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Preface

The User Interfaces for Theorem Provers workshop series brings together re-

searchers interested in designing, developing and evaluating interfaces for interac-

tive proof systems, such as theorem provers, formal methods tools, and other tools

manipulating and presenting mathematical formulas.

While the reasoning capabilities of interactive proof systems have increased dra-

matically over the last years, the system interfaces have often not enjoyed the same

attention as the proof engines themselves. In many cases, interfaces remain rela-

tively basic and under-designed.

The User Interfaces for Theorem Provers workshop series provides a forum for

researchers interested in improving human interaction with proof systems. We have

solicited contributions from the theorem proving, formal methods and tools, and

HCI communities, both to report on experience with existing systems, and to discuss

new directions. The topics covered by the workshop include, but are not limited to:

– Application-specific interaction mechanisms or designs for prover interfaces

– Experiments and evaluation of prover interfaces

– Languages and tools for authoring, exchanging and presenting proof

– Implementation techniques (e.g. web services, custom middleware, DSLs)

– Integration of interfaces and tools to explore and construct proof

– Representation and manipulation of mathematical knowledge or objects

– Visualization of mathematical objects and proof

– System descriptions

UITP 2008 is a one-day workshop held on Friday, August 22nd 2008 in Montréal,

Canada, as a TPHOLS’08 workshop. Eight papers have been selected by the in-

ternational programme committee for presentation at the workshop. Additionally,

we have two invited system demonstrations, one by Matt Kaufmann and J Strother

Moore on interface aspects of the ACL2 theorem proving system and one by Sam

Owre on the PVS user interfaces. Finally, Deborah McGuinness demonstrates an

explanation infrastructure for TPTP proofs and solicits feedback.
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Abstract

Interactive Theorem Provers (ITPs) are tools meant to assist the user during the formal development of
mathematics. Automatic proof searching procedures are a desirable aid, and most ITPs supply the user
with an extensive set of facilities to improve automation. However, the black-box nature of most automatic
procedure conflicts with the interactive nature of these tools: a newcomer running an automatic procedure
learns nothing by its execution (especially in case of failure), and a trained user has no opportunities to
interactively guide the procedure towards the solution, e.g. pruning wrong or not promising branches of the
search tree. In this paper we discuss the implementation of the resolution based automatic procedure of the
Matita ITP, explicitly conceived to be interactively driven by the user through a suitable, simple graphical
interface.

Keywords: Interactive theorem proving, SLD resolution, automation

1 Introduction

Most of the development effort behind Interactive Theorem Provers is devoted to

bridge the gap between the high level language used by humans for reasoning and

communicating mathematics, and the low level foundational language understood

by ITPs. Among all facilities offered by ITPs, a high degree of automation is

certainly desirable and several works (see for example [12,11]) have been devoted to

the integration of automatic proof search facilities in interactive theorem provers.

The machinery employed in this integration is usually hidden to the user: when the

automatic procedure finds a proof the interactive theorem prover usually evaluates

the trace left by the prover (if any) and converts it, possibly using some reflection

mechanism (see [5,6]), to a proof in its foundational dialect. What is neglected

by this traditional approach is the interactive nature of the tool. The user has no

feeling of what is going on, why the automatic procedure has possibly failed and

how he can possibly improve the situation. Moreover, when used in a didactical

environment where untrained users are put in front of an interactive theorem prover,

it is desirable to let them use automation facilities freely, but providing them the
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possibility to understand the work done by the automatic procedure or the reasons

of its failure.

The aim of this work is to develop a reasonably fast SLD [13,14] based proof

searching procedure for the interactive theorem prover Matita [3] that is completely

transparent to the user, allowing him to follow the execution of the procedure and

to drive it, taking run-time decisions on how the procedures explores the search

space. As a side effect we obtain a very handy debugging tool, that proved to be

extremely useful to tune and fix the procedure.

To get this result, we develop a SLD engine that performs backtracking without

relying on the call stack (i.e. not using stack frames as choice points). This charac-

teristic, together with a carefully chosen selection function, allow us to effectively

present to the user a view of the ongoing computation.

2 The proof searching procedure

The way proofs are built in Matita is by instantiation. The foundational dialect

of the interactive theorem prover (namely the Calculus of Inductive Construc-

tions [9,16]) is extended with meta-variables [15] (written ?i) whose type represents

a missing part of the proof, called goal.

Definition 2.1 [Proof problem] A proof problem P is a finite list of typing judge-

ment of the form Γ ⊢?j : T where for each metavariable ?i that occurs in the context

Γ and type T there exists a corresponding entry in P.

Each proof step generates a substitution instantiating one or more existing

metavariables, whose entries are also removed from P, and possibly adding new

entries (new open goals) to P.

Definition 2.2 [Substitution] A metavariable substitution Σ is a list of couples

metavariable-term.

Σ = [?1 := t1; . . . ; ?n := tn]

Substitutions are usually performed lazily, thus the status of the ongoing proof

comprises both a proof problem and a substitution. We will call such a pair a proof

status.

For example, the initial status of the just declared conjecture ∀x, y : N.P (x, y)→
Q(x, y) will be

[] ⊢?1 : ∀x, y : N.P (x, y)→ Q(x, y)

together with an empty substitution. After performing hypothesis introduction it

will change to

x, y : N; p : P (x, y) ⊢?2 : Q(x, y)

together with a substitution Σ = [?1 := λx, y : N.λp : P (x, y).?2].

The application of a substitution Σ to a term t is denoted with Σ(t). This

operation is extended to contexts and proof problems, substituting all the types of

abstracted variables (in the context) or the types of of missing proofs (in the proof

problem).
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A proof is over when there are no more proof problems in the proof status, and

the proof of the original conjecture can be obtained applying the substitution to

the initial metavariable.

The proof searching procedure we implemented in the interactive theorem prover

Matita is essentially inspired by SLD resolution [14]: it iterates applications of

known results following a depth-first strategy (up to a given depth). No introduction

of new hypothesis is done (that amounts to assume to have a horn-like base of

knowledge, as it is often the cases), hence the context of the proof remains unchanged

during the execution of the procedure.

The classical rule for SLD resolution follows.

SLD

← A1, . . . , An H ← B1, . . . , Bm Σ = mgu(H,Ai)

← Σ(A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An)

CIC is a dependently typed, higher order, language where no most general unifier

can be found in the general case. Nevertheless, an essentially first order unification

heuristic is implemented as part of the so called refiner 1 and largely used in the

process of building proofs. A detailed description of the unification algorithm im-

plemented in Matita can be found in [18] and some recent extensions are described

in [19].

Definition 2.3 [Unification] The process of unifying two terms is denoted with

P, Σ, Γ ⊢ N
?
≡M

U
; P ′, Σ′

Unification performs only metavariables instantiations, and the resulting Σ′ is

such that Σ′(N) is convertible (that for CIC means equal up to βιδζ-reduction)

with Σ′(M) in context Σ′(Γ) and proof problem Σ′(P ′).

The SLD resolution rule is implemented in Matita as the apply tactic. Since

it is meant for interactive usage, both the selection and computation rule are left

to the user: in the following presentation the goal i and the clause (lemma) c are

user provided. The outcome of the tactic is a proof status or an exception if the

unification step fails.

1 The refiner is the component implementing type-inference, as opposed to the kernel, implementing type-
checking. It is in charge to automatically fill the proof with a lot of negligible information easily inferred
by the context. See e.g. [2] for an architectural outline of Curry-Howard based ITPs.
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Apply-tac

P = Γ1 ⊢?1 : A1, . . . ,Γn ⊢?n : An

P ′ = R(Γ ⊢?B1
: B1, . . .Γ, x1 : B1, . . . , xm−1 : Bm−1 ⊢?Bm

: Bm);P

Γ ⊢ c ?B1
. . . ?Bm

: H

P ′, Σ, Γ ⊢ H
?
≡ Ai

U
; P ′′, Σ′

Σ′′ =?i := c ?B1
. . . ?Bm

; Σ′

(P ′′,Σ′′)

With Γ ⊢ t : T we denote the typing judgement assigning to t the type T in

the context Γ. The reordering function R is applied to the list of new goals, and

as we will see in Section 2.1 it allows to implement some heuristics to increase

performances and avoid the proliferation of meaningless goals.

Note that unifying H with Ai can in general instantiate some ?Bi
but not gen-

erate new metavariables, thus the set of new goals opened by the apply tactic is a

subset of {?B1
, . . . , ?Bn

}.

Our final goal is to provide the user a tool to observe the automatic procedure

running and possibly drive it without stopping it. To do that, we have to make sure

that some parts of the computation are reasonably stable, such that the user has

enough time to read them before they change. If it was not possible, the user would

have to stop the execution and make it advance step by step, inherently loosing the

speed modern computers have, or alternatively not use the tactic interactively (just

let it run).

To achieve a reasonably stable view of the ongoing computation, we had to

adopt a leftmost, depth first, selection rule. The selection function is fixed and

always chooses the first goal, in the same spirit of Prolog. The proof the procedure

is building up can be seen as some sort of tree: an application of the resolution

rule generates a node with a new son for every newly generated goal, and proceeds

trying to prove all of them. If one fails it backtracks changing the node (if there are

alternative clauses that can be applied). If we assume to have n applicable clauses

and a depth limit d, a node at depth i is updated every (d − i − 1)n iterations,

granting a reasonable stability for shallow nodes.

An alternative search strategy, like for example the discount algorithm [17], that

generates and continuously refines a set of proved (intermediate) results, would not

have worked. What a user needs to know to understand what a discount based

automatic prover is doing is the set of intermediate lemmas proved so far. This set

is usually really huge and continuously changing: new results are added, weaker

results are removed in favour of more general ones, all results are simplified (put in

a canonical form) using newly generated equations.

2.1 The reordering function

To understand why reordering newly generated goals can increase performances,

and also avoids generating many pointless goals, consider the division operation

between natural numbers and the associated predicate divides. A natural number q
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divides n if there exists a p such that n = q ∗ p. In a dependently typed λ-calculus

equipped with inductive types, a natural 2 definition for that predicate would be an

inductive predicate with a single constructor

witness : ∀p, q, n : N.p ∗ q = n→ q|n

This lemma (actually a constructor), when applied, generates two new goals: ?p

of type N and ?H of type ?p ∗ q = n. Attempting to solve ?p first is a bad idea

since we have no real information on ?p except that it is a natural number, while

we know more information concerning the second goal, for example that it involves

the multiplication operation. This piece of information can be exploited by the

computational rule to search for applicable clauses. Moreover, almost every solution

to goal ?H also forces ?p to be some fixed natural number.

Interactive theorem provers are tools used to create libraries of formalized the-

orems; as a consequence the environment from which the computation rule may

choose a lemma to apply is extremely polluted. In case of goals of just type N,

it could even choose to apply the Fibonacci function and then successively try to

guess an input such that the second goal can be solved, possibly backtracking and

guessing another input for the Fibonacci function. The ability of the CIC logic to

compute is very handy in general, but is cases like this one may lead to very long

computations.

2.2 The computation rule

The computation rule has to find a clause (in our case an existing lemma), or

better a list of clauses, that will be applied in order to solve a given goal. ITPs are

equipped with large libraries of already proved results, thus some searching facilities

have to be employed to select a reasonably small amount of lemmas that will then

be effectively applied. Matita has many built-in searching facilities, extensively

described in [1], that can search local and remote libraries for results relevant to

a given goal. These facilities are used to fill in an in-memory trie 3 data structure

together with some parts of the library the user can declare to be pertinent to what

he is doing. On top of this structure a pretty efficient unification approximation

can be performed, resulting in a set of lemmas that is later refined using the real

unification algorithm.

Since we want to present the user only good alternatives, the computational rule

has not only to find good candidates, but also to attempt to apply them, directly

pruning false positives. Moreover, suddenly applying all found lemmas allows to sort

these alternatives looking for example to the number of newly opened goals. The

cands function performs this search and returns a list of alternative proof statuses.

Definition 2.4 [Candidates (of the environment E)] Let g be a goal, P a proof

problem and Σ a substitution environment. Let Γ ⊢?g : T ∈ P. The func-

tion cands applied to a proof status (P, Σ) and a goal g returns a list of tuples

2 An alternative definition, using the computational fragment of CIC to define the division operation and
proving some properties of that function is also possible, but not widely adopted.
3 A trie is a tree of prefixes, a good compromise between search speed and space consumption adopted, in
some of its variants, by many automatic provers.
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(Σ′,P ′, [g1; . . . ; gn]) such that:

• t ∈ E

• Γ ⊢ t : ∀x1 : T1. . . .∀xn : Tn.T ′

• P, Σ, Γ ⊢ T
?
≡ T ′ U

; P ′, Σ′

• Γ;x1 : T1; . . . ;xi−1 : Ti−1 ⊢?gi : Ti ∈ P
′ ∀i ∈ {1, . . . , n}

• ?g := (t ?g1 . . . ?gn) ∈ Σ′

2.3 Backtracking

The cands function finds a set of relevant lemmas in the global environment (the

library of already proved results) and using the Apply-tac rule attempts to apply

them to a given goal, returning the list of proof statuses relative to successful ap-

plications of that rule. On top of that, an automatic proof searching procedure can

easily be implemented by means of two mutually recursive functions.

For each goal to be solved (gl), the function search calls the computation rule

(implemented by the cands function) that finds a list of lemmas and that uses the

Apply-tac rule to obtain the list of associated proof statuses (cl). Then it tries

to find if one of the resulting proof statuses can be solved, using the first function,

that recursively calls search. If one succeeds, search moves to the next goal to be

solved. A pseudo-OCaml code for that function follows. The choice of OCaml as

the implementation language for the tactic is not arbitrary, since the whole Matita

ITP is written in in that language.

� �

let rec first f l = function

| [] → raise Failure

| hd:: tl →
try f hd

with Failure → first f tl

let rec search gl (S, P) =

match gl with

| [] →S, P

| g :: tl →
let cl = cands (S, P) g in

let S’,P’ = first (fun (S, P, gl) → search gl (S, P)) cl in

search tl (S ’, P’)
� �

The code is oversimplified, many checks are missing: for example there is no

bound check, thus this function may diverge. Nevertheless, it is already enough to

see the issue arising with this simple and elegant implementation of backtracking.

The problem with this approach is that informations needed to properly back-

track are kept by the OCaml stack. The try/with construct uses stack frames to

“label” choice points in the derivation to which the function may backtrack. While

this is in general an elegant solution, it can not be employed here, since we want

to show the user the current computation, and OCaml (like most of compiled lan-
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guages) does not provide enough introspection mechanisms to explore the current

call stack.

To reach our objective we have to write a stack-less procedure (that is a tail

recursive function). Before detailing such procedure we want to give an overview of

the final result we obtained, showing the interface we offer to the user.

3 The graphical user interface

The proof searching procedure elaborates fast, but the depth-first proof searching

strategy (that is, selecting always the first goal) makes the shallow part of the

computation pretty stable. For that reason we adopted the viewport widget, that

allows to display only a subpart of a larger picture, by default the most stable.

In Figure 1 the user interface to drive the automatic procedure is shown. On

the background there is the main window of Matita, showing the current open

conjecture (conjecture fifteen). The window is divided in three columns:

• the leftmost shows the progressive number of open conjectures, the number iden-

tifying the current goal and the depth left (the difference between the user defined

bound and the actual depth);

• the column in the middle displays the i-th open conjecture, since it lives in the

original context (displayed by the background window) there is no need to print

again this information;

• the rightmost column lists all lemmas that can be applied to the conjecture. This

column displays the so called choice stack [7], colouring in grey the applied lemma.

Some additional information on these lemmas are displayed using tool tips. If a

lemma is unknown to the user, its type can be shown holding the mouse on its

name.

To attack conjecture fifteen the automatic tactic found a bunch of lemmas that

can be applied. The former, witness, has already been applied and is thus coloured

in grey. The list of grey items, read top to bottom, is the list of lemmas applied

so far. All its alternatives are shown on its right. The application of the witness

lemma to a goal of the form n|m opens two conjectures: the former (number 52)

is that for a certain ?51, m = n∗?51 and the latter (number 51) is the witness ?51

itself.

The user already sees the result of the reordering function R, since newly opened

goals have been sorted, preferring goal 52 to 51.

The next step performed by the automatic procedure is to find relevant lemmas

for the conjecture displayed in the second line, place them in the rightmost column,

grey the former and display the result of its application. In case one application fails,

the next alternative is attempted. In case there are no alternatives left, the next

alternative of the previous line it considered. Thus, if no lemmas can be applied to

conjecture 52, both line one and two are removed together with the witness lemma

that generated them and the lemma div mod spec to divides is applied.

The user can execute the tactic step by step with the next button, and switch

between the running status and the paused one with the buttons pause and play.

To drive the proof searching algorithm the user can interact with the lemmas in

7
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the computation tree (and informations needed for backtracking) into a first order

object and possibly pass it to the GUI.

To formally describe how the procedure works and the data structure used to

represent the computation status we need to define the following objects.

Definition 4.1 [Proof of goal] Given a goal (metavariable number) g and a substi-

tution Σ, the proof of g denoted with Σ(g) is the least fixed point of Σ(·) starting

from ?g.

This function is not only used at the end of the tactic to build the proof object

for the main conjecture, but also to create (and cache) the proof of intermediate

results, avoiding to search twice the same proof.

Definition 4.2 [Metas of term] Given a term t the set of metavariables occurring

in t is denoted withM(t).

As we already anticipated in the previous section, the procedure behaves differ-

ently if a metavariable occurs in a goal.

Definition 4.3 [Cache] A cache θ is a partial function from terms (actually types)

to terms. Its domain can be extended with the operation θ[T 7→ t]. All terms in θ

live in the same context.

We use the notation θ[T 7→ Σ(g)] to update θ associating the proof of g with T .

We use ⊥ to represent failures, thus θ[T 7→ ⊥] extends θ with the information that

T has no proof. The cache is an essential ingredient to obtain good performances

and avoids many kinds of loops.

Definition 4.4 [Element] We call an element a triple of type (in OCaml notation)

proof status ∗ op list ∗ goal list where goal is the type of metavariable indexes

and op is the following algebraic type:
� �

type op = D of goal | S of goal ∗ term
� �

The D constructor will decorate goals that still have to be processed (toDo),

while S will decorate goals that have been successfully solved, and whose proof may

be cached. The last component of an element is a failure list, containing all goals

that have to be considered failed when the element itself fails (i.e. when the op list

contains some D items that fail).

The last ingredient is the function to find lemmas that can be applied to a

given goal, that is the function cands described in Section 2.2. The only needed

modification is to make this function also return the applied lemma together with

the proof status: this is needed to display the choice stack to the user. Note that

cands can easily be extended to look for applicable lemmas not only in the global

environment E but also in θ since all elements in θ live in the same context Γ of the

goal (the proof searching procedure never alters Γ).

In Table 1 we define the step function mapping a list of elements and a cache

to a new list of elements equipped with a possibly updated cache. This function

is the core of the automatic procedure, and is applied until a Failure or Success

status is reached. We use ◦ for list concatenation. The complete failure status is

9
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(((P,Σ) as P, St
g :: tl, f l) :: el, θ)

step
−→ ((P, tl, f l) :: el′, θ′) (i)

whenM(T ) = ∅ and Γ ⊢?g : T ∈ P

where θ′ = θ[T 7→ Σ(g)] and el′ = purge(el, tl)

(((P,Σ) as P, St
g :: tl, f l) :: el, θ)

step
−→ ((P, tl, f l) :: el, θ) (ii)

whenM(T ) 6= ∅ and Γ ⊢?g : T ∈ P

(((P,Σ), Dg :: tl, f l) :: el, θ)
step
−→ (((P,Σ′), tl, f l) :: el, θ) (iii)

when θ(T ) 6= ⊥ and Γ ⊢?g : T ∈ P

where Σ′ = Σ ◦ [?g := θ(T )]

(((P,Σ), Dg :: tl, f l) :: el, θ)
step
−→ (el, θ′m+1) (iv)

when θ(T ) = ⊥ and Γ ⊢?g : T ∈ P

where θ′1 = θ and fl = {g1; . . . ; gm}

and Γg ⊢?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥] for g ∈ {1, . . . ,m}

(((P,Σ), Dg :: tl, f l) :: el, θ)
step
−→ (el, θ′m+1) (v)

when cands(P, g) = []

where θ′1 = θ and fl = {g1; . . . ; gm}

and Γg ⊢?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥] for g ∈ {1, . . . ,m}

((P,Dg :: tl, f l) :: el, θ)
step
−→ ((P ′

1, l1@tl, []) :: . . . :: (P ′
m, lm@tl, g :: fl) :: el, θ) (vi)

where cands(P, g) = (t1, P
′
1, g1,1 . . . g1,ni

) :: . . . :: (tm, P ′
m, gm,1 :: . . . :: gm,nm

)

and li = R([Dgi,1
. . . ;Dgi,ni

]) ◦ [Sti
g ] for i ∈ {1 . . . m}

((P, [St
g], f l) :: el, θ)

step
−→ (Success P) (vii)

([], θ)
step
−→ Failure (viii)

Table 1
Automatic procedure operational description

10



Asperti and Tassi

represented by ([], θ): the elements list can be considered to list all the alternatives

that can be used prove the initial goal, being empty means that all alternatives

have been explored with a negative result. The annotation t in St
g is not used in the

operational semantic, and t represents the lemma that was applied to g. Remember

we have to show the user the history of lemmas applied so far. The procedure starts

with the following configuration, where g is the initial goal and P the initial proof

status and θ an empty cache.

([(P, [Dg], [])], θ)

On such a status the step function applies rule (vi). calling the cands function

to get a list of alternative proof statuses. All new goals are decorated with a D

constructor, and sorted using the R function. They are positioned in front of the tl

list, separated with an S item for the processed goal g. This item, when processed,

will cache the proof found for g, and this will happen only after all newly created

D items are solved.

In our example, assuming the result of the cads function amounts to

cands(P, g) = [(t1, P1, [g1]); (t2, P2, [g2; g3])] we obtain the following state.

([(P, [Dg], [])], θ)
step
−→ ([(P1, [Dg1

;St1
g ], []); (P2, [Dg2

;Dg3
;St2

g ], [g])], θ)

Note that a new element is generated for every alternative proof status returned

by the cands function. All of them, except the last one, are equipped with an empty

failure ( fl ) list. In that way, if they fail, the cache will not be updated with a failure

for g, since there are still valid alternatives for that goal. On the contrary, the last

element inherits the failure list and adds to it g.

Rules (i) and (ii) process a success (that is an S item). The first rule is applied

when no metavariable occurs in the goal, thus the proof found will not have side

effects on the rest of the computation and can be safely added to the cache θ. In

that case, the purge function is used to drop alternatives (brothers of g). They can

be identified in the flat el list comparing the list of items, since the tl is inherited

by all brothers (in rule (vi)) and is never modified.

Rule (iii) solves a Dg item when the cache θ holds a proof for the goal g. The

substitution is enriched with an entry for g.

Rules (iv) and (v) are for partial failures, the former is applied when no applica-

ble clauses are found, the latter when a failure was previously cached for the same

goal.

Rule (vii) is for success, that is when no more items have to be processed. The

final proof status is returned.

4.1 Improvements

The procedure presented in Table 1 can be improved in many ways, for exam-

ple giving a bound to the search space or refining the caching mechanism. These

improvements have been omitted from Table 1 to increase its readability, but are

explained in the following.
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To limit the search tree explored by the procedure to a certain depth, or even a

number of nodes, some additional fields have to be added to the element structure.

To efficiently keep track of the depth or size of the tree, the element structure is

enriched with two integers representing the depth left and the actual size of tree:

every time a D item is processed, the depth limit (as well as the size) is decreased.

When an S item is processed the depth is increased again. The additional following

rule is then added to the operational description:

((P, items, fl, depth, size) :: el, θ)
step
−→ (el, θ) (iii bis)

when depth < 0 ∨ size < 0

The cache θ is still not optimal, since a goal g of type T can be associated with ⊥
because the algorithm run out of depth (or size). If the algorithm encounters again

the same goal type T with a greater depth, it could retry. To fix this problem,

goals have to be paired with the depth at which they have been generated in the

failure (fl) list, and the ⊥ symbol annotated with that depth. Then rule (iv) can

be refined as follows:

(((P,Σ) as P,Dg :: tl, f l, depth, size) :: el, θ)
step
−→ (el, θ′m+1) (iv)

when θ(T ) = ⊥k and k ≥ depth and Γ ⊢?g : T ∈ P

where θ′1 = θ and fl = {(g1, d1); . . . ; (gm, dm)}

and Γg ⊢?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥dg
] for g ∈ {1, . . . ,m}

Note that the last line stores failures for goals in the fl list that have to be enriched

with the depth at which they have been processed in rule (vi).

The cands function can be modified to properly sort the list of returned proof

statuses, in such a way that the most promising ones are processed first. The

simplest heuristic is to count the number of newly generated goals (the length of li
in rule (iv)).

4.2 Interfacing with the GUI

The GUI and the automatic procedure run in different threads. Rule (vi) checks a

condition variable 4 , associated with the pause button of the GUI, before proceeding.

The computation status (the el list) is purely functional and every loop sets a global

reference to that variable, allowing the GUI thread to render it.

The element list contains all the information needed by the GUI, but not in an

handy format. The automatic procedure and the data structure it manipulates have

been designed with both speed and user friendliness in mind, but execution speed

has been always preferred to rendering speed or to making the rendering process

4 A condition variable is a widespread synchronisation mechanism allowing one execution context to wait
for a boolean variable to became true, and another execution context to change the value of that variable
eventually waking up every thread waiting on that variable.
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easier. The function to map the element list into a data structure suitable for the

GUI is not interesting, even if far from being trivial, and will not be detailed here. It

essentially amounts in processing in parallel all op lists (one for every element in the

el list), grouping together the lemmas stored in S items. The lemma recorded in S

items is shown to the user as the choice made the procedure. The actual statements

of goals can be computed using the proof status P = (P,Σ), since all goals have an

entry in the proof problem P, and eventual instantiations of metavariables occurring

in their types is recorded in the substitution Σ.

5 Related works

Many debugger or trace visualisation tools have been proposed by the logic/con-

straint programming community. Most of them like the ones described in [21,8]

fall in the so called post-mortem trace analyser, allowing the user to inspect the

computation once it has terminated.

The recent CLPgui [10] employs 2D and 3D visualisation paradigms to show the

user the full search tree, allowing him to navigate it and zoom the interesting parts

of the computation trace.

OzExplorer [20] adopts subtree folding to make the whole tree fit the screen, a

requisite we do not have and thus we adopt a simpler viewport (a restricted view

of the search tree). Moreover we hide solved subgoals (when their solution is not a

choice, i.e. they do not instantiate any metavariable present in any other goal). [7]

introduces the notion of choice stack (list of choices made so far), similar to our list

of grey buttons in the rightmost column.

While our work shares some ideas and follows some visualisation paradigms

described in these papers, the use case of our procedure in an ITP is clearly different

from the general use case of a CLP program. These differences are summarised in

the following:

• our GUI is rarely used to display a huge program (computation), thus it is tailored

to the most frequent case of a tree of depth less then ten

• in ITPs like Matita, thanks to the reasonably large library that equips them, the

branching factor is very high and that prevents a proper tree display: siblings

would be too far to be visually related, thus we dropped the idea of visualising a

tree

• every goal has a meaning per se, thus many informations like goals already solved

can be hidden. The choice stack tells the user where the goal comes from and

this information is enough to follow the computation

For these reasons we had to develop a novel user interface, instead of reusing or

adapting one of the aforementioned tools.

6 Conclusions

In this paper we presented a SLD resolution based automatic procedure for the

interactive theorem prover Matita, that is designed to be driven by the user through

a graphical user interface. In this way we allow unexperienced user to observe the
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procedure running, possibly understanding why it fails or how it managed to solve

a goal for them. Trained users can easily tune the procedure pruning not promising

branches of the computation or following good ones.

A still work in progress addition to this work is making the procedure generate

not only a proof object, but also a proof script (the list of primitive commands to

generate the proofs object) in the spirit of [4]. The choices made by the user inter-

actively have to be recorded so that running again the automatic procedure possibly

honours the same user requests. Having a proof script does not only show the user

what the procedure did, but also greatly decreases the amount of time needed to

re-check the proof script (since proof search has not to be performed again). For-

malising mathematics with an ITP is not an easy task, and refining definitions is a

really frequent activity that usually breaks many already proved lemmas. Having

just a call to an automatic procedure can slow down the process of mending broken

proof scripts, especially if there is no way to inspect what the procedure does, mak-

ing it harder to understand the reasons of a failure. Our work already ameliorates

this situation, but having a proof script that details the previously found proof,

would be even better, allowing a fast re-execution and detection of the problem,

and allowing the user to fix the proof directly if possible, or re-run the automatic

procedure driving it towards a working proof.
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[16] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supŕieur. Habilitation
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Abstract

Mathematical systems that understand the usual ambiguous mathematical notation
need well thought user interfaces 1) to provide feedback on the way formulae are
automatically interpreted, when a single best interpretation exists; 2) to dialogue
with the user when human intervention is required because multiple best interpre-
tations exist; 3) to present sets of errors to the user when no correct interpretation
exists. In this paper we discuss how we handle ambiguity in the user interfaces of
the Matita interactive theorem prover and the Whelp search engine.

Key words: Overloading, ambiguity, user interface, theorem
prover, Matita

1 Introduction

The traditional bi-dimensional mathematical notation is well known to be
highly ambiguous. According to the usual phases of a compiler, we can see
ambiguity everywhere.

Lexical analysis is ambiguous since, for instance, x2 can be recognized
either as two tokens (when the user is taking the second element of a sequence)
or as a single token (when the user is referring to a bound variable x2).

The grammar is inherently ambiguous, and precedence and associativity
rules do not help since to the same symbol should be given multiple prece-
dences according to its semantics: for instance, equality on propositions (de-
noted by =, a notational abuse for co-implication) has precedence higher than
conjunction (denoted by ∧), which is higher than equality on set elements (also
denoted by =), which is higher than meet for lattice elements (also denoted
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by ∧). Thus A = B ∧ P can be parsed either as (A = B) ∧ P (a conjunction
of propositions) or as A = (B ∧ P ) (equality of lattice elements).

Semantic analysis is the phase most affected by ambiguity. First of all
mathematical structures usually belong to deep inheritance hierarchies, such
as the algebraic (magmas, semigroups, groups, rings, fields, . . . ) and numerical
(N, Z, R, C, . . . ) ones. Depending on the logic and semantical framework used
to represent formulae, a formula that requires subsumption to be understood
must be represented either as it is, or by insertion of explicit coercions [7].
Since multiple derivations can usually give meaning to a formula, semantic
analysis becomes a one to many relation, at least when it inserts coercions.
Secondly, even ignoring inheritance and subsumption, mathematical symbols
are often highly overloaded in different mathematical contexts. As a trivial
example, −

−1 is overloaded on semigroup elements (and thus on numbers
by instantiation) and on relations (and thus on functions by inheritance).
Moreover, x−1 can be understood either as x at the power of −1, or as the
inverse of x (which is a semantically equivalent, but intensionally different
operation).

Another problem in giving semantics to formulae is that the α-conversion
equivalence relation, which semantically identifies formulae up to bound vari-
able names, does not hold syntactically since it is common practice to reserve
names for variables ranging over some set, omitting to specify for quantifiers
the sort of the bound symbols. For instance, f, g, . . . usually range over func-
tions, x, y, z, . . . over domain elements and R over relations, suggesting the
expected interpretation for f−1 and x−1 in a context where f and x are im-
plicitly universally quantified. More generally, mathematical texts often start
setting up a local context of conventions used for disambiguation, and it is
this context that drives disambiguation.

The last phase of a compiler is the translation of the semantically enriched
abstract syntax tree in the target language. Loosely speaking, in the case of
mathematical systems (and theorem provers in particular) which are based
on a logic or a type system, this phase corresponds to the final internaliza-
tion (representation) of the formula in the logic. For instance, an equality
over rational numbers can be represented using Leibniz equality (the smallest
reflexive relation), using a decidable equality over unique representations of
rational numbers (e.g. as lists of exponents for the unique factorization), using
an equivalence relation over equivalence classes of non unique representations
(such as pairs of integer numbers representing the enumerator and the denom-
inator), and possibly in many other ways. And all this without considering
different representations of functions (e.g. as intensional, possibly executable
algorithms, or as functional relations).

Since the standard mathematical notation is so ambiguous, it is worth
asking if we want to address it in mathematical systems and if it is worth
of, or if we better do like in the programming language community, where
only artificial unambiguous languages are used. It can be argued, and we
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considerably agree, that, even from the user point of view, it is worth avoiding
ambiguity unless we are obliged to consider it. For instance, the user of a proof
assistant who is working on a particular topic already needs to study not only
the logic and the commands the system provides, but also to get acquainted
with the library of already proved results, in order to avoid wasting time
relying on lemmas that are not available. In these cases, learning also the ad-
hoc notation adopted by the previous contributors to the library is probably
a slightly annoying, but not very time consuming thing to do. Moreover,
the benefits could be high since less ambiguity means better understanding of
errors (since the user and the system assign for sure the same meaning for what
has been written) and since no (or less) ambiguity can speed up the system in
significant ways (since the set of interpretations for ambiguous terms is often
exponential in the size of the formula).

Nevertheless, there are important situations where we cannot avoid am-
biguity. The first one is user interaction with a mathematical library whose
content is unknown. Suppose the user needs to look for some theorem or
formula on the Web (maybe in a Wiki of mathematical results) or in the li-
brary of a proof assistant without knowing what is in the library and which
notation has been used. If he is lucky, what he is looking for will have a
name (for instance, if it is a famous theorem) or a set of keywords to identify
it. More often, though, he could be interested in some technical result which
he can only looked for by writing down a formula and looking for instances,
generalizations or logical equivalences of that formula in the library. This is
what happens all the time if we start using a proof assistant with a large,
unstructured library: we know which technical lemma we need to prove some
result, but we have no idea where the theorem could have been stored in the
library, nor what notation has been used. Indeed, it has already been observed
several times in the past that users tend to store ad-hoc, seemingly elsewhere
useless technical lemmas relating to basic notions of the library in their own
file on some advanced topic, to avoid the burden of polluting the library, or for
the possibility of extending someone else files (especially if belonging to some
“standard ” library of the system). In this scenario, the only lingua franca to
find what we need is the standard mathematical notation.

Another scenario where diverging from the standard notation may be dif-
ficult is in applications of theorem provers to didactics. According to our
experience, it is possible to convince mathematical teachers to make students
experiment with a proof assistant only if it understands exactly the set of
formulae presented informally.

In a series of previous papers [9,3,10,11] we studied efficient algorithms
that exploit type inference algorithms to speed up semantic analysis of am-
biguous formulae. Our algorithms partition all possible interpretations of a
formula in equivalence classes such as every equivalence class contains either
one single well-typed interpretation, or a set of interpretations all character-
ized by the same typing error. The latter equivalence class is represented
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nality of the set of all possible interpretations is exponential in the number
of overloaded symbols, whereas the cardinality of the partition computed by
the algorithm is much smaller. Moreover, we can compute that partition by
consecutive refinements of coarser partitions of equivalence classes of interpre-
tations which are represented by terms with placeholders which are either ill-
typed (not needing further refinement) or which are not known to be ill-typed
(needing further refinement only if they contain at least one placeholder), see
Fig. 1 (b).

Ambiguities introduced by the lexical analysis and parsing phases are not
addressed by our algorithms for semantic analysis, but they can be previously
addressed with parsers recognizing GLR grammars (see, for instance, [6]) in
order to produce, from the input stream, compact representations of a set of
abstract syntax trees to be feed to our semantic analysis. The final output can
still be represented by a single partition that satisfies the properties required
above.

Computing the partitions efficiently is, however, only part of the problem.
The most critical aspects of ambiguity is indeed interaction with the user,
that we can analyze according to the shape of the partition returned by the
parsing and semantic analysis phases.

The simplest scenario is a partition containing only one equivalence class
representing a single well-typed term. In other words, there exists only one
interpretation that “makes sense” (is well-typed), and possibly many others
which do not. It is thus natural that the system picks the correct one without
any interaction with the user, since it is unlikely (but not impossible) that
the interpretation the user has in mind is a different one. Sect. 2 addresses
the problem of providing non-invasive feedback to the user about the chosen
interpretation.

The second scenario is the one where there exists in the partition mul-
tiple equivalence classes representing well-typed terms. When subsumption
is explicitly represented by coercions in the semantics, this happens all the
time since a formula like x + y can live at any level of the algebraic numeric
hierarchies. Even when this is not the case, if we do not consider the contexts
the formula lives in, many formulae receive multiple well-typed semantics.

In [3] we addressed the problem by introducing aliases. An alias is a
preference for some interpretation of a symbol that can be given explicitly by
the user, or that is automatically inferred by the system looking at previous
recent uses of the symbol. Equivalence classes representing correct terms in
the partition are ranked according to their degree of respect for aliases. Special
aliases can be used to control insertion of coercions.

Aliases are not sufficient to impose a linear order on the interpretations.
For instance, consider a formula where there occurs two overloaded symbols
+ and ∗ and a partition with only two correct interpretations: the first one
respects only the alias for +, and the second one only that for ∗. Thus no
interpretation is ranked absolutely higher than the previous one.
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In [3], to force a linear order on ranks, we have introduced the notion of
passes: each pass is characterized by a class of aliases used to constraint the
accepted interpretations. For instance, in Matita we are currently using five
passes.

(i) do not insert coercions and use only the most recent alias for each symbol,
i.e. use only the last recently used interpretations for a symbol

(ii) as the first one, but insert coercions

(iii) do not insert coercions and use only already used aliases, without insert-
ing new ones, i.e. do not automatically pick a new interpretation for a
symbol which has not been used yet; Fourth pass: as the third one, but
insert coercions

(iv) look for all interpretations of a symbol, adding new aliases for the chosen
interpretation. Equivalence classes in the partition are ranked according
to the pass that produces them.

Aliases and passes do not fully solve the problem, since multiple correct
interpretations generated in the same pass are on purpose ranked in the same
way. Thus the user interface must collect from the user enough information
to pick the right interpretation. This is the topic of Sect. 3. Moreover, it
may happen that the automatic ranking fails to rank first the interpretation
the user has in mind. Thus, as in the first scenario, it is important that the
user interface provides non-invasive feedback on the interpretation given to
formulae. This is the topic of Sect. 2.

The third scenario is the one where the partition only contains equivalence
classes of interpretations that are not well-typed. This means that all possible
interpretations contain an error. Our disambiguation algorithm that collects
errors in equivalence classes already allows to reduce (usually exponentially)
the number of alternative error messages to be presented to the user. Never-
theless, this is not sufficient since the user has a single interpretation in mind
and, when presented with multiple errors associated to multiple interpreta-
tions, he must first spend time to spot the right interpretation before trying
to understand the error. When too many interpretations are listed, this proce-
dure is so annoying that the user stops reading the errors and randomly tries
to fix the error ignoring the system provided potentially useful information.

In [10,11] we addressed the problem by ranking equivalence classes of ill-
typed terms pruning out spurious errors. A spurious error is an error located
in a sub-formula which admits alternative interpretations that assign to the
same sub-formula a well-typed interpretation. The idea of a spurious error is
that a spurious error is likely to be due to a wrong choice of interpretation,
and not to a genuine user error.

Spurious error detection can be efficiently integrated in our efficient dis-
ambiguation algorithms and, according to our benchmarks in [11], is effective
in reducing the average number of errors to be presented to the user. Nev-
ertheless, we need a light-weight user interface to present the remaining non
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subsumption has been used, and we would like to inform the user about that
in a non-invasive way. However, since coercions are not represented visually
in any way (to avoid too much noise), there is in general no place where to
put an hyperlink. Thus, our current solution is to provide additional feedback
allowing the user to semantically select sub-terms in the sequent window and
ask to compute their type as in Fig. 3.

Semantic selection [3] is a restriction of selection to well-formed sub-formulae
which we provide on top of the MathML widget, which displays documents
already represented by XML trees. We do not plan to provide the same func-
tionality on the script window, since semantic selection is not easily supported
by textual widgets and since re-computing the type of the sub-formula requires
re-disambiguation of the formula under the same conditions the formula was
disambiguated in the first time. These are no longer the conditions the system
is in.

We believe that asking for the type of a sub-formula is an useful feature
anyway, but that is not fully satisfactory to detect the use of subsumption.
The reason is that multiple checks can be required to fully understand where
coercions have been put. Another strategy we have adopted is to add an
option to the View menu of Matita to temporarily stop hiding of coercions.
This is also not satisfactory since, when hiding is deactivated, the feedback is
too invasive. We are currently looking for better solutions.

3 Choosing an interpretation

As already discussed in the introduction, after disambiguation of a formula
there could be multiple equally ranked interpretations, that differ on the in-
terpretation of at least one overloaded notation. Fig. 4 shows a very simple
example where the user in a new file starts using the infix addition and multi-
plication notation which are overloaded in the library over integer and natural
numbers. The system computes the partition of ranked equivalence classes of
interpretations, finding two interpretations with maximal rank. In the first
one, all occurrences of the symbols are interpreted over natural numbers, in
the second one over integer numbers. Other correct interpretations that re-
ceive a lower rank are obtained by considering subsumption between natural
and integer numbers. For instance, another possible interpretation is given by
∀a, b : nat.∀c, d : int.(a +N b) ∗Z (c +Z d) = a ∗Z c + a ∗Z d + b ∗Z c + b ∗Z d.

Since the system is unable to decide which maximally ranked interpretation
is the one expected by the user, it computes a tree of discriminating questions
among interpretations. Each node in the tree is a multiple answer question
about the meaning of a symbol, where the possible answers range among the
meanings used in the set of correct interpretations. The node has a child
for each possible answer. The root of the tree is the question that allows
to prune the higher number of interpretations. Its children are computed
recursively according to the same criterion applied to the remaining set of
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repeating the interaction the next time the script is processed. This is achieved
by automatically adding aliases to the script (see second half of Fig. 4). These
are exactly the same kind of aliases we already discussed in Sect. 1. Aliases
can be either automatically generated or they can be declared by the user
with the same syntax. In combination with passes, they are used to rank
interpretations.

The string before the equal sign in an alias declaration is the name of the
MathML Content symbol used to give a representation of the notation at the
content level. The string after the equal sign was previously associated by the
user to a MathML Content to MathML Presentation mapping when declaring
the notation. We also associate aliases to identifiers which are represented in
MathML Content by themselves. In this case, the syntax becomes

alias id "name" = "URI".

Aliases look similar to Mizar’s environments where the user needs to list,
at the beginning of an article, all notations (but also definition and theorems)
he wants to use. But the syntactic similarity is (partially) misleading: in
Matita all definitions, theorem and, potentially 3 , notations are always visible
and the user does not need to declare in advance which parts of the library
it depends on. On the other hand, like in Mizar, the list of aliases in a
script becomes very large when no alias is pre-loaded in advance. To this
aim we provide the include command that pre-loads all aliases that were
active at the end of a previous script. The include command looks similar
to Coq’s import or to Isabelle’s theory importing machinery and it leads to
the same advantages with respect to explicitly listed aliases (see [12], Sect. 4.8
for a short comparison). Even in this case, however, the similarity is only
syntactical, since definitions, lemmas and potentially notations can be used
anytime in Matita even without including them. The include command only
pre-loads aliases to set preferences (that can be overriden) on the preferred
interpretations for overloaded symbols and notations.

4 Error reporting

As already discussed in the introduction, disambiguation of a formula con-
taining an error results in a partition made of ranked equivalence classes of
interpretations characterized by the very same error (one for each equivalence
class). This is the most difficult scenario for an user interface, since the user
is already making a mistake (and thus he can be confused), and we risk to
show errors relative to interpretations he does not mean (increasing the con-

3 The current implementation of Matita is based on the CamlP5 parser which does not
handles GLR grammars. Thus it is currently not possible to pre-load all user notations
given in the library. The include command of Matita thus performs both pre-loading of
user notation and pre-loading of aliases. The include’ alternative form pre-loads notation
alone. We are currently experimenting with alternative GLR grammars for OCaml in order
to remove this limitation.
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5 Conclusions

As far as we know, Matita is the only theorem prover that supports arbitrarily
overloaded notation and that implements a user interface to cope with ambi-
guities. We have identified three situations where the user interface plays an
important role.

The first one is in providing feedback about the way the system has in-
terpreted symbols. This has been achieved using conventional techniques like
hyperlinks and type inference for sub-formulae.

The second situation is user interaction to select one interpretation among
those that are deemed equally likely. Our strategy consists in minimizing
the interaction by building trees of maximally discriminating questions. An
additional challenge consists in the need to record the user choices to avoid
repeating the interaction.

The third and most critical situation is that of presenting multiple error
messages associated to a wrong formula. Here we designed an interface to
progressively provide information to the user on-demand, starting from the
less informative (but less confusing) one (i.e. error locations) and moving to
the one requiring more effort to be understood by the user.

A preliminary version of the user interface was implemented for the Whelp
search engine [2], and re-implemented in Matita, but it was not satisfactory.
Matita now implements the new interface described in the paper and we plan
to port the new user interface also to Whelp.

Since alternative user interfaces providing the same functionality do not
exist, it is difficult to do comparisons. Similarly, we are looking for ideas to
collect a quantitative feedback from our users. On the other hand, the ones
that were exposed to the previous interface declared to be far more satisfied.
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Abstract

Asynchronous proof processing is a recent approach at improving the usability and performance of interactive
theorem provers. It builds on a simple metaphor: The user edits a proof document while the prover checks
its consistency in the background without explicit requests from the user. This paper presents a software
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1 Introduction

The communication with an interactive prover has traditionally been structured

linearly [6,1]: The commands of a proof script are stepped through one-by-one, and

the region that has been sent becomes locked to prevent further editing by the user.

An undo mechanism built into the prover is used to revert the steps and unlock

parts of the region on demand. In this model, the user interface serves as a script

buffer that tracks the commands that have been processed by the prover, such that

they can be saved to a file for later replay.

The linear processing model is very much centered on the mechanics of proving

and it is not flexible enough for greatly improving the usability of future user inter-

faces. One approach to usability is the direct manipulation of familiar objects [14].

Aspinall et al. [5] have developed a document-centered view in which the user edits

a proof document just as a mathematician would edit a pen-and-paper proof. The
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This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:gast@informatik.uni-tuebingen.de


Gast

lemma curry:

"(A & B --> C) = (A --> B --> C)"

apply (rule iffI)

apply (rule impI conjI|· · ·)+

done

apply (auto intro: curry)

lemma curry: · · ·

apply (rule iffI)

apply (rule · · ·)+

done

apply (auto intro: curry)

...
...

id=678

id=768

id=134

id=890

id=344

User Interface Theorem ProverProtocol

Messages

Fig. 1. Commands in the Interface and Prover

prover is used only to verify the consistency of the document. The actual processing

of proof commands, however, remains linear in their proposal.

Wenzel [17] has recently pointed out that the linear processing model is far from

optimal. The first possible improvement is the use of modern multi-core processors

for parallel processing of independent proof commands. In the Isar [19] language,

for example, proofs do not influence any of the references to the proven fact. It

is therefore possible to postpone the execution of proofs until processing resources

become unused, and different proofs can be executed by different processors in par-

allel. Since proofs take 95% of the overall processing time, the document structure

itself can be re-checked almost immediately in response to edits by the user. The

second improvement concerns usability. In the Mizar system [12], the prover runs

in batch mode and annotates the input proof document with error messages where

processing fails, but continues with the next command that does not depend on the

erroneous command. The usability of the prover is greatly improved, because the

user can work in terms of the metaphor of a proof document. Wenzel proposes to

make this kind of response available for interactive proving sessions. The linear pro-

cessing model is dropped in favor of asynchronous processing of proof documents,

where the prover decides when it will process which command.

The purpose of this paper is to explore the demands that asynchronous proof

processing poses on the user interface component and the software design of both in-

terface and prover. Our main contribution is a new state model for commands that

enables asynchronous processing and a corresponding protocol for the communica-

tion between interface and prover. Since the protocol allows the prover to choose the

processing order, it can be also be supported by existing, linear-processing provers

during a migration phase. We present a concrete implementation of a user interface

that works with the current development version Isabelle.

Figure 1 summarizes the overall challenge: The proof document editor on the

left holds the textual representation of the commands as they were typed by the

user. The prover on the right holds an internal data structure that records the

dependencies between commands and allows the commands to be scheduled for

processing. The prover and the interface communicate by sending messages through

some communication channel. The commands on both sides are linked logically
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queue scheduler

Thread1

...

Thread1

Prover Process

processing
requests

state
changes

Fig. 2. Model of the Prover based on the Active Object Pattern

through unique IDs. Messages passed between prover and interface communicate

changes to specific commands by referring to their IDs.

The remainder of the paper describes our solution to this challenge. Section 2

proposes a state model for commands that delegates the decision about the order

of processing entirely to the prover. Section 3 describes a software architecture for

the user interface that supports asynchronous proof processing. Section 4 compares

our proposal to related work. Section 5 concludes.

2 A Document Model for Asynchronous Processing

Asynchronous processing of proof documents requires a self-contained state model

for individual commands: Both the user interface and the prover manipulate the

command, possibly at the same time, and the effects and interactions of these

manipulations must be well-defined in every possible situation and every possible

order. This section develops a state model for the user interface and a protocol for

communication with the prover.

2.1 A Model of Asynchronous Processing

Isabelle is currently being extended to support asynchronous processing of com-

mands [18]. To place as few constraints as possible on the software structure of

Isabelle, we abstract over the concrete implementation and base our architecture

on an abstract model of asynchronous processing. This approach has the additional

advantage that the infrastructure and user interface that we develop in Section 3

will work with other provers as well.

The basis of our system model is the Active Object pattern [13], which has

proven successful in systems that do asynchronous processing. The core of this

pattern is shown in Figure 2. The prover receives processing requests and stores

them in a queue until a worker thread becomes idle. At this point, a scheduler

examines all requests in the queue, decides which of them is to be executed next

and hands it on to the idle thread. When processing finishes, the thread sends the

result back to the originator of the request.

It remains to define the messages that contain requests to the prover and noti-

fications to the interface. This protocol can be designed in two ways: By focussing

on the interface as the originator of the requests or by focussing on the prover as

the component that handles them. We choose to start from the interface for two
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reasons: First, asynchronous processing of proof documents can only provide an in-

crease in usability if the metaphor of a “proof document” is presented to the user in

a consistent manner, and this is not very likely if technical considerations dominate

the protocol design. Still more importantly, designing a protocol also encompasses

defining a state model that specifies under which conditions which messages may

be sent or received. Since the prover should be free to choose a processing or-

der that suits its existing software structure, it would be unacceptable make any

prescriptions here.

In order to design the communication protocol from the interface point of view,

we need to design a state model for commands used by the user interface. The

messages of the protocol then correspond to the events that label transitions of

the state machine. In the subsequent presentation, we use the terminology of the

UML [7], including substates (or nested state machines). Events that do have no

transition from a state are ignored.

2.2 The State Model for Commands

We view a proof document as a text document that is partitioned into non-overlapping

commands. Each command is a section of the text that can be sent to the prover

individually. The main concern is the problem of serializing accesses to shared re-

sources which occurs in any form of asynchronous or concurrent processing. In the

current application, the commands are conceptually shared between the prover and

the interface and each component needs to manipulate them according to internal

considerations. The conventional model of mutexes to prevent interference is not

sufficient, since prover and interface run in separate processes. We therefore intro-

duce an ownership semantics [11]: Instead of sharing some memory object between

two threads, each process manipulates those commands that it owns, and there

exists a protocol for transferring ownership.

Figure 3 shows the resulting state model for commands. The prover owns the

command if and only if the command is in state sent ; otherwise, the interface owns

the command. The user may manipulate commands that are in state idle. In

particular, only idle commands can be destroyed. The change of ownership occurs

by sending the command to the prover and by revoking the command from the

prover. Neglecting the nested state machine in state sent for the moment, the events

capture just this process: The events send and revoke are generated by the interface

whenever it judges that a command is to be processed by the prover or is to be

revoked for further editing. The event accepted occurs as soon as the message with

the command has been transmitted to the prover via the communication channel.

The event released is generated by the prover when it has deleted all references to

the command from its internal data structures.

The states to be send and to be revoked are necessary since neither sending nor

revoking are synchronous operations. The interface must not stall until the prover

answers a particular request, because due to dependencies among commands, both

sending and revoking a command may take a noticeable time. The state to be send

therefore indicates that the interface waits for the prover to accept the command;

state to be revoked indicates that the interface waits for the prover to release it.
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idle

to be sent to be revoked

sent

queued being processed

processed

error

send

revoke

accepted
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revoke

send

processing

success

failure

destroy

Fig. 3. A new state model

The state sent indicates that the command has been received successfully by

the prover. The state has four substates which reflect the general execution model

from Section 2.1. They are introduced for the benefit of the user who will want to

be informed about the progress of proving. The user interface may, for instance,

highlight the commands according to the substate. The transitions are labelled with

informational messages sent by the prover. If a command ends in state error, then

the interface may decide revoke the command automatically for further editing.

The transitions in the outer state machine should be clear from the meaning of

the events. We point out the following details, because they clarify the intention

of asynchronous document processing and delineate the approach from sequential,

history-based models.

• Except in the purely informational nested machine, there are no events success

or failure, because their meaning relates to the order of execution, which is con-

sidered an internal decision of the prover.

• There is no event interrupt which the interface could send to interrupt a particular

command. Interruption occurs automatically if the prover receives a revoke mes-

sage for a command that it happens to be processing. In the model of Section 2.1,

the scheduler will abort the corresponding working thread.

• The prover may decide to release a command even without a revoke request. This

may happen due to dependencies known only to the prover. However, from the

user’s point of view, the command still is to be processed. The transition from

sent on event released is therefore to state to be sent rather than idle.

One instance of this behaviour is Isabelle’s undo mechanism. When the fin-

ishing proof step (done,by,qed) of a theory-level statement is undone, then the

entire proof is undone. The above released transition ensures that those proof

commands that the user has not explicitly requested to be undone will be re-

executed automatically.

• Because of the ownership semantics, there is a direct transition from to be sent

to idle on event revoke, the transition occurs without the prover being involved.

Likewise, the transition from to be revoked to to be sent on event send can occur

without the prover being notified.
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2.3 Protocol for Prover–Interface Communication

The protocol contains three groups of messages exchanged between interface and

prover. The first group consists of the events in the state model described in Sec-

tion 2.2. They negotiate ownership for individual commands and convey information

about their current processing state. Each message contains the ID of the command

whose state is modified. It is important to note that no particular sequence of mes-

sages is prescribed. By the nature of asynchronous processing, the events that may

occur are determined from the states of individual commands alone.

The second group addresses the maintenance of the document structure. Since

a batch run must be guaranteed to produce the same results as the interactive

work, the textual order of commands in the proof document needs to be known

to the prover. The interface therefore sends message create(id,prev) whenever it

creates a new command with ID id whose textual predecessor has ID prev. It sends

destroy(id) when the user edits have destroyed the command with ID id. The

interface must own the command that it reports as destroyed.

The third group consists of a single message request(id) that the prover sends

to the interface if it judges that it cannot proceed with processing without own-

ing command id. The interface is, of course, free to disregard this request. The

motivation for this request is seen from the following simple situation:

lemma "A & B --> A"

apply auto

done

When the user decides to send the done command, the prover can easily determine

that it needs the preceding commands up to the next top-level statement, for pro-

cessing. If the prover could not request commands, the interface would have to send

all preceding commands, because some of them just may be necessary.

2.4 Retrofitting Existing Provers

The switch from a synchronous, linear processing model to asynchronous processing

and event-based communication requires a major change in the design of the prover.

This section shows that it is straightforward to insert an emulator between interface

and prover that communicates with the interface by the new asynchronous proto-

col, while executing commands synchronously in the background using the existing

communication channel to a single-threaded prover. As a first step to implementing

asynchronous processing, this emulator could also be implemented in the prover.

The emulator follows the model of Figure 1 directly. It maintains a doubly-

linked list of commands with unique IDs and a mapping from IDs to command

objects. The list is constructed according to the create and destroy messages

received from the interface. The remaining messages from the interface concern the

state of individual commands. Since the interface is free to choose any sequence

of send and revoke messages, the emulator must also keep track of the individual

commands’ states. Figure 4 shows the state model used by the emulator. Its overall

structure resembles the inner state machine of state sent in Figure 3, but special

handling for interrupts and undo is required.
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Fig. 4. State Model in the Emulator

Commands start in state missing, which indicates that the command is currently

owned by the interface. Whenever this state is entered, the prover sends a message

released to the interface. When the command is sent by the interface, the emulator

considers it as queued. It is, however, not necessary to create an explicit queue

data structure. Instead, the queued state has a completion transition [7], which

fires spontaneously as soon as the source state can be left. There are two guard

conditions: The prover must be idle and the command that precedes the current one

in the text must already be processed. The second condition obviously implements

a queue-like behaviour. The state being executed is left on three events: If the

prover reports a success, if it reports a failure, or if the user interfaces revokes the

command. If the command is revoked, then the prover needs to be signalled to

stop processing the command. The command remains in state interrupted until the

prover acknowledges by event interrupt complete that the execution of the command

has been aborted. In this case, the command becomes missing, as requested by the

interface. When a completely processed command receives message revoke, it enters

state revoke. The emulator sends suitable undo commands to the prover, and as

soon as they have been executed, the command is released.

3 Software Architecture

This section discusses the software architecture of the user interface that emerges

from the considerations of Section 2. Figure 5 gives an overview. The Host Editor

is a generic text editor that the user employs to enter the proof document. It is

extended by a Display Plugin that renders the current state of individual commands

to the user. Depending on the editor, this functionality may be implemented by spe-

cial widgets or by markups in the existing display components. The Infrastructure

for Asynchronous Proof Processing (IAPP) is the core of our system. It implements

the mechanisms necessary to support asynchronous proof processing in a reusable,

portable manner. Finally, the Prover Process communicates with the IAPP using

the protocol from Section 2.3. An emulator (Section 2.4) translates the requests to

a linear processing model and communicates with the existing Isabelle process.

3.1 Editor Component

Using an existing editor for the text of proof documents has many advantages over

a special purpose front-end. The standard features like cut&paste, drag&drop, file

management, and syntax highlighting are available without cost, and the user may
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Fig. 5. Software Structure

public interface Document {

void addDocumentListener(DocumentListener l);

void removeDocumentListener(DocumentListener l);

String getCharacters(int start, int end) throws DocumentException;

int getLength();

char getCharacter(int index) throws DocumentException;

}

public interface DocumentListener {

void documentChanged(DocumentEvent ev);

}

public class DocumentEvent {

public Document doc;

public int start;

public int removed;

public int inserted;

}

Fig. 6. IAPP Document Abstraction

already be familiar with the handling. The design of the IAPP aims at making

minimal assumptions about the editor, in order to allow different alternatives to be

evaluated. There are three basic requirements:

• The editor’s document content can be accessed.

• The editor’s document model implements the Observer [9] pattern.

• The editor can be extended to display new components.

The first two requirements can be made concrete by the Java interfaces that define

the expected functionality in the implementation (Figure 6). A Document has meth-

ods for adding and removing observers [9] of type DocumentListener, which are

notified about changes to the text. Following the SWT widget set, a change consists

of a removing a number of characters and inserting a number of characters. Since

the IAPP does not keep a copy of the text, the inserted string is not transmitted.
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It is important to point out that the editor does not have to be written in Java.

It is also possible to write an adapter that implements the interface but translates

the method calls to messages that are sent over some communication channel. The

callbacks to the observers take place when the editor process sends a change message.

The editor-specific state renderer component displays the progress and result

of asynchronous processing. It is notified about all changes to the processing state

of the command, and the textual results, for instance error messages, that Isabelle

has sent during processing. The design does not specify the exact nature of the

display: highlights of commands in the proof document, icons that indicate failure,

and a separate display for goals may be suitable. Again, it is possible to write

an adapter that translates the method calls into messages and sends them to an

external process.

The editor may also generate events send and revoke (Section 2.2) that change

the state of individual commands, and induce the command executor to send them

to the prover or have the prover release them. Whether the events are triggered

explicitly by the user or a special logic generates them automatically is not specified

by the IAPP. We see it as a distinct advantage to be able to experiment with different

strategies and evaluate their effect on the usability of the user interface.

3.2 Tracking Document Changes

One of the main challenges in asynchronous proof processing is the maintenance of

the document structure as a sequence of commands. Each command is tagged with

a unique ID that is used in communication with the prover, such that destroying,

creating, and changing commands requires notification of the prover, which due to

dependencies may result in extensive and time-consuming proof operations. The

textual edits by the user must therefore incur the minimal necessary changes to the

document structure. This requirement is in contrast with linear processing, where

the splitting of the document can be postponed until the user sends text to the

prover. The PGIP architecture [4] contains similar problems, which are approached

by letting the prover re-parse the elements affected by an edit. As our analysis

shows, it is by no means trivial to decide which elements are affected.

Figure 5 shows a separation of concerns in document maintenance: the syntactic

partitioning of the document into elements is handled by the document structure and

splitter components. The command objects are attached to elements and implement

the state model of the IAPP (Section 2.1). The elements of a document are always

non-overlapping and cover the complete document. An element offers two operations

that maintain this invariant: splitAt(pos) shrinks the target element to end at pos

and creates a new element that covers the characters from pos to the next element.

Operation join() extends the target element to cover also the subsequent element

in the document, and destroys that second element.

The document structure and the splitter together maintain the partitioning into

elements. The document structure is responsible for maintaining the start positions

of the elements through deletions and insertions: When text is inserted, the positions

of all later elements are increased, when text is removed, they are decreased. The

implementation uses a gap-store data structure to make the computation efficient.
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The document structure also identifies the elements that are affected by a textual

change and reports them to the splitter. The splitter has to decide whether the

changes lead to splitting or joining elements.

The splitter for Isar proof documents can take advantage of the fact that each

command starts with a specific keyword. Whenever a textual change leads to the

creation of a keyword, the containing element is split at the position of the keyword.

Whenever a change leads to the deletion of a keyword, the element is joined with

the previous one. The task is not entirely trivial for two reasons. First, keywords

in quoted regions must not lead to a split. There are three kinds of quotes in

Isar: Comments ((*· · · *)), inner syntax ("· · · "), and verbatim text ({*· · · *}). The

splitter has to maintain for each element those regions that are quoted. The second

complication is the interaction with the state of commands: Only idle commands

can be joined or split, such that the splitter must generate revoke events where

necessary. Until these requests are acknowledged by released events, the splitter

cannot proceed. In order to avoid stalling the interface, the splitter itself must work

asynchronously. Whenever an element becomes idle, the splitter decides whether it

must resume some postponed operation.

We have also considered using a general incremental parsing algorithm (see [10])

to delineate the commands. However, the specialized solution makes it much easier

to guarantee that no unnecessary changes to the document structure take place.

Also the interaction with the command state cannot be reconciled with existing

parsing technology.

Figure 5 shows that the splitter component also attaches information about the

recognized keywords to commands. Such information is useful for outline views

and for recognizing the category of the command. The effect of undo-operations in

Isabelle, for instance, depends on whether the command is a top-level command, a

proof command, or a command that finishes a proof (qed, done, by).

3.3 Executing Commands

Executing commands in asynchronous proof processing is more than simply send-

ing selected commands to the prover. It requires negotiating the requests by the

user and the prover. The user marks some commands to be ready for processing

and reclaims some for further editing; at the same time, the prover may request

commands and may release others, guided by the dependencies managed internally.

The command executor component in Figure 5 reflects this insight: It observes both

the state changes of commands and messages from the prover, and decides on the

new state of commands and the commands to be sent to the prover.

To make the prover communication more concrete, we have modelled the mes-

sages from Section 2.3 as Java method calls between the command executor and

the emulator. These classes communicate only through the interfaces defined in

Figure 7. The class CommandID encapsulates an arbitrary String. These interfaces

have a second advantage: As soon as Isabelle implements the new protocol natively,

we can replace the emulator class with an adapter that implements the interface

AsyncInterface and translates method calls to message and vice versa.

The logic of the command executor itself is minimal. The command objects
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public interface AsyncProver {

void send(CommandID id, String command);

void revoke(CommandID id);

void create(CommandID id, CommandID prev);

void destroy(CommandID id);

}

public interface AsyncInterface {

void released(CommandID id);

void request(CommandID id);

void queued(CommandID id);

void startProcessing(CommandID id);

void success(CommandID id);

void error(CommandID id);

void result(CommandID id, Result r);

}

Fig. 7. Prover/Interface Protocol

from Section 3.2 implement the state model from Section 2.2, i.e. they trigger the

appropriate state changes according to the occurring events. The command executor

merely handles commands in states to be send and to be revoked by dispatching

messages send and revoke, respectively, to the AsyncProver. Conversely, if the

executor receives message released from the prover, it triggers event released in the

command’s state machine.

Handling request messages touches on questions of usability. In the current

implementation, the executor triggers the event send on the command, such that

in the next step, the executor is informed about the command being ready for

sending. As a result, commands that the prover requires for processing are sent

automatically. More sophisticated strategies may take the last edits by the user

into consideration.

The remaining messages in interface AsyncInterface provide information on

the processing state of individual commands. The first four messages are explained

by the nested state machine in Figure 3. The Result object in the last message en-

capsulates one output element from Isabelle’s stream. Among the possible elements

are new proof states, and error, warning, and tracing messages. The executor stores

this auxiliary information in the objects representing commands, from where it is

retrieved by the state renderer.

3.4 An Minimal Interface

We have implemented a minimal user interface to evaluate the usability of theorem

proving applications build on top of IAPP. Since currently no editor is a clear

favorite for a user interface [18], we have chosen to use basic Swing widgets for the

prototype. Figure 8 shows the result.

The middle pane shows the text of the proof document. The highlights indicate

the processing status of individual commands. Since the emulator (Section 2.4)
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sent automatically. If a command is found to contain an error, it would be revoked

and left idle until the user has edited it again. Even though some commands would

be executed only speculatively, with modern multi-core processors the user would

not notice an increased answer time of the interface.

At present, no final answer can be given about the best strategy to increase

usability. However, the IAPP simplifies experimentation since the user interface

only needs to generate send/revoke events, while the IAPP carries out the request

in the background.

4 Related Work

The PGIP protocol [2,4,3] defines a standard for communication between interac-

tive provers and user interfaces. It is a generalization of the text-based mechanisms

of the ProofGeneral [1]. The supporting architecture PGKit is message-based: the

prover and display components exchange messages with a central broker. The bro-

ker maintains the proof documents currently being edited and negotiates changes

with both display components and provers. The proof documents are stored as

the textual commands in the provers’ native languages, the document structure is

represented by XML markups.

unparsed

parsed

outdated

processed

being processed
send to prover

error response

normal response

outdate request

replay proof

parse command edit command

edit command

Fig. 9. PGIP Command States

Figure 9 shows the state model for individual commands [3]: Text that has been

entered or modified is considered unparsed. It is submitted to the broker by the

display components; the broker sends unparsed text fragments to the prover and

receives the structure in a parse command in return. Parsing is expected to be

efficient and to occur after a brief delay. The user can induce the broker to send

a parsed command to the prover, in which case the command enters state being

processed. When the prover sends the acknowledgement that the command has

been processed successfully, the state changes to processed. If an error occurs, the

command reverts to state parsed. The state outdated is used to model undo/redo

mechanisms.

The PGKit architecture is thus built around a central broker that takes control

of the processing. It also manages dependencies between commands to decide which

commands need to be processed and outdated [4, Section 3.2]. The state model for

commands implies that the broker decides which commands need to be processed,

and it knows which are currently being processed. Observe for comparison that

the PGIP model resembles the state model of the emulator (Section 2.3) rather

than that of the IAPP itself (Section 2.2). The second distinction from the IAPP

is the requirements that the PGIP places on the provers: the prover has to parse
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commands and provide dependency lists, both of which may require substantial

changes to the software structure of existing provers. The IAPP, on the contrary,

aims at assigning minimal responsibilities to the prover. The rationale is that

fitting asynchronous processing into existing provers will be much simplified if the

implementation can take the existing software structure into account as much as

possible. In particular, dependencies and the order of processing remain in the

control of the prover.

The document-centric approach to interactive proof has been developped further

by Wagner et al. [16,8] into the proof assistance system PlatΩ for authors of math-

ematical texts. PlatΩ allows users to edit a type-set, printable document that is

either annotated [16] or written in a controlled language [8]. From the annotations

or syntax tree, respectively, PlatΩ generates a formal representation that is checked

by the Ωmega proof system [15]. To avoid unnecessary re-checking, PlatΩ analyses

the structural changes to the text caused by user edits and translates them into

corresponding changes of the formal representation.

PlatΩ shares with asynchronous proof processing the intention of checking the

proof document in the background and re-processing the document incrementally

upon user edits. It differs significantly from the IAPP architecture in that the

syntactic document structure and the dependencies between its parts are analyzed

by PlatΩ, rather than the prover, and it is the PlatΩ system that decides about

re-checking proofs; furthermore, the approach is tightly integrated with the Ωmega

proof system. The IAPP, by contrast, seeks to provide a minimal infrastructure for

a prover to offer asynchronous processing, and it delegates decisions about parsing

and presentation to the prover as much as possible.

5 Conclusion

We have presented an infrastructure for asynchronous proof processing, IAPP. It en-

ables user interfaces and provers to communicate in a message-based style and makes

minimal assumptions on the processing of individual commands by the prover. In

particular, the IAPP does not assume that the prover can parse commands and

report dependencies between commands. Provers that wish to support the IAPP

protocol can therefore take their decisions according to the existing software struc-

ture. In a transition phase, it is simple to support the IAPP protocol by a linear-

processing proof engine using a small emulator component that can be implemented

in either the user interface or the prover.

IAPP addresses the two main concerns of asynchronous proving: A stable par-

titioning of the textual proof document into non-overlapping commands and an ex-

plicit state model for commands that synchronizes the access to commands between

user interface and provers. The state model also defines directly the communication

protocol between user interface and prover.

Finally, our design makes the processing within the IAPP entirely independent of

the text editor that serves as a front-end. This makes it possible to experiment with

different editors, to maintain legacy systems in a transition phase, and to move on

to new environments as they emerge. The fundamental capabilities of asynchronous

proof processing are equally reliable on any of them.

14



Gast

References

[1] David Aspinall. Proof General: A generic tool for proof development. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’00), number 1785 in LNCS, 2000.
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Abstract

The PGIP protocol is a standard, abstract interface protocol to connect theorem provers with user interfaces.
Interaction in PGIP is based on ASCII-text input and a single focus point-of-control, which indicates a linear
position in the input that has been checked thus far. This fits many interactive theorem provers whose
interaction model stems from command-line interpreters. PlatΩ, on the other hand, is a system with a
new protocol tailored to transparently integrate theorem provers into text editors like TEXmacs that support
semi-structured XML input files and multiple foci of attention. In this paper we extend the PGIP protocol
and middleware broker to support the functionalities provided by PlatΩ and beyond. More specifically,
we extend PGIP (i) to support multiple foci in provers; (ii) to display semi-structured documents; (iii) to
combine prover updates with user edits; (iv) to support context-sensitive service menus, and (v) to allow
multiple displays. As well as supporting TEXmacs, the extended PGIP protocol in principle can support
other editors such as OpenOffice, Word 2007 and graph viewers; we hope it will also provide guidance for
extending provers to handle multiple foci.

Keywords: PlatΩ, Proof General, Mediator, Protocol, PGIP

1 Introduction

Proof General [2,3] is widely used by theorem proving experts for several interactive

proof systems. In some cases, there is no alternative interface; in others, the alter-

natives are little different. Yet the limitations of Proof General are readily apparent

and reveal its evolution from simple command line systems. For one thing, the in-

put format is lines of ASCII-text, with the minor refinement of supporting Unicode
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or TeX-like markup. The presentation format during interaction is the same. For

another thing, the proof-checking process has an overly simple linear progression

with a single point-of-focus; this means that the user must explicitly undo and redo

to manage changes in different positions in the document, which is quite tedious.

Meanwhile, theorem provers have increased in power, and the ability for work-

stations to handle multi-threaded applications with ease suggests that it is high time

to liberate the single-threaded viewpoint of a user interface synchronised in lock-

step to an underlying proof-checking process. Some provers now provide multiple

foci of attention, or several prover instances might be run in concert. Text editors,

too, have evolved beyond linear ASCII-based layout. The scientific WYSIWYG text

editor TEXmacs, for example, allows editing TEX and LATEX-based layout, linked to

an underlying interactive mathematical system.

Significant experiments with theorem proving using richer interfaces such as

TEXmacs have already been undertaken. In particular, the PlatΩ system [7,4]

mediates between TEXmacs and the theorem prover Ωmega. While experiments

with individual systems bring advances to those specific systems, we believe that

many parts of the required technology are generic, and we can benefit from build-

ing standard protocols and tools to support provers and interfaces. The aim of this

paper, then, is to integrate lessons learned from the PlatΩ system prototype with

the mainstream tool Proof General and its underlying protocol PGIP, putting for-

ward ideas for a new standard for theorem prover interfaces, dubbed here PGIP 2.

Specifically, our contributions are to combine ideas of state-tracking from PGIP with

semi-structured document models and menus as in PlatΩ, and to add support for

possibly distributed multiple views.

1.1 PG Kit system architecture

The Proof General Kit (PG Kit) is a software framework for conducting in-

teractive proof. The framework connects together different kinds of components,

exchanging messages using a common protocol called PGIP . The main compo-

nents are interactive provers, displays, and a broker middleware component which

manages proof-in-progress and mediates between the components. Fig. 1 shows the

system architecture; for details of the framework, we refer to [3].

The PG Kit architecture

makes some assumptions and design de-

cisions about the components. Gener-

alising from existing interactive provers

(such as Isabelle, Coq, or Lego), we as-

sume that provers implement a single-

threaded state machine model, with states

toplevel, file open, theory open and proof

open. Displays, on the other hand, are

assumed to be nearly stateless. Through

PGIP
D

PGIP
D

PGIP
D

Prover

Prover

Graphical User

Interface

Text Editor

Eclipse

Broker

File System Theory Store

Prover Components Display Components

PGIP

PGIP

P

P

Fig. 1: PG Kit System Architecture

the display, the user edits the proof text and triggers prover actions, e.g., by re-

questing that a part of the proof script is processed. Abstractly, the broker mediates

between the nearly stateless display protocol PGIPD, and the stateful prover proto-

col PGIPP; it keeps track of the prover states, and translates display state change

2



requests into sequences of concrete prover commands, which change the state of the

prover as required.

1.2 PlatΩ system architecture

The aim of the PlatΩ system is to support the transparent integration of the-

orem provers into standard scientific text editors. The intention is that the author

can write and freely edit a document with high-quality typesetting without fully

imposing a restricted, formal language; proof support is provided in the same en-

vironment and in the same format. The

PlatΩ system is the middleware that

mediates between the text editor and the

prover and currently connects the text

editor TEXmacs and the theorem prover

Ωmega. For the architecture of the sys-

tem, see Fig. 2.

Text EditorProver

Plato

PLATO P
PLATO

D

URI to Theories

in Text−Editor

Document Format

or OMDOC

OMDOC PL

Fig. 2: PlatΩ System Architecture

1.3 Outline

The rest of the paper is structured as follows. In Section 2 we give a scenario

for conducting a simple proof, and describe the interaction processes in PlatΩ

and in Proof General. Section 3 begins discussion of our proposal to merge the

two architectures, explaining how to extend PGIP to support documents with more

structure and multiple points of focus. Section 4 describes how to extend PGIP with

a menu facility like that provided in PlatΩ, and Section 5 describes how to handle

multiple displays, extending what is presently possible in PlatΩ. To complete our

proposal, Section 6 explains how we can reconcile semi-structured documents with

PGIP flat-structured documents, to connect theorem provers based on classical flat

structured procedural proofs with our enhanced middleware for a richer document

format. Section 7 discusses related work and future plans.

2 Interaction in PlatΩ and Proof General

We illustrate the overall functionality and workflow of PlatΩ and PG Kit with

the following example, in which student Eva wants to prove the commutativity of

addition in the standard Peano axiomatisation. Eva is typing this proof in a text

editor, TEXmacs or Emacs, and receives assistance from a theorem prover, Ωmega

or Isabelle, for PlatΩ and PG Kit respectively (cf. Fig. 3).

Eva’s authoring process splits into the following five phases:

Phase 1. After having specified the theory and the conjecture

∀x, y.x + y = y + x (1)

in the text editor the document is passed to the theorem prover.

Phase 2. Eva begins to prove the conjecture. She does an induction on x and gets

stuck with the subgoals: (1a) 0 + y = y + 0 and (1b) (z + y = y + z) ⇒ (s(z) + y =

y + s(z)).

Phase 3. She quickly realises that two lemmas are needed. Hence, she adds the

3



Fig. 3. Formalisation of the example scenario in TEXmacs and PG Kit.

following two lemmas somewhere in the document:

∀x.0 + x = x + 0 (2)

∀x, y.(x + y = y + x)⇒ (s(x) + y = y + s(x)) (3)

Phase 4. Eva then tackles these lemmas one by one: for each, doing an induction

on x and simplifying the cases proves the lemmas.

Phase 5. Eva then continues the proof of (1) by applying both lemmas to (1a) and

(1b) respectively, which completes the proof.

2.1 PlatΩ

PlatΩ uses a custom XML document format called PL to connect to the text

editor. The PL document contains markup for theories, theory items and linear,

text-style proofs, and also notation definitions for defined concepts. Formulas in

axioms, lemmas and proofs are in the standard, non-annotated LATEX-like syntax of

TEXmacs. To connect to the theorem prover, PlatΩ uses OMDoc for the hierar-

chical, axiomatic theories and another custom XML format (TL) for the proofs. 1

PlatΩ holds the representations simultaneously, with a mapping that relates parts

of the PL document to parts of the OMDoc(TL) document; a major task of the

system is to propagate changes between the documents and maintain the mapping.

The text editor interface protocol (PLATOD, see Fig.2) uses XML-RPC, with

methods for complete document upload, service requests for specific parts of the

PL document, and the execution of specific prover commands. On receiving a new

document version, PlatΩ parses the live formulas using the document notations,

producing OpenMath formulas. If a parse error occurs, an error description is

returned to the editor. Otherwise PlatΩ performs an XML-based difference analy-

sis [9] against the old PL document, resulting in a list of XUpdate modifications, 2

1 The next version of PlatΩ will use the OMDoc format for proofs, though still with Ωmega specific
justifications for proof steps.
2 see xmldb-org.sourceforge.net/xupdate/
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which are transformed into XUpdate modifications for the OMDoc(TL) document.

The interface to the theorem prover (PLATOP) also uses XML-RPC, with meth-

ods for applying XUpdate modifications, service requests for parts of the OM-

Doc(TL) document, and executing specific prover commands. Applying an XUp-

date modification may result in an error (e.g. a type error) or is simply acknowl-

edged; either response is then relayed by PlatΩ to the display as an answer to the

corresponding document upload method call. The result of a service request is a

menu description in a custom XML format. That menu is relayed to the display as

a reply to the corresponding service request, rendering OpenMath formulas in the

menu into TEXmacs syntax using the notation information already used for parsing.

The result of executing a menu action is a list of XUpdates, which can either

patch the menu (for lazy computation of sub-menus), or patch the document (for

instance, inserting a subproof). PlatΩ transforms these OMDoc(TL) patches into

PL patches and renders occurring OpenMath formulas into TEXmacs markup before

sending the patch to the text editor.

Semantic Citation. A characteristic of PlatΩ is that everything that can be used

comes from a document. Hence, there is a specific mechanism to “semantically”

cite other TEXmacs documents (see Fig. 2); these appear as normal citations in the

editor but behind the scenes, are uploaded into PlatΩ, which then passes them

to Ωmega. As a consequence, PlatΩ does not allow reuse of theories that are

predefined in the theorem prover.

We now illustrate PlatΩ by describing the phases of the example scenario.

Phase 1. First, the whole document is passed from TEXmacs to PlatΩ which

extracts the formal content of the document including notational information to

parse formulas. From the document, PlatΩ builds up the corresponding OMDoc

theories and passes them as an XUpdate to Ωmega, which builds up the internal

representation of the theory and initialises a proof for the open conjecture.

Phase 2. To start the proof of the theorem, Eva requests a menu from Ωmega,

which returns a menu that lists the available strategies. Eva selects the strategy

InductThenSimplify, which applies an induction on x to the open conjecture, sim-

plifies the resulting subgoals terminates with the two open subgoals. This partial

proof for Theorem (1) inside Ωmega is compiled into patch description and then

passed to PlatΩ. PlatΩ transforms it into a patch for TEXmacs by rearranging

the obtained tree-like subproof representation into a linear, text-style proof rep-

resentation using pseudo-natural language, and rendering the formulas using the

memorised notational information.

Phase 3. After the two lemmas are written in the document, the whole document

is uploaded and, after parsing, the difference analysis computes the patch to add

the two lemmas. This is transformed into a patch description to add their formal

counter-parts as open conjectures to the theory and sent to Ωmega. Ωmega, in

turn, triggers the initialisation of two new active proofs.

Phase 4. Eva uses for both lemmas the strategy InductThenSimplify (again sug-

gested by Ωmega in a menu) which succeeds in proving them. The resulting proof

descriptions are again transformed by PlatΩ into proof patches for the document
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and both lemmas are immediately available in the ongoing proof of Theorem (1).

Phase 5. Ωmega proposes in a menu to apply the lemma (2) to the subgoal (1a)

and the lemma (3) to the subgoal (1b). Eva selects these suggestions one by one,

which then completes the proof inside Ωmega. Subsequently, only the proof patch

descriptions are transformed into patches for the TEXmacs document as before.

2.2 Proof General

Unlike OMDoc, PGIP is not a proof format, nor does the PG Kit prescribe one.

Instead, PGIP uses proofs written in the prover’s native syntax, which are lightly

marked up to exhibit existing implicit structure. The mark up divides the text into

text spans, corresponding to prover commands which can be executed one-by-one

in sequence. Different commands have different mark up, characterising e.g., start

of a proof, a proof step, or (un)successful completion of a proof, as in:

<opengoal>theorem add commute: &quot;x+ y= y+ x&quot;</opengoal>

<proofstep>proof (induct x rule: N.induct)</proofstep>

Elements like <opengoal> do not carry an inherent semantics (and they cannot be

sent to the prover on their own), they merely make it clear that e.g. the command

theorem add commute: ”. . . ” starts the proof. Each of these text spans has a

state; the main ones are parsed, processed and outdated. Proving a given theorem

means to turn the whole proof into the processed state, meaning that the prover

has successfully proved it. Returning to the scenario, we discuss the flow of events

between the Emacs display, the PG Kit broker and the Isabelle prover.

Phase 1. Eva starts with an initial plain text Isabelle file, giving the definitions

for the natural numbers, addition and the conjecture. She requests the file to be

loaded, causing the broker to read it and send the contents to Isabelle for parsing.

While this happens, the display shows the unparsed text to give immediate feedback.

Isabelle returns the parsed file, which is then inserted into the Emacs buffer.

Phase 2. Eva now wants to prove the conjecture. She requests the conjecture to

become processed so she can work on the proof (a command <setcmdstatus> is

sent to the broker). This triggers sending a series of commands to Isabelle, ending

with the conjecture statement. Isabelle answers with the open subgoal, which is

then shown on the display.

Eva attempts proof by induction. She writes the appropriate Isabelle commands

(proof (induct x rule: N.induct)). The new text is sent to the broker and then on

to Isabelle for parsing. Once parsed the broker breaks the text into separately

processable spans (here, only one), which is sent back to the display. Now Eva asks

for the proof step to be processed, which sends the actual proof text to Isabelle,

which answers with two open subgoals.

Phase 3. Realising she needs additional lemmas, and knowing Isabelle’s linear

visibility, Eva knows she has to insert two lemmas before the main theorem she

is trying to prove. Since she cannot edit text which is in state processed, she first

requests the text to change state to outdated. This causes a few undo messages to

be sent to the prover to undo the last proof commands, resetting Isabelle’s state

back to where it has not processed the start of the main proof yet. Eva then inserts
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PlatΩ Display PG Kit Display PGIP 2 Display

Document format XML Plain text XML

Document syntax TEXmacs ASCII Generic

Change protocol XUpdate PGIPD XUpdate

Change management Dynamic Notation Provided by prover Provided by prover or
display

Operations supported Context-dependent
menus

Global menus, typed
operations

Context-dependent menus,
typed operations

Table 1. Summary of differences between the Display Interfaces of PlatΩ and PG Kit

PlatΩ Prover PG Kit Prover PGIP 2 Prover

Document format XML Plain text XML

Document syntax OMDoc Native prover syntax Generic

Change protocol XUpdate PGIPP XUpdate

Change management Provided by Maya Provided by Prover Provided by Prover

Prover support Ωmega Generic (Coq,
Isabelle, etc)

Generic (Coq, Isabelle,
Ωmega, etc)

Operations supported Context-dependent
menus

Global menus, typed
operations

Context-dependent menus,
typed operations

Table 2. Summary of differences between the Prover Interfaces of PlatΩ and PG Kit

the needed lemmas in the document, and has them parsed as before.

Phase 4. Eva processes the lemma, and sees a message indicating that the proof

worked. She finishes the other lemma similarly.

Phase 5. Eva returns to the main proof, editing the induction proof by inserting

the induction base and induction step. Fig. 3 (right) shows the Emacs display at

this point: the window is split in two parts, with the proof script in the upper part

and the prover responses displayed below. The top portion of the proof script is

blue, showing it has been processed, indicating the linear point of focus. After the

induction step succeeds, Eva closes the proof with the command qed, which registers

the theorem with the authorities. By turning the state of this closing command to

processed, the proof is successfully finished.

3 Semi-Structured Documents

We have now seen how PlatΩ and the PG Kit handle documents. The architecture

is similar: a central component handles the actual document, managing communi-

cation with the prover on one side and a user-interface component on the other side.

The main differences are technical, summarised in the first two columns of Tables 1

and 2. Given the similarity, the question naturally arises: can we overcome these

differences and provide a unified framework? This section will tentatively answer in

the positive by extending PGIP on the prover side with the necessary new concepts

(Sec. 3.1) and multiple foci (Sec. 3.2), and by using XUpdate pervasively on the

display side (Sec. 3.3). The right-most columns of Tables 1 and 2 show the technical

unification for the proposed PGIP 2.

3.1 Document Formats

The two different document formats can both be treated as arbitrary XML, with

the difference that for PlatΩ and OMDoc, there is deep structure inside the proof
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<assertion>theorem add commute: &quot;x+ y= y+ (x::N)&quot;
<block objtype=”proof body”>

<proofstep>proof (induct x rule: N.induct)</proofstep>

<proofstep>case Z</proofstep><assertion>thus ?case
<block objtype=”proof body”><endproof status=”proven”>by (simp add: add Z r)</endproof>
</block></assertion>

<proofstep>case S</proofstep><assertion>thus ?case
<block objtype=”proof body”><endproof status=”proven”>by (simp add: add S)</endproof>
</block></assertion>

<endproof status=”proven”>qed</endproof></block></assertion>

Fig. 4. Excerpt from the short example proof, marked up with PGIP 2 (edited slightly for readability).

script (i.e., inside goals, proof steps etc) whereas in the case of PG Kit, there is only

a shallow XML structure where the proof script is mainly plain text. To overcome

this difference, we allow PGIP 2 proof scripts to contain arbitrary marked-up XML

instead of marked-up plain text, turning the document into a proper XML tree.

Here is the present PGIP schema, excerpted and slightly simplified: 3

opentheory = element opentheory { thyname_attr, parentnames_attr?, plaintext }
closetheory = element closetheory { plaintext }
theoryitem = element theoryitem { objtype_attr, plaintext }
openblock = element openblock { objtype_attr, plaintext }
closeblock = element closeblock { }
opengoal = element opengoal { thmname_attr?, plaintext }
proofstep = element proofstep { plaintext }
closegoal = element closegoal { plaintext }

The proposed PGIP 2 amends this as follows, again excerpted:

theory = element theory { thyname_attr, parentnames_attr?, any }
theoryitem = element theoryitem { objtype_attr, any }
block = element block { objtype_attr, xref_attr?, any }
assertion = element assertion { thmname_attr?, id_attr?, any }
proofstep = element proofstep { xref_attr?, any }
endproof = element endproof { xref_attr?, proofstatus_attr?, any }

id_attr = attribute xml:id
thmname_attr = attribute thmname { xml:id }
thyname_attr = attribute thyname { xml:id }
xref_attr = attribute xref
proofstatus_attr = attribute ("proven"|"assert"|"unproven")

any = ( text | anyElement ) *
anyElement = element * { ( attribute * { text } | any ) * }
text = element text { plaintext }

There are two major changes here: (i) arbitrary XML can occur where before

only text was allowed; of course, the prover must understand whatever XML syn-

tax is used here (e.g. Ωmega can understand OMDoc); (ii) instead of a flat

list structure, we now use a proper tree; that is, a theory is not everything be-

tween an <opentheory> and <closetheory> element, but the contents of the

<theory> element; and similarly, a proof is not everything between <opengoal>

and <closegoal>, but the contents of the <block> element of type proofbody

that belongs to an <assertion> element. The <endproof> element replaces

<closegoal> and can be annotated with status information about the proof proven,

assert, or unproven. Another extension is the corresponding attributes xml:id for

the <assertion>, and xref for the <block> elements, which allow assertions to

refer to proofs which are elsewhere in the document, and not directly following

the assertion. These attributes are optional, and may only appear in the display

protocol (i.e., between displays and the broker); we assume that provers always

3 This XML schema is written in RELAX NG, which can be read much as a BNF grammar, with non-
terminals named on the left and element and attribute introducing terminals; see http://relaxng.org/.
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expect proof scripts to be in linear order, and it is the responsibility of the broker

to rearrange them if necessary before sending them to be checked.

Furthermore, the broker must be able to divine the structure in an OMDoc

proof; e.g., the Ωmega prover or a component acting on its behalf must answer

parse requests, and return XML documents using these elements. The revised

version of our example proof with the PGIP 2 markup is shown in Fig. 4.

3.2 Multiple Foci

The present PGIP prover protocol imposes an abstract state machine model which

the prover is required to implement. Ωmega can be made to fit this model, but

beyond that provides multiple foci. By this we mean that it can keep track of

more than one active proof at a time and switch between them. Ignoring this

would lose potential benefits (such as the ability to use a natively multi-threaded

implementation of the prover) unnecessarily, and it is easy to accommodate into

PGIP: we merely need to add an attribute to the prover commands to identify the

focus. Some of these attributes already exist for the display protocol, where files

are identified by a unique identifier (srcid). By adding unique identifiers also for

theories and proofs, the prover can identify which ongoing proof a proof step belongs

to, and use the appropriate thread to handle it. To allow fall-back to the simple

case, we need a prover configuration setting to declare if multiple foci are available.

3.3 XUpdate

In the PGIPD protocol, changes in the document are communicated using spe-

cialised commands <createcmd> and <editcmd> from the display to the broker,

and <newcmd>, <delcmd> and <replacecmd> from the broker to the display (so

the protocol is asymmetric). We can rephrase this in terms of XUpdate; the unique

identifier given by the broker to each command contained in the cmdid attribute

allows use to easily identify an object by the XPath expression *[cmd=c]. The

key advantages of XUpdate are that it is standard, symmetric, and allows sev-

eral changes to be bundled up in one <xupdate:modifications> packet that is

processed atomically, adding a transaction capability to the display protocol.

Strict conformance to this protocol requires the displays to calculate or track

differences, i.e., send only the smallest update. Not all displays (editors) are that

sophisticated, and it is unrealistic to expect them to be; a basic design assumption

of PG Kit is that the broker should contain the intelligence needed to handle proof

documents, and displays should be easy to implement. Hence, displays can send

back the whole document as changed, and expect the broker to figure out the actual

differences (whole-document editing) using the XML difference mechanism from [9]

that can take some semantics into account as already used by PlatΩ.

3.4 Protocols

The underlying transport protocol of PGIP is custom designed, because communica-

tion with an interactive prover fits no simple standard single-request single-response

protocol: the prover asynchronously sends information about the proof as it is pro-

gressing, and the ability to send out-of-band interrupts to the prover is crucial.

9



However, on the display side these reasons do not apply; we might use XML-RPC

or even plain HTTP in a REST architecture. REST (representational state transfer

[6]) is an architecture style for distributed applications that, in a nutshell, states

that an application should provide resources, which are addressed using URIs and

manipulated using the four basic operations of creating, reading, updating and

deleting (“CRUD”). The resources provided by the broker are as follows:
• The broker itself, with the list of all known provers, all loaded files, a global

menu, and global configurations as attributes;
• each prover is a resource, with its status (not running or running, busy, ready,

exited) as attributes, preferences for this prover, all identifiers for the prover,

messages sent by the prover, its proof state, and prover-specific configurations

such as types, icons, help documents, and a menu;
• and each file is a resource, containing the document as a structured text, and

the status (saved or modified) as attributes.

Clients affect changes to the document by the XUpdate messages above, and trigger

broker actions by changing the attributes. For example, to start a prover, the client

will change the status of the prover resource from not running to running. Here,

bundling up changes into one XUpdate modification becomes useful, as it allows

displays to send several changes to the document resource in one transaction.

In the REST view, changes in the document produce a new version of the docu-

ment; special links will always point to the latest version of the document, but may

require the client to refresh them. This allows multiple displays; we will exploit this

in Sec. 5. This REST-style interface is an alternative to the stateful protocol using

PGIP or XML-RPC; in the long run, the broker will support both.

4 Service Menus

PGIP 2 supports context-sensitive service menus in the display for the interaction

with the prover. The user can request a menu for any object in the document;

through the broker this triggers menu generation in the prover for the formal coun-

terparts of the selected object. It remains to fix a format for menu descriptions.

Traditionally, menus are fully specified and include all submenus and the leafs

are all actions with all possible actual arguments. Executing an action triggers

modifications of the document and the menu is closed. For theorem provers, com-

puting all submenus and action instances can be expensive and unduly delay the

appearance of the menu. For example, a menu entry for applying a lemma would

contain as a submenu all available lemmas, and for each lemma, all possibilities to

apply it in the current proof situation. Once the user makes a choice, the other

possibilities are discarded. So on-demand computation of submenus is desirable.

The PlatΩ system allows lazy menus, where actions executed in a menu can

generate a submenu. The entire menu is modified by replacing the leaf action by

the generated submenu. We adapt this model for PGIP 2 also. However, not all

displays are able to incorporate changes to live menus; therefore we do not impose

the partial menu representation. Instead, the display specifies in the service request

whether it will accept a lazy menu.
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The description language for these menus is:

menu = element menu { id, name, for_attr, ((menu|action)+ | error) }
action = element action { id, name, argument* }
argument = element argument { id, name, custom }
custom = element custom { id, alt, any }
error = element error { id, text }

(using the any element from above). A menu entry is rendered by its name and

an action is rendered by its name and its arguments. Arguments are rendered with

the given custom object, e.g., an OpenMath formula or some standard TEXmacs
markup. The alt attribute provides a fallback ASCII representation in case the

custom object content cannot be displayed.

When the user chooses an action, it is executed on the specified arguments.

The result of the action may be an XUpdate patch to the document. This is sent

to the broker and then on to the display, which incorporates the patch and closes

the menu. Alternatively it is a patch for the menu only: in this case the action is

replaced in the menu by the new submenu. If a submenu is empty, i.e., there are

no possibilities to refine the abstract action, then the submenu consists solely of an

error that describes the cause, which should be displayed inside the menu.

Example 4.1 We illustrate the interactions when requesting a menu for a display

that is able to deal with partial menus.In Phase 5 of the scenario, Eva requests a

menu for the subgoal (1a) 0 + y = y + 0.

Menu Request: The menu is requested for a specific XPath of the document and

the broker maps it to a menu request to the prover for the corresponding formal

object, that is, the open goal that corresponds to (1a) 0 + y = y + 0. The prover

generates a top-level menu with the actions “Apply Axiom or Lemma”, “Apply

Tactic” and returns that to the display via the broker.

Lazy Menu Deployment: Selecting “Apply Axiom or Lemma” triggers comput-

ing a submenu containing all available axioms and lemmas. That submenu is sent as

an XUpdate patch to the display to replace the action “Apply Axiom or Lemma”.

Selecting Lemma (2) triggers the prover action that computes the possible ways to

apply the lemma on the open goal. In this case the resulting submenu has a few

entries for the cases where the lemma is applied from left to right and one case for

the application of the lemma from right to left. The submenu is sent as an XUpdate

patch to the display to replace the action “Apply Lemma (2)”.

Menu Action Execution: The final top level action execution triggers applying

the specific instance of the Lemma in the prover, modifying the formal proof. The

modification is propagated via the broker to the display, either as an XUpdate

patch for the document if the display is able to deal itself with these; otherwise the

broker computes the new document version and forwards only the new document.

Additionally, a patch description is sent for closing the menu.

5 Multiple Displays

The architecture of our new system inherits from the architecture of PG Kit (Fig. 1),

which allows multiple displays to be connected to the broker. One use for this is to

allow multiple views on a proof-in-progress, e.g., a display that shows a dependency
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Fig. 5. Example for Editing via Multiple Displays

graph, or a graphical interpretation of a proof (perhaps rendering geometric argu-

ments diagrammatically), alongside the main proof editing display. These displays

are prover-specific, but fit smoothly into the general architecture.

Another use for multiple displays is to support more than one display to change

the document. For this we need a way to synchronise input from different displays.

A way to do this is for the broker to act as a simple kind of source control repository,

illustrated by example in Fig. 5. This works as follows:
• The broker maintains the latest revision (the head) of a document, and for

each display, a copy of the latest revision acknowledged by that display. In

Fig. 5, the head is Rev. 47.
• When Display 1 sends a change (Rev. 47’), the change is committed to the new

head (Rev. 48), and the new revision broadcast to all displays.
• Display 1 acknowledges the new revision. However, Display 2 has been changed

meanwhile, so it does not acknowledge, instead attempting to commit its

changes (Rev. 47”). The broker spots a potential conflict, and (in this case)

merges the disjoint changes between 48 and 47” with respect to 47 into the

current head revision without trouble. The merged document becomes the new

head (Rev. 49), and is broadcast to all displays. Since no further changes have

been made in the display, the both acknowledge.

If a conflict that cannot be merged occurs, the broker sends the merged document

including conflict descriptions back to the display (using an extension to XUpdate

to markup the conflicts, as in [9, Sect. 7.1.3]). The display (or the user) then needs

to resolve the conflicts, and send in new changes.

This strategy is simple and flexible: displays could always send in changes to

the whole document, and only acknowledge changes sent from the broker if the user

has not edited the document at all. Alternatively, since this may create extensive

conflicts without realising, displays might block between commit and acknowledge,

or attempt to merge eagerly with new revisions sent by the broker.

12



6 Supporting Multiple Document Formats

So far the document format used with the display and the prover are essentially

the same: for instance, in the classical PGIP with Isabelle, the document on the

display is an Isabelle input file with additional markup. With the extension for

arbitrary XML document formats in Section 3, we could connect a display and

prover that both use OMDoc. But we cannot yet connect two different formats,

say, connecting the display based on a document format D, with a prover that

works on a different format P . This is the final missing piece of the architecture

for emulating PlatΩ, which connects D =PL in the PLATOD protocol to TEXmacs
through to P =OMDoc format as used in the PLATOP protocol to Ωmega.

To support multiple document formats at once, we propose to use a central

structured document format B in the PG Kit broker that is annotated by PGIP

markup. The broker does not need to know the semantics of the format B. Instead,

dedicated translators are required for each target document format, translating D ⇋

B and B ⇋ P . Each translator maintains a document representation mapping, and

converts XUpdate-patches in either direction, much as the PlatΩ system does

between the PL representation and the OMDoc representation as described in

Sec. 2.1. The advantage of using the central format B is that provers do not need

to be adapted to the document format of every display.

Experience with PlatΩ suggest the main difficulty lies in translating patch de-

scriptions between the different document formats. Suppose we connect structured

TEXmacs documents with plain text Isabelle proof scripts, and choose OMDoc

as the broker’s central document format. On the display side we have a transla-

tor component that mediates between TEXmacs documents and OMDoc. Prover

side, a translator mediates between OMDoc and Isabelle ASCII text. We encode

ASCII documents in XML as <document><text>...</text>...<text>...</text></document>,

where text nodes are whitespace preserving.

Consider now the interactions when uploading and patching a document.Menu

interactions are basically passed unchanged, but document patches must be trans-

lated. Since PlatΩ can already mediate between the TEXmacs and OMDoc for-

mats, we need only one new translator for OMDoc and Isabelle, implementing:

XUpdate flattening going from OMDoc to ASCII, the structured XML repre-

sentation must be transformed into a linearised text representation. A mapping

must be setup between XML ranges and text ranges, i.e., the start XPath maps to

the start text position (relative to the last range) and the end XPath maps to the

end text position (relative to the last range). Start and end XPaths have the same

parent XPath by definition. To flatten patches, the affected XML ranges must be

recomputed and the mapping adapted; additions in the patch are flattened similarly.

XUpdate lifting: going from ASCII to OMDoc, the text spans must be lifted

to the XML representation. Generally, this is done by mapping text spans to the

corresponding sequence of adjacent XML ranges. As an invariant it must be checked

whether the resulting sequence can be expressed by start and end XPaths with the

same parent XPath. Similar to flattening, the mapping has to be adapted between

text ranges and XML ranges.
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Of course, the devil lies in the detail: OMDoc allows some embedding of legacy

formats, but to usefully translate to and from Isabelle, we must accurately interpret

a subset of syntax that reflects theory structure, and have some confidence about

the correctness of the interpretation.

On the other side, we can now provide translators for further displays with

advanced layout possibilities, such as Word 2007. The translator component must

abstract the display document format to simplify it for the broker: e.g. in Word

2007, the document body is extracted and information about fonts, colors and

spacing is stripped. On the way back, annotations are extracted from the patches

coming from the broker, which guide heuristics for layout of new or modified text.

7 Related Work, Conclusion and Next Steps

Many user interfaces to theorem provers are similar to the Proof General style of

line-by-line and single focus interaction using ASCII input files in native theorem

prover format. Often, a custom interaction protocol is used. The main novelties for

PGIP 2 proposed here are: (i) to handle semi-structured XML documents as input

formats; (ii) to allow the user to work on different parts of a document in parallel

by using multiple foci; (iii) to allow the theorem prover to change parts of the input

document, possibly using menus, and (iv) to have multiple views and editing of the

same document in different displays.

With respect to (i) the MathsTiles system [5] also allows to map semi-structured

documents towards several special reasoning systems. However, the mapping is only

unidirectional from the display to the reasoners and also does not support multiple

displays and conjunctive editing.

With respect to (ii) to our knowledge, the Ωmega system is the only prover

that currently supports semi-structured document input and multiple foci. State

information describing which parts of the document have been checked by Ωmega is

managed in an ad hoc style; making this explicit in the multi-threaded state machine

model in PGIP 2 markup is a clear improvement. Further, it gives guidance on how

to migrate a single-threaded theorem prover to a multi-threaded mode. There is

some ongoing work for the Isabelle system to support multiple foci, but it is not in

the official release to date.

Multiple views have been used in various forms in different systems, but not

in a clearly distributed way that also allows editing, as in PGIP 2. In LΩui [10]

the display was split into a graph view on the proof and a display of the actual

proof goals: those were based on pretty-printing and graph-visualisation tools built

into the same display component. Matita’s user interface [1] has one proof script

buffer and a display for the actual proof goal: the latter uses GtkMathview based

on MathML representation of formulas that is generated from the internal repre-

sentation of Matita. GeoProof [8] allows one to generate Coq proofs from its

internal, geometric representation which can be viewed in CoqIDE [11]: this comes

close to what we propose with multiple displays, except that currently there is no

way back from Coq into GeoProof. 4 The infrastructure of PGIP 2 and a (par-

4 This could, of course, only be a partial mapping since not all Coq-proofs are geometric proofs.
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tial) mapping from Coq into GeoProof would allow for simultaneously working in

GeoProof and CoqIDE. Away from proof assistant systems, multiple views are

familiar in IDEs for programming languages such as Eclipse and NetBeans: there

the same file may be presented in different ways in different windows (e.g., code and

model), and either updated dynamically in step, or at clearly defined points in the

interaction (e.g., window activation).

The ability to extend the input document by incorporating information from

the prover has also been supported in various ways before. An example besides the

general change mechanism of PlatΩ/Ωmega is that of Matita, which can gener-

ate a tinycal proof script from the GUI interactions on goals, and include it into the

overall document. We hope that a generic infrastructure would allow functionality

like this to be reused between systems. The facility to include information from

the prover together with the multiple foci provide a good basis to use PG Kit for

provers like Mizar, PVS and Agda that have different, non-linear interaction styles.

The details of adapting to further prover interaction styles is left to future work.

The main next step is to implement our planned PGIP 2 and to rebuild PlatΩ’s

functionality on that basis. Future work will also be devoted to use Word 2007 and

OpenOffice as displays and especially to build bi-directional transformers between

prover-specific textual input files and corresponding OMDoc representations. We

hope this will lead to a rich family of improved prover user interfaces.
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1 Introduction

Developing proofs using proof assistants can be a peculiarly difficult task. Even us-
ing current modern tools, formulating a moderately complex proof is sometime not
easy. This difficulty is particularly noticeable in modern software verification ef-
forts that regularly use theories with hundreds of, and sometimes (many) thousands
of, definitions and theorems.

For instance, theCoq proof assistant has three main user interfaces3 :

• CoqTop, which is just a LISP-like command-line top-level. While somewhat
useful, it is a bit awkward to use and very limited in functionality.

• CoqIDE, which supports editing and evaluating a specificCoq proof script.
While this interface offers some facilities for automatically constructing proof
scripts and finding help, it is still quite difficult to manage the aforementioned
complex theories and, e.g., navigate through hierarchies of proof files.

• Proof General, a major mode forEmacs, which has many features and is a
very rich interface, leveraging the power and flexibility ofEmacs. Ironically, its
dependence onEmacs is one of its main drawbacks, as, in recent years, IDEs
like Eclipse are replacing older tools likeEmacs as the standard environments
for developing software.

Ideally, one would just makeProof General a part ofEclipse. TheProof Gen-
eral Toolkit represents one such effort. Unfortunately, at this timeProof General
Toolkit only supports the Isabelle theorem prover. Thus far, no other prover is sup-
ported byProof General Toolkit within Eclipse, mainly because the inclusion of a
new proof assistant is difficult due to the complexity of theProof General Toolkit
architecture and its communication protocol(s). (An attempt was made withCoq,
but it seems to be discontinued.)

In this paper we presentProverEditor, a multi-prover interface forEclipse.
The architectural approach chosen here turns theProof General Toolkit architec-
ture on its head—our architecture is verylightweightand only asimple interface
must be implemented to support the integration of a new proof assistant. Not only is
proof script creation and editing supported, but interactions with the prover are en-
abled via a formally specified API that support communication with integrated and
automatic provers via Java.ProverEditor also has some more advanced features
like the Eclipse’s outline view and a completion system.

The paper is divided as follows: first we provide a detailed overview of some
existing tools and environments. Second, we review the design and architecture of
our system. Third, we describe theProverEditor plugins and features currently
available, and summarize how they are similar to, and different from, the inter-
faces familiar to those that use theorem provers daily. Finally, we conclude with
reflections on ongoing development work and next steps in integrating IDEs and
ITPs.

3 There is actually two others, PCoq [3], that is written inJava, and CtCoq, but they are not
maintained anymore.
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2 User Interfaces for Theorem Proving

There are several different canonical interfaces to interactive theorem provers. We
first summarize these interfaces to (a) putProverEditor in context, (b) compare
and contract it with other interfaces, and (c) identify the interfaces and feature
interactive provers have in common so as to drive our own architecture design.

2.1 Command-line Interfaces

The provers we are targeting (e.g.,Coq, PVS, andIsabelle) have command-line
interfaces as some top-level. These top-levels have many similarities. Each allows
one to send commands to the prover and receive its answers using ASCII byte
sequences and simple syntaxes. Usually the standard output file descriptor is used
for the dialog and the standard error file descriptor is used to show the prompt.

A typical “raw” interaction at a top-level is to open a text file (e.g., in a text
editor) where one stores all the command steps involved in a given interaction and
cut-and-paste its content to the top-level and await results from the prover. This
“user-active” kind of interaction is quite unnatural and ungainly. Therefore these
low-level interactions are often wrapped in a richer environment likeEmacs, or in
the case ofCoq, its own IDE,CoqIDE.

2.2 Web interface

ProofWeb [9] is a multi-prover web interface. It handles several provers notably
Coq, Isabelle andMatita. It is mainly targeted towards students, hence it permits
to interact with it without any local installation. It proposes several views to view
proofs. It has also a system to access courses and predefinedCoq files containing
exercises.

Its architecture is similar in some ways to the one ofProverEditor as well as
Proof General. The way it handles provers is plugin based, and the interaction is
mostly handled plugin side.

This tool is really good for small sized projects and for teaching-oriented use
of theorem provers, but it has several flaws, notably for handling large projects and
for library forging. It only permits the edition of one file at a time, it does not
handle directory, and it does not allow rich client type interaction. For instance, if a
user wants to develop a proof of a program, he will not be able to edit the program
and edit the proof obligation in the same environment. He will have to switch
context back and forth from the code editor to the proof script editor. It will be
worst if the user want to modify the program, and re-generate the proof obligation.
The user will have to load the file by hand afterward through the interface. These
kind of problems are partially solved usingEmacs as the host for the multi-prover
interface, and it is totally solved if usingEclipse 4 .

4 An exemple of rich client type interaction can be found in the toolMOBIUS’ DirectVCGen on
theMOBIUS Trac server [15]
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2.3 Emacs

Emacs a relatively popular tool for computer scientists and programmers. It is now
a bit overshadowed by more recent tools likeEclipse, and it is, in part, because of
this “popularity with the masses,” that we are currently targetingEclipse as an
integration platform.

The core features of modern IDEs that we retain forProverEditor are the out-
line/summary view (which is not built-in toEmacs, though is available via the use
of the Speedbar and/or CEDET tools), as well as the quite useful “tagging” (com-
pletion) system. Especially for development in C/C++ orJava, tagging is a very
valuable feature.Eclipse replaces tagging by more semantically-aware form of
definition searching and completion akin to Microsoft’s “Intellisense” (Microsoft’s
implementation of autocompletion5 ).

2.4 Eclipse

TheEclipse platform is used likeEmacs as a front-end for an Integrated Devel-
opment Environment or, more generally, as a Rich Client Platform [13]. At first
Eclipse focused onJava development. Now, it is used for C/C++ and Python de-
velopment, as well as a front-end for revision control tools like CVS and Subversion
and writing papers in LATEX.

As Eclipse represents a “modern” development tool, several standard concepts
are used: files are grouped in projects, it has an outline/summary view, and navigat-
ing source code is simplified via implicit definition retrieving. We believe that, to
gain mind-share with today’s programmers, it is good idea to be hosted inEclipse,
rather than inEmacs, both for these key features, as well as more social reasons.

2.5 Proof General

Proof General [4] is the de factomulti-prover environment. It usesEmacs as
its graphical interface. It is multi-prover in the sense that it allows one to interact
with Isabelle andCoq as well as other provers. It does not have a lightweight
approach: each theorem prover-specific part uses its own communication engine,
and each prover language has some of its semantic aspects encoded into this engine.

The new version ofProof General is calledProof General Toolkit [8], and it
is anEclipse feature/plugin. It bases its interactions with provers on the interaction
it already supports withIsabelle. This interaction protocol is calledPGIP, which
uses anXML-based language calledPGML.

By usingXML, command streams are well-delimited and easy to parse in the
Java context using a standardXML parser. This permits to add some of the prover
language semantics inside the tags. A typical example of such an addition is the
use of a vernacular-likeShow command within a proof script—theXML around

5 http://msdn2.microsoft.com/en-us/library/hcw1s69b(vs.71).aspx
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this command is independent of the command and the proof script, which makes
for a more script-independent protocol.

An interesting application of thisPGML might be to support a new feature, like
prover-centric refactoring, e.g., scope-aware variable renaming. A problem with
realizing such a new feature is that thePGIP-based approach is, in some sense, too
heavyweight to be generic. In order to communicate with the prover, the interface
must maintain some semantics, in particular, it must have some theory and proof
context information.

SinceProof General Eclipse uses thePGIP protocol to communicate with
provers, supporting a new prover means realizing this protocol for that prover. Un-
fortunately, implementing this protocol seems to be not such an easy task for any-
one other than theProof General Toolkit developers, especially for system not
written with these kind of interactions in mind. To have the full output and a good
view of the state ofCoq one must gather two informations: the ones collected from
the standard output and the ones from the error output. In common cases these out-
puts do not interleave but in some specific situations the interleaving is unexpected.
Hence it is difficult to gather to a single output and reordering informations for the
PGIP protocol. In the same vein,PGIP does the hypothesis that the undo stack is
infinite, which is not the case forCoq. One could argue to use instead the PCoq
output ofCoq which is supposed to offer all the facilities missing, but this output
is not properly maintained, so usingCoq standard interaction output is safer.

All these problems for adaptingCoq to thePGIP protocol have led us to use a
simpler protocol much similar to what has been done inProof General for Emacs
but in a lighter and more generic fashion.

3 Analysis and Design

ProverEditor is part of theMOBIUS Program Verification Environment (PVE).
The MOBIUS PVE is an integrated environment that supports the specification,
implementation, and verification ofJava programs. Because theMobius PVE
focuses onJava, the Eclipse platform was a natural choice for a programming
environment in which to host theMobius PVE.

This integration has several aspects:

• Eclipse has a well-defined plugin architecture, so extending the system with rich
functionality and interfaces is relatively straightforward, and

• Mobius PVE subsystems can extend and interact easily withEclipse’s Java
programming components.

In this section, we present the integration ofProverEditor inside ofEclipse and
then summarize its main features.
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3.1 Plugin Architecture

ProverEditor’s architecture is based on theEclipse plugin architecture. Funda-
mentally,ProverEditor is anEclipse plugin that hosts several other plugins which
are specific to the provers with which it interacts.

3.1.1 Plugins inEclipse
Eclipse’s plugin architecture’s power and flexibility principally lies in itsexten-
sion pointsconcept. Anextension pointis a facet of a component’s interface, thus
a plugin can either provide an extension point or extend an extension point of an-
other plugin. Extension points are often used to implement a specific behaviour or,
as is often the case inEclipse, to support the proper integration of a plugin into
Eclipse’s graphical interface. For instance, if one wants a plugin to be integrated
to the preferences menu, an extension point must be used to add a the plugin’s
preferences page to Eclipse’s preferences menu.

This compositional modularity is very useful in combining several facilities
provided by other plugins, like synthesizing a generic interface to two similar sys-
tems, like the CVS and Subversion revision control systems. In our case, it simpli-
fies the adoption and adaptation of modern IDE features in our interface, as initially
advocated by Kiniry [11]. While such adoption and adaption is the hallmark of ex-
tensions toEmacs, due to the richer foundations (and consequent greater use of
resources) ofEclipse andJava, Eclipse plugins can be more powerful and attrac-
tive than theirEmacs-based counterparts.

Extension points are defined by a unique identifier that links to a definition
of anXML tag. Programmers that wish to extend this extension point must write
an XML file calledplugin.xml (typically with the assistance of a specialized
plugin editor that comes withEclipse) as well as provide the correct parameters to
the tag in question. The plugin providing the extension point inspects, at runtime,
what was specified with theXML tag. The name of a class to classload is typically
provided, and consequently instantiated, otherwise the name of a resource or a
simpleString may be provided.

Eclipse provides many extension points: e.g., editors for specific file types,
binding a file type to a specific icon, and syntax highlighting. One can also add
specialized widgets to the interface, like the standard “outline” view that so many
IDEs provide. A drawback of using extension points is fundamental to their design:
they are, in essence, static and global. In addition, as stated above, extension points
can only be provided through the addition of a new plugin with a plugin specifica-
tion file. Thus, in general,Eclipse does not permit any mechanism for (dynamic)
extension.

3.1.2 Plugins Used
ProverEditor is based on different plugins which define different subsystems: the
editor, the outline, the proof view and the preference page.

The editor is based onEclipse’s integrated editor plugin. The standardEclipse
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file editor is extended to view and edit proof scripts by (a) adding prover-specific
syntax highlighting, and (b) adding a means by which subsets of the text can be
dynamically highlighted so as to show which parts of a proof script have already
been evaluated and may not be modified.

The outline shows the detailed structure of a file being edited via a tree-based
view. The basic outline view ofProverEditor is initially empty: it only contains
the name of a file opened in an editor and which has the focus. The prover plugins
augment this implementation by providing an outline of the proof script files. For
example, inCoq, the outline view summarizes the type hierarchy found in the
current file. The outline always represents the whole file, much like what is done
for theJava outline inEclipse. This view is especially useful when inspecting a
library file, to jump easily to a specific definition.

Another plugin is theproof view, which shows the user the result of each inter-
action with the prover. It is essentially a log of the user interactions with the plugin
and needs no input. It is integrated at the same fashion as the outline window in the
Eclipse workspace. This interaction can only target a single file at a time. A file
has the interaction focus only if the user decides to step through it.

The last extension fromEclipse that is used is thePreferencePageextension. It
handles the preferences necessary for a particularproof view, like whether to expect
output to use the Unicode character set.

Currently there are four plugins. The base plugin (ProverEditor) handles all
generic (non-prover-specific) interaction. There are plugins to support theCoq and
PVS higher-order provers. There is also a plugin that supports interaction with the
top-level. It provides a high-level Java API to control aCoq top-level, and is called
theCoqSugar plugin.

3.2 ProverEditor

ProverEditor is formed of four parts, as seen inFigure 1: the editor, the top-level
view, the outline view, and the toolbar.ProverEditor also understands a number of
keyboard shortcuts to trigger toolbar and menubar actions.

The actions associated with the buttons seen inFigure 2are (from left to right):

• start to evaluate the file from the beginning
• take a step in the current file
• undo a step
• progress to the end of the file
• undo to the beginning of the file
• cancel an action

These actions are fairly standard in proof assistants likeCoq, PVS, and Is-
abelle. Of course, they are also similar to the actions implemented inProof Gen-
eral andCoqIDE. In fact, the general organization of the view forProverEditor
was inspired by the look-and-feel of those two tools. Still, there are some enhance-
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Fig. 1. A TypicalProverEditor Interface

Fig. 2. TheProverEditor Toolbar

ments, asProverEditor adds syntax highlighting to the top-level output and has a
very lightweight interface that reflects its lightweight architecture.

More concretely, extendingProverEditor for new provers is simpler than ex-
tendingProof General. In order to provide the base extensions, syntax highlight-
ing, and prover input/output communication for a new prover, less than a hun-
dred lines ofJava code is necessary. The base implementation provides library
functions to communicate with provers as well, so adding support for further new
provers should necessitate even less code.

3.2.1 Core features
First we will discuss the main features provided by the baseProverEditor plugin.
This plugin provides some low-level handling of a target prover top-level as well
as the basic UI building blocks, to edit a file from the prover, highlight its syntax,
show an outline of the file, and step through a proof.

The interaction subsystem, found in theprover.exec package, manages in-
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teractions like sending a stream to, and receiving data from, the top-level via pipes,
typically its standard output and standard error. The main class in this subsystem is
theprover.exec.toplevel.TopLevel class, which implements the inter-
faceprover.exec.ITopLevel.

Interaction with the top-level is based on calls to a method calledsendCommand.
In a typicalsendCommand scenario, the methodsendCommand(String) of
theTopLevel class is called. The command passed is supposed to be atomic. The
primitive ITopLevel.sendToProver(String) is called afterward with a
prover specific code.

sendCommand is a gateway for other methods to undo commands. For exam-
ple, theundo() method triggers an undo command to the top-level. This method
calls a prover-specific command that undos one step from whichever context in
which the user is working. In most of the cases, this command reduces to a call to
sendCommand() with the correct parameter. For instance, in the case ofCoq,
the undo command is translated into sending one of threeCoq top-level commands:
Back command, theUndo command, or theAbort command and for this be-
haviour the top-level state is used.

These interactions are generic and simple, but they permit accurate communi-
cation with each prover. They rely on a simple parsing of the inspected file. These
base feature can be used in more advanced interactions like the tagging system.

3.2.2 Tagging
A feature that differentiatesProverEditor from other similar systems is its support
for tags and tagging. Tags are a standard way of indexing source code contained in
libraries for interactive front-ends. One of the main implementations of tagging is
found in the programctags. Tagging is used in thevi editor as well as inEmacs.
Here we chose to implement a tagging system compatible with the etags [2], which
is used withEmacs, as nearly all higher-order theorem provers “native” interfaces
are based uponEmacs.

To tag a file, one uses regular expressions to match identifiers with their defi-
nitions. Once identifiers and their definitions are all gathered, a system can search
through this index at user request. The basic search method is triggered when the
user select an identifier (with, say, the mouse pointer), and asks to open its defini-
tion, or something that is considered as its definition.

In ProverEditor, definition search is triggered by the standardEclipse keystroke
‘F3’. This keystroke only works if the currentEclipse project is aProverEditor
project, like aCoq project for instance. This restriction is due to the fact that the
tags are built incrementally, and inEclipse this incremental construction feature is
intimately linked to the project nature.

Tags are stored using the standardetags format [1]. We find it useful to have
a compatible storage format because sometimes one works withProof General
Emacs andProverEditor at the same time. While this is not the most common
situation, it is a valuable feature to those who must use both interfaces, either si-
multaneously or alternatively.
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The tagging system used in our tool is quite efficient for several reasons:

• Eclipse optimizes file search, so definition search is efficient and fast,
• definition search is incremental—each time a file is added, removed, or saved to

the disk, its tags are calculated and saved, and
• user interaction identical toEclipse’s Java code browsing functionality. When

the user presses ‘F3’ over an identifier, the system opens a file containing the
corresponding definition and highlights it. This interaction is very familiar to
even the beginnerEclipse developer. Since our approach is lightweight and
involves no context information, several definitions may be found for a single
identifier. Thus, pressing ‘F3’ again jumps to the next definition.

To our knowledge, no other tagging system has been implemented forEclipse.
A potential future development is spawning off an independent tagging plugin from
this code. Such a plugin would be useful as a separate component forProof Gen-
eral Toolkit Eclipse, as well asProverEditor or any otherEclipse plugin.

3.2.3 ExtendingProverEditor with New Provers
The key differentiating feature ofProverEditor is the lightweight way in which one
integrates new provers. While the programmatic interface is simple, new provers
must have certain key properties in order to seamlessly integrate them. In particu-
lar, the prover must have a top-level and they must have two modes of interaction:
a “definition mode” and a “proof mode”. This separation is useful for minimal
interaction as presented in this paper, and especially forCoq. To have a richer in-
teraction the way would be to create a plugin that could be extended implementing
a specific protocol. This could be useful for better integration of some provers, like
PVS.

PVS integration hasn’t been an easy task, because interaction with the prover
is more complex than inCoq. The main problem is that the two modes tends to
interleave in different way than seenCoq or Isabelle. Still, due toProverEditor’s
lightweight nature, the current prototype supportingPVS is only around a hundred
lines of code as well6 .

The main aim is to keep extensions simple and easy. To add a new prover one
must write anEclipse plugin in the standard way and extend two extension points.
Additionally, one must implement at least two classes: one to help handle top-level
interactions, and the other, which is more prover-oriented, implements GUI related
functionality.

The first extension point to extend is calledorg.eclipse.ui.editors. It
is the extension point used to add a new file format handling. The editor to edit the
file is provided byProverEditor is the classprover.gui.editor.Prover-
Editor. This extension point has to be extended, becauseEclipse permits to add
specific editors only statically, through this extension point. We expect in the future

6 This plugin is currently experimental, but its source code can be downloaded from theProverEd-
itor main site [14], as well as theMOBIUS Trac server [15]
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developments ofEclipse we will be able to automatically add it like what is done
currently for thePreferencePage.

The second extension point that must be realized is specific toProverEdi-
tor. Its name isprover.editor.prover. This extension point connects the
two aforementioned classes that must be implemented to support a prover to the
generic plugin. Two classes have to be added, one that extends the abstract class
prover.plugins.AProverTranslator and the other implementing the in-
terfaceprover.plugins.IProverTopLevel. The latter providing some of
the top-level functionalities.

By these two simple steps one can add a prover plugin toProverEditor. Cur-
rently two plugins are using directly these functionalities, the CoqPlugin and the
PvsPlugin.

4 Current Plugins

The main motivation to make theProverEditor was to manageCoq interaction
inside ofEclipse. That is why the finished plugins concernCoq. There is also a
PVS plugin which is in developpement.ProverEditor plugins are used in 2 tools:
JACK [5] (the Java Applet Correctness Kit), andMOBIUS’ DirectVCGen [7].
Both tools beingEclipse plugins to do static program verification on Java programs
annotated withJML.

Right now the plugins available are the following:

• the core plugin, containing all the basic features which has been described in
Subsection3.2.

• theCoq plugin: it handle the interactions withCoq, basically it send parts of a
file to Coq, give an outline of the current edited file and do tagging. This plugin
is used with theDirectVCGen andJACK.

• theCoq Sugar plugin, which is an API to interact with theCoq top-level. It is
the plugin used inJACK

4.1 TheCoq Plugin

This plugin is the genuine plugin forProverEditor. It contains all the features that
were mentionned previously:

This plugin is made to do interaction withCoq. The core features are inside 3
classes. The mandatory plugin class forEclipse (Eclipse needs a plugin class in
order to consider it has a plugin). This class is generated automatically byEclipse.
The two other classes are the one needed to add the extension toProverEditor: the
one used to handle the top-level and the other one containing mainly the highlight-
ing parts.

There is another part which is less mandatory: the one to handle the out-
line. This adds about 10 classes to represents the leafs and nodes of the tree-
view. There are 2 kinds of handling: the leaf kind, containing only constructs like

11



Charles

Fig. 3. The outline forCoq

Fig. 4. The editor customized forCoq

Definition, Parameter and other single non-imbricated definitions. There is
another kind of construct, the imbricated ones. InCoq these are the section and the
module. These constructs are of a binary kind, with one to begin them (Module
m. or Section s.) and one to end them (End m. or End s.).

4.2 TheCoq Sugar plugin

We have made another plugin which add lots of some superfuous features to the
basic plugin. The main purpose of this plugin being to ease the use ofCoq within
ProverEditor.

We have mainly added a more complete API to handleCoq. It has more high-
level ’macros’. It subclasses the prover.exec.toplevel.TopLevel to have a real top-
level targeted atCoq. It adds some facilities like methods to declare lemmas, do a
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particular standard command or parse the output fromCoq to give a parsed result
of the command instead of the standard output. For instance, inCoq there is a
commandShow Intros which is used to know which variable nameCoq would
use with its intros command. Here the method gives an array of String with the
different variable names. In Jack we mainly use this API to pretty print the proof
obligations withCoq in order to have more user-readable proof obligations.

5 Conclusion

We have implemented a lightweight theorem prover withinEclipse, based on the
extensions facilities provided byEclipse. To have done it lightweight and minimal
in its mandatory features has allowed us to extend it quite fast for the theorem
provers likeCoq or PVS.

What will follow is the extension of these basic features toward more prover
specific features. One of the main idea would be to extend it in a component based
approach. Instead of having as in theProof General Toolkit one single mediator
communicating through lighweight protocols to other plugins, we have a main plu-
gin, which handle base interaction, that can delegate specific protocol handling to
plugins and their extensions.

5.1 Next Steps

The next step will be to have real API plugins for provers. It has already begun
throughCoq’s Sugar plugin which only aim is to provide this kind of API. It will
be done later on forPVS.

We plan to include Isabelle/HOL in a near future. The inclusion should be
simple as Isabelle can generate simple tagged output.

Other features that should be added as separate plugins are the projects and file
wizard to creat new prover specific files or projects dedicated to a single prover.

Tagging has been included in forCoq. This approach should be completed with
hints in a similar way as forJava. Like for tagging one of the difficulty is to keep
it generic and simple enough. One of the pattern that could be used is to associate
each identified tag with the nearest identified documentation. This is the pattern
used inJava parser to keep the Javadoc in the bytecode7 . Now we use the outline
to get an idea of the file structures forCoq andPVS. We plan to do an enhanced
outline that could give a representation of the proof tree. This extended outline
could permit to manipulate the definitions as objects, which would be more akin of
the Proof by Pointing [6].

We plan also to integrate it more thoroughly in theMobius PVE [10]. Espe-
cially the look and feel which shall become more uniform with the other plugins
part of theMobius PVE.

7 Although no real documentation is available, it can be seen in the sourcecode of the OpenJDK[12]
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Abstract

We describe an interactive visualization tool for large natural deduction proof searches. The tool permits
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1 Introduction

There are two main reasons why automated theorem proving in natural deduction

particularly benefits from visualization. First, natural deduction is generally con-

sidered to be easier to read than most other logics (4; 15; 19); one motivation for do-

ing theorem proving in natural deduction (ND) is to produce easily-comprehensible

proofs, but in order to be understood they must first be put in an accessible form.
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Second, automated theorem proving (ATP) in natural deduction is still in early

stages of study, and visualization provides a much-needed tool to assist in under-

standing the operation of experimental algorithms. By proving and visualizing in

natural deduction, a single tool can display both human-readable proofs and be

faithful enough to the data structures used by the reasoner to allow easy develop-

ment of theorem proving algorithms.

Many ideas have been developed to aid in the comprehension of automatically

generated proofs. Some we adopt for our purposes, such as graphical display (23).

Others are unnecessary, such as converting proofs to natural deduction (15). Still

others may aid proof comprehension but would do so at the cost of obscuring the

function of the underlying theorem prover, such as conversion to natural language

(6), and so we eschew them. We did not expect HTML-based browsers such as

IWBrowser (of the Inference Web project, (13)) and SigmaKEE (of the SUMO

project (17)) to facilitate high-level inspection of large proofs well. Interactive DAG

viewers, such as the Interactive Derivation Viewer (25), are more likely to succeed

at such a task.

In this paper we describe ViPrS (an acronym for Visualizing Proof Search),

a tool for visualizing and interacting with proofs and partial proof search structures.

It was designed with particular attention to use as an aid for proof search algorithm

development and has several features to facilitate that use, including an extremely

flexible programmatic user interface, the ability to interface directly with a theorem

prover, and the ability to interact with the theorem prover as the search evolves

step by step.

ViPrS was built specifically for the SILK theorem proving project, which we

describe in section 2. The design is intended to be decoupled from SILK as much as

possible, but effort was not spent in this initial version on allowing ViPrS to interact

with arbitrary reasoning engines. SILK reads in proofs specified in a fairly simple

XML format (described in (26)). Section 3 describes ViPrS, including its interface,

implementation, and architecture. In section 4 we discuss experience with ViPrS to

date, and possible future work is discussed in section 5.

2 The SILK Reasoning Project

Automated theorem provers have traditionally been directed toward problem solving

in the domain of mathematics (24; 22). Although they have been successfully

adapted to other formal domains, such as circuit verification, adaptation to informal

domains of human knowledge has proven much more challenging. Large ontologies

(18; 17) have been constructed to formalize reasoning in many domains, and the

semantic web (2) offers the promise of ever growing amounts of formal knowledge

over which software will attempt to reason. Traditional approaches to automated

reasoning suffer from the combinatorial explosion of the search space that follows

from the enormous number of concepts and axioms in large knowledgebases.

A number of extensions to traditional reasoning have been suggested. Proof

planning (16) and strict segmentation of knowledge into microtheories (18) have

shown promise. The approach of SILK, or “Soft Inference for Large Knowledge-

bases”, is to adapt machine-learning techniques designed for unsupervised organiza-
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tion of unstructured data (primarily text) to the problem of structured knowledge.

Patterns in the co-occurrence statistics of formal systems are exploited to auto-

matically compress knowledge into a smaller vocabulary of higher-level concepts.

Reasoning can occur much more efficiently at the higher level, and the resulting

proofs can be used to guide proof search in the original vocabulary. In this regard,

the high-level proof can be seen as a plan, and the approach is somewhat like proof

planning with the exception that plans are discovered automatically in any domain

rather than being coded from expert knowledge.

SILK also addresses the problem of reasoning under inconsistent assumptions.

Large knowledgebases, especially those that grow organically such as the semantic

web, are certain to occasionally introduce contradiction. Techniques which extract

information from various data sources will introduce contradictions both due to ex-

traction errors and due to the existence of inconsistent claims or erroneous entries

in data sources. Because knowledge compression can also introduce contradiction,

SILK needs to be especially robust. Classical theorem provers trivially reach arbi-

trary conclusions from contradictory assumptions, but SILK has the ability to prove

relevant results without making arbitrary conclusions from inconsistency. This is

achieved by using minimal logic via natural deduction proof search (this is an ad-

ditional benefit to ND search over classical resolution search beyond the improved

readability described in section 1). The reduced set of attainable conclusions is

expected to be sufficient for many expected applications of “real world reasoning”

(as opposed to theoretical mathematical reasoning), but this result needs to be

established through usage. Of course SILK also has the option merely to prefer

minimal proofs, permitting classical inferences sparingly and perhaps notifying the

user when doing so.

The technique of intercalation (21) has been adapted to create direct natural

deduction search which is provably as efficient as search in the sequent calculus

(4). SILK reasons directly in IKL (9), a dialect of Common Logic (CL) (5), which

provides a very convenient and powerful syntax which looks higher-order but has a

strictly first-order semantics over which it is sound and complete (8) 4 . KIF (the

Knowledge Interchange Format (7)) is the most well known variant of CL. The

typical approach to reasoning over knowledge represented in KIF by a first-order

theorem prover is to use the “holds” translation into first-order logic, leading to

computational and complexity difficulties (11). SILK attempts to overcome these

difficulties through use of a natural deduction calculus in which reasoning is done

directly in IKL without translation.

The intercalation theory underlying natural deduction search has been proven

sound but has not received the large-scale implementation attention that has been

given to resolution and other standard automated theorem proving techniques (12;

1). Reasoning directly in CL is novel, and the practical complexities are yet to be

discovered. Reasoning in large knowledgebases of course yields very large search

spaces and often large proofs as well, as inherited properties of classes must be

established by reasoning through the subclass hierarchy. For all of these reasons,

development of a practical, usable system such as SILK is likely to encounter many

4 Actually, this is true for the fragment of IKL implemented in SILK, which only allows finite expansion
of row variables
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unforeseen obstacles which may be difficult to understand and overcome without

tools such as ViPrS, which provide insights into the search patterns and inefficiencies

that arise in practical application. SILK is in very early stages of development. It

has not yet been reported on and is not available for public access.

3 ViPrS

SILK’s data structure is particularly well-suited to graphical visualization. As de-

scribed below, the structure is inherently non-linear, which makes displaying it

textually unproductive. Instead, we visualize the search DAGs graphically. The

objects to be displayed are also large enough that the interface must allow both

inspection of the overall structure and of finer details, a challenge we address in

several ways.

The search space for a proof is represented by a directed acyclic graph (DAG)

rooted at the proposition which SILK is attempting to prove. Proof search graphs

contain two distinct types of nodes. Line nodes represent logical formulas, while rule

nodes represent rule applications. A rule node will have one line node conclusion

and any number of line node premises. It is considered proved if all of its premises

are proved. Likewise, a line node will have one or more applications, rule nodes

for which it is a premise (except the root, which has none), and zero or more

justifications, rule nodes for which it is the conclusion. A line node is considered

proved if any of its justifications is proved or if it is an axiom or assumption.

A complete proof, then, consists of the proposition to be proved at the root,

various internal nodes, and axioms and assumptions as leaves. A proof search

graph is similar, except that its leaves may include formulas whose truth is as-yet

undetermined. As such, proofs are merely a special class of proof search graphs,

namely, completed ones. For conciseness we will henceforth refer to the object of

visualization as a proof search.

3.1 Interface

A typical screenshot of ViPrS in use can be seen in figure 1. Here, we describe its

salient features.

3.1.1 Viewing Pane

The main part of the ViPrS interface is the viewing pane. Here, the proof search

is displayed in a traditional graphical format, with nodes represented as boxes and

their relationships as lines between them. By default rule nodes have text indicating

their type (which rule is being applied), while line nodes are blank (due to the

lengthy propositions of most interesting proofs). The contents of a line node are

viewable in a tooltip, or can be displayed using the command-line interface, as

described in section 3.1.2.

The viewing pane allows various types of mouse-based interaction. Scrolling the

mouse wheel zooms in and out of the proof, allowing inspection of the fine detail

of proofs that are too large to easily fit on screen. Clicking and dragging pans the

display. Clicking on a node selects it, causing it to visually increase in size and

4



Byrnes et al.

Fig. 1. A screenshot of the complete ViPrS system, with the main viewing pane in the center, the minimap
and customizable buttons along the left, and the command-line interface at the bottom.

making it the object of future button presses. Hovering over a line node displays a

tool-tip that contains its formula and the formulas that make up its context.

DAG layouts frequently attempt to minimize edge lengths and crossings by plac-

ing linked nodes near each other, but occasional long crossing edges are unavoidable.

ViPrS simplifies the layout by treating the DAG in a very tree-like manner. The

primary parent of each node is the parent closest to the root (note that the goal

of the search provides a unique root to the search space), or leftmost in case of a

tie. All other parents of a node connect to it via crossing edges, which are the short

pairs of arrows displayed in figure 3. Clicking on one end of a crossing edge auto-

matically pans the display to the far end of the edge and darkens both ends of the

edge. The panning is most important when the far end of the edge is offscreen; the

highlighting is especially useful when multiple crossing edge endpoints are visible.

3.1.2 Command Line Interface

Sited below the main viewing pane is the Command Line Interface (CLI), the pri-

mary means for the user to manipulate the proof search. The CLI lets the user

interact programmatically with the visualization and the reasoning engine. Specif-

ically, the user can enter arbitrary Python code and have it interpreted. Through

predefined library functions and specially exposed variables, this code can interact

with the visualization. This means that the user can query and manipulate every
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property of the proof search without the need for any explicit prior implementation

of the particular interaction. The exposed variables link not only to the visual-

ization layer but into the data structures of the search algorithm as well. This

means that any detail of the state of the algorithm can be inspected or adjusted at

any step of search, allowing the user to understand and alter decisions made about

backtracking, goal selection, etc. As the system developer changes the Java code

in the reasoning engine, the new structures become exposed in ViPrS without any

changes required to ViPrS so long as the original data structures can access the new

structure.

The python library functions are loaded from a file at start up. The user can

add arbitrary new function definitions to this file, expanding the library simply

in python without editing any java code and without recompiling. The CLI also

provides a command history. The command history makes it easy for the user to

re-run previous commands, with or without modification. Our implementation lets

the user both scroll through the history sequentially and search through it. The

history persists between runs in a simple text file, allowing a user to return to

commands from previous sessions. Function definitions entered during a session

can be re-executed through the history mechanism or can be manually copied from

the history file into the library file.

3.1.3 Dynamic Buttons

To the left of the viewing pane are a number of buttons to provide easy mouse-

based manipulation of the proof search. As currently implemented, buttons act

on the selected node(s). In the example configuration seen in figure 1, ViPrS has

three buttons: one highlights a node by changing its color, and the others hide and

display the sub-DAG rooted at the selected node.

The exciting aspect of the buttons is their easy customizability. Rather than

running compiled-in code, each button is associated with a piece of Python code to

run when it is clicked. A new button can be added by invoking a simple function,

addButton, through the CLI. The buttons appearing on start up are defined sim-

ilarly in the user’s initialization script. Buttons can also be removed through an

analogous removeButton function.

This sort of easy tool-building should be appreciated by and comfortable for our

target audience of ATP developers and advanced users. In addition to saving us

from having to anticipate the most frequently useful commands, dynamic buttons

also hold distinctive advantages for users over buttons with fixed functionality. The

user can create appropriate buttons to avoid switching back and forth between

navigating a proof search with the mouse and manipulating it through the CLI.

Making the buttons completely dynamic also saves users from having to recompile

and restart, or even reload some configuration file, to extend the functionality of

ViPrS.

3.1.4 Minimap

Since proof searches can be so large, and the user may be focusing on only a small

area at a time, we provide a summary view, or “minimap” of the proof search in a

small box to the side. The minimap is a small, less-detailed view of the entire proof
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Fig. 2. The architecture of ViPrS, showing the data-flow relationships between the various components.

search. Its main utility is in showing what part of the proof search is currently in

the viewing pane, by means of a rectangle surrounding that area. The minimap also

allows the user easy navigation over large distances in the proof search by clicking

on the area to be examined more closely.

3.2 Architecture

To support these features, the design of ViPrS needs to strike a balance between

core features and the flexibility of a programmable system. Our architecture can

been seen in figure 2. Extensibility was a driving factor in this arrangement of the

functionality we have developed.

At the foundation layer, SILK provides the collection of nodes constituting a

proof search to be visualized. On top of this source data, the visualization compo-

nent maintains an internal abstract model of the proof search graph.

From that abstract model, we derive a concrete visualization of the graph, with

fields for all of the values salient to a visual display, including position, text, color,

size, shape, and so forth. The main display and minimap are each a view onto

this visualization. 5 These two displays, along with the other interface elements, are

uniformly represented as Java Swing JComponent objects.

The command dispatcher responds to button presses and entries in the com-

mand line window by passing the code to be run to the command interpreter. The

command interpreter, which holds references to the relevant objects of interest,

5 This is a slight simplification–to improve the utility of the minimap, it actually keeps a separately derived
visualization in which nodes are always displayed without text and at a fixed size.
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evaluates the given code, and then asks the visualization system to update itself to

reflect possible changes.

3.3 Implementation

3.3.1 Jython

Jython (3) provides the Python interpreter used as the back end of the CLI. It is a

Python interpreter written entirely in Java, and allows interaction (such as function

invocation and object reference) between compiled Java code and Python code in

the interpreter.

3.3.2 Online Update

We use an observer pattern to let the visualization system register its interest in

the changes presented by telling SILK to continue its search. This maintains the

loose coupling between SILK and ViPrS. The observer object queues the changes

presented by SILK, and then applies them to the visualizer’s model of the search

space at controlled points, where such changes won’t upset the visualization. The

user determines the number of search steps between updates, and can change this

dynamically during a run.

The tree-like treatment of the DAG described in section 3.1.1 greatly simplifies

this process. The primary parent completely determines the position of each node,

so adding nodes to the DAG only spreads the display in the same way that adding

nodes to a tree would do. Deletion of a node’s primary parent without deletion

of the node itself causes the primary parent to change, moving a subgraph of the

display to a different region of the DAG. This is potentially more disruptive to

the overall layout than the addition of nodes, but it still does not cause significant

repositioning of many parts of the tree.

3.3.3 prefuse

The prefuse visualization toolkit 6 (10) is the open source software package used to

drive the visual component of ViPrS. It is a software toolkit specifically designed for

the visualization of graphs. It provides classes to model a graph with various visual

characteristics, and then renders that model to a Java Swing JComponent which is

embedded in the GUI.

Data being visualized by prefuse goes through a sequence of transformations,

taking it from its raw, external form, through an internal abstract model, to an

extension of the model to include concrete visual details, and finally rendering that

visual model on a display. The SILK proof search data structures constitute the

external form. From the graph implicit in this collection of objects, we create an

explicit graph in an extension of prefuse’s provided Graph class. We then augment

this in a VisualGraph object that adds in details like layout, size, and color. Each

rendered Display is a window onto that fully elaborated visualization of the graph

structure, to which various interaction controls (e.g. pan, zoom) can be attached.

While prefuse provides various implementations of each of these transformation

steps and interaction controls, they are often not precisely suited to the purposes

6 Per the conventions of its developers, prefuse’s name is written in lower case
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Fig. 3. Display of a simple proof. The darkest, horizontal nodes represent rule applications. The gray nodes
are formula occurrences, and in this image the major premises have been highlighted. The restriction of
major premises to the upper portion of each branch is a property of normal natural deductions (20; 4).

of this visualization application. Thus, many of the implementations had to be

tailored to our purposes. For example, the included tree-like layout didn’t take

account of its input being a rooted, directed graph.

4 Discussion

The ViPrS tool has proven itself to be very useful, even while in its developmental

stage. First, in reporting research to sponsors, it was valuable to be able to display

a visualization of a proof in order to explain its structure and some of the difficul-

ties involved in proof search. Figure 3 is a ViPrS screen shot displaying a SILK

proof constructed from an IKL translation of SUMO (the Suggested Upper Merged

Ontology, (17)).

The tool has also been very useful for debugging of SILK. During proof search,

certain heuristics depend on the height of given nodes. When part of the space did

not seem to be getting explored, work in the debugger revealed a node for which

the height was incorrectly recorded. Finding the root of this problem would have

been extremely tedious through a standard debugger or logger, but a snapshot of

the search space represented in ViPrS identified the roots of all mislabeled subtrees

immediately. This was done without any change to the visualization source code.

A simple recursive Python command was defined through the CLI which colored all

nodes having height one green (simulated in figure 4). The nodes with the incorrect
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Fig. 4. The tree is searched and all nodes reporting height one are highlighted. The node with erroneous
height stands out immediately. Traditional use of a debugger or text output would have required tedious
comparison and manual inspection.

heights were immediately visible, and the state of each could be queried directly

through the CLI. The visualization layer has no direct reference to the reasoning

engine’s node height values. Rather, the effect was generated by applying the ability

described in section 3.1.2 of the CLI to access SILK data structures directly.

Beyond detection of bugs (coding errors), the real goal of the system is to un-

derstand the structure of the search space in order to improve search efficiency. The

full search space can potentially contain redundant subtrees. These are recognized

during search and treated specially so that redundant search does not occur. How-

ever, the use of Skolem functions and Herbrand terms during search introduces the

possibility of parts of the search space which are redundant without being identical

(rather, they are identical up to variable renaming). Proper treatment of these re-

dundancies is best handled theoretically, but one often alternates between empirical

algorithm exploration and theoretical development. When a particular proof search

failed to yield a proof, the large scale visualization in figure 5 of part of the search
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Fig. 5. The leftmost side of a large search tree after fifty steps of search. The close-up structure on the right
appears at each of the subtrees indicated by the arrows. The tool-tip feature (described in section 3.1.1)
immediately allows us to see that the root of each of these subtrees is identical up to choice of a newly
introduced free variable.

space quickly suggested that redundant trees were being searched. Finer inspection

then provided the determination that the redundancies seen were due to variable

renaming and not due to coding errors with respect to the more straightforward

type of redundancy.

5 Future Work

Extensibility was the primary consideration in the design of the ViPrS architec-

ture. The simplest type of extension, as described above, is the addition of Python

functions that can be called from the CLI. Colorings which highlight structural

properties of the search space have been written already, such as those which high-

light nodes that have been successfully proven, or those which are major premises

(as the ND search is driven by restriction to normal deductions).

One important accomplishment is the decoupling of the minimap from the pri-

mary display. Although the two diagrams currently represent the same view at

different scales, the minimap can render a different view entirely. One possibility

is embedding nodes into points on the plane without rendering individual nodes or
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edges. The points of the plane could be colored to represent properties of nodes,

such as a heat map representing the ages of nodes to indicate the order in which

parts of a tree were visited. Other maps might represent the number of free variables

occurring in each node, or the number of instances of members a given set of formal

symbols (names) from the knowledgebase that might be of particular interest to a

user.

Collapsing of nodes is crucial to readability of the graphs, but the appropriate

mechanisms for collapsing DAGs are not exactly clear. The current implementation

hides as much as possible, meaning that all nodes “above” a collapsed node are

hidden, even if they are above through crossing edges (the arrows) rather than

direct edges; as a result collapsing may hide distant nodes unexpectedly. Convenient

techniques for allowing the user to control this functionality and for indicating points

which have been collapsed remotely need to be developed.

One of the motivations of ND theorem proving is to provide a more human-

readable proof. The fact that intercalation always finds normal proofs can be ex-

ploited to automatically collapse parts of the visualization based on minimal nodes

and the branch structure of normal derivations. The plans which SILK generates

to provide guidance for proof search should give guidance for collapsing as well,

and future work should provide the ability to present a plan which expands to the

underlying proof.

Further extensions of SILK will likely also lead to extensions of the visualization.

SILK is currently being extended to interoperate with BRUSE, a Bayesian network

software system which provides soft evidential updating (26; 27). SILK proofs

are being converted into network fragments as a means of automating network

construction, and the ViPrS system is likely to be extended to provide visualization

of the resulting Bayesian networks.

An appealing direction for ViPrS not originally considered is to allow arbitrary

reasoning engines to make use of ViPrS for visualization. The current system with

SILK could be used to read in arbitrary proofs and proof search DAGs specified

in SILK’s XML format, so an easy extension that might be useful is simply to let

SILK read other standard formats such as TPTP (24) and PML (14). Of potentially

greater utility is development of a Java API which developers of reasoning engines

could use in order to provide interactivity with any algorithms being developed. This

would allow, for example, different reasoners (possibly using different logical calculi)

to be run in parallel in order to compare their approaches to various problems of

interest.
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Abstract

Proof assistants aid the user in proving mathematical theorems by taking care of low-level reasoning details.
Their user interfaces often present proof information as text, which becomes increasingly difficult to compre-
hend as it grows in size. Panoptes is a software tool that enables users to explore graphical representations
of the formal proofs produced by the imps Interactive Mathematical Proof System. Panoptes automatically
displays an imps deduction graph as a visual graph that can be easily manipulated by the user. Its facilities
include target zooming, floating information boxes, node relabeling, and proper substructure collapsing.
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1 Introduction

A proof assistant is a software system for developing formal proofs. The user guides

the development of an attempt to prove a conjecture, while many of the low-level

details are done automatically by the proof assistant. Proof assistants are usually

not equipped with sophisticated tools for exploring the “tree” of formulas that is

produced by a proof attempt. However, the proof structure created in proving a

conjecture can sometimes grow to a large size involving hundreds of formulas and

inferences. In this case, the user can easily lose his or her way when exploring the

proof and can miss seeing different parts of the proof with similar structure that

could be merged if identified.

Panoptes, named after the all-seeing giant of Greek mythology, is a software

system for exploring the proof structures produced by the imps Interactive Math-

ematical Proof System [3,4,5]. The proof structures that imps creates are certain

kinds of graphs called deduction graphs. Panoptes automatically displays an imps

1 This research was supported by NSERC.
2 Email: wmfarmer@mcmaster.ca
3 Email: ogrigorov@gmail.com
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deduction graph as a visual graph that can be manipulated by the user. Although

Panoptes is designed to work with imps, it focuses on facilities that would be useful

to many other proof assistants. This paper describes the facilities that Panoptes

provides and gives an overview of its implementation.

2 Deduction Graphs in IMPS

A deduction graph [3] in imps is a directed bipartite graph used to represent a proof

or proof attempt. It contains two types of nodes and arrows that connect a node of

one type to a node of the other type. A sequent node represents a sequent consisting

of a single formula called the assertion and a finite set of assumptions called the

context. An inference node represents an inference from a finite set of sequents

(the hypotheses) to a single sequent (the conclusion). An inference node has arrows

pointing to it from the sequent nodes representing its hypotheses and an arrow

pointing from it to a sequent node representing its conclusion. The root node of a

deduction graph is a distinguished sequent node in the graph that represents the

sequent to be proved.

For example, the figure

is a small deduction graph consisting of n + 1 sequent nodes and 1 inference node.

This deduction graph represents the inference of the conclusion held by the sequent

node C from the hypotheses held by the sequent nodes H1, . . . ,Hn.

Since a sequent node can have more than one arrow into it, any number of al-

ternate strategies can be represented in the deduction graph for proving a given

sequent. Thus a deduction graph generally does not represent a single proof at-

tempt, but rather a set of intertwined proof attempts. Deduction graphs may

contain cycles and may not be connected. A sequent node is said to be grounded if

it is known to be valid. A deduction graph is a proof if its root node is grounded.

A deduction graph that is a proof does not necessarily represent a proof tree; it

may contain garbage, i.e., parts of the deduction graph that represent unneeded or

unfinished alternate proof attempts.

3 Description of System

Panoptes serves as an add-on application, which runs concurrently with imps. It

provides a graphical visualization of the deduction graph, which is synchronized with

the internal representation of the deduction graph upon request by the user. The

tool provides a large set of functions to ease the process of exploring the structure

of the graph and understanding the logical development of the proof. The main

design goal was to make graph manipulation easy, and the result is a program that
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provides an almost playful way of exploring the deduction graph. Another design

goal was to make it easy to port to other theorem provers by encapsulating into a

separate module the part that processes the input from the theorem prover.

3.1 Functionality

Apart from the graphical visualization of the deduction graph on the screen, the

system provides a range of useful functionality to the user. The following are some

of the major options available.

• Target zooming. The user can zoom in and out on parts of the graph by just

pointing with the mouse and holding down a button. This is quite different from

the standard way of zooming first and then scrolling to reach the point of interest,

which can easily lead to confusion and disorientation of the user.

• Collapsing. Parts of the graph can be collapsed into special inference and se-

quent nodes. For instance, if the validity of a sequent node is reduced to the

validity of one or more other sequent nodes through a number of proof steps,

the user has the option to collapse all these steps into a special inference node,

which consolidates the reasoning that reduces the goal to the subgoals. Similarly,

cycles of equivalent sequent nodes can be collapsed into a special sequent node.

Collapsing is very important when dealing with large deduction graphs since it

enables secondary information to be hidden without compromising the semantic

integrity of the deduction graph representation.

• Labeling. The user can freely label nodes and parts of the graph so that these

components can be identified with names that are more meaningful than the

names generated by the system.

• Floating information boxes. Each node, regardless of its type, contains some

information. In the case of a sequent node, this information comprises the se-

quent represented by the node. An inference node contains the inference rule

that generated the represented inference, and a collapsed inference node contains

the (possibly large) part of the graph that is hidden by the collapsing. Each

node in the deduction graph has an information box that contains the informa-

tion associated with it. These information boxes can be toggled between visible

and nonvisible states. Additionally, when visible, an information box has a direct

visible link to its associated node, which further enhances the efficiency of pre-

senting the information to the user. Of course, these information boxes can be

scaled, repositioned, and manipulated in many ways by merely pressing a button

or dragging the mouse.

• History of operations. A comprehensive history of the operations applied to a

deduction graph is kept at all times, so that the user can easily revert back to an

earlier arrangement of the graph on the screen. Also, this function is important

for preserving the effort invested into rearranging the graph between proof steps,

which is possible due to the fact that imps only adds new nodes, but never removes

nodes from the deduction graph.

• Automatic layout and manual rearranging. Upon startup, Panoptes pro-

vides an initial layout of the deduction graph. This allows Panoptes to fit the
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whole graph in the screen space provided by the system and also to minimize the

crossing of edges as much as possible. In addition, the user is able to drag and

drop components of the graph to either improve or modify the layout according to

his or her preference, while the program automatically protects the connections

(the arrows) between the nodes.

Additionally, appropriate automatic labeling and numbering of repetitions (in

the case of inference nodes representing applications of the same inference rule)

is automatically performed by the system. The power of color is also utilized:

grounded nodes are colored in green, repeated nodes (i.e., nodes that complete a

cycle or merge proof directions) in brown, collapsed inference nodes in purple, etc.

3.2 Implementation

A fully functional prototype of the proposed system has been developed in Objective

Caml (OCaml) [9] using the LablGL library [6] that implements an interface to

OpenGL [7] in OCaml.

The choice of OCaml as the programming language was made on the basis

of its features, such as its support for modular design, as well as its automatic

garbage collection system, type inferencing, and allowance for both imperative and

functional programming styles. All of this adds up to a versatile language that is

suitable for developing large projects with a reduced chance for programming errors

and an increased runtime stability. Furthermore, OCaml is available for many

operating systems including Linux and Mac OS X, which makes the tool portable

to all systems that currently support imps.

As for the graphical library, OpenGL is usually associated with three-

dimensional graphical visualizations, but the system uses these capabilities for im-

plementing different techniques. For instance, moving the graph or selected com-

ponents of the graph closer or further away from the viewer creates the effect of

zooming in contrast to the usual method of merely scaling the image. The advan-

tage lies in OpenGL being a direct API to the 3D instruction set of the graphical

hardware, and as such it provides a performance unmatched by the standard way

of drawing graphics on the screen. The result is an application, which delegates all

graphical computations and manipulations to the GPU, rather than to the CPU

of the host machine, leaving the latter fully available for other work (such as that

done by the imps reasoning engine). Consequently, a computer system equipped

with a reasonably modern graphics card would be capable of running the prototype

smoothly without burdening the user with unnecessary lags and delays.

3.3 Availability and Screenshots

The source code and instructions for compiling and running the system are available

at the Panoptes home page: http://imps.mcmaster.ca/ogrigorov/panoptes/.

The home page also provides access to a demo of the system, as well as detailed

documentation of the requirements, design, and implementation of the system [8].

A few screenshots are displayed below, although the complete functionality, fea-

tures, and performance of Panoptes cannot be demonstrated by static pictures:
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colors to each category. Similarly to Panoptes, the user has different facilities to

manipulate the appearance of the proof tree, such as zooming, scrolling, focusing,

and other functionalities.

5 Future Work

Future work can take different directions.

New features, such as a facility to syntactically or semantically compare and

calculate a degree of similarity between sequent nodes will further enhance the ef-

fectiveness of Panoptes. Also, exploiting the 3D capabilities provided by OpenGL

can result in the ability to stack different proof attempts of a particular goal per-

pendicularly to the screen plane. The user can then use commands to spin through

the different proof attempts or even look at the graph from a different angle for

obtaining different perspective and understanding.

Even though Panoptes was successfully tested and performed without noticeable

lags on a system equipped with two 30” Apple Cinema HDTM displays, each capable

of 2560×1600 pixels resolution, it is yet to be tested on a system connected to

a large wall of screens (i.e., 4×3 units with combined resolution of 10,240×4,800

pixels). Since the current design and implementation concentrate on optimizing

the program for better runtime performance, it will prove beneficial if the tool is

running smoothly on such large screen systems.

Since the dataflow between imps and Panoptes is currently happening only in one

direction (data can travel from imps to Panoptes, but Panoptes cannot send mes-

sages to imps), expanding Panoptes into a standalone user interface to completely

replace the existing Emacs-based user interface of imps is the most ambitious plan

of all. This is due to the enormous amount of details that need to be accounted for,

although given sufficient time and dedication, it is completely achievable.

6 Conclusion

The users of proof assistants require effective tools for exploring the proof structures

they create. Panoptes demonstrates the kind of functionality that these tools need

to provide. Its implementation utilizes the powerful features offered by today’s com-

puter graphics technology. The ideas used in Panoptes for exploring imps deduction

graphs can be readily applied to other proof assistants. Moreover, Panoptes has

been designed so that the code itself can be ported to other proof assistants as well.
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Abstract

Portable proofs are a new and interesting way of integrating theorem provers into distributed environments
like the web. This article reports on user interface’s challenges and opportunities for theorem provers in
such environments. In particular, this article reports on the design of user interfaces used for searching,
browsing and inspecting TSTP problems when published as portable proofs.
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1 Introduction

The integration of theorem provers into hybrid distributed environments offers a

new set of challenges and opportunities for providing explanations of system results.

Distributed and portable proofs can be more interesting than stand alone proofs for a

number of reasons: they may be deployed, stored and reused outside of environment

in which they were generated; portions of the proof (e.g., individual inference steps

or combinations of inference steps) may be named, annotated, and reused; support

for portions of the proofs may be provided by other portions of the system (or even

found by searching the web); axioms may have multiple lines of support; axioms

can be asserted by multiple sources; and supporting evidence can be provided by

multiple sources (instead of only the one source used in the original proof). We use

the term portable proofs to refer to artifacts with these properties.
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In order for portable proofs to realize their full potential, innovative user inter-

faces are required. For example, consider the following tasks:

• Searching for proofs and proof fragments

• Searching for proof annotations for reuse

• Browsing proof annotations

For example, what are the design requirements for the query interface of a proof-

aware search engine? Also, what are the design requirements for the presentation

of the search results? Considering that the results can be entire proofs or just proof

fragments, how can a user interface show the exact part of the proof is represented

by the search result? Moreover, how can the user intuitively ask for more details of

the results, whether the additional results are related to in-depth disclosure of proof

details or to a better understanding of the proof structure? The browsing of proof

annotation can become particularly challenging considering the amount of details

that can be incorporated into proofs.

In addition to the design issues above, we see that traditional challenges related

to proof presentation remain for portable distributed proofs:

• Conclusion presentation

• Complex proof presentation

• Browsing techniques that incorporate evidence and sources

In this paper, we address the challenges above. The rest of this paper is organized

as follows. Section 2 describes a typical use of our Inference Web explanation envi-

ronment tool suite in a theorem prover setting. Section 3 revisits Inference Web’s

Proof Markup Language (PML) used to encode portable proofs. Section 4 explains

how portable proofs are extracted from PML documents. Section 5 describes how

Inference Web’s Search (IWSearch) can be used to search for both proofs and proof

metadata on the web. Section 6 introduces ProbeIt - a tool that supports proof

inspection. Section 8 summarizes the main results for this paper.

2 Motivating Use Case

We leverage the TPTP collection of problems and proofs as the setting for our

use case. Consider a simple scenario where a user is interested in solving one of

the problems and investigating a particular theorem prover’s solution. (Later we

will expand to investigating multiple prover’s solutions for the same problem). Our

initial use case is the “Aunt Agatha” problem PUZ001+1 in the TPTP collection [11],

and consider the SNARK system’s [10] solution of the problem.

Proofs generated by theorem provers can be published on the web. However, a

typical proof output by a theorem prover is not annotated with meta information

such as generator, time, and context. In fact, a proof’s content is typically restricted

to a raw identification of derivations plus a brief mention of the name of the inference

rule used in each derivation. Without annotations, proofs may be used to debug the

reasoning within theorem provers, but may be of limited use when trying to identify

many other important properties of proofs such as the authors of the provers or a

proper description of the inference rules used.
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In this case of SNARK solving the Aunt Agatha problem, we may want to

annotate that the proof was generated by SNARK. To be more specific, considering

the possibility that the proof steps can be distributed on the web, we may want

to annotate that SNARK was responsible for each step of the proof for Agatha.

Further, we want the annotation to say that SNARK was implemented by Mark

Stickel who is affiliated with SRI International. More generically, metadata should

be able to be added to explain every single aspect of a proof, including the theorem

provers responsible for generating the proofs, the version of the implementation,

inference rules used by the theorem provers, axioms used in each proof, etc. More

interestingly, metadata is expected to be reused at proof generation time. For

example, an inference rule may be used multiple times in a proof as well as to

be reused in multiple proofs from. In this case, one should be able to create and

identifier, i.e., a URIref, and to publish the metadata about the rule. With this

identifier in place, the metadata can be reused as needed.

We consider the following issues with relation to user interfaces for distributed

proofs.

(i) How to search for proof-related metadata on the web, e.g., how to search for

SNARK metadata?

(ii) How to verify that proof metadata correctly corresponds to the object of con-

cern, e.g., that SNARK metadata is about the theorem prover from SRI Inter-

national and implemented by Mark Stickel?

(iii) How to understand the structure of a distributed proof?

(iv) How to visualize a richly annotated proof?

The use of PML and (more) IW tools on the full TSTP solution library is also

described in [8]. In the rest of the paper, we further describe the interface to the

tools we use to create a demonstration environment for distributed proofs.

3 Proof Markup Language

In our environment, we encode distributed proofs in the Proof Markup Language

(PML) [4,7]. We do this in the setting of the Inference Web [5] explanation in-

frastructure, which includes a number of PML-literate tools and services such as

proof browsers, e.g., ProbeIt [1] and the IW Local View, and search services e.g.,

IWSearch. Inference Web also includes the PML ontologies and and references a

collection of PML documents already available on the Web. We have generated

a collection of PML proofs for the TPTP problems [8] and made the collection

available on the Web.

Different than other markup languages for mathematical documents such as

OMDoc [3], PML focus is on the creation and handling of graphs used to represent

information manipulation traces created by agents (i.e., humans or machines) to

infer conclusions. These graphs may be used to encode a formal proof but they may

also be used to encode incomplete information on how conclusions were inferred.

Moreover, a single graph may include a single justification for a given conclusion

but it may include many alternate justifications for the same conclusion. Moreover,

PML can be used to encode any kind of conclusion while OMDoc prescribes a
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precise way of encoding conclusions as formal logical sentences. Because of these

characteristics, OMDoc is expected to have a better support for handling conclusions

than PML since the conclusions need to conform to the OMDoc syntax. On the

other hand, PML can be used to encode any kind of proof, including the proofs

that can be encoded in OMDoc and informal proofs such as information extraction

based on natural language processing [6].

In PML, NodeSet 1 and InferenceStep are the main constructs of portable proofs

and web explanations.

A NodeSet represents a step in a proof whose conclusion is justified by any of

a set of inference steps associated with the NodeSet. PML adopts the term “node

set” since each instance of NodeSet can be viewed as a set of nodes gathered from

one or more proof trees having the same conclusion.

• The URIref 2 of a node set is the unique identifier of the node set. Every node

set has one well-formed URIref.

• The hasConclusion of a node set represents the expression concluded by the

proof step. Every node set has one conclusion, and a conclusion of a node set is

of type Information.

• The expression language of a node set is the value of the property hasLanguage

of the node set in which the conclusion is represented. Every node set has one

expression language, and that expression language is of type Language.

• Each inference step of a node set represents an application of an inference rule

that justifies the node set’s conclusion. A node set can have any number of

inference steps, including none, and each inference step of a node set is of type

InferenceStep. The inference steps are members of a collection that is the value

of the property isConsequentOf of the node set. A node set without inference

steps is of a special kind identifying an unproven goal in a reasoning process.

An InferenceStep represents a justification for the conclusion of a node set. In-

ference steps are anonymous OWL classes defined within node sets. For this reason,

it is assumed that applications handling PML proofs are able to identify the node

set of a inference step. Also for this reason, inference steps have no URIs.

• The rule of an inference step, which is the value of the property hasRule of the

inference step, is the rule that was applied to produce the conclusion. Every

inference step has one rule, and that rule is of type InferenceRule. Rules are in

general specified by theorem prover developers. However, PML specifies three

special instances of rules: Assumption, DirectAssertion, and UnregisteredRule.

When specified in an inference step, the Assumption rule says that the conclusion

in the node set is an explicit assumption. The DirectAssertion rule says that the

conclusion of the node was provided by the sources associated with the inference

step. The UnregistredRule says that the conclusion in the node set was derived

by some unidentified rule. UnregisteredRules allow the generation of proofs-like

structures applying undocumented, unnamed rules.

• The antecedents of an inference step is a sequence of node sets each of whose con-

1 PML concept names are typed in sans serif style and PML attribute names are typed in courier style.
2 http://www.ietf.org/rfc/rfc2396.txt
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clusions is a premise of the application of the inference step’s rule. The sequence

can contain any number of node sets including none. The sequence is the value

of the property hasAntecedent of the inference step. The fact that the premises

are ordered may be relevant for some rules such as ordered resolution [9] that use

the order to match premises with the schema of the associated rule. For other

rules such as modus ponens, the order of the premises is irrelevant. In this case,

antecedents can be viewed as a set of premises.

• Each binding of an inference step is a mapping from a variable to a term specifying

the substitutions performed on the premises before the application of the step’s

rule. For instance, substitutions may be required to unify terms in premises in

order to perform resolution. An inference step can have any number of bindings

including none, and each binding is of type VariableBinding. The bindings are

members of a collection that is the value of the property hasVariableMapping

of the inference step.

• Each discharged assumption of an inference step is an expression that is dis-

charged as an assumption by application of the step’s rule. An inference step can

have any number of discharged assumptions including none, and each discharged

assumption is of type Information. The discharged assumptions are members of

a collection that is the value of the property hasDischargeAssumption of the

inference step. This property supports the application of rules requiring the dis-

charging of assumptions such as natural deduction’s implication introduction. An

assumption that is discharged at an inference step can be used as an assumption

in the proof of an antecedent of the inference step without making the proof be

conditional on that assumption.

• The engine of an inference step, which is the value of the property hasInfer-

enceEngine of the inference step, represents the theorem prover that produced

the inference step. Each inference step has one engine, which is of type Infer-

enceEngine.

• The timestamp of an inference step, which is the value of property hasTimeStamp

of the inference step, is the date when the inference step was produced. Time

stamp is of the primitive type dateTime. Every inference step has one time stamp.

An inference step is said to be well-formed if:

(i) Its node set conclusion is an instance of the conclusion schema specified by its

rule;

(ii) The expressions resulting from applying its bindings to its premise schemas are

instances of its rule’s premise schemas;

(iii) It has the same number of premises as its rule’s premise schemas; and

(iv) If it is an application of the DirectAssertion rule, than it has at least one source,

else it has no sources.

PML node set schemas and PML inference step schemas are defined as follows.

A PML node set schema is a PML node set which has a conclusion that is either

a sentence schema 3 or a sentence; which has a set of variable bindings that map

3 A sentence schema is a sentence optionally containing free variables. An instance of a sentence schema S
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free variables in the conclusion to constants; which has zero of more inference steps;

and whose inference steps are either inference steps or inference step schemas.

An inference step schema is an inference set of a node set schema whose antecedents

are node set schemas.

4 Portable Proofs

Since a PML node set can have multiple inference steps and each antecedent of each

of those inference steps can have multiple inference steps, a PML node set N and

the node sets recursively linked to N as antecedents of inference steps represent a

graph of alternative proofs of N ’s conclusion. In this section, we describe how to

extract individual proofs of N ’s conclusion from that graph of alternative proofs.

We shall call each such extracted proof a “proof from N”.

We begin by defining a proof as a sequence of “proof steps”, where each proof step

consists of a conclusion, a justification for that conclusion, and a set of assumptions

discharged by the step. “A proof of C” is defined to be a proof whose last step

has conclusion C. A proof of C is conditional on an assumption A if and only if

there is a step in the proof that has A as its conclusion and “assumption” as its

justification, and A is not discharged by a later step in the proof. An unconditional

proof of C is a proof of C that is not conditional on any assumptions. (Note that

assumptions can be made in an unconditional proof, but each such assumption must

be discharged by a later step in the proof.) Finally, proof P1 is said to be a subproof

of P2 if and only if the sequence of proof steps that is P1 is a subsequence of the

proof steps that is P2.

Given these definitions, we can now define the proofs that are extractable from

a PML node set as follows: for any PML node set N , P is a “proof from N” if and

only if:

(i) The conclusion of the last step of P is the conclusion of N ;

(ii) The justification of the last step of P is one of N ’s inference steps S; and

(iii) For each antecedent Ai of S, exactly one proof from Ai is a subproof of P .

If N is a node set with conclusion C, then a proof from N is a proof of C.

5 Searching for Proofs and Proof Metadata

IWSearch is the search tool for the Inference Web Infrastructure. IWSearch was

developed to overcome a number of limitations related to metadata management

found in our past practice: (i) IWBase, Inference Web’s registry-based metadata

management system, provides limited mechanisms for accessing metadata entries

– a user can only browse the type hierarchy of those entries to find entries; and

(ii) no service is available to find and reuse PML provenance metadata published

on the web. IWSearch searches over PML proofs and proofs’ metadata that has

published on the web, and thus focuses on providing access to proof elements that

have already been registered in the database registry.

is a sentence that is S with each free variable replaced by a constant.
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Fig. 1. IWSearch results for inference engine SNARK.

IWSearch is modeled off of SWOOGLE[2], which can be viewed as a search tool

that “understands” RDF. Similarly, IWSearch can be viewed as a search tool that

“understands” PML and OWL. IWSearch has an indexing phase that indexes terms,

and also looks for particular terms using its knowledge of PML. Some metadata that

IWSearch looks for includes:

• uri: Each PML object is identified by a unique identifier, i.e., a URI.

• type: Each PML object has one most-specific type, and IWSearch additionally

indexes the other general types of a PML object. For example, an instance

of inference engine metadata may also be considered as an instance of agent

metadata.

• label: Each PML object has one label indicating its name. In the absence of

name, the raw string content of the object is used. For example, an inference

engine name is “SNARK 20070805r043”, but for a conclusion, its label is its raw

string content -” ? [X] : ( lives(X) & killed(X,agatha) )”.

• source: Each PML object is extracted from one PML document, and the URL of

the PML document is deemed as the source.

With the above metadata, IWSearch can provide much more than keyword

search. By searching for +SNARK +type:inferenceengine, we can restrict the

query and return only PML objects in the specified type. This is particularly

useful if we want SNARK-generated proofs in PML to be annotated with the in-

formation that the proofs were generated by SNARK. Figure 1 shows the result of

such a search. When querying for SNARK, one may find multiple metadata en-

tries that are identified as SNARK. There are multiple reasons for this: more than

one theorem prover is called SNARK; multiple versions of a single theorem prover;

multiple metadata statements about the same theorem prover; or any combination

of the previous reasons. By browsing the metadata, as in Figure 2, one may be

able to verify multiple properties of the engine metadata such as authors, author’s

affiliation, engine’s website as well as the creator of the metadata. By browsing

the metadata, the user should be able to decide whether to reuse some existing

metadata or even to create new metadata.

7
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Fig. 2. Browsing metadata about an inference engine called SNARK.

6 Browsing Proofs

Probe-It! consists of three primary views to accommodate the different kinds of

proof information: queries, proofs (or justifications), and provenance (or metadata).

The query view shows the links between a given problem and possible solutions

for the problem. Upon accessing one of the solutions in the query view, Probe-It!

switches over to the global view associated with that particular solution. All views

are accessible by a menu tab, allowing users to navigate back to the query view from

any other view.

The global view graphically shows the reasoning associated with a given solu-

tion. Probe-It! renders this information either as a directed acyclic graph (DAG)

or as a tree. The example of a tree view of the SNARK’s solution for the Agatha

problem is shown in Figure 3. In this view, users can visually see the conclusions

of each node as well as some essential metadata.

The local view provides a comprehensive view of proof information avail-

able mainly at the level of a single proof step. For example, in Figure 4, one

of the intermediate conclusions of the proof is that the butler hates himself

(“hates(butler,butler”). The conclusion itself is encoded in TPTP-CNF language,

and the view shows how the conclusion was derived: SNARK 20070805r043 was the

theorem prover responsible for deriving the conclusion by applying the rule SNARK

HYPERRESOLVE to the antecedents also listed in the view. One of the main benefits

of the global view is that it provides a good insight about the structure of the proof.

For example, for the intermediate conclusion we can see that it was derived from

three antecedents and that one of antecedents was itself derived from other state-

ments. Further, the edge leaving the intermediate conclusion is evidence that it is

not final (i.e., the intermediate conclusion is not an answer for the problem being

solved by the inference engine.

The local view is structured to be a textual description of the main properties
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Fig. 3. ProbeIt! Global View

of a single proof step. This description is divided into four sections, as we can see

in Figure 4: conclusion, how, why, and to answer. The conclusion section shows

the main result of the selected inference step along with meta-information about

the result. The how section identifies the antecedents as the inference rule applied

to theses antecedents to infer the conclusion of the inference step. The why section

shows the final conclusion of the entire proof and intermediate goals. The why

section also identifies the following conclusion inferred from the conclusion of the

current step of the proof. Last, the to answer section shows the question that the

theorem prover is answering.

One very important aspect of the local view is that it provides information about

sources and some usage information e.g., access time, during the execution of an

application or workflow. Every node in the justification DAG has an associated

provenance description. This information, usually textual, is accessible by select-

ing any of the aforementioned nodes. For example, upon selecting the “SNARK

20070805r043” hyper-link in the local view in Figure 4, meta-information about the

inference engine, such as the responsible organization, is displayed in another panel.

Similarly, users can access information transformation nodes, and view information

about used algorithms. It is important to note that the requested meta-data is

exactly the same information already presented in Figure 2. This exemplifies a case

where user interface software can be reuse by multiple tools on the same way that

the tools reuse meta-data to encode portable proofs.

9
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Fig. 4. ProbeIt! Local View

7 Implementation and Deployment

The core functionality provided by Probe-It! can be divided into three main sub-

systems: the PML API, the DIVA framework, and the visualization framework,

which parse PML documents, provide a graphical framework from which execution

traces can be rendered, and render the node set conclusions respectively. Both the

PML API and the Diva framework are implemented in Java, while some viewers

contained in the visualization framework require native libraries. XMDV, for exam-

ple, is supported by OpenGL and both the 2D plot viewer and grid image viewer

are based on native Generic Mapping Tools (GMT) scripts. Both the OpenGL and

GMT libraries are implemented as Window’s dynamic link libraries (DLLs). Al-

though equivalent libraries for Linux and Macintosh exist, in the interest of time,

only a Windows version was considered. The challenge of configuring Probe-It! to

be compatible across all platforms will always exist because many of the popular

viewers are pre-compiled commercial applications, that cannot be modified; instead,

the current practice is to wrap these applications inside a Probe-It! by calling them

from within Java.

Although Probe-It! contains a small set of pre-configured viewers, it is antici-

pated that Probe-It! will become more of a framework, from which scientists can

subscribe existing viewers, thus difficulties with adapting Probe-It! to run on any
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OS greatly restrict the portability of Probe-It!; we are in the process of implement-

ing Probe-It! as a Web application.

8 Summary

Inference Web provides an explanation infrastructure for many types of distributed

question answering systems, including theorem provers. It uses a proof interlingua

called the Proof Markup Language as an explanation interchange language. It

provides a collection of applications to handle proofs distributed on the web. Some

of these applications are interactive tools that enable users to better visualize and

thus understand portable proofs. In this paper, we provided a theorem prover style

use case chosen from the TPTP library. We showed how the IWSearch tool may

be used to find proofs with particular properties and provided an example from

TPTP. We also described a use of ProbeIt for browsing portable proofs. ProbeIt

allows theorem prover developers and users to visually inspect the structure of proofs

(with the help of the global view) and the details of each node of a proofs (with the

help of the local view).

The Inference Web infrastructure and framework is not restricted to a fixed

number of tools to support a given functionality. For example, in terms of inter-

active tools in support of portable proof browsing, the Inference Web provides the

following tools in addition to ProbeIt, as discussed in [8]: the original IWBrowser for

browsing PML proofs and proof fragments with the help of standard HTML brows-

ing capabilities and the NodeSet browser that has been integrated into ProbeIt in

replacement to its original local view.
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Users of the ACL2 theorem prover typically interact with the system in many

ways beyond submitting definitions and proving theorems. This talk will show some

examples to provide a sense of the diversity of ACL2 user interaction. A few more

in-depth examples may be found in the TPHOLS 2008 ACL2 tutorial.

Certainly we will consider the narrow sense of “user interface” as control of input

and output. Users traditionally interact efficiently with ACL2 through Emacs,

and we will demonstrate some Emacs customizations provided with the system.

More recently, two Eclipse-based interfaces have been developed by other groups for

teaching purposes: the ACL2 Sedan (ACL2s) and DrACuLa. Beyond the choice of

editor (or terminal) is the issue of how to control ACL2 output, traditionally through

generated English commentary. A proof-tree display illustrates proof structure and

provides help for navigating that commentary. But a recent gag-mode enhancement

is probably much more effective for debugging failed proof attempts.

Other useful output includes error and warning messages, which often point to

user documentation. But ACL2 supports effective user interaction in ways beyond

the above notions of input/output control.

• Proof commands include not only definitions and theorems, but also scoping

mechanisms. Hints can affect the course of proof attempts, and (less often) are

dynamically generated by user programs (roughly in analogy to tactics in LCF-

style systems).

• Users can direct how proved theorems are to be stored as rules, by default as

(conditional, congruence-based) rewrite rules. Syntactic control mechanisms can

1 ACL2 is joint work with J Strother Moore, with early contributions from Bob Boyer
2 This material is based upon work supported by DARPA and the National Science Foundation (NSF)
under Grant No. CNS-0429591 and also NSF grant EIA-0303609.
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affect the applicability of rules.

• The system state can be affected by setting various modes. Two examples include

a program mode, which allows the user to write programs that need not terminate

but can be used in macros, and a backchain limit for rewriting.

• Session management commands include undoing, redoing, and querying the state.

• Proof assistance is provided by two break/trace utilities for the rewriter; an

interactive goal manager; and a report mechanism that can show “expensive”

rules.

• The programming interface provides features to bridge the gap between the user

and the computing engine, such as Lisp-independent trace and backtrace utili-

ties and verifiable alternative function bodies. This interface also makes avail-

able powerful Lisp features including packages and macros. State and other

single-threaded objects are supported efficiently with an applicative semantics.

A guard mechanism provides a powerful, though less automatic, alternative to

types that is separate from the logical content of definitions.

• Users can interactively extend the system’s capabilities by providing books of

logical definitions and theorems, as well as system utilities and even (through

trust tags) system modifications.

• A clause-processor mechanism provides an interface through which the user con-

nects ACL2 with another tool.

A separate question, not addressed in this talk, is how to communicate proof

results effectively to non-users. Our focus is on interface support for effective usage.
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Abstract

An overview of the PVS system is presented from a user interface perspective. We present the interfaces from the PVS Lisp
core to Emacs, Tcl/Tk, the Prover, markup languages, and some of the various back-end and front-end systems that have
been integrated with PVS.

1 Introduction

PVS is an open source verification system that has been in use since it was first released in

1993. The PVS interface historically was simply Emacs, with the Lisp image comprising

most of PVS as a subprocess. This is still the standard way to use PVS, but over the years it

has been substantially augmented with browsing tools, enhanced prover interfaces, ground

evaluation, graphical displays, and LATEX, HTML, and XML output. In addition, it has been

used as both a back-end and front-end with many systems, and has a ground evaluator that

even allows PVS to be used as a scripting language. Figure 1 shows the basic architecture

of PVS from a user perspective. The rest of this paper is an overview of some of the aspects

of the PVS system, focusing on the user interface.

2 Emacs

The basic User Interface for PVS is Emacs (or XEmacs), an extensible and very flexible

editor. The PVS Lisp image runs as a subprocess of Emacs, with PVS Emacs commands

translated to forms for the underlying Lisp. For example, a proof is started by placing the

cursor on the lemma to be proved, and issuing the M-x prove command. This sends the

current line and theory information to Lisp, which then locates the internal (typechecked)

form of the lemma and starts the proof.

1 This work was partially supported by NSF CCR-ITR-0325808 and CNS-0823086.
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Fig. 1. PVS User Interface Overview

Specifications are edited in a special pvs-mode in Emacs, which in addition to the

usual keyword highlighting, provides numerous functions, all of which are available from

the PVS menu.

The interface is built on a modified version of ILISP [12], allowing the same interface

to be used both for developing the PVS system and for creating PVS specifications. In fact,

as it is just an extended version of Emacs, PVS may be used to undertake any task normally

done using Emacs. PVS Lisp makes requests of Emacs by means of specially formatted

strings, that are recognized by the output filter associated with the PVS Lisp subprocess.

For example, by this means PVS Lisp can create a buffer and have it displayed in Emacs.

3 Tcl/Tk Interface

The Tcl/Tk interface provides some graphical interface, in particular, it allows proof trees

and theory hierarchies to be viewed and manipulated. This is especially useful for large

proofs or specifications. The displays are mouse-sensitive; clicking on a theory name in the

theory hierarchy will display the corresponding theory specification in an Emacs buffer, and

clicking on a sequent symbol in the proof tree window pops up a Tck/Tk window showing

the full sequent at that point in the proof tree.

Tcl/Tk is invoked as a subprocess of PVS, and strings are passed from the PVS Lisp

process to Emacs, which passes them on to Tcl/Tk. This works in both directions. Unfor-

tunately, the interface is slow, inflexible, and buggy. In particular, there is a bug that seems

to be due to a difficult to track race condition that happens when rerunning a large proof

as the Tcl/Tk window tries to keep up. We plan on moving to Gtk in the future, which
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can be invoked directly from PVS Lisp as foreign functions. In addition to fixing the race

condition, this should make it easier to create more graphical interfaces to PVS, as process

of going from Lisp to Emacs to Tcl/Tk and back again is unwieldy.

4 Prover interaction

The PVS prover is interactive; starting form a goal sequent, the user constructs a proof

tree using available prover commands. The prover provides a collection of powerful proof

commands to carry out propositional, equality, and arithmetic reasoning with the use of

definitions and lemmas. These proof commands can be combined to form proof strategies.

To make proofs easier to debug, the PVS proof checker permits proof steps to be undone,

and checkpointed, and allows the specification to be modified during the course of a proof.

After modification, the prover offers to rerun the proof to see that it is still valid. It marks all

formulas whose proofs depend on the modified declaration as unchecked. To support proof

maintenance, PVS allows proofs (and partial proofs) to be edited and rerun, and allows for

multiple proofs to be associated with a formula. Currently, the proofs generated by PVS

can be made presentable but they still fall short of being humanly readable.

New strategies and rules may be defined as described in [18], using the defstep and

addrule functions, which may be added to an automatically loaded PVS strategies file.

Typically only defstep is used to define new user strategies in terms of existing ones.

In this way, strategies are built up from primitive rules, and only they need to be trusted.

However, some extensions require the addition of new rules, which must be done carefully

as soundness may be compromised.

Note that although the strategy language allows arbitrary calls to Lisp, the proofs may

be rerun in a mode in which all strategies have been expanded to their primitive rules, in

which the Lisp calls are no longer made. In this way the soundness of PVS relies only on

the primitive rules and the core execution engine.

5 Generating Latex, HTML, and XML

PVS specifications are in ASCII, which is fine for developing specifications and proofs, but

it is often desirable to present them differently. Toward this end, PVS includes facilities

for generating LATEX, HTML, and XML output. The LATEX output can be generated for

specifications or proofs, and the user has control over the mapping from PVS identifiers

and operators to LATEX. The HTML and XML are similar, but only available for specifica-

tions. The HTML interface does provide links that lead from a symbol to its corresponding

declaration.

The XML output provides much more than the LATEX and HTML output, as it is a com-

plete representation of the internal typechecked form of PVS entities. This makes it easy

to map from PVS to other systems, which is very difficult to do directly from PVS speci-

fications and proofs. Not only is the PVS grammar difficult to parse, but the overloading

and automatic conversions allowed by PVS makes it impossible to know how to interpret

a concrete expression without typechecking it. The XML form solves this, as it directly

represents the parse tree, and provides full resolutions for each identifier. The XML repre-

sentation includes enough information that the original concrete syntax may be generated,

and we have generated an XSLT script that does this.
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6 PVS as a Back-end

It is often desirable to have the PVS typechecking and theorem proving available at the

back-end of a system. This can easily be done by invoking PVS in raw mode, which

runs it without the Emacs interface. In this mode it waits for Lisp input, and returns

the results, exactly in the way it does with Emacs. There are several functions (e.g.,

typecheck-formula-decl and prove-formula-decl) that provide support for

proving individual formulas, without generating a full theory. Several existing systems

have used PVS as a back-end typechecker and/or theorem prover. Skakkebæk [21] made a

deep embedding of the Duration Calculus in his PC/DC system.

César Muñoz implemented a shallow embedding of the B-method [1] into a front-end

for PVS called PBS [14]. The B-method is a state-oriented formal method for software

development that provides a uniform language, the abstract machine notation, to specify,

design, and implement systems. The method is founded on set theory with a first-order

predicate calculus, which is embedded into the higher-order logic of PVS.

The LOOP project [22, 6] has developed a tool for specifying and verifying properties

of Java programs, using PVS as a back-end. It represents Java objects as coalgebras, and

has been used to prove properties of some Java libraries, as well as proving properties of

smartcards, as part of the Verificard project.

TAME (Timed Automata Modeling Environment) [4, 3] is a system for specifying sev-

eral classes of automata, providing templates, a set of auxiliary theories, and specialized

prover strategies for specifying and proving properties of automata models.

An interface between the Maple computer algebra system and the PVS theorem prover

was implemented [2]. The interface allows Maple users access to the robust and strongly

typechecked proof environment of PVS. The environment was extended by a library of

proof strategies for use in real analysis. This provides both strong typechecking and theo-

rem proving capabilities to Maple users.

Carlos Pómbo [19], used PVS to provide the semantics of Ag specifications, defining

the semantics of First Order Dynamic Logic and Fork Algebras, along with rules and strate-

gies that allow a user to reason in Ag. Here conversions were defined, such as a meaning

function, and arguments such as the current world of the Kripke structure, that by default

are included in the prover interaction, but add clutter to the proof. In this case the function

for pretty-printing applications was modified in order to suppress the meaning function and

the world argument.

There are many other systems that use PVS as a back-end, including Pamela [7],

InVeSt [5], the Java Interactive Verification Environment (JIVE) [13], TRIO [10], SO-

COS [11], and Why [9]. This is just a partial list.

7 PVS as a Front-end

PVS has also been used as a front-end to several systems. Generally this involves creating

a proof rule that interacts with the specified system. This interaction can be through a shell,

or directly via foreign function calls. The usual method is to define supporting theories in

PVS, define a translation from these theories to the target system, and to define a rule that

performs the translation and invokes the system. If the system is intended to return more

than simply true or false, a translator must also be provided to convert the results into a
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valid PVS sequent. Note that, in general, the soundness of the resulting proof depends on

the soundness of the underlying system.

For decision procedures, a special interface was created making it easy to implement

new decision procedures. This was used to integrate ICS in earlier versions of PVS.

The built-in PVS model checker [20] is an example of this, in which the model checker

only returns true, finishing the proof of this sequent, or unknown with an explanation,

leaving the sequent untouched. The model checker relies on the mu-calculus, and theories

to support this were provided in the PVS prelude.

The Mona WS1S system was integrated into PVS [17] in the same way. Yices was

recently integrated as well, as an end-game prover. This greatly speeds up many kinds of

proofs.

PVS may also be used for programming, by using the ground evaluator to translate

specifications to Lisp or the Clean functional programming language (see the description

at http://clean.cs.ru.nl/). This opens up many possibilities. Using seman-

tic attachments, one can evaluate, test, and animate specifications [8]. The PVS random

tester [16] builds on the ground evaluator, and allows specifications to be randomly tested,

which is often useful for detecting bugs in specifications before attempting difficult proofs.

César Muñoz developed PVSio [15] an extension of the ground evaluator that makes it

simple to define new attachments, use the ground evaluator during proof, and even create

PVS scripts that may be used from the command line as with any other scripting language.

8 Proof discovery and maintenance

PVS has limited capabilities for browsing formulas and proofs, and copying proofs from

one formula to another. Proof trees may be displayed, and proofs may be single-stepped

and check-pointed. Declarations may be modified and added during a proof.

Proof discovery and maintenance is a wide open area of research. Much more is needed,

for example, it should be possible to match the current sequent to formulas in the prelude

or existing libraries and list the ones likely to be useful. This is quite difficult for sev-

eral reasons: the libraries might not be referenced, and may only be available remotely,

the matching formulas may be useless because some precondition is false, or because an

inequality is in the wrong direction. Formulas might not be considered because theories

were developed with different names, though they are actually relating to the same entities

- for example groups could be defined in one theory using * and using + in another, thus

rendering syntactic matches useless.

9 Conclusion

PVS has a rich user interface, which we have outlined here. It continues to grow, and new

paradigms are being explored. In our view, PVS may be treated as a tool bus, allowing

exploration of interfaces between often disparate tools. The system is open source, and

we encourage any and all additions to the system. More information, and instructions for

obtaining and installing PVS are available at http://pvs.csl.sri.com.

5

http://clean.cs.ru.nl/
http://pvs.csl.sri.com


References

[1] J.-R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen. The B-method. In S. Prehn and W. J.
Toetenel, editors, VDM ’91: Formal Software Development Methods, Volume 552 of Springer-Verlag Lecture Notes in
Computer Science, pages 398–405, Noordwijkerhout, The Netherlands, October 1991. Volume 2: Tutorials.

[2] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, and Sam Owre. Computer algebra
meets automated theorem proving: Integrating Maple and PVS. In Richard J. Boulton and Paul B. Jackson, editors,
Theorem Proving in Higher Order Logics, TPHOLs 2001, Volume 2152 of Springer-Verlag Lecture Notes in Computer
Science, pages 27–42, Edinburgh, Scotland, September 2001.

[3] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Using TAME to prove invariants of automata models: Two
case studies. In Proceedings of FMSP ’00: The Third Workshop on Formal Methods in Software Practice, pages 25–36,
Association for Computing Machinery, Portland, OR, August 2000.

[4] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to simplify proofs for automata models.
In User Interfaces for Theorem Provers, Eindhoven, The Netherlands, July 1998. Informal proceedings available at
http://www.win.tue.nl/cs/ipa/uitp/proceedings.html.

[5] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. InVeSt: A tool for the verification of invariants. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer-Aided Verification, CAV ’98, Volume 1427 of Springer-Verlag Lecture Notes in
Computer Science, pages 505–510, Vancouver, Canada, June 1998.

[6] C.-B. Breunesse, N. Cataño, M. Huisman, and B. P. F. Jacobs. Formal methods for smart cards: An experience report.
Science of Computer Programming, 55(1–3):53–80, March 2005.

[7] Bettina Buth. PAMELA + PVS. In Michael Johnson, editor, Algebraic Methodology and Software Technology,
AMAST’97, Volume 1349 of Springer-Verlag Lecture Notes in Computer Science, pages 560–562, Sydney, Australia,
December 1997.

[8] Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-Calvert. Evaluating, testing, and animating
PVS specifications. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, March 2001.
Available from http://www.csl.sri.com/users/rushby/abstracts/attachments.
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[19] Carlos López Pombo, Sam Owre, and Natarajan Shankar. A semantic embedding of the Ag dynamic logic in PVS.
Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI International, Menlo Park, CA, October 2004.
Available at http://pvs.csl.sri.com/papers/AgExample/.

[20] N. Shankar. PVS: Combining specification, proof checking, and model checking. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-Aided Design (FMCAD ’96), Volume 1166 of Springer-Verlag Lecture
Notes in Computer Science, pages 257–264, Palo Alto, CA, November 1996.

[21] Jens U. Skakkebæk and N. Shankar. A Duration Calculus proof checker: Using PVS as a semantic framework.
Technical Report SRI-CSL-93-10, Computer Science Laboratory, SRI International, Menlo Park, CA, December 1993.

[22] Joachim van den Berg and Bart Jacobs. The loop compiler for Java and JML. In T. Margaria and W. Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems: 7th International Conference, TACAS 2001, Volume
2031 of Springer-Verlag Lecture Notes in Computer Science, pages 299–312, Genova, Italy, April 2001.

6

http://www.win.tue.nl/cs/ipa/uitp/proceedings.html
http://www.csl.sri.com/users/rushby/abstracts/attachments
http://sourceforge.net/projects/ilisp/
http://softech.informatik.uni-kl.de/old/en/publications/jive.html
http://softech.informatik.uni-kl.de/old/en/publications/jive.html
http://research.nianet.org/~munoz/PVSio/
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://research.nianet.org/fm-at-nia/STRATA2003/
http://pvs.csl.sri.com/papers/AgExample/

	Introduction
	The proof searching procedure
	The reordering function
	The computation rule
	Backtracking

	The graphical user interface
	Operational description of the tactic
	Improvements
	Interfacing with the GUI

	Related works
	Conclusions
	References
	Introduction
	Disambiguation feedback
	Choosing an interpretation
	Error reporting
	Conclusions
	References
	Introduction
	A Document Model for Asynchronous Processing
	A Model of Asynchronous Processing
	The State Model for Commands
	Protocol for Prover--Interface Communication
	Retrofitting Existing Provers

	Software Architecture
	Editor Component
	Tracking Document Changes
	Executing Commands
	An Minimal Interface

	Related Work
	Conclusion
	References
	Introduction
	PG Kit system architecture
	Plat system architecture
	Outline

	Interaction in Plat and Proof General
	Plat
	Proof General

	Semi-Structured Documents
	Document Formats
	Multiple Foci
	XUpdate
	Protocols

	Service Menus
	Multiple Displays
	Supporting Multiple Document Formats
	Related Work, Conclusion and Next Steps
	References
	Introduction
	User Interfaces for Theorem Proving
	Command-line Interfaces
	Web interface
	Emacs
	Eclipse
	Proof General

	Analysis and Design
	Plugin Architecture
	ProverEditor

	Current Plugins
	The Coq Plugin
	The Coq Sugar plugin

	Conclusion
	Next Steps

	Acknowledgement 
	References
	Introduction
	The SILK Reasoning Project
	ViPrS
	Interface
	Architecture
	Implementation

	Discussion
	Future Work
	Introduction
	Deduction Graphs in IMPS
	Description of System
	Functionality
	Implementation
	Availability and Screenshots

	Related Work
	Future Work
	Conclusion
	References
	Introduction
	Motivating Use Case
	Proof Markup Language
	Portable Proofs
	Searching for Proofs and Proof Metadata
	Browsing Proofs
	Implementation and Deployment
	Summary
	References
	Introduction
	Emacs
	Tcl/Tk Interface
	Prover interaction
	Generating Latex, HTML, and XML
	PVS as a Back-end
	PVS as a Front-end
	Proof discovery and maintenance
	Conclusion
	References

