type includes a com
pressed image of said source code listing.

19. A computer program product according to claim 18,
wherein said view-type includes a flow graph of said source
code, which graphically illustrates said source code.

20. A computer program product according to claim 12,
wherein said computer program product operates under the
control of a debugging program.

21. A computer program product for use with a computer
system, comprising:

a computer usable medium having computer readable
program code means embodied in said medium for
displaying, on a screen, a plurality of views of software
code listings, said computer program product including
a prioritized listing of view-types, each said view-type
providing a dijferent presentation of a code listing, said
computer usable medium comprising:
?rst means for displaying a ?rst view-type of at least a

portion of a software code listing in a ?rst ?le,‘
second means for stepping through code lines in said

portion of said software code listing,‘
third means for displaying a highest priority view-type

available of a code listing in another ?le when a call
is found in said ?rst ?le for said code listing in
another ?le, where said highest priority view-type of
said another ?le is independent of highest priority
view-type of said ?rst ?le,‘ and

Re. 36,422

fourth means for determining that said ?rst view-type is
to be kept on the screen, (ii) removed from the
screen and replaced by an icon, or (iii) discarded
from the screen, and if said ?rst view-type is to be
replaced by an icon or discarded, saving as an object
a window in which said ?rst view-type is displayed
and its contents by recording said software code
listing’s scroll position, size of the window and
position of the window on the screen, whereby, in
case it is discarded, said window and its contents
may be recalled by reference to the ?le and an
indication of view-type or in case said window is
replaced by an icon, said window may be recalled by
selecting said icon.

22. A computer program product according to claim 21,
further comprising ?fth means for determining if said high
est priority view-type from said another ?le is already
displayed on said screen, and ifso, updating said displayed
highest priority view-type to show a currently active code
line.

23. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps of displaying, on a
screen, a plurality of views of software code listings, said
program storage device including a prioritized listing of
view-types, each said view-type providing a dijferent pre
sentation of a code listing, said method steps comprising:

displaying a ?rst view-type of at least a portion of a
software code listing in a ?rst ?le,‘

stepping through code lines in said portion of said soft
ware code listing,‘

displaying a highest priority view-type available of a code
listing in another ?le when a call is found in said ?rst
?le for said code listing in another ?le, where said
highest priority view-type of said another ?le is inde
pendent of highest priority view-type of said ?rst ?le,‘
and

determining that a view-type is to be removed from said
screen and saving a window in which said view-type is
displayed and its contents as an object, whereby said
removed window and its contents are recallable as said
object and when so recalled are displayed on said
screen.

24. A program storage device according to claim 23,
wherein said view-type of said code listing from said another
?le is simultaneously displayed with said ?rst view-type of
said software code listing of said ?rst ?le.

25. A program storage device according to claim 24,
further comprising the step of determining if said highest
priority view-type from said another ?le is already displayed
on said screen and if so, updating said displayed highest
priority view-type to show a currently active code line.

26. A program storage device according to claim 25,
wherein said prioritized listing of said view-types includes a
source code listing as the highest priority.

10

15

25

35

45

10
27. A program storage device according to claim 26,

wherein a view-type having a lower prioritization is a
disassembly code listing.

28. A program storage device according to claim 27,
wherein another said prioritized view-type includes both
source code and disassembly code combined.

29. A program storage device according to claim 28,
wherein another said prioritized view-type includes a com
pressed image of said source code listing.

30. A program storage device according to claim 29,
wherein said view-type includes a flow graph of said source
code, which graphically illustrates said source code.

31. A program storage device according to claim 23,
wherein said method steps are performed under the control
of a debugging program.

32. A program storage device for use with a computer
system, tangibly embodying a program of instructions
executable by the machine to perform method steps of
displaying, on a screen, a plurality of views of software code
listings, said program storage device including a prioritized
listing of view-types, each said view-type providing a dif
ferent presentation of a code listing, said method steps
comprising: comprising:

displaying a ?rst view-type of at least a portion of a
software code listing in a ?rst ?le,‘

stepping through code lines in said portion of said soft
ware code listing,~

displaying a highest priority view-type available of a code
listing in another ?le when a call is found in said ?rst
?le for said code listing in another ?le, where said
highest priority view-type of said another ?le is inde
pendent of highest priority view-type of said ?rst ?le,‘
and

determining that said ?rst view-type is to be kept on the
screen, (ii) removed from the screen and replaced by an
icon, or (iii) discarded from the screen, and ifsaid ?rst
view-type is to be replaced by an icon or discarded,
saving as an object a window in which said ?rst
view-type is displayed and its contents by recording
said software code listing’s scroll position, size of the
window and position of the window on the screen,
whereby, in case it is discarded, said window and its
contents may be recalled by reference to the ?le and an
indication of view-type or in case said window is
replaced by an icon, said window may be recalled by
selecting said icon.

33. A program storage device according to claim 32,
further comprising the step of determining if said highest
priority view-type from said another ?le is already displayed
on said screen, and if so, updating said displayed highest
priority view-type to show a currently active code line.

* * * * *

