
 1

Keystroke Biometric System Test Taker Setup and Data Collection

Kurt Doller, Sarika Chebiyam, Smita Ranjan, Elyse Little-Torres, and Robert Zack

Seidenberg School of CSIS, Pace University, White Plains, NY, 10606, USA
{kd54446w, sc53019w, sr79540n, et37640n}@pace.edu, robert.zack@stpart.com

Abstract

Pace University has been conducting keystroke
biometric research for seven years. The system under
development has the capability of identifying or
authenticating users from typing characteristics and
patterns. It consists of three primary components: a
keystroke entry system that collects data over the
Internet, a feature extractor, and a pattern classifier.
This paper is focused on the keystroke entry system
component and enhancements made to it to support the
biometric authentication of students taking tests over the
Internet. The keystroke entry system is enhanced to
operate in stealth or background mode so that a user’s
typing characteristics and patterns can be captured
anonymously while the user participates in an online
test. The system compares test and enrollment samples
to authenticate test takers.

1. Introduction

Keystroke biometric systems measure typing
characteristics believed to be unique to an individual and
difficult to duplicate. When incorporated into systems
such as Internet based test taker applications, keystroke
biometrics can have important security benefits and can
provide an additional layer of security to a system. This
work enhances the keystroke entry system (KES)
component of Pace University’s Keystroke Biometric
Authentication System (BAS).. Pace’s Keystroke
Biometric System [2, 3], developed over the last seven
years, has been designed for both identification (1-of-n
response) and for authentication (binary response, yes
you are the person you claim to be or no you are not).

This paper discusses the function and operation
of the enhanced KES on-line test taker system. The
KES is a Web-based application that provides web
interfaces to the Instructors for entering student &
course data, and to the students for answering questions.
It output is a set of text files containing the raw
keystroke data for each student and each question. To
participate, a test taker must operate a computer that
runs the Microsoft Internet Explorer browser capable of
displaying HTLM web pages and has a minimum Java
runtime environment of 1.4 installed. The server where

this Web-based application is hosted should be able to
run PHP scripts. In addition, the test taker’s computer
must be connected to the Internet and be equipped with
a laptop or desktop keyboard. Firewall and anti-virus
software must permit the java applet to run. This applet,
the only locally installed software component required
to run the KES, collects raw keystroke data during the
testing session.

Feature measurements are extracted from the
raw data and processed by a biometric classifier that
uses the k-Nearest Neighbor classifier. The collected
data samples are processed and compared against the
archived enrollment samples to make an authentication
decision. The test taker is either matched (accepted as
the person claiming to be taking the test) or not matched
(rejected).

The sections of this paper are organized as
follows. Section 2 presents background information
necessary to understand the system, section 3 describes
the system and focuses on the new additions and
enhancements, section 4 discusses the software
development methodology, section 5 the Results
produced at the end of our study and sections 6, 7
present the conclusions and recommendations for future
work.

2. Background

The version of the KES used in this study was
significantly enhanced over previous versions. This
version provides the instructor with an interface to setup
and customize questions used for testing the knowledge
of the student and for obtaining keystroke biometric
samples. Depending on the desire of the instructor or on
the design requirement of related studies, the students
may or may not be informed that their keystrokes are
being captured for the purpose of biometric
authentication.

This study is limited to the laptop free-text and
desktop free-text input modes discussed in [2]. The test
taker is presented with a question from a list of choices
that the instructor provides in the online test setup.
Users can write anything they want in answer to the
question. A sample is considered complete if at least
300 keystrokes, approximately five lines of typewritten

 2

text, are collected. [We have found the 300 keystrokes
us usually sufficient, so please change this.] The test
taker knows that a Java applet is installed on their
computer to capture the answers to the online test, but
otherwise may be unaware of its biometric sample
collection function. Privacy issues do not come into
play for this academic purpose when the user is not
aware that her/his keystrokes are also captured for
biometric authentication.

Potential applications of this system are
numerous. Work place environments can implement the
KES system to authenticate employees for compliance
and other testing scenarios. In academia, the application
for online test taking has been discussed and described
in [2]. This study attempts to extend previous
authentication research into a real world application.

 3. The Enhanced Keystroke Entry System

 The Keystroke Entry System that we
have developed and enhanced comprises of the
following components as shown below in our System
Overview Diagram.

 Figure 1. System Overview Diagram

The system is initiated by the Instructor, by entering the
course information, student ids, names, test questions
and the order in which they have to be answered, into
the database tables using the Professor's interface. Then,

the students login to the Test Takers Interface using the
project webpage and register as new users by providing
their demographic data, which is stored into the database
and retrieved later when the user logs in to take the test.
At this step, the student's first name, last name, semester
and course id should match with those entered by the
professor in the database for validation. To take the test,
the registered students login to the interface and answer
the questions which will be displayed from the database
in an order chosen by the professor.
 Once the test taker specifies the keyboard type
he/she is using, the questions are displayed one at a time
in an order chosen by the Professor. Each question is
displayed by a java applet which monitors the text entry
screen where all the keystrokes entered by the student
are captured without his/her knowledge into separate
text files on the server. These text files are analyzed and
compared by feeding into the BAS system's Feature
Extractor and Feature Classifier to identify the keystroke
patterns of each test taker and thus authenticate them.
The following sections explain the functioning of the
system in detail.

3.1 Instructors Interface

The instructors interface [5] or professor's
Interface is an enhancement to the KES system. It
allows the instructor to add or edit the questions he
wants to ask the test takers during a testing session.

Earlier versions of the applications required the
instructor to directly edit the PHP scripts / HTML pages
to perform this function which would have been a
cumbersome and error-prone task. The new interface
allows the instructor to easily and dynamically enter
course information, student details and test questions for
use in the on-line test and biometric sample collection.
 The instructor arrives at the Instructor's
interface (3) via the Project web page (1) and Team web
page (2). in Figure 1. Then in step 3a the Instructor is
presented with the screen in Figure 2 where he/she
enters the course information.

Figure 2. Instructor's interface - Course information

screen

 3

 When the Instructor clicks on Next, the course
ifnormation is entered into a database table called
course_ids. Then the control goes to the screen which
will present the student information form as displayed in
Figure 3. In step 3b, the instructor makes a one-time
entry of the student names and identification numbers.
These values are stored in a table labeled student_info,
which will be used to quickly accept or reject the
students when they login.

Figure3. Instructors interface – Student information

screen

 Next the instructor is presented with a question
list entry form in step 3c as displayed in Figure 4, where
the instructor can enter the list of questions for for the
course. These questions are stored in the database table
course_questions.

Figure 4. Instructors interface – Questions screen

 Next the instructor is presented with a question-
order selection form in step 3d as displayed in Figure 5.
Here the instructor can choose a particular question
order for each student individually or the questions can
be randomly shuffled for the test takers during the
testing session checking to see that no question is
repeated.

Figure 5. Instructors interface Question Order
screen
 At the end of this process a conformation
screen is displayed. Now all the information entered by
the instructor is stored in the respective database tables
and the questions will be displayed to the test takers as
they login.

3.2 Test Taker Setup / Data Collection

 The test taker enters the system via the Project
web page and Team page in steps 1 and 2 respectively as
shown in System Overview diagram in Figure 1. In step
3 the test taker is presented with the Login screen as
shown in Figure 6 below.

Figure 6. Test Taker's Interface - Login Screen

 Here the Test taker enters his/her First name,
Last name, Semester, and Course ID. If the test taker
has already registered with the KES before, then the test
taker is presented with the Keyboard selection screen in
step 5 as displayed in Figure 8. If this is the first time
the test taker is using the KES, then he/she is presented
with the Demographics form in step 4 as displayed in
Figure 7 below, where he/she enters various personal
information.

Note that the test taker has to be also registered
by the Instructor for the specific semester and course ID

 4

they entered in the login screen. If they try to login to
the KES without being registered by the Instructor for
that course and semester apriori, an error message screen
is displayed asking them to contact the professor or retry
loging in.

Figure 7. User Registration Form

After the test taker enters the demographic data

in step 4, that data is then written to the demographics
table and the user is thanked for their enrollment. Then
the user is redirected to the login screen as shown in
Figure 6 to attempt logging in to KES again.

After successfully logging in to the KES this
time, the test taker is then presented with the Keyboard
selection screen in step 5 as shown in the Figure 8
below. Here the test taker has to specify the type of
keyboard they are using, laptop or desktop.

 Figure8. Keyboard Selection screen

After selecting the type of keyboard once on this screen,
it takes the user to the keystroke Java applet to answer
the questions one after the other in the order chosen by
the instructor as in the screen shown in Figure 9 below.

Figure 9. Display Question Screen

Here the test taker is asked to answer several

questions specified by the Professor. The user must
have at least Java Runtime Environment (JRE) 1.4 to
launch the applet. The application is tested to work with
Microsoft Internet Explorer. Other browsers are not
supported at this time and functionality of using them
may be limited.

Each question is displayed by a Java applet.
There are eight pieces of information sent to, and
required by, the applet: first name; last name;
experiment style (e.g., free text); sequence number for
the selected experiment style (respective counter field
value); keyboard style; awareness [3]; URL of the script
that sends the next question; and the URL of the script
that saves the keystroke raw data into a file. Awareness
refers to whether the user knows he/she is working with
a stealth or visible KES. If the Java applet does not
receive these eight values, or if the user does not have a
Java Runtime Environment (JRE) equal to or later
version 1.4, the applet will not launch. [3].

KES Applet

All versions of the KES applet require collection of
enrollment data from the user. This data becomes part
of the training data used for comparison against test
samples collected during an on-line testing session. For
enrollment, the user has the choice of copying text
passages or writing a letter as free text. This study uses
free text mode only. In the old system, during test
taking process, the user could see the on-screen
statistics, including the total number of keys pressed, the
current character pressed and current key press and
release timings (Figure 10).

When integrated into an on-line test, the enhanced
applet removes queues and indicators seen in the
keystroke entry process to enable stealth or anonymous
operation. The enrollment process and visible operation
of the KES are the same. However, the new system
checks for the student identity in two ways, one is by

 5

comparing from the registration information and another
from the information entered by the professor through
his interface. For anonymous or stealth operation, the
user is not aware that biometric samples are being
collected.

Figure 10. Legacy Java applet before any keystrokes
have been entered [3]

Depending on the sample being collected, the

system counts the number of keystrokes. When the user
correctly completes the task and clicks submit, a PHP
script is invoked, which writes the raw data information
to a text file and updates the user’s counter field
database. This action is transparent to the user. The text
file includes the actual keystrokes entered by the user,
the durations or amount of time each key was pressed,
and the latency, also known as the elapsed time between
adjacent keystrokes. For ease of locating the raw data
files, each condition, laptop and desktop, are included in
the file name itself directory on the server. The
researcher should become familiar with the data storage
locations as the raw files should be copied to a work
area in separate storage for feature extraction and
classification activities.

Figure 10 depicts the keystroke entry applet
when operating in a non-stealth data collection mode.
The sequence numbers incremented after each valid
sample is accepted. The user could enter another sample
or click the back button to return to the activity selection
page [3].

Stealth Data-Capture Mode

Enhancements to the test-taker applet enable
keystroke data to be captured anonymously and in
stealth mode. The test taker’s keystrokes are collected
in the background without queues or user awareness.
When the test taker first accesses the online test, they are
prompted to login by entering their first and last name as
they did when they enrolled. It is important the login
name match the enrollment name.

Once the user is logged into the system, the window
with the online test appears. The stealth Java applet is
running, but all queues and onscreen statistics are hidden
from the display. The applet overhead is small and the
user should be unaware that keystroke biometric
samples are being collected.

Figure 11. Test Applet with keystroke data invisible

If the test taker or the user does not enter the

required 300 keystrokes, the system will display an error
message requesting them to continue typing until the
required keystrokes are met. Keystroke characteristics
are stored in separate text files named after their
selection criteria

These files must be downloaded from the server to a
storage location designated for processing by the BAS
system. The BAS system is a Java based application
detailed in [2, 3]. Features are extracted from the raw
data and classified by BAS.

Code Refactoring

A significant part of the effort in the development
of this new KES system also involved refactoring the
old code so that it is much simpler and easier to maintain
and improve in future. Both the old code and new code
consists of the same types of files – HTML, PHP, and
Java. However, the old code has 36 files – 29 HTML
files, 5 PHP files and 2 Java files, whereas as the new
code has only 23 files – 9 HTML, 13 PHP, and 2 Java. –
and that includes the new Professor’s Interface
functionality. The number of HTML files were
significantly reduced because in the new system, the
questions are retrieved and displayed from the database
tables instead of a separate html file for each question as
was the case in the old system.

Also, the old code has URLs / absolute paths hard
coded in 40 places, whereas the new code has the URL
specified in only one config file, kbs_globals.php.
Every PHP script, HTML, or Java file will read the URL
from this config file either directly or indirectly.
Moreover, there are no absolute paths in any file; all the

 6

absolute paths were changed to relative paths. This
makes moving this application to a different server
and/or different directory location much easier in future.

3.3 Feature Extraction and Classification

 The feature extraction program reads all of the
raw data text files from the processing storage location.
Storage locations can be local or network based and
should be separate from the primary storage location
used by the applet. The demographics file created
during test taker enrollment is also required to run the
BAS system, although the contents of it are reserved for
future use. The demographics file should be stored in a
separate directory from the raw data. The BAS
Biofeature application generates a features file from the
raw data collected by the Java applet. After processing,
each test taker’s information becomes a row in the
features file. The features file is used by the BAS
classifier component.
 The BAS System uses the k-Nearest Neighbor
classifier. As part of the processing the multi-class input
data is dichotomized into two classes. The test taker
samples are decided to be within-class or between-class
by the classifier. With-class samples are decided by the
classifier to be “you are authenticated”. Between-class
samples are decided by the classifier to be “you are not
authenticated” [2].

The BAS classifier component consists of Java-
based components. The GUI allows the researcher to
dichotomize all of the data or a portion of the data. This
is useful for data sets with large numbers of samples [2].
Similar to the Feature Classifier, the BAS program uses
the “train-on-one/test-on-another” to attain results.

The researcher specifies training and testing
feature files for an experiment, then clicks ”Apply
Dichotomy Model” to perform the dichotomy
transformation (Figure 12).

Figure 12. Biometric Authentication System (BAS)

After all features have been extracted into a data or

“features” file, the data is ready to be classified. The
matching process uses Euclidian distances of all the
collected features.

4 Software Development Methodology

Our Methodology incorporated agile project
development techniques and Extreme programming.
Deliverables were framed around two week iterations
and a task backlog. In order to gain velocity,
deliverables that could not be met within an iteration
cycle were further decomposed into tasks that could be
accomplished in the iteration cycle.

Project communications between team
members took the form of frequent conference calls, at
least once per week. This level of communication helped
keep the project on-track and maintain clarity and
understanding of the deliverables. Communications
between team members and customers were primarily
done with email and phone calls on an as needed basis.
The project status reports were uploaded onto the team
web page[4] every week for the customers and the to
keep track of our progress regularly.

5 Student Authentication Results

Our efforts are the result of taking test samples
submitted by users over several weeks. The test samples
were requested on a weekly basis. The test samples
consist of both laptop and desktop free text entries in
which users would answer one of several questions
displayed. The original 677 keystroke requirement was
later modified to 300 which earlier studies showed
sufficient to attain reasonable authentication accuracy.
Users were requested to submit a different sample of
free text each week. The results were captured and
stored on the Pace Utopia server for analysis. The raw
data was then downloaded from the Utopia server and
used to generate FAR and FRR scores along with
performance results.

The False Acceptance Rate is the rate at which
a negative result is classified as positive. The False
Rejection Rate is the rate at which negative results are
classified as positive. In our case the FAR and FRR rates
would be the rate at which individuals were incorrectly
accepted or rejected. Once the files were downloaded we
used the standalone biofeature to process the raw data.
The results were then split into two files for training and
testing. As soon as this was completed the BAS
application was run to process the training and testing
files. Lastly we used the calculate accuracy tool to in
order to accumulate results for 1, 3, 5, 7, 9 NN (nearest
neighbor).

Our testing consisted of 5 samples each from 5
individuals using a laptop and 5 more samples from
individuals using a desktop. The testing performed was
one-within class test sample, a difference between
feature vectors of the same individual, which resulted in

 7

a correct within-class match (FRR=0/1 or 0% and
Performance=1/1 or 100%). And the same result was
shown for kNN or 1, 3, 5, 7, and 9. Table 1 shows this
result from free text laptop. The table 2 representation
shows the desktop free text result.

 Table 1. Testing one within-class laptop sample.

Table 2. Testing one within-class desktop sample.

The testing we performed used one pair of samples from
one student and mimics what would occur in an actual
class environment taking an online test. Our results
show that the software will perform the testing one-
student at a time.

6 Conclusions

Keystroke biometrics is relatively new in its application
and testing phase. The potential uses of this technology
especially in the area of security are promising. It can be
used to identify and authenticate individuals, which
could prove useful in both corporate and academic
environments. With the advent of online courses and the
misuse of e-mail becoming more prevalent the need for
such a type of technology becomes evident.
 BAS can accurately authenticate individuals
taking online tests using the enhanced KES. The system
can authenticate a user with high accuracy if the user
completes the enrollment process and answers the

questions in the test-taker applet using the same type of
keyboard. The authentication system consists of three
components: data collection, feature extraction and
classification.
The KES system previously described [2, 3] has been
enhanced and consists of the following components (see
Figure 1):
 1. The instructors interface is a web-based
application written in PHP which allows the instructor to
setup the on-line test and provide the test questions.
These questions are presented to the test takers taking
the online test (Figure 9).
 2. The Test-Takers interface is web –based
application consisting of HTML pages, PHP scripts and
Java applets. This interface requires a test taker to
register. If the required Java applet is not present, the
user will be prompted to install it. Once user setup is
complete, the user can take the test.
 3. Once registered, the test taker logs into the test.
A modified Java applet, operating anonymously in
Stealth mode, captures keystrokes at predefined points
in the testing session and produces a raw feature file that
is subsequently analyzed by the BAS system.

 In our research, we captured keystroke data
using an online test-taking web interface. The interface
was modified so the keystroke data could be obtained in
a stealth mode without the knowledge of the test taker.
The original 677-keystroke requirement was changed to
300, which proved sufficient to provide meaningful
results to authenticate the test takers.
 A detailed User Manual [6] document step-by-
step instructions for using the system.

7 Recommendations

 Several further enhancements can be done to
the Keystroke entry system to make it more useful in the
future. One of them is to research the potential to
imitate user’s keystrokes. This type of investigation
could provide insight into vulnerabilities of the system
and could bring potential problems to the surface to be
corrected. The Pace studies have focused on identifying
and authenticating the users until now. It is important to
also investigate more into the potential security issues
that may or may not exist within the keystroke system.
Provision of a secure login for the instructor and the test
takers by linking this system with the pace university
Blackboard or the PacePortal will address the security
issues to a great extent. Another recommendation is to
send the keystroke raw data from the Java applet to the
server periodically during the typing instead of waiting
till the test taker presses the “submit” button at the end.
This way, the BAS system can authenticate using the
intermediate data and can alert the Professor

Test
Sizes

Train
Sizes FRR FAR Performance Test Subject |

AVG(Sample)

Train Subject
|

AVG(Sample)
kNN

1-0 113-
833

.00%
(0/1) --- 100.00%

(1/1) 1 | 2.00 10 | 4.40 1

1-0 113-
833

.00%
(0/1) --- .00% (0/1) 1 | 2.00 10 | 4.40 3

1-0 113-
833

.00%
(0/1) --- .00% (0/1) 1 | 2.00 10 | 4.40 5

1-0 113-
833

.00%
(0/1) --- .00% (0/1) 1 | 2.00 10 | 4.40 7

1-0 113-
833

.00%
(0/1) --- .00% (0/1) 1 | 2.00 10 | 4.40 9

Test
Sizes

Train
Sizes FRR FAR Performance Test Subject |

AVG(Sample)

Train Subject
|

AVG(Sample)
kNN

1-0 17-
119

.00%
(0/1) --- 100.00%

(1/1) 1 | 2.00 8 | 2.12 1

1-0 17-
119

.00%
(0/1) --- .00% (0/1) 1 | 2.00 8 | 2.12 3

1-0 17-
119

.00%
(0/1) --- .00% (0/1) 1 | 2.00 8 | 2.12 5

1-0 17-
119

.00%
(0/1) --- .00% (0/1) 1 | 2.00 8 | 2.12 7

1-0 17-
119

.00%
(0/1) --- .00% (0/1) 1 | 2.00 8 | 2.12 9

 8

immediately if it cannot authenticate the user. The idea
is that the chance of finding a cheating student is higher
if you catch while he/she is still writing the exam,
instead of waiting all the way to the end. A third
recommendation is to enhance this application so that it
can support touch-screen based keypads such as Smart
Phones, or the new All-in-one touch screen computers.
In future, to make it more developer friendly, it would
be nice if the system is hosted on a Linux server with
SSH capability.

References :

[1] Admit One Security Inc. (1998-2008), AdmitOne Security
Suite: Risk based Authentication for the web,
<http://www.admitonesecurity.com/> (15 November
2008)

[2] C.C. Tappert, M. Villani, and S. Cha, "Keystroke
Biometric Identification and Authentication on Long-Text
Input," chapter in Behavioral Biometrics for Human

Identification: Intelligent Applications, Edited by Liang Wang
and Xin Geng, 2009.

[3] M. Villani, C.C. Tappert, G. Ngo, J. Simone, H. St. Fort,
and S. Cha, "Keystroke Biometric Recognition Studies on
Long-Text Input under Ideal and Application-Oriented
Conditions," Proc. CVPR 2006 Workshop on Biometrics,
New York, NY, 2006.

[4]TeamWebpage- -
http://utopia.csis.pace.edu/cs691/2009-
2010/team4/team4/index.html

[5]Instrustors-Interface -
http://utopia.csis.pace.edu/cs691/2009-
2010/team4/team4/ProfessorInterface/courseInfo.php

[6] Kurt Doller, Sarika Chebiyam, Elyse Little-Torres,
“User Manual: Keystroke Biometric Authentication System –
Test Taker Setup and Data Collection”, School of CSIS, Pace
University, Fall 2009

