
 
        

 

 

 

 
 

Pretty-printing matrices in standard 
Fortran 95 using Dispmodule 

 
 
 
 

Kristján Jónasson 
 
 
 
 
 
 
 
 
 

Report VHÍ-02-2008 
Reykjavík, May 2008 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Report VHÍ-02-2008,  Reykjavík May 2008 
 
Kristján Jónasson. Pretty-printing matrices in standard Fortran 95 using Dispmodule. Engineering Research Institute, 
University of Iceland, Technical report VHI-02-2008, May 2008.  
 
Kristján Jónasson, associate professor, Department of Computer Science, Hjardarhagi 4, IS-107 Reykjavik, Iceland. 
Email: jonasson@hi.is. 
 
The author is responsible for the opinions expressed in this report. These opinions do not necessarily represent the 
position of the Engineering Research Institute or the University of Iceland. 
 
 Copyright Kristján Jónasson, 2008.  
 
Engineering Research Institute, University of Iceland, Hjarðarhagi 4, IS-107 Reykjavík, Iceland 



 3 

ABSTRACT 

A standard Fortran 95 module for printing scalars, vectors and matrices to external files is described. The module 
can display variables of default kind of all intrinsic types (integer, real, complex, logical and character), and add-
on modules are provided for data of non-default kind. The main module is self-contained and incorporating it 
only requires that it be compiled and linked with a program containing a ‘use dispmodule’ statement. A generic 
interface and optional parameters are used, so that the same subroutine name, DISP, is used to display items of 
different data type and rank, irrespective of display options. The subroutine is quite versatile, and hopefully can 
improve Fortran’s competitiveness against other array programming languages. The module also contains a 
function TOSTRING to convert numerical scalars and vectors to strings. The module is distributed under a pub-
lic domain licence and can be freely used, even in commercial packages. 
 
Key Words: Fortran 95, Matrix pretty-printing, Matrix printing, Output utilities, Array programming language 
 

 
ÁGRIP 

Lýst er einingu eða forritasafni skrifuðu í Fortran 95 sem ætlað er til að skrifa tölur, vigra og fylki í skrár eða 
birta þessa hluti á skjá. Einingin (ásamt viðbótareiningum) getur birt breytur af öllum gagnatögum sem eru 
innbyggð í Fortran 95 (heiltölur, kommutölur, tvinntölur, rökstærðir og táknastrengi). Einingin er sjálfstæð og til 
að nota hana nægir einfaldlega að þýða hana og tengja við forrit sem inniheldur use dispmodule setningu. Mar-
græðni og valfrjálsir stikar eru notaðir, þannig að sama undirforritsnafnið, DISP, er notað til að birta stærðir af 
mismunandi gagnatögum og víddum, óháð því hvaða valkostir eru notaðir við birtinguna. Einingin er fjölhæf og 
getur ef vel tekst til bætt samkeppnishæfni Fortrans gegn öðrum fylkjaforritunarmálum. Einingin inniheldur enn-
fremur fallið TOSTRING sem breytir talnabreytum í táknastrengi. Forritasafninu er dreift með opnu leyfi sem 
leyfir frjálsa notkun, jafnvel í hugbúnaði sem er seldur. 
 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS 

1. Introduction ......................................................................................................................................... 4 
2. Package components ........................................................................................................................... 5 

2.1 Subroutine DISP............................................................................................................................ 5 
2.2 The function TOSTRING.............................................................................................................. 6 
2.3 Changing and retrieving settings for DISP and TOSTRING ........................................................ 6 
2.4 Testing........................................................................................................................................... 7 
2.5 Package limitations and assumptions on the compiler .................................................................. 7 

References ...............................................................................................................................................8 
 



 4 

1.  INTRODUCTION 

One of the reasons for the great popularity of numerical computation systems such as Matlab [Moler 
2004], S-plus [Krause and Olson 2000] and their open source clones (e.g. Octave [Eaton 2002], Scilab 
[Mrkaic 2001] and R [Chambers 2007]) stems from the ability of these systems to treat vectors and 
matrices as fundamental data types. At the heart of these systems are languages that may be classified 
as array programming languages. The first array programming language, APL, was developed in 
1957 and it, along with its successor, J, still enjoy considerable popularity [Iverson 1991]. A feature of 
all these languages is that the syntax for displaying arrays in traditional mathematical format is very 
simple. As an example the Matlab command disp(A)  will pretty-print the matrix A using a fairly 
versatile default format. The Matlab commands A = exp([3,2;-3,-2]); disp(A)  will display: 

   20.0855    7.3891 
    0.0498    0.1353 

It may be argued that the array programming features account for the widespread use of these lan-
guages for writing prototype programs, which are later superseded by programs written in compiled 
high level languages such as C or Fortran. 
 In the 1990's array programming in Fortran became possible with compilers for Fortran 90 and For-
tran 95 [ISO/IEC 1997]. The future of Fortran is in many respects bright [Reid 2003 and 2006, 
Metcalf et al. 2003, ISO/IEC 2004]. However, even with recent enhancements Fortran still lacks the 
ability to print matrices with a concise command. To display a general matrix A, one needs a sequence 
of statements such as: 

do i=1,size(A,1) 
  write(*,'(20G12.4)') A(i,:) 
end do  

which for the matrix given above will produce a rather mis-aligned output: 

   20.09       7.389 
  0.4979E-01  0.1353 

Using an F edit descriptor an aligned display similar to the one given by Matlab is obtained, but this 
comes at a cost, as matrices with large elements can no longer be displayed. Fortran also offers “aster-
isk-format” for writing with default format. To take an example, the statement “write(*,*) A ” 
might display 20.085537 0.049787067 7.389056 0.13533528 . However, aligned output of 
matrices with multiple rows is not possible using this, and in addition the result is compiler dependent.  
 The purpose of the current subroutine package is to remedy this deficiency, by providing a module 
written in standard Fortran, that will, with minimal fuss, display a vector or a matrix with sensible de-
fault format. At the same time the module offers considerable flexibility in controlling the format of 
the output (much more than Matlab’s disp ). It is possible to specify the edit descriptor, the displayed 
items may be labelled, rows and columns may be numbered, and the output may be directed to a file, 
to the screen, or even (when calling Fortran from Matlab) to the Matlab command window. Several 
matrices / vectors may be written side by side. 
 The package is especially useful for debugging purposes, and for preliminary display of numerical 
results, but it is general enough that it may in many cases be used for final display of such results. It 
uses a generic interface and has optional parameters, so that the same subroutine name, DISP, is used 
to display items of different data types and ranks, with or without labels, and using default or specified 
format (in Fortran terminology scalars have rank 0, vectors rank 1, matrices rank 2 etc.). All the intrin-
sic data types of Fortran are supported, i.e. integer, real (both single and double precision), complex, 
logical and character. The module is accompanied by documentation in a comprehensive user manual 
[Jonasson 2008] in four different formats (plain text, html, pdf and Microsoft Word). The package 
may be downloaded from the author’s web page, www.hi.is/~jonasson. 
 Among related earlier work one can mention the Fortran 95 package Matran [Stewart 2003], which 
contains a pretty print subroutine for items of type Matran matrix, but that routine is of much more 
limited scope than the present one. More versatile matrix printing routines are in the NAG Libraries 



 5 

[NAG 2000 and 2006], but these are not free, and even if they have a few features that are absent in 
the current package, the latter is in most respects more flexible.  

2.  PACKAGE COMPONENTS 

The present package consists of one principal Fortran 95 module, Dispmodule  which handles the 
display of data types of default kind (that are guaranteed to exist by the Fortran standard), and several 
add-on modules to handle data types of non-default kind (such as byte integers and quadruple preci-
sion reals). The main procedures are the subroutine DISP which is used to display a scalar, vector or 
matrix, and the function TOSTRING which is used to change scalars or vectors into character strings. 
In addition there are four subroutines to control settings for how the data are edited and one function to 
retrieve settings for DISP. 

2.1 Subroutine DISP 

Simple ways to call the subroutine DISP are: 

CALL DISP(X) 
CALL DISP(TITLE, X) 
CALL DISP(X, FMT) 
CALL DISP(TITLE, X, FMT) 

where X is the item to be displayed, TITLE  is a character string used to label the displayed item, and 
FMT is an edit descriptor to control the display. Assume that exp( 1)ija i j= + −  and exp( )j

ijb i= , i, j = 
1,…,3. Then examples of calls are CALL DISP('A = ', A)  which will write out: 

A =  2.718   7.389   20.086 
     7.389  20.086   54.598 
    20.086  54.598  148.410 

CALL DISP(B)  which displays: 

2.71828E+00  2.71828E+00  2.71828E+00 
7.38906E+00  5.45981E+01  2.98096E+03 
2.00855E+01  8.10308E+03  5.32048E+11 

and CALL DISP(A(1:2,:),'F0.5')  which displays 

2.71828   7.38906  20.08554 
7.38906  20.08554  54.59815. 

A call with a complete list of arguments is CALL DISP(TITLE,  X,  FMT,  FMT_IMAG,  ADVANCE, 
DIGMAX, LBOUND, ORIENT, SEP, STYLE, TRIM, UNIT, ZER OAS). All the arguments are 
optional, and the purpose, data type and possible values of each argument are given in Table 1 in the 
user manual. Not all arguments are compatible with all data types or ranks of X. It is for instance only 
possible to specify FMT_IMAG for complex X and ORIENT for vectors. Argument association for ar-
guments after (or starting with) FMT will usually be realized with argument keywords, e.g. CALL 
DISP('A=',  A,  UNIT=3,  ZEROAS='.') .  Examples demonstrating some of the possibilities are:  

CALL DISP('MATRIX', A, STYLE='UNDERLINE & NUMBER', UNIT=8, DIGMAX=4) 

which with the matrix A given above will send the following to a formatted file on unit 8, 

       MATRIX 
-------------------- 
     1     2      3 
1   2.7   7.4   20.1 
2   7.4  20.1   54.6 
3  20.1  54.6  148.4 



 6 

and 

K = [-3,0,12,14,0] 
CALL DISP('K', K, STYLE='PAD', ORIENT='ROW', SEP=' ', ZEROAS='.') 

which will display on the asterisk unit (usually the screen): 
 

------K----- 
-3 . 12 14 .  

Further examples and details can be found in the user manual. 

2.2 The function TOSTRING 

Many programming languages have built-in functions that change numbers to strings. It is for instance 
possible with Java to write 

System.out.println("The square of " + x " is " + x* x); 

(Java also has a function, Float.toString  that may be used instead). In Matlab one may write 

disp(['The square of ' num2str(x) ' is ' num2str(x* x)]) 

If x  is 1.5, both commands display “The square of 1.5 is 2.25”. The function TOSTRING offers similar 
functionality. The statement 

call disp('The square of '//tostring(x)//' is '//to string(x*x)) 

will produce the same output as the Java and Matlab commands. As shown in the user manual it is 
possible to achieve a similar effect in Fortran using internal files and list-directed output, but this is 
cumbersome and the result is compiler-dependent. TOSTRING can change numeric and logical scalars 
and vectors into character strings, and it is possible to specify how to format the string. One applica-
tion of TOSTRING is to create variable format, e.g.: 

fmt = '(F'//tostring(w)//'.'//tostring(d)//')' 
write(*,fmt) A 

For further examples and description, see the user manual. 

2.3 Changing and retrieving settings for DISP and TOSTRING 
The default settings used by DISP may be changed with the subroutine DISP_SET, which with a 
complete list of arguments may be called with: 

CALL DISP_SET(ADVANCE,  DIGMAX, MATSEP, ORIENT,  SEP,  STYLE,  UNIT,  ZEROAS) 

All the arguments are optional, and the effect of calling DISP_SET with a specified argument present 
is to change the default value for the corresponding argument of DISP. For instance, after calling 
CALL DISP_SET(UNIT=7) , subsequent DISP-calls will send output to a file connected to unit 7. 
The only argument that is unique to DISP_SET is MATSEP (‘matrix separator’) which is a character 
string that is used to separate items displayed with ADVANCE='NO' (the default separator is a string 
with three spaces). To take an example, the sequence of calls: 

CALL DISP_SET(MATSEP = ' | ') 
CALL DISP([11,12,13], ADVANCE='NO') 
CALL DISP([.TRUE., .FALSE., .TRUE.], ADVANCE='N0') 
CALL DISP(['A','B','C']) 

will display: 



 7 

11 | T | A 
12 | F | B 
13 | T | C 

Similarly, there is a function TOSTRING_SET to change default-settings for TOSTRING. There are 
also functions to return the settings to the original (or factory) defaults. These are called 
DISP_SET_FACTORY and TOSTRING_SET_FACTORY. The current default settings for DISP may be 
retrieved with the function DISP_GET which returns a structure (say DS) of type DISP_SETTINGS 
(declared in Dispmodule ) with these settings. The settings may be re-applied to DISP by calling 
DISP_SET(DS) . The user manual contains details. 

2.4 Testing 

The package contains a test-program, Test_Dispmodule , which applies modern testing techniques 
to ascertain the correctness of Dispmodule . The test-program calls all the procedures of the module, 
and all arguments are tried. Testing of all possible data types for X is allowed for. For arguments that 
have a limited range of allowed values, all these values are tried. In addition all the examples given in 
the user manual and in this paper are tested. It is however impossible to test all possible combinations 
of X data type, arguments and argument values, so one must be content with a partial test, accompa-
nied by examination of the source code of the module(s) and the test program. 
 There is a parameter declared at the beginning of the test program to control the verbosity level, or 
amount of output. It has three possible settings: minimal output, a short report, and a detailed report 
(including the result of all DISP and TOSTRING invocations). In all cases the report ends with “OK” 
if all tests are passed. Further instructions for operation of the test program are given in the user man-
ual. 
 The package has been tested successfully with recent versions of the following compilers: under 
Microsoft Windows: gfortran, g95, f95 from NAG, and ifort from Intel; under Ubuntu Linux: gfortran 
and g95; under Sun Solaris: g95; under Suse Linux: ifort. It passes tests of g95, gfortran and ifort of 
conforming to the Fortran 95 standard. 

2.5 Package limitations and assumptions on the compiler 

Among major limitations of the module is that DISP cannot display very wide matrices, as there is no 
provision for breaking matrices (or matrix rows) vertically. The compilers tried can however all han-
dle record lengths of 1024 characters or more, and since the output of DISP is intended for human 
reading this should not be too serious drawback. Another important limitation is that displaying arrays 
of rank ≥ 3 is not supported. Some minor limitations are that zeroas is not supported for complex vari-
ables, TOSTRING cannot handle character variables and 2-byte logicals are not directly supported. 
 Among the things which the NAG matrix printing routines can do and DISP cannot, is writing ma-
trices with special storage schemes, such as triangular, band or symmetric. Another ability of the NAG 
routines missing from DISP is specifying character strings for matrix row and column labels. 
 An assumption on the compiler in the design of the package is, that if A and B are real variables 
with |A| < |B|, and writing B with Fw.d edititing does not produce w asterisks, then neither does writing 
A. One possible problem that hopefully does not occur involves compilers that automatically prepend a 
plus-sign when writing positive numbers. Every effort has been made to use SS editing to suppress 
potential plus-signs, but no compiler that defaults to SP editing is known to the author. 
 The feature of writing matrices side by side (with ADVANCE='NO') is implemented by allocating 
memory for the blocks waiting to be written out. To avoid memory leaking, care must be taken to clear 
the output queues on each unit (by calling DISP with ADVANCE='YES' in effect) before exiting the 
program. 



 8 

REFERENCES 
CHAMBERS, J. M. 2007. Software for Data Analysis: Programming with R. Springer-Verlag, New York. 
EATON, J. W. 2002. GNU Octave Manual. Network Theory Limited, Bristol. 
ISO/IEC. 1997. Information Technology---Programming Languages---Fortran-Part 1: Base Language (ISO/IEC 

1539-1:1997). ISO, Geneva. 
ISO/IEC. 2004. Information Technology---Programming Languages---Fortran-Part 1: Base Language (ISO/IEC 

1539-1:2004). ISO, Geneva 
IVERSON, K. E. 1991. A personal view of APL, IBM Systems Journal 30, 4, 582−593. 
JONASSON, K. 2008. Dispmodule User Manual. Report VHI-01-2008, Engineering Research Institute, University 

of Iceland. 
KRAUSE, A. AND OLSON, M. 2000. The Basics of S and S-PLUS (second ed.), Springer-Verlag, New York. 
METCALF, M., REID, J. K. AND COHEN, M. 2004. Fortran 95/2003 explained. Oxford University Press. 
MOLER, C. 2004. Numerical Computing with MATLAB, SIAM, Philadelphia. 
MRKAIC, M. 2001. Scilab as an econometric programming system, J. Appl. Econometr. Systems 16, 4, 553−559. 
NAG 2000. NAG Fortran 90 Library Manual. Numerical Algorithms Group, Oxford. 
NAG 2006. NAG Fortran Library Manual. Numerical Algorithms Group, Oxford. 
REID, J. K. 2003. The future of Fortran. Computing in Science and Engineering, 5, 4, 59−67. 
REID, J. K. 2006. Fortran is getting more and more powerful. In Applied Parallel Computing, State of the Art in 

Scientific Computing, ed. Dongarra, J., Madsen, K. and Wasniewski, J., Lecture Notes in Computer Science 
3732, Springer, 33−42. 

STEWART, G. W. 2003. MATRAN: A Fortran-95 Matrix Wrapper, University of Maryland, Department of Com-
puter Science Technical Report 4522. 


