
Freescale Semiconductor, Inc.
OSEKturbo OS/12 v.2.2.2

User’s Manual

Because of last-minute software changes, some information in this manual may
be inaccurate. Please read the readme.txt file for the latest information.

Revised: June 2003
For More Information: www.freescale.com

Freescale Semiconductor, Inc.
© 2003 MOTOROLA, ALL RIGHTS RESERVED

Motorola reserves the right to make changes without further notice to any products herein to improve reliability,
function or design. Motorola does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola
products are not designed, intended, or authorized for use as components in systems intended for surgical implant into
the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and B are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Legal Notices
The information in this document has been carefully checked and is believed to be entirely reliable, however, no
responsibility is assumed for inaccuracies. Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function or design. Motorola does not assume liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights or the rights of
others.

The software described in this document is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement.

No part of this publication may be reproduced or transmitted in any form or by any means - graphic, electronic,
electrical, mechanical, chemical, including photocopying, recording in any medium, taping, by any computer or
information storage retrieval systems, etc., without prior permissions in writing from Motorola Inc.

Permission is granted to reproduce and transmit the Problem Report Form, the Customer Satisfaction Survey, and the
Registration Form to Motorola.

Important Notice to Users
While every effort has been made to ensure the accuracy of all information in this document, Motorola assumes no
liability to any party for any loss or damage caused by errors or omissions or by statements of any kind in this
document, its updates, supplements, or special editions, whether such errors are omissions or statements resulting
from negligence, accident, or any other cause. Motorola further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential damages arising from
the use of this document. Motorola disclaims all warranties regarding the information contained herein, whether
expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.

Trademarks
OSEK/VDX is a registered trademark of Siemens AG.
Cosmic is a trademark of COSMIC Software.
Metrowerks, the Metrowerks logo and CodeWarrior are registered trademarks of Metrowerks Inc.
Microsoft, MS-DOS and Windows are trademarks of Microsoft.
For More Information: www.freescale.com

Freescale Semiconductor, Inc.
Contents

1 Introduction 5
OSEK OS Overview . 5
Technical Support Information . 6

2 Installation 7
Preface . 7
OSEKturbo OS Installation . 8

Silent Installation mode . 10
License File. 11
OSEKturbo OS Uninstallation 11

3 Sample Application 13
Source Files. 13
Building Sample . 14

4 Tutorial 17
Creating New Application . 17

Configuration File. 17
Source Code . 20
MakeFile . 22
Running Application. 25

Additional Task . 26
Configuration File. 26
Source Code . 27
Running Application. 27

Adding Single Alarm . 28
Configuration File. 28
Source Code . 30
Running Application. 30

Using Event and Extended Task 31
Configuration File. 31
Source Code . 32
Running Application. 34

Cyclic Alarm . 35
Source Code . 35
Running Application. 36

TimeScale . 37
OSEKturbo OS/12 UM–3

For More Information: www.freescale.com

Contents

Freescale Semiconductor, Inc.
Configuration File. 37
Source Code . 40
Running Application. 41

Listing . 42

5 Using an Unsupported Target Derivatives 49
Target MCU Type . 50
Vector Table . 51
System Timer . 52
Make File . 53

A Quick Reference 55
System Services Quick Reference 55
OIL Language Quick Reference 67

OS Object . 67
TASK Object. 73
ISR Object. 74
RESOURCE Object . 75
EVENT Object . 76
COUNTER Object . 76
ALARM Object . 77
MESSAGE Object . 78
APPMODE Object . 79
COM Object . 79
NM Object . 80
UM–4 OSEKturbo OS/12

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
1
Introduction

This User’s Manual describes how to install OSEKturbo OS/12, and to
build sample and user’s applications. Information about OSEK services
and OIL parameters is provided.

“Installation” chapter describes how to install OSEKturbo OS/12.

“Sample Application” chapter provides the user with definition of the
sample application and instructions how to build the sample application.

“Tutorial” chapter contains description how to create a new simple
application.

“Using an Unsupported Target Derivatives” chapter contains
recommendations about OSEK OS adaptation to other derivatives.

“Quick Reference” appendix lists OSEK OS run-time services with entry
and exit conditions as well as OIL object parameters with their possible
values and short descriptions.

This chapter consists of the following sections:

• OSEK OS Overview

• Technical Support Information

OSEK OS Overview
OSEK Operating System is a real-time operating system which conforms
to the OSEK OS v.2.2 specification.

The OSEK OS meets the following requirements:

• OS is fully configured and statically scaled;

• OS performance parameters are well known;

• The most part of the OS is written in strict correspondence with ANSI
C standard, the OS and the application on its basis can be easily ported
from one platform to another.
OSEKturbo OS/12 UM–5

For More Information: www.freescale.com

Introduction
Technical Support Information

Freescale Semiconductor, Inc.
A wide range of scalability, a set of system services, various scheduling
mechanisms, and convenient configuration features make the OSEK
Operating System feasible for a broad spectrum of applications and
hardware platforms.

The OSEK OS provides a pool of different services and processing
mechanisms for task management and synchronization, data exchange,
resource management, and interrupt handling. The following features are
granted to the user:

The OSEK OS is built according to the user’s configuration instructions
while the system is generated. System and application parameters are
configured statically. Therefore, a special tool called the System Generator
is used for this purpose. Special statements are designed to tune any
parameter. The user must only edit the definition file, run the System
Generator and then assemble resulting files and application files. Thus, the
user can adapt the Operating System to the control task and the target
hardware. The OS cannot be modified later at execution time.

Technical Support Information
To order Motorola/Metrowerks products or literature, consult your local
sales representative.

For technical support please use:

US
Tel: +1 512 997 4700
Fax: +1 512 997 4901
Email: support@metrowerks.com

Europe
Tel: +41 61 69 07 505
Fax: +41 61 69 07 501
Email: support_europe@metrowerks.com

Web: http://www.metrowerks.com/MW/Support

Download updates at
http://www.metrowerks.com/MW/Support/Download
UM–6 OSEKturbo OS/12

For More Information: www.freescale.com

http://www.metrowerks.com/MW/Support/Download
http://www.metrowerks.com/MW/Support

Freescale Semiconductor, Inc.
2
Installation

The chapter contains information about the environment required to install
the OSEKturbo OS and describes installation/uninstallation.

This chapter consists of the following sections:

• Preface

• OSEKturbo OS Installation

• License File

• OSEKturbo OS Uninstallation

Preface
This version of the OSEKturbo OS is to be used on an IBM PC 486 (and
higher) compatible. The PC must work under MS Windows 2000/98
during the OSEK installation.

The full size of the OSEKturbo OS file set is 9 MB. To install the product,
there may be required up to 18 MB of hard disk space depending on the
used file system. At least 2 MB of disk space is required to run
SETUP.EXE. About 25 MB of disk space is required for the temporary
files during installation.

The OSEKturbo OS installation is protected with FLEXcrypt for Windows
2000/98. The OSEKturbo OS System Generator utility is protected with
FLEXlm. To get the installation decryption key and the license file for
OSEK OS SysGen utility and TargetDLL, please register. Metrowerks
provides a registration tool for easy registration (MWRegister).

To register, start MWRegister.exe in the subfolder 'MWRegister_OSEK_'
or in the folder you have choosen during a CD installation, fill out the form
and press 'Register'. Select a method for registration and press 'OK'.
Please provide your registration number/license number (if available) in
the form to accelerate the registration process.
OSEKturbo OS/12 UM–7

For More Information: www.freescale.com

Installat ion
OSEKturbo OS Installation

Freescale Semiconductor, Inc.
NOTE NOTE: It is important to run MWRegister on the machine where
OSEKturbo shall be installed.

For more help on MWRegister, please read MWRegister_ReadMe.txt in
the same directory.

It is strongly recommended to close all other programs and login as
Administrator before installation. It helps to avoid an access error during
shared files and system icons installation and updating the Windows
Registry.

It is not recommended to install the OSEKturbo OS into the directory with
spaces (like "Program Files"). If the OSEKturbo OS is installed into a
directory with spaces, then it is not possible to use makefiles,
msmake.bat and gnumake.bat files located in SAMPLE subdirectory.

To use the OSEKturbo OS after installation the Cross Compiler should be
installed on your computer. You must call the DOS prompt under
Windows 2000/98 to run the Microsoft nmake utility or GNU make utility.
All supplied makefiles are developed for the Microsoft C++ nmake and
GNU make (from Cygwin package v.1.3.9) utilities.

OSEKturbo OS Installation
To setup the OSEKturbo OS on your hard drive:

1. Insert the installation CD.

2. Run SETUP.EXE.

3. Follow prompts and instructions of the installation program.

4. Select directories.

Target Directory is a directory for OSEK source files, personality
files and platform specific SysGen files. It is
c:\metrowerks\osek\ost12 by default.

Shared Components is a directory where System Generator
common files are placed. If you have installed any OSEK OS v.2.1
or Builder v.2.2 and higher before the current installation, the setup
program proposes to select the existing System Generator path for
the SysGen root directory. It is strongly recommended not to
change this path and update the existing SysGen. If the System
UM–8 OSEKturbo OS/12

For More Information: www.freescale.com

Instal lat ion
OSEKturbo OS Installation

Freescale Semiconductor, Inc.
Generator has not been installed before, you can select any path for
the SysGen root directory (c:\metrowerks\osek by default).

5. Select components which you want to install. You can choose
Custom installation and select OSEK OS components which are to
be installed in the Custom Installation dialog box. By default all
components are selected.

6. After installation verify the consistency of the package by means of
comparing the real set of files and directories with the list in the
filelist.txt file.

After installation the hard drive should contain the OSEKturbo OS root
directory $OSEKDIR which will contain a set of files in the following
subdirectories:

• BENCHMARK - OSEKturbo OS benchmarks for performance and
memory measurements

• BIN - Platform specific part of the System Generation

• HWSPEC - Hardware-specific files (start-up and interrupt vectors)

• INC - Operating System header files

• MAN - User's Documentation

• PF - Personality files

• SAMPLE - OSEKturbo OS Sample application

• SRC - Operating System source files

The $OSEKDIR directory contains the filelist.txt file with a
complete list of files included in this release and the readme.txt file,
which provides additional information for the user.

After installation the hard drive should contain the root directory of the
System Generator utility which will contain the following subdirectories
with the System Generator and Configuration Tools files:

• $OSEKSHARED/BIN - SysGen and Configuration Tools Files

• $OSEKSHARED/TEMPLATES - OSEK Builder templates

The following common shared files can be updated during installation:

• $WINSYSTEM\MFC42.dll

• $WINSYSTEM\MSVCP60.dll

• $WINSYSTEM\MSVCRT.dll
OSEKturbo OS/12 UM–9

For More Information: www.freescale.com

Installat ion
OSEKturbo OS Installation

Freescale Semiconductor, Inc.
These files are redistributed according to the separate License Agreement
included in the Visual C++ version 6.0 product

NOTE $OSEKDIR, $OSEKSHARED and $WINSYSTEM are placeholders for
the OSEKturbo OS root directory, Shared Components root
directory and Windows system directory names respectively. They
are used in this document as references to the corresponding
directories.

Silent Installation mode

In the silent installation mode there is no need for a user to monitor the
setup and provide input via dialog boxes. To use the installation in silent
mode you should create response file first. To do so you should perform the
following steps:

1. Run the SETUP.EXE program from the OSEKturbo OS/12
installation CD with the follwing command-line options:

setup -r -f1<path\ResponseFile>
where the -r option causes Setup.exe automatically to generate a
silent setup file (.iss file), which is a record of the setup input; -f1
specifies location and name of the response file (.iss file)

2. Follow the prompts and instructions of the installation program to
create response file to repeat actions

To perform installation in silent mode you should run the SETUP.EXE
program from the OSEKturbo OS/12 installation CD with the follwing
command-line options:

setup -s -f1<path\ResponseFile> [-f2<path\LogFile>]
where the -r option causes SETUP.EXE to execute in a silent mode;
-f1 specifies location and name of the response file (.iss file); -f2
specifies a location and name of the log file. The result of
installation indicated in the log file in the [ResponseResult] section
after the ResultCode keyname, the ResultCode=0 corresponds to a
successful installation.
UM–10 OSEKturbo OS/12

For More Information: www.freescale.com

Instal lat ion
License File

Freescale Semiconductor, Inc.
NOTE Please note that installation in silent mode shall be repeated only in
the same condition as the response file was created - if for example
you have OSEKturbo OS/12 installed on your PC and then run
installation in silent mode which was created whithout installed OS
then the installation will fail as there is no input saved in response
file for additional dialog boxes.

License File
If the OSEK OS package(s) has not been installed on your computer, then
the received license file should be stored on your hard disk as
"C:\flexlm\license.dat". If the OSEK OS has been installed on
your computer before the current OSEKturbo OS installation, the license
file has already existed on the system for the OSEK OS packages used. In
this case copy strings with the current OSEKturbo OS features licensed
from the received license file into the existing one – simply add the
contents of the received file to the existing license file.

If you need to have the license file in another location, use the
LM_LICENSE_FILE environment variable to define another license file
location.

Under Windows 2000/98 it is also possible to use the License File Manager
to define non-standard license file location (the License File Manager is
automatically installed on your PC by the OSEKturbo OS installation
procedure). To do this move the license file into a desired location and run
the OSEKturbo OS SysGen utility. The License File Manager dialog will
appear providing you with a possibility to browse the license file.

OSEKturbo OS Uninstallation
To uninstall the OSEKturbo OS:

• Use the 'UnInstall OSEKturbo OS/12 v.2.2.2 Build <build
number>' item of the Add/Remove Programs module of the Windows
Control Panel or the corresponding icon in the OSEKturbo OS/12
program folder.
OSEKturbo OS/12 UM–11

For More Information: www.freescale.com

Installat ion
OSEKturbo OS Uninstallation

Freescale Semiconductor, Inc.
• Delete the OSEKturbo OS root directory and all its subdirectories to
delete data created during the OSEKturbo OS usage.
UM–12 OSEKturbo OS/12

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
3
Sample Application

The chapter presents the sample application and describes how to build the
sample application.

This chapter consists of the following sections:

• Source Files

• Building Sample

Source Files
The Sample application consists of the following source files which are
placed in subdirectories of the sample\standard directory:

• common - contains derivative independent part of the sample
configuration file and the source code:

– samplets.c – the application code (TASKSND1,
TASKSND2 and TASKCNT).

– samplerv.c – the application code (TASKRCV1,
TASKRCV2 and TASKSTOP).

– sample.h – header file for the application code.

– main.oil – OSEK Implementation Language file, platform
independent part.

• derivative dependent parts of the sample are located in corresponding
subdirectories:

– cfgbc32cs.oil - OSEK Implementation Language file for
HC12BC32 and Cosmic compiler

– cfgbc32cw.oil - OSEK Implementation Language file for
HC12BC32 and CodeWarrior compiler

– cfgd60cs.oil - OSEK Implementation Language file for
HC12D60 and Cosmic compiler

– cfgd60cw.oil - OSEK Implementation Language file for
HC12D60 and CodeWarrior compiler
OSEKturbo OS/12 UM–13

For More Information: www.freescale.com

Sample Appl ication
Building Sample

Freescale Semiconductor, Inc.
– cfgd128cs.oil - OSEK Implementation Language file for
HC12D128 and Cosmic compiler

– cfgd128cw.oil - OSEK Implementation Language file for
HC12D128 and CodeWarrior compiler

– cfgdp256cs.oil - OSEK Implementation Language file for
S12DP256 and Cosmic compiler

– cfgdp256cw.oil - OSEK Implementation Language file for
S12DP256 and CodeWarrior compiler

Each OIL file accompanied by the couple of the OSEK Builder
configuration files which have the same name and .app and
.pws extensions. These files provide the user with possibility
to configure and build the OS with OSEK Builder.

– msmake.bat - command file for compiling sample using
Microsoft nmake utility.

– gnumake.bat - command file for compiling sample using
GNU make utility.

The directory structure of the Sample application is described in the
readme.txt file located in the sample\standard directory.

Building Sample
Take the following steps to build the sample application:

1. Open the Windows command prompt window.

2. Change the current directory to
sample\standard\<derivative> directory which contains
sample source files. Hereafter the <derivative> term shall be
used for meaning the name of the subdirectory which keeps the
target specific files. For example, a hc12d60 subdirectory.

3. If you use the Microsoft nmake utility, execute the following
command:

msmake.bat <compiler>

where <compiler> is a specific compiler name and can be set to
codewarrior for CodeWarrior compiler or cosmic for Cosmic
compiler.

If you use GNU make utility, execute the following command:
gnumake.bat <compiler>
UM–14 OSEKturbo OS/12

For More Information: www.freescale.com

Sample Application
Building Sample

Freescale Semiconductor, Inc.
NOTE If some of compiler, OSEK OS or System Generator files are not
found during building, check accuracy of the paths defined in the
sample\standard\common\environment.bat file.

4. After completion of the building the following subdirectories and
files are created in the sample directory:

• gen subdirectory contains cfg<target>.c files,
cfg<target>.h and osprop.h files generated by SysGen, where
<target> is defined by the derivative and the used compiler like in
name of the corresponding OIL file.

• obj subdirectory contains object files.

• bin subdirectory contains the executable file, linker map and ORTI
file.

• To execute the sample application load the executable file placed in the
bin subdirectory to the evaluation board using the debugger.

• To clean all files generated during the sample building, execute one of
the following commands:

msmake clean
gnumake clean
OSEKturbo OS/12 UM–15

For More Information: www.freescale.com

Sample Appl ication
Building Sample

Freescale Semiconductor, Inc.
UM–16 OSEKturbo OS/12

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
4
Tutorial

The chapter describes how to create a new simple application.

This chapter consists of the following sections:

• Creating New Application

• Additional Task

• Adding Single Alarm

• Using Event and Extended Task

• Cyclic Alarm

• TimeScale

• Listing

Creating New Application
This example has two tasks which activate each other cyclically. Each of
the tasks is placed in a separate source file.

Configuration File

A very simple OIL file will be used in an application. However, it performs
configuring of a small application. One application mode will be defined.
As much as possible attributes will be omitted (default values will be used
by the System Generator).

To create an application source code, take the following steps:

1. Create a new directory, for example c:\userapp.

2. Create an OSEK OS configuration file appcfg.oil in the
directory c:\userapp.

3. Add OIL version and OIL implementation include file to the
appcfg.oil file. The implementation supplied with the OSEK
OS is used for this sample. Please, find the implementation file in
the $OSEKDIR\BIN directory:
OSEKturbo OS/12 UM–17

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
OIL_VERSION = "2.3";
#include "ost2212.oil"

4. Add a CPU section to the OIL file. Fill the CPU section with two
mandatory objects: APPMODE and OS. Add two TASK objects
into the CPU section. Give them names as follows:

CPU cpu1 {
APPMODE Mode {};
OS os1 {};
TASK TASKA {};
TASK TASKB {};

};

5. Add eight mandatory attributes to the OS section. They define that
the application will work in EXTENDED status and no hooks are
used:

OS os1 {
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
ERRORHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;

};

6. To define the target derivative add the following attributes into the
OS section:

TargetMCU = HC12D60 {
};

TargetMCU attribute defines type of CPU.

Two tasks are to be defined in the OIL file. They are full-
preemptable Basic tasks. TASKA priority is higher than TASKB
priority. TASKA is started automatically by OS.

7. To configure tasks add the following attributes into the TASKA
and TASKB objects:
UM–18 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
TASK TASKA {
PRIORITY = 2;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;

};

TASK TASKB {
PRIORITY = 1;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};

The APPMODE object does not require any attributes.

There are no any resources, ISRs, events and timers in this small
application. BCC1 class is selected automatically by SysGen.

You can find below complete listing of the appcfg.oil file:

OIL_VERSION = "2.3";
#include "ost2212.oil"
CPU cpu1 {

APPMODE Mode {};
OS os1 {

STATUS = EXTENDED;
TargetMCU = HC12D60 {
};
STARTUPHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
ERRORHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;

};
TASK TASKA {

PRIORITY = 2;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;
OSEKturbo OS/12 UM–19

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
};
TASK TASKB {
PRIORITY = 1;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
};

Source Code

Two source files will be used in the application. Each of them contains one
task. Take the following steps to create a source code:

1. Create a file app1.c in the directory and add the following code to
the file:

#include "osprop.h" /* OS Properties file */
#include <osapi.h> /* OSEK API declarations */
#include "app.h" /* application header */
#include <appcfg.h> /* definitions for system objects */

int main(void) /* entry point of the application */
{

COPCTL &= 0xF8; /* disable COP */
StartOS(Mode); /* jump to OSEK startup */

}
TASK(TASKA) /* task A */
{

ActivateTask(TASKB); /* Activate task TASKB */
/* TASKB priority is lower than TASKA priority */
/* Therefore TASKB transfer to ready state by */
/* ActivateTASK service */

TerminateTask(); /* TASKA Terminate itself */
/* TASKB will be transferred to the running */
/* state after terminating TASKA */

}

This file contains the main function which disables COP and starts
the OS. The TASKA code is placed in this file also. TASKA
activates TASKB whose priority is lower and then terminates itself.
UM–20 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
2. Create a file app2.c in the same directory c:\userapp and add
the following code to the file:

#include "osprop.h" /* OS Properties file */
#include <osapi.h> /* OSEK API declarations */
#include "app.h" /* application header */
#include <appcfg.h> /* definitions for system objects */
TASK(TASKB) /* task B */
{

ChainTask(TASKA); /* Chain to TASKA */
/* TASKB is terminated by this service call */
/* TASKA is activated as a chain task */
/* TASKA will be transferred to the running */
/* state after TASKB termination */

}

This file contains a TASKB function. This task only chains
TASKA. It does not do anything else.

3. Create a header file app.h in the same directory. This file is
required for message types and user types declarations - COPCTL
constant is defined in this header file. Add the following code to the
file:

#ifndef APP_H
#define APP_H
#if !defined(_BASE)

/* base address of registers, it shall be equal to */
/* ‘basereg’ value in makefile */

#define _BASE 0x800
#endif
#define COPCTL (*((volatile unsigned char*)(_BASE + 0x16)))
#endif /* APP_H */

4. Copy the file vector.c from $OSEKDIR\hwspec directory to
c:\userapp directory. This source file contains the start up code
and interrupt vector table definition.

NOTE You can modify the vector.c file in the application directory or create
your own application vector table to fit it to a specific application (see
“Vector Table”). DO NOT change the vector.c file in the
OSEKturbo OS/12 UM–21

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
$OSEKDIR\hwspec directory. This file is used as a template and for
a sample application building.

MakeFile

The Makefile from a sample application included in the OSEK OS package
can be used for compiling the example. The Makefile for the Microsoft
NMAKE utility is used in this example. If you want to use the makefile for
the GNU MAKE utility, follow the instructions but take files of the
GNUMAK directory instead of files of the MSMAK one.

Before a makefile construction you have to select a compiler and a
platform. The choice defines the template for a new makefile. You can use
the following templates from
$OSEKDIR\sample\standard\<derivative>\msmak directory:

• cos32.mak - Cosmic compiler and HC12BC32 MCU

• cos60.mak - Cosmic compiler and HC12D60 MCU

• cos128.mak - Cosmic compiler and HC12DG128 or HC12DA128
MCU

• cos256.mak - Cosmic compiler and HC12DP256 MCU

• cw32.mak - CodeWarrior compiler and HC12BC32 MCU

• cw60.mak - CodeWarrior compiler and HC12D60 MCU

• cw128.mak - CodeWarrior compiler and HC12DG128 or HC12DA128
MCU

• cw256.mak - CodeWarrior compiler and S12DP256 MCU

The Cosmic compiler and HC12D60 platform were selected for the
example application.

To tune the makefile for our new application perform the following
actions:

1. Copy file cos60.mak from
$OSEKDIR\sample\standard\hc12d60\msmak to
c:\userapp directory.

2. Rename c:\userapp\cos60.mak file to
c:\userapp\makefile.

3. Open the file makefile in any text editor.
UM–22 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
4. Find the fragment beginning with the “Application dependent
names” comment.

5. Change the application directory name in the following line:

appdir = ..\common

to:
appdir = c:\userapp

6. Change the application header file name in the following line:

appinc = $(appdir)\sample.h

to:
appinc = $(appdir)\app.h

7. Change the source file names in the following lines. List appsrc
must enumerate all application source files.

appsrc = \
$(appdir)\samplesr.c \
$(appdir)\samplepc.c

to:
appsrc = \
$(appdir)\app1.c \
$(appdir)\app2.c

8. Change the object file names in the following lines. List appobj
must enumerate all application object files.

appobj = \
$(object)\samplesr.obj \
$(object)\samplepc.obj

to:
appobj = \
$(object)\app1.obj \
$(object)\app2.obj
OSEKturbo OS/12 UM–23

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
NOTE If the application has more than two source files, you have to add
files in ‘appsrc’ and ‘appobj’ lists. You can also leave one filename in
each list if the application has one source file only.

9. Change the OIL file name in the following line:

oilname = cfgd60cs

to:
oilname = appcfg

10. Change the executed binary file name in the following line:

exename = sample

to:
exename = app

11.Create a batch file mk.bat in the directory c:\userapp and
add the following lines to the file:

set CWDIR=c:\metrowerks\codewarrior
set CXDIR=c:\cx
set OSEKDIR=c:\metrowerks\osek\ost12
set SYSGENDIR=c:\metrowerks\osek
nmake

Make sure that you have placed actual paths to the CodeWarrior
compiler, Cosmic compiler, OSEK OS and SysGen directories
instead of the examples you can see above.

If you use the GNU make utility, you shall change the nmake
command to the following lines:

set MAKE_MODE=unix
make

Slash can be used instead of backslash in the directory names.

The mk.bat file will be used to set the environment variables
and to start operations defined in the makefile.

NOTE You can skip CXDIR variable if you use CodeWarrior compiler only.
You can skip CWDIR variable if you use Cosmic compiler only.
UM–24 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Creating New Application

Freescale Semiconductor, Inc.
Running Application

To compile the created application and execute it take the following steps:

1. Open the command prompt window.

2. Change the current directory to c:\userapp.

3. Execute the command mk. After the application building has been
completed, subdirectories gen, obj and bin are placed in
c:\userapp directory. Gen includes files generated by the
System Generator. Obj includes object files. Bin includes the
executable file, ORTI file and memory map.

If the application making has been completed successfully, the
following files are created in the userapp directory:

– gen subdirectory:

appcfg.c - system objects definition;

appcfg.h - system objects header file;

osprop.h - system properties;

stklabels.s - stack labels for ORTI (for CodeWarrior compiler
only);

– obj subdirectory:

os.obj, osalm.obj, osctr.obj, osevt.obj,
osisr.obj, osmsg.obj, osres.obj,
ossch.obj, osset.obj and ostsk.obj - OSEK OS
object files;

appcfg.obj - object file for system objects;

app1.obj and app2.obj - application object files;

crts.obj or start12.obj - start up object file;

vector.obj - initialization code and interrupt vector table
object file;

– bin subdirectory:

app.hex - executable file;

app.map - linker map of the application;

Some additional files such as assembler listings are also being
created during the application making.

4. Start the debugger.
OSEKturbo OS/12 UM–25

For More Information: www.freescale.com

Tutorial
Additional Task

Freescale Semiconductor, Inc.
5. Load file c:\userapp\bin\app.hex into the debugger.

6. Find the address of FuncTASKA and FuncTASKB symbols using
file c:\userapp\bin\app.map (extension of the file depends
on the compiler).

7. Set breakpoints at the found addresses of FuncTASKA and
FuncTASKB functions.

8. Reset and run the application. The application shall break on
FuncTASKA and FuncTASKB by rotation.

The application implements the following algorithm: TASKA is
autostarted by the OS. This task activates TASKB which has a lower
priority. Then TASKA terminates itself and the OS starts TASKB activated
by TASKA. Then TASKB chains TASKA. Therefore TASKB terminates
itself and TASKA is transferred to running state. It is the original position.
The scenario repeats endlessly. The diagram of task switching sequence is
shown below.

To clean all built files perform one of the following actions:

• Delete subdirectories gen, obj and bin.

• Open the command prompt window. Set the current directory to
c:\userapp. Execute nmake clean (for Microsoft NMAKE utility)
or make clean (for GNU make utility) command.

Additional Task
This section describes how to add an additional task.

Configuration File

To add a task take the following steps:

1. Open c:\userapp\appcfg.oil file in a text editor.

2. To define a new task add the following statements to the end of
appcfg.oil file (before closing brace for CPU).

TASKA

TASKB
UM–26 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Additional Task

Freescale Semiconductor, Inc.
TASK TASKC {
PRIORITY = 3;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;

};

The task TASKC is autostarted. It has the highest priority.
Therefore TASKC is the first started task and any other task can not
interrupt the task TASKC.

3. Save appcfg.oil file.

Source Code

The next step is creation of the task TASKC source code. The only action
of this function is terminating itself.

Take the following steps to modify the application code:

1. Open file c:\userapp\app2.c in a text editor.

2. To define the task TASKC add the following code to the end of file
app2.c.

TASK(TASKC)
{

TerminateTask();
}

3. Save file c:\userapp\app2.c.

Running Application

To execute the application take the following steps:

1. Open the command prompt window.

2. Change the current directory to c:\userapp.

3. Execute the command mk. Files mk.bat and makefile have
been created in “MakeFile”. They have not been modified.

4. Start the debugger.

5. Load file c:\userapp\bin\app.hex into the debugger.
OSEKturbo OS/12 UM–27

For More Information: www.freescale.com

Tutorial
Adding Single Alarm

Freescale Semiconductor, Inc.
6. Find the address of FuncTASKA, FuncTASKB and FuncTASKC
symbols using map-file c:\userapp\bin\app.map
(extension of the file depends on the compiler).

7. Set breakpoints at the found address of FuncTASKA, FuncTASKB
and FuncTASKC functions.

8. Reset and run the application. The application will break on the task
TASKC. Then the application will break on the task TASKA and
TASKB by rotation.

The diagram of task switching sequence is shown below.

Adding Single Alarm
This section contains a description how to add an alarm to the application.
The system timer will be used to increment the counter attached to the
alarm. The alarm will be set to a relative value by the task TASKC. Then
TASKC terminates itself and TASKA is transferred to running state. When
the alarm expires, it activates the task TASKC. TASKC has the highest
priority, therefore it interrupts TASKA or TASKB. The task TASKC sets
the alarm again and terminates itself. This process will repeat periodically.
TASKA and TASKB are working in background.

Configuration File

To use a system timer, counter and alarm in the application corresponding
objects shall be added to the OIL file. Take the following steps:

1. To define the System Timer we have to choose the hardware source
of the timer interrupts which are handled by the OS and to define
parameters to configure the period for the system timer. There are
two types of the system timer supported by the OS -
HWCOUNTER and SWCOUNTER. The HWCOUNTER has a
less system overhead because the interrupts occur only if an alarm
attached to the counter expires. But the HWCOUNTER does not

TASKA

TASKB

TASKC
UM–28 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Adding Single Alarm

Freescale Semiconductor, Inc.
use the whole set of the timer hardware sources. So the decision
which type of the system timer to choose shall be based on the
available hardware and application requirements. In this example
we will use the HWCOUNTER with the period (tick duration) of 1
microsecond. To configure the system timer add the following
statements into the OS section of the OIL file appcfg.oil
between line “TargetMCU = HC12D60 {“ and “};” .

ClockFrequency=000;
SysTimer = HWCOUNTER {
COUNTER = TaskCounter;
ISRPRIORITY = Period = 1000;
};

TimerHardware = TIMOC0 {
Prescaler = OS;

};
};

The Prescaler is automatically calculated by the System Generator
assuming the 8MHz oscillator frequency (the default value for
ClockFrequency is 8000). The timer modulo value is not used for
the HWCOUNTER configuration.

2. To declare a counter for the System Timer add the following
statements to the end of appcfg.oil file (before closing brace
for CPU). The counter will be increased periodically on every
System Timer tick.

COUNTER TaskCounter {
MINCYCLE = 0;
MAXALLOWEDVALUE = 0xFFFF;
TICKSPERBASE = 10;

};

3. To declare an alarm attached to the counter TaskCounter add the
following statements to the end of appcfg.oil file (before
closing brace for CPU). This alarm activates the task TASKC.

ALARM AL1 {
COUNTER = TaskCounter;
ACTION = ACTIVATETASK {
TASK = TASKC;

};
};
OSEKturbo OS/12 UM–29

For More Information: www.freescale.com

Tutorial
Adding Single Alarm

Freescale Semiconductor, Inc.
Source Code

The task TASKC code must be changed. To provide the alarm setting add
the following statements into the task TASKC code (file
c:\userapp\app2.c) before TerminateTask(); statement:
SetRelAlarm (AL1, 10000, 0);

Running Application

To execute the application take the following steps:

1. Open the command prompt window, change the current directory to
c:\userapp and execute command mk.

2. Start the debugger.

3. Load file c:\userapp\bin\app.hex into the debugger.

4. Find the address of FuncTASKA, FuncTASKB and FuncTASKC
symbols using map-file c:\userapp\bin\app.map
(extension of the file depends on the compiler).

5. Set a breakpoint at the found address of FuncTASKC function.

6. Reset and run the application. The application will break on the task
TASKC periodically.

7. Add breakpoints at the found address of FuncTASKA and
FuncTASKB functions.

8. Run the application again. You can see now that the task TASKC
periodically interrupts the tasks TASKA and TASKB which call
each other by rotation.

The diagram of task switching sequence is shown below.

TASKA

TASKB

alarm AL1 period

TASKC
UM–30 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Using Event and Extended Task

Freescale Semiconductor, Inc.
A number of TASKA / TASKB activations between adjacent TASKC
starts depends on CPU clock frequency and can differ from the number
shown at the diagram.

It can happen that the TASKA / TASKB execution cycle and the alarm
cycle do not have a common multiple. Therefore the number of TASKA
and TASKB activations can vary slightly in different TASKC executions.

Using Event and Extended Task
The periodically activated task was created in the previous section. Similar
results can be achieved using an extended task and an event. It allows the
application to avoid task restarting. The extended task will be autostarted
and never terminated. The task will periodically activate a function with a
period of alarm AL1. Between adjacent function calls the extended task
will be transferred into waiting state.

Configuration File

The task TASKC will be used as extended task. To adjust the task and to
add an event corresponding objects shall be prepared in the OIL file. Take
the following steps:

1. Open c:\userapp\appcfg.oil file in a text editor.

2. Add a reference to the event to a TASKC object. Here is the
corrected code of this object:

TASK TASKC {
PRIORITY = 3;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;
EVENT = Cycle;
STACKSIZE = 64;

};

The task TASKC is autostarted. It has a reference to the event
Cycle. Therefore it is an extended task. Existence of the extended
task leads to ECC1 Conformance Class which is selected
automatically by the System Generator. The task TASKC has the
highest priority. Therefore any other task can only preempt TASKC
if the task TASKC is terminated or transferred to waiting state.
OSEKturbo OS/12 UM–31

For More Information: www.freescale.com

Tutorial
Using Event and Extended Task

Freescale Semiconductor, Inc.
3. Since the TASKC is an extended task which has a separate stack
and there is a System Timer ISR (category 2), therefore the ISR
stack must be defined. Add the following statement to the OS
section:

IsrStackSize = 64;

4. According to the new scenario the alarm will not activate the task
TASKC. The alarm will set an event "Cycle" for the task TASKC.
Change the object AL1 definition according to the following
pattern:

ALARM AL1 {
COUNTER = TaskCounter;
ACTION = SETEVENT {
TASK = TASKC;
EVENT = Cycle;

};
};

5. To define an event for the task TASKC add the following statement
to the end of appcfg.oil file (before closing brace for CPU).
Mask of the event is calculated automatically by the System
Generator.

EVENT Cycle { MASK = AUTO; };

6. Save appcfg.oil file.

Source Code

The task TASKC will periodically call a function CycleFunc. The only
action of this function is to increment a variable Counter. In a practical
application the function can perform other actions.

Take the following steps to modify the application code:

1. Open c:\userapp\app2.c file in a text editor.

2. Add the Counter variable declaration to the beginning of the file
app2.c.

int Counter;

3. Modify the task TASKC according to the following template:

TASK(TASKC)
UM–32 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Using Event and Extended Task

Freescale Semiconductor, Inc.
{
Counter = 0;
while(1)
{
SetRelAlarm (AL1, 10000, 0);
WaitEvent(Cycle);
CycleFunc();
ClearEvent(Cycle);

}
TerminateTask();

}

4. Add the function CycleFunc before the task TASKC definition:

void CycleFunc(void)
{

Counter++;
}

The task TASKC performs the following actions in the application:

1. The task TASKC is autostarted by the OS.

2. The task clears Counter.

3. The task runs an infinite loop.

4. The first step of the loop is setting a relative alarm AL1 which
expires after 10000 ticks of the counter TaskCounter (after 10 ms).

5. Then WaitEvent service is called. The task is transferred by this
service to waiting state and keeps in this state until the alarm
expires. Another task can be running while TASKC waits for the
next alarm AL1 expiration.

6. The function CycleFunc is called at the next step of the loop.
Therefore the function is called after each alarm AL1 has expired.

7. The last step of the loop is clearing the event in order to allow the
waiting state at the next loop. Then the task jumps to step 4 and
repeats steps 4–7.

This algorithm causes periodical calling of the function CycleFunc every
10000 ticks of the counter TaskCounter (every 10 ms).

The task TASKC shares CPU time with the TASKA and TASKB tasks
which call each other. The TASKC task’s priority is higher than the
OSEKturbo OS/12 UM–33

For More Information: www.freescale.com

Tutorial
Using Event and Extended Task

Freescale Semiconductor, Inc.
TASKA and TASKB tasks’ ones. Therefore TASKC interrupts TASKA or
TASKB execution.

Running Application

To execute the application take the following steps:

1. Open the command prompt window, change the current directory to
c:\userapp and execute the command mk.

2. Start the debugger.

3. Load file c:\userapp\bin\app.hex into the debugger.

4. Find the address of FuncTASKA, FuncTASKB and CycleFunc
symbols using map-file c:\userapp\bin\app.map
(extension of the file depends on the compiler).

5. Set a breakpoint to the found address of the CycleFunc function.

6. Reset and run the application. The application will break on the
function CycleFunc periodically. The value Counter is increased on
every break.

7. Add breakpoints at the found address of FuncTASKA and
FuncTASKB functions. You can see now that the CycleFunc
function periodically interrupts the TASKA and TASKB tasks
which call each other by rotation. The TASKC task is preempted
while waiting for the alarm AL1 expiration. The TASKC task’s
priority is highest, therefore the OS returns operation to the TASKC
task straight after the alarm has expired and sets the event Cycle.

The diagram of task switching sequence is shown below.

TASKA

TASKB

TASKC

CycleFunc

alarm AL1 period
UM–34 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Cyclic Alarm

Freescale Semiconductor, Inc.
A number of TASKA / TASKB activations between adjacent CycleFunc
calls depends on CPU clock frequency and can differ compared to the
number shown at the diagram.

It can happen that the TASKA / TASKB execution cycle and the alarm
cycle do not have a common multiple. Therefore the number of TASKA
and TASKB activations can vary slightly in different CycleFunc
executions.

Cyclic Alarm
The Cyclic alarm can be used instead of periodically setting of the single
alarm. It allows a more accurate controlling the period. This section
describes how to change a single alarm to a cycle one and to keep the
previous functionality.

There is no need to modify OIL file. Only the TASKC source code will be
corrected.

Source Code

To use the cyclic alarm instead of a single one take the following steps:

1. Open c:\userapp\app2.c file in a text editor.

2. Correct the TASKC code according to the following template:

TASK(TASKC)
{

Counter = 0;
SetRelAlarm (AL1, 10000, 10000);
while(1)
{
WaitEvent(Cycle);
CycleFunc();
ClearEvent(Cycle);

}
TerminateTask();

}

Now the task TASKC performs the following actions in the application:

1. The task TASKC is autostarted by the OS.
OSEKturbo OS/12 UM–35

For More Information: www.freescale.com

Tutorial
Cyclic Alarm

Freescale Semiconductor, Inc.
2. The task clears Counter.

3. It sets a relative alarm AL1 which expires periodically every 10000
ticks of the counter TaskCounter (every 10 ms).

4. The task TASKC runs an infinite loop.

5. The first step of the loop is waiting for an event which transfers the
task to waiting state and the task keeps in this state until the alarm
expires. Another task can be running while the TASKC is waiting
for the next alarm AL1 expiration.

6. The function CycleFunc is called at the next step of the loop.
Therefore the function is called after each time when the alarm AL1
has expired.

7. The last step of the loop is clearing the event in order to allow
transferring into waiting state at the next loop. Then the task jumps
to step 5 and repeats steps 5–7.

This algorithm causes periodical calling of the function CycleFunc every
10000 ticks of the counter TaskCounter.

The task TASKC shares CPU time with the TASKA and TASKB tasks
which call each other. The task TASKC priority is higher than the TASKA
and TASKB tasks’ ones. Therefore TASKC interrupts TASKA or TASKB
execution.

Running Application

To execute the application take the same steps as described in “Using
Event and Extended Task”.

The diagram of task switching sequence is shown below.

TASKA

TASKB

TASKC

CycleFunc

alarm AL1 period
UM–36 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
TimeScale

Freescale Semiconductor, Inc.
A number of TASKA / TASKB activations between adjacent CycleFunc
calls depends on CPU clock frequency and can differ compared to the
number shown at the diagram.

It can happen that the TASKA / TASKB execution cycle and the alarm
cycle do not have a common multiple. Therefore the number of TASKA
and TASKB activations can vary slightly in different CycleFunc
executions.

TimeScale
The TimeScale is OSEKturbo extension of the OSEK OS. This mechanism
allows the application to increase performance for set of periodic tasks’
activations - it is a kind of a static schedule. The TimeScale mechanism can
be used when the sequence of task activations of reasonable size can be
defined. For example, there are three tasks in the application, TASK1,
TASK2, and TASK3, each of the tasks has a period of 10 milliseconds and
is executed in the following sequence: TASK2 starts 5 milliseconds later
than TASK1, and TASK3 starts 2 milliseconds later than TASK2. This
sequence of task activations repeats each the period of 10 milliseconds.
The TimeScale is attached to the system timer configured as
HWCOUNTER, and no other alarms shall be attached to it. So we will
configure the second timer to attach the TaskCounter.

The same application structure that used in the previous examples is a base
for the next example.

Configuration File

The OIL file shall be changed to add new tasks, configure the TimeScale
and the second timer. Take the following steps:

1. Open c:\userapp\appcfg.oil file in a text editor.

2. Create a definition for three new tasks:

TASK TASK1 {
PRIORITY = 4;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
OSEKturbo OS/12 UM–37

For More Information: www.freescale.com

Tutorial
TimeScale

Freescale Semiconductor, Inc.
TASK TASK2 {
PRIORITY = 5;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
TASK TASK3 {
PRIORITY = 6;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};

3. To configure the TimeScale the following statements shall be
added to the OS section:

TimeScale = TRUE {
TimeUnit = ms;
Step = SET {
StepNumber = 1;
StepTime = 5;
TASK = TASK1;

};
Step = SET {
StepNumber = 2;
StepTime = 2;
TASK = TASK2;

};
Step = SET {
StepNumber = 3;
StepTime = 3;
TASK = TASK3;

};
};

The configured TimeScale has three steps, at the first step TASK1
starts, the second step is 5 milliseconds after the first step and
TASK2 is activated, the third step is 2 milliseconds after the second
step and TASK3 is activated, 3 milliseconds after the third step the
TimeScale will execute the first step. All the time intervals for the
TimeScale are configured in milliseconds - the “TimeUnit = ms;”
statement allows the definition of time measurement units for the
TimeScale, ticks of the System Timer are used by default.
UM–38 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
TimeScale

Freescale Semiconductor, Inc.
4. To keep the existing application part which serves periodic event
setting for TASKC, the TaskCounter with the attached alarm AL1
shall be reassigned to the second timer. The second timer definition
shall be added to the OS section of the OIL file appcfg.oil
between line “TargetMCU = HC12D60 {“ and corresponding
closing bracket “};” below the SysTimer definition.

SecondTimer = SWCOUNTER {
COUNTER = TaskCounter;
ISRPRIORITY = 0;
TimerHardware = RTI {
Prescaler = OS {

Value = 2;
};
TimerModuloValue = ;

};
};

The RTI is chosen as interrupt source for the second timer. The
period of the timer is defined by the Prescaler setting which is
controlled by the OS, the tick duration is calculated by the system
generator, for the RTI timer with Prescaler and oscillator
frequency 4 MHz it is equal to microseconds.

5. Add the definition of the counter which is to be attached to the
system timer to the end of appcfg.oil file (before closing brace
for CPU).

COUNTER SystemTimer {
MINCYCLE = 0;
MAXALLOWEDVALUE = 0xFFFF;
TICKSPERBASE = 10;

};

Correct assigned COUNTER in SysTimer definition:

SysTimer = HWCOUNTER {
COUNTER = SystemTimer;
...

};

6. Save appcfg.oil file.
OSEKturbo OS/12 UM–39

For More Information: www.freescale.com

Tutorial
TimeScale

Freescale Semiconductor, Inc.
Source Code

The next step is creation of the source code for new tasks. The only action
of these tasks is terminating itself. To activate the TimeScale the
StartTimeScale service shall be executed - add this functionality to
TASKC.

Take the following steps to modify the application code:

1. Open file c:\userapp\app2.c in a text editor.

2. To define tasks TASK1, TASK2, TASK3 add the following code to
the end of the file app2.c.

TASK(TASK1)
{

TerminateTask();
}
TASK(TASK2)
{

TerminateTask();
}
TASK(TASK3)
{

TerminateTask();
}

3. Add call of StartTimeScale service to TASKC after ClearEvent
statements according to the following template:

TASK(TASKC)
{

Counter = 0; /* initialize counter */
SetRelAlarm (AL1, 10, 10); /* Set cyclic alarm */
WaitEvent(Cycle); /* Wait alarm AL1 expiration*/
StartTimeScale(); /* Start Time Scale */
while(1) /* infinite loop */
{

ClearEvent(Cycle);/* Clear event */
WaitEvent(Cycle);/* Wait alarm AL1 expiration*/

/* Call CycleFunc when alarm set event */
CycleFunc();

}

UM–40 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
TimeScale

Freescale Semiconductor, Inc.
/* This line is never reached */
}

4. Save file c:\userapp\app2.c.

The tasks TASK1, TASK2 and TASK3 are activated periodically and
interrupt execution of TASKA or TASKB or TASKC.

Running Application

To execute the application take the following steps:

1. Open the command prompt window, change the current directory to
c:\userapp and execute the command mk.

2. Start the debugger.

3. Load file c:\userapp\bin\app.hex into the debugger.

4. Find the address of FuncTASK1, FuncTASK2, FuncTASK3 and
CycleFunc symbols using map-file
c:\userapp\bin\app.map (extension of the file depends on
the compiler).

5. Set breakpoints at FuncTASK1, FuncTASK2, FuncTASK3 and
CycleFunc functions.

6. Reset and run the application. After the first break on CycleFunc
the TimeScale will be started and control will be passed to TASK1 -
the first task in TimeScale activated immediately. Then the
application will break on those functions periodically.
OSEKturbo OS/12 UM–41

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
The diagram of task switching sequence is shown below.

A number of TASKA / TASKB activations between adjacent CycleFunc
calls depends on CPU clock frequency and can differ compared to the
number shown at the diagram.

Listing
You can find below a complete listing of the updated source files. This
listing corresponds to the application described in “TimeScale”.

File appcfg.oil:

OIL_VERSION = "2.3";
#include "ost2212.oil"
CPU cpu1 {

APPMODE Mode {};
OS os1 {

STATUS = EXTENDED;
TargetMCU = HC12D60 {

ClockFrequency=000;
SysTimer = HWCOUNTER {

COUNTER = TaskCounter;

TASKA

TASKB

TASKC

CycleFunc

alarm AL1 period

TASK1

TASK2

TASK3

Time scale period

...
UM–42 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
ISRPRIORITY = 0;
Period = 1000;

};
};
SecondTimer = SWCOUNTER {

COUNTER = TaskCounter;
ISRPRIORITY = 0;
TimerHardware = RTI {

Prescaler = OS {
Value = 2;

};
};

};
};
TimeScale = TRUE {

TimeUnit = ms;
Step = SET {

StepNumber = 1;
StepTime = 5;
TASK = TASK1;

};
Step = SET {

StepNumber = 2;
StepTime = 2;
TASK = TASK2;

};
Step = SET {

StepNumber = 3;
StepTime = 3;
TASK = TASK3;

};
};
IsrStackSize = 64;
STARTUPHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
ERRORHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;

};
OSEKturbo OS/12 UM–43

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
TASK TASKA {
PRIORITY = 2;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;

};
TASK TASKB {

PRIORITY = 1;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
TASK TASKC {

PRIORITY = 3;
SCHEDULE = FULL;
AUTOSTART = TRUE;
ACTIVATION = 1;
STACKSIZE = 64;
EVENT = Cycle;

};

TASK TASK1 {
PRIORITY = 4;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
TASK TASK2 {

PRIORITY = 5;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};
TASK TASK3 {

PRIORITY = 6;
SCHEDULE = FULL;
AUTOSTART = FALSE;
ACTIVATION = 1;

};

COUNTER SystemTimer {
MINCYCLE = 0;
UM–44 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
MAXALLOWEDVALUE = 0xFFFF;
TICKSPERBASE = 10;

};
COUNTER TaskCounter {

MINCYCLE = 0;
MAXALLOWEDVALUE = 0xFFFF;
TICKSPERBASE = 10;

};
ALARM AL1 {

COUNTER = TaskCounter;
ACTION = SETEVENT {

TASK = TASKC;
EVENT = Cycle;

};
};
EVENT Cycle { MASK = AUTO; };

};

File app1.c:

#include "osprop.h" /* OS Properties file */
#include <osapi.h> /* OSEK API declarations */
#include "app.h" /* application header */
#include <appcfg.h> /* definitions for system objects */

int main(void) /* entry point of the application */
{

COPCTL &= 0xF8; /* disable COP */
StartOS(Mode); /* jump to OSEK startup */

}
TASK(TASKA)/* task A */
{

ActivateTask(TASKB); /* Activate task TASKB */
/* TASKB priority is lower than TASKA priority */
/* Therefore TASKB transfer to ready state by */
/* ActivateTASK service */

TerminateTask(); /* TASKA Terminate itself */
/* TASKB will be transferred to the running */
/* state after terminating TASKA */

}

OSEKturbo OS/12 UM–45

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
File app2.c:

#include "osprop.h" /* OS Properties file */
#include <osapi.h> /* OSEK API declarations */
#include "app.h" /* application header */
#include <appcfg.h> /* definitions for system objects */
int Counter; /* CycleFunc entry counter */
TASK(TASKB) /* task B */
{

ChainTask(TASKA); /* Chain to TASKA */
/* TASKB is terminated by this service call */
/* TASKA is activated as a chain task */
/* TASKA will be transferred to the running */
/* state after TASKB termination */

}
void CycleFunc(void)
{ /* This function is called periodically */

Counter++; /* Increment entry counter */
}
TASK(TASKC)
{

Counter = 0; /* initialize counter */
SetRelAlarm (AL1, 10, 10); /* Set cyclic alarm */
WaitEvent(Cycle); /* Wait alarm AL1 expiration*/
StartTimeScale(); /* Start Time Scale */
while(1) /* infinite loop */
{

ClearEvent(Cycle); /* Clear event */
WaitEvent(Cycle); /* Wait alarm AL1 expiration*/

/* Call CycleFunc when alarm set event */
CycleFunc();

}
/* This line is never reached */

}
TASK(TASK1)
{

TerminateTask();
}
TASK(TASK2)
{

TerminateTask();
}

UM–46 OSEKturbo OS/12

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
TASK(TASK3)
{

TerminateTask();
}

File app.h:

#ifndef APP_H
#define APP_H
#if !defined(_BASE)

/* base address of registers, it shall be equal to */
/* ‘basereg’ value in makefile */

#define _BASE 0x800
#endif
#define COPCTL (*((volatile unsigned char*)(_BASE + 0x16)))
#endif /* APP_H */
OSEKturbo OS/12 UM–47

For More Information: www.freescale.com

Tutorial
Listing

Freescale Semiconductor, Inc.
UM–48 OSEKturbo OS/12

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
5
Using an Unsupported
Target Derivatives

The chapter contains recommendations for the OSEK OS adaptation to
other derivatives.

The current version of the OSEK OS supports HC12D60, HC12D128,
S12DP256 and HC12BC32 MCUs directly.

Other HC12 derivatives that have the same or very similar timer hardware
can be used with supported values of TargetMCU attribute.
The correspondence between TargetMCU values and derivatives is
presented below.

The user should check which timer hardware is available on the derivative
MCU if it does not match TargetMCU exactly.

The user can try to adapt the OSEK OS to other HC12 derivatives. The
OSEK OS will work correctly in most cases.

This chapter consists of the following sections:

• Target MCU Type

• Vector Table

Table 5.1 List of Derivatives

Derivative TargetMCU

HC12B32 HC12BC32

HC12BC32 HC12BC32

HC12D60 HC12D60

HC12D128 HC12D128

HC12DA128 HC12D128

HC12DG128 HC12D128

S12DP256 S12DP256
OSEKturbo OS/12 UM–49

For More Information: www.freescale.com

Using an Unsupported Target Derivatives
Target MCU Type

Freescale Semiconductor, Inc.
• System Timer

• Make File

Target MCU Type
If you want to use the OSEK OS with other derivatives set TargetMCU
option to HC12. This value turns off derivative specific features which can
cause some problems if the OSEK OS runs on an unsupported MCU. The
main restriction is impossibility of the system and the second timers
definition. SysTimer and SecondTimer blocks can not be defined in the OS
section of the OIL file. Therefore the user should define a timer in an
application (if the timer is needed). The following restrictions are also
applicable for TargetMCU equal to HC12:

• HCBasePage set to FALSE

• HCBankCode set to FALSE

• ClockFrequency, ClockDivider and ClockMultiplier attributes are not
applicable

If it is planned to use an unsupported MCU which structure is close to one
of the MCUs supported by the OSEK OS, the TargetMCU attribute can be
set to another value than HC12. For example, TargetMCU = HC12BC32
can be used for HC12B32 MCU and TargetMCU = HC12D128 for
HC12DA128 and for HC12DG128. It allows configuring timers by the
System Generator. If you try to use the value HC12BC32, HC12D60 or
HC12D128 with another derivative, please be very careful. Different
derivatives can have different timer structures, memory map and vector
table. There are the following recommendations for the case if you try to
use another derivative and TargetMCU is not set to HC12:

• If the system (second) timer is used, check out that specified timer
hardware is identical to the specified and actual derivatives. Both
derivatives must have the same timer structure, equal timer register
addresses and equal timer interrupt vector address.

• If the base page is used, check that actual derivative can map memory
to the base page (0x00 - 0xFF).

• If the bank code is used, check that actual derivative supports memory
banks and bank switching mechanism is the same as for HC12DG128
or HC12DP256 MCU.
UM–50 OSEKturbo OS/12

For More Information: www.freescale.com

Using an Unsupported Target Derivat ives
Vector Table

Freescale Semiconductor, Inc.
Vector Table
If TargetMCU is set to HC12, the OSEK OS does not provide the vector
table and the user should create a vector table corresponding to the CPU
vectors. To create a vector table take the following steps:

1. Copy file $OSEKDIR/hwspec/vector.c to the application
directory.

2. Open a new vector.c file in any text editor.

3. Add the following code to the end of file vector.c:

#if defined(OSHICROSS12)
#pragma CONST_SEG .vectors
#endif /* defined(OSHICROSS12) */
OSVECTAB = {

OSVECTF _dummyISR,
OSVECTF _dummyISR,
...
OSVECTF _dummyISR,
OSVECTF _dummyISR,

#if defined(OSHICROSS12)
#if defined(_BASE) || defined(_BASERAM)

OSVECTF _StartupInitRAMREG, /* Reset */
#else /* defined(_BASE) || defined(_BASERAM) */

OSVECTF _Startup, /* Reset */
#endif /* defined(_BASE) || defined(_BASERAM) */
#endif /* defined(OSHICROSS12) */
#if defined(OSCOSMIC12)
#if defined(_BASE) || defined(_BASERAM)

OSVECTF _StartupInitRAMREG, /* Reset */
#else /* defined(_BASE) || defined(_BASERAM) */

OSVECTF _stext, /* Reset */
#endif /* defined(_BASE) || defined(_BASERAM) */
#endif /* defined(OSCOSMIC12) */
};
#if defined(OSHICROSS12)
#pragma CONST_SEG DEFAULT
#endif /* defined(OSHICROSS12) */

4. A number of _dummyISR vectors should correspond to the number
of interrupt vectors in the CPU exclude reset vector. The last vector
_stext or _StartupInitRAMREG is a reset vector. It is initialized by
the OSEK OS automatically. If you want to use another vectors in
OSEKturbo OS/12 UM–51

For More Information: www.freescale.com

Using an Unsupported Target Derivatives
System Timer

Freescale Semiconductor, Inc.
an application, change the corresponding _dummyISR identifier to
the name of the interrupt handler.

5. If an application uses ECC1 then SWI handler shall be added into
the vector table. Place the following line to the SWI vector:

OSTaskForceDispatchHandler, /* SWI */

6. Save and close the vector.c file.

You can find comments on using the vector.c file in “Source Code”.

System Timer
If another derivative is used and the TargetMCU attribute is set to HC12,
the OSEK OS does not provide a system timers. Note that the timer(s) with
software counter only can be added. If the timer is required, it should be
added to the user’s application. The following steps describe how to
implement a timer in the application code.

1. Add an ISR object definition to the OIL file. This ISR will be used
as a system timer interrupt handler:

ISR UserTimerHandler {
CATEGORY = 2;

};

2. Add COUNTER object to the OIL file. This counter will be
increased by the SysHandler routine. The value of the counter
attributes should be set according to the application algorithm. The
values shown below are an example only.

COUNTER UserCounter {
MINCYCLE = 3;
MAXALLOWEDVALUE = 255;
TICKSPERBASE = 10;

};

3. Create a function InitializeTimer in the application source file. This
function should contain a code for hardware timer initialization and
timer start up. The function should be called in the StartupHook or
from the autostarted task.

void InitializeTimer() {
/* initialize timer hardware registers */
UM–52 OSEKturbo OS/12

For More Information: www.freescale.com

Using an Unsupported Target Derivat ives
Make File

Freescale Semiconductor, Inc.
/* enable interrupts from the timer */
/* start the timer */

}

4. If it is planned to use ShutdownOS service, then create a function
ShutdownTimer. This function should contain a code for switching
off the hardware timer and disabling timer interrupts. The function
should be called after ShutdownOS service calling or in the
ShutdownHook.

void ShutdownTimer() {
/* disable interrupts from the timer */
/* stop the timer */
/* reset timer hardware registers */

}

5. Create ISR category 2 and add the following code to it. This ISR
will be used as a timer interrupt handler.

ISR(SysHandler){
/* This interrupt handler is called by hardware */
/* timer on every timer tick. */
/* If it is need to correct timer operation, */
/* modify hardware registers here */
CounterTrigger(SysCounter);

}

6. Find address of the timer interrupt vector and replace
corresponding _dummyISR symbol with SysHandler in the vector
table added to the vector.c file in the “Vector Table”.

Make File
It is recommended to use the makefile from the OSEK OS sample to
compile an application (see “MakeFile”). The makefile has to be corrected
if the application is compiled for another derivative. Select the most
appropriate makefile in the sample subdirectory and copy the makefile to
the application directory. Then correct the following parameters in the
created makefile:

• application dependent names (see “MakeFile”)
OSEKturbo OS/12 UM–53

For More Information: www.freescale.com

Using an Unsupported Target Derivatives
Make File

Freescale Semiconductor, Inc.
• baseram value to map RAM according to the CPU memory map in the
“MEMORY” part of linker script

• basereg value to map registers according to the CPU memory map

• start address of the vector table (“+seg .const...” line for Cosmic
compiler or “OS_VECTORS =...” for CodeWarrior compiler)
UM–54 OSEKturbo OS/12

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
A
Quick Reference

The appendix contains lists of OSEK OS run-time services with entry and
exit conditions as well as OIL object parameters with their possible values
and short descriptions.

This appendix consists of the following sections:

• System Services Quick Reference

• OIL Language Quick Reference

System Services Quick Reference
The list of all OSEK Operating System run-time services is provided
below. Input and output parameters, syntax and ability to use by OSEK
entities are shown. Note that ISR means ISR category 2 if not specified else

Table A.1 OSEK OS Services

Service Input Output Allowed In

Task management services

ActivateTask Task name – Task, ISR

syntax: StatusType ActivateTask(TaskType <TaskID>);

TerminateTask – – Task

syntax: StatusType TerminateTask(void);

ChainTask Task name – Task

syntax: StatusType ChainTask(TaskType <TaskID>);

Schedule – – Task

syntax: StatusType Schedule(void);

GetTaskId – Task name Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetTaskId(TaskRefType <TaskIDRef>);
OSEKturbo OS/12 UM–55

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
GetTaskState Task name Task state Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetTaskState(TaskType <TaskID>, TaskStateRefType
<StateRef>);

Interrupt management services

EnableAllInterrupts – – Task, ISR category 1 and
2

syntax: void EnableAllInterrupts(void);

DisableAllInterrupts – – Task, ISR category 1 and
2

syntax: void DisableAllInterrupts(void);

ResumeAllInterrupts – – Task, ISR category 1 and
2, alarm-callbacks

syntax: void ResumeAllInterrupts(void);

SuspendAllInterrupts – – Task, ISR category 1 and
2, alarm-callbacks

syntax: void SuspendAllInterrupts(void);

ResumeOSInterrupts – – Task, ISR category 1 and
2

syntax: void ResumeOSInterrupts(void);

SuspendOSInterrupts – – Task, ISR category 1 and
2

syntax: void SuspendOSInterrupts(void);

Resource management services

GetResource Resource name – Task, ISR

syntax: StatusType GetResource(ResourceType <ResID>);

ReleaseResource Resource name – Task, ISR

syntax: StatusType ReleaseResource(ResourceType <ResID>);

Table A.1 OSEK OS Services

Service Input Output Allowed In
UM–56 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
Event control services

SetEvent Taks name, Event
mask

– Task, ISR

syntax: StatusType SetEvent (TaskType <TaskID>, EventMaskType
<Mask>);

ClearEvent Event mask – Extended task

syntax: StatusType ClearEvent(EventMaskType <Mask>);

GetEvent Task name Event mask Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetEvent(TaskType <TaskID>, EventMaskRefType
<Event>);

WaitEvent Event mask – Extended task

syntax: StatusType WaitEvent(EventMaskType <Mask>);

Counter management services

InitCounter Counter name, initial
value

– Task

syntax: StatusType InitCounter(CtrRefType <CounterID>, TickType
<Ticks>);

CounterTrigger Counter name – Task, ISR

syntax: StatusType CounterTrigger(CtrRefType <CounterID>);

GetCounterValue Counter name Counter value Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetCounterValue(CtrRefType <CounterID>,
TickRefType <TicksRef>);

GetCounterInfo Counter name Counter constants Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetCounterInfo(CtrRefType <CounterID>,
CtrInfoRefType <InfoRef>);

Table A.1 OSEK OS Services

Service Input Output Allowed In
OSEKturbo OS/12 UM–57

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
Alarm management services

GetAlarmBase Alarm name Alarm constants Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetAlarmBase(AlarmType <AlarmID>,
AlarmBaseRefType <InfoRef>);

GetAlarm Alarm name Relative value in ticks
before the alarm
expires

Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: StatusType GetAlarm(AlarmType <AlarmID>, TickRefType
<TicksRef>);

SetRelAlarm Alarm name, Counter
relative value, Cycle
value

– Task, ISR

syntax: StatusType SetRelAlarm (AlarmType <AlarmID>, TickType
<Increment>,
TickType <Cycle>);

SetAbsAlarm Alarm name, Counter
absolute value, Cycle
value

– Task, ISR

syntax: StatusType SetAbsAlarm (AlarmType <AlarmID>, TickType <Start>,
TickType <Cycle>);

CancelAlarm Alarm name – Task, ISR

syntax: StatusType CancelAlarm(AlarmType <AlarmID>);

<AlarmCallBack>a – – –

syntax: ALARMCALLBACK(<CallbackName>);

StartTimeScale – – Task

syntax: void StartTimeScale(void);

StopTimeScale – – Task, ISR, all hook
routines

syntax: void StopTimeScale(void);

Message management services

SendMessage Message name,
message data

– Task (all messages), ISR
(unqueued WithCopy)

syntax: StatusType SendMessage(SymbolicName <Message>,
AccessNameRef <Data>);

Table A.1 OSEK OS Services

Service Input Output Allowed In
UM–58 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
ReceiveMessage Message name Message data Task (all types),
ErrorHook (unqueued
WithCopy), ISR
(unqueued WithCopy)

syntax: StatusType ReceiveMessage(SymbolicName <Message>,
AccessNameRef <Data>);

GetMessageResource Message name – Task (WithoutCopy)

syntax: StatusType GetMessageResource (SymbolicName <Message>);

ReleaseMessageResource Message name – Task (WithoutCopy)

syntax: StatusType ReleaseMessageResource (SymbolicName
<Message>);

GetMessageStatus Message name – Task (all types)

syntax: StatusType GetMessageStatus (SymbolicName <Message>);

InitCOM – – –

syntax: StatusType InitCOM (void);

CloseCOM – – –

syntax: StatusType CloseCOM (void);

StartCOM – – Task (all types)

syntax: StatusType StartCOM (void);

StopCOM – – –

syntax: StatusType StopCOM (Scalar <ShutdownMode>);

MessageInit – – –

syntax: StatusType MessageInit (void);

ReadFlag Flag name – –

syntax: FlagValue ReadFlag (FlagType <FlagName>);

ResetFlag Flag name – –

syntax: StatusType ResetFlag (FlagType <FlagName>);

<MessageCallBack>b – – –

syntax: void <CallbackName> (void);

Table A.1 OSEK OS Services

Service Input Output Allowed In
OSEKturbo OS/12 UM–59

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
Debugging services

GetRunningStackUsage – – Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: unsigned short GetRunningStackUsage(void);

GetStackUsage Task name – Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: unsigned short GetStackUsage(TaskType <TaskID>);

GetTimeStamp – – Task, ISR, ErrorHook,
PreTaskHook,
PostTaskHook

syntax: unsigned short GetTimeStamp (void);

Execution control services

GetActiveApplicationMode – Current application
mode

Task, ISR, All hooks

syntax: AppModeType GetActiveApplicationMode(void);

StartOS Application mode
name

– Outside of OS

syntax: void StartOS(AppModeType <Mode>);

ShutdownOS Error code – Task, ISR, StartupHook,
ErrorHook

syntax: void ShutdownOS(StatusType <Error>);

Hook Routines

ErrorHook Error code – –

syntax: void ErrorHook(StatusType <Error>);

PreTaskHook – – –

syntax: void PreTaskHook(void);

PostTaskHook – – –

syntax: void PostTaskHook(void);

StartupHook – – –

syntax: void StartupHook(void);

Table A.1 OSEK OS Services

Service Input Output Allowed In
UM–60 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
NOTE InitCounter, CounterTrigger, GetCounterValue, GetCounterInfo,
StartTimeScale, StopTimeScale, GetRunningStackUsage,
GetStackUsage, and GetTimeStamp services and IdleLoopHook
hook are not defined in the OSEK OS v.2.2 specification. This is
OSEKturbo extension of the OSEK OS.

The list of macros for parameter access from ErrorHook routine is
provided below.

ShutdownHook Error code – –

syntax: void ShutdownHook(StatusType <Error>);

IdleLoopHook – – –

syntax: void IdleLoopHook(void);
a. <AlarmCallBack> is the value of the ALARMCALLBACKNAME attribute defined in ALARM object. The user

can have several alarm callback functions, one for each alarm defined in the OIL file.
b. <MessageCallBack> is the value of the CALLBACKNAME attribute defined in MESSAGE object. The user

can have several message callback functions, one for each message defined in the OIL file.

Table A.1 OSEK OS Services

Service Input Output Allowed In

Table A.2 OSEK Macros for ErrorHook

Macro Return Value
OSErrorGetServiceId() Service identifier

OSError_StartOS_Mode() Application mode

OSError_ActivateTask_TaskID() Task identifier

OSError_ChainTask_TaskID() Task identifier

OSError_GetTaskState_TaskID() Task identifier

OSError_GetResource_ResID() Resource identifier

OSError_ReleaseResource_ResID() Resource identifier

OSError_SetEvent_TaskID() Task identifier

OSError_GetEvent_TaskID() Task identifier

OSError_SendMessage_Message() Message identifier

OSError_ReceiveMessage_Message() Message identifier

OSError_GetMessageResource_Message() Message identifier

OSError_ReleaseMessageResource_Message() Message identifier
OSEKturbo OS/12 UM–61

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
The list of OSEK Operating System Data Types is provided here.

OSError_GetMessageStatus_Message() Message identifier

OSError_GetAlarmBase_AlarmID() Alarm identifier

OSError_GetAlarm_AlarmID() Alarm identifier

OSError_SetRelAlarm_AlarmID() Alarm identifier

OSError_SetAbsAlarm_AlarmID() Alarm identifier

OSError_CancelAlarm_AlarmID() Alarm identifier

OSError_InitCounter_CounterID()a Counter identifier

OSError_CounterTrigger_CounterID()a Counter identifier

OSError_GetCounterValue_CounterID()a Counter identifier

OSError_GetCounterInfo_CounterID()a Counter identifier
a. Counter interface functions are not defined in OSEK OS v.2.2 specification, this is OSEKturbo exten-

sion of the OSEK OS.

Table A.2 OSEK Macros for ErrorHook

Macro Return Value
OSErrorGetServiceId() Service identifier

OSError_StartOS_Mode() Application mode

Table A.3 Data Types

Data Type Description

AccessName A unique name defining access to a message object

AccessNameRef An address of the message data field

AlarmBaseRefType The data type references data corresponding to the data type
AlarmBaseType

AlarmBaseType The data type represents a structure for storage of alarm characteristics.
It is the same as CtrInfoType

AlarmType The data type represents an alarm element

AppModeType This data type represents the operating mode

CtrInfoRefType The data type references data corresponding to the data type CtrInfoType

CtrInfoType The data type represents a structure for storage of counter
characteristics. This structure has the following fields:
maxallowedvalue maximum possible allowed count value;
ticksperbase number of ticks required to reach a counter-specific
significant unit;
mincycle minimum allowed number of ticks for a cyclic alarm (only for a
system with Extended Status);
UM–62 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
NOTE CtrRefType, CtrInfoType and CtrInfoRefType data types are not
defined in the OSEK OS v.2.2 specification. This is OSEKturbo
extension of the OSEK OS.

The list of OSEK Operating System constructional elements is provided
below. All declarations are dummy, they are defined for compatibility with
previous OSEK versions.

CtrRefType The data type references a counter

EventMaskRefType The data type to refer to an event mask

EventMaskType The data type of an event mask

FlagType The data type of a message flag

ResourceType The abstract data type for referencing a resource

StatusType The data type for all status information the API services offer

SymbolicName A unique name representing a message

TaskRefType The data type to refer variables of the TaskType data type

TaskStateRefType The data type to refer variables of the TaskStateType data type

TaskStateType The data type for variables to store the state of a task

TaskType The abstract data type for task identification

TickRefType The data type references data corresponding to the data type TickType

TickType The data type represents a counter value in system ticks

Table A.3 Data Types

Data Type Description

Table A.4 Constructional Elements

Name Syntax
DeclareTask DeclareTask(<name of task>)

DeclareISR DeclareISR(<name of ISR>)

DeclareResource DeclareResource(<name of resource>)

DeclareEvent DeclareEvent(<name of event>)

DeclareCounter DeclareCounter(<name of counter>)

DeclareAlarm DeclareAlarm(<name of alarm>)
OSEKturbo OS/12 UM–63

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
The table below contains all return values for the OSEK Operating System
run-time services and error values.

The list of service identifiers for ErrorHook is provided below:

• identifieirs for standard OSEK services
OSServiceId_StartOS
OSServiceId_ShutdownOS
OSServiceId_GetActiveApplicationMode
OSServiceId_ActivateTask

Table A.5 Services Return and Error Values

Name Value Type

E_OK 0 No error, successful completion

E_OS_ACCESS 1 Access to the service/object denied

E_OS_CALLEVEL 2 Access to the service from the ISR is not permitted

E_OS_ID 3 The object ID is invalid

E_OS_LIMIT 4 The limit of services/objects exceeded

E_OS_NOFUNC 5 The object is not used, the service is rejected

E_OS_RESOURCE 6 The task still occupies the resource

E_OS_STATE 7 The state of the object is not correct for the required service

E_OS_VALUE 8 A value outside of the admissible limit

E_OS_SYS_STACKa 17 Task stack overflow

E_OS_SYS_ORDER a 18 Incorrect order of function calling

E_OS_SYS_MAINSTACKa 19 Main stack overflow

E_OS_SYS_ISRSTACKa 20 ISR stack overflow

E_COM_BUSY 33 Message in use by application task/function

E_COM_ID 35 Invalid message name passed as parameter

E_COM_LIMIT 36 Overflow of FIFO associated with queued messages

E_COM_LOCKED 39 Rejected service call, message object locked due to a pending
operation

E_COM_NOMSG 41 No message available
a. E_OS_SYS_STACK is not defined in the OSEK OS v.2.2 specification. This is OSEKturbo extension of the

OSEK OS.
UM–64 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
OSServiceId_TerminateTask
OSServiceId_ChainTask
OSServiceId_Schedule
OSServiceId_GetTaskID
OSServiceId_GetTaskState
OSServiceId_ResumeAllInterrupts
OSServiceId_SuspendAllinterrupts
OSServiceId_ResumeOSInterrupts
OSServiceId_SuspendOSinterrupts
OSServiceId_EnableAllInterrupts
OSServiceId_DisableAllInterrupts
OSServiceId_GetResource
OSServiceId_ReleaseResource
OSServiceId_SetEvent
OSServiceId_ClearEvent
OSServiceId_GetEvent
OSServiceId_WaitEvent
OSServiceId_SendMessage
OSServiceId_ReceiveMessage
OSServiceId_GetMessageResource
OSServiceId_ReleaseMessageResource
OSServiceId_GetMessageStatus
OSServiceId_StartCOM
OSServiceId_StopCOM
OSServiceId_InitCOM
OSServiceId_CloseCOM
OSServiceId_GetAlarmBase
OSServiceId_GetAlarm
OSServiceId_SetRelAlarm
OSServiceId_SetAbsAlarm
OSServiceId_CancelAlarm

• identifiers for OSEKturbo specific services
OSServiceId_InitCounter
OSServiceId_CounterTrigger
OSServiceId_GetCounterValue
OSServiceId_GetCounterInfo
OSServiceId_StartTimeScale
OSServiceId_StopTimeScale
OSEKturbo OS/12 UM–65

For More Information: www.freescale.com

Quick Reference
System Services Quick Reference

Freescale Semiconductor, Inc.
• identifier returned if the error occured not in the OS service called by
the user but inside OS dispatcher
OSServiceId_NoService

The following table contains OSEK Operating System constants with short
descriptions.

Table A.6 OSEK OS Constants

Constant Value Description

RUNNING 0 Constant of data type TaskStateType for task
state running

WAITING 1 Constant of data type TaskStateType for task
state waiting

READY 2 Constant of data type TaskStateType for task
state ready

SUSPENDED 3 Constant of data type TaskStateType for task
state suspended

INVALID_TASK

Depends on user’s
settings in

configuration OIL file

0

Constant of data type TaskType for a not
defined task

RES_SCHEDULER Constant of data type ResourceType for
Scheduler as a resource

OSMAXALLOWEDVALUE Maximum possible allowed system counter
value

OSMAXALLOWEDVALUE2 Maximum possible allowed second counter
value

OSTICKSPERBASE Number of ticks required to reach a counter-
specific value in the system counter

OSTICKSPERBASE2 Number of ticks required to reach a counter-
specific value in the second counter

OSTICKDURATION Duration of the system counter tick in
nanoseconds

OSTICKDURATION2 Duration of the second counter tick in
nanoseconds

OSMINCYCLE Minimum allowed number of ticks for a cyclic
alarm attached to the system counter (only for a
system with Extended Status)

OSMINCYCLE2 Minimum allowed number of ticks for a cyclic
alarm attached to the second counter (only for a
system with Extended Status)

OSDEFAULTAPPMODE Default application mode. This constant is
always a valid parameter for StartOS service
UM–66 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
NOTE OSMAXALLOWEDVALUE2, OSTICKSPERBASE2,
OSTICKDURATION2, OSMINCYCLE2 and OsBuildNumber
constants are not defined in the OSEK OS v.2.2 specification. This
is OSEKturbo extension of the OSEK OS.

OIL Language Quick Reference
The lists of all the OIL object parameters with their possible values and
short descriptions are provided here. All standard object attributes must be
always defined. OSEKturbo specific attributes can be defined in addition to
standard ones. The value used by default is typed in boldface in the
Possible Values cells.

Memory consumption and performance trends based on influence of
individual attributes are signed in the Possible Values cells. There are three
signs put next to the attribute values (exclude default value). They display
variation of RAM usage, ROM usage and execution TIME (first, second
and third sign respectively) compared to the default attribute value. Symbol
“+” corresponds to increasing RAM, ROM or TIME, Symbol “–”
corresponds to decreasing RAM, ROM and TIME and symbol “±”
designates “no change”.

OS Object

The OS object is the mandatory one for any application. It defines the OS
and its properties for the application. The OS attributes exactly correspond
to the system options and are divided into parts corresponding to
appropriate system objects. The standard and OSEKturbo specific

OsBuildNumber Current build number Constant of data type (unsigned char*) which
points to C-like NULL terminated string which
contains the current build number. For example:
2.1.1.20

Table A.6 OSEK OS Constants

Constant Value Description
OSEKturbo OS/12 UM–67

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
attributes of the OS object are marked by the "standard" and "specific"
respectively.

Table A.7 OS Parameters

Object Parameters Possible Values Description

Global System Attributes This group of OS attributes represents system
features which are common for the whole system

The attributes should be defined inside the scope of the OS object in accordance with the following
syntax:

STATUS = <STANDARD / EXTENDED>;
CC = <BCC1 / ECC1 / AUTO>;
DEBUG_LEVEL = <0 / 1 / 2 / 4>;
BuildNumber = <TRUE / FALSE>;
MessageCopyAllocation = <USER /OS>;
ResourceScheduler = <TRUE / FALSE>;

STATUS
standard

STANDARD,
EXTENDED (+,+,+)

This standard attribute specifies OS debug status

CC
specific

BCC1, ECC1, AUTO Specifies OSEK Conformance Class

DEBUG_LEVEL

specific

0
1 (+,+,±)
2 (+,+,+)
4 (+,+,+)

Specifies the ORTI support in OS

BuildNumber
specific

TRUE
FALSE (±,-,±)

Specifies whether build number in ASCII form
should be incorporated into OS binary image
(ROM code) or not

MessageCopyAllocation
specific

USER (±,±,±)
OS

Specifies whether the System Generator
generates copies of messages in global memory
or message copies are allocated by the user

ResourceScheduler
specific

TRUE
FALSE (-,-,±)

Specifies whether RES_SCHEDULER should be
supported or not
UM–68 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
CPU Related Attributes This group of OS attributes provides possibility to
tune the selected hardware

The attributes should be defined inside the scope of the OS object in accordance with the following
syntax:

TargetMCU = <name of MCU> {
HCBasePage = <TRUE / FALSE>;
HCBankCode = <TRUE / FALSE>;
ClockFrequency = <integer / 8000>;
ClockDivider = <integer / 1>;
ClockMultiplier = <integer / 1>;
SysTimer = <HWCOUNTER / SWCOUNTER / NONE> {

COUNTER = <name of COUNTER>;
ISRPRIORITY = 0;
Period = <integer / AUTO>;
TimerHardware = <name of timer hardware> {
Prescaler = <USER / OS> {
Value = <integer / AUTO>;

};
TimerModuloValue = <integer / AUTO>;

};
};
SecondTimer = <HWCOUNTER / SWCOUNTER / NONE> {
COUNTER = <name of COUNTER>;
ISRPRIORITY = 0;
Period = <integer / AUTO>;
TimerHardware = <name of timer hardware> {
Prescaler = <USER / OS> {
Value = <integer / AUTO>;

};
TimerModuloValue = <integer / AUTO>;

};
};
HCLowPower = <TRUE / FALSE>;

};

TargetMCU
specific

HC12BC32,
HC12D60,
HC12D128,
S12DP256, HC12

Specifies target MCU type

Table A.7 OS Parameters

Object Parameters Possible Values Description
OSEKturbo OS/12 UM–69

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
HCBasePage
specific

TRUE (–,–,–)
FALSE

Defines whether OS system variables will be
allocated in the base page or in non-volatile
registers or not. The code size is decreased by
approximately 5%, and timing is improved
accordingly

HCBankCode
specific

TRUE (±,+,+)
FALSE

Defines that the support of Bank Switching is
used in the OSEK
OS. It can be defined if TargetMCU = HC12D128
or S12DP256

ClockFrequency
specific

integer Specifies oscillator frequency in kHz for
calculating prescaler value and timer modulo
value

ClockDivider
specific

integer Specifies PLL divider for calculating input timer
frequency. The value equal REFDV+1 should be
assigned to this attribute

ClockMultiplier
specific

integer Specifies PLL multiplier for calculating input timer
frequency. The value equal 2*(SYNR+1) should
be assigned to this attribute

SysTimer
specific

HWCOUNTER
SWCOUNTER
NONE

Defines whether the internal OS system timer is
used or not. The attribute can not be defined if
TargetMCU is set to HC12

SecondTimer
specific

HWCOUNTER
SWCOUNTER
NONE

Defines whether the internal OS second timer is
used or not. The attribute can not be defined if
TargetMCU is set to HC12

COUNTER
specific

name of COUNTER Specifies the COUNTER which shall be attached
to the system or second timer. The same counter
can not be attached to the System and Second
timers

ISRPRIORITY
specific

0 Specifies priority of system timer (second timer)
interrupt handler

Period
specific

integer
AUTO

Specifies period of a tick of the system (second)
counter in nanoseconds

TimerHardware
specific

TIMTOI, TIMOC0,
TIMOC1, TIMOC2,
TIMOC3, TIMOC4,
TIMOC5, TIMOC6,
TIMOC7, RTI, MDC

The attribute is intended to select the hardware
interrupt source for the system and second
counters. The TimerHardware attributes in
SysTimer and SecondTimer blocks can not have
the same value

Prescaler
specific

USER
OS

Specifies whether prescaler value shall be
initialized during OS startup or it is set by the
user’s code

Value (in Prescaler)
specific

integer, AUTO Defines initial prescaler value. Note that this
attribute value is not equal to divide factor of timer
hardware

Table A.7 OS Parameters

Object Parameters Possible Values Description
UM–70 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
TimerModuloValue
specific

integer, AUTO Specifies timer hardware register value

HCLowPower
specific

TRUE (±,+,-)
FALSE

Defines that low power mode shall be used when
there are no ready or running tasks

ISRSourceControl
specific

TRUE (+,+,+)
FALSE

Defines that OS uses IMR registers in Suspend/
ResumeOSinterrupts functions

Stack Related Attributes This group of OS attributes defines stack support
in the system

The attributes should be defined inside the scope of the OS object in accordance with the following
syntax:

IsrStackSize = <integer>;
StackOverflowCheck = <TRUE / FALSE>;

IsrStackSize
specific

integer Specifies ISR stack size. It shall be defined if
there are ISR category 2 and Extended Tasks (
CC = ECC1) defined

StackOverflowCheck
specific

TRUE (+,+,+)
FALSE

Turns on stack overflow runtime checking and
stack usage services

Task Related Attributes This group of OS attributes controls task feature

The attributes should be defined inside the scope of the OS object in accordance with the following
syntax:

TimeScale = <TRUE / FALSE> {
ScalePeriod = <integer / AUTO>;
TimeUnit = <ticks / ns / us / ms>;
Step = <SET> {
StepNumber = <integer>;
StepTime = <integer>;
TASK = <name of TASK>;

};
};

TimeScale
specific

TRUE
FALSE

Enables Time Scale mechanism

ScalePeriod
specific

integer
AUTO

Specifies full period of time scale in chosen
measurement units

TimeUnit
specific

ticks, ns, us, ms Specifies measurement units: ticks means ticks of
System Timer, ns means nanoseconds, us -
microseconds, and ms - milliseconds

Table A.7 OS Parameters

Object Parameters Possible Values Description
OSEKturbo OS/12 UM–71

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
Step
specific

SET Defines one of step elements in the Time Scale

StepNumber
specific

integer Specifies the order of steps

StepTime
specific

integer Specifies the time until the next task activation in
measurement units chosen by means of the
TimeUnit attribute

TASK
specific

name of TASK Specifies the task to be activated

Interrupt Related Properties This group of OS attributes defines parameters of
ISR execution

UnorderedExceptions
specific

TRUE (+,+,+)
FALSE

InterruptDispatcher
specific

None, OneLevel Specifies interrupt mechanism

Hook Routines Related Attributes This group of OS attributes defines additional
hook routines support in the system

The attributes should be defined inside the scope of the OS object in accordance with the following
syntax:

STARTUPHOOK = <TRUE / FALSE>;
SHUTDOWNHOOK = <TRUE / FALSE>;
PRETASKHOOK = <TRUE / FALSE>;
POSTTASKHOOK = <TRUE / FALSE>;
ERRORHOOK = <TRUE / FALSE>;
USEGETSERVICEID = <TRUE / FALSE>;
USEPARAMETERACCESS = <TRUE / FALSE>;
IdleLoopHook = <TRUE / FALSE>;

STARTUPHOOK
standard

TRUE (±,+,+)
FALSE

This standard attribute defines whether
StartupHook is called after the operating system
starting up and before the dispatcher starting or
not

SHUTDOWNHOOK
standard

TRUE (±,+,+)
FALSE

This standard attribute defines whether
ShutdownHook is called during the system
shutdown or not

PRETASKHOOK
standard

TRUE (±,+,+)
FALSE

This standard attribute defines whether
PreTaskHook is called from the scheduler code
before the operating system enters context of the
task or not

Table A.7 OS Parameters

Object Parameters Possible Values Description
UM–72 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
NOTE The IdleLoopHook hook is not defined in the OSEK OS v.2.2
specification. This is OSEKturbo extension of the OSEK OS.

TASK Object

Parameters of TASK object type define the task properties. The syntax of
the task object definition is as follows:

TASK <name of TASK> {
PRIORITY = <integer>;
SCHEDULE = <FULL / NON>;
AUTOSTART = <TRUE / FALSE>{
APPMODE = <name of APPMODE>;

};
ACTIVATION = <1>;
STACKSIZE = <integer>;
RESOURCE = <name of RESOURCE>;
EVENT = <name of EVENT>;
ACCESSOR = <SENT / RECEIVED> {

MESSAGE = <name of MESSAGE>;
WITHOUTCOPY = <TRUE / FALSE>;
ACCESSNAME = <string>;

POSTTASKHOOK
standard

TRUE (±,+,+)
FALSE

This standard attribute defines whether the
PostTaskHook is called from the scheduler code
after the operating system leaves the context of
the task or not

ERRORHOOK
standard

TRUE (±,+,+)
FALSE

This standard attribute defines whether the
ErrorHook is called by the system at the end of
each system service which returns the status not
equal to E_OK or not

USEGETSERVICEID
standard

TRUE (+,+,+)
FALSE

Specifies ability of usage the access macros to
the service ID in the error hook

USEPARAMETERACCESS
standard

TRUE (+,+,+)
FALSE

Specifies ability of usage the access macros to
the context related information in the error hook

IdleLoopHook
specific

TRUE (±,+,+)
FALSE

Defines whether the IdleLoopH hook is called by
the system from the scheduler idle loop (when
there are no tasks in ready or running state) or not

Table A.7 OS Parameters

Object Parameters Possible Values Description
OSEKturbo OS/12 UM–73

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
};
};

The brief description of the task attributes is presented below.

ISR Object

This object represents an Interrupt Service Routine. Parameters of this
object type define ISR properties. The syntax of the ISR object is as
follows:

Table A.8 TASK Parameters

Object Parameters Possible Values Description

Standard Attributes

PRIORITY integer
[0..0x7FFFFFFF]

Defines the priority of the task. The lowest priority
has value 0

SCHEDULE FULL, NON Defines the run-time behavior of the task

AUTOSTART TRUE, FALSE Defines whether the task is activated during the
system start-up procedure or not

APPMODE name of APPMODE Defines an application mode in which the task is
auto-started

ACTIVATION 1 Specifies the maximum number of queued activation
requests for the task. The OSEKturbo OS does not
support multiple activation, so this value is restricted
to 1

RESOURCE name of RESOURCE Resources accessed by the task. There can be
several resource references

EVENT name of EVENT Events owned by the task. There can be several
event references

ACCESSOR SENT, RECEIVED Defines the type of usage for the message

MESSAGE name of MESSAGE Specifies the message to be sent or received by the
task

WITHOUTCOPY TRUE, FALSE Defines whether a local copy of the message is used
or not

ACCESSNAME string Defines the reference which can be used by the
application to access the message data

OSEKturbo Specific Attribute

STACKSIZE integer Defines the size of the extended task’s stack in bytes
UM–74 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
ISR <name of ISR> {
CATEGORY = <1 / 2>;
PRIORITY = 0;
RESOURCE = <name of RESOURCE>;
ACCESSOR = <SENT / RECEIVED> {
MESSAGE = <name of MESSAGE>;
ACCESSNAME = <string>;

};
};

The following parameters can be defined for the ISR object:

RESOURCE Object

The RESOURCE object is intended for the resource management. The
syntax of the resource object is as follows:

RESOURCE <name of resource> {
RESOURCEPROPERTY = <STANDARD / LINKED / INTERNAL> {

LINKEDRESOURCE = <name of RESOURCE>
};

};

Table A.9 ISR Parameters

Object Parameters Possible Values Description

Standard Attributes

CATEGORY 1, 2 Specifies the category of interrupt service routine

RESOURCE name of RESOURCE Specifies the list of resources accessed by the task.
The reference can not be defined if CATEGORY is
1.There can be several resource references

ACCESSOR SENT, RECEIVED Defines the type of usage for the message

MESSAGE name of MESSAGE Specifies the message to be sent or received by the
ISR

ACCESSNAME string Defines the reference which can be used by the
application to access the message data

OSEKturbo Specific Attributes

PRIORITY 0 Specifies the priority of the interrupt service routine
OSEKturbo OS/12 UM–75

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
The following standard parameters can be defined for the RESOURCE
object:

EVENT Object

The EVENT object is intended for the event management. The syntax of
the event object is as follows:

EVENT <name of EVENT> {
MASK = <integer / AUTO>;

};

The following standard parameters can be defined for the EVENT object:

COUNTER Object

Attributes of this object type define counter properties. The syntax of the
counter object is:

COUNTER <name of COUNTER> {
MINCYCLE = <integer>;
MAXALLOWEDVALUE = <integer>;
TICKSPERBASE = <integer>;

};

Table A.10 RESOURCE Parameters

Object Parameters Possible Values Description

Standard Attributes

RESOURCEPROPERTY STANDARD, LINKED,
INTERNAL

Specifies a property of the resource.
Performance decreases if RESOURCE with
RESOURCEPROPERTY = INTERNAL defined

LINKEDRESOURCE name of RESOURCE Specifies the resource to which the linking shall
be performed

Table A.11 EVENT Parameters

Object Parameters Possible Values Description

Standard Attribute

MASK integer, AUTO Represents the event
UM–76 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
The following standard parameters can be defined for the COUNTER
object:

ALARM Object

This object presents OS alarms. The syntax of an alarm object is as
follows.

ALARM <name of ALARM> {
COUNTER = <name of COUNTER>;
ACTION = <SETEVENT / ACTIVATETASK / ALARMCALLBACK> {

TASK = <name of TASK>;
EVENT = <name of EVENT>;
ALARMCALLBACKNAME = <string>;

};
AUTOSTART = <TRUE / FALSE> {

ALARMTIME = <integer>;
CYCLETIME = <integer>;
APPMODE = <name of APPMODE>;

};
};

The following standard parameters can be defined for the ALARM object:

Table A.12 COUNTER Parameters

Object Parameters Possible Values Description

Standard Attributes

MINCYCLE integer Specifies the minimum allowed number of counter
ticks for a cyclic alarm linked to the counter

MAXALLOWEDVALUE integer Defines the maximum allowed counter value

TICKSPERBASE integer Specifies the number of ticks required to reach a
counter-specific value

Table A.13 ALARM Parameters

Object Parameters Possible Values Description

Standard Attributes

COUNTER name of COUNTER Specifies the assigned counter
OSEKturbo OS/12 UM–77

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
MESSAGE Object

Parameters of this object type define the message properties. The syntax of
the message object definition is presented below. Note that only one
ACTION attribute should be defined for the MESSAGE object.

MESSAGE <name of MESSAGE> {
TYPE = <QUEUED / UNQUEUED>;

QUEUEDEPTH = <integer>;
CDATATYPE = <string>;
ACTION = <ACTIVATETASK / SETEVENT / CALLBACK / FLAG / NONE> {

TASK = <name of TASK>;
EVENT = <name of EVENT>;
CALLBACKNAME = <string>;
FLAGNAME = <string>;

};
};

ACTION ACTIVATETASK,
SETEVENT,
ALARMCALLBACK

Defines the method of notification used when the
alarm expires

TASK name of TASK Specifies the task being notified through
activation or event setting when the alarm expires

EVENT name of EVENT Specifies the event mask to be set when the
alarm expires. It shall be defined if ACTION is
SETEVENT only

ALARMCALLBACKNAME string Specifies the name of the callback routine called
when the alarm expires

AUTOSTART TRUE, FALSE Defines whether an alarm is started automatically
at system start-up depending on the application
mode

ALARMTIME integer Defines the time when the alarm shall expire first

CYCLETIME integer Defines the cycle time of a cyclic alarm

APPMODE name of APPMODE Defines an application mode in which the alarm
will be started automatically at system start-up

Table A.13 ALARM Parameters

Object Parameters Possible Values Description
UM–78 OSEKturbo OS/12

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
The following standard parameters can be defined for the MESSAGE
object:

APPMODE Object

The APPMODE object is intended for the application mode management.
This object has no standard parameters.

COM Object

The COM object represents the OSEK communication subsystem
properties on CPU. Only one COM object must be defined on the local
CPU. The syntax scheme of a COM object is as follows:

COM <name of COM> {
USEMESSAGERESOURCE = <TRUE / FALSE>;

Table A.14 MESSAGE Parameters

Object Parameters Possible Values Description

Standard Attributes

TYPE QUEUED, UNQUEUED Specifies the message type

QUEUEDEPTH integer Specified if the message has a queue

CDATATYPE string Defines the data type of a message item

ACTION ACTIVATETASK,
SETEVENT,
CALLBACK, FLAG,
NONE

Defines the type of task notification used when the
message has arrived

TASK name of TASK Specifies the task which shall be notified when the
message has arrived. It shall be defined if ACTION is
ACTIVATETASK or SETEVENT only

EVENT name of EVENT Specifies the event to be set when the message has
arrived. It shall be defined if ACTION is SETEVENT
only

CALLBACKNAME string Defines the name of a function to call as an action
when the message has been sent. It shall be defined
if ACTION is CALLBACK only

FLAGNAME string Defines the name of the flag that is set when the
message is sent. It shall be defined if ACTION is
FLAG only
OSEKturbo OS/12 UM–79

For More Information: www.freescale.com

Quick Reference
OIL Language Quick Reference

Freescale Semiconductor, Inc.
USEMESSAGESTATUS = <TRUE / FALSE>;
};

The object has the following standard attributes:

NM Object

The NM object represents the local parameters of the network management
subsystem on CPU. This object has no standard parameters.

Table A.15 COM Parameters

Object Parameters Possible Values Description

Standard Attributes

USEMESSAGERESOURCE TRUE, FALSE Specifies if the message resource mechanism
is used

USEMESSAGESTATUS TRUE, FALSE Specifies if the message status is available
UM–80 OSEKturbo OS/12

For More Information: www.freescale.com

	Contents
	Introduction
	OSEK OS Overview
	Technical Support Information

	Installation
	Preface
	OSEKturbo OS Installation
	Silent Installation mode

	License File
	OSEKturbo OS Uninstallation

	Sample Application
	Source Files
	Building Sample

	Tutorial
	Creating New Application
	Configuration File
	Source Code
	MakeFile
	Running Application

	Additional Task
	Configuration File
	Source Code
	Running Application

	Adding Single Alarm
	Configuration File
	Source Code
	Running Application

	Using Event and Extended Task
	Configuration File
	Source Code
	Running Application

	Cyclic Alarm
	Source Code
	Running Application

	TimeScale
	Configuration File
	Source Code
	Running Application

	Listing

	Using an Unsupported Target Derivatives
	Target MCU Type
	Vector Table
	System Timer
	Make File

	Quick Reference
	System Services Quick Reference
	OIL Language Quick Reference
	OS Object
	TASK Object
	ISR Object
	RESOURCE Object
	EVENT Object
	COUNTER Object
	ALARM Object
	MESSAGE Object
	APPMODE Object
	COM Object
	NM Object

