|ntroduction to Stata
Course given at the Bank of England
Monetary Analysis
Spring/ Summer 2014

Michael McM ahon'?

! This is a version of the course and notes that | have given to MSc and PhD students in the Department of Economics at the
London Schoal of Economics (2006, 2007 — LT and MT) and at University of Warwick (2008 and 2009). It builds on earlier
courses given by Martin Stewart (2004) and Holger Breinlich (2005). Any errors are my own responsibility and should you wish
to contact me please email me (m.mcmahon@warwick.ac.uk).

Full Table of contents

GETTING TO KNOW STATA AND GETTING STARTED ..ottt st s s bsans s 5
MV HY ST AT A ettt ettt ettt b e e sr e s steshe st e saeeabesbesabesbes st ea b e abaabeabesebeabesebe s se satesbesae e b sabesb e sben b eabeeabeabbebbeebessbesbnsseesanan 5
VVHAT STATA LOOKSLIKE wututiuviitieteesisereistessssssssesssesssssssssssssssssssssssssssssesssssssssssssesassasessssssessssssssssssssssessssstessssssssssssssssens 5
DIATA IN ST ATA ittt et bbb e e st e eb e s stesatesae st e shesabesbesabaabesasaabeabeseheabesebe s ses sbe s seesasesbesaeabesbbesbesbeebbeabeebbesbesstesbasanas 6
(] LN LT 1= =T 7

Y= LU = E SRR 7
Stata’ Sin-built NEIP QN0 WEDSITE ...ttt er e et 7
LTSN = o TSRS 7
(001 1=2 Vo [0TSR 7
DIRECTORIES AND FOLDERS......ccttiitttittieteistesissesssessssesasesssssssssssssssassssssessssssssssssssissessassssssssssssssssasessssesssessssssssssssnssssessnes 7
GETTING DATA INTO STATA ettt ettt st te e s ts et es s sae s st s se b eabestesbestasesbssaesbsassseesbessssssbssassanasasessras 9
READING DATA INTO STATA .utitiitiettitiesieitteissetsste st ssbesasssbessssssassssssssbesssssssasssstessesstsssessasssbesasessesssessessssssessesssestessssssessses 9
(U5 TR 9
LT 1= AT 9
S e V1S = o] oo | =10 o USSR 10
=g U =T 1Y o gV TSP TP 10
V ARIABLE AND DATA TYPES 1.tiiiuiiitiiiuteiittieiieeeiessesessssssssssassesasessassassssassesasessasssstesassesassssastssasssstssssssssssssasesssesssssessensssesns 10
[alo[To= 1o Qe g0 =1 =R TG = | o] [T 10
NUT00 S g oo g (T gl o =1 - VTSP U O 10
IVIISSINQ VAIUES ...ttt eee ettt sttt eb bbb e e e 428 48 b 2t eE £ ee £ e £ e R e e e b b ee b et bt e eneasneenennsann 11

DATABASE MANIPULATION . ..ottt ettt ettt s e sts s et s e sts st s s te st ssss st s s ssssss st s sbessssssbssaesbesbssesstesssssssesssans 12

EXAMINING THE DATA et ceeeetitestestetesesstssessessssssstsssesssssasssasssssssessessbesssss st sassasatssessbestessase st sassbestssessbesbesssbesasssssbestsseeses
TS TR
0NN ITs = o [TR
F NS TR
(D10 A1 o LTS
(0000 (< o0 o] TSR
ST 010 0= TR < TR
L] 0 U1 E= 1 (TSR
LS o1 o TSSOSO
L= o] o TSSO

SAVING THE DATASET ..eutiuteieestestesistesiessisssessssssssssssssssessssssstssssssssssessaestansssssstsasssessssessbessasssstestsesssssesseessensssssssssssssstssesses
Preserve and restore

KEEPING TRACK OF THINGS
Do-files and log-files
(= o1 =TT
N0 =TT
REVIEIV ...ttt ettt et e et et ebe e et s at b et s see s be st aaeebe e s saebeeb e s e s bt aas e st e st eseebe et e s e s besbebe st eatsestsseesbessasearesaesrns

RENAIME.....co e e e e b R e b e b bbb
Recode and Replace
Keep and drop (including some NOteS ON if-ProCESSING)c.urevrerererererrueseesieersseseseseseeeseesesssessseeseesesesesessssssses 18
RS o o TSSOSO 19
2T 0T 0= o [PPSR 20
F Yo o1 oo - TaTo 007 (o[PS 20
(00 F=T o 1S TSR 21
Order, Q0rAE, N IMOVE.......coeuieierereteire ettt seses ettt ses bbb es bt eb bbb bbb bbb bbb 21
CREATING NEW VARIABLES.vetitettuisestieestse et se ettt s ts e sae s e es s es st aa sas a8 bbb ee et st et b b er e nr e en s 22
LCTC T o C= o[TR = o] =TSSR 22
Converting StringSto NUMESiCS AN VICE VB SA......cucueireirerie et neteetees et seseseseseessssssssssssesssssesssesssassesssssssnesens 22
Combining and diViding VArTADIES...........cociiruieer ettt eae ettt 23
DUMIMY VAFTBDIES.......eceeeeiiretecee ettt ettt b bbb e e e s bbbt et £ s £ e b e bbbt bre e sneenre e s e nnsann 23
(=T LSX= T o I 1= To TSP TSP 24

CLEANING THE DATA 1ottt tteiite et ite s e stesttessssssssssssssbessaessssstssatesassatssbesatesbesssesbessssabeasessbeabessbessessasestesassabesbbesbesbseabesbesnsanbeas 24

L LT a1z o = o= o T USSP 24
[nterpolation and EXIFAPOIALION ... ittt ettt ese bbbt ee e ee b ee et ee s e enne s 25
PANEL DATA MANIPULATION: LONG VERSUS WIDE DATA SET S iitiiiitiiitieirieeseesnessesssnesssessssssssssssessesssssassessssesanessns 26
RESNAPIE. ... ottt ettt ettt et b bbb e e AR SRR RS A SR E e £ e £ £ et ER AR eE A et Rt EaeeRneenRe st een 26
ESTIIMATION ..ttt ettt ettt e et s see s et sae s st st bes b e seesbesbeasebe st shesbe et st s b st aassbe s et ssbabe st e et e b ssabe e st sbssesss st ebessaresesans 28
LINEAR REGRESSIONucutiuiisiessissesssesesssssssssssssssssesssssssssssssesssssssssessssssssssssssssesssssasssessassssssasessesssessessssssessssssessesssessasssesns 28
POST-ESTIMATIONueitiiutitiitiestisesseesessessaessessaesstesbesatsssssabesbessssssebessbeabessbesbesshssatesessatesbesabesbesabesbesbeabeabssabesbessbesnsstesns 31
<o [T (o] o [F TSR 31

L Y 01011 1SS 1] (== 1] o TSP 32
L= Tt T g To [=S LT TP 33
OUTREG2 —the ultimate tool in Stata/Latex or Word friendlingSS?........c.ooceieeceeeeeeeeee st 34
EXTRA COMMANDS ON THE NET .uviiittiiutieistieiueissesiseeeiseeassssssessssssssssssssssssssssesasssssssasssssssessssssasssstesassessssesssssssessssssssssssessns 34
Looking fOr SPECIfiC COMIMANGS........c.ciueiieerire ettt et ere sttt ea et ee et e s sseeneanseen 34
CONSTRAINED LINEAR REGRESSION......0iuiittisisseesessessesisesssssisessessssssessssssesssssssssesssssesssssessesssssssssssssesssessessssssessssssessens 36
DICHOTOMOUS DEPENDENT VARIABLEcttititietestestcstsssssesssssissssesssssssssssssssssssssssssaessessssssstsssssesssssssssstensssesssssssnssesesses 36
PANEL DATA ottt sttt sbe s stesbe s ste st e s besabesbeshbea b e besa b e b e sa b e abe s sbeebe s shssabesessatesbesabesbeshbesb e sbeabeebseabesbeesbesanenteins 37
DESCriDE PALEr N OF XEABLA ... ce ettt ettt ee et ee st eneen s 37
ST 400z TR P o L= L= TR 38

LI o0 E= 1 (D Ao b= = VT 38
PANE] FOOMESSIONS......eeieieri ettt ettt et et e eb s bbb b e e e £ae ses e ee s b2 E e b ee £ ee £ ee £ ee e e eE e b et e b et bt e sneasne e seantans 39
TIME SERIESDATA «.utiiiteicteeitteeitreesteseiessasesssseassssastesastssassassesssessessasessbessbsesasessabessansssesasbesanbansnbesasesshesassensnsessesssessssenssnes 42
Stata Date and TimME-SETES VAITADIEScc.o it ettt e st st s besee s e assessn e e sres 42
Getting dateSiNt0 SEAtA FOMMALccocoiiceeiee ettt ea e eb et eae e b et 43
Using thetime SerieS date VariabIESo ettt ea et en e en et 45
MAKING USE OF DAEES......ceereeiieieeteeteisiees ettt sttt seeebeee e e et s st se s b2 e b ee £ et £ s b e s b e b et b e s breesneeeseesennsans 45
TimME SEriES TIICKS USING DALES.ceeuceeuieireeires sttt sttt sttt et st ese s ee s bbb se e ee e ee et st ee st es e snne s 46
PROGRAMMING ...ttt ettt sttt st sae s st sttt e sessae b essabe st s aesbeete st e s be st asesbesaeesbase st e et et ssebe s e sssabases st enbessaresesans 47
PROGRAM BASICS ..ottt cits ettt e st s s ete s ste e sbb e bassabe s saea s et e as b e e s s bessabesseeshesabbee s besabeesassabbeeabbesaseesnbessreesheeassensnesans 47
Creating Or “ defiNiNG” 8 PrOOIAMccciireeuteeutieteerires et st sese st ees e bt s st s e seeaeesesesesasebssessseseseneaesessesesasssne e 47

N ETaa T Yo JE= 1 o] 0| = o TSP 47
R0 (< il Tl o JE= 1 o] oo =4 ST STTTUO TSP 48
(D= o WToTo 1 o JE- 1 o] oo | =10 U TSP U O ST 48
PrOGIaM GIGUIMIENTS ...ttt sttt ettt eae st se b b eae bbb b s oe st b b e eae b £ eE e b eb e s Eae e bb e eae bt e b b e e en e s bt e b ebensneees 49
RENAIMING GFQUIMIENTS. ...ttt ettt st ee e ee bbb e e e £ae sesese s e b2 e e b ee £ et £ ee b e ee e s eb e b ee e b e s bt e sneaenenanansans 49

1Y X3 2 (0 TR 50
LY E=Te o X o0 a1 (< L £ S 53
MaNIPUIBLTON OF IMAICTOS......cceeceeeteetei ettt ettt ee b e e e et s e s b b et s et £ s b et e b et e b e eneeenenaeansann 54
BLIC 10100 = 1Y 0] 1= £ PTPUPRTRSTN 54
[0 T0] = 1 1R 55

Incremental shift (NUMDbEr Of I00PS IS FIXEA)vvreieee ettt 57
Macro shift (nUMber of I00PSISVAIIADIE) ...t ee ettt ene e 58
BRANCHING. ..o vttt ettt es s eh e a e 1 s e s R0 e R0 b bR R bbb e 59
A DO PROGRAMMING ..o uvirirreissseseseseestesesssessaes st ssst s sassesesess s s s b e as st sea 1es s b s s ee R ed R et 8 et see e seb e er R s n s 61
Median Program == VEFSION #L......ccueeieereresereneteeeeseeesees s e e st sese s e s s st st s st £se s et ses st et bt s sneaeseeaennsann 61
Median Program == VEFSION #2ccucueieerere et seeeseeeseeetees e st st sese e s s s e et s st £ se s ee e et e s es st et sbnessnesssensanssans 61
Median Program == VEFSION #3 ...ttt seeessee e e et sese s s e s et s st £ se s e e et e b es st et s st ssnesesenaenssann 62

Course Outline

At LSE, this course wasrun over 5 weeks while at Warwick the material was included as part of a 13 lecture course
covering research methodsin general. At the Bank | run the course over asingle day and it is therefore not be
possible to cover everything — it never iswith a program as large and as flexible as Stata. Therefore, | shall
endeavour to take you from a position of complete novice (some having never seen the program before), to a position
from which you are confident users who, through practice, can become intermediate and onto expert users.

In order to help you, the course is based around practica examples— these examples use macro data but have no
economic meaning to them. They are simply there to show you how the program works.

My course website which can be accessed using the password “BOE_stata’:
http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/mcmahon/boe stata .

The outline of the day is as follows:

Time Activity

9.00-9.25 Introductions, course outline and Stata basics
9.25-10.30 Working through an exampletask list - |
10.30-10.45 Coffee Bresk

1045-12.15 Working through an example task list - 11
12.15-13.15 Lunch

13.15-1345 Getting data in Stata and Database Manipulation
13.45-14.45 Estimation including time-series data
14.45-15.00 Coffee Bresk

15.00-16.15 Programming

16.15-16.30 Catch-up and final questions time

| am very flexible about this timetable, and | am happy to move at the pace desired by the participants. But if thereis
anything specific that you wish you to ask me, or material that you would like to see covered in greater detail, | am
happy to accommodate these requests.

Getting to Know Stata and Getting Started

Why Stata?

There are lots of people who use Stata for their applied econometricswork. But there are also numerous people who use other
packages (Eviews or Microfit for those getting started, RATS/ICATS for the time series specialists, or Matlab, Gauss, or Fortran
for thereally advanced). So thefirst question that you should ask yourself iswhy should | use Stata?

Stataisan integrated statistical analysis packaged designed for research professionals. The official websiteis

http://www .stata.com/. Its main strengths are handling and manipulating large data sets (e.g. millions of observations!), and it has
ever-growing capabilities for handling panel and time-series regression analaysis. The most recent version is statal? and with
each version there areimprovements in computing speed, capabilities and functionality; the Bank isusing statall. It now also has
pretty flexible graphics capabilities. It is aso constantly being updated or advanced by users with a specific need — thismeans that
even if aparticular regression approach isnot a standard feature, you can usudly find someone on the web who has written a
programmeto carry-out the anadysis and thisis easily integrated with your own software.

What Stata lookslike

The Stata package is located on a software server and can be started by either going through the Start menu (Start — Programs —
Statistics— statall) or by double clicking on wsestata.exe in the statall folder. It ispossible to reconfigure the windows and even
changethe colour scheme!

TR N (nteractive (Menus)

B Fle EdthDats Graphics Statistics @lser Window Help
B-@6- 88 o @ =)

Review

Command

| Command review |

Variables x

Hame Label Type | Format Results window

Variables in memory |

| Command window

Statais acommand-driven package. Although the newest versions also have pull-down menusfrom which different commands
can be chosen, the best way to learn Statais still by typing in the commands. This has the advantage of making the switch to
programming much easier which will be necessary for any serious econometric work. However, sometimes the exact syntax of a
command is hard to get right —in these cases, | often use the menu-commands to do it once and then copy the syntax that appears.

Y ou can enter commands in either of three ways:

- Interactively: you click through the menu on top of the screen

- Manudly: you typethe first command in the command window and execute it, then the next, and so on.

- Dofile: type up alist of commands in a“do-file”, essentially a computer programme, and execute the do-file.

The vast mgjority of your work should use do-files. If you have along list of commands, executing ado-file onceisalot quicker
than executing severd commands one after another. Furthermore, the do-file is a permanent record of al your commands and the
order in which you ran them. This is useful if you need to “tweak” things or correct mistakes — instead of inputting al the
commands again one after ancther, just amend the do-file and re-run it. Working interactively is useful for “I wonder what
happens if ...7" situations. When you find out what happens, you can then add the appropriate command to your do-file. To start
with we' [l work interactively, and once you get the hang of that we will move on to do-files.

Functions

Stata
Mata

—| Interactive (Menus) I— User written
—l Command window I—mmml Output |

Do/Ado - Files
Datain Stata Save/Export

Variables

Stataisaversatile program that can read several different types of data. Mainly filesin its own dtaformat, but also raw data saved
in plain text format (ASCII format). Every program you use (i.e. Excel or other statistical packages) will alow you to export your
datain some kind of ASCII file. So you should be ableto load all datainto Stata

When you enter the data in Stata it will be in the form of variables. Variables are organized as column vectors with individua
observations in each row. They can hold numeric data as well as strings. Each row is associaed with one observation, that is the
5" row in each variable holds the information of the 51 individual, country, firm or whatever information you data entails.

Information in Stata is usually and mogt efficiently stored in variables. But in some cases it might be easier to use other forms of
storage. The other two forms of storage you might find useful are matrices and macros. Matrices have rows and columns that are
not associated with any observations. Y ou can for example store an estimated coefficient vector as ak x 1 matrix (i.e. a column
vector) or the variance matrix which is k x k. Matrices use more memory then variables and the size of marices is limited to
11,000, but your memory will probably run out before you hit that limit. Y ou should therefore use matrices sparingly.

The third option you have is to use macros. Macros are in Stata what variables are in other programming languages, i.e. named
containers for information of any kind. Macros come in two different flavours, local or temporary and global. Globa macros stay
in the system and once set, can be accessed by all your commands. Local macros and temporary objects are only created within a
certain environment and only exist within that environment. If you use a local macro in a do-file it, you can only use it for code
within that do-file.

Data Stata

Stata: dta
Excel: xls, csv
Ascii: csv, dat, txt

etc...
Variables | | Macros | | Matrices
Text: string global matrix
Numbers: integer local vector
double tempvar/name/file scalar
byte

Getting help

Stata is a command driven language — there are over 500 different commands and each has a particular syntax
required to get any various options. Learning these commands s a time-consuming process but it is not hard. At the
end of each class notes | shall try to list the commands that we have covered but there is no way we will cover al of
them in this short introductory course. Luckily though, Stata has a fantastic options for getting help. In fact, most of
your learning to use Stata will take the form of sdf-teaching by using manuas, the web, colleagues and Stata's own
help function.

M anuals

The Stata manuds are available in MA — many people have them on their desks. The User Manua provides an overall view on
usng Stata. There are also a number of Reference Volumes, which are basicaly encyclopaedias of all the different commands and
all you ever needed to know about each one. If you want to find information on a particular command or a particular econometric
technique, you should first ook up the index at the back of any manual to find which volumes have the relevant information.
Findly, there is a separate Graphics Manual, panel data manual (cross-sectional time-series) and one on survey data.

Stata’sin-built help and website

Stata also has an abbreviated version of its manuals built-in. Click on Help, then Contents. Statd s website has a very useful FAQ
section at http://www.stata.com/support/fags. Bath the in-built help and the FAQs can be simultaneously searched from within
Stataitself (see menu Help>Search). Stata swebsite also has a list of helpful links at http://www.stata com/links/resources].html.

Theweb

Aswith everything nowadays, the web is agreat place to look to resolve problems. There are numerous chat-rooms
about stata commands, and plenty of authors put new programmes on their websites. Google should help you here.

Colleagues
The other place where you can learn alot is from speaking to colleagues who are more familiar with Stata functions

than you are— the Bank islittered with people who spend large parts of their days typing different commandsinto
Stata, you should make use of them if you get stuck. Y ou can use the user group email — see the intranet for details.

Directoriesand folders

Like Dos and Windows, Stata can organise files in a tree-style directory with different folders. Y ou should use this to organise
your work in order to make it easier to find things at a later date. For example, create a folder “datd’ to hold all the datasets you
use, sub-folders for each dataset, and so on. Y ou can use some Dos commands in Stata, including:

cd “C\Stata classes\” - changedirectory to “ C:\Stata classes\”
nkdir “stata” - creates anew directory within the current one (here, C:\Stata cl asses\stata)
dir - ligt contents of directory or folder

Note, Stata is case sensitive, so it will not recognise the command CD or Cd. Also, quotes are only needed if the directory or
folder namehasspacesinit—“h:\tenp\ first fol der” —butit'sagood habit to use them al thetime.

Our first few tasks:

In order to get straight into the programme, | want to do a simple series of stepsthat mimic the likely first
experiences you would have when starting some simple data analysis work. We can then go back and talk
a bit about other capabilities that Stata has, and the specifics of different commands.

The steps we will complete are the following:

1.

arwpn

16.

17.
18.

19.

20.

You have, or will soon have, in your statafolder, data (in a variety of forms) from the Penn World
Tables (http://pwt.econ.upenn.edu/)

Change the directory to this folder using the cd command.
Start a“do file” to keep track of your work.
Read the first dataset into Stata using i nsheet

Examine the data:
e Dbrowse

® descri be
® sum

® |ook for others in the menus
To help your colleagues/co-authors, label the dataset and afew variables
Insert a note on where you got the data from
Rename the country code variable
Check to make sure that population is non-negative; generate a histogram of the population data

. Savethe dataset in Stataformat in your default drive

. Now load the second dataset into Stata

. Check the variables that you have loaded.

. Add this to the existing file you saved to make alarger data set covering more years— command is

append.

. Savethislarger dataset
. Repeat these steps to add the 3" dataset which is already in stata format (.dta) — what is in this

file?
Load the 4th dataset, which is already in stataformat (.dta), examine these data and add this fileto
the existing database — here we need aner ge.
Sort out the appearance of the now completed dataset.
Create new variables:
e growth: annual growth rate of real per capita GDP
high_growth = A dummy for each year in which growth exceeds 5%
EU = dummy variable for EU membership (France, Germany, Italy, & United Kingdom)
max_growth = highest rate of growth each year across all G-7 countries
Y70 = real GDP per capitain 1970 in each country
Run asimply linear regression of:
Growth on investment share, Y70 and population
Now run the same regression using country fixed effects:
e Either, create dummies for each country and include them;
e Or, set the panel variables (time and country) and run a fixed effects panel regression
(xtreg , fe).

Getting Data into Stata

Reading data into Stata
There are different ways of reading or entering datainto Stata:

use

If your datais in Stataformat, then smply read it in asfollows:

use "F:\Stata cl asses\statal.dta", dear
Thecl ear option will clear therevised dataset currently in memory before opening the other one.
Or if you changed the directory aready, the command can exclude the directory mapping:
use "statal.dta’, clear

insheet

If your data is originally in Excel or some other format, you need to prepare the data before reading it directly into Stata You
need to save the data in the other package (e.g. Excel) as either a csv (comma separated vaues) or txt (tab-delimited ASCII text)
file. There are some ground-rules to be followed when saving a csv- or txt-file for reading into Stata:

- Thefirgt line in the spreadsheet should have the variable names, e.g. series/code/name, and the second line onwards should
have the data. If thetop row of thefile containsatitle then delete this row before saving.

- Any extralines below the data or to theright of the data (e.g. footnotes) will also be read in by Stata, so make surethat only
the data itsdlf is in the spreadsheet before saving. If necessary, select all the bottom rows and/or right-hand columns and
delete them.

- Thevariable names cannot begin with anumber. If thefileislaid out with years (e.g. 1980, 1985, 1990, 1995) on thetop
line, then Statawill run into problems. In such instances, place an underscore in front of each number (e.g. select therow and
use the spreadsheet package' s“find and replace” tools): 1980 becomes 1980 and so on.

- Make sure there areno commasin the data as it will confuse Stata about where rows and columns start and finish (again, use
“find and replace’ to delete any commas before saving — you can select the entireworksheet in Excel by clicking on the
empty box in thetop-left conrer, just above 1 and to the left of A).

- Some notations for missing values can confuse Stata, e.g. it will read doubledots(. .) or hyphens (-) astext. Usefind &
replace to replace such symbolswith single dots (.) or simply to delete them altogether.

Once the csv- or txt-file is saved, you then read it into Stata using the command:
insheet using "F:\Stata cl asses\statal.txt", clear

Notethat if we had already changedtoF: \ St at a cl asses\ usingthe cd command, we could simply type:
insheet using "statal.txt", clear

There are afew useful options for the insheet command (“options” in Stata are additiond features of standard commands, usually
appended after the command and separated by a comma — we will see many more of these). The first option is cl ear which
you can useif you want to insheet anew file while there is still data in memory:

insheet using "F:\Stata cl asses\statal.txt", clear

Alternatively, you could first erase the datain memory using the command cl ear and then insheet as before.

The second option, nanes, tells Stata that thefile you insheet containsthe variable names in thefirst row. Normally, Stata should
recognise this itself but sometimes it smply doesn’'t — in these cases nanes forces Stata to use the first line in your data for
variable names:

insheet using "F:\Stata cl asses\statal.txt", nanmes cl ear
Findly, theoptiondel i m ter (“char”) tellsStatawhich delimiter isused in the data you want to insheet. Stata'si nsheet
automatically recognisestab- and comma-delimited data but sometimes different delimiters are used in datasets (such as “;"):

insheet using “h:\wdi -sanple.txt”, delimter(“;")

Stat/Transfer program
This is a separate package that can be used to convert a variety of different file-types into other formats, e.g. Excel into Stata or
vice versa. Y ou should take great care to examine the converted datathoroughly to ensure it was converted properly.

Itisused in avery user-friendly way (see screen shot below) and is useful for changing data between lots of different
packages and format.

= Stat/Transfer

Transter]\-"aliables] Dbservations] Optionz [1]1 Options [2]] About]

Input File Type: |E:-cce| j ﬂ

File Specification: |N:\div3\lab0ur\data\transfer\fixed weight'wageset =lz

|Al%ariables - 13 tatal - have Eeen.automatically zelected

Output File Type: |Stata “erziong 4-5 LJ ¥

File & pecification: |N:\diVS\Iabour\data'\transfer\fiked weighthwageset.dta :] Browsze...

Transfer I Hezet Exit I Help J

Manual typing
The tedious last resort — if the data is not available in electronic format, you may have to type it in manudly. Start the Stata
program and use the edit command — this brings up a Spreadsheet-like where you can enter new data or edit existing data.

This can be done directly by typing the variables into the window, or indirectly using the input command.
Variable and data types

Indicator or data variables

You can see the contents of a datafile using the br owse or edit command. The underlying numbers are stored in “data
variables’, eg. the cgdp variable contains naiona income data and the pop variable contains population data. To know wha
each data-point refers to, you also need at least one “ indicator variable”, in our case countryisocode (or count ry) andyear tell
uswha country and year each particular gdp and population figure refers to. The data might then look as follows:

country Countryisocode year pop cgdp openc

Canada CAN 1990 27700.9 19653.69 51.87665
France FRA 1990 58026.1 1740255 4346339
Italy ITA 1990 56719.2 16817.21 39.44491
Japan JPN 1990 123540 19431.34 19.81217
United Kingdom GBR 1990 57561 15930.71 50.62695
United States USA 1990 249981 23004.95 20.61974

This layout ensuresthat each data-point is on adifferent row, which is necessary to make Stata commandswork properly.

Numericor string data

Stata stores or formats data in either of two ways — numeric or string. Numeric will sore numbers while string will store text (it
can also be used to store numbers, but you will not be able to perform numerical analysis on those numbers).

Numeric storage can be a bit complicated. Underneath its Windows platform, Stata, like any computer program, stores numbers in
binary format using 1'sand 0's. Binary numbers tend to take up a lot of space, so Statawill try to store the data in amore compact
format. Thedifferent formats or storagetypes are:

byte : integer between -127 and 126 eg. dummy variable

10

int : integer between -32,767 and 32,766 eg. year variable

long : integer between -2,147,483,647 and 2,147,483646 e.g. population data
float : real number with about 8 digits of accuracy e.g. production output data
double: real number with about 16 digits of accuracy

The Stata default is“float”, and thisis accurate enough for most work. However, for critica work you should make sure that your
data is “double’. Note, making all your numerical variables “double’ can be used as an insurance policy against inaccuracy, but
with large datafiles this strategy can make the file very unwieldy — it can take up lots of hard-disk space and can sow down the
running of Stata. Also, if spaceis a a premium, you should store integer variables as“ byte” or “int”, where appropriate.

String is arguably more straightforward — any variable can be designated as a string variable and can contain up to 80 characters,
eg. the variable name contains the names of the different countries. Sometimes, you might want to sore numeric variables as
strings, too. For example, your dataset might contain an indicator variable i d which takes on 9-digit values. If i d were stored in
float format (which is accurate up to only 8 digits), you may encounter situations where different i d codes are rounded to the
same amount. Since we do not perform any calculations on i d we could just as well store it in string format and avoid such
problems.

To preserve space, only store a variable with the minimum string necessary — so the longest named nane is “United Kingdom”
with 14 letters (including the space). A quick way to store variables in their most efficient format is to use the conpr ess
command — this goes through every observation of a variable and decides the least space-consuming forma without sacrificing
the current level of accuracy in the data.

conpress

Missing values

Missing numeric observations are dencted by a single dot (.), missing string observations are denoted by blank double quotes

")

11

Database Manipulation

Examining the data

It is a good ideato examine your data when you first read it into Stata— you should check that all the variables and observations
are there and in the correct format.

List
As we have seen, the browse and edit commands start a pop-up window in which you can examine the raw data. Y ou can

also examine it within the results window using the | i st command — dthough listing the entire dataset is only feasible if it is
small. If thedataset islarge, you can use some optionstomake | i st more useable. For example, list just some of the variables:

list name year GDP

ee e aeeicaicacieacsesscscmsesamseacsccaaana +
| country countr~e year pop |
R |

1. | Canada CAN 1990 27700.9 |

2. | France FRA 1990 58026.1 |

3. | Italy ITA 1990 56719.2

4. | Japan JPN 1990 123540 |

5. | United Ki ngdom GBR 1990 57561 |
__ |

6. | United States USA 1990 249981 |

7. | Canada CAN 1991 28030.9 |

8. | France FRA 1991 58315.8 |

9. | Italy ITA 1991 56750.7

10. | Japan JPN 1991 123920 |

Or list just some of the observations:
list in 45/49

Or both:

list country countryi socode year pop in 45/49

ee e e eeieiecaciacsessccascesasssaaccaaaaa +
| country countr~e year pop |
| o |

45, | ltaly ITA 1997 57512.2
46. | Japan JPN 1997 126166 |
47. | United Ki ngdom GBR 1997 59014 |
48. | United States USA 1997 268087 |
49. | Canada CAN 1998 30248 |
| e !
Browse/Edit

We have already seen that br owse starts a pop-up window in which you can examine the raw data. Most of the time we only
want to view a few variables a a time however, especially in large datasets with a large number of variables. In such cases,
simply list the variables you want to examine &fter br owse:

br owse nanme year gdp

br owse nanme year gdp
The difference with edit is that this allows you to manually change the dataset.

Assert

With large datasets, it often is impossible to check every single observation using | i st or br owse. Stata has a number of
additional commands to examine data which are described in the following. A first useful command is assert which verifies
whether a certain satement is true or false. For example, you might want to check whether all GDP values are positive as they
should be:

12

assert pop>0
assert pop<O0

If the statement istrue, asser t doesnot yield any output on the screen. If it isfase, assert givesan error message and the
number of contradictions.

Describe

This reports some basic information about the dataset and its variables (size, number of variables and observations, storage types
of variables etc.).

descri be

Codebook

This provides extra information on the variables, such as summary satistics of numerics, example data-points of strings, and so
on. Codebook without alist of variableswill give information on dl variables in the dataset.

. codebook country

Summarize

This provides summary statigtics, such asmeans, standard deviations, and so on.

sumari ze
Vari abl e | Cos Mean Std. Dev. Mn Max
_____________ B
country | 0
countryi so~e | 0
year | 66 1995 3.18651 1990 2000
pop | 66 98797. 46 79609. 33 27700.9 275423
cgdp | 66 22293. 23 4122.682 15930.71 35618.67
_____________ B
openc 66 42. 54479 18.64472 15.91972 86.80463
csave 66 24.31195 5.469772 16.2536 37.80159

|
Ki | 66 23.52645 4.634476 17.00269 35.12778
grgdpch | 66 1.582974 1.858131 -3.981008 5.172524

Note that code and name are string variables with no numbers, so no summary stistics are reported for them. Also, year isa
numeric, so it has summary statistics. Additional information about the ditribution of the variable can be obtained using the
detail option:

summari ze, detail

Tabulate

This is a versatile command that can be used, for example, to produce a frequency table of one variable or a cross-tab of two
variables. There are dso options to get the row, column and cell percentages as well as chi-square and other statistics — check the
Statamanuals or on-line help for more information.

tab name

Nane | Freq Per cent Qum
_______________ de e e e e e e e e e e e e mmmm e e m e m— - -
Canada | 10 14. 29 14. 29
France | 10 14. 29 28. 57
Germany | 10 14. 29 42. 86
Italy | 10 14. 29 57. 14
Japan | 10 14. 29 71. 43
United Ki ngdom | 10 14. 29 85.71
United States | 10 14. 29 100. 00
_______________ de e e e e e e e e e e e e mmmm e e m e m— - -

Total | 70 100. 00

I nspect

This is another way to eyeball the distribution of a variable, including as it does a mini-hisogram. Also useful for identifying
outliers or unusual values, or for spotting non-integers in a variable that should only contain integers.

inspect cgdp

cgdp: Nunber of Cbservations
_______ Non-
Tot al I ntegers Integers
| # Negati ve - - -
| # # Zero - - -
| # # Posi tive 66 - 66
| # # i i e
| # # # Tot al 66 - 66
| # # # . . M ssi ng -
e e e e e e e e e e e m e — .. dea -
15930. 71 35618. 67 66

(66 uni que val ues)

Graph
Stata has very comprehensive graphics capabilities (type “help graph” for more details). Y ou can graph a simple histogram with
the command:
graph twoway hi st ogram cgdp
Or atwo-way scatterplot using:

graph twoway scatter cgdp pop

While graphs in Stata 9 and Stata 10 have the advantage of looking quite fancy, they are also very dow. Often, you just want to
visualise data without actually using the output in a paper or presentation. In this case, it is useful to switch to version 7 graphics
which aremuch faster:

graph7 cgdp pop

Saving the dataset
Thecommandissimply save:
save "F:\Stata classes\statal.dta", replace

Ther epl ace option overwrites any previous version of the file in the directory you try saving to. If you want to keep an old
version as back-up, you should save under a different name, such as “new_G7”. Note that the only way to alter the original file
permanently is to save the revised dataset. Thus, if you make some changes but then decide you want to restart, just re-open the
origind file:

Preserveand restore

If you are going to make some revisions but are unsure of whether or not you will keep them, then you have two options. Fird,
you can save the current version, make the revisions, and if you decide not to keep them, just re-open the saved version. Second,
you can usethepreserve andrestore commands; preser ve will take a“photocopy” of the dataset as it stands and if
you want to revert back to that copy later on, just typer est or e.

14

Keeping track of things
Stata has a number of tools to help you keep track of what work you did to datasets, what' s in the datasets, and so on.

Do-filesand log-files

Instead of typing commands one-by-one interactively, you can type them al in one go within a do-file and simply run the do-file
once. Theresults of each command can be recorded in alog-file for review when the do-file is finished running.

Do-files can be written in any text editor, such as Word or Notepad. Stataalso hasits own editor built in — click the icon dong the
top of the screen with the pad-and-pencil logo (although it looks like an envelope to me). Most do-files follow the following
format:

cl ear

cd “c:\projects\projectl\”
capture log cl ose

l og using class.log, replace
set nore off

set nermory 100m

LI ST OF COMVANDS

| og cl ose

To explain the different commands:

cl ear - deasany data currently in Stata s memory. If you try opening a datafile when one is already open, you get the error
message: no; data in menory woul d be | ost

cd c:\projects\project1\ -setsthedefault directory where Stata will look for any files you try to open and save any
filesyou try to save. So, if you typeuse wdi - sanpl e. dt a, Statawill look for it in this folder. If, during the session, you
want to access a different directory, then just type out its destination in full, eg. use “c:\data\production. dta”
will look for thefilein thec: \ dat a folder. Note again that if you use spaces in file or directory names, you mugt include
thefile pah in inverted commas.

capture | og close — closes any log-files that you might have accidentaly left open. If there were no log-file actually
open, then the command | og cl ose on its own would stop the do-file running and give the error message: no | og
file open.Usngcapt ure tellsStatato ignore any error messages and keep going.

l og using classl.log, replace —datsalog-fileof dl theresults Ther epl ace option overwrites any log file of
the same name, so if you re-run an updated do-file again the old log-file will be replaced with the updated results. If, instead,
you want to add the new log-file to the end of previous versions, then usetheappend option.

set nmore off —whentherearealot of resultsin the results window, Stata pauses the do-file to give you a chance to review
each page on-screen and you have to press a key to get more. This command tells Stata to run the entire do-file without
pausing. Y ou can then review the results in the log file.

set menory 100m — Stata's default memory may not be big enough to handle large datafiles. Trying to open afile that istoo
large returns a long error message beginning: no room to add nore observati ons. You can adjust the memory
size to suit. First check the size of the file using the describe command (remember that you can use descri be for afile
that hasn't yet been read into Stata). This reportsthe size of thefile in bytes. Then set memory just a bit bigger. Note, setting
it too large can take the PC's memory away from other applications and slow the computer down, so only set it as large as
necessary. For example, descri be using “c:\data\WD - sanpe. dta” reports the size of the file to be 2,730
bytes, soset nenory 1m should be sufficient.

| og cl ose —closesthelog file.

It is good practice to keep extensive notes within your do-file so that when you look back over it you know what you were trying
to achieve with each command or set of commands. Y ou can insert notes in two different ways:

*

Stata will ignore a line if it starts with an asterisk * , so you can type whatever you like on that line. Note, the asterisk is aso
useful for getting Stata to temporarily ignore commands — if you decide later to re-insert the command into your do-file, just
delete the asterisk.

[* *]
Y ou can place notes after acommeand by inserting it inside these pseudo-parentheses, for example:

15

use “c:\data\WD -sanpl e.dta”, clear /* opens 1998 production data */

These pseudo-parentheses are aso useful for temporarily blocking awhole set of commands— place/ * at the beginning of the
first command, */ at the end of the last, and Statawill just skip over them all.

Labels
Y ou can put labels on datasets, variables or values — thishelpsto make it clear exactly what the dataset contains.

A dataset label of up to 80 characters can be used to tell you the data source, it's coverage, and so on. This label will then gppear
whenyou descri be thedataset. For example, try the following:

| abel data " Data from Penn Wrld Tables 6.1"
descri be
Variable names tend to be short — you can use up to 32 characters, but for ease of use it's best to stick to about 8 or 10 as a

maximum. This can give riseto confuson about what the variable actually represents — what exactly isgdp andin what unitsis
it measured? Which iswhere variable labels, with a capacity of 80 characters, comein.

| abel variable cgdp "GDP per capita in constant international dollars"

It can also be helpful to label different values. Imagine countries were coded as numbers (which is the case in many datasets). In
this case, a tabulation may be confusing — what country does 1 represent, or 2 or 3?

tabul ati on code

code | Freq Per cent Qum

____________ B

1| 10 33.33 33.33

2| 10 33.33 66. 67

3] 10 33.33 100. 00

____________ B
Total | 30 100. 00

It might be better to label exactly wha each value represents. This is achieved by first “defining” alabel (giving it a name and
specifying the mapping), then associating that label with avariable. This meansthat the same label can be associated with several
variables — useful if there are several “ yesno/maybe’ variables, for example. The label name itself can be up to 32 characters long
(e.g. countrycode), and each value label must be no more than 80 characters long (e.g. “France” or “ Italy”).

| abel define countrycode 1 "Canada" 2 "Gernmany" 3 "France"

| abel val ues code countrycode

Now, the tabulation should make more sense:

tabul ati on code

code | Freq Per cent Qum

____________ B

Canada | 10 33.33 33.33

Germany | 10 33.33 66. 67

France | 10 33.33 100. 00

____________ B
Total | 30 100. 00

see what each code represents, usecodebook or:
I abel |ist countrycode
countrycode:
1 Canada

2 Cer many
3 France

16

Notes

Y ou can aso add Post-it notes to your dataset or to individual variablesto, for example, remind you of the source of the data, or to
remind you of work you did or intend to do on avariable.

not e:

data from PWI

note cgdp: This is per capita variable

Y ou can dso time-samp these notes:

note cgdp: TS need to add Germany to conplete the G7

Review your notes by simply typing not es:

not es

_dta:

1. data from PWIK

cgdp:

1. This is per capita variable
2. 15 Feb 2006 13:01 need to add Germany to conplete the G7

Statawill also tell you that there are noteswhen you usedescr i be:

descri be

Y ou can dso delete notes. To drop all notes attached to avariable:

note drop cgdp

Todrop just onein particular:

note drop cgdp in 2

Review

Onefinal tool for keeping track isreviewing alist of previous commands. To seethelast four, for example:

#review 4

Thisis especially useful if you are working in interactive mode on a“what happensif...”. When you are happy with the sequence
of commands you' vetried, you canr evi ew, then cut and paste into your do-file.

Some shortcuts for working with Stata

Most commands can be abbreviated, which saves some typing. For example: sumrmari ze tosumtabul ate to
t ab,save tosa. Theabbreviationsare noted in the Statamanuals.

You can also abbreviate variable names when typing. This should be used with caution, as Stata may choose a
variable different to the one you intended. For example, suppose you have a dataset with the variables pop,
popur ban andpopr ur al . If you want summary statistics for popur ban, the command sum pop will actualy
give statigtics for thepop variable.

Statd s default file typeis. dt a, so you don’t need to type that when opening or saving Statafiles:

sa “statal” isthesameassa “statal.dta”

Y ou can save retyping commands or variable names by clicking on them in the review and variable windows — they
will then appear in the command window. Y ou can also cycle back and forth through previous commands using the
PageUp and PageDown keys on your keyboard. Similarly, variable names can be easily entered by clicking on them in
the Variables Window (bottom-left of the screen).

17

Organising datasets

Rename

Y ou may want to change the names of your variables, perhgps to make it more transparent wha the variable is:
renane countryi socode country_code

Note, you can only rename one variable at atime.

Recode and Replace

Y ou can changethe valuesthat certain variablestake, e.g. suppose 1994 data actually referred to 1924:
recode year 1994=1924

This command can also be used to recode missing values to the dot that Stata usesto denote missings. And you can recode several
variables at once. Suppose a dataset codes missing population and gdp figures as—999:

recode pop cgdp —999=.
With string variables, however, you need to use the replace command (see more on this command below):

repl ace country="United Kingdontf if country_code =="GBR’

K eep and drop (including some notes on if-processing)

The original dataset may contain variables you are not interested in or observations you don’t want to andyse. It's a good idea to
get rid of these firg — that way, they won’t use up valuable memory and these data won't inadvertently snesk into your analysis.
You can tell Statato either keep wha you want or dr op what you don’t want — the end results will be the same. For example,
we can get rid of unwanted variables asfollows:

keep country year pop cgdp
or
drop country_code openc csave Ki
or
drop country_code openc - gdp_growth

Each of these will leave you with the same set of variables. Note that the hyphen sign (-) is a useful shortcut, e.g. the first one
indicates all the variables between openc and gdp_gr owt h are to be dropped. However, you must be careful that the order of
the variable list is correct, you don’t want to inadvertently drop a variable tha you thought was somewhere else on the list. The
variable list isin the variableswindow or can be seen using either the desc or sum commeands.

Y ou can dso drop or keep observations, such asthose after or before 1995:
keep if year>=1995

or
drop if year<1995

Note, the different relational operators are:

== equdto

I = notequd to

> greder than

>= grester than or equd to
< lessthan

<= lessthan or equd to

Keeping observations for the years 1990 to 1995 only:
keep if (year>=1990 & year<=1995)
or
drop if (year<1990 | year>1995)
Or, to get really fancy, keep the observationsfor 1990-95 and 1997-99:
keep if ((year>=1990 & year<=1995) | (year>=1997 & year<=1999))

18

Note, the different logical operaors are:

& and
| or
~ not
! not

Y ou may want to drop observations with specific values, such as missing values (denoted in Stata by a dot):
drop i f pop==.

Y ou may want to keep observations for all countries other than those for Italy:
drop if country_code! =1 TA"

Note, with string variables, you must enclose the observation reference in double quotes. Otherwise, Stata will claim not to be
ableto find what you are referring to.

If you know the observation number, you can selectively keep or drop different observations. Dropping observations 1 to 10:
drop if _n<=10

Dropping the last observation (number _N) in the dataset:
drop if _n==_

Finaly, you may want to keep only a single occurrence of a specific observation type, e.g. just the first observation of each
country code:

keep if country[_n]~=country[_n-1]
or simply

keep i f country~=country[_n-1]
Stata starts at observation number one and applies the command, then moves onto observaion two and applies the command
again, then onto three and so on. So, starting at one _n=1 but there is no observation _n-1 = 0, so the country in one cannot equa
the country in zero and the observation will be kept. Moving on to two: the country in two equals the country in one (both AGO),
so the observation will be dropped. Each subsequent observation with country AGO will also be dropped. When we get to an

observation with a different country (which will be ALB), the two countries will be different (AGO~=ALB) and the observation
will be kept. Thus, wewill end up being left with just the first observation for each country.

Sort

From the previous example, hopefully you will have realised the importance of the order of your observations. If the country
codes had started out all jumbled up, then we would have ended up with a completely different set of observations. Suppose we
applied the above command to the following dataset:

Number in dataset country Resul t

1 AGO Kept since _n=0 does not exi st

2 AGO Dr opped si nce country==country[_ n-1]
3 ALB Kept

4 ALB Dr opped

5 AGO Kept

6 ALB Kept

7 BEL Kept

We would actually end up with numerous occurrences of some country codes. This shows how sorting the datafirst is important:
sort country

If you wanted to make sure the observation tha was kept wasthe earliest (i.e. 1950), then first:
sort country year

This command firg sorts the data by country, and then within each country code it sorts the data by year. This ensures that the
first observation for every country (the one that is kept) will be 1950.

Note that sorting is in ascending order (A,B,C or 50, 51, 52). To sort in descending order, you need to usethe gsort command:
gsort —country

This gives ZWE first, then ZMB, ZAR, ZAF, YEM and so on. Note that you need to place a minus sign before every variable you
want to sort in descending order. This command allows you to sort in complicated ways, e.g. to sort country codes in descending
order but then yearsin ascending order:

gsort —country year

19

By-processing

You can rerun a command for different subsets of the data using the by prefix. For example, to get summary statistics of
population broken down by year:

so year
by year: sum pop

Note that you have to either sort the data first or usethe bysort option:
bysort year: sum pop

The by prefix causes the sum command to be repeated for each unique value of the variable year. Theresult is the same as writing
alist of sum commandswith separate if statementsfor each year:

sum pop i f year==1990
sumpop if year==1991
sum pop if year==1992
sum pop if year==1993
sumpop if year==1994

By-processing can be useful when organising your dataset. In our sort examples above we asked Stata to keep only the 1990
observations for each country. Ingead of trying to make sure the data is sorted in the proper order and the keep/drop command is
coded correctly (both of which can often be very confusing), it ismuch easier to:

bysort country: keep i f year==1990

That's not to say that the firs methodology is entirely useless — you may have a dataset where different countries have
observations for different years (so not all have 1990 data), and you may want to keep the earliest observation from each country.
In such acase, you may haveto revert to our earlier example.

Append and merge

You can combine different datasets into a single large dataset using the append and mer ge commands. append is used to
add extra observations (rows). Suppose you have two datasets containing the G7 less Germany PWT data for different countries
and/or different years. The datasets have the same variables country /year /pop / etc, but one dataset has data for
1970-1990 (called “ St at a2. dt a”) and the other hasdatafor 1975-1998 (called“st at al. dt a”).

use "F:\Stata cl asses\statal.dta", clear
append using "F:\Stata classes\Stata2.dta"
save "F:\Stata classes\G7 | ess Germany pw .dta", repl ace

append is generdly very straightforward. There is one important exception, however, if the two datasets you want to append
have stored their variables in different formats (meaning string vs. numeric — having different numeric formats, for example byte
vs. float, does not matter). In this case, Stata converts the datain the file to be gppended to theformat of the original file and in the
process replaces all valuesto missing! To detect such problemswhile using append, watch out for messages like:

(note: pop is strl0 in using data but will be float now)

This indicates that a variable (here: pop) has been transformed from string to float — and contains all missing values now for the
appending dataset (here: all years 1970-1990). It is thus very important to check via descr i be that the two files you intend to
append have gstored all variables in the same broad data categories (string/numeric). If this is not the case, you will need to
transform them first (seethe commandsr eal andstri ng below).

merge is used to add extra variables (columns). Suppose we now also have a second dataset containing the same indicator
variablescountry /year, but one dataset has datafor GDP per capita and other variables, and the second has data for shares
in GDP per capita of consumption and investment. Y ou must first ensure that both datasets are sorted by their common indicator
variables, then useaonetoonemerge nerge 1: 1 according to these variables.

use "G/ less Germany pw .dta", clear

so country year

sa "G7 |l ess Gernmany pwt.dta", repl ace

use "G/ extra data.dta", clear /* “master” data */

SO country year

merge 1:1 country year using "G/ | ess Germany pwt.dta" /*“using” data */
tab _merge /* 1= master, 2= using, 3= both */

Stata automatically creates avariable caled _merge which indicates the results of the merge operation. It is crucia to tabulate this
variable to check that the operation worked as you intended. The variable can take on the values:

1: observations from the master dataset that did not match observations from the using dataset

20

2 : observations from the using dataset that did not match observations from the master dataset
3 : observations from the both datasets that matched

Ideally, all observations will have a _merge value of 3. However, it may be possible, for instance, that the master dataset has
observations for extra countries or extra years. If so, then some observations will have a_merge value of 1. Y ou should tabulate
these to confirm what the extra observationsrefer to:

tab country if _nmerge==1
tab year if _nerge==1
tab _merge

nerge | Freq Per cent Qum

____________ o e m e m e ==

1| 31 10. 95 10. 95

3 | 252 89. 05 100. 00

____________ o e m e m e ==
Total | 283 100. 00

tab country if _merge==1 wouldallow you tolook at the unmatched observations.

Findly, if you had, for example, data on companies which included the industry they are in, and separately a file with lots of
industry information. Y ou may wish to form all pairwise combinations so that any firm has industry characteristics associated
with it. Thecommandmerge m 1 or nmerge 1: m does the job. [Thisusedtobeacommandcalledj oi nby]

Collapse

This command converts the data into a dataset of summary statistics, such as sums, means, medians, and so on. One use is when
you have monthly datathat you want to aggregate to annua data:

col | apse (sum) nonthpop, by(country year)
or firm-level datathat you want to aggregate to industry level:

coll apse (sum) firnoutput, by(industry year nonth)

by() excludes the indicator variable that you are collapsing or summing over (mont h in the fird example, firm in the
second) — it just contains the indicator variables that you want to collapse by. Note that if your dataset contains other variables
beside the indicator variables and the variables you are collapsing, they will be erased.

One possible problem that arisesin the use of collapse isin its treatment of missings. It returnsthe summary statistic of missing
values as zero. If, for example, when using the PWT Afghanigtan (* AFG”) containsall missing valuesfor pop. If you wanted to
aggregate population data over time (for whaever reasons), collapse would report aggregate population for Afghanistan as zero,
not missing. If , ingead, you want aggregate population figures to be missing if any or all of the year data is missing, then use the
following coding (the technicalities of it will become clearer later, after you learn how to create dummy variables):

gen m ssi ng=(pop==.

col l apse (sum) pop m ssing, by(countrygroup)
replace firmutput=. If m ssing>0

rename pop aggpop

drop m ssing

Note, if you are running this command on alarge dataset, it may be worthwhile to use the f ast option — this speeds things up
skipping the preparation of a backup if the command is aborted by the user pressing BREAK, but this is realy only useful for
when you are working interactively).

Order, aorder, and move

These commands can be used to do some cosmetic changesto the order of your variable list in the variables window, e.g. if you
want to have the indicator variables on top of theligt. aor der dphabetically sorts variablesand or der bringsthem in auser-
specified order:

aorder
order countrycode year pop

If you do not list certain variables after order, they will remain wherethey are. mov e isused if you simply want to swap the
position of two variables, e.g. bringing year to thetop:

nove year countrycode

21

Creating new variables

Generate, egen, replace

The two mast common commeands for creating new variablesare gen and egen. We can create a host of new variables from the
existing datawith thegen command:

gen real gdp=(pop*1000) *cgdp /* real GDP in current prices */
gen | pop=l n(pop) /* 1 og popul ation */

gen popsqg=pop”"2 /* squared popul ation */

gen ten=10 /* constant value of 10 */

gen id=_n /* id nunber of observation */

gen total = N /* total nunber of observations */
gen byte yr=year-1900 /* 50,51,etc i nstead of 1950, 1951 */
gen str6 source="PW6. 1" /* string variable */

gen |argeyear=year if pop>5000 & pop!=.

A couple of things to note. Firg, Statd s default data type is float, so if you want to create a variable in some other forma (e.g.
byte, string), you need to specify this. Second, missing numeric observations, denoted by a dot, are interpreted by Stata as a very
large positive number. Y ou need to pay special attention to such observations when usng i f statements. If the last command
above had simply been gen | argeyear =year if pop>5000, then | ar geyear would have included observations
1950- 1959 for AGO, even though datafor those yearsis actualy missing.

Theegen commeand typically creates new variables based on summary measures, such as sum, mean, min and max:

egen total pop=sun{pop), by(year) /* world popul ation per year */

egen avgpop=nean(pop), by(year) /* average country pop per year */

egen nmaxpop=nax(pop) /* largest popul ation value */

egen count pop=count (pop) /* counts nunber of non-nissing obs */

egen groupi d=group(country_code) /* generates nurmeric id variable for countries */

Theegen commeand is also useful if your data isin long format (see below) and you want to do some calculations on different
observations, e.g. year islong, and you want to find the difference between 1995 and 1998 populations. The following routine
will achievethis:

gen tenpl=pop if year==1995

egen tenmp2=nmex(tenpl), by(country_code)
gen tenp3=pop-tenp2 if year==1998

egen di ff=max(tenp3), by(country)

drop tenp*

Note that both gen and egen have sum options. egen generates the total sum, and gen creates a cumulative sum. The
running cumulation of gen depends on the order in which the data is sorted, so use with caution:

egen t ot pop=sun pop) /* sumtotal of population = single result*/
gen cunpop=sum pop) /* cumul ative total of popul ation */

Aswith col | apse, egen hasproblemswith handling missing values. For example, summing up data entriesthat are all
missing yields atotal of zero, not missing (seecol | apse below for details and how to solve this problem).

Ther epl ace command modifies existing variablesin exactly the ssmeway asgen creates new variables:
gen | pop=Il n(pop)
repl ace I pop=In(1l) if |pop==. /* mssings now In(1)=0 */
Converting stringsto numericsand viceversa

As mentioned before, Stata cannot run any satistical analyses on string variables. If you want to analyse such variables, you must
firstencode them:

encode country, gen(ctyno)
codebook ctyno /*Tells you the link with the data*/

This creates a new variable ct yno, which takes a value of 1 for CAN, 2 for FRA, and o on. The labels are automatically
computed, based on the original string values — you can achieve similar results but without the automatic labels using egen
ctyno=group(country).

You can go in the other direction and create a string variable from a numerical one, as long as the numeric variable has labels
attached to each value:

22

decode ctyno, gen(ctycode)

If you wanted to convert anumeric with no labels, such asyear , into astring, the command is:
gen str4 yearcode=stri ng(year)

And if you have a gring variable that only contains numbers, you can convert them to anumeric variable using:
gen year no=r eal (year code)

This last command can be useful if a numeric variable is migakenly read into Stata as a string. Y ou can confirm the success of
each conversion by:

desc country ctyno ctycode year yearcode yearno

Combining and dividing variables

Y ou may wish to create a new variable whose data is a combination of the data values of other variables, e.g. joining country code
and year to get AGO1950, AGOL951, and so on. To do this, first convert any numeric variables, such as year , to string (see
earlier), then use the command:

gen str7 ctyyear=count ry_code+year code

If you want to create a new numeric combination, first convert the two numeric variables to string, then create a new string
variable that combines them, and finally convert this string to a numeric:

gen str4 yearcode=string(year)

gen str7 popcode=string(pop)

gen strl1ll year popcode=year code+popcode
gen year pop=r eal (year popcode)

sum year popcode year pop displaystheresult

Todivide up avariable or to extract part of avariableto create anew one, usethe subst r function. For example, you may want
to reduce the year variableto 70, 71, 72, etc. either to reduce file size or to ner ge with a daaset that has year in tha
format:

gen str2 yr=substr(yearcode, 3, 2)

Thefirst term in parentheses isthe string variable that you are extracting from, the second is the position of the first character you
want to extract (--X-), and the third term is the number of characters to be extracted (--XX). Alternatively, you can select your
starting character by counting from the end (2 positions from the end instead of 3 positions from the start):

gen str2 yr=substr(yearcode, - 2, 2)

Things can get pretty complicated when the string you want to divide isn’t as neat as year code above For example, suppose
you have data on city population and that each observation isidentified by a single variable called code with values such as“ UK
London, “UK Birm nghant, “UK Cardiff”, “Irel and Dublin”, “France Paris”, “Germany Berlin”,
“Ger many Bonn”,and soon. Thecode variable can bebrokenintocountry andcity asfollows:

gen str10 country=substr (code, 1, strpos(code, " ")-1)
gen strl10 city=tri m(substr(code, strpos(code," "),11))

Thestrpos() function givesthe position of the second argument in the first argument, so here it tells you what position the blank
space takesin the code variable. Thecount ry substring then extracts from the code variable, sarting at the first character,
and extracting atotal of 3- 1=2 charactersfor UK, 8- 1=7 charactersforlrel and andsoon. Thetrin() function removes
any leading or trailing blanks. So, the city subgring extracts from the code variable, starting a the blank space, and
extracting atotal of 11 characters including the space, which is then trimmed off. Note, the count ry variable could also have
been created usingt ri () :

gen str10 country=trin(substr(code, 1, strpos(code,“ ")))

Dummy variables
Youcanusegener at e andr epl ace tocreate adummy variable as follows:

gen | argepop=0
repl ace | argepop=1 if (pop>=5000 & pop!=.)

Or you can combine these in one command:
gen | ar gepop=(pop>=5000 & pop~=.)
Note, the parenthess are not strictly necessary, but can be useful for clarity purposes Y ou may want to creste a set of dummy

23

variables, for example, onefor each count ry:

tab country, gen(cdum

This creates a dummy variable cdunil equal to 1 if the country is*“ CAN" and zero otherwise, a dummy variable cdun® if the
country is “ FRA” and zero otherwise, and so on up to cdun? for “ USA”. You can refer to this set of dummies in later
commands using awild card, cdunt , instead of typing out the entire list.

Lagsand leads

To generate lagged population in the G7 dataset:

so countrycode year
by countrycode: gen |agpop=pop[_n-1] if year==year[_n-1]+1

Processing the statement country-by-country is necessary to prevent datafrom one count ry being used as a lag for another, as

could happen with the following data:

country Year pop
AUS 1996 18312
AUS 1997 18532
AUS 1998 18751
AUT 1950 6928
AUT 1951 6938
AUT 1952 6938

Thei f argument avoids problems when there isn’t a full panel of years — if the dataset only has observations for 1950, 1955,
1960-1998, then lags will only be created for 1961 on. A lead can be created in similar fashion:

so country year

by country: gen | eadpop=pop[_n+1]

Cleaning the data

if year==year[_n+1]-1

This section covers a few techniquesthat can be used to fill in ggpsin your data

Fillin and expand

Suppose you gtart with a dataset that has observations for some years for one country, and a different set of years for another

country:
country Year pop
AGO 1960 4816
AGO 1961 4884
ARG 1961 20996
ARG 1962 21342

Y ou can “rectangularize’ this dataset asfollows:

fillin country year

This creates new missing observations wherever acount y- year combination did not previously exist:

country Year pop
AGO 1960 4816
AGO 1961 4884
AGO 1962
ARG 1960 .
ARG 1961 20996
ARG 1962 21342
It also createsavariable _fi |l i n tha showstheresaults of the operation; 0 signifies an existing observation, and 1 anew one.

If no country had datafor 1961, then thefillin command would create a dataset like:

24

country Year pop
AGO 1960 4816
AGO 1962

ARG 1960 .

ARG 1962 21342

So, to get a proper “rectangle’, you would first have to ensurethat at least one observation with year =1961 exists:

expand 2 if _n==1
repl ace year=1961 if _n==_
repl ace pop=. if _n==_

expand 2 creates 2 observations identical to observation number one (_n==1) and places the additiond observation &t the end
of the dataset, i.e observation number _N. As well as recoding the year in this additional observation, it is imperative to replace al
other datawith missing values — the original dataset has no datafor 1961, so the expanded dataset should have missings for 1961.
After thishas been done, you can now goply thefi | I'i n command to get acomplete “rectangle”.

These operations may be useful if you want to estimate missing values by, for example, extrapolation. Or if you want to replace
all missing values with zero or some other amount.

I nterpolation and extrapolation

Suppose your population time-series is incomplete — as with some of the countries in the PWT (e.g. STP which is Sao Tome and
Principe). Y ou can linearly interpolate missing values using:

so country
by country: ipolate pop year, gen(ipop)

country Year pop
STP 1995 132
STP 1996 135. 29
STP 1997 .

STP 1998 141.7
STP 1999 144.9
STP 2000 148

Note, first of all, that you need to interpolate by country, otherwise Stata will simply interpolate the entire list of observations
irrespective of whether some observations are for one country and some for another. The firgt variable listed &fter the i pol at e
command is the variable you actually want to interpolate, the second is the dimension along which you want to interpolate. So, if
you believe population varies with time, you can interpolate along the time dimension. Y ou then need to specify aname for a new
variable that will contain all the original and interpolated values— here i pop. Y ou can use this cleaned-up version in its entirety
in subsequent analysis, or you can select values from it to update the original variable, e.g. to clean values for STP only:

repl ace pop=ipop if country=="STP"

Linear extrapolation can be achieved with the same command, adding the epol at e option, e.g. to extrapolate beyond 2000:
so country
by country: ipolate pop year, gen(ipop) epol ate

Note, however, tha Stata will fail to interpolate or extrapolate if there are no missing values to start with. No 2001 or 2002
observations actually exist, so Stata will not actually be able to extrapolate beyond 2000. To overcome this, you will first have to
create blank observations for 2001 and 2002 usng expand (dternatively, if these observations exist for other countries, you can
rectangularise the dataset usingf i | I'i n).

25

Panel Data Manipulation: Long versus Wide data sets

Reshape
Datasets may belaid out in wide or long formats. Suppose we keep population data for 1970-75 only:

keep country country_code year pop
keep if year<=1975

In long format, this looks like:

country country_code | year Pop

Canada CAN 1970 21324

Canada CAN 1971 21962. 1

Canada CAN 1972 22219.6

Canada CAN 1973 22493. 8

Canada CAN 1974 22808. 4

Canada CAN 1975 23142.3

France FRA 1970 52040. 8

France FRA 1971 52531. 8

France FRA 1972 52993. 1

France FRA 1973 53420.5

France FRA 1974 53771

France FRA 1975 54016

And the same data in wide format looks like:

countryi socode | popl970 popl971 popl972 pop1973 | popl974 popl975 | country

CAN 21324 21962.1 22219.6 22493.8 | 22808. 4 23142. 3 | Canada

FRA 52040. 8 52531. 8 52993. 1 53420.5 | 53771 54016 Fr ance

GBR 55632 55928 56097 56223 56236 56226 United
Ki ngdom

GER 77709 78345 78715 78956 78979 78679 Ger many

I TA 53821.9 54073.5 54381. 3 54751. 4 | 55110.9 55441 Italy

JPN 103720 104750 106180 108660 110160 111520 Japan

USA 205089 207692 209924 211939 213898 215981 United
St at es

Thevast mgjority of Stata commandswork best when the dataiis in long format. In any case, to convert from long to wide:

reshape wi de pop, i(country_code) j(year)

or from wide to long:

reshape long pop, i(country_code) j(year)

The variable(s) immediately behind | ong or wi de is the one that contains the data we want to reshape (the “data variable”, in
our case pop). Note that in ther eshape | ong case, Stata will reshape dl variables that start with the letters you put behind
long. Here, there are actually six of them (pop1970-popl975, al starting with pop). Thei() specifies the variable(s) whose unique
values denote a logical observation in wide format. In our case, thisiscount ry. It uniquely identifies every data entry in wide
format (here: pop). Thej() specifies the variable whose unique values denote a sub-observation, in our case year . Tha is, within
every group of countries, year uniquely identifies observations. In long format, i() and j() together completely identify each
observation.

If there are more than two indicator variables in wide format, then be careful to include the correct list in i(). For example, if there
were also an agegroup indicaor variable, so that pop actually referred to population in a given age group, then we could reshape

the data from country / agegroup/ year / pop to country / agegroup / pop1960 / pop1961 / etc using:
reshape wi de pop, i(country agegroup) j(year)

If there is more than one data variable, first dr op the variables you are not interested in, and then make sure to include the full
list you are interested in reshgping within the command:

reshape wi de pop cgdp pi,

This will create new variables pop1970-1975, cgdpl970-1975 and pi1970-1975. Note if you had not dropped all other variables
beforehand, you would get an error message. For example, if you had forgotten to delete cc:

i (country) j(year)

cc not constant within country
Type "reshape error" for a listing of the probl em observati ons.

26

As Stata suggests, “reshape error” will list all observations for which country does not uniquely identify observations
inwide format (here, these are actually all observations!). More generally, any variable that varies across both i() and
j(variables either needs to be dropped beforer eshape wi de or beincluded in the data variable list. Intuitively,
Stata would not know where to put the data entries of such variables onceyear hasgone as an identifier.

We could also have reshaped the original long data to have the country variable as wide:
reshape wi de pop, i(year) j(country) string

Note, you need to goecify the string option when j() is a string variable. Browsing the resulting data:

year popCAN popFRA popGBR popCGER popl TA popJPN popUSA
1970 21324 52040. 8 55632 77709 53821.9 103720 205089
1971 21962. 1 52531. 8 55928 78345 54073. 5 104750 207692
1972 22219. 6 52993. 1 56097 78715 54381. 3 106180 209924
1973 22493. 8 53420.5 56223 78956 54751. 4 108660 211939
1974 22808. 4 53771 56236 78979 55110. 9 110160 213898
1975 23142. 3 54016 56226 78679 55441 111520 215981

To create variables named CANpop / FRApop/ GBRpop instead of popCAN/popFRA/popGBR, use:
reshape wi de @op, i(year) j(country) string

The @ is useful when, for example, you start with a dataset that has the dimension you want to reshgpe written the “wrong” way
around. Suppose you are given a dataset with country / youngpop / oldpop. Y ou can reshagpe the pop variable to long to give

country / agegroup / pop using:
reshape | ong @op, i(country) j(agegroup) string

27

Estimation

We now move on from the manipulation of databases to the more exciting material of running regressions. In this tutorial, we
shall use data from Prof. Caselli’s “Accounting for Cross-Country Income Differences’ which is forthcoming in Handbook of
Economic Growth. There is alink to these data on my website. But before we start looking at the basics of regression commands,
let uslook in Stata help for the details on estimation. The basic information is:

e Thereare many different models of estimation. The main commands include regress, logit, logitic, sureg.

e Mosg have asimilar syntax:

command varlist [weight] [if exp] [in range] [, options]

1% variablein the varlist is the dependent variable, and the remaining are the independent variables.

Y ou can use Statd's syntax to specify the estimation sample; you do not have to make a special dataset.
Y ou can, at any time, review the last estimates by typing the estimation command without arguments.
Thelevel() option to indicate the width of the confidence interval. Thedefault islevel(95).

Once you have carried out your estimation, there are anumber of post-estimation commands that are useful:

e You canrecdl the estimates, VCM, standard errors, etc...;

e You cancary out hypothesis testing => test (Wald tests), testnl (non-linear Wald tests), Irtest (likelihood-
retio tests), hausman (Hausman's specification test);

e You can use Statas predict command, which does predictions and residual calculations.

Therest of the estimation notes will use Prof. Francesco Caselli’ s database from his handbook of Economic Growth
pgoer which contains real GDP and other variables on up to 105 countries. This datais downloadablein .dtaform
from hiswebsite or using alink on the course webpage. Download this data to the relevant directory on your
computer and save it as you wish to call it. | have called it “ Caselli_handbook.dta’.

Linear regression

Stata can do most of fancy regressions (and most of which we will not talk about in these classes). Just so that you
know the main ones, here is an abbreviated list of other regression commands that may be of interest:

anova analysis of variance and covariance

cnreg censored-normal regression

heckman Heckman selection model

intreg interval regression

ivreg instrumental variables (2SLS) regression

newey regression with Newey-West standard errors

prais Prais-Winsten, Cochrane-Orcutt, or Hildreth-Lu regression
greg quantile (including median) regression

reg ordinary least squaresregression

reg3 three-stage least squares regression

rreg robust regression (NOT robust standard errors)
sureg seemingly unrel ated regression

svyheckman Heckman selection model with survey data
svyintreg interval regression with survey data

svyivreg instrumental variables regression with survey data
svyregress linear regression with survey data

tobit tobit regression

treatreg treatment effects model

truncreg truncated regression

xtabond Arellano-Bond linear, dynamic panel-data estimator
xtintreg pane datainterval regression models

xtreg fixed- and random-effects linear models

xtregar fixed- and random-effects linear modelswith an AR(1) disturbance
xttobit pane datatobit models

28

Wewill focus on thisis the most basic form of linear regression. regress fits amodel of depvar on varlist using linear
regression. The help regress command will bring up the following instructions for using regress.

regress depvar [varlist] [weight] [if exp] [inrange] [, level(#) betarobust cluster(varname) score(newvar) hc2 he3
hascons noconstant tsscons noheader eform(string) depname(varname) msel plus]

Looking in the bottom of this help filewill explain the options as follows:

Options
level(#) specifies the confidence level, in %, for confidence intervals of the coefficients; see help level.
beta requests that normalized beta coefficients be reported instead of confidence intervals. betamay

not be specified with cluster().

robust specifies that the Huber/White/sandwich estimator of varianceis to be used in place of the
traditional cal culation. robust combined with cluster() further alows observations which are not independent within
cluster (dthough they must be independent between clusters). See [U] 23.14 Obtaining robust variance estimates.

cluster (varname) specifies that the observations are independent across groups (clusters) but not necessarily
independent within groups. varname specifies to which group each observation belongs; e.g., cluster(personid) in
datawith repeated observations on individuals. cluster() can be used with pweights to produce estimates for
unstratified cluster-sampled data, but see help svyregress for acommand especially designed for survey data.
Specifying cluster() implies robust.

score(newvar) creates anew variable for the scores from the equation in the model. The new variable contains
each observation's contribution to the score; see [U] 23.15 Obtaining scores.

hc2 and hc3 specify an alternative bias correction for the robust variance calculation. hc2 and hc3 may not be
specified with cluster(). hc2 uses u_j"2/(1-h_j) asthe observation's variance etimate. hc3 usesu_j*2/(1-h_j)"2 asthe
observation's variance estimate. Specifying either hc2 or hc3 impliesrobust.

Hascons indicates that a user-defined constant or its equivalent is specified among the independent
variables. Some caution isrecommended when using this option as resulting estimates may not be as accurate as
they otherwise would be. Use of this option requires "sweeping” the constant last, so the moment matrix must be
accumulated in absolute rather than deviation form. This option may be safely specified when the means of the
dependent and independent variablesare dl "reasonable” and there are not large amounts of collinearity between the
independent variables. The best procedure isto view hascons as a reporting option -- estimate with and without
hascons and verify that the coefficients and standard errors of the variables not affected by the identity of the
constant are unchanged. 1f you do not understand thiswarning, it is best to avoid this option.

noconstant suppresses the constant term (intercept) in the regression.
tsscons forces the total sum of sguares to be computed as though the model has a congtant; i.e., as

deviations from the mean of the dependent variable. Thisisararely used option that has an effect only when
specified with nocons. It affects only the total sum of squares and all results derived from the total sum of squares.

noheader, eform(), depname(), msel, and plus are for ado-file writers, see [R] regress.

As described above, most estimation commands will follow this type of syntax but the available options will differ
and so you should check the relevant help filesif you wish to use these approaches. Of course, Stata has anumber of
defaults and so you don't need to include any optionsif you don’t wish to change the default (though it is always
good to figure out what the default is!)

Lets start with avery simple regression of GDP per worker (y) on capital-output ratio (k).

regress y k

29

Sour ce | SS df NB Nunber of obs = 104
------------- Fo F(1, 102) = 1110.99
Mbdel | 2.5465e+10 1 2.5465e+10 Prob > F = 0. 0000

Resi dual | 2.3380e+09 102 22921482.3 R- squar ed = 0.9159
------------- e Adj R-squared = 0.9151
Total | 2.7803e+10 103 269936187 Root MSE = 4787.6

y | Coef . Std. Err. t P>| t] [95% Conf. Interval]
_____________ e
k| . 3319374 . 0099587 33.33 0.000 . 3121844 . 3516904

_cons | 4720.016 617.1018 7.65 0.000 3495. 998 5944. 035

There are afew pointsto note here:

- Thefirst variable listed after the r egress (or r eg for short) command is the dependent variable, and all subsequently
listed variables are the independent variables.

- Stata automatically adds the constant term or intercept to the list of independent variables (use the noconst ant option if
you want to exclude it).

- The top-left corner gives the ANOV A decomposition of the sum of squares in the dependent variable (Total) into the
explained (Model) and unexplained (Residual).

- Thetop-right corner givesthe statistical significance results for the model asawhole.

- Thebottom section gives theresults for the individual independent variables.

The regr ess command can be used with the r obust option for estimating the standard errors using the Huber-White
sandwich estimator (to correct the standard errors for heteroscedasticity):

regress y k, robust

Regression with robust standard errors Nunber of obs = 104
F(1, 102) = 702.15
Prob > F = 0.0000
R- squar ed = 0.9159
Root MSE = 4787.6

| Robust
y | Coef . Std. Err. t P>| t] [95% Conf. Interval]
_____________ e
k| . 3319374 . 0125268 26.50 0.000 . 3070905 . 3567842
cons | 4720.016 506. 2807 9.32 0.000 3715. 811 5724. 222

The coefficient egtimates are exactly the same as in draightforward OLS, but the sandard errors teke into account
heteroscedasticity. Note, the ANOV A table is deliberately suppressed asit isno longer appropriate in a statistical sense.

Sometimes you also want to alow for more genera deviations from the iid-assumption on the error term. The option
cl uster(group) alows for arbitrary correlation within specified groups (see Wooldridge, “Econometrics of Cross-Section
and Pand Data’, chapter 4, for more details and limitations of this approach). For example, you might think that in a pand of
countries, errors are correlated across time but independent across countries. Then, you should cluster standard errors on
countries. In our example, we do not have a time dimension so clustering on country yields the same results as the robust option
(which is a special case of the clugter option):

regress y k, cluster(country)

Stata comes with alarge amount of regression diagnostic tools, such astestsfor outliers, heteroskedagticity in the errors etc. A
good survey is available at http://www .ats.ucla edu/stat/stata/webbooks/reg/chapter2/statareg?.htm. We will focus on two useful
tools for detecting influential observationsand looking at partial correlations. Thefirst tool isthecommand | vr 2pl ot (read
leverage-versus-residual squared plot). Thisis not available after the robust option is used so letsrevert back to the original
regression:

30

regress y k

Ivr2pl ot, m abel (country)
This plots the leverages of all observations againg their squared residuals (the option ml abel labels points according to the
variable listed in brackets behind it). L everage tells you how large theinfluence of a single observation on the estimated
coefficientsis. Observations with high values could potentially be driving the results obtained (especialy if they aso have alarge
squared residual) so we should check whether excluding them changes anything.

The second command isavpl ot (added-variable plot) which graphsthe partia correlation between a specified regressor and the
dependent variable. For this not to be simply the fitted values, we should add another variable such ashuman capital (h). Formaly

regress y k h
avpl ot k, m abel (country)

For some very basic econometrics which also comes with the necessary Stata commands, see
http://www .cas.lancs.ac.uk/short courses/notes/stata/session5.pdf for model diagnostics.

Post-estimation

Once you have done your regression, you usualy want to carry out some extra andysis such as forecasting or
hypothesistesting. Hereis alist of the most useful post-estimation commands:

Command Description

adjust Tables of adjusted means and proportions
edimates Store, replay, display, ... estimation results
hausman Hausman's specification test after model fitting
lincom Obtain linear combinations of coefficients
linktest Specification link test for single-equation models
Irtest Likelihood-ratio test after model fitting

mfx Marginal effects or elasticities after estimation
nicom Nonlinear combinations of estimators

predict Obtain predictions, residuals, etc. after estimation
predictnl Nonlinear predictions after estimation

suest Perform seemingly unrel ated estimation

test Test linear hypotheses after estimation

testnl Test nonlinear hypotheses after estimation

vee Display covariance matrix of the estimators
Prediction

A number of predicted values can be obtained after all estimation commands, such asreg, cnsreg, |l ogit or probit.The
most important are the predicted values for the dependent variable and the predicted residuals. For example, suppose we run the
basic regression again:

regress y k h
predict y_hat /* predicted val ues for dependent var */
predict r, residual /* predicted residuals */

Stata creates new variables containing the predicted values, and these variables can then be used in any other Stata command, e.g.
you can graph a histogram of the residuals to check for normality.

If werun a selected regression (e.g. just using OECD countries) and then wish to know how well this regression fits, we could run
the following commands:

regress y k hif oecd==1

predict y_hat_oecd i f oecd==1
predict r_oecd i f oecd==1, residual

31

Thei f statements are only necessary if you are running the analysis on a subset of dataset currently loaded into Stata. If you
want to make out-of-sample predictions, just dropthei f statementsinthepr edi ct commands.

predict y_hat_oecd_full
predict r_oecd_full, residual

Hypothesistesting

The reaults of each estimation automatically include for each independent variable at-test (for linear regressions) and a z-test (for
regressions such as logit or probit) on the null hypothesis that the “true’ coefficient is equal to zero. You can also perform an F-
test or » test on this hypothesisusing thet est command:

regress y k h y1985 ya

test y1985 /*dnce Statadefaults to comparing the listed termsto zero, you can simply use the variable*/

(1) y1985 = 0

F(1, 63)
Prob > F

15. 80
0. 0002

The F-statistic with 1 numerator and 63 denominator degrees of freedom is 15.80. The p-value or significance level of thetest is
basically zero (up to 4 digits at least), so we can reject the null hypothesis even at the 1% level — y1985 is significantly different
from zero. Notice tha, since the F-distribution with 1 numerator degree of freedom is identical to the t-distribution, so the F-test
result isthe same as the square of thet-test result in the regression. Also the p-values associated with each test agree.

Y ou can perform any test on linear hypotheses about the coefficients, such as:

test y1985=0.5 /* test coefficient on y1985 equals 0.5 */

test y1985 h /* test coefficients on y1985 & h jointly zero */
test y1985+h=-0.5 /* test coefficients on y1985 & h sumto -0.5 */
test y1985=h /* test coefficients on y1985 & h are the sanme */

With many Stata commands, you can refer to alist of variables using ahyphen, eg. desc k- ya gives descriptive atistics on
exp, ya and every other variable on thelist between them. However, the test command interprets the hyphen asaminus, and gets
confused because it thinks you are typing a formula for it to test. If you want to test a long list of variables, you can use the
t est par m command (but remember to usetheor der command to bring the variables in the right order first)

order k h y1985 ya

test parm k-ya

(1) k=0
(2) h=0
(3) y1985 = 0
(4 ya=0
F(4, 63) = 370.75
Prob > F = 0.0000

32

Extracting results

We have already seen how the pr edi ct command can be used to extract predicted values from Stata’s internal memory for use
in subsequent analyses. Using the gener at e command, we can aso extract other results following a regression, such as
estimated coefficients and standard errors:

regress y k h y1985 ya, robust

gen b_cons=_b[_cons] /* beta coefficient on constant term */
gen b_k=_b[K] /* beta coefficient on GDP60 variable */
gen se_k=_se[K] /* standard error */

You cant abul at e the new variables to confirm that they do indeed contain the results of the regression. You can then use
these new variablesin subsequent Stata commands, e.g. to create avariable containing t-statistics:

gen t_k=b_k/se_k
or, more directly:

gen t_k= b[k]/ _se[k]

Stata stores extra results from estimation commandsin e() , and you can see alist of what exactly is stored using the er et urn
I'ist command:

regress y k h y1985 ya, robust
ereturn |ist

ereturn |ist

scal ars:
e(N = 68
e(df_m = 4
e(df _r) = 63
e(F) = 273.7198124833108
e(r2) = .9592493796249692
e(rmse) = 3451.985251440704
e(nmss) = 17671593578. 3502
e(rss) = 750720737.0983406
e(r2_a) = .9566620386487768
e(ll) = -647.8670640006279
e(ll1_0) = -756.6767273270843
MACT 0S:
e(depvar) : "y"
e(cmd) : "regress"
e(predict) : "regres_p"
e(rmodel) : "ol s"
e(vcetype) : "Robust"
matrices:
e(b) 1 x5
e(V) 5x5
functi ons:
e(sanpl e)

e(sanple) is a useful tool to have. Earlier we ran the foll owi ng conmands:
regress y k h if oecd==1
predict y_hat_oecd if oecd==1

but in the event that the “if” statement is complex, we may wish to simple tell Statato predict using the same sample
it used in the regression. We can do this using the e(sample):

predict y_hat_oecd if e(sanple)

e(N storesthe number of observations, e(df _n) the model degrees of freedom, e(df _r) theresidud degrees of freedom,
33

e(F) theF-datistic, and soon. You can extract any of these into a new variable:

gen residual df =e(df _r)
And you can then usethis variable as usud, e.g. to generate p-values:

gen p_k=t prob(residual df ,t_k)

Thet prob function uses the two-tailed cumulative Student’s t-distribution. The first argument in parenthesis is the relevant
degrees of freedom, the second is thet-statistic.

In fact, most Stata commands — not just estimation commands — store results in internal memory, ready for possible extraction.
Generaly, the results from other commands are stored in r () . You can see a list of wha exactly is stored using the r et ur n
I'i st command, and you can extract any you wish into new variables:

sumy
Vari abl e | Cos Mean Std. Dev. Mn Max

y | 105 18103. 09 16354. 09 630. 1393 57259. 25

return |ist

scal ars:

r(N = 105

r(sumw) = 105
r(mean) = 18103. 08932466053
r(Var) = 267456251.2136306
r(sd) = 16354.08973968379
r(mn) = 630.1392822265625

r(max) = 57259.25

r(sum) = 1900824.379089356

gen nean_y=r (nean)

Note that the last command will give exactly the ssmeresultsasegen nean_y=nean(y) .

OUTREG2 —theultimatetool in Stata/Latex or Word friendliness?

Thereis atool which will automatically create excd, word or latex tables or regression results and it will save you
loads of time and effort. It formats the tables to ajourna standard and was originally just for word (outreg) but now
the updated version will also do tables for latex also.

However, it does not come as astandard tool and so before we can use it, we must learn how to instal extraado files
(not to be confused with running our own do files).

Extra commands on the net

Looking for specific commands

If you are trying to perform an exctic econometric technique and cannat find any useful command in the Stata manuals, you may
have to programme in the details yourself. However, before making such arash move, you should be aware that, in addition to the
huge list of commands available in the Stata package and listed in the Stata manuas, a number of researchers have creaed their
own extra commands. These extra commands range from the aforementioned exotic econometric techniques to mini time-saving
routines. For example, the command out r eg.

Y ou need to first locate the relevant command and then install it into your copy of Stata. The command can be located by trying
different searches, e.g. to search for a command tha formats the layout of regression results, | might search for words like
“format” or “table’:

search format regression table

Keywor d sear ch

Keywords: fornat regression table
Search: (1) Official help files, FAQs, Exanples, SJs, and STBs

Search of official help files, FAQs, Exanples, SJs, and STBs

FAQ Can | nake regressi on tables that look like those in journal articles?
e . UCLA Academ ¢ Technol ogy Services
5/01 http //W\MN ats ucI a. edu/stat/stata/faq/outreg ht m

STB-59 sg97.3 Update to formatting regressi on out put
(help outreg if installed)J. L @Gllup

1/01 p. 23; STB Reprints Vol 10, p.143

smal | bug fixes

STB-58 sg97.2 Update to formatting regressi on out put
(helpoutreglflnstalled) .o e e o o o o ... L @llup

11/00 pp.9--13; STB Reprints VoI 10, pp. 137--143

update all owi ng user-specified statistics and notes, 10%

asteri sks, table and colum titles, scientific notation for

coefficient estimtes, and reporting of confidence interval

and nargi nal effects

STB-49 sg97.12 Revision of outreg
(help outreg if installed)J. L @Gllup

5/ 99 p.23; STB Reprints Vol 9, pp.170--171

updated for Stata 6 and inproved

STB-46 sg97 Formatting regression output for published tables
(helpoutreglflnstalled) .o e e o o o oo .o L @llup

11/98 pp.28--30; STB Reprints VoI 8, pp. 200--202

t akes output fromany estinmation coomand and formats it as

injournal articles

(end of search)

You can read the FAQ by clicking on the blue hyperlink. This gives some information on the command. You can instdl the
command by first clicking on the blue command name (here sg97. 3, the mos up-to-date version) and, when the pop-up window
appears, clicking on the ingall hyperlink. Once installed, you can create your table and then use the command outreg as any other
command in Stata. Thehep filewill tell you the syntax.

However, | mentioned outreg2 and this has not appeared here, so | may need to update more.

But we know that outreg2 exists so how do we find it to install? Well, type outreg2 into google to convince yoursel f
that it exists. Then type:

sear ch outreg2, net

Web resources from Stata and ot her users
(contacting http://ww.stata. com

1 package found (Stata Journal and STB listed first)

outreg2 fromhttp://f mww bc. edu/ RePEc/ bocode/ o
'"OUTREQ': nmodul e to arrange regression outputs into an illustrative table
/ outreg2 provides a fast and easy way to produce an illustrative / table
of regression outputs. The regression outputs are produced / pieceneal and
are difficult to conpare without sone type of / rearrangement. outreg2

(click here to return to the previ ous screen)
(end of search)

Click on the blue link and follow instructions to install the ado file and hel p.

35

Constrained linear regression

Suppose the theory predicts that certain the coefficients should be identical. We can estimate a regression model where we
congrain the coefficients to be equal to each other. To do this, first define a constraint and then run the cnsr eg command:

constraint define 1 rev=assass /* constraint is given the nunber 1 */
cnsreg gr6085 | gdp60 sec60 prin60 gcy rev assass pi 60 if year==1990, constraint (1)

Constrai ned |inear regression Nunber of obs = 100
F(6, 93) = 12.60
Prob > F = 0.0000
Root MSE = 1.5025
(1) - rev + assass = 0
gr 6085 | Coef . Std. Err. t P>| t] [95% Conf. Interval]
_____________ e
| gdp60 | -1.617205 .2840461 -5.69 0.000 -2.181264 -1.053146
sec60 | . 0429134 . 012297 3.49 0.001 . 0184939 . 0673329
prinm60 | . 0352023 . 007042 5.00 0.000 . 0212183 . 0491864
gcy | -.0231969 . 017786 -1.30 0.195 -. 0585165 . 0121226
rev | -.2335536 .2877334 -0.81 0.419 -. 804935 . 3378279
assass | -.2335536 .2877334 -0.81 0.419 -.804935 . 3378279
pi 60 | -.0054616 .0024692 -2.21 0.029 -. 0103649 -.0005584
_cons | 12.0264 2.073177 5.80 0.000 7.909484 16. 14332

Notice that the coefficients for REV and ASSASS are now identical, aong with their standard errors, t-ats, etc. We can define
and apply severa congtraints at once, e.g. condrain thel GDP60 coefficient to equd —1.5:

constraint define 2 | gdp60=-1.5
cnsreg gr6085 | gdp60 sec60 prin60 gcy rev assass pi 60 if year==1990, constraint (1l 2)
Dichotomous dependent variable

When the dependent variable is dichotomous (zero/one), you can run aLinear Probability Model usingther egr ess command.
Youmay alsowanttorunal ogit oraprobit regresson. The difference between these three models is the assumption that
you make about the probability distribution of the latent dependent variable (LPM assumes an identity function, Logit a logistic
distribution function, and Probit anormal digtribution function).

For the sake of trying out these commands, let us*“explain” why a country isan OECD member using a logit regressions:

logit CECD I rgdpl if year==1990

Iteration O: I og likelihood = -63.180951
Iteration 1: l og likelihood = -37.103818
fferation 6: I og likelihood = -21.991401
Iteration 7: log likelihood = -21.99139
Logit estimates Nunmber of obs = 135
LR chi 2(1) = 82.38
Prob > chi2 = 0. 0000
Log likelihood = -21.99139 Pseudo R2 = 0. 6519
OECD | Coef . Std. Err. z P>| z| [95% Conf. Interval]
_____________ e
I rgdpl | 4.94118 1.119976 4.41 0.000 2.746067 7.136292
_cons | -47.38448 10. 7335 -4.41 0.000 -68. 42176 - 26. 3472

36

Panel Data

If you are lucky enough to have a panel dataset, you will have data on n countries/people/firmg/etc, over t time periods, for atotal
of n x t observations. If t isthe same for each country/person/firm then the panel is said to be balanced; but for most things Stata is
capable of working out the optimal/maximum dataset available. There are a few things to note before using panel data commands:

1. Pend data should be kept in long form (with separate person and time variables). However, sometimes your data may
be in wide form and needsto be converted to long form using the r eshape command (see class 2).

2. You haveto declare your dataa pand. Oneway to do thisisusingthecommand i i s andt ss. Another isusing the
t sset command. To do this, you need two indicator variables, indicating the unit (iss) and time (tss) dimensions of
your panel. In our case, these are Smply year andcount r y. Note that panel dimensions cannot be string variables so
you should firg encode country (see last week). Once you have done this, usethet sset command:

encode country, gen(country_no)
tsset country_no year

Y ou are now freeto use Statd s panel data commands, although | will only make use of afew main ones (bolded):

xtdes Describepattern of xt data

xtsum Summarize xt data

xttab Tabulatext data

xtdata Faster specification searches with xt data

xtline Line plotswith xt data

xtreg Fixed-, between- and random-effects, and population-averaged linear modds
xtregar Fixed- and random-effects linear models with an AR(1) disturbance

xtgls Pand-data modelsusing GLS

xtpcse OL S or Prais-Winsten modelswith panel-corrected standard errors

xtrchh Hildreth-Houck random coefficients models

xtivreg Instrumental variables and two-stage least squares for panel-data models
xtabond Arellano-Bond linear, dynamic panel data estimator

xttobit Random-effects tobit models

xtintreg Random-effects interval data regression models

xtlogit Fixed-effects, random-effects, & population-averaged logit models

xtprobit Random-effects and population-averaged probit models

xtcloglog Random-effects and population-averaged cloglog models

xtpoisson Fixed-effects, random-effects, & population-averaged Poisson models

xtnbreg Fixed-effects, random-effects, & population-averaged negative binomia models
xtgee Population-averaged panel-data models using GEE

Describe pattern of xt data

xtdes is very useful to see if your panel is actualy balanced or whether there islarge variation in the number of yearsfor which
each cross-sectiond unit is reporting.

xt des
country_no: 1, 2, ..., 168 n = 168
year: 1950, 1951, ..., 2000 T = 51
Del ta(year) = 1; (2000-1950)+1 = 51
(country_no*year uniquely identifies each observation)
Distribution of T.i: mn 5% 25% 50% 75% 95% max
51 51 51 51 51 51 51

37

Freq. Percent Cum | Pattern

Of course, in our samplethere are year entries for every country and every year, but much of the data is missing. Looking at the
patterns given that GDP per capita data exists tells amuch more mixed story. Some 50 countries have datafor al years, but many
other variant patterns are evident (especidly samples than begin after 1950).

xtdes if cgdp!=.

country_no: 1, 2, ..., 168 n = 168
year: 1950, 1951, ..., 2000 T = 51
Del ta(year) = 1; (2000-1950)+1 = 51
(country_no*year uniquely identifies each observation)
Distribution of T.i: mn 5% 25% 50% 75% 95% max
1 1 15 41 51 51 51
Freg. Percent Cum | Pattern
___________________________ o e e e e e e e e e e e e e e e mm e e e mmmm e e e e m e m e m— - - -
50 29.76 29.76 | 1111211111122221211121222111111221122111111221211111111211
29 17. 26 47.02 | ... 111111211212112111112112121121111712112121121111111111
14 8.33 5536 | i 1....
6 3.57 B58. 93 | 11111111111
6 3.57 62.50 | .111121221111112121111121222111111172221111122221111111
5 2.98 65.48 | 1111111121112111111212112111171211212112111111111
4 2.38 67.86 | ... 11111111711111211111111111
4 2.38 70.24 | ..., 1111111111111211711171111121121171111112111111111
4 2.38 72.62 | 111111121121121112112111111111121111111121121111111111
46 27.38 100.00 | (other patterns)
___________________________ o e e e e e e e e e e e e e e e mm e e e mmmm e e e e m e m e m— - - -
168 100. 00 DO O000.0.00. 0000000000 0000900000 0000000 000 009090000094
Summarizext data
xtsum is similarly very useful and can be used in the same way that sum isused for non-panel data.
xt sum pop cgdp
Vari abl e | Mean Std. Dev. Mn Max | Cbservati ons
_________________ e
pop overall | 31252.47 108217.8 40. 82 1258821 | N = 5847
bet ween | 89099. 92 42.48 913862.3 | n = 168
within | 28391.67 -313609.8 405753.2 | T-bar = 34.8036
I I
cgdp overall | 7.467798 1.272928 4. 417209 10. 79891 | N = 5847
bet ween | 1.052756 5.527193 10.05989 | n = 168
within | . 8357679 5.050297 9.835527 | T-bar = 34.8036

Thistables tells us the minimum and maximum, standard deviation and mean (in the overall case) of our selected variables (pop
and cgdp) in three waysthat are of interest:

1. theoveral sample

2. thebetween sample—i.e x(bar);

3. thewithin sample—i.e. x;; - x(bar); - x(global bar)

Tabulate xt data

xttab is also a generalisation of thetabulate command for panel data and will show overall, within and between variation.

xttab G7

38

Overal | Bet ween Wthin

G7 | Freq. Percent Freq. Percent Per cent
__________ e m e m e mmmm e ———— - ==
0 | 8211 95. 83 161 95. 83 100. 00
1| 357 4.17 7 4. 17 100. 00
__________ e m e m e mmmm e ———— - ==
Total | 8568 100. 00 168 100. 00 100. 00

(n = 168)

Panel regressions

xtreg is a generalisation of the regress commands. Aswith the summary data above, we can make use of the information in the
cross-section (between) and also in the time-series (within). Also, as per your econometrics training, Stata allows you to run
fixed-effects (fe), random effects (re) and between estimators using xtreg. More complicated estimation (such as Arellano-Bond)
have specific xt estimation commands.

Fixed EffectsRegression
Fixed effects regression controls for unobserved, but constant, variation across the cross-sectional units. It is equivalent to
including adummy for each country/firm in our regression. Let us use the xtreg command with thefe option:

xtreg grgdpch gdp60 openk kc kg ki, fe

Fi xed-effects (within) regression Nurmber of obs = 5067

Group variable (i): country_no Nurber of groups = 112

R-sg: within = 0.0164 Obs per group: mn = 2

bet ween = 0. 2946 avg = 45. 2

overall = 0.0306 max = 51

F(4, 4951) = 20.58

corr(u_i, Xb) = -0.4277 Prob > F = 0. 0000

grgdpch | Coef . Std. Err. t P>| t] [95% Conf. Interval]

_____________ e
gdp60 | (dropped)

openk | -.0107672 .0042079 -2.56 0.011 -. 0190166 -.0025178

kc | -.0309774 .0089545 -3.46 0.001 -. 0485322 -.0134225

kg | -.0733306 .0147568 -4.97 0.000 -. 1022604 -. 0444007

ki | . 1274592 . 0178551 7.14 0. 000 . 0924552 . 1624631

cons | 4.425707 . 7451246 5.94 0.000 2.964933 5. 886482

_____________ e
sigma_u | 1.6055981
signma_e | 6.4365409

rho | .05858034 (fraction of variance due to u_i)
F test that all u_i=0: F(111, 4951) = 1.82 Prob > F = 0. 0000

Notice that gdp60, thelog of GDP in 1960 for each country, is now dropped as it is constant across time for each country and so is
subsumed by the country fixed-effect.

Between Effects
We can now use the xtreg command with the be option. Thisis equivaent to running aregression on the dataset of means by
cross-sectiona identifier. Asthisresultsin loss of information, between effects are not used much in practice.

xtreg grgdpch gdp60 openk kc kg ki, be

Bet ween regression (regression on group nmeans) Number of obs = 5067
Group variable (i): country_no Nurber of groups = 112
R-sg: within = 0.0100 Obs per group: mn = 2
bet ween = 0. 4575 avg = 45. 2
overall = 0.0370 max = 51

F(5, 106) = 17.88

39

Prob > F

[95% Conf .

sd(u_i + avg(e_i.))= 1.277099
grgdpch | Coef Std. Err
_____________ +
gdp60 | -.5185608 .1776192
openk | . 0008808 .0029935
kc | -.0151328 . 009457
kg | -.0268036 .0149667
ki | . 1419786 . 0213923
cons | 4.657591 1. 587533

-. 8707083
-. 0050541
-. 0338822
-. 0564765
. 0995662
1.510153

Interval]

-. 1664134
. 0068156
. 0036166
. 0028693

. 184391
7. 80503

Random Effects
The command for alinear regression on panel datawith random effectsin Stata is xtreg with the re option. Stata's random-effects
estimator is aweighted average of fixed and between effects.

xtreg grgdpch gdp60 openk kc kg ki, re

Random effects GLS regression Number of obs = 5067

Group variable (i): country_no Nurber of groups = 112

R-sg: within = 0.0143 Obs per group: mn = 2

bet ween = 0. 4235 avg = 45. 2

overall = 0.0389 max = 51

Random effects u_i ~ Gaussian Wal d chi 2(5) = 159. 55

corr(u_i, X = 0 (assuned) Prob > chi2 = 0. 0000

grgdpch | Coef Std. Err z P>| z| [95% Conf. Interval]

_____________ e

gdp60 | -.5661554 . 1555741 -3.64 0. 000 -. 8710751 -. 2612356

openk | -.0012826 .0024141 -0.53 0.595 -. 0060142 . 003449

kc | -.0270849 .0061971 -4.37 0.000 -.039231 -.0149388

kg | -.0506839 .0101051 -5.02 0.000 -. 0704895 -.0308783

ki | .1160396 .0127721 9.09 0.000 . 0910067 . 1410725

cons | 6.866742 1.239024 5.54 0.000 4.4383 9. 295185

_____________ e
sigma_u | .73122048
sigma_e | 6.4365409

rho | .01274156 (fraction of variance due to u_i)

Choosing Between Fixed and Random Effects

Choosing between FE and RE models is usually done using aHausman tegt, and this is easily completed in Statausing the
Hausman command. To run aHausman test we need to run the RE and FE models and save the resultsusing the st or e
command. Wethen instruct Stata to retrieve the 2 sets of results and carry-out the test.

For example, using the same estimates as above, we can write the following in our do file:

xtreg grgdpch gdp60 openk ke kg ki, fe
estimates store fe

xtreg grgdpch gdp60 openk ke kg ki, re
estimates storere

hausman fere

---- Coefficients ----

| (b) (B (b-B) sqrt(diag(V_b-V_B))
| fe re Di fference S.E
_____________ e
openk | -.0107672 -.0012826 -.0094846 . 0034465
ke | -.0309774 -. 0270849 -.0038924 . 0064637
kg | -. 0733306 -. 0506839 -.0226467 . 0107541
ki | . 1274592 . 1160396 . 0114196 . 0124771
b = consi stent under Ho and Ha; obtained fromxtreg
B = inconsistent under Ha, efficient under Ho; obtained fromxtreg

Test: Ho: difference in coefficients not systematic

chi 2(4) = (b-B)' [(V_b-V_B)~(-1)](b-B)
= 20.15
Prob>chi 2 = 0. 0005

As described in theresults, the null hypothesisisthat thereis no difference in the coefficients estimated by the efficient RE
estimator and the consistent FE estimator. If thereisno difference, then use the RE estimator — i.e. if the P-vaueis insignificant
and the Prob>chi2 larger than .05. Otherwise, you should use FE, or one of the other solutionsfor unobserved heterogeneity.

41

Time series data

Statahas a very particular set of functionsthat control time series commands. But in order to use these commands, you must
ensurethat you tell Stata Aswith the panel data commands above, we can do thisusing the tsset command — data must be sorted
by the time series (or with panel data, by the panel data variable and then the date variable). For example:

sort datevar

t sset datevar

or
sort panel var datevar

t sset panel var datevar

Once you have done this, you are free to use the time series commands — | present a selection of these below (type help time for
thefull lig):

tsset Declare a dataset to be time-series data

tsfill Fill in missing timeswith missing observationsin time-series data
tsappend Add observations to atime-series dataset

tsreport Report time-series aspects of adataset or esimation sample

arima Autoregressive integrated moving-average models
arch Autoregressive conditional heteroskedasticity (ARCH) family of estimators

tssmooth_ma Moving-average filter
tssmooth_nl Nonlinear filter

corrgram Tabulate and graph autocorrelations

xcorr Cross-correlogram for bivariate time series

dfuller ~ Augmented Dickey-Fuller unit-root test

pperron Phillips-Perron unit-roots test

archlm Engle'sLM tes for the presence of autoregressive conditional heteroskedasticity

var Vector autoregression models

svar Structural vector autoregression models

varbasic Fit asimple VAR and graph impulse-response functions
vec Vector error-correction models

varsoc Obtain lag-order selection statistics for VARs and VECMs
varstable Check the stability condition of VAR or SVAR estimaes
vecrank Egtimate the cointegrating rank using Johansen's framework

irf create Obtain impulse-response functionsand FEVDs
vargranger Perform pairwise Granger causality tedts after var or svar

irf graph Graph impulse-response functions and FEVDs
irf cgraph Combine graphs of impulse-response functionsand FEVDs
irf ograph Graph overlaid impulse-response functions and FEVDs

All of these can be implemented where appropriate by using the help function, manuals and internet resources (or colleagues
know-how).

Stata Dateand Time-series Variables

However, one of the issueswith time series in Stata, and something that particularly challenges new users of Stata, isthe data
format used in the program. Therefore, | below provide some more advanced notes on this specialist topic.

Thekey thing isthat there are 2 possible types of entry — date entries (which work in general for storing dates in Stata) and time-
series entries (which are useful when we are not using daily data).Stata sores dates as the number of elapsed periods since
January 1, 1960. When using a data-set that is not daily data, we want to use Statd s time-series function rather than the date
function — thereason is that the dates for quarterly datawill be about 3 months apart but the number of days between them will

42

vary so telling Statato go from Q1 to Q2 will involve changing the date from (for example) January 1% to April 1% —which is
either 90 days or 91 days depending on whether it is aleap-year. Obviously our life would be easier if we could just tell Statathat
oneentry isQ1, and the other entry is Q2. For example, if wewant to take first-differences between quarters, or even more tricky
if wewanted to take seasond differences— Q1 minus Q1 from previous year.

Therefore when we have avariable that identifies the time-series elements of a dataset, we must tell Statawhat type of dataweare
usng —isit daily, weekly, monthly, quarterly, haf-yearly or yearly. Therefore, if you use daily datait will be the number of
elapsed days since January 1% 1960 (which is therefore zero), but if you use quarterly data, it is the number of elapsed quarters
since 1960 Q1. Thefollowing table explainsthe different formats —:

Thereisaformat for each of thesetime periods:

Format Description Beginning +1 Unit +2 Units +3 Units

%td daily 01jan1960 02jan1960 03Jan1960 04Jan1960
%otw weekly week 1, 1960 week 2, 1960 week 3, 1960 week 4, 1960
%tm monthly Jan, 1960 Feb, 1960 Mar, 1960 Apr, 1960
%itq quarterly 1< qgtr, 1960 2ndqtr, 1960 3rd gtr, 1960 4th gtr, 1961
Y%th haf-yearly 1¢ half, 1960 2nd hdf, 1960 1< hdlf, 1961 2nd haf, 1961
Yoty yearly 1960 1961 1962 1963

Obvioudy, what you tell Stata hereis highly important; wewill see how to convert our datainto Stata dates in amoment, but for

now assume that we have a Stata date for January 1, 1999 — thisis an elapsed date of 14245 (the number of days since January 1%
1960). If wewere to use this number as different types of time-series data, then there would be very diff erent outcomes as shown

in thefollowing table:

Daily Weekly Quarterly Half-yearly Yearly
%td Yotw %tq %th Yoty
01 Jan 1999 2233 W50 5521 Q2 9082 H2 -

These dates are so different because the elapsed date is actually the number of weeks, quarters, etc., from the first week, quarter,
etc of 1960. Thevalue for %ty is missing because it would be equa to the year 14,245 which is beyond what Stata can accept.

Therefore if we have adate format of 14245, but we want thisto point to quarterly data, then wewould need to convert it using
special Statafunctions. These functionstrandate from %itd dates:

wof d(var nane) daily to weekly
nmof d(var nane) daily to monthly
gof d(var nane) daily to quarterly
yof d(var nane) daily to yearly

Looking up in help can aso show how to convert numbers between other formats.
Getting dates into Stata format

This section covers how we get an existing date or time variable into the Stata format for dates— from here we can rewrite it as
quarterly, monthly, etc... using the above commands. There are 3 different considerations depending on how your existing “date
variable’ is set up:

1. Datefunctionsfor single string variables
For example, your existing date variable is called raw_dae and is of the form “20mar1999” —then itissaidto be a
single string variable (the sring must be easily separated into its components so strings like "20mar1999" and "March
20, 1999" are acceptable). If you have astring like "200399", we would need to convert it to anumeric variablefirst and
then use technique 3 below.
To convert theraw_date variable to adaily time-series date, we use the command:

gen dail y=date(raw date, "dny")

The"dmy" portion indicates the order of the day, month and year in thevariable; o if the variable was of theform
values been coded as "March 20, 1999" we would have used "mdy" instead.
Theyear must have 4 digits or elseit returns missing values— therefore if the origind date only has two digits, we place

43

the century before the"y.":

gen dail y=date(raw date, "dnl9y")

Or, if we have non-daily dates, we can use the following functions:
weekl y(stringvar,"w")

nont hl y(stringvar, "ny")
quarterly(stringvar,"qy")

hal f yearl y(stringvar, "hy")
yearly(stringvar,"y")

For example, if our datais2002Q1, then

gen quarterly= quarterly(raw data, "yq")

will get our elapsed quarters since 1960 Q1.

Date functionsfor partia date variables
If there are separate variables for each element of the date; for example:

month day year

7 11 1948
1 21 1952
11 2 1994
8 12 1993

We can usethe mdy() function to create an elapsed Stata date variable. The month, day and year variables must be
numeric. Therefore we can write;

gen nydate = ndy(nonth, day, year)

Or, with quarterly data, we would use the "yq()" function:

gen gt r=yqg(year, quarter)

All of thefunctions are:

mdy(nont h, day, year) for daily data
yw(year, week) for weekly data
ym(year, nont h) for monthly data
yqg(year, quarter) for quarterly data
yh(year, hal f-year) for half-yearly data

Converting a date variable stored as a single number
As discussed above, if you have asingle numeric variable, we need to first convert it into its component parts in order to

use themdy function. For example, imagine the variable is of the form yyyymmdd (for example, 19990320 for March
20 1999); now we need to split it into year, month and day asfollows

44

gen year = int(date/10000)

gen nonth = int((date-year*10000)/ 100)

gen day = int((date-year*10000- nont h*100))

gen nydate = ndy(nonth, day, year)

In each case the int(x) command returnsthe integer obtained by truncating x towards zero.
Using thetime seriesdatevariables
Once we have the date variable in Stata elapsed time form, it is not the most intuitive to work with. For example, here ishow a
new variable called stata_datawill look by using the command

gen stata_date = ndy(nonth, day, year)

month day year stata date

7 11 1948 -4191
1 21 1952 -2902
8 12 1993 12277
11 2 1994 12724

Therefore to display the stata_date in amore user-friendly manner, we can use the format command as follows:

format stata date %l

Thismeansthat stata_date will now be displayed as:

month day year stata_date7 11 1948 11jul1948
1 21 1952 21jan1952

8 12 1993 12aug1993

11 2 1994 02nov19%4

It is possible to use alternativesto %d, or to use %itd to display elapsed dates in numerous other ways— in fact, we can control
everything about the display. For exampleif | had instead written:

format stata date @M d, CY

Then wewould get:

month day year stata_date7 11 1948 July 11, 1948
1 21 1952 January 21, 1952

8 12 1993 August 12, 1993

11 2 1994 November 2, 1994

See hel p df m for more details.
Making Use of Dates
If wewant to use our datesin an if command, we have anumber of options:
1. Exact dates
We have a selection of functions d(), w(), m(), (), h(), and y() to specify exact daily, weekly, monthly, quarterly, half-
yearly, and yearly dates respectively. For example:
reg x y if w(1995w9)

sumincore if g(1988-3)

tab gender if y(1999)

2. Adaerange
If you want to specify arange of dates, you can usethetin() and twithin() functions:

regy x if tin(01feb1990, 01j un1990)

sumincore if twthin(1988-3, 1998-3)

The difference between tin() and twithin() isthat tin() includes the beginning and end dates, whereas twithin() excludes
them. Always enter the beginning dae first, and write them out as you would for any of thed(), w(), etc. functions.

Time Series TricksUsing Dates

Often in time-series analyseswe need to "lag" or "lead" the values of a variable from one observation to the next. Or we need to
take differences or seasond differences. Oneway isto generate awhole bunch of variableswhich represent the lag or the lead, the
difference, etc... But if we have many variables, this can be take up alot of memory.

Y ou should use the tsset command before any of the"tricks' in this section will work. This has the added advantage tha if you
have defined your data as a panel, Statawill automatically re-start any calculations when it comes to the beginning of anew
cross-sectional unit so you need not worry about values from one panel being carried over to the next.

e LagsandLeads
These use the L .varname (to lag) and F.varname (to lead) commands. Both work the same way:
reg inconme L.incone
This regresses income(t) on income(t-1)

If you wanted to lag income by more than onetime period, you would simply changetheL. to something like"L2." or
"L3." to lag it by 2 and 3 time periods respectively.

o Differencing

Used in asimilar way, the D.varname command will take thefirst difference, D2.varname will take the double
difference (difference in difference), etc... For example:

Date income D.income D2.income
02feb1999 120 .

02mar1999 130 10 .
02apr1999 145 15 5

e Seasonal Differencing

The S.varname command is similar to the D.varname, except tha the difference is always taken from the current
observation to the nth observation: In other words: S.income=income(t)-income(t-1) and S2.income=income(t)-

income(t-2)

Date income S.income S2.income
02feb1999 120 .

02mar1999 130 10 .
02apr1999 145 15 25

46

Programming

Program Basics

Creating or “defining” a program
A program contains a set of commands and is activated by a single command. A do-file is essentially one big program — it
contains alist of commands and is activated by typing:

do "statal.do"

You can aso create specia programs within a do-file, especially useful when you have a set of commands that are going to be
used repetitively. Theuse of these programswill initially be demonstrated interactively, but they are best used within ado-file.

Suppose you want to create new variables that contain the average values (across countries and years) of some of the underlying
variables in the dataset and at the same time display on screen these averages. No single Stata command will do this for you, but
there are a couple of ways you can combine separate Stata commands to reach your goal. The most efficient method is:

egen nean_kc=nean(kc)
tab nean_kc

mean_kc | Freq. Per cent Qum

____________ B

72.53644 | 8, 568 100. 00 100. 00

____________ B
Total | 8, 568 100. 00

egen nean_kg=nean(kg)
tab mean_kg

mean_kg | Freq. Per cent Qum

____________ B

20. 60631 | 8, 568 100. 00 100. 00

____________ B
Total | 8, 568 100. 00

The tasks are the same for each variable you are interested in. To avoid repetitive typing or repetitive cutting and pasting, you can
create your own program tha combines both tasks into a single command (note, in wha follows the firg inverted comma or
single-quoteof ~ 1’ ison the top-left key of your keyboard, the second inverted commais on the right-hand side on the key with
the @ symbol, and inside the inverted commas is the number one, not the letter L):

program defi ne neans
egen nean_"1'=nean("1")
tab nean_ "1’

end

Y ou have now created your own Stata command called mean, and the variable you type after this new command will be used in
the program everywherethereisa™ 1’ . For example, nean kg will usekg everywherethereisa’™ 1’ . This command can now
be applied to any variable you wish:

nmeans Ki
mean_Ki | Freq Per cent Qum
ls.7a088 | e.se8 10000 100,00
""" Total | s.ses 10000

Naming a program

Y ou can give your program any name you want aslong as it isn’'t the name of a command already in Stata, e g. you cannot name
it summari ze. Actually, you can create a program caled sunmari ze, but Stata will simply ignore it and use its own

47

sunmar i ze program every timeyou try using it. To check whether Stata has already reserved a particular name:

whi ch sum
built-in command: sunmari ze

whi ch neans
command neans not found as either built-in or ado-file
r(111);

Redefining a program

You may want to change your program in some way, such as atering a line, or adding or dropping a line. For example, the
t abul at e command displays more than just the single number we are interested in. We can provide amore user-friendly result
usng thedi spl ay command, where everything in double-quotes (“ ") is interpreted as straightforward text and anything not in
double-quotes is interpreted as something in Stata memory, such as a variable name or results of a previous command (e.g.
e(_b) ore(_se) fromaregress command):

di splay "Mean of kg = " nean_kg
Mean of kg = 21.15341

Note, thevalue of mean_kg that isdisplayed isthat of the first observation (_n=1). In our example, the value just so hgppens to
be the same for al observations so we don’t care whether it is displaying the firgt, tenth or one-hundredth observation. However,
thiswill not be so in many other examples, so care needs to be taken when using this command in thisway.

We can redefine our mean program by replacing thet abul at e command with thisdi spl ay command. To do so, we must
first drop the old nean program (placing capt ur e before the command avoids Stata tripping up if there is no program called
mean defined in thefirst place— useful for preventing Stata crashing in the middle of a long do-file):

capt ure program drop neans
program defi ne neans

egen nean_"1'=nean("1")

di splay “Mean of 1" =" nean_" 1’
end

Now we need to drop the existing mean_kc and mean_kg variables and re-run the commands to get:

nmeans kc

Mean of kc = 72.536438
means kg

Mean of kg = 20.606308

Debugging a program

Y our program may crash out haf-way through for some reason:
nmeans kc

mean_kc al ready defined

r(110);

Here, Statatells us the reason why the program has crashed — you are trying to create a new variable called mean_kc but there
isan old variable already called that. Our mean program is avery simple one, so we can figure out very quickly that the problem
arises with the first line, egen nean_" 1’ =nean(" 1’) . However, with more intricae programs, it is not always so obvious
where the problem lies. This iswherethe set trace command comesin handy. This command traces the execution of the
program line-by-line so you can see exactly where it trips up. Because the trace details are often very long, it is usually a good
ideatol og them for review afterwards.

| og using “debug. | og”, repl ace
set nore off

set trace on

means kg

set trace of f

l og cl ose

Program arguments

Our means command was defined to handle only one argument — " 1’ . It is possible to define more complicated programs to
handle several arguments, * 1’ ,* 2’ ,~ 3’ , and 0 on. These arguments can refer to anything you want — variable names, specific
values, strings of text, command names, if statements, and so on. For example, we can define a program that displays the value of
aparticular variable (argument ™ 1’) for a particular country (argument * 2’) and year (argument * 3’):

capture program drop show
program defi ne show
t enpvar obs
quietly gen “obs’="1" if (countryisocode==""2"" & year=="3")
so " obs’
display “*1' of country 2" in "3 is: " "obs
end

Toseethisin action:

show pop USA 1980
pop of country USA in 1980 is: 227726

show pop FRA 1990
pop of country FRA in 1990 is: 58026.102

Some things to note about this program:

- Line 1 creates atemporary variable that will exist while the program is running but will be automatically dropped once the
program has finished running. Oncethist enpvar has been defined, it must be referred to within the special quotes ("'),
just aswith the arguments.

- Line 2 starts with qui et |y, which tells Stata to suppress any onscreen messages resulting from the operation of the
command on this line.

- Make sure to properly enclose any string arguments within double-quotes. * 2’ will contain a string of text, such as ARG or
FRA, sowhen ™ 2" isbeingused in acommand it should be placed within double-quates (*).

- Line 3 ensures that observation number one will contain the value we are interested in. Missings are interpreted by Stata as
arbitrarily large, so when the data is sorted in ascending order our value will be at the top of the list, ahead of these missings.

As we have seen, use of strings can cause a bit of a headache. A further complication may arise if the argument itself is a string
containing blank spaces, such as United States instead of USA. Stata uses blank spaces to number the different arguments, o if
wetried show kg United States 1980, Statawould assign kgto " 1’ , Unitedto ™ 2’ , Statesto ~ 3° and 1980to " 4’ .
The way to get around this is to enclose any text containing important blank spaces within double-quotes — the proper command
then would be:

show kg “United States” 1980

Renaming arguments

Using " 1'," 2", " 3", and so on can be confusing and prone to error. It is possible to assign more meaningful names to the
arguments at the very beginning of your program so that the rest of the program is easier to create. Make sure to continue to
include your new arguments within the special quotes ("’):

capture program drop show
program defi ne show

args var cty yr

t enpvar obs

quietly gen “obs’="var’ if countryisocode==""cty'” & year=="yr’
so ~obs’

di splay ““var’ of country “cty’ in “yr’ is: " "obs’

end

show kg USA 1980

kg of country USA in 1980 is: 13.660507

49

M acros

A Stata macro is different to an Excel macro. In Excel, a macro is like a recording of repeated actions which is then stored as a
mini-program that can be easily run — this is what a do file is in Stata Macros in Stata are the equivalent of variables in other
programming languages. A macro is used as shorthand — you type a short macro name but are actudly referring to some longer
name or gtring of characters. For example, you may use the same list of independent variables in several regressions and want to

avoid retyping the list several times. Just assign thislist to amacro. Using the PWT dataset:

local varlist gdp60 openk kc kg Ki
regress grgdpch “varlist' if year==1990
Sour ce | SS df NB Nunber of obs = 111
------------- Fo F(5 105) = 6. 70
Model | 694, 520607 5 138.904121 Prob > F = 0.0000
Resi dual | 2175.67123 105 20.7206784 R- squar ed = 0.2420
------------- e Adj R-squared = 0.2059
Total | 2870.19184 110 26.0926531 Root MSE = 4.552
grgdpch | Coef Std. Err t P> t] [95% Conf. Interval]
_____________ e
gdp60 | -1.853244 .6078333 -3.05 0.003 -3.058465 -.6480229
openk | -.0033326 .0104782 -0.32 0.751 -. 0241088 . 0174437
kc | -.0823043 .0356628 -2.31 0.023 -.153017 -.0115916
kg | -.0712923 .0462435 -1.54 0.126 -. 1629847 . 0204001
ki | . 2327257 . 0651346 3.57 0.001 . 1035758 . 3618757
_cons | 16.31192 5.851553 2.79 0.006 4.709367 27.91447
regress grgdpch “varlist' if year==1980
Sour ce | SS df NB Nunber of obs = 111
------------- Fo F(5 105) = 2.27
Model | 880. 685302 5 176.13706 Prob > F = 0.0524
Resi dual | 8130.51957 105 77.4335197 R- squar ed = 0.0977
------------- e Adj R-squared = 0.0548
Total | 9011.20487 110 81.9200443 Root MSE = 8.7996
grgdpch | Coef Std. Err t P> t] [95% Conf. Interval]
_____________ e
gdp60 | -.2969159 1.143709 -0.26 0.796 -2.564679 1.970847
openk | . 0023893 .0218479 0.11 0.913 -. 0409311 . 0457097
kc | -.1349823 .0518524 -2.60 0.011 -.237796 -.0321686
kg | -.1363929 .0845697 -1.61 0.110 -. 304079 . 0312932
ki | -.1307708 .1124651 -1.16 0.248 -. 3537683 . 0922267
cons | 16.98343 9.885368 1.72 0.089 -2.617433 36. 58429

Macros are of two types — loca and global. Local macros are “private” — they will only work within the program or do-file in
which they are created. Thus, for example, if you are usng severa programs within a single do-file, using local macros for each
means that you need not worry about whether some other program has been using local macros with the same names — one
program can usevar| i st to refer to one set of variables, while ancther program usesitsvar | i st to refer to a completely
different set of variables. Global macros are “public” — they will work in all programs and do files— var| i st refersto exactly
the same list of variables irrespective of the program tha uses it. Each type of macro has its uses, athough loca macros are the
most commonly used type.

Just to illustrate this, let's work with an example. The program r egl will create a local macro called var | i st and will also
use tha macro. The program r eg2 will not create any macro, but will try to useamacro called var | i st . Althoughregl has
amacro by that name, it islocal or privatetoit, sor eg2 cannot useit:

program defi ne regl

I ocal varlist gdp60 openk kc kg Ki
reg grgdpch “varlist' if year==1990
end

50

regl

Sour ce | SS df NB Nunber of obs = 111
------------- Fo F(5 105) = 6.70
Model | 694. 520607 5 138.904121 Prob > F = 0.0000
Resi dual | 2175.67123 105 20.7206784 R- squar ed = 0.2420
------------- e Adj R-squared = 0.2059
Total | 2870.19184 110 26.0926531 Root MSE = 4.552
grgdpch | Coef Std. Err t P> t] [95% Conf. Interval]
_____________ e
gdp60 | -1.853244 .6078333 -3.05 0.003 -3.058465 -.6480229
openk | -.0033326 .0104782 -0.32 0.751 -. 0241088 . 0174437
kc | -.0823043 .0356628 -2.31 0.023 -.153017 -.0115916
kg | -.0712923 .0462435 -1.54 0.126 -. 1629847 . 0204001
ki | . 2327257 . 0651346 3.57 0.001 . 1035758 . 3618757
cons | 16. 31192 5. 851553 2.79 0.006 4.709367 27.91447
capture programdrop reg2
pr ogram defi ne reg2
1. reg grgdpch “varlist' if year==1990
2. end
reg2
Sour ce | SS df NB Nunber of obs = 129
------------- e EE T R P T F(O, 128) = 0.00
Model | 0 0 . Prob > F = .
Resi dual | 4008. 61956 128 31.3173404 R- squar ed = 0.0000
------------- e Adj R-squared = 0.0000
Total | 4008.61956 128 31.3173404 Root MSE = 5.5962
grgdpch | Coef . Std. Err. t P>| t] [95% Conf. Interval]
_____________ e
cons | . 9033816 . 492717 1.83 0.069 -. 0715433 1.878306

Now, suppose we creae agloba macro called var | i st —it will be accessible to all programs. Note, local macros are enclosed
in the special quotes ("’), globa macros are prefixed by the dollar sign ($).

gl obal varlist gdp60 openk kc kg k

capture programdrop regl

program defi ne regl

1. local varlist gdp60 openk kc kg ki
2. reg grgdpch “varlist'

3. reg grgdpch $varli st

4. end

capture programdrop reg2

pr ogram defi ne reg2

1. reg grgdpch $varlist
2. reg grgdpch “varlist'
3. end

51

Sour ce | SS df VS Nunber of obs = 5067
------------- Fo F(5 5061) = 41.21
Model | 8692. 09731 5 1738.41946 Prob > F = 0.0000
Residual | 213498.605 5061 42.1850632 R- squar ed = 0.0391
------------- e Adj R-squared = 0.0382
Total | 222190.702 5066 43.859199 Root MSE = 6.495
grgdpch | Coef Std. Err t P> t] [95% Conf. Interval]
_____________ e
gdp60 | -.5393328 .1268537 -4.25 0.000 -.7880209 -.2906447
openk | -.0003768 .0020639 -0.18 0.855 -. 0044229 . 0036693
ke | -.0249966 .0055462 -4.51 0.000 -. 0358694 -.0141237
kg | -.0454862 .0089808 -5.06 0.000 -. 0630924 -. 02788
ki | . 1182029 . 011505 10.27 0.000 . 0956481 . 1407578
cons | 6.344897 1.045222 6.07 0.000 4.295809 8.393985
Sour ce | SS df NB Nunber of obs = 5067
------------- Fo F(5 5061) = 41.21
Model | 8692. 09731 5 1738.41946 Prob > F = 0.0000
Residual | 213498.605 5061 42.1850632 R- squar ed = 0.0391
------------- e Adj R-squared = 0.0382
Total | 222190.702 5066 43.859199 Root MSE = 6.495
grgdpch | Coef Std. Err t P> t] [95% Conf. Interval]
_____________ e
gdp60 | -.5393328 .1268537 -4.25 0.000 -. 7880209 -.2906447
openk | -.0003768 .0020639 -0.18 0.855 -. 0044229 . 0036693
kc | -.0249966 .0055462 -4.51 0.000 -. 0358694 -.0141237
kg | -.0454862 .0089808 -5.06 0.000 -. 0630924 -. 02788
ki | . 1182029 . 011505 10.27 0.000 . 0956481 . 1407578
cons | 6.344897 1.045222 6.07 0.000 4.295809 8.393985

reg2
Sour ce | SS df NB Nunber of obs = 5067
------------- Fo F(5 5061) = 41.21
Model | 8692. 09731 5 1738.41946 Prob > F = 0.0000
Residual | 213498.605 5061 42.1850632 R- squar ed = 0.0391
------------- e Adj R-squared = 0.0382
Total | 222190.702 5066 43.859199 Root MSE = 6.495
grgdpch | Coef Std. Err t P>| t] [95% Conf. Interval]
_____________ e
gdp60 | -.5393328 .1268537 -4.25 0.000 -. 7880209 -.2906447
openk | -.0003768 .0020639 -0.18 0.855 -. 0044229 . 0036693
kc | -.0249966 .0055462 -4.51 0.000 -. 0358694 -.0141237
kg | -.0454862 .0089808 -5.06 0.000 -. 0630924 -. 02788
ki | . 1182029 . 011505 10.27 0.000 . 0956481 . 1407578
cons | 6.344897 1.045222 6.07 0.000 4.295809 8.393985
Sour ce | SS df VS Nunber of obs = 5621
------------- e EE T R P T F(0, 5620) = 0.00
Model | 0 0 . Prob > F = .
Residual | 250604.237 5620 44.5915012 R- squar ed = 0.0000
------------- e Adj R-squared = 0.0000
Total | 250604.237 5620 44.5915012 Root MSE = 6.6777
grgdpch | Coef Std. Err t P>| t] [95% Conf. Interval]
_____________ e
_cons | 2.069907 .0890675 23.24 0.000 1. 8953 2.244513

52

As you will see, Statarunstwo fully specified regressionsin thefirst case but only one in the last case since again,
the program reg2 does not recognize “varlist'.
M acr o contents

We introduced macros by showing how they can be used as shorthand for a list of variables In fact, macros can contain
practically anything you want — variable names, specific values, strings of text, command names, if stalements, and so on. Note,
we were actualy using macros implicitly earlier in the class When we created the programs nean and show, the arguments
(e.g. pop ARG 1980) were passed to the programs via local macros (" 1’ , “ 2’ , 3"). These local macros contained variables
(kg) and specific values (ARG and 1980). Some other examples of what macros can contain:

Text

Text isusually contained in double quotes (“) though thisisnot necessary for macro definitions:

local ctyname “United States”
gives the same result as
local ctyname United States

A problem arises whenever your macro name follows a backsash (\). Whenever this happens, Stataignores the firgt single quote
() of themacro name and so failsto properly load the macro:

local filenane PW.dta
use “F:\Stata classes\ ‘filenane’“

invalid '’
r(198);

To get around this problem, use double backslashes (\ \) instead of asingle one:

use “F:\Stata cl asses\\ fil enane’'“

Statements

Using macros to contain statements is essentially an extension of using macrosto contain text. For example, if we define the local
macro:

local year90 “if year==1990"
then,
reg grgdpch $varlist ~year90’
isthe same as:
reg grgdpch gdp60 openk kc kg ki if year==1990

Notethat whenusingi f statements, double quotes become important again. For simplicity, consider running aregression for all
countries whose codes start with “B”. Fird, | define alocal macro and then useit in ther eg command:

local ctynane B
reg grgdpch gdp60 openk kc kg ki if substr(country,1,1)==""ctynane'"

Although it does not matter whether | define ct ynane using double quotes or not, it isimportant to include them in
the if-statement since the variable count r y isstring. The best way to think about thisisto do what Stata does:
replace “ctyname’ by its content. Thus, substr (country, 1, 1) ==""ct ynane' " becomes

substr (country, 1, 1) =="B". Omitting the double quotes would yield subst r (count ry, 1, 1) ==B which as
usua resultsin an error message (since the results of the subst r -operation is a string).

Numbersand expressions

local i=1
local result=2+2

Note, when the macro contains explicitly defined numbers or equations, an equality sign must be used. Furthermore, there must be
no double-quotes, otherwise Statawill interpret the macro contents as text:

| ocal problem="2+2"

53

Thus, the pr obl em macro containsthetext 2+2 andther esul t macro contains the number 4. Note that as before we could
also have assigned “2+2” to pr obl emwhile omitting the equdity sign. The difference between the two assignments is that
assignmentsusing “=" are evaluations, those without “=" are copy operations Tha is, in the latter case, Stata simply copies* 2+2”
into the macro pr obl em while in the former case it evaluates the expression behind the “=" and then assigns it to the
corresponding macro. In the case of srings these two ways turn out to be equivalent. There is one subtle difference though:
evaluations are limited to string lengths of 244 characters (80 in Intercooled Stata) while copy operations are only limited by
available memory. Thus, it isusudly safer to omit the equality sign to avoid parts of the macro being secretly cut off (which can
lead to very high levels of confusion ...)

While a macro can contain numbers, it is essentially holding a string of text that can be converted back and forth into numbers
whenever calculaions are necessary. For this reason, macros containing numbers are only accurate up to 13 digits. When precise
accuracy is crucial, scalars should be used instead:

scal ar root2=sqgrt(2)
. display root2
1.4142136

Note, when you call upon a macro, it must be contained in special quotes (eg. di spl ay “result’), but thisis not so when
you call upon ascalar (e.g. di spl ay root2 andnotdi splay “root2').

Manipulation of macros

Contents of macros can be changed by simply redefining amacro. For example, if the global macror esul t containsthe value
“2+2" typing:
gl obal result “2+3”
overwrites its contents. If you want to drop a specific macro, usethemacr o dr op command:
macro drop year 90

Todrop dl macrosin memory, use_al | instead of specific macro names. If you want to list all macros Statahas saved in
memory instead (including anumber of pre-defined macros), type:

macro |ist
or
macro dir

Macro names starting with an underscore (“_") are local macros, the others are global macros. Similarly, to drop or list scaars,
usethecommandsscal ar drop andscal ar |i st (orscal ar dir) respectively.

Temporary objects

Besides in macros and variables, Stata can also store information in so-called temporary variables which are often used in longer
programmes:

= tenpvar assignsnamesto the specified local macro names that may be used as temporary variable namesin adataset (we
have already seen thistype earlier on). When the program or do-file concludes, any variables with these assigned names are
dropped:

program defi ne tenporary
t enpvar | ogpop

gen | ogpop’ =l og(pop)
sumpop if " logpop' >=8

end
tenporary
(2721 m ssing val ues gener at ed)
Vari abl e | Cbs Mean Std. Dev. M n Max
_____________ B
pop | 4162 43433.71 126246. 4 2989 1258821

Since thetempvar logegdp is dropped at the end of the program, trying to accessit later on yields an error message:

sum pop if "1l ogpop' >=8
54

>8 invalid nane

= t enpnane assignsnames to the specified loca macro names that may be used as temporary scaar or matrix names. When
the program or do-file concludes, any scalars or matriceswith these assigned names are dropped. This command isused
morerarely then tempvar but can be useful if you want to do matrix-algebrain Stata subroutines (see the Stata User Guide
[U], p. 220 for an example).

= tenpfil e assignsnamesto the specified loca macro names that may be used as names for temporary files. When the
program or do-file concludes, any datasets created with these assighed names are erased. For example, try thefollowing
programme:

program defi ne tenporary?
tenpfile cgdp
keep country year cgdp
save "“cgdp' "

cl ear
use " cgdp'"
sum year
end
tenporary2
file C:\ DOCUME~1\ M chael \ LOCALS~1\ Tenp\ ST_0c000012. tmp saved
Vari abl e | Cos Mean Std. Dev. Mn Max
_____________ B
year | 8568 1975 14.72046 1950 2000

Thissavesthevariadblescountry year cgdp inatemporary filetha is automatically erased as soon as the programme
terminates (check this by trying to reload ““cgdp'” after termination of the programme “temporary”).

L ooping

There are a number of techniques for looping or repeating commands within your do-file, thus saving you laborious retyping or
cutting and pasting. These techniques are not always mutually exclusive — you can often use one or more different techniques to
achieve the same goal. However, it is usually the case tha one technique is more suitable or more efficient in a given instance
than the others. Therefore, it is best to learn about each one and then choase whichever is most suitable when you come across a
looping situation.

for

for-processing allows you to easily repeat Stata commands. As an example, we can use the PWT dataset and create the mean of
several variables all at once:

for varlist kc ki kg: egen mean_X=mean(X)
-> egen nmean_kc=nean(kc)
-> egen nean_ki =mean(ki)
-> egen nean_kg=nmean(kg)

The egen command is repeated for every variable in the specified var | i st , with the X standing in for the relevant variable
each time (note, instead of typing out along var | i st, you could eg. usevarli st kc-ki to signify every variable listed
between kc and kg, inclusive). Y ou can see in the variables window that our three desired variables have been created.

for varlist kc ki kg: display "Mean of X =" nean_X

-> display ""Man of kc ="' nean_kc
Mean of kc = 72.536438

-> display ""Man of ki ="' nean_ki
Mean of ki = 15.740885

-> display ""Man of kg ="' nean_kg
Mean of kg = 20. 606308

55

The onscreen display includes both the individual commands and their results. To suppress the display of the individual
commands, use thenoheader option:

for varlist kc ki kg, noheader: display "Mean of X =" nean_X
Mean of kc = 72.536438
Mean of ki = 15.740885
Mean of kg = 20.606308

To suppress both the individual commands and their results, you need to specify qui et | y beforef or. The example we have
used above repeats commands for a list of existing variables (var | i st). Y ou can aso repeat for alist of new variables you want
to create (newl i st):

for newist ARG FRA USA : gen Xpop=pop if countryisocode=="X"' & year==1995

It isalso possibleto repeat for alist of numbers (num i st) or any text you like (anyl i st). For example, suppose we wanted to
append severa similarly named datafilesto our existing dataset:

for numist 1995/1998: append using “F:\Stata classes\dataX. dta”

Note, the full file name F: \ St ata cl asses\dataX dta mus be enclosed in double quotes, otherwise Stata will get
confused and think the backslash \ is a separator belonging to thef or command:

for numist 1995/1998: append using F:\Stata cl asses\dataX dta
-> append using F:
file F: not found
r(601);

It is possible to nest several loopswithin each other. In this case, you need to specify the name of the macro Statauses for the list
specified after f or (in above examples, Stata automatically used “X"):

. for X invarlist kg cgdp: for Y in numlist 1990/1995: sum X if year==

It isalso possible to combine two or more commands into asingle for-process by separating each command with abackslash \ :
for varlist kg cgdp, noheader: egen nean_X=nean(X) \ display “Mean of X =" mean_X

If the list of commands you want to repeat is very long and/or complicated, it may be worthwhile using f or in conjunction with

acustom-made program containing your list of commands:

capt ure program drop nean
program defi ne nean

quietly egen nmean_"1' =nean(1')
di splay nmean_" 1'

end

for varlist kg cgdp: nmean X

foreach

We know that it is possible to combine severa commands into a single for-process. This can get quite complicated if the list of
commands is quite long, but we saw how you can overcome this by combining f or with a cusom-made program containing

your list of commands. Thef or each command does the same thing without the need for creating a separate program:

foreach var in kg cgdp {
egen nean_" var’ =mean(var’)

di splay “Mean of “var’ =" nean_ var’
}
Mean of kg = 20. 606308
Mean of cgdp = 7.4677978

56

With thef or each. . .i n command, f or each isfollowed by a macro namethat you assign (e.g. var) andi n is followed by
the list of arguments that you want to loop (e.g. kg cgdp). Thiscommand can be easily used with variable names, numbers, or
any string of text — just as f or (in fact, f or each officially replaces f or from version 8 onwards though f or continues to
work).

While this command is quite versatile, it still needs to be redefined each time you want to execute the same list of commands for a
different set of arguments. For example, the program above will display the mean of kg and cgdp, but suppose that later on in
your do-file you want to display the means of some other variables — you will have to create anew f or each loop. One way to
get around this is to write the f or each loop into a custom-made program that you can then call on at different points in your
do-file:

capt ure program drop nean

program defi ne nean

foreach var of local 1 {
egen nean_" var’' =mean(var’)
di splay “Mean of “var’ =" nean_ var’
}

end

. mean "kg cgdp"
Mean of kg = 20.606308
Mean of cgdp = 7.4677978

. mean "ki pop"
Mean of ki = 15.740885
Mean of pop = 31252. 467

This method works, but can be quite confusing. Firgly, of | ocal isused in place of i n. Secondly, reference to the loca
macro ~ 1’ in the first line does not actudly use the single quotes we are used to. And thirdly, the list of arguments after the
executing command must be in double quotes (so that everything is passed tothemacro * 1’ in asingle go). For these reasons, it
can be agood ideato use f or each only when looping a once-off list. A technique called macro shift can be used when you
want to loop anumber of different lists (see later).

Incremental shift (number of loopsis fixed)

You can loop or repeat alist of commands within your do-file using the whi | e command — as long as the whi | e condition is
true, the loop will keep on looping. There are two broad instances of its use — the list of commands are to be repeated a fixed
number of times (e.g. 5 loops, one for each year 1980-84) or the number of repetitions may vary (e.g. maybe 5 loopsfor alist of 5
years, or maybe 10 loops for alist of 10 years). We will look first at the incremental shift technique for a fixed number of loops.
We can see how it works using the following very simple example:

local i=1

while "i’"<=5 {
di splay “loop nunber " “i’
local i="i"+1

}

| oop nunber
| oop nunber
| oop nunber
| oop nunber
| oop nunber

abhwnNBE

The first command defines alocal macro tha is going to be the loop increment — it can be seen as a counter and is set to sart at 1.
It doesn’t haveto start at 1, e.g. if you arelooping over years, it may start at 1980.

The second command is the whi | e condition that must be satisfied if the loop is to be executed. This effectively sets the upper
limit of the loop counter. At the end of thewhi | e command is an open bracket { that signifiesthe start of the looped or repeated
set of commands. Everything between thetwo brackets{ } will be executed each time you go through the whi | e loop.

The final command before the close bracket } increases or increments the counter, readying it to go through the loop again (as
long as the whi | e condition is till satisfied). In actuality, it is redefining the local macro " i’ — which is why there are no
single quotes on the left of the equality but there are on the right. The increase in the counter does not have to be unitary, e.g. if
you are using bi-annual data you may want to fix your increment to 2. All the looped commands within the brackets are defined in
terms of thelocal macro ™ i ', soin thefirst loop everywherethereisan " i ' therewill now bea 1, in the second loop a 2, and so
on.

57

To see amore concrete example, wewill create a program to display the largest per capita GDP each year for every year 1980-84:

capt ure program drop naxcgdp
program defi ne maxcgdp

| ocal i=1980

while "i'<=1984 {

quietly sumcgdp if year=="i"

display "i' " " r(max)
local i="i"+1
}

end

maxcgdp

1980 9.4067564
1981 9.5102491
1982 9.5399132
1983 9.6121063
1984 9.7101154

Macr o shift (number of loopsisvariable)

The incremental shift technique used a fully defined counter with a fixed start (1980), end (1984) and increment (1 year). You
type a single command (maxr gdpl) to execute the program that loops over this fully defined counter. However, this technique
cannot be used if the required replications are not so neatly definable, e g. you want to repeat a set of commands for 1980, 1984,
1986 and 1995, or you want to repeat the commands for 1980-84 and 1990-94. Ingtead, you write a program tha is executed by
the command and a list of arguments that represent the required replications (e.g. maxrgdpl 1980 1984 1986 1995).
Stata will alocae the first argument to local macro ™ 1’ , the second to local macro © 2’ , and so on. Thus, you need to shift
through each of these arguments or local macros in order to shift through the required replications. A simple example of how this
works:

capt ure program drop displ ayno
program defi ne displ ayno

while “*1""~="" {
display "1
macro shift
}

end

displayno 1 2 4 8 10

PN

0

di splayno 77 90876 8
77

90876

8

The command macr o shi ft isused here ingead of the counter increment device — it shifts the contents of local macros one
place to the left; " 1’ disappears and * 2’ becomes ™ 1', * 3’ becomes ™ 2’ , and so on. So, in the example aove, ~ 1’
initialy contained the number 77, 2’ contained 90876 and * 3’ contained 8. The looped commandsare intermsof ~ 1' only
so the first replication uses the number 77. The mac shift command then shifts * 2’ into the "1’ dot, so the second
replication uses the number 90876. Similarly, thethird replication uses the number 8.

Thewhi | e command at the start of the loop ensures that it will keep on looping until thelocal macro ™ 1’ isempty, i.e. it will
work aslongas“ ™1’ " isnotan empty string“” . Thisissimilar tothewhi | e command in the incremental shift technique, but
here the loop is defined in terms of ~ 1" instead of " i’ and it is contained in double quotes. The use of double quotes is a
convenient way to ensure the loop continues until the argument or macro ~ 1’ contains nothing — it has nothing to do with
whether the arguments are strings of text or numbers.

For amore realigtic application of thistechnique, we can revisit our maxcgdp program:

58

capt ure program drop naxcgdp
program defi ne maxcgdp

while ""1'"~="" {

quietly sumcgdp if year=="1'
display "1' " " r(max)

macro shift

}

end

. maxcgdp 1983 1991 1999
1983 9.6121063
1991 10.137326
1999 10. 699246

Note that, essentidly, the only things that have changed are the format of the whi | e command, the format of the shifting
mechanism and theway in which the local macro in the loop is defined (* 1" instead of ~ i ").

Themacro shift techniqueiscommonly used to shift through variables rather than actual values. For example:
capt ure program drop neans

program defi ne neans
Vmi I e "> ll " ~=ll n {
t enpvar nean
quietly egen “nean' =nean(1')

di splay "Mean of "1' =" "mean'
macro shift
}

end
Now, we can display the mean of asingle variable:

means kg
Mean of kg = 20.606308

or of aligt of variables:

mean kg pop cgdp
Mean of kg = 20.606308
Mean of pop = 31252. 467
Mean of cgdp = 7.4677978

Branching

Branching allows you to do one thing if a certain condition istrue, and something else when that condition is false. For example,
suppose you are doing some sort of analysis year-by-year but you want to perform different types of analyses for the earlier and
later years. For simplicity, suppose you want to display the minimum per capita GDP for the years to 1982 and the maximum
value theresfter:

capt ure program drop m nmaxcgdp
program defi ne mi nmaxcgdp
| ocal 1=1980
while "i'<=1984 {
if i'<=1982 {
I ocal function mn

el se {
| ocal function max

quietly sumcgdp if year=="i"
display "i" " " r(function')
local i="i"+1

}
end
. m nmaxcgdp
1980 5.518826
1981 5.9500399

59

1982 6.0682001
1983 9.6121063
1984 9.7101154

The structure of this program is amog identical to tha of the maxcgdp program created earlier. The only difference is that
egen inline6isnowam n or max function depending on theif/else conditionsin lines 3 and 4.

It is very important to get the brackets {} correct in your programs. Firstly, every i f statement, every el se satement, and
every whi | e statement mugt have their conditions fully enclosed in their own set of brackets — thus, if there are three condition
with three open brackets {, there must also be three close brackets }. Secondly, nothing except commentsin / * */ should be
typed after aclose bracket, as Stata automatically moves on to the next line when it encounters a close bracket. Thus, Statawould
ignoretheel se condition if you typed:

if "i’'<=1982 {local function mn} else {local function max}

Thirdly, it is necessary to place the brackets and their contents on different lines, irrespective of whether the brackets contain one
or more lines of commands. Findly, it is possible to embed if/else statements within other if/else statements for extra levels of
complexity, so it is crucial to get each set of brackets right. Suppose you want to display the minimum per capita GDP for 1980
and 1981, the maximum for 1982 and 1983, and the minimum for 1984:

capt ure program drop m nmaxr gdpl
program defi ne nmi nmaxr gdpl
| ocal 1=1980
while "i'<=1984 {
if i'<=1981 {
I ocal function mn

el se {
if i'<=1983 {
| ocal function max

el se {
local function mn

}

quietly sumcgdp if year=="i"
display "i' " " r(max)

local i="i"+1

}

end

m nmaxcgdp
1980 5.518826
1981 5.9500399
1982 9.5399132
1983 9.6121063
1984 6.1164122

Onefinal thing to note isthat it isimportant to distinguish between the conditional i f :
sum cgdp if cgdp>8

and the progranmingi f :

if cgdp >8 {
sum cgdp

The conditional if summarizes al the observations on cgdp that are greater than 8. The programming if looks at the first
observation on cgdp to see if it is greater than 8, and if 0, it executes the sum cgdp command, i.e. it summarizes all
observationson cgdp (try out thetwo commands and watch the number of observations).

60

ADO programming

ADO programming involves setting up user-defined programmes which will be stored in the memory of Stataand
then can beretrieved as a command whenever you use Stata. For example, regressis used as an ado file. While |
think it is pretty advanced to start programming your own complex ado files, some very smple files might be of use.
The following smple examples come from http://www.ats.ucl a.edu/stat/stata/stat130/median.htm. They are 3
programs of increasing complexity (and therefore flexibility) to take the median of a series or set of series.

M edian Program -- Version #1

Basic program to deal with one variable.

program defi ne
version 6
sort "1

qui etly count
r(N
md=int('n/2)
nmod("n', 2)

| ocal
| ocal
| ocal

n =
odd =

if “odd {

| ocal

el se {
| ocal
}

di splay "Median of "1

end

nmedi an =

nmedi an

nmedi anl

if "1 ~=.

1T mid +1]

M edian Program -- Version #2

= "nedian'"

Multiple variables and saves resultsin return list.

program defi ne nedi an2, rclass
di spl ay
di splay in green " Variable
di splay in green "
while ""1'" ~="" {
quietly count if "1' ~=.
local n =r(N
local i =int('n'/2)
local odd = mod(™ n', 2)
sort " 1'
if “odd {
local nedian = “1'["i'+1]
el se {
local nedian = ("1'["i"]
}

di splay in yell

macro shift

return | ocal
return | ocal
end

ow %s "“1'"

Mdn = " nedi an'
N="n

+ 1[0

99.0f °

Crmd] o+ [md+1])/2

+1])/2

%.0. 2f

61

M edian Program -- Version #3
Allows for multiple series and for “if” and “in” statements.

program defi ne nedi an3, rclass
syntax varlist [if] [in]
tokeni ze “varlist'
preserve
mar ksanpl e t ouse
di spl ay
di splay in green " Variable N Medi an"
display in green "------ommmmmmm o "

while ""1'" ~="" {
quietly keep if "touse'
qui etly count
local n =r(N

local i =int('n'/2)
local odd = mod(™ n', 2)
sort " 1'
if “odd {

local nedian = “1'["i'+1]
el se {

local nedian = ("1'["i"'] + "1'["i'+1])/2
}
display in yellow %®s ""1'" 99.0f "n' 90.2f "nedian'
macro shift

return | ocal Min = " nedi an'
return local N="n'
end

These programmes can be written (separately) in the do file editor and then saved as .ado files. Y ou should save
them in the Stata directory which contains ado file updates, under the“m” folder. Then whenever you type:

medi anl vari abl enane

it will cdculate the median for you.

62

