
ActivMEDIA INC

 Saphira
Software Manual

Saphira Version 5.3



ii

Copyright 1997ActivMedia, Inc. All rights reserved.

Under international copyright laws, this manual or any portion may not be copied or on any way
duplicated without the expressed written consent of ActivMedia, Inc.

The Saphira libraries and software on disk which are available for network download are solely owned
and copyrighted by SRI International (formerly Stanford Research Institute). Developers and users are
authorized by revocable license to develop and operate Saphira-based custom software for personal,
research, and educational use only. Duplication, distribution, reverse-engineering, or commercial
application of the software without the expressed written consent of SRI International is explicitly
forbidden.

The various names and logos for products used in this manual are registered trademarks or trademarks
of their respective companies. Mention of any third-party hardware or software constitutes neither an
endorsement nor a recommendation.

Saphira Manual Version 5.3, March, 1997.



Saphira Software Manual

iii

Contents
LIST OF TABLES VII

LIST OF FIGURES VIII

1. SAPHIRA SOFTWARE & RESOURCES 1
1.1. Saphira Client/Server 1
1.2. Robot Simulator 1
1.3. Required and Optional Components 2
1.4. Saphira Client Installation 2
1.5. Saphira Quick Start 3
1.6. Additional Resources 4

1.6.1. FTP Software Archive 4
1.6.2. Saphira Newsgroup 4
1.6.3. SRI Saphira Web Pages 5
1.6.4. Support 5
1.6.5. Acknowledgments 5

2. SAPHIRA SYSTEM OVERVIEW 7
2.1. System Architecture 7

2.1.1. Micro-tasking OS 8
2.1.2. User Routines 9
2.1.3. Packet Communications 9
2.1.4. State Reflector 9

2.2. Saphira Control Architecture 10
2.2.1. Representation of Space 10
2.2.2. Direct Motion Control 11
2.2.3. Behaviors and Fuzzy Control 11
2.2.4. Activities and PRSlite 11
2.2.5. Sensor Interpretation Routines 11
2.2.6. Registration and Maps 11
2.2.7. Graphics Display 12
2.2.8. Agent Interface 12

2.3. Running the Sample Client 12
2.3.1. Connecting to a Robot 12
2.3.2. LPS Display 13
2.3.3. Information Area 15
2.3.4. Menus 16
2.3.5. Keyboard Actions 17
2.3.6. Behaviors Window 17
2.3.7. Processes Window 19
2.3.8. Intentions Window 20

3. THE SIMULATOR 23



iv

3.1. Starting the Simulator 23
3.2. Parameter File 24
3.3. World Description File 25
3.4. Simulator Menus 25

3.4.1. Load (Files) Menu 25
3.4.2. Connect Menu 25
3.4.3. Display Menu (Grow, Shrink and Wake) 26
3.4.4. Recenter Menu 26
3.4.5. Exit Menu 26
3.4.6. Information Area 26

3.5. Mouse Actions 26

4. CREATING SAPHIRA CLIENTS 27
4.1. Host System Requirements 27
4.2. Compiling and Linking Saphira Applications 27

4.2.1. Writing C or C++ Client Programs 28
4.2.2. Compiling and Linking Client Programs under Unix 29
4.2.3. Compiling and Linking Client Programs under MSVC 31

4.3. Client Examples 31
4.3.1. The Direct Client 31
4.3.2. The Async Client 33
4.3.3. The Nowin Client 35
4.3.4. The Saphira Client 35
4.3.5. The Packet Client 38

5. SAPHIRA SERVERS 41
5.1. Communication Packet Protocol 41

5.1.1. Packet Data Types 42
5.1.2. Packet Checksum 42
5.1.3. Packet Errors 43

5.2. Client Commands 43
5.2.1. Client Command Argument Types 44
5.2.2. Saphira Client Command Support 44

5.3. Server Information Packets 45
5.4. Start Up and Shut Down 47

5.4.1. Synchronization—sfCOMSYNC 47
5.4.2. Autoconfiguration 47
5.4.3. Opening the Servers—sfCOMOPEN 48
5.4.4. Keeping the Beat—sfCOMPULSE 48
5.4.5. Closing the Connection—sfCOMCLOSE 48
5.4.6. Movement Commands 48

5.5. Robot in Motion 49
5.5.1. Position Integration 49

5.6. Sonars 50

6. GUIDE TO THE SAPHIRA API 51
6.1. Saphira OS Functions 51
6.2. Predefined Saphira Processes 53



Saphira Software Manual

v

6.3. State Reflection 53
6.3.1. Motor Stall Function 55
6.3.2. Sonar buckets 55

6.4. Direct Motion Control 56
6.5. Saphira Multi-tasking 58

6.5.1. Process Definition 58
6.5.2. Process Manipulation 59

6.6. Local Perceptual Space 61
6.6.1. Sonar buffers 61
6.6.2. Occupancy functions 63
6.6.3. Artifacts 65

6.7. Sensor Interpretation 69
6.8. Drawing and Color Functions 69
6.9. Maps and Registration 70

6.9.1. Map File Format 70
6.9.2. Map Registration and Creation 71

7. SAPHIRA BEHAVIORS 73
7.1. Behaviors and Fuzzy Control 73
7.2. Behavior Grammar 73
7.3. Behavior Grammar in BNF 73
7.4. Behavior Executive 74
7.5. Fuzzy variables. 75

7.5.1. Fuzzy variable creation functions 75
7.5.2. Fuzzy variable combination functions 75

7.6. Implementing Behaviors 76
7.6.1. Input parameters 76
7.6.2. Update function 76
7.6.3. Init function 76
7.6.4. Rules 76
7.6.5. Behavior schema 77

7.7. Invoking Behaviors 77
7.8. Pre-Defined Saphira Behaviors 78

8. INTENTIONS AND PRS-LITE 83
8.1. Intention Schemas 83

8.1.1. Initialize intention 83
8.1.2. Find a corridor 83
8.1.3. Follow the corridor 84
8.1.4. Finished 85

8.2. Intention Parameters 85
8.3. Intention Schema Instantiation 85
8.4. Intention Termination and Removal 85
8.5. Invoking Behaviors 86
8.6. Packet Communication Functions 86

9. SAPHIRA VISION 89
9.1. Channel modes 89



vi

9.2. Vision Packets 89
9.3. Sample Vision Application 90

10. SAMPLE PARAMETER FILE. 93

11. SAMPLE WORLD DESCRIPTION FILE 95

12. SAPHIRA API REFERENCE 97

INDEX 101

WARRANTY AND LIABILITIES 109



Saphira Software Manual

vii

List of Tables

Table 2-1.  Keyboard-enabled Saphira drive and behaviors* 17
Table 3-1.   Example drive error tolerance values for a parameters file 25
Table 5-1 Main elements of PSOS communication packet protocol 42
Table 5-2 Communication packet data types 42
Table 5-3  Client command communication packet 44
Table 5-4   PSOS 4.2 supported client commands 45
Table 5-5   Saphira server information data packet (minimum contents) 46
Table 5-6. Port types and names for clinet/server connections 47
Table 5-7. Robot configuration information 48
Table 5-8.  Server motion command types 48
Table 5-9.  Motion command arguments 49
Table 6-1  Optional states for various Saphira display functions 52
Table 6-2  Definition of the sfRobot structure 55
Table 6-3.   Saphira multiprocessing reserved process state values 58
Table 6-4. Saphira colors 70
Table 7-1. Valid Saphira behavior arguments 78
Table 7-2. Valid behavior closure state values 78
Table 7-3. Avoid collision behavior parameters 79
Table 7-4. Stop collision behavior parameters 79
Table 7-5. Keep off behavior parameters 80
Table 7-6. Go to position behavior parameters 80
Table 7-7. Attend at position behavior parameters 80
Table 7-8. Follow lane behavior parameters 81
Table 7-9. Follow corridor behavior parameters 81
Table 7-10. Follow door behavior parameters 82
Table 7-11. Turn to parameters 82



viii

List of Figures
Figure 2-1  Saphira System Architecture. 8
Figure 2-2  Saphira Control Architecture. 10
Figure 2-3  Saphira client LPS in local mode. 14
Figure 2-4  Saphira Behaviors window (Linux/Motif version) 18
Figure 2-5  Keep Off behavior display expanded 19
Figure 2-6  Behavior window for Keep-Off 19
Figure 2-7  A sample Saphira Processes window 20
Figure 2-8  An example Saphira Intentions window 21
Figure 3-1 A sample window of the simulator 24
Figure 4-1.  Concurrent execution of Saphira OS and user asynchronous tasks. 29
Figure 5-1 Saphira client-robot server architecture 41
Figure 5-2  Trapezoidal turning velocity profile 49
Figure 5-3  Saphira-aware server internal coordinate system 50
Figure 6-1.   Saphira’s LPS coordinate system 62
Figure 6-2. Sensitivity rectangle for the sfOccBox functions 64
Figure 6-3 Sensitivity rectangle for sfOccPlane functions 65
Figure 7-1. The straight-up function 75



Saphira Software Manual

1

1. Saphira Software & Resources
This Software Manual provides the general and technical details you will need to program and operate

your Real World Interface, Inc. (RWI) Pioneer 1 (available through ActivMedia, Inc.), B14, B21, or
ATRV-1 Mobile Robot with Saphira software.

1.1. Saphira Client/Server
Saphira is a robotics application development environment written, maintained, and constantly updated

at SRI International’s (formerly Stanford Research Institute) Artificial Intelligence Center, notably under
the direction of Dr. Kurt Konolige, who developed the Pioneer mobile robot platform.

Saphira operates in a client/server environment. The Saphira library is a set of routines for building
clients.  These routines perform most of the thankless work of communications and housekeeping for the
robot server. And the Saphira library integrates a number of useful functions for sending commands to the
server, gathering information from the robot’s sensors, and packaging them for display in a graphical
window-based user interface. In addition, Saphira supports higher-level functions for robot control and
sensor interpretation, including fuzzy-control behavior and reactive planning systems, and a map-based
navigation and registration system.

All the Saphira client expects is that the robot has the basic components for robotics sensing and
navigation, including drive motors and wheels, position encoders, and sensors. Saphira also expects that the
robot support some, albeit little, onboard intelligence to handle the low-level details of robot sensor and
drive management, and to be able to send that information and respond to Saphira commands—act as a
server—through a special communications packet protocol we describe in detail in Chapter 4. Some of the
server details are robot-specific, so we encourage you to consult your robot’s operation manual and Saphira
supplementary materials for details, as well.

The Saphira client library is available for Microsoft Windows NT and 95 and for  UNIX with Motif
(SunOS, Solaris, SGI, FreeBSD, and Linux). Saphira sources and libraries are written in ANSI C. There is
an Application Programmer’s Interface (API) that calls functions in the Saphira system so you  can write an
application that defines new robot programs, and link it in to the Saphira library. Programming details are
in the following chapters of this manual.

1.2. Robot Simulator
Saphira also comes with a software simulator of your physical robot and its environment. This feature

allows you to debug your applications conveniently on your computer.
The simulator has realistic error models for the sonar sensors and wheel encoders. Even its

communication interface is the same as for a physical robot, so you won’t need to reprogram or make any
special changes to the client to have it run with either the real robot or the simulator. But unlike the real
thing, the simulator has a single-step mode which lets you examine each and every step of your program in
detail.

The simulator also lets you construct 2-D models of real or imagined  environments, called worlds.
World models are abstractions of the real world, with linear segments representing the vertical surfaces of
corridors, hallways, and the objects in them. Because the 2-D world models are only an abstraction of the
real world, we encourage you to refine your client software using the real robot in a real world
environment.

1.3. Required and Optional Components
The following is a list of components that you’ll need, as well as some options you may desire, to

operate your robot with Saphira. Consult your mobile robot’s Operation Manual for component details.

9 Mobile robot with Saphira-enabled servers



1: Saphira Software and Resources

2

99Radio modems or Ethernet radio bridge (optional)
99Computer: Power Macintosh1; Pentium, Pentium Pro, or 486-class PC with Microsoft Windows 95

or NT, FreeBSD, or Linux operating system; or UNIX workstation
99Open communication port (TCP/IP or serial)
99 Four to five megabytes of hard-disk storage
99 PKUNZIP (PCs), GUNZIP (PCs and UNIX), StuffIt Lite, or compatible archive-decompression

software
99Motif GUI and libraries for FreeBSD/Linux/UNIX
99C- program source file editor and compiler. Note: Current Windows95/NT version of Saphira

supports only Microsoft’s Visual C/C++ software, not Borland’s Turbo-C/C++ products.

1.4. Saphira Client Installation
The Saphira distribution software, including the saphira  demonstration program, simulator, and

accompanying C libraries, come stored as a compressed archive of directories and files either on a 3.5-
inch, 1.4 MB floppy diskette, or at the RWI Internet site. Each archive is configured and compiled for a
particular operating system, such as Windows95/NT or Solaris. Choose the version that matches your client
computer system. You may obtain additional Saphira archives for other platforms and updates from the
RWI Internet site; see Additional Resources below in this chapter for details.

The Windows95/NT versions typically are PKZIP’d, and UNIX versions come GZIP’d and TAR’d. To
decompress the software into useable files, you will need the appropriate decompression/archive software:
pkunzip, gunzip, or compatible program. For proper operation, consult the respective program’s user
manual or help files.

For Linux and other UNIX users, we recommend that you create a saphira  directory in
/usr/local , and set the appropriate permissions for access and use by your robotics groups.  Copy the
Saphira archive to that directory, then uncompress and untar the Saphira archive. For example, with Linux:

tar -zxvf saphira -linux-5.3.gz

For Windows95/NT or Macintosh, similarly uncompress the ZIP or SIT archive, respectively, but the
location of the files is up to you.  The recommended directory is c:\saphira , which means the toplevel
Saphira directory will be c:\saphira\ver53 .  This is the directory that the sample MSVC projects
assume.

For all systems upon decompression, a hierarchy of folders and files will appear inside a newly
established, version-related Saphira directory; ver53  for Saphira version 5.3, for example.  The
distribution directory for the Windows95/NT Saphira version 5.3 looks like this:

ver53/
  bin/
    saphira.exe Saphira controller example
    direct.exe direct motion control example
    pioneer.exe simulator
    btech.exe Pioneer Fast-Track Vision system demo
    bgram behavior grammar compiler
    sf.dll DLL library for MS 95/NT
    msvcrt40.dll required MS Windows DLL
  handler/
    src/
      samples/ tutorial examples
      apps/ application source examples
      basic/
        behavior.beh behavior examples

                                                       
1 We do not recommend using Macintosh for Saphira development at this time because the native

operating system (System 7.5) does not fully support multitasking which is essential for Saphira
operation.



Saphira Software Manual

3

    include/ header files
    obj/ library files
  maps/ Saphira example maps
  worlds/ simulator world files
  params/ parameters for different robots
  readme explanation text file
  update comparison of version s
  license operation license

The uncompressed Saphira software typically requires 20 megabytes of hard-disk drive storage space.

Unix systems should use one of the following methods, preferably in the user’s .cshrc or other default
shell script parameter file.

export SAPHIRA=/usr/local/saphira/ver53 (bash shell)
setenv SAPHIRA /usr/local/saphira/ver53 (csh shell)

In Windows 95 and NT 3.51, assuming the top-level Saphira directory is c:\saphira\ver53, add the
following line to the C:\AUTOEXEC.BAT file:

SET SAPHIRA=C:\saphira\ver53

Finally, in Windows NT 4.0, go to Start/Settings/System, and click on the Environment tab.  Add the
SAPHIRA variable in either the user or system-wide settings.

1.5. Saphira Quick Start
To start the Saphira client demonstration program, navigate to inside the bin/  directory and execute

the program named saphira(.exe) .  For instance, with the mouse, double-click the saphira.exe
icon inside the saphira/ver53/bin/  folder on your Windows95 desktop.

With UNIX, you must be running the X-Window system to execute the Saphira client software and
make sure to export  or setenv  the SAPHIRA=path parameter.

Have a robot server or the simulator readied for a Saphira connection.  For example, execute the
saphira/ver53/bin/pioneer(.exe)  robot simulator on the same computer, or simply turn on
your Pioneer robot and connect its serial port (or radio modems) to your basestation computer running the
Saphira demonstration program.

In the Saphira client main  window, draw down the Connect  menu and choose the connection port
where the robot server is listening.  For example, with the Pioneer robot choose the serial port cua0  or
cua1, or for a B14 Saphira server connected to your Ethernet network via TCP, select the “TCP”
connection option in the Saphira demo and provide the robot’s IP address or hostname when requested.

Once you initiate the connection, the Saphira client and robot server perform a synchronization routine
and, if successful, will establish a connection.  We provide a number of clues on both the client and server
so you can follow the synchronization process.  Success is distinct: The Saphira main window comes alive
with sonar readings, and the robot’s sonars begin a rhythmic, audible ticking.

IMPORTANT NOTICE!
All Saphira operations require that the environment variable SAPHIRA be set to the top-level directory,

e.g., /usr/local/saphira/ver53 on a Unix system (note there is no final slash), or c:\saphira\ver53
on an MS Windows system.  If you do not set this variable correctly, Saphira clients and the simulator will
fail to work, or fail to work properly!  Please set this as soon as you install the distribution.

If you have a previous installation of Saphira, your SAPHIRA environment variable will be set to the
old toplevel directory.  YOU MUST RESET IT to the toplevel directory of the new distribution.  All new
clients will complain and fail to execute until you do.



1: Saphira Software and Resources

4

We detail Saphira client operation in the following chapter.  For now, we leave it to you to find the
manual drive keys and take your robot for a joyride  (hints: arrows move and the spacebar stops the
motors).

1.6. Additional Resources
Every new Saphira customer gets three additional and valuable resources: a private account on RWI’s

Internet server for download of Saphira software, updates, and manuals; the opportunity to register on one
or more of private robotics newsgroups; and email access to the Saphira support team.

1.6.1. FTP Software Archive
RWI has a server connected full-time to the Internet where customers may obtain Saphira software and

support materials. Access is restricted to RWI/ActivMedia customers, including Pioneer 1, Bxx, and
ATRV-1 owners.

The RWI server name is:
ftp.rwii.com

To gain access, use the username and password that are written on the Registration and Account Sheet that
accompanied this manual.

Saphira software, as well as the variety of support literature, including this manual, currently are stored
in subdirectories under the pathname:

pub/robots/Pioneer/Saphira

Consult your computer system manual for connection software and operation for downloading files via
the UNIX file transfer protocol (ftp ) or equivalent service.

1.6.2. Saphira Newsgroup
RWI/ActivMedia also maintain several special email-based newsgroups for robot  owners to share ideas,

software, and questions. To find out more about these special newsgroups, send an email message with
your reply email address as follows.

The groups currently are unmoderated, so please confine your comments and inquiries to those concerning
robot operation and programming.

1.6.3. SRI Saphira Web Pages
Saphira is under continuing active development at SRI International.  SRI maintains a set of web pages

with more information about Saphira, including

•  tutorials and other documentation on various parts of Saphira

To: majordomo@rwii.com
 From: <your return email address goes here>
 Subject: help (Subject: always ignored)

 (body of message—choose one or more commands:)
help (returns instructions)
lists (returns list of newsgroups)
subscribe <list name here> (waddayatink?)
unsubscribe <list name here> (ditto)
end



Saphira Software Manual

5

•  class projects from Stanford CS327B, Real-World Autonomous Systems

•  information about SRI robots and projects that use Saphira, including the integration of Saphira
with SRI’s Open Agent Architecture

•  links to other sites using Pioneer robots and Saphira

 The entry to the SRI Saphira web pages is http://www.ai.sri.com/~konolige/saphira.

1.6.4. Support
Have a problem? Can’t find the answer in this or any of the accompanying manuals? Or know a way

that we might improve our robots and software? Share your thoughts and questions directly with us:
support@rwii.com

Your message goes to our team of  developers who will help you directly or point you to where you
may find help. Because this is a support option, not a general-interest newsgroup, we must reserve the
option to reply only to questions about bugs or problems with RWI-manufactured robots or Saphira.

1.6.5. Acknowledgments
The Saphira system reflects the work of many people at SRI, starting with Stan Rosenschein, Leslie

Kaelbling, and Stan Reifel, who built and programmed Flakey in the mid 1980’s.  Major contributions have
been made by Alessandro Saffiotti, Karen Myers, Enrique Ruspini, Didier Guzzoni, and many others.



Saphira Software Manual

7

2. Saphira System Overview
Saphira is an architecture for mobile robot control.  It was originally developed for the research robot

Flakey2 at SRI International, and after being in use for over 10 years has evolved into an architecture that
supports a wide variety of research and application programming for mobile robotics.  Saphira and Flakey
appeared in the October, 1994 show Scientific American Frontiers with Alan Alda.   Saphira and the
Pioneer robots placed first in the AAAI robot competition “Call a meeting” in August 1996, and will also
appear in an April, 1997 segment of the same program.3

The Saphira system can be thought of as two architectures, one built on top of the other.  The system
architecture is an integrated set of routines for communicating with and controlling a robot from a host
computer.  The system architecture is designed to make it easy to define robot applications by linking in
client programs.  Because of this, the system architecture is an open architecture.   Users who wish to write
their own robot control systems, but don’t want to worry about the intricacies of hardware control and
communication, can take advantage of the micro-tasking and state reflection properties of the system
architecture to bootstrap their applications.  For example, a user who is interested in developing a novel
neural network control system might work at this level.

On top of the system routines is a robot control architecture, that is, a design for controlling mobile
robots that addresses many of the problems involved in navigation, from low-level control of motors and
sensors to high-level issues such as planning and object recognition.  Saphira’s control architecture
contains a rich set of representations and routines for processing sensory input, building world models, and
controlling the actions of the robot.  As with the system architecture, the routines in the control architecture
are tightly integrated to present a coherent framework for robot control.  The control architecture is flexible
enough so that users may pick among various methods for achieving an objective, for example, using a
fuzzy control regime vs. more direct control of the motors.  It is also an open architecture, as users may
substitute their own methods for many of the pre-defined routines, or add new functionality and share it
with other research groups.

In this section we’ll give a brief overview of the two architectures, as well as the main concepts of
Saphira.  More in-depth information can be found in the documentation at the SRI Saphira web site
(http://www.ai.sri.com/~konolige/saphira).

2.1. System Architecture
Think of Saphira’s system architecture as the basic operating system for robot control.  Figure 2-1

shows the structure for a typical Saphira application.  Saphira routines are in blue, user routines in red.
Saphira routines are all micro-tasks that are invoked every Saphira cycle (100 ms) by Saphira’s built-in
micro-tasking OS.  These routines handle packet communication with the robot, build up an internal
picture of the robot’s state, and perform more complex tasks such as navigation and sensor interpretation.

                                                       
2 See http://www.ai.sri.com/people/flakey for a description of Flakey and further references.
3 A write-up of this event is in AI Magazine, Spring 1997 (for a summary see

http://www.ai.sri.com/~konolige/saphira/aaai.html).



2: Saphira System Overview

8

2.1.1. Micro-tasking OS
The Saphira architectures are built on top of a synchronous, interrupt-driven OS.  Micro-tasks are finite-

state machines (FSMs) that are registered with the OS.  Each 100 ms, the OS cycles through all registered
FSMs, and performs one step in each of them.  Because these steps are performed at fixed time intervals,
all the FSMs operate synchronously, that is, they can depend on the state of the whole system being
updated and stable before they are called: it’s not necessary to worry about state values changing while the
FSM is executing.  FSMs can also take advantage of the fixed cycle time to provide precise timing delays,
which are often useful in robot control.  Because of the 100 ms cycle, the architecture supports reactive
control of the robot in response to rapidly changing environmental conditions.

The micro-tasking OS involves some limitations: each micro-task must accomplish its job within a
small amount of time, and relinquish control to the micro-task OS.  But with the computational capability
of today’s computers, where a 100 MHz Pentium processor is an average microprocessor, even
complicated processing such as the probability calculations for sonar processing can be done in
milliseconds.

The use of a micro-tasking OS also helps to distribute the problem of controlling the robot over many
small, incremental routines.  It is often easier to design and debug a complex robot control system by
implementing small tasks, debugging them, and them combining them to achieve greater competence.

2.1.2. User Routines
User routines are of two kinds.  The first kind is a micro-task, like the Saphira library routines, that runs

synchronously every Saphira cycle.  In effect, the user micro-task is an extension of the library routines,

Synchronous micro-tasking OS

Packet communications

State reflector

Control routines

User micro-tasks

User
async
routines

TTY or TCP/IP
connection

Saphira Client Process

Figure 2-1  Saphira System Architecture.

Blue areas represent routines in the Saphira library, red routines are from the
user.  The left-hand side are all routines that get executed synchronously every 100
ms.  Additional user routines may also execute asynchronously as separate
threads, and share the same address space.



Saphira Software Manual

9

and can access the system architecture at any level.  Typically the lowest level that user routines will work
at is with the state reflector, which is an abstract view of the robot internal state.

Saphira and user micro-tasks are written in the C language, and all operate within the same executing
thread, so they share variables and data structures.  User micro-tasks have full access to all the information
typically used by Saphira routines.

Although user micro-tasks can be coded directly as FSMs in the C language, it’s often more convenient
to use the Activity Language to describe FSMs.  The activity language has a rich set of control concepts,
and a user-friendly syntax, that makes writing control programs much easier.  A translator converts activity
language programs into FSMs.

Since they are invoked every 100 ms, micro-tasks must partition their work into small segments that can
comfortably operate within this limit, e.g., checking some part of the robot state and issuing a motor
command.  For more complicated tasks such as planning, more time may be required, and this is where the
second kind of user routine is important.  Asynchronous routines are separate threads of execution that
share a common address space with the Saphira library routines, but are independent of the 100 ms Saphira
cycle.  The user may start as many of these separate execution threads as desired, subject to limitations of
the host operating system.  The Saphira system has priority over any user threads; thus, time-consuming
operations like planning can coexist with the Saphira system architecture, without affecting the real-time
nature of robot control.

Finally, because all Saphira routines are in a library, user programs that link to these routines only need
to include those routines they will actually use.  So a Saphira client executable can be a compact program,
even though the Saphira library itself contains facilities for many different kinds of robot programs.

2.1.3. Packet Communications
Saphira supports a packet-based communications protocol for sending commands to the robot server

and receiving information back from the robot.  Typical clients will send an average of 1 to 4 commands a
second, and all clients receive 10 packets a second back from the robot.  These information packets contain
sensor readings and motor movement information (see Section 5.3).  The amount of data sent is typically
only 30 to 50 bytes per packet, so even a relatively modest 9600 baud channel can accommodate it.
Saphira has the capability of connecting to a robot server over a tty line, the ethernet with TCP/IP, or a
local IPC link.

Since the data channel may be unreliable (e.g., a radio modem), packets have a checksum to determine
if the packet is corrupted.  If so, the packet is discarded, which avoids the overhead of sending
acknowledgment packets, and assures that the system will receive new packets in a timely manner.  But the
packet communication routines must be sensitive to lost information, and have several methods for
assuring that commands and information are eventually received, even in noisy environments.  If a
significant percentage of packets are lost, then Saphira’s performance will degrade.

2.1.4. State Reflector
It is tedious for robot control programs to deal with the issues of packet communication.  So, Saphira

incorporates an internal state reflector to mirror the robot’s state on the host computer.  Essentially, the
state reflector is an abstract view of the actual robot’s internal state.  There is information about the robot’s
movement and sensors, all conveniently packaged into data structures available to any micro-task or
asynchronous user routine.  Similarly, to control the robot, a routine just sets the appropriate control
variable in the state reflector, and the communication routines will send the appropriate command to the
robot.

2.2. Saphira Control Architecture
The Saphira control architecture is built on top of the state reflector (Figure 2-2).  It consists of a set of

micro-tasks that implement all of the functions required for mobile robot navigation in an office
environment.  A typical client will use some subset of this functionality.



2: Saphira System Overview

10

2.2.1. Representation of Space
Mobile robots operate in a geometric space, and the representation of that space is critical to their

performance. There are two main geometrical representations in Saphira.  The Local Perceptual Space
(LPS) is an egocentric coordinate system a few meters in radius centered on the robot. For a larger
perspective, Saphira uses a Global Map Space (GMS) to represent objects that are part of the robot’s
environment, in absolute (global) coordinates.

The LPS is useful for keeping track of the robot's motion over short space-time intervals, fusing sensor
readings, and for registering obstacles to be avoided. The LPS gives the robot a sense of its local
surroundings. The main Saphira interface window (Figure 2-2) displays the robot’s LPS. In local mode
(from the Display menu), the robot stays centered in the window, pointing up, and the world revolves
around it. Keeping the robot fixed in position makes it easy to describe strategies for avoiding obstacles,
going to goal positions, and so on.

Structures in the GMS are called artifacts, and represent objects in the environment or internal
structures, such as paths. A collection of objects, such as corridors, doors, and rooms, can be grouped

Global Map

Local
Perceptual
Space

State Reflector

Procedural
Reasoning
System

Agent
Interface

TCP/IP link to
other agents

Registration
routines

Sensor interp
routines

Direct motion
control

Fuzzy control

Display
routines

Figure 2-2  Saphira Control Architecture.

The control architecture is a set of routines that interpret sensor readings
relative to a geometric world model, and a set of action routines that map
robot states to control actions.  Registration routines link the robot’s local
sensor readings to its map of the world, and the Procedural Reasoning
System sequences actions to achieve specific goals.  The agent interface links
the robot to other agents in the Open Agent Architecture.



Saphira Software Manual

11

together into a map and saved for later use. The GMS is not displayed as a separate structure, but its
artifacts appear in the LPS display window.

2.2.2. Direct Motion Control
The simplest method of controlling the robot is to modify the robot motion setpoints in the state

reflector.  A motion setpoint is a value for a control variable that the motion controller on the robot will try
to achieve.  For example, one of the motion setpoints is forward velocity.  Setting this in the state reflector
will cause the communications routines to reflect its value to the robot, whose onboard controllers will then
try to keep the robot going at the required velocity.

There are two direct motion channels, for rotation and translation of the robot.  Any combination of
velocity or position setpoints may be used for these channels (see Section 6.4).

2.2.3. Behaviors and Fuzzy Control
For more complicated motion control, Saphira provides a facility for implementing behaviors as sets of

fuzzy control rules. Behaviors have a priority, activity level, and other well-defined state variables that
mediate their interaction with other behaviors and with their invoking routines. For example, a routine can
check whether a behavior has achieved its goal or not by checking the appropriate behavior state variable.

2.2.4. Activities and PRSlite
To manage complex goal-seeking activities, Saphira provides a method of scheduling actions of the

robot using the Procedural Reasoning System (PRSlite).  With PRSlite, you can build libraries of action
routines that sequence actions of the robot in response to environmental conditions.  For example, a typical
action routine might move the robot down a corridor while avoiding obstacles and checking for blockages.

Activity schemas are the basic building block of PRSlite. Each schema is a micro-task with
enhancements for spawning child schemas and actions and keeping track of their states.  Activity schemas
are written using the Activity Language.  The activity language has a rich set of control concepts, and a
user-friendly syntax, that makes writing activities much easier.

Activity schemas can control the robot by invoking either direct motion commands or fuzzy control
behaviors, or sequences of the two.

2.2.5. Sensor Interpretation Routines
Sensor interpretation routines are processes that extract data from sensors or the LPS, and return

information to the LPS. Saphira activates interpretative processes in response to different tasks. Obstacle
detection, surface reconstruction, and object recognition are some of the routines that currently exist, all
working with reflected data from the sonars and from motion sensing.

2.2.6. Registration and Maps
In the global map space, Saphira maintains a set of internal data structures (artifacts) that represent the

office environment.  Artifacts include corridors, door, walls, and rooms.  These maps can be created either
by direct input from a map file, or by running the robot in the environment and letting Saphira extract the
relevant information.

Registration is the process of keeping the robot’s global location in an internal map consistent with
sensor readings from the local environment.  Routines exist for extracting relevant information from the
LPS and matching it to map structures in the GMS, then updating the robot’s position.

2.2.7. Graphics Display
Displaying internal information of the client is essential for debugging robot control programs.  Saphira

provides a set of graphics routines that can be called by micro-tasks.  A set of pre-defined micro-tasks
display information about the state reflector and other data structures, such as the artifacts of the GMS.
User programs may also invoke the graphics routines directly to display relevant information.



2: Saphira System Overview

12

2.2.8. Agent Interface
A Saphira client can communicate with other Internet-based agents through its agent interface to the

Open Agent Architecture (OAA).  The OAA is an agent-based architecture for distributed information
gathering and control, and has extensive facilities for user interaction, such as speech and pen-based
agents.  Currently the OAA interface is under development at SRI, and issues concerning its use in Saphira
outside SRI have to be resolved before it can be released.

2.3. Running the Sample Client
This section exercises some of the capabilities of Saphira through a sample client.  It also illustrates the

graphical user interface for interacting with clients.
To run the sample application, execute the file saphira(.exe) in the Saphira bin distribution

directory. This executable should not need any local library files to run, although UNIX and Linux systems
need Motif libraries for you to develop your own clients.4

The Saphira client will initialize an interface window showing the LPS (Figure 2-3). The robot is in the
center of the display, pointing up. An information area appears at the bottom of the window, and the menu
bar is at the top.

2.3.1. Connecting to a Robot
 As we mentioned earlier, connecting Saphira with either the simulator or the actual robot is similar.

First, if you are using the simulator, make sure that the correct robot parameters are loaded (see the
Simulator Chapter 3 below). Otherwise, the Saphira client auto-detects the robot server type and loads its
parameters when first connected (see Chapter 4 for details), so it won’t be necessary to load a parameter
file unless you’re using a custom configuration.

If you are connecting to a robot server over the network, the Saphira client will open a dialog and ask
for the hostname or IP address of the server. For Linux/UNIX systems, you may preset a default with an
export  or setenv  shell command. For example:

export SERVER_NAME = servername

Now pull down the Connect  menu and select the appropriate connection port: simulator, for the
simulator (or a local server), a serial communications port to which you have run a tether cable or optional
serial modem, or TCP for a network-based or radio-Ethernet connection. Saphira initiates the client/server
synchronization sequence and displays a message when it has connected with the server.

If there is a problem connecting with either the simulator or robot server, the communication
connection will fail, and a message describing the problem will appear in Saphira’s main window
information area. Some typical causes for failure with either the simulator or the actual robot and their
solutions include:

99Make sure the physical robot’s Saphira-compatible server software is properly installed and
running and that no other Saphira client is connected to it.

99Make sure the simulator is running and there is no other Saphira client or simulator server running
on the same machine.

99 In rare cases, the communications pipe may be blocked, and can only be cleared by rebooting the
machine. This can occur if either the server or client exits abnormally from a previous connection,
without shutting it down properly.

99Make sure that the communications tether or radio modem is plugged into the correct serial port
with the correct cable.

99Remove the serial tether cable from the robot’s serial port if you use the radio modem.

                                                       
4 Some early versions of UNIX and Linux Pioneer and Saphira software must dynamically link with Motif

GUI libraries to operate.



Saphira Software Manual

13

99Make sure the client radio modem is within range of robot, is on the correct channel, and has a
strong link signal.

99Make sure the serial port is not in use by another application.

Once connected, the Saphira client will display information about the state of the robot, and allow you
to command the robot from the menu and keyboard.

2.3.2. LPS Display
Once connected, the Saphira client’s main  display contains most of the items likely to be found in the

robot’s LPS (Error! Reference source not found.). It is a bird’s-eye view of the environment around the
robot. The LPS may be switched between a robot-centric display and global coordinates, using the local
item in the Display menu.

The main Saphira window components include:

2.3.2.1. Robot icon
The robot icon in the center of the screen shows the robot in relation to its environment. If in local

view, the LPS appears in robot-centric coordinates: the robot remains at the center of the screen and the
environment moves around it. In GMS (global) mode (local  mode off), the environment becomes fixed
and the robot icon wanders around the screen. The size of the robot icon is controlled by the RobotRadius
and RobotDiagonal values in the robot’s parameter file.



2: Saphira System Overview

14

2.3.2.2. Sonar readings
Accumulated sonar readings appear onscreen as small open rectangles. Current sonar readings are

slightly larger open rectangles. Clear accumulated sonar readings from the screen by accessing the Sonars
menu.

2.3.2.3. Control point
The elongated open rectangle directly in front of the robot icon is its heading control point, as returned

by the server in robot-centric coordinates. Normally this control point is positioned directly ahead of the
robot, veering to one side or the other in response to a turn directive from the client. The robot adjusts its
heading accordingly, trying to keep heading towards the control point.

Figure 2-3  Saphira client LPS in local mode.

The corridor and door artifacts are the robot’s internal map.  Small rectangles are
sonar readings.  The larger rectangles are sensitivity areas used by the obstacle
avoidance behaviors.  The lines drawn at the center of the robot are angular and
forward velocity.  The small rectangle immediately in front of the robot is the
angular setpoint.



Saphira Software Manual

15

2.3.2.4. Velocity vectors
Two lines emanating from the center of the robot icon indicate the translational and rotational velocity

of the robot, as returned from the robot server. The length of each vector is directly proportional to the
velocity. Also, each vector points in the respective direction of motion. For example, when the robot is
turning clockwise, as in Figure 6-3, the rotational vector points to the right.

2.3.2.5. Obstacle sensitivity areas
Several obstacle-avoidance behaviors temporarily draw large, open rectangles in the LPS indicating

detected obstacles that they are actively avoiding. Obstacle-avoidance rectangles appear just ahead and to
the sides of the robot in robot-centric coordinates. In the global view, these rectangles do not appear in the
proper place near the robot icon.

2.3.2.6. Artifacts
Artifacts are internal representations of external objects or imaginary constructions, such as goal

positions. Figure 6-3 shows a corridor artifact (long double lines) and a doorway labeled “door 2 .”

2.3.3. Information Area
The information area is at the bottom of the main window. It contains four columns of data returned

from the robot server, and a message area.

2.3.3.1. Message area
At the top of the information area, Saphira posts messages about its functions. A Saphira API function,

sfMessage, places text here.

2.3.3.2. Status (St)
Shows the robot server status as moving , stopped , or no servo  when the motors are stuck.

2.3.3.3. Velocity (Tr, Rot)
The robots translational (Tr) velocity in millimeters per second and rotational (Rot) velocity in degrees

per second.

2.3.3.4. Position (X, Y, Th)
Absolute robot position in millimeters and degrees. Note that this is not the server dead-reckoned

position, which rolls over at three meters and has accumulated errors. Instead, it is the registered global
position of the robot based on Saphira’s map registration routines operating in conjunction with position
integration returned from the server.

2.3.3.5. Communication (MPac, SPac, VPac)
The communication values in the information area are the number of packets of the given type received

in the last second. They are useful for checking the communication link with the server. Normally, a client
will receive ten motor packets (Mpac) and approximately 25 sonar packets (SPac) per second. Vision
packets (Vpac ) currently are not supported.

2.3.3.6. Miscellaneous (Bat, CPU)
The battery (Bat ) voltage level on the server indicates when the robot needs to be recharged. The CPU

utilization is the percentage of total processing time used by the client. On UNIX machines, this does not
include CPU time used by the X server, which can be an appreciable fraction of total CPU time.

2.3.4. Menus
There are seven pulldown menus in the main client window.5 These let you control the display of

information in the LPS and related subwindows, manage communication to the server, and load and save
parameter and map files:

                                                       
5 Not all menus are implemented for all versions.



2: Saphira System Overview

16

2.3.4.1. Connect Menu
The Connect  menu lets you make and break a connection to the robot server. There are five

Connect  items: the simulator, two serial ports, a local pipe, and a TCP connection.  Choosing one of
these items causes the client to try to connect to the physical robot or to the simulator.

The Disconnect  item closes an open connection to the robot.
Exit  causes the client program to terminate, closing any open connection first.

2.3.4.2. Files Menu
Load the robot’s parameters and map files by selecting the appropriate item from the Files  menu. A

file-selection dialog appears for choosing the file. Loading a new map does not delete any old map
artifacts; use the Delete Map item for this.

The current map can be saved to a file using the Save Map  item, which invokes a file-save dialog.
All artifacts in the current map can be deleted with the Delete Map  item.

2.3.4.3. Grow and Shrink
Clicking either the Grow or Shrink  menu causes the LPS display to grow or shrink in scale,

respectively.

2.3.4.4. Display Menu
The first item in the Display  menu is another pulldown menu controlling the display update rate. On

some systems, high update rates consume significant portions of available CPU time, and lowering the
update rate will increase performance.

The Local item controls the LPS viewpoint. When on, the view is robot-centric; when off, the view is
world-centric (global). Note that this only controls the display of information; all internal geometric
structures remain the same.

Single Step  mode is useful for debugging and can only be used with the simulator. When on, it
causes the simulator to wait for a signal from the client at each 100 millisecond time step. Pressing the
spacebar in the client window signals the next time step.

The Wake item, if on, deposits “breadcrumbs” in the display, showing the last ten seconds of robot
travel.

The Occ Grid  item, if on, displays the occupancy grid constructed using the MURIEL algorithm.
This item is not implemented on Macintosh or machines with no color capability. On some machines, it
may consume a large percentage of available CPU time for display.

2.3.4.5. Sonars Menu
The Clear Buffer  item clears all of the accumulated sonar readings from the client internal buffers.
The Sonars On  item toggles the sonar capability of the robot server. (Currently not implemented on

the robot server; the sonars are always on.)

2.3.4.6. Functions Menu
The Functions menu toggles the display of the Behaviors, Processes, and Intentions windows.

2.3.5. Keyboard Actions
In addition to the Saphira pulldown menus, you may control some of the functions of the robot server

directly from the client keyboard (Table 2-1).



Saphira Software Manual

17

* These keys work only when the main Saphira window is active.
The sample Saphira client we provide defines a set of keyboard actions for robot motion, and for

turning some behaviors on and off. In a user application, the function sfProcessKey lets you intercept
keystrokes and initiate your own “hot-key” actions.

2.3.6. Behaviors Window
Saphira’s Behaviors  window shows graphically the state of all current behaviors. It is invoked from

the Functions  menu in the main window. To understand the contents of this window, it may be useful to
review the previous section in this chapter on Saphira behaviors.

Our sample Saphira client invokes four behaviors: two for obstacle avoidance, one for going forward at
a constant velocity, and one for stopping. The obstacle avoidance behaviors are called Avoid Collision and
Keep Off. Avoid Collision prevents the robot from banging into obstacles at close range by initiating a
sharp turn and slowing down the robot. The Keep Off behavior deflects the robot from longer-range
obstacles.

The Constant Velocity behavior attempts to keep the robot going forward at a fixed speed of about 300
millimeters per second.

The Stop behavior, not surprisingly, stops the robot. It is useful when you want the robot to stop if no
other behavior is managing the robot’s movements. For example, if the Constant Velocity behavior is
invoked and then killed, the robot will still have a residual forward velocity. In the absence of any other
behaviors, it will keep moving forward. Invoking the Stop behavior at a low priority assures that the robot
will stop if it is not doing anything else.

Figure 2-4 shows a typical Behaviors  window. The first two behaviors in our sample client are
active, that is, they can contribute to the control of the robot (their running parameter is 1). The other two
are inactive. The active state of a behavior may be toggled by clicking the radio button to the left of the
behavior name with the mouse.

Table 2-1.  Keyboard-enabled Saphira drive and behaviors*

KEY ACTION

i, ↑ Increment forward velocity

m, ↓ Decrement forward velocity

j, ← Incremental left turn

l, → Incremental right turn

k, space All stop

g Constant Velocity on/OFF

c Obstacle Avoidance ON/off



2: Saphira System Overview

18

The dark bar next to each behavior name indicates the state of the behavior. There are two vertical
lines, representing the behavior’s outputs for turning and forward/backward movement. For example, the
Keep Off behavior in Figure 2-4 is fully active for both turning and moving, as indicated by the
horizontal activity bars going through the vertical lines (details in Figure 2-5). This behavior instructs the
robot to turn right and to move backwards (slow down) in this example, as indicated by the direction bars
on either side of the vertical lines.

The behaviors appear in order of their priority in influencing the robot’s actions, with the highest
priority behaviors at the top of the window. At the bottom, the Summation line gives the end result of
combining the active behaviors according to their priority. It is the summation that ultimately controls the
robot server’s actions.

Figure 2-4  Saphira Behaviors window (Linux/Motif version)

Keep Off

Turn               Move

Active button

Behavior name

Activity bars

Direction bars

Figure 2-5  Keep Off behavior display expanded



Saphira Software Manual

19

It’s often useful to view an individual behavior’s activity in more detail.  Individual behavior windows
can be opened by shift-clicking on the behavior name (UNIX systems) or left-clicking just to the right of
the name (MS Windows).  Figure 2-6 shows a typical behavior window while active.  The invocation

parameters of the window are in the upper left; pointer parameters have their addresses printed.  The right-
hand side of the window shows the state variables of the behavior: whether it’s active or not, activity
levels, and so on.  Finally, at the bottom of the window, the rules are printed, showing their antecedent
values and control sets.

The format of the rules is:  Name  Antecedent  Direction Value.
The antecedent value determines how strongly the rule applies.  The direction is a single character: “>”

or “<” for right or left turn, “+” or “-” for speed up or slow down.  The value indicates the desired control
signal; a left turn of 5.0 degrees, for example.

2.3.7. Processes Window
The Processes  window displays the states of all micro-tasks in the Saphira client multitasking queue

(Figure 2-7). Open it from the Functions  menu in the main window. The Processes  window contains
a scrolled list, where each entry consists of the micro-task name and state. The display is updated in real
time as the micro-task state changes.

Figure 2-6  Behavior window for Keep-Off



2: Saphira System Overview

20

You may interrupt a running micro-task by selecting it in the window and pressing the Enter key, or by
double-clicking with the mouse. This action forces the micro-task state to INT (interrupt). Resume an
interrupted micro-task with the same action, which forces the micro-task state to RES (resume).

An interrupted micro-task does not automatically suspended processing; that depends on how the micro-
task handles the interrupt state. Some micro-task  ignore the interrupt and continue with their tasks. For
example, the motor micro-task does not care what its state is—it always performs the same action of
sending motor commands to the robot server. In general, you should only interrupt micro-tasks that you
have added to the Saphira application, and for which there is a defined interrupt behavior.

2.3.8. Intentions Window
Saphira’s Intentions  window shows the state and relationship of all current PRS intentions (Figure

2-8). Open it from the Functions  menu in the main  window.
The Intentions  window contains a scrolled list similar to the Processes  window, and each line

contains the intention name and its state. The state information is updated in real time as the intention state
changes.

Relationships between intentions are indicated by line indentations. For instance, in the example Figure
2-8, the second intention “follow it” is indented to show that it is a child of the first intention. The two
intentions combine to invoke a corridor-following sequence for the robot. The top-level intention waits
until the robot has found a corridor, then invokes its child intention to select a path to follow down the
center of the corridor. In addition, the top-level intention monitors the state of the robot, and when it is no
longer in the corridor, or gets turned sideways to the corridor, it disables the follow it intention.

As with micro-tasks, you may manually interrupt an intention by selecting it and pressing the Enter key,
or by double-clicking it with the mouse. If the intention is running, this will force it into the INT (interrupt)
state. Normally, an intention will respond to this state by suspending. Use the same action to reactivate an
interrupted/suspended intention. This will invoke the Saphira RES (resume) state. Normally, an intention
will respond to this state by reinitializing and starting its characteristic behaviors.

There is one intention in the sample Saphira client that has the robot find and follow corridors. The
intention monitors the robot environment until it detects a corridor, then starts a sub-behavior that projects
a path for the robot down the middle of the corridor.

Figure 2-7  A sample Saphira Processes window



Saphira Software Manual

21

Figure 2-8  An example Saphira Intentions window



Saphira Software Manual

23

3. The Simulator
The simulator is a very useful alternative to a physical robot for developing robotics programs.

Although there is nothing like real world conditions to humble the most ambitious robotics project, the
simulator does have the distinct advantage of having a single-step mode in which you can reenact every
detail of your programs, including a robotics fatality.

And, too, the simulator has realistic error models for the sonar sensors and wheel encoders so that, in
general, if a client program works with the simulator, it will work on the physical robot. The simulator also
lets you construct a simple world in which the simulated robot navigates. You can even change the robot’s
operating characteristics to simulate your own robot designs. And since the packet interface of the
simulator is the same as the physical robot, no changes to the client program are required in switching
between the two.

The disadvantage of the simulator is that the environment model is an abstraction of the real world,
with simple 2-D linear segments in place of the complex geometrical objects the real robot will encounter
in the real world. For example, the simulator assumes all objects are sensor-high, so it can’t simulate a door
stop—something the real robot will have to overcome to traverse rooms in a real building.

3.1. Starting the Simulator
Execute the program named pioneer(.exe)  in the Saphira bin/  directory.  (By default, the

simulator acts like the Pioneer 1 Mobile Robot—hence, its name.  We tell you how to simulate other robots
in a following section of this chapter.)  Normally, connect and disconnect to the simulator from the client
using an interprocess communications channel on the same machine. If for some reason the client
terminates abnormally, the simulator can be disconnected using the Disconnect option from the Quit
menu. Disconnecting or quitting the simulator while the client is connected will cause the client to quit.

Once connected with a client, the simulator displays a window of its activity. A sample window is
shown in Figure 3-1. The simulated robot is the circular icon in the center of the screen; the straight lines
are simulated world segments: walls, corridors, rooms, and so on. A collection of segments—a world—
may be defined in a simple text file (see below) and loaded from the simulator’s Load (Files)  menu.



3: The Simulator

24

The simulator listens on an interprocess communication channel for connections from a server.  In Unix
systems, this is a local Unix socket; under Windows, it is a mailbox.  Default names for these sockets are
supplied by the simulator.  Only one simulator may be connected at a time to that socket or mailbox.  In
some cases, it is convenient to start up multiple copies of the simulator; or, for some reason, the socket
may be busy or unavailable.  In these cases, the simulator can be started with an alternative socket name.
Set the environment variable ROBOT_SOCKET to the name of the desired socket before starting the
simulator, and it will be used instead of the default.  The simulator window shows which socket it’s
listening on.

To connect to a particular socket form the client side, set the ROBOT_SOCKET environment variable to
the name of the desired simulator socket before trying to connect.

3.2. Parameter File
The default operating parameters for the simulator are for the Pioneer 1. You may reset these working

parameters to simulate nearly any mobile robot by constructing then loading a special robot parameter file
into the simulator from the Load (Files)  menu. Find a variety of prepared parameter files in the
Saphira params/  directory. The newly loaded model is active for as long as you run the simulator or
until you load another parameter file.

You prescribe a variety of simulated robot characteristics in a parameter file, such as placement of
sonars and drive error tolerances. Once constructed, normally store your parameter file in common text
(ASCII) format in the params/  directory, usually with a “.p ” suffix to the filename. A sample, annotated
parameter file listing is in the Appendix A, and the parameter file can be found in the Saphira collection as
params/pioneer.p .

Figure 3-1 A sample window of the simulator



Saphira Software Manual

25

Three important parameters control the amount of error in the simulated robot’s motion (Table 3-1).
Consult the listing in Section 10 for more details.

3.3. World Description File
A world description file is a plain text (ASCII) document typically stored with the “.wld ” filename

suffix, which describes the size and contents of a simulated world.  A sample world file can be found in the
Section 11, along with instructions on how to create your own worlds.  We’ve also included several sample
world files with the Saphira distribution found in the worlds/  directory.

3.4. Simulator Menus
Several simulator menus control the parameters and actions of the simulated robot. There are controls

for loading world and parameter files, for adjusting the display, and for changing the connection type, for
example. (Not all menus are implemented in every version.)

3.4.1. Load (Files) Menu
The Load Param File  item brings up a file selection dialog to load a robot parameter file. The

parameter file changes the characteristics of the simulated robot, such as the number and placement of the
sonars. By default, the Pioneer robot parameters are loaded.

The Load World File  item brings up a file selection dialog to load a world file.

3.4.2. Connect Menu
The Connect  menu controls the port that the simulator listens on, and also disconnects the simulator

from an aborted client.
By default, the simulator is listening on the interprocess communication port, waiting for a client on the

same machine. The simulator can also listen on one of the serial ports, if the appropriate port name is
selected from the menu. In this case, the simulator and client can run on different machines.

The Disconnect  item causes an immediate disconnect of the simulator from its connected client.
Normally, the simulator will disconnect automatically when the client sends it the sfCLOSE command.

In situations where the client has a system error and exits abnormally, the client may remain connected,
even though the connection is no longer valid. In this case, the Disconnect item will force the connection to
close, so the simulator can go back to a listening state.

With the Windows95/NT version, an Exit option also is in the Connect  menu

3.4.3. Display Menu (Grow, Shrink and Wake)
The Grow and Shrink  menus or items in the simulator’s Display  menu change the size of the

display.
The Wake item, if on, or Wake menu, when clicked, causes a the simulator to display a breadcrumb of

the last few seconds of simulated robot travel.

Table 3-1.   Example drive error tolerance values for a parameters file

Parameter Pioneer Value Description

EncodeJitter 0.01 Error in distance

AngleJitter 0.02 Error in angular position

AngleDrift 0.003 Angular drift with forward movement



3: The Simulator

26

3.4.4. Recenter Menu
Selecting the Recenter  menu item centers the display around the current robot position. It does not

change the robot’s position.
Normally, the simulator will keep the robot icon near the center of the display by moving the display

window when the robot approaches an edge.

3.4.5. Exit Menu
The Exit  menu (or item in Connect  menu) terminates the simulator. A connected simulator should

be disconnected first from the client side, or it will cause the client to abort.
Exiting shuts down any current connection and exits the application. Quitting a connected simulator

will usually cause the client to quit as well, so it’s a good idea to disconnect from the client side first.

3.4.6. Information Area
The information area at the bottom of the simulator window shows messages about the connection

status. It also shows the absolute x,y position of the robot in meters, and the angle of the robot in degrees.

3.5. Mouse Actions
The left mouse button puts the simulated robot at the position of the cursor. This moves the robot in its

world, and the X, Y coordinates at the bottom of the screen will change. If the robot becomes stuck against
a wall, using the left mouse button to move it a little can unstick it.

The middle button moves the simulated world position at the cursor to the center of the display.



Saphira Software Manual

27

4. Creating Saphira Clients
This chapter describes how to compile and link a Saphira client. The next chapter contains details of the

Saphira API, which should be used as a reference guide to the Saphira libraries.
In addition to the Saphira API, the best reference material is the example clients that are defined in the

Saphira distribution and in the tutorial documentation at the SRI Saphira website
(http://www.ai.sri.com/~konolige/saphira).  The sample clients are found in the handler/src/apps
directory, and they are explained in more detail below.  Other examples of behavior definition are in the
handler/src/samples  directory: see the documentation on fuzzy control behaviors at the website.

The functions in the Saphira library may be invoked by linking with other programs. Typically,
developers write the client in C or C++ using the header files in handler/include  that contain
prototypes and definitions of structures and variables in the Saphira library.  After compiling his or her
files, the developer links them with the Saphira library to create an executable client, which can connect to
the robot and control it.

It is also possible to use the Saphira system from other languages such as  LISP or PROLOG, as long as
they have a foreign-function interface facility.  In this case, the developer writes some routines in C or C++
that are compiled into object files, and then these object files, together with the Saphira libraries, are
loaded into the LISP or PROLOG system.

4.1. Host System Requirements
Saphira libraries are available for most Unix systems (including SunOS 4.1.3, Solaris 5.x, SGI Irix, Dec

OSF, Linux, and FreeBSD), as well as MS Windows 95 and NT 3.51 and 4.0.  For Unix systems, we
recommend using the gcc compiler and linking tools from the Free Software Foundation.  These tools
provide a uniform base for making clients, and the sample programs are all made with them.

In addition, if you want to use any of the graphics or user interface routines, you will need the following
libraries and headers:

1.   X11R5 or later
2.   Motif 2.0 or later
For MS Windows, the libraries have been compiled with MS Visual C 4.x tools.  There is a DLL file

and an associated LIB  file.  For the best compatibility, we recommend using MSVC 4.0 or later: all of the
sample clients are given with .MAK files for MSVC 4.0.  It may be possible to use Borland tools, but they
have not been tested; there may be a problem with incompatibilities between MSVC and Borland LIB
files.

4.2. Compiling and Linking Saphira Applications
To compile a Saphira client, you must have installed the Saphira distribution according to the directions

in the readme  file.  In particular, the environment variable SAPHIRA must be set to the top level of the
distribution: we recommend /usr/local/saphira/ver53  in a UNIX system, for example.

Once the Saphira distribution is installed, there are three steps to creating a client:
1.  Write a C or C++ program containing your code for the client, including calls to Saphira library

functions.
2.  Compile the program to produce an object file.
3.  Link the object file together with the relevant Saphira library to create an executable.

In Unix systems, all the Saphira library routines are statically linked into the executable.  In MS
Windows, the executable does not contain the library code, but loads the Saphira DLL file when it
executes.



4: Creating Saphira Clients

28

4.2.1. Writing C or C++ Client Programs
To develop a Saphira application, you write one or more C or C++ programs that make calls to the

Saphira library routines.  It may help to review Section 2 for an explanation of micro-tasks and
asynchronous user routines.

The main file will always have the following structure in Unix systems:

#include “saphira.h” /* header file for Saphira library */

...definition of startup, connect, and disconnect callbacks...

void main(int argc, char **argv)
{
   /* register callbacks */
   sfOnConnectFn(myConnectFn);
   sfOnStartupFn(myStartupFn);

   /* start up Saphira micro-tasking OS */
   sfStartup(0);
}

The Saphira library headers, as well as other relevant system and graphics headers, are loaded by the
saphira.h  file.  The callbacks are defined to start up Saphira or user micro-tasks when the client
connects to or disconnects from the robot.  The main  function is the entry to the client; it registers the
callbacks, and then starts up the Saphira micro-tasker with the call to sfStartup .  The argument of 0 to
this function means that control does not return to the main program: all processing is done using micro-
tasks, and the client exits when the Exit item is chosen from the File menu.

Programming in MSVC is similar, except that the form of the main  function changes to MS Windows
programming standards.

#include “saphira.h” /* header file for Saphira library */

...definition of startup, connect, and disconnect callbacks...

int PASCAL WinMain(Handle hInst, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
   /* register callbacks */
   sfOnConnectFn(myConnectFn);
   sfOnStartupFn(myStartupFn);

   /* start up Saphira micro-tasking OS */
   sfStartup(hInst, nCmdShow, 0);
   return 0;
}

In this case, control does return to the main program after the Saphira client exits, and the user should
return 0 to indicate that the exit was normal.



Saphira Software Manual

29

For most robot programming, all operations can be handled in micro-tasks.  If a more compute-
intensive task must be done concurrently, then sfStartup  should be called with an argument of 1, which
means that the Saphira micro-tasking OS is started, and immediately returns control to the main program.

The user can now run any routines concurrently with the Saphira OS, which is executing its micro-tasks
every 100 ms.  The micro-tasks and the asynchronous user routines share the same address space, and can
communicate via global variables.

Figure 4-1 is a graphical view of the execution process.  The main client thread starts up, and invokes
the Saphira OS with the sfStartup   function.  Once startup, the OS wakes up every 100 ms and runs
every micro-task.  If the argument to sfStartup  is 0, then control never returns to the main thread.  If it
is 1, then control returns immediately, and both threads execute concurrently.

Explanations of some sample Saphira client programs are given later in this section.

4.2.2. Compiling and Linking Client Programs under Unix
Once the client programs are written, they must be compiled with a C or C++ compiler.  We

recommend the gcc  compiler for Unix systems; all sample programs have been compiled using this
compiler.  Other C compilers provided with Unix systems should also work, however.

The compiler and linker are typically called using the make facility.  Makefiles are given for all of the
sample clients.  Here is a portion of the makefile for handler/src/apps/lowlev.c :

Main
thread

Saphira
OS

Execute
micro-tasks

Execute
micro-tasks

Execute
micro-tasks

100 ms

200 ms

300 ms

sfStartup

User
async
routines

Figure 4-1.  Concurrent execution of Saphira OS
and user asynchronous tasks.



4: Creating Saphira Clients

30

The first part of the makefile defines variables that are useful in compilation and linking.  Note that the
SAPHIRA environment variable must be defined as the top level of the Saphira distribution (with no final
slash).  The handler/include  directory contains header files, and handler/obj  has the libraries.

Next, the file handler/include/os.h  is read in.  This file determines the operating system type
and sets some system library variables appropriately, for X windows and Motif.  It also sets the CONFIG
variable to the particular OS of the machine, which is important for handling some of the system routines
correctly.  For most OS’s, the Motif (MOTIFD) , X11 (X11D) and system libraries (LLIBS ) are set
correctly, but there may be cases in which they are not.  In this event, go into the os.h  file and change the
definitions under your OS.

One peculiarity of os.h  is that it relies on the conditional preprocessing facilities of gnu make
(gmake).  Not all native makes support this facility.  If you get errors during the preprocessing phase of
the compilation from os.h , switch to gmake.

The compile command makes lowlev.o from the lowlev.c  file.  It is important that the variable -
D$(CONFIG)  is passed to the compiler, because this tells the header files what particular variant of Unix
is being used.  The include directories are the Saphira header directory and the X11 directory.

The link command takes the object file generated by the compile command and links it with the Saphira
library and system libraries to form the executable.  The Saphira library is indicated by -lsf .  This is the
library that opens a graphics window and has all the user interface functions.  If you don’t want a window,
use the -lsfx library.  The LLIBS  variable indicates other system libraries that may be needed by this
particular Unix system.

The executable is deposited in the same directory as the source file, and can be invoked by typing its
name at the shell prompt.

#############################################################
# November 1996
#
# Makefile for Saphira applications
#
#############################################################

SRCD = ./
OBJD = ./
INCD = $(SAPHIRA)/handler/include/
LIBD = $(SAPHIRA)/handler/obj/
BIND = ./

# find out which OS we have
include $(SAPHIRA)/handler/include/os.h

CFLAGS =  -g -D$(CONFIG)
CC = gcc
INCLUDE = -I$(INCD) -I$(X11D)include

#############################################################
all: $(BIND)lowlev
        touch all

$(OBJD)lowlev.o: $(SRCD)lowlev.c $(INCD)saphira.h
        $(CC) $(CFLAGS) -c $(SRCD)lowlev.c $(INCLUDE) \

 -o $(OBJD)lowlev.o

$(BIND)lowlev: $(LIBD)libsf.a $(OBJD)lowlev.o
        $(CC) $(OBJD)lowlev.o -o $(BIND)lowlev -L$(MOTIFD)lib \  -
L$(OBJD) -L$(LIBD) -lsf $(LLIBS) -lc -lm



Saphira Software Manual

31

4.2.3. Compiling and Linking Client Programs under MSVC
 With Microsoft Windows, the sample Saphira clients are MS Visual C++ 4.x projects.  There are .MAK

files for all of the sample clients in the handler/src/apps  directory; load these into MSVC and you
should be able to compile and link the clients.  One problem with the included projects is that they use
absolute path names for the source files (including the library file sf.lib  and resource file
saphira.rc .  At this time there seems to be no way to specify relative path names, so if you use a
different distribution directory (i.e., not c:\saphira\ver53 )  then you will not be able to compile the
sample applications until you add in the same files using the add files  command.

To run the clients, make sure that the SF.DLL  file is accessible in the C:\Windows\System
directory, or in a directory on your PATH variable.

The easiest way to compile and link your own clients is to use the sample project files, and modify
them to include your source files instead of the sample clients.  Here are some things to remember when
creating new MSVC projects.

1.  The Saphira library file handler/obj/sf.lib  must be included in the project files.
2.  The Saphira resource file handler/saphira.rc  must be included in the project files.
3.  The project must compiled in 32 bit mode, not 16 bit mode.
4.  You must add the directory for the include files, $(SAPHIRA)\handler\include , into the

“Additional include directories” slot in the Build/Settings menu under the C/C++ tab and
Preprocessor category.  Also, make sure the symbol _WINDOWS is defined in the Preprocessor
definitions slot here.

5.  You must add the directory for the include files, $(SAPHIRA)\handler\include , into the
“Additional resource include directories” slot in the Build/Settings menu under the Resource
tab.

4.3. Client Examples
In this section we illustrate some of the ways of writing Saphira clients with four examples.  These files

are all in handler/src/apps .  For explanations of the functions and data structures, see the relevant
sections of the Saphira API reference.

•  direct.c    This client uses the state reflector and the direct motion routines to move the robot back
and forth between two points.  The patrol routine is a Saphira micro-task.

•  async.c     This client also uses the state reflector and direct motion routines, but instead of invoking
a micro-task it calls the motion routines asynchronously.

•  nowin.c     Like the previous client, this one calls the motion commands asynchronously, but ignores
the user interface routines and connects to the robot directly.

•  saphira.c    This is the source for the demonstration client bin/saphira .  It invokes behaviors,
activities, and perception micro-tasks, as well as user-interface functions on the mouse buttons.

•  packet.c     This client bypasses the state reflector of Saphira, providing its own packet
communication handler.

4.3.1. The Direct  Client
Using direct motion commands, the direct  client moves the robot back and forth along a two meter

line.  This activity is done by a micro-task, the patrol  function.  Only part of this function is shown here.
The example starts with a  header file that reads in all prototype and structure information for the

Saphira libraries. The headers can be read by C or C++ programs; all library names are C names. The file
handler/include/saphira.h  automatically configures the C compiler for the operating system
you’re running on: UNIX (SGI, Solaris, Linux, FreeBSD) or MS Windows 95/NT.  If you need to
customize these files, for example, if you have the Motif libraries in a different place than Saphira



4: Creating Saphira Clients

32

assumes, then look in handler/include/os.h and the various configuration files
handler/include/conf-xxx.h  for library and header file definitions.

Saphira provides a way to call user functions whenever it is started up or connects to the robot.  It does
this by registering user functions as callbacks with sfOnStartupFn  and sfOnConnectFn .  Whenever
a startup or connect event takes place, Saphira calls the registered user function.

The startup callback is used to initialize various features of Saphira’s display, such as the display rate,
or local/global mode.  You can’t set these before calling sfStartup because the windows aren’t created
yet.  If you don’t want to do any special processing here, there’s no need to define a startup callback.

In this application, myStartupFn  is invoked when the Saphira OS is initialized, and it sets the display
mode to global coordinates (see the sfSetDisplayState function in the API reference).   myConnectFn  is
invoked when the client connects to the robot server (using the Connect menu); it starts up the
communication micro-tasks that maintain the state reflector, and then starts the patrol micro-task.

In the main  function, the callbacks are registered, and then the Saphira OS is started by sfStartup .
Since the argument is 0, this function does not return, and all computation takes place in the micro-tasks.

#include "saphira.h"

void patrol(void)
{
     switch(process_state) {
     case INIT:
  case 20:
    sfSetPosition(2000);
    process_state = 21;
    break;
  case 21:
    if (sfDonePosition(100))
       process_state = 22;
    break;
   …
}}

void myStartupFn(void)
{
  sfSetDisplayState(sfGLOBAL, TRUE); /* use the global view */
}

void myConnectFn(void)
{
  sfInitBasicProcs(); /* start up comm processes */
  sfSetMaxVelocity(200); /* robot moves at this speed */
  sfInitProcess(patrol,"patrol");
}

void main(int argc, char **argv)
{
  sfOnConnectFn(myConnectFn);/* register a conn function */
  sfOnStartupFn(myStartupFn);/* register a startup function */
  sfStartup(0); /* start up the Saphira window */

}

4.3.2. The Async  Client
This client demonstrates asynchronous control of the robot, that is, outside the micro-task loop.  As in

the direct  client, the startup and connect callbacks are defined and then registered in the main  function.
Then, sfStartup  is called with an argument of 1, which starts up the Saphira OS, and then keeps
executing the user’s program.



Saphira Software Manual

33

The program waits in a while  loop until the user connects to a robot, then starts to issue a series of
direct motion commands.  The motion commands are synchronized using the sfDoneXXX  functions to
wait for completion, and sfPause  to wait for a time interval.

Finally, it closes the connection to the robot and exits.  When the main program exits, the Saphira OS is
also automatically exited.  If you want to keep the micro-task OS operating, then just start a while  loop
whose body is sfPause(1000) .

Note that the packet communication and state reflection micro-tasks are initiated in the connect
callback (myConnectFn ).  It’s important to do this, since the direct motion commands rely on state
reflection to control the robot.



4: Creating Saphira Clients

34

#include "saphira.h"

void myStartupFn(void)
{
  sfSetDisplayState(sfGLOBAL, TRUE); /* use the global view */
}

void myConnectFn(void)
{
  sfInitBasicProcs(); /* start up comm processes */
}

void main(int argc, char **argv)
{
  int i = 0;

  sfOnConnectFn(myConnectFn); /* register a conn function */
  sfOnStartupFn(myStartupFn); /* register a startup function */
  sfStartup(1); /* start up the Saphira OS,

   and then keep going */

  while (!sfIsConnected) sfPause(0); /* wait until connected */

  sfSetRVelocity(100); /* in mm/sec on each wheel... */
  sfPause(4000);
  sfSetRVelocity(0);
  sfPause(4000);

  for (i=0; i<280; i+=20)
    {
      printf("Turn %d degrees\n", i);
      sfSetDHeading(i); /* turn i degrees cc */
      while (!sfDoneHeading(10))
          sfPause(0); /* wait till we're within 10 degrees */
      sfSetDHeading(-i); /* turn i degrees c */
      while (!sfDoneHeading(10))
          sfPause(0); /* wait till we're within 10 degrees */
    }

  sfSetVelocity(300); /* move forward at 300 mm/sec */

  for (i=0; i<10; i++)
    {
      printf("X: %f  Y: %f\n", sfRobot.ax, sfRobot.ay);
      sfPause(1000); /* DON'T USE SLEEP!!!! */
      sfSetDHeading(10);
    }

  sfSetVelocity(0); /* move forward at 300 mm/sec */
  sfPause(4000);
  sfDisconnectFromRobot(); /* we're gone... */
}



Saphira Software Manual

35

4.3.3. The Nowin  Client
Like the async client, this client makes use of the asynchronous execution of user routines.   But

instead of starting up the Saphira interface window, it just connects to the robot by a function call, and then
starts executing direct motion commands.  If this client is linked with the non-window library (sfx ), then
no interface window will appear (in MS Windows, you can use a console application instead of GUI
application).

#include "saphira.h"

[ omitted callback definitions ]

void main(int argc, char **argv)
  int i = 0;

  sfOnConnectFn(myConnectFn); /* register a conn function */
  sfOnStartupFn(myStartupFn); /* register a startup function */
  sfStartup(1); /* start up the Saphira OS,

   and then keep going */
  if (sfConnectToRobot(sfLOCALPORT, sfCOMLOCAL))
                               /* this is for the simulator */
    {
      sfSetVelocity(300); /* move forward at 300 mm/sec */

      for (i=0; i<10; i++)
{
  printf("X: %f  Y: %f\n", sfRobot.ax, sfRobot.ay);
  sfPause(1000); /* DON'T USE SLEEP!!!! */
  sfSetDHeading(10);
}

      sfSetVelocity(0); /* stop */
      sfPause(4000);
      sfDisconnectFromRobot(); /* we're gone... */
    }
  else
    printf("Can't connect!!\n");
}

4.3.4. The Saphira  Client
The example Saphira client makes use of many pre-defined behaviors and micro-tasks to implement a

simple handler for the robot. There are behaviors for obstacle avoidance and forward motion at constant
velocity, as well as processes for interpreting sonars, recognizing corridors, and registering the robot
against previously found objects.  In the connect callback, all these routines are started up using Saphira
library calls.



4: Creating Saphira Clients

36

The user micro-task (test_control_proc) is very simple: it starts up several behaviors and one PRS
intention, then puts itself into a suspended state. You can change the state of the invoked behaviors,
intentions, and processes from Saphira’s Function  menu (see previous chapter). All of the behaviors
used in this function are available as part of the Saphira library.

/*
 * The Saphira application: all the basic processes loaded
 *  plus registration and map-making processes
 *  Behaviors: avoid-obstacle, keep-off, constant-velocity, stop
 *  Intentions: follow-it
 */
#include "saphira.h"

void myConnectFn(void);
void myStartupFn(void);
int myKeyFn(int ch); /* any user key processing here */
int myButtonFn(int x, int y, int b);

void main(int argc, char **argv)
{
  /* set up user button and key processing */
  sfButtonProcFn(myButtonFn);
  sfKeyProcFn(myKeyFn);
  sfOnConnectFn(myConnectFn);
  sfOnStartupFn(myStartupFn);

  /* start up, give it control */
  sfStartup(0);
}

void myStartupFn(void)
{
  sfSetDisplayState(sfDISPLAY, 2); /* set it to 5 Hz */
}

void myConnectFn(void) /* start those processes */
{
  sfInitBasicProcs();
  sfInitRegistrationProcs();
  sfInitSpecialProcs();
  sfInitInterpretationProcs();
  sfInitControlProcs();
  sfInitAwareProcs();
  sfInitProcess(test_control_proc,"User Process");
}



Saphira Software Manual

37

The Saphira main window system passes keystrokes to your process via the callback registered with
sfKeyProcFn . This callback should return 0 if the you want the default key action: moving the robot
when the user presses one of the movement keys, for example. Otherwise, the function should return 1 to
signal that it has handled the keypress.  If you don’t want to perform any special keyboard actions, you
don’t have to register a callback.

void test_control_proc(void)
{
  switch(process_state)
    {
    case INIT:
      sfPreferredTurnDir = sfLEFTTURN;
      sfInitBehavior(sfConstantVelocity, 3, False,

sfFLOAT, 300.0,
sfEND);

      sfInitBehavior(sfStop, 4, False,
     sfEND);

      sfInitBehavior(sfAvoidCollision, 0, False,
sfFLOAT, 3.0, /* front sensitivity */
sfFLOAT, 3.0, /* side sensitivity */
sfFLOAT, sfSHARPLY, /* turn gain */
sfFLOAT, 100.0, /* standoff */
sfEND);

      sfInitBehavior(sfKeepOff, 1, False,
sfFLOAT, 100.0, /* caution speed */
sfFLOAT, 0.25, /* sensitivity */
sfEND);

      sfInitIntention(sfFindAndFollow, "follow corr", 0, sfEND);
      sfSetProcessState(sfFindProcess("follow corr"), 

sfINTERRUPT);
      process_state = SUSPEND;
      break;
    case RESUME:
      sfMessage("Resumed");
      break;
    }
}



4: Creating Saphira Clients

38

Similarly, mouse clicks are sent to the callback registered with sfButtonProcFn .  Again, returning 0
from the callback means the default action is invoked; returning 1 means the callback handled the mouse
click.

The example keypress callback above uses API calls for finding active behaviors, changing their state,
and printing messages to the user. These calls are all documented in the following chapter.  The mouse
callback simply returns 0, invoking the default mouse click action.  Note that the mouse callback could
have been omitted; it’s simply here to illustrate how a mouse callback is invoked.

4.3.5. The Packet  Client
This client handles low-level communication with the robot server, bypassing Saphira’s OS, which is

never started.  It takes advantage of the low-level Saphira communication routines, which parse packets
and put the information into the state reflector structures.

#include "saphira.h"

void main(int argc, char **argv)
{
  int i = 0;

  /* open up the connection, to the simulator or robot */

  if (!sfConnectToRobot(sfTTYPORT, sfCOM1)) /* tty port */
    {
      printf("Couldn't open robot!\n");
      exit(0);
    }

  sfRobotComInt(sfCOMOPEN,1); /* open the motor controller */
  sfResetRobotVars(); /* reset all app variables */
  sfRobotCom(sfCOMPULSE); /* ask for data */
  sfRobotComInt(sfCOMVEL, 300); /* move forward at 300 mm/sec */

  /* read 100 packets */

int myButtonFn(int x, int y, int b)
{
  return 0; /*  don't do default handling */
}

int myKeyFn(int ch) /* any user processing here */
{
  BEHCLOSURE b;
  switch(ch)
    {
    case SPACEKEY:
      if (NULL != (b = sfFindBehavior("sfConstantVelocity")))

{
  if (b->running) sfMessage("Constant Vel OFF");
  sfSetBehaviorState(b, sfOFF);
}

      sfSetVelocity(0); /* stop the robot */
      break;

    …
      return 1;
    }
  return 0; /* return 0 if we don't process it */
}



Saphira Software Manual

39

  while (i<100)
    {
      if (sfWaitClientPacket(1000)) /* wait 1 sec for packet */

{
  i++;
  sfProcessClientPacket(sfReadClientByte());
}

      if (i % 10 == 0)
{
  sfRobotCom(PULSE_COM); /* keep asking */
  sfRobotComInt(VEL_COM, 300); /* keep it going */
  printf("%d packets received\n", i);
  printf("X: %f  Y: %f\n", sfRobot.x, sfRobot.y);
}

    }

  sfRobotComInt(sfCOMVEL, 0); /* stop the robot */
  sfDisconnectFromRobot();
}

In the main function, the client starts by opening a connection to the robot, and then tells it to move
forward at 300 millimeters per second.  The robot sends an information packet to the client every 100
milliseconds; the main client loop collects 100 server packets, parsing each into the state reflector
structures.  After the packets, the client stops the robot, disconnects from the server, and ends execution.



Saphira Software Manual

41

5. Saphira Servers
In the Saphira client/server model, the robot server works to manage all the low-level details of the

robot’s systems, including operating the drives, firing the sonars and collecting echoes, and so on, on
command from and reporting to a separate client application, such as Saphira.  With Pioneer, this is the
Pioneer Server Operating System (PSOS.  The capabilities of the Pioneer robot server, and its connection
to the client, are shown in Figure 5-1.

High-level robotics applications developers do not need to know many details about a particular robot
server, because the Saphira client insulates them from this lowest level of control. Some of you, however,
may want to write your own robotics control and reactive planning programs, or just would like to have a
closer programming relationship with your robot. This chapter explains how to communicate with your
robot via the Saphira client/server interface. The functions and commands, of course, are supported in the
Saphira C libraries that came with your robot, but not every robot supports all commands. Please consult
your robot’s operation manual or Saphira supplement for those details.

5.1. Communication Packet Protocol
The Saphira-mediated robot or its simulator communicates with a client application using a special

packet protocol. It is a bit stream consisting of four main elements (Table 5-1): a two-byte header, a one-
byte count of the number of data and checksum bytes in the packet, a client command including arguments
or a server information data block, and ending with a two-byte checksum.

Figure 5-1 Saphira client-robot server architecture



5: Saphira Servers

42

5.1.1. Packet Data Types
Packetized client commands and server information blocks use several data types, as defined in Table

5-2. There is no convention for sign; each packet type is interpreted idiosyncratically by the receiver.
Negative integers are sign-extended.

5.1.2. Packet Checksum
A communication packet checksum is derived by successively adding data byte pairs (high byte first) to

the running checksum (initially zero), disregarding sign and overflow. If there is an odd number of data
bytes, the last byte is XOR-ed in to the low-order byte of the checksum.

NOTE:  The checksum word is placed at the end of the packet with its bytes in the reverse order of that
used for arguments and data; that is, b0 is the high byte, and b1 is the low byte.

Use the following C-code fragment in your client applications to compute a checksum:

Table 5-1 Main elements of PSOS communication packet protocol

Component Bytes Value Description

Header 2 0xFA, 0xFB Packet header; same for client and server

Byte Count 1 N + 2 Number of subsequent data bytes plus
checksum; must be < 200 total bytes long

Data N command
or SIB

Client command or server information
block
(discussed in subsequent sections)

Checksum 2 computed Packet integrity checksum

Table 5-2 Communication packet data types

Data Type Byte Count Byte Order

Integer 2 b0 low byte; b1 high byte

Word 4 b0 low byte; b3 high byte

String up to ~200,
length-prefixed

b0 length of string;
b1 first byte of string

String unlimited
 null-terminated

b0 first byte of string;
0 (null) last byte



Saphira Software Manual

43

int
calc_chksum(unsigned char *ptr) /* ptr is array of bytes, first is data count
*/
{
  int n;
  int c = 0;
  n = *(ptr++);
  n -= 2; /* don't use chksum word */
  while (n > 1) {
    c += (*(ptr)<<8) | *(ptr+1);
    c = c & 0xffff;
    n -= 2;
    ptr += 2;
  }
  if (n > 0) c = c ^ (int)*(ptr++);
  return(c);
}

5.1.3. Packet Errors
Currently, the Saphira server interface ignores a client command packet whose byte count exceeds 200

or has an erroneous checksum. The client should similarly ignore erroneous server information packets
(Saphira does).

The Saphira client/server interface does not acknowledge receipt of a command packet, nor has any
facility to handle client acknowledgment of a server information packet. Hence, Saphira client/server
communication is as reliable as the physical communication link. UNIX pipes with the simulator or a cable
tether between the robot and client computer are very reliable links. Radio modem-mediated
communication is much less reliable. Accordingly, when designing client applications that may use radio
modems, do not expect to receive every information packet intact, nor have every command accepted by
the server.

The design decision to provide an unacknowledged packet interface is a consequence of the realtime
nature of the client/server interaction. Simply retransmitting server information blocks or command packets
would result in antiquated data not at all useful for a reactive client or server.

For some operations, however, the data do not decay as rapidly: some commands are not overly time-
sensitive, such as those that perform housekeeping functions like changing the sonar polling sequence. It
would be useful to have a reliable packet protocol for these operations, and we are considering this for a
future release of Saphira server interface.

In the meantime, the Saphira client/server interface provides a simple means for dealing with ignored
command packets: Most of the client commands alter state variables in the server. By examining those
values in the server information packet, client software may detect ignored commands and reissue them
until achieving the correct state.

5.2. Client Commands
Saphira client/server interface implements a structured command format for receiving and responding to

directions from the client for control and operation of the robot or its simulator. You may send client
commands to the robot at a maximum rate of once every 100 milliseconds. The client must send a
command at least once every two seconds; otherwise, the server will stop the robot’s onboard drives.

The client command is comprised of a one-byte command number optionally followed by, if required
by the command, a one-byte description of the argument type and the argument. To work, of course, the
client command and its optional argument must be included as the data component of a client
communication packet (Table 5-3; also see earlier sections of this chapter).

Table 5-4 contains the list and brief descriptions of the currently implemented Saphira client
commands, which we discuss in detail in following sections. These and additional server operating
commands used by most, but not all, Saphira-enabled robots, also appear in the Saphira header file



5: Saphira Servers

44

handler/include/saphira.h . Check your robot’s operation manual, Saphira supplement, and
Saphira distribution UPDATE text file for the latest details.

5.2.1. Client Command Argument Types
There are three different types of client command arguments: positive integers two bytes long, negative

integers two bytes long, and strings of up to 195 characters long (200-byte limit on packets) terminated
with a 0 (NULL). Byte order is least-significant byte first. Negative integers are transmitted as their
absolute value (unlike information packets, which use sign extension for negative integers; see below). The
argument is either an integer, a string, or nothing, depending on the command.

5.2.2. Saphira Client Command Support
Saphira fully supports client commands with useful library functions. Prototypes can be found in

handler/include/saphira.h  and saphira.pro .   See Chapters 5 and 6 for details.

Table 5-3  Client command communication packet

Component Bytes Value Description

Header 2 0xFA, 0xFB Packet header; same for client and server

Byte Count 1 N + 2 Number of command bytes plus checksum;
must be < 200 total bytes long

Command
Number

1 0 - 255 Client command number;
see Table 4-4

Arg Type
(optional)

1
0x3B or
0x1B or
0x2B

Data type of command argument, if included:
(sfARGINT) positive integer
(sfARGNINT) negative int or absolute value
(sfARGSTR) string, null-terminated

Argument
(optional)

N data Command argument; integer or null-
terminated string

Checksum 2 computed Packet integrity checksum



Saphira Software Manual

45

5.3. Server Information Packets
The Saphira-aware server automatically sends a packet of information over the communication port

back to the client every 100 milliseconds. The server information packet informs the client about a number
of the robot’s operating parameters and readings, using the order and data types shown in Table 5-5. Your
client application may use the Saphira library function sfProcessClientPacket to parse the server
information and deposit the results in various buffers of the state reflector.  See the section on the state
reflector in the API reference for information about these structures.

Table 5-4   PSOS 4.2 supported client commands

Command
Name         Number

Argument
Value(s)

Description

sfSYNC0 0 none Start connection; server echoes these
sfSYNC1 1 none synchronization commands back to
sfSYNC2 2 none client.

sfCOMPULSE 0 none Communication pulse
sfCOMOPEN 1 none Open the motor controller
sfCOMCLOSE 2 none Close server and client connection
sfCOMPOLLING 3 string Set sonar polling sequence
sfCOMSETO 7 none Set server origin
sfCOMVEL 11 signed int

mm/sec
Forward (+) or reverse (-) velocity

sfCOMHEAD 12 unsigned int
degrees

Turn to absolute heading 0-360 degrees

sfCOMDHEAD 13 signed int
degrees

Turn heading +-255 degrees

sfCOMRVEL 21 signed int
degrees/sec

Set rotational velocity +- 255 degrees/sec

sfCOMVEL2 32 2 bytes
4*mm/sec

Set wheel velocities independently +-
4mm/sec

sfCOMDIGOUT 30 integer
bits 0-7

Set digital output bits

sfCOMTIMER 31 integer
pin 0-7

Initiate user input timer, triggering an event
with specified pin

sfCOMGRIPPER 33 integer
0, 1, 4, 5

Sets gripper state

sfCOMPTUPOS 41 integer
1-2000 ms

Set pulse-width for position servo control.

sfCOMSTEP 64 none Single-step mode (simulator only)



5: Saphira Servers

46

Input timer unsigned int User input timer reading

User Analog byte User analog input reading

User Input byte User digital input pins

User Output byte User digital output pins

Checksum int Checksum (see previous section)

Table 5-5   Saphira server information data packet (minimum contents)

Name Data Type Description

Header int Exactly 0xFA, 0xFB

Byte Count byte Number of data bytes + 2; must be less
than 201 (0xC9)

Status byte = 0x3S; where S = Motors status

sfSTATUSNOPOWER Motors power off

sfSTATUSSTOPPED Motors stopped

sfSTATUSMOVING Robot moving

Xpos unsigned int (15 ls-bits) Wheel-encoder integrated coordinates;
platform-dependent units—multiply
by

Ypos unsigned int (15 ls-bits) DistConvFactor in the parameter file
to convert to mm; roll-over ~ 3 m

Th pos signed int Orientation in platform-dependent
units—multiply by AngleConvFactor
for radians

L vel signed int Wheel velocities (respective Left and
Right) in platform-dependent units—

R vel signed int multiply by VelConvFactor  to convert
to mm/sec.

Battery byte Battery charge in tenths of volts

Bumpers 2 bytes - L and R Motor stall indicators

Bumpers unsigned int

Control signed int Setpoint of the server’s angular
position servo—multiply by
AngleConvFactor for radians

PTU unsigned int Pulse width of position servo

Say byte verbal/sound clues

Sonar
readings

byte Number of new sonar readings
included in information packet;
readings follow:

Sonar num byte Sonar number

Sonar range unsigned int Sonar reading—multiply by
RangeConvFactor for mm

... rest of the sonar readings ...



Saphira Software Manual

47

In future versions, server information packets may contain additional, appended data fields. To remain
compatible, have your client application accept the entire data packet, even though it may use only a few
selected fields.

5.4. Start Up and Shut Down
Before exerting any control, a client application must first establish a connection to the robot server via

an RS-232 serial link (9,600 baud), a interprocess connection (UNIX pipe, for example, or MS Windows
mailslot), or TCP/IP network (Table 5-6. Port types and names for clinet/server connections). Over that
established communication link, the client then sends commands to and receives back operating
information from the server.

5.4.1. Synchronization—sfCOMSYNC
When first started, the Saphira-aware server, including the simulator, is in a “wait” state listening for

communication packets over its designated port. (See your robot operating manual for details about your
robot’s servers.) To establish a connection, the client application sends a series of three synchronization
packets through the host communication port—sfSYNC0, sfSYNC1, and sfSYNC2,  in succession. The
server responds to each, forming a succession of identical synchronization packets. The client should listen
for the returned packets and only issue the next synchronization packet after it has received the echo.

A string may be used for unusual port names—if there is a serial communications card with extra tty
ports, for instance. With Macintosh, it’s best to use the modem port, if it’s available, rather than the
printer  port.

5.4.2. Autoconfiguration
The Saphira-aware servers (PSOS v4.1 or later, for example) send configuration information back to the

client in the last sync packet (sfSYNC2).  After the sync byte, there are 3 null-terminated strings that
represent the robot name, robot class, and robot subclass (Table 5-7).  You can read these strings with the
Saphira function sfReadClientString.  The following table shows what these strings are for different robots.

Table 5-6. Port types and names for clinet/server connections

Port types sfLOCALPORT connect to simulator on the host machine

sfTTYPORT connect to robot on a tty port

sfTCPPORT connect to robot on over TCP/IP network

Port names sfCOMLOCAL local pipe or mailslot name

sfCOM1 tty port 1 (/dev/ttya or /dev/cua0 for UNIX;
COM1 for MSW; modem for Mac)

sfCOM2 tty port 2 (/dev/ttyb or /dev/cua1 for UNIX,
COM2 for MSW, printer for Mac)

SERVER_NAME hostname/IP address of server (not for
Pioneer)



5: Saphira Servers

48

The parameter file that is appropriate for a robot can be found in the Saphira params  directory.  The
name of the parameter file will be the same as the lowercase version of the subclass string (if it exists) or
the class string.

5.4.3. Opening the Servers—sfCOMOPEN
Once the communication link is established, the client should then send the sfCOMOPEN command,

which causes the robot or the simulator to perform some housekeeping functions, start the sonar and motor
controllers (among other things), start listening for client commands, and to begin transmitting server
information.

5.4.4. Keeping the Beat—sfCOMPULSE
As mentioned earlier, a server “safety watchdog” expects that the robot receives at least one

communication packet from the client every two seconds. Otherwise, it assumes the client/server
connection is broken and shuts down the robot’s motors. If your client application will be otherwise
distracted for some time, periodically issue the sfCOMPULSE client command to let the server know you
are indeed alive and well. If the robot shuts down due to lack of communications traffic, it will revive upon
receipt of a client command and automatically accelerate to the last-specified speed at the current heading.

5.4.5. Closing the Connection—sfCOMCLOSE
To close a connection and reset the server to the wait state, simply issue the client sfCOMCLOSE

command.

5.4.6. Movement Commands
As of PSOS 4.2, the robot server accepts several different types of motion commands.  You can set the

turn angle or velocity, and the forward/back velocity; or, you can control the two wheel velocities
independently.  Table 5-8 summarizes the command modes available.

The robot server automatically switches to the required motion control mode when it receives one of
these commands.  For example, if it is in two-wheel velocity mode, and it is sent an sfCOMHEAD
command, it abandons two-wheel velocity mode and starts controlling the heading and velocity of the
robot.

Table 5-7. Robot configuration information

Name string “Robot” for Pioneer-class robots
Computer name for Bxx--class robots
“Simulator” for the simulator

Class string “Pioneer”, “B14”, or “B21”

Subclass string PSOS version for Pioneer-class robots and their simulator
Null string for other robots and simulators

Table 5-8.  Server motion command types

Rotation Translation

sfCOMHEAD    absolute heading

sfCOMDHEAD   differential heading

sfCOMRVEL      rotational velocity sfCOMVEL     forward/back velocity

sfCOMVEL2    left and right wheel velocities



Saphira Software Manual

49

The arguments for these commands are given in Table 5-9 below.  The heading commands are with
respect to the robot’s internal coordinate system (see the section below).

The Saphira-aware robot server will try to make the robot achieve the desired velocity and heading as
soon as the commands are received, using its internal (de)acceleration managers. Check your robot’s
operation manual to find its absolute maximum achievable motion and rotational velocities.

5.5. Robot in Motion
When the Saphira-aware robot server receives a velocity command, it accelerates at a constant rate set

internally to the speed you provided as the argument for sfCOMVEL. Rotational headings are achieved by
a trapezoidal velocity function (Figure 5-2).  This function is re-computed each time a new heading
command is received, making on-the-fly orientation changes possible.

5.5.1. Position Integration
Depending on your robot, it keeps track of its position and orientation based on dead-reckoning from

wheel motion, which is an internal coordinate position.   A server command, sfCOMSETO, resets the robot
server’s internal x,y position coordinates to (0,0,0).

Registration between external and internal coordinates deteriorates rapidly with movement, due to
gearbox play, wheel imbalance and slippage, and many other real-world factors. You can rely on the dead-
reckoning ability of the robot for just a short range—on the order of several meter and one revolution,
depending on the surface (carpets tend to be worse than hard floors).

Also, moving either too fast or too slow tends to exacerbate the absolute position errors. Accordingly,
consider the robot’s  dead-reckoning capability as a means of tying together sensor readings taken over a
short period of time, not as a method of keeping the robot on course with respect to a global map.

Table 5-9.  Motion command arguments

Command Argument(s) Typical invocation

sfCOMHEAD degrees (int)  [0, 360] sfRobotComInt(sfCOMHEAD, 320)

sfCOMDHEAD degrees (int)  [-180, 180] sfRobotComInt(sfCOMDHEAD, -10)

sfCOMRVEL degrees/sec (int) [-200, 200] sfRobotComInt(sfCOMRVEL, -80)

sfCOMVEL mm/sec (int)  [-400, 400] sfRobotComInt(sfCOMVEL, 150)

sfCOMVEL2 4 mm/sec (int)  [-100, 100] sfRobotCom2Bytes(sfCOMVEL2,40,50)

rotational
velocity

time

max velocity

accel decel

position
achieved

short turn,
max velocity
not  reached

position
achieved

start
position

Figure 5-2  Trapezoidal turning velocity profile



5: Saphira Servers

50

The orientation commands sfCOMHEAD and  sfCOMDHEAD turn the robot with respect to its internal
dead-reckoned angle (Figure 5-3). On startup, the robot is at the origin (0,0), pointing towards the positive
x-axis at 0 degrees.   Absolute angles vary between 0 and 360 degrees. As the robot moves, it will update
this internal position based on dead-reckoning. The x,y position is always positive, and rolls over at about
3,000 millimeters. So, if the is at position (400,2900) and moves +400 millimeters along the y-axis and -
600 millimeters along the x-axis, its new position will be (2800, 300).

5.6. Sonars
When opened by the appropriate client command (see sfCOMOPEN above), the Saphira-aware robot

server automatically coordinates and begins firing the robot sonars in a pre-defined default sequence, and
sends the results to the client via the server information packet. Details about the configuration and firing
sequence of the sonars are found in the robot’s operation manual.

Use the sfCOMPOLLING command to change the polling sequence of the sonars:
sfRobotComStr(sfCOMPOLLING, str)

where str is a null-terminated string of bytes at most 12 bytes long.  Each byte is 1 + sonar number. For
example, the string

"\001\002\001\006"

starts the sonar polling sequence 0, 1, 0, 5.  Note that sonar numbers can be repeated.  If the string is
empty, all sonars are turned off.

0

+90

+180

+270

+X

+Y

Front

Figure 5-3  Saphira-aware server internal coordinate system



Saphira Software Manual

51

6. Guide to the Saphira API
This chapter details the current library of functions for development of a Saphira client.  Additional

information about prototypes, structures, and variables can be found in the various header files in the
handler/include/ directory of your Saphira distribution. Also study the saphira.c source file in
that distribution as an example of a working Saphira application.

6.1. Saphira OS Functions
Use the following functions to initialize, configure, and operate the Saphira OS (see Section 2 for a

summary of OS properties).

void sfStartup (int async)
void sfStartup (HANDLE hInst, int cmdShow, int async)
void sfPause(int ms)

The first form is for UNIX systems, the second for MS Windows.  When invoked, sfStartUp
initializes the Saphira OS.  If the client has been linked with the window libraries, a user interface window
is opened and Saphira information is displayed graphically.

If async is 0, Saphira has principal control of the client and thereafter calls other functions only from
the Saphira multi-tasking OS (see below). If async is 1, control returns immediately to the calling program,
and the Saphira interface runs as a separate thread.

The sfStartUp function may be called at any time by your program, but should be called only once.
Also include with the Windows version of this function the application instance handle (hInst) and the
window visibility parameter (cmdShow).

If the client program is running asynchronously, in parallel with the Saphira OS, then it may be useful
to insert timing breaks in the client code.  The appropriate method is with sfPause , which waits a
specified number of milliseconds before continuing.  sfPause  allows the Saphira OS to keep running
during the break.

void sfOnStartupFn (void (*fn)())
void sfOnConnectFn (void (*fn)())
void sfOnDisconnectFn (void (*fn)())
int  sfIsConnected

These functions register callbacks for Saphira events: when the Saphira OS first starts up, when it
connects to a robot, and when it disconnects.  None of these callbacks are obligatory; usually the connect
callback, at least, is registered. The startup callback should include any relevant initialization code, such as
menu or directory settings, in this function.  The connect callback should start processes, behaviors, and
other Saphira control routines.  The disconnect callback can be used to clean up after the Saphira client
disconnects from a robot.

void sfSetDisplayState (int menu, int state)

Use the sfSetDisplayState  function to change the state of a display mode in the Saphira window
interface. If you call this function before connecting to the robot (in the startup callback), it will set the
default state for the display function.  Thereafter, the preset display values are sticky—Saphira
automatically resets them to the preset values, perhaps different from the defaults given in Table 6-1),
whenever a new connection is made with the robot.



6: Guide to the Saphira API

52

void sfMessage (char *str)
void sfSMessage (char *str, ...)
void sfErrMessage (char *str)
void sfErrSMessage (char *str, ...)

sfMessage  writes the null-terminated string str  into the message section of the information area in
the Saphira main window. Use sfSMessage to format the string similar to the standard printf   C
function, which accepts optional arguments that are to be inserted into the string

The second set of functions write into the error message section of the information area.

void sfKeyProcFn (int (*fn)())
int  myKeyFn(int ch)

(The sfKeyProcFn  registers an optional user key process callback, with the prototype of myKeyFn.
It is called by Saphira whenever the user presses a key when the main Saphira window is active. The ch
argument is the character representing the key that was pressed and is operating-system dependent. Return
0 if you don’t handle the keypress; return 1 if you do, particularly to over-ride any of Saphira’s built-in key
processing routines (see Table 6-1).

void  sfButtonProcFn (int (*fn)())
int   myButtonFn (int x, int y, int b)
float sfScreenToWorldX (int x, int y)
float sfScreenToWorldY(int x, int y)

The sfButtonProcFn  registers an optional user button process callback, with the prototype of
myButtonFn . It is called by Saphira whenever the user clicks the mouse when the main Saphira window
is active. The x and y arguments are the screen position of the cursor; b is the mouse button, with the values
sfButtonLeft , sfButtonRight , and sfButtonMiddle .  Return 0 if you don’t handle the mouse
click; return 1 if you do, particularly to over-ride any of Saphira’s built-in mouse processing routines.

To convert from screen to global robot coordinates, use the sfScreenToWorld functions, which
return their answers in mm.

6.2. Predefined Saphira Processes
We’ve provided a variety of predefined Saphira processes for control of the robot. You may initiate

these process sets using the API functions described here, or invoke processes individually using the
sfInitProcess API call

Table 6-1  Optional states for various Saphira display functions

Menu State (int)* Description
sfDISPLAY 0-10; 2 Controls display update rate. State is the number of

100 ms cycles between updates. Value 10 is once per
second, for example. Value of 0 turns the display off.

sfGLOBAL TRUE, FALSE Controls local/global viewpoint of display window.
sfWAKE TRUE, FALSE Controls drawing of breadcrumb wake behind robot.
sfSTEP TRUE, FALSE Controls single-step mode when connected to the

Pioneer simulator.
sfOCCGRID TRUE, FALSE Controls display of occupancy grid results. If enabled,

enables global viewpoint.

* Default state values are in bold typeface.



Saphira Software Manual

53

void sfInitBasicProcs(void)

.Starts up a set of basic communication, display, motor, and sensor control processes. Among other
activities, these processes implement the client state reflector.  The processes invoked are:

pulse_proc communication pulse every 1 second
motor_proc coordinates keyboard and behavior motor commands
clamp_proc rotates the world around the robot
sonar_proc adds new sonar readings to the sonar buffer
wake_proc draws a wake of the robot’s motion
draw_proc updates Saphira display window
process_waiting_packets   parses information packets from robot server

Drawing, wake, and clamping processes are affected by variables that users can set from Saphira’s main
window’s Display  menu.

void sfInitControlProcs(void)

Starts up a process for evaluating all active behaviors.  If you want to run without using the fuzzy
behavior controller, by using the direct motion functions, then don’t initiate this process.

execute_current_behaviors evaluates behaviors and outputs a motor
control

void sfInitInterpretationProcs (void)

Starts up processes for interpretation of sonar results:
occgrid_proc computes an occupancy grid
side_segment_proc forms linear artifacts robot motion
test_wall_proc wall recognition
test_wall_break_proc door and junction recognition

These processes must be started to have results deposited in sfLeftWallHyp  and
sfRightWallHyp .

void sfInitRegistrationProcs (void)

Starts up some position registration processes useful for navigation in an office environment:
test_match_proc matching of linear and point artifacts
test_environment_proc identification of current situation

6.3. State Reflection
State reflection is a way of isolating client programs from the work involved in send control commands

and gathering sensory information from the robot.  The state reflector is a set of data structures in the client
that reflects the sensor and motor state of the robot.  The client can examine sensor information by looking
at the reflector data, and can control the robot by setting reflector control values.  It is the responsibility of
the Saphira OS to maintain the state reflector by communicating with the robot server, receiving
information packets and parsing them into the state reflector, and sending command packets to implement
the state reflector control values.  The micro-tasks started by sfInitBasicProcs  are the relevant ones:
you must invoke this function for the state reflector to function.

There are three important data structures in the state reflector.
1.  The sfRobot  structure holds motion and position integration information, as well as some

sensor readings (motor stall sensors, digital I/O ports).
2.  The sonar buffers hold information about current and past sonar returns.
3.  The control structures command robot motions.



6: Guide to the Saphira API

54

This section describes the robot and sonar information structures; the next one, the direct motion
commands that affect the control structures.

struct robot sfRobot

The sfRobot structure holds basic information reflected from the robot server.  Table 6-2 below shows
the values of the various fields in this structure; the definition is in handler/include/struct.h .

All of the values in the sfRobot  structure are reflected from the robot server back to the client,
providing information about the robot’s state.  In this way, it is possible to tell if a command has been
executed.  For example, the digoutput  field reflects the actual value of the digital output bits set on the
robot.

The interpretation of some of the values in the structure is robot-dependent, e.g., the bumpers  field
reflects motor stall information for the Pioneer robots.  The Saphira library provides some convenience
functions for interpreting these fields; see the following subsections.

6.3.1. Motor Stall Function
On Pioneer-class robots, the motors stall if the robot encounters an obstacle.  Each motor can stall

independently, and this can yield information about where the obstacle is, e.g., if the right motor stalls,

Table 6-2  Definition of the sfRobot  structure

sfRobot  field Units Description

x, y, th mm, mm, radians robot’s location in
robot coords;
always (0, 0, 0)

ax, ay, ath mm, mm, radians robot’s global
location

tv, mtv mm/sec current and max
velocity

rv, mrv deg/sec current and max
rotational velocity

leftv, rightv mm/sec left and right wheel
velocities

status int
STATUS_STOPPED
STATUS_MOVING
STATUS_NOT_CONNECTED
STATUS_NO_HIGH_POWER

robot status:
robot stopped

robot moving

client not connected

robot motors stalled
battery 1/10 volt battery power
bumpers int bumper state
ptu usecs pan/tilt unit (servo)

heading
diginput int digital input state
digoutput int digital output state
analog 0-255 [0V-5V] analog input voltage
motor_packet_count
sonar_packet_count
vision_packet_count

counts per second packet
communication
information



Saphira Software Manual

55

then the right wheel or right side of the robot is affected.  However, you can’t rely absolutely on this
behavior, as sometimes both motors will stall even when the obstacle is on one side or the other.  Motor
stall information is returned in the bumpers  field.

int sfStalledMotor (int which)

Return 1 if the motor which is stalled, and 0 if it isn’t.  The argument which is sfLEFT or sfRIGHT.

6.3.2. Sonar buckets
The current range reading of a sonar sensors is held in an sdata  structure, defined below.  The

structures for all the sonars are in an array called sbucket , e.g., sbucket[2]  is the sdata  structure for
sonar number 2.

Fields in the sdata structure indicate the robot’s position when the sonar was fired, the range of the
sonar reading, and the position in robot coordinates of the point on the sonar axis at the range of the
reading.  The field snew is set to 0xFFFF when a new reading is received; the client program can poll this
field to ascertain if the reading is new, and set it to 0 to indicate that it has been read.

A value of 5000 for the sonar range indicates that no echo was received after the sonar fired and waited
for a return.

Some convenience functions for accessing current sonar readings are described below.
Sonar readings are accumulated over short periods of time into a set of buffers in the LPS; see below in

the section on the LPS.

int   sfSonarRange(int num)
float sfSonarXCoord(int num)
float sfSonarYCoord(int num)
int   sfSonarNew(int num)

The first three functions return the range and x,y coordinates of the sonar reading.  The last function
returns 1 if it’s a new reading, 0 if not; it also resets the new flag to 0 so that the same reading won’t be
returned twice.

6.4. Direct Motion Control
Direct motion control uses the state reflector capability of the Saphira OS to implement a useful client-

side motion control system.  Instead of sending motor commands to the server, a client sets motion
setpoints in the state reflector.  The OS takes care of transmitting appropriate motor commands to the
robot.

Direct motion control offers three advantages over sending motor control packets directly.
1.  It checks that the setpoints are actually sent to the robot server, given the unreliability of the

communication channel.
2.  It implements a set of checking functions for determining when the motion commands are

finished.

typedef struct /* sonar data collection buffer */
{
  float fx, fy, fth; /* robot position when sonar read */
  float afx, afy, afth; /* absolute position when sonar read */
  float x, y; /* sonar reading in flakey RW coords */
  int range; /* sonar range reading in mm */
  int snew; /* whether it's a new reading */
} sdata;

IMPORT extern sdata sbucket[]; /* holds one sdata per sonar, indexed by sonar
number */



6: Guide to the Saphira API

56

3.  It has a position control mode which moves the robot a specified distance forward or backward.
 Direct control of the two control channels (translation and rotation) is independent, and commands to

control them can be issued and will execute concurrently.
 The direct motion functions require the state reflector to be operational, that is, the function

sfInitBasicProcs  must be called.

void sfSetVelocity(int vel)
void sfSetRVelocity(int rvel)

Set the translational and rotational setpoints in the state reflector.  If the state reflector is active, these
setpoints are transferred to the robot.  Values for translational velocity are in mm/sec; for rotational
velocity, degrees/sec.

void sfSetHeading(int head)
void sfSetDHeading(int dhead)

The first function sets the absolute heading setpoint in the state reflector.  The argument is in degrees,
from 0 to 359.

The second function increments or decrements the heading setpoint.  The argument is in degrees, from -
180 to +180.

If the state reflector is active, the heading setpoint is transferred to the robot.

Void sfSetPosition(int dist)
void sfSetMaxVelocity(int vel)

The first function sets the distance setpoint in the state reflector.  Argument is in mm, either positive
(forwards) or negative (backwards).  If the state reflector is active, it sends motion commands to the robot
to move the required distance.  The maximum velocity attained during motion is given by
sfSetMaxVelocity , in mm/sec.

int sfDonePosition(int dist)
int sfDoneHeading(int ang)

Checks whether a previously-issued direct motion command has completed.  The argument indicates
how close the robot has to get to the commanded position or heading before it is considered completed.
Arguments are in mm for position, and degrees for heading.  On a Pioneer robot, you should use at least
100 mm for the distance completion, and 10 degrees for angle.  The robot may not move enough to trigger
the completion function otherwise.  Note that, even though the robot may not achieve a given heading very
precisely if it is just turning in a circle, as it moves forward or backward it will track the heading better.

float sfTargetVel(void)
float sfTargetHead(void)

These functions return the current reflected values for the velocity and heading setpoints, respectively.
Values are in mm/sec and degrees.



Saphira Software Manual

57

6.5. Saphira Multi-tasking
One problem facing any high-level robotics controller is developing an adequate real-time base for the

many concurrent processes that must be run. Rather than depend on the machine OS for this capability, we
have implemented a simple “round-robin” cooperative scheme that places responsibility on each individual
process to complete its task in a timely and reasonable manner.   Each process is called a micro-task,
because it accomplishes just a limited amount of work.

Compute-intensive processes that take a long time to complete, but can execute asynchronously with
the Saphira system, can be implemented as concurrently executing threads. Accordingly, use the Saphira
sfStartup  function with an async argument of 1 and prepare your processes so they execute as a
concurrent thread, as we describe below.

6.5.1. Process Definition
Running processes are functions with no arguments together with state information. Processes access

their state through a global integer variable, process_state .  Processes are initiated by an API call,
sfInitProcess , which places the function onto the process stack.  Once initialized, Saphira will call
the process with an initial state of sfINIT . The process can change its state by setting the value of
process_state . User-defined state values are integers greater than 10; values less than 10 are reserved
for special states (Table 6-3).

Table 6-3.   Saphira multiprocessing reserved process state values

 State  Explanation

 sfINIT  Initial state

 sfSUSPEND  Suspended state

 sfRESUME  Resumed state

 sfINTERRUPT  Interrupted state

 -n  Suspend this process for n cycles

Process cycle time is 100 milliseconds. On every cycle, Saphira calls each process with
process_state  set to the current value for that process. The process may change its state by resetting
process_state . A process may suspend itself by setting the state to sfSUSPEND. Some other process
or your program must resume a suspended process (see below for relevant functions). A process may also
suspend itself for n cycles by setting process_state  to -n, in which case it will resume after the
allotted time with state sfRESUME.

The sfINTERRUPT state indicates an interrupt request from another process or the user. Processes
should be written to respond to interrupts by saving needed information, then suspending until receipt of a
resume request. Many of Saphira’s predefined processes are written in this way.

The fixed cycle time of process invocation means that processes can have guaranteed response time for
critical tasks; a controller can issue a command every 100 millisecond, for example. Of course, response
time depends on the conformity of all processes: the combined execution time of all processes must never
exceed 100 milliseconds. If it does, the cycle time will exceed 100 milliseconds for all processes. Hence,
allow around 2-5 milliseconds compute time per process, and either divide large processes into smaller
pieces, each able to execute within the 2-5 millisecond time frame, or run them as concurrent threads.

Here is an example of a typical interpretation process function. It starts by setting up some
housekeeping variables, then proceeds to alternate door recognition with display of its results every second
or so.



6: Guide to the Saphira API

58

#define FD_FIND 20
#define FD_DISPLAY 21
void find_doors(void)
{

int found_one;
switch(process_state)
{
  case sfINIT: /* Come here on startup */

found_one = 0;
{ ... }
process_state = FD_FIND;
break;

  case sfRESUME: /* Come here after suspend */
process_state = FD_FIND;
break;

  case sfINTERRUPT: /* Interrupt request */
found_one = 0;
process_state = sfSUSPEND;
break;

  case FD_FIND: /* Looking for doors */
{ call recognition function }
process_state = FD_DISPLAY;
break;

  case FD_DISPLAY: /* Now we display it */
if (found_one)
{ call display function }
process_state = -8; /* suspend for 8 ticks */
break;

  }
}

6.5.2. Process Manipulation
When instantiating a process, give it a unique string name and later refer to it by name or pointer. The

following Saphira functions initiate, suspend, and resume processes:

 process *sfInitProcess (void *fn(void), char *name)

The sfInitProcess  function starts up a process with the name name and function fn , and returns
the process instance pointer, which can be used in process-manipulation functions. There is no
corresponding function for deleting processes—suspend it if it is no longer needed.

 process *sfFindProcess (char *name)

The sfFindProcess  function searches for and returns the first process instance it finds with the
name name. A process instance pointer is returned if successful; else NULL.

void sfSetProcessState (process *p, int state)
void sfSuspendProcess (process *p, int n)
void sfSuspendSelf (int n)
void sfInterruptProcess (process *p)
void sfInterruptSelf (void)
void sfResumeProcess (process *p)

The sfSetProcessState function sets the state of process instance p to state. The argument p must be a
valid process instance pointer, returned from sfFindProcess or sfInitProcess.  The other functions are
particular calls to sfSetProcessState.



Saphira Software Manual

59

6.6. Local Perceptual Space
Local Perceptual Space (LPS) is a geometric representation of the robot and its immediate environment.

Unlike the internal coordinate system we described earlier in Chapter 4, which represents the dead-
reckoned position of the robot server, the LPS is an egocentric coordinate space that remains clamped to
the robot center (Figure 6-1).

6.6.1. Sonar buffers
The current range readings of all the sonars can be found in the sonar bucket structures: see the section

on the state reflector above.   As the robot moves, these readings are accumulated in the LPS in three
internal buffers.  These buffers are available to user programs, and are also used by the obstacle-finding
functions in the next subsection.

The reading values are placed on the centerline of the sonar at the range that the sonar indicates.
Saphira’s display routines draw sonar readings as small open rectangles, and if the robot moves about
enough, they give a good picture of the world.

There three buffers are the front and two side buffers (left and right).  Each buffer is a cbuf  structure,
defined below.  Client programs, unless they are interested in the temporal sequence of sonar readings, can
just treat these buffers as linear structures with size limit .  The buffer size can be changed using the
functions defined below.

The reason for having different buffers is that they satisfy different needs of the robot control software.
The front sonars, pointed in the direction of the robot’s travel, warn when obstacles are approaching.  But
the spatial definition of these sonars isn’t very good, and its almost impossible to distinguish the shape of
the obstacle for recognition purposes.  A wall in front of the robot, for example, will only look a little bit
like a straight line (see the excellent book by Leonard and Durant-Whyte).



6: Guide to the Saphira API

60

The side-pointing sonars are somewhat useful for obstacle avoidance, because they signal when it isn’t
useful  to turn to one side or the other.  But their main purpose is to delineate features for the recognition
algorithms.  They are good for this purpose because the robot is often moving parallel to wall surfaces, and
by accumulating the side sonar readings, it’s possible to pick out a nice straight feature.

The buffers differ slightly in how they accumulate sonar readings, based on the difference in their
utility.  They are all circular buffers, that is, a new reading replaces the oldest one.  The front buffer,
sraw_buf, accumulates one reading each time a sonar is fired, regardless of whether it sees anything.  If
nothing is found, the valid flag at that buffer position is set to 0; otherwise, it is set to 1, and the xbuf and
ybuf slots are set to the position of the sonar reading, in the robot’s local coordinate system.  This strategy
guarantees that the front buffer can be cleared out after a short amount of time when nothing is in the
robot’s way.  For example, if the robot is getting 20 front sonar readings a second, and the front buffer is 30
elements long, it will be completely clear in 1.5 seconds if there is nothing in front of the robot.

The two side buffers, sr_buf and sl_buf, accumulate sonar readings only when a side sonar actually sees
a surface; hence, their valid flag is always set.  Thus, readings stay in the side buffers for longer periods of
time, and Saphira has a chance to figure out what the features are.

As the robot moves, all the entries in the circular buffers are updated to reflect the robot’s motion, i.e.,
the sonar readings stay registered with respect to the robot’s movements.

+90

+180

-90

+X

+Y

Front

(1320,-350)
0

Heading 
control

Forward and 
rotational 
velocities

Figure 6-1.   Saphira’s LPS coordinate system



Saphira Software Manual

61

void sfSetFrontBuffer (int n)
void sfSetSideBuffer (int n)
float sfFrontMaxRange

The first two functions, when given an argument greater than zero, set the front and side buffer limits to
that argument, respectively.  If given an argument of zero, they clear their buffers, that is, set the valid
flags to 0.  These buffer limits can also be set from the parameter file, and are initialized for a particular
robot on connection.

sfFrontMaxRange  is the maximum range at which a front sonar reading is considered valid.  It is
initially set to 2500 (2.5 meters).  Setting this range higher will make the obstacle avoidance routines more
sensitive and subject to false readings; setting it lower will make them less sensitive.

6.6.2. Occupancy functions
The following functions look at the raw sonar readings to determine if there is an obstacle near the

robot. Other Saphira interpretation processes use the sonar readings to extract line segments representing
walls and corridor.

Saphira has several functions for testing whether sonar readings exist in areas around the robot.  The
different functions are useful in different types of obstacle detection routines; for example, when avoiding
obstacles in front of the robot, it’s often useful to disregard readings taken from the side sonars.

The detection functions come in two basic flavors:  “box” functions and “plane” functions.  Box
functions look at a rectangular region in the vicinity of the robot, while plane functions look at some
portion of a half-plane.

int sfOccBox (int xy,  int cx, int cy, int h, int w)
int sfOccBoxRet (int xy, int cx, int cy, int h, int w, int *x, int *y)

When using these functions, it helps to keep in mind the coordinate system of the LPS.  They look at a
rectangle centered on cy, cy with height h and width w.  sfOccBox returns the distance in millimeters to
the nearest point to the center of the robot in the X direction (xy = sfFRONT ) or Y direction (xy =
sfSIDES ). The returned value will always be a positive number, even when looking on the right side of
the robot (negative Y values). If there is no sonar reading in the rectangle, it returns 5,000 (5 meters).

For example, in the case of an LPS shown in Figure 6-2,
sfOccBox(sfSIDES,1000,600,900,800,1)  returns 300; sfOccBox(sfFRONT, 1000,-
600,900,600,0)  returns 600.

sfOccBoxRet  returns the same result as sfOccBox,  but also sets the arguments *x  and *y  to the
closest reading in the rectangle, if one exists.

#define CBUF_LEN 200
typedef struct /* Circular buffers. */
{
  int start; /* internal buffer pointer */
  int end; /* internal buffer pointer */
  int limit; /* current buffer size */
  float xbuf[CBUF_LEN];
  float ybuf[CBUF_LEN];
  int valid[CBUF_LEN]; /* set to 1 for valid entry */
} cbuf;

cbuf *sraw_buf, *sr_buf, *sl_buf;



6: Guide to the Saphira API

62

int sfOccPlane (int xy, int source, int d, int s1, int s2)
int sfOccPlaneRet (int xy, int source, int d, int s1, int s2, int *x, int
*y)

The plane functions are slightly different. Instead of looking at a centered rectangle, they consider an
infinite rectangle defined by three sides: a line perpendicular to the direction in question, and two side
boundaries.

Figure 6-3 shows the relevant areas for sfOccPlane(sfFRONT,sfFRONT,600,400,1200). The first
parameter indicates positive X direction for the placement of the rectangle. The second parameter indicates
the source of the sonar information: the front sonar buffer (sfFRONT), the side sonar buffer (sfSIDES), or
both (sfALL).

The rectangle is formed in the positive X direction, with the line X = 600 forming the bottom of the
rectangle. The left side is at Y = 400, the right at Y = -1200. The nearest sonar reading within these bounds
is at an X distance of 650, and that is returned.

+90

+180

-90

+X

+Y

Front

0
c x: 1000, c y : - 600

h : 900

w : 800

Figure 6-2. Sensitivity rectangle for the sfOccBox functions



Saphira Software Manual

63

Note that the baseline of sfOccPlane  is always a positive number. To look to the rear, use an xy
argument of sfBACK ; left side is xy = sfLEFT , right side is xy = sfRIGHT .

As with sfOccBox , a value of 5000 is returned if there is no sonar reading.  And, to return the
coordinates of the nearest point in the rectangle, use the sfOccPlaneRet funtion.

6.6.3. Artifacts
Through Saphira, you can place a variety of artificial constructs within the geometry of the LPS and

have them registered automatically with respect to the robot's movement. Generally, these artifacts are the
result of sensor interpretation routines and represent points and surfaces in the real world. But they can also
be purely imaginary objects: for example, a goal point to achieve or the middle of a corridor.

Artifacts, like the robot, exist in both the LPS and the global map space.  Their robot-relative
coordinates in the LPS (x, y, th) can be used to guide the robot locally, e.g., to face towards a goal point.
Their global coordinates (ax, ay, ath) represent  position and orientation in the global space.  As the robot
moves, Saphira continuously updates the LPS coordinates of all artifacts, to keep them in their relative
positions with respect to the robot.  The global positions of artifacts doesn’t change, of course.  But the
dead-reckoning used to update the robot’s global position as it moves contains errors, and the robot’s
global position gradually decays in accuracy.  To bring it back into alignment with stationary artifacts,
registration routines use sensor information to align the robot with recognized objects.  These functions are
described in a subsequent section.

You may add and delete artifacts in the LPS. There are two types of artifacts that users add.  Map
artifacts are permanent artifacts representing walls, doorways, and so on in the office environment.  Goal
artifacts are temporary artifacts placed in the LPS when a behavior is invoked. The artifact functions as an
input to the behavior: for example, there is a behavior to reach a goal position, and the goal is represented
as a point artifact in the LPS.  These artifacts are usually deleted when the behavior is completed.

The system also maintains artifacts of different types.  There is an artifact representing the origin of the
global coordinate system.  There are various hypothesis artifacts representing hypothesized objects
extracted by the perceptual routines, and used by the registration routines.

+90 -90

+X

+Y

Front

0

d = 600

s1 = 400
s2 = -1200

return = 650

Figure 6-3 Sensitivity rectangle for sfOccPlane functions



6: Guide to the Saphira API

64

6.6.3.1. Points and Lines
All artifacts are defined as C structures. Each has a type and a category. The type defines what the

artifact represents; the simplest artifacts are points and lines, while corridors are a more complex type. You
may define your own artifact types.

The category of an artifact relates to its use by the LPS. Currently, Saphira supports three categories:
system for artifacts with an internal function,  percept for artifacts representing hypothesized objects
extracted from sensor input, and artifact for user-created artifacts such as map information and goal
artifacts..

typedef enum
{
 SYSTEM, PERCEPT, ARTIFACT
} cat_type;

typedef enum
{
 INVALID, POS, WALL, CORRIDOR, LANE, DOOR, JUNCTION, OFFICE, BREAK, OBJECT
} pt_type;

The point type consists of a directed point (position and direction), with an identifier, a type, a category,
and other parameters used by the system. X, Y coordinates are in millimeters, and direction is in radians
from π to −π. The type POS is used for goal positions in behaviors.  Other types may add additional fields
to the basic point type, e.g., length and width for corridors.

typedef struct
{
  float x, y, th; /* x,y,th position of point relative to robot
*/
  pt_type type; /* type of point */
  cat_type cat; /* category */
  boolean snew; /* whether we just found it */
  boolean viewable; /* whether it's valid */
  int id;
  float ax, ay, ath; /* global coords */
  unsigned int matched; /* last time we matched */
  unsigned int announced; /* last time we announced */
} point;

The orientation of a point is useful when defining various behaviors. For example, a doorway is
represented by a point at its center, a width, and a direction indicating which way is into the corridor.

point *sfCreateLocalPoint (float x, float y, float th)
point *sfCreateGlobalPoint (float x, float y, float th)
void   sfSetLocalCoords (point *p)
void   sfSetGlobalCoords (point *p)

The first two functions create new ARTIFACT points of type POS, based on the supplied coordinates.
For example, sfCreateLocalPoint(1000.0, 0.0, 0.0)creates a point 1 meter in front of the robot.  Very useful
for behavior goal positions.

The second two functions reset the local or global coordinates from the other set, based on the robots
current position.  These functions are useful after making a change in one set of coordinates.

In order to keep a point’s local coordinates updated within the LPS, it must be added to the pointlist
after it is created.  The pointlist is a list of artifacts that Saphira updates when the robot moves. The
following functions add and delete members of the pointlist:



Saphira Software Manual

65

void sfAddPoint (point *p)
void sfAddPointCheck (point *p)
void sfRemPoint (point *p)
point *sfFindArtifact (int id)

Normally, to add a point to the pointlist, use sfAddPointCheck, which first checks to make sure point p
is not in the list already before adding it. It is not a good idea to have two copies of a pointer to a point in
the pointlist, because its position will get updated twice. The sfRemPoint function removes a point from the
list, of course.  Finally, sfFindArtifact returns the artifact on pointlist with identifier id, if it exists; else it
returns NULL.

point *sfGlobalOrigin
point *sfRobotOrigin

These are SYSTEM points representing the global origin (0,0,0) and the robot’s current position.

float sfNormAngle(float ang)
float sfNorm2Angle(float ang)
float sfNorm3Angle(float ang)
float sfAddAngle(float a1, float a2)
float sfSubAngle(float a1, float a2)
float sfAdd2Angle(float a1, float a2)
float sfSub2Angle(float a1, float a2)

These functions compute angles in the LPS.  Normally, angles in the LPS are represented in radians
using floating-point numbers.  Artifact angles are always normalized to the interval [ ]0 2, π .

sfNormAngle  will put its argument into this range.  The corresponding functions sfAddAngle  and
sfSubAngle  also normalize their results this way.

It is often convenient to give headings in terms of positive (counterclockwise) and negative (clockwise)
angles.  The second normalization function, sfNorm2Angle, converts its argument to the range [ ]− +π π, ,

so that the discontinuity in angle is directly behind the robot.  The corresponding functions sfAdd2Angle
and sfSub2Angle  also normalize their results this way.

Finally, it is sometimes useful to reflect all angles into the upper half-plane [ ]−π π2 2, .  The function

sfNorm3Angle  will do this to its argument, by reflecting any angles in the lower half-plane around the
X-axis, e.g., +100 degrees is reflected to +80 degrees.

float sfPointPhi (point *p)
float sfPointDist (point *p)
float sfPointNormalDist (point *p)
float sfPointDistPoint(point *p1, point *p2)
float sfPointNormalDistPoint (point *p, point *q)
void  sfPointBaricenter (point *p1, point *p2, point *p3)

The first three functions compute properties of points relative to the robot.  The sfPointPhi function
returns the angle of the vector between the robot and the point p, in radians from π to -π.  sfPointDist
returns the distance from the point to the robot.  sfPointNormalDist returns the distance from the robot to
the line represented by the artifact point.

The second three functions compute properties of points.  sfPointDistPoint returns the distance between
its arguments.  sfPointNormalDistPoint returns the distance from point q to the line represented by artifact
point p.  sfPointBaricenter sets point p3 to be the point midway between point p1 and p2.

void  sfChangeVP (point *p1, point *p2, point *p3)
void  sfUnchangeVP (point *p1, point *p2, point *p3);
float sfPointXo (point *p)
float sfPointYo (point *p)



6: Guide to the Saphira API

66

float sfPointXoPoint (point *p, point *q)
float sfPointYoPoint (point *p, point *q)
void  sfPointMove (point *p1, float dx, float dy, point *p2)
void  sfMoveRobot (float dx, float dy, float dth)

These functions transform between coordinate systems.  Since each point artifact represents a
coordinate system, it is often convenient to know the coordinates of one point in another’s system.  All
functions that transform points operate on the local coordinates; if you want to update the global
coordinates as well, use sfSetGlobalCoords .

sfChangeVP  takes a point p2 defined in the LPS, and sets the local coordinates of p3 to be p2 ’s
position in the coordinate system of p1.  sfUnchangeVP  does the inverse, that is, takes a point p2
defined in the coordinate system of p1, and sets the local coordinates of p3 to be p2 ’s position in the LPS.

In some behaviors it’s useful to know the robot’s position in the coordinate system of a point.
sfPointXo  and sfPointYo  give the robot’s x and y coordinates relative to their argument’s coordinate
system.  sfPointXoPoint  and sfPointYoPoint  do the same for an arbitrary point q.
sfPointMove  sets p2 to the coordinates of p1 moved a distance dx  and dy  in its own coordinate system.

sfMoveRobot  moves the robot in the global coordinate system by the given amount.  This is a trickier
operation than one might suspect, because the local coordinates of all artifacts must be updated to keep
them in proper correspondence with the robot.  Note that the values dx  and dy  are in the robot’s
coordinate system, e.g., sfMoveRobot(1000, 0, 0)  moves the robot forward 1 meter in the global
coordinate system.

Line artifacts are called walls. A wall consists of a straight line segment defined by its directed
centerpoint, plus length. Any linear surface feature may be modeled using the wall structure. The only type
currently defined is WALL.

Like points, walls may be added or removed from the pointlist so that Saphira registers them in the LPS
with the robot's movements. Cast each to type point before manipulating them with the pointlist functions
described above.

Drawing artifacts on the LPS display screen is useful for debugging behaviors and interpretation
routines. Saphira currently draws most types of artifacts if their viewable slot is greater than 0.

6.7. Sensor Interpretation
Besides the occupancy functions, the Saphira library includes functions for analyzing a sequence of

sonar readings and constructing artifacts that correspond to objects in the robot’s environment.  We are
gradually making these internal functions available to users, as we work on tutorial materials illustrating
their utility.  Currently, the only interpretation routines are for wall hypotheses.

wall sfLeftWallHyp
wall sfRightWallHyp

These wall structures contain the current wall hypothesis on the left and right sides of the robot, using
the side sonar buffers.  If a wall structure is found, then the viewable  flag is set non-zero in the structure,
and the wall dimensions are updated to reflect the sensor readings.  In order for wall hypotheses to be
found, the wall-finding routines must be invoked with sfInitInterpretationProcs .

6.8. Drawing and Color Functions
 Use the following commands function to display custom lines and rectangles on the screen and to

control the screen colors. All arguments are in millimeters in the LPS coordinate system.

void set_vector_buffer (int w)
void sfSetLineWidth (int w)
void sfSetLineType (int w)
void sfSetLineColor (int color)



Saphira Software Manual

67

void sfSetPatchColor (int color)
void sfDrawCenteredRect (float x, float y, float w, float h)
void sfDrawRect (float x,float y,float dx,float dy)

The function set_vector_buffer  switches between drawing thick (argument 1) and thin (argument
0) lines. To draw a rectangle, use the function sfDrawCenteredRect  or sfDrawRect . The centered
version takes a center point of the rectangle, and a width and height. The other version takes the lower-left
corner position, a width, and a height.

By default, sonar points display in a light blue and artifacts are in a dull red.  Saphira’s graphics
routines now use a state machine model, in which color, line thickness, and other graphics properties are
set by a function, and remain for all subsequent graphics calls until they are set to new values.  Note that
you cannot depend on the state of the graphics context when you make a graphics call, and should set it
appropriately.

For lines, set the width w to the desired pixel width.  You may select one of two line types: Set the w
function parameter to 0 for a solid line, and 1 for a dashed line.  The patch and line colors accept a color
value as shown in Table 6-4.

6.9. Maps and Registration
Saphira has a set of routines for creating and using global maps of an indoor environment. This facility

is still under construction; this section gives an overview of current capabilities and some of the functions a
client program can access.

A map is a collection of artifacts with global position information. Typically, a map will consist of
corridors, doors, and walls—all artifacts of the offices where the robot is situated. Maps may be loaded and
deleted using the interface Files menu, or by function calls.

A map can either be created by the robot as it wanders around the environment, or you may create one
as a file.

6.9.1. Map File Format
A map file contains optional comments, designated with a semi-colon (;) prefix, and lines specifying

artifacts in the map. For example:

Table 6-4. Saphira colors

Color Reference Value

sfColorYellow 0

sfColorLightYellow 3

sfColorRed 5

sfColorLightRed 8

sfColorDarkTurquoise 10

sfColorDarkOliveGreen 11

sfColorOrangeRed 12

sfColorMagenta 13

sfColorSteelBlue 14

sfColorBrickRed 15

sfColorBlack 100

sfColorWhite 101



6: Guide to the Saphira API

68

;;
;; Map of a small portion of the SRI AIC
;;

CORRIDOR (1) 0, 0, 0, 10000, 2000
CORRIDOR (2) 0, 0, 90, 10000, 2000
DOOR (3) 3000, 1000, 90, 1000
WALL 1000, 1000, 0, 3000

The CORRIDOR lines define a series of corridor artifacts. The number in parentheses is the artifact id,
and it must be a positive integer. The first three coordinates are the X, Y, and θ position of the center of the
corridor in millimeters and degrees. The fourth coordinate is the length of the corridor, and the fifth is the
width.

DOOR entries are defined in much the same way, except that the third coordinate is the direction of the
normal of the door, which is useful for going in an out. The fourth coordinate is the width of the door.

The WALL entry does not have an id. The first two coordinates are the X, Y position of the center of the
wall; the third is the direction of the wall, and the fourth is its length. Wall segments are used where a
corridor is not appropriate: the walls of rooms or for large open areas, for example.

int sfLoadMapFile (char *name) (UNIX, MS Windows)
int sfLoadMapFile(char *name, int vref)(Macs)

The sfLoadMapFile function loads a map file name into Saphira and destroys any other map artifacts.
Returns 0 if successful; -1 if not.

6.9.2. Map Registration and Creation
As the robot moves, its dead-reckoned position will accumulate errors. To eliminate these errors, a

registration routine attempts to match linear segments and door openings against its map artifacts. This lets
you align the robot’s global position with the global map. The process that performs registration is called
test matching. In the sample Saphira client, this process is invoked by the function sfInitRegistrationProcs.
To disable registration, either do not start the test matching process, or set its state to sfSUSPEND or
sfINTERRUPT, using sfFindProcess and sfSetProcessState.

A by-product of the registration process is that sometimes a corridor or doorway is found that does not
match any map artifact. In this case, Saphira will, by default, create a new artifact and add it to the map.
To turn off this feature, set the variable add_new_features to FALSE.

In finding corridors, Saphira by default attempts to align them on 90 degree angles, which is typical for
office environments. To turn off this feature, set the variable snap_to_right_angle_grid to FALSE.



Saphira Software Manual

69

7. Saphira Behaviors
Controlling the movement of the robot server is a difficult job. At the lowest level, proportional-

integral-differential (PID) control can make the wheels turn to move the robot at a fixed speed in a desired
direction. But there is a lot more to robot motion than this: The trajectory of the robot must satisfy
conflicting demands from the task and various maintenance policies. For example, in navigating from one
room to another in an office environment, the trajectory in large part is defined by goal positions at
corridor intersections. The robot should achieve these positions as quickly as possible, subject to safety and
power considerations. On a more local scale, the robot should avoid obstacles and respond to contingencies
such as closed doors or blocked corridors.

7.1. Behaviors and Fuzzy Control
Saphira implements behaviors as sets of fuzzy control rules which map states of the LPS into control

actions for the robot.  A tutorial on Saphira’s fuzzy control system can be found in the Saphira
documentation.  Please refer to it for explanations of the concepts referred to here.

7.2. Behavior Grammar

The behavior grammar defines a convenient syntax for defining behaviors.  The BNF for the grammar
is given below.  For reference, here is an example of a typical behavior using this syntax.  This behavior
sends the robot towards a goal position.

7.3. Behavior Grammar in BNF
Here are the complete rules for the behavior grammar, in the form accepted by the YACC or BISON

parsers.

BeginBehavior myGoto    /* behavior name */
Params 

sfPTR goal_pt /* pointer to goal point */
sfFLOAT radius /* how close we come, in mm */

Rules
If too_left Then Turn Right
If too_right Then Turn Left
If Not (near_goal Or too_left Or too_right) Then

Speed 200.0
If near_goal Or too_left Or too_right Then Speed 0.0

Update
float phi = sfPointPhi(goal_pt);
float dist = sfPointDist(goal_pt);
too_left = up_straight(phi, 0.1, 0.6);
too_right = straight_down(phi, -0.6, -0.1);
near_goal = straight_down(dist, radius, radius*2);

Activity
Turn Not near_goal
Speed Not near_goal
Goal near_goal

EndBehavior



7: Saphira Behaviors

70

7.4. Behavior Executive
Before any behaviors can be invoked and run, the behavior executive must be started.  Normally this is

done using the sfInitControlProcs  call.
Behaviors and direct motion control will conflict if a client attempts to use both at the same time to

control the robot.  For example, in the saphira  sample client, the bump-and-go procedure uses direct
motion control, while the obstacle avoidance routines are behaviors.  The bump-and-go procedure is
inactive until the robot hits something, at which point it takes over motion control and backs the robot up.
To suppress behavior execution during this time, the sfBehaviorControl flag is set to 0.  When bump-and-
go is finished, it resets the flag to 1, and the behaviors resume control.

int sfBehaviorControl

A value of 0 suppress behavior control of motion, although all behaviors are still evaluated.  A value of
1 allows the results of behavior evaluation to control the robot motion.

/*  Behavior definition: name params rules init update activity */

BEHAVIOR:=
     “BeginBehavior” symbol
     “Params”   [PARAM_STMTS]
     “Rules”    [RULE_STMTS]
    [“Init”      C_STMTS]
     “Update”   [C_STMTS]
     “Activity” [ACT_STMTS]
     “EndBehavior”

/* behavior parameters */
PARAM_STMTS:=
       {“sfINT” | “sfFLOAT” | “sfPTR”} symbol [PARAM_STMTS]

/* Rule definition: name fuzzy-var action mod */
RULE_STMTS:=
      [SYMBOL] “If” FUZZY_EXP “Then” CONTROL [RULE_STMTS]

/* fuzzy expression */
FUZZY_EXP:=
       symbol | float
     | “Not” FUZZY_EXP
     | FUZZY_EXP “And” FUZZY_EXP
     | FUZZY_EXP “Or”  FUZZY_EXP
     | “(“ FUZZY_EXP “)”

/* rule actions and modifiers */
CONTROL:=
       “Turn Left”  [MOD] | “Turn Right” [MOD]
     | “Turn” symbol [MOD]| “Speed” MVAL

MOD:=
       “Very Slowly” | “Slowly” | “Moderately” | “Sharply”
     | “Very Sharply”| symbol

MVAL:=
       symbol | int | float

/* activity statements */
ACT_STMTS:=
      {“Turn” | “Speed” | “Goal” | “Progress”} FUZZY_EXP
         [ACT_STMTS]



Saphira Software Manual

71

7.5. Fuzzy variables.
Fuzzy variables are floating-point numbers in the range [0,1].  Several functions are defined for creating

fuzzy variables from single numeric values.

7.5.1. Fuzzy variable creation functions

float straight_up (float x, float min, float max)
float down_straight (float x, float min, float max)
float f_greater (float x, float c, float delta)
float f_smaller (float x, float c, float delta)
float f_eq (float x, float c, float delta)

The functions straight_up and down_straight convert numerical values into a fuzzy value based on its
inclusion in a range. Both take three arguments: the value itself, the start of the range, and the end of the
range. straight_up returns 0.0 if the value is below the range, and 1.0 if it is above, and interpolates linearly
between them (Figure 7-1). down_straight is the opposite: values below the start return 1.0, above 0.0, and
intermediate ones are linearly interpolated.

The functions f_smaller, f_greater, and f_eq compare two numbers and return a fuzzy value based on
whether the first is smaller than, larger than, or equal to the second. The delta argument is the range over
which the fuzzy value will vary.

7.5.2. Fuzzy variable combination functions
Combine fuzzy variables by using the T-norm functions max (for disjunction), min (for conjunction),

and unary minus (for negation). The utility functions f_and, f_or, and f_not are provided to implement
these operators.

float f_not (float x)
float f_and (float x, float y)
float f_or (float x, float y)

7.6. Implementing Behaviors
For reference, we include descriptions of the parts of behaviors defined using structures and functions in
C.  If you use the behavior syntax to write behaviors, you generally won’t have to worry about these

details.

1.0

0.0

-70.0 -30.0

Figure 7-1. The straight-up function



7: Saphira Behaviors

72

7.6.1. Input parameters
The variables that constitute the input to the behavior are contained in a structure called beh_params.

Each parameter is either a floating point number or a pointer; pointers are used for complex variables such
as goal points. The beh_params type is an array of such parameters.

typedef union /* a param can be either a fp number */
{ /* or a pointer */
 float f;
 void * p;
} param;

typedef param * beh_params;

7.6.2. Update function
On each Saphira cycle (100 ms), the behavior updates its state variables (using information from the

LPS), and then evaluates its rules. Updating is accomplished by an update function, which takes the
beh_param structure as an argument.

7.6.3. Init function
When Saphira instantiates a behavior schema, its init function is called to set up the initial fuzzy state.

The input to the init function is a beh_params structure, containing the initial parameters of the behavior.
The init function can set any initial state that is needed by the behavior; a clock, for example, if the
behavior has a timeout.

7.6.4. Rules
Each behavior rule is defined as a structure beh_rule, which consists of a name, and two indices into the

fuzzy state: the antecedent value for the rule, and the mean value of the output action. Each rule can
recommend only one action, which is the consequent value: one of Accel, Decel, Turn_left, or Turn_right:

typedef struct
{
 char *name; /* name of the rule */
 int *antecedent, /* activity of this rule */
   *consequent, /* action to take */
   *parameter; /* mean value of action */
} beh_rule;

For example rule definitions, see below. Note that the consequent value constants are external integers,
but they are not declared in the Saphira headers, so they must be declared in the application code.

7.6.5. Behavior schema
A complete behavior schema is a structure combining its rules, init, and update functions. The rules can

be included directly in the definition; here is the example constant velocity function:
extern int Accel, Decel, Turn_left, Turn_right;

behavior
constant_velocity =

{ "Constant Vel", cv_setup, cv_check_speed, 1,
2, { { "Speed-Up", &cv_too_slow ,

&Accel, &cv_speedup},
{ "Slow-Down", &cv_too_fast,

&Decel, &cv_slowdown}
  }

};

The first argument is the name of the behavior; the second is the init function; the third is the update
function; and the fourth argument is the number of parameters. The number of rules is the fifth argument,



Saphira Software Manual

73

and the rules themselves are the sixth. Note that all global variables are referenced as pointers in the
behavior.

The maximum number of rules in a behavior is 10. The consequent values Accel and so on must be
declared as external integers.

7.7. Invoking Behaviors
Behaviors are invoked by using the sfInitBehavior function, which creates an instance (or closure)

binding the behavior schema to a set of parameters. The function then adds the behavior to the list of
executing behaviors. Currently, there is a limit of 20 executing behaviors.

BEHCLOSURE sfInitBehavior (behavior *b, int priority, int running, ...)
BEHCLOSURE sfInitBehaviorDup (behavior *b, int priority, int running,
...)

The first argument of the sfInitBehavior  function is a pointer to the behavior structure, as defined
above. The second is the priority of the behavior closure, relative to others. Lower values get higher
priority: 0 is the highest priority and should be used for the most important emergency maneuvers, such as
collision avoidance. Saphira treats all behaviors with the same priority equally in terms of competing for
control of the robot; ones with larger priority numbers (lower priority) are suppressed by activity of higher-
priority behaviors.

The third argument is TRUE (or sfON) if the closure is initially running, and FALSE (or sfOFF) if it is
not active. A closure that is not running is still in the list of behavior closures, but it is not executed and
does not affect the robot’s movements. The running state of a behavior can be changed with the
sfSetBehaviorState function (see below).

The remaining arguments to this function set up the parameters of the closure. The arguments come in
pairs, with the type of the argument first, and then its value (Table 7-1). The argument list must end with
the constant sfEND, even if there are no other arguments.

Here is an example invocation of the pre-defined behavior sfKeepOff:
sfInitBehavior(sfKeepOff, 1, True,

sfFLOAT, 100.0, /* caution speed */
sfFLOAT, 0.4, /* sensitivity */
sfEND);

Normally, only on behavior instance for a given behavior is allowed to run.  sfInitBehavior check for
any currently-running instances, and if one is present, just replaces its parameters.  There are cases where
you may want more than one instance with different parameters.  The sfInitBehaviorDup function is similar
to sfInitBehavior, but does not check for duplicate behavior instantiations.

Table 7-1. Valid Saphira behavior arguments

Argument Name Argument Type

sfINT int

sfFLOAT float

sfPTR void *

sfEND end of argument list



7: Saphira Behaviors

74

void sfKillBehavior (BEHCLOSURE b)

 Removes the behavior instance b from the list of currently executing behaviors.  If you want to halt the
execution of a behavior for some period, then resume it, use the state-changing function below, rather than
removing and re-invoking the behavior.

void sfSetBehaviorStat e(BEHCLOSURE b, int state)
void sfBehaviorOn(BEHCLOSURE b)
void sfBehaviorOff(BEHCLOSURE b)

sfSetBehaviorState sets the state of a behavior closure to one of the state arguments defined in Table 7-
2.  The other two functions are convenience functions for particular states.  

BEHCLOSURE sfFindBehavior (char *name)

Finds a behavior in the current closure list with name name, and returns a pointer to it, if it exists. If
not, returns NULL.

7.8. Pre-Defined Saphira Behaviors
Saphira has a number of pre-defined behaviors for obstacle avoidance and goal-directed movement.

Most of the complexity of these behaviors is in the update functions, which extract data from the LPS and
update a small set of fuzzy variables relevant to the behavior. Besides integrating these behaviors with your
own routines, you can use them as templates to create new behaviors. The example code is
behavior.beh  in your Saphira distribution software.

Note that the variables in the example are pointers to behavior structures and can be used directly in the
sfInitBehavior function. See the sample application saphira.beh and behavior.beh  for examples.   

behavior *sfConstantVelocity

Sets the velocity setpoint on the robot server to its first parameter, an integer in millimeters per second.

behavior *sfStop

Sets the velocity setpoint to zero. No parameters.

behavior *sfAvoidCollision

Slows and turns the robot sharply to avoid immediate obstacles. Takes four parameters, listed in the
Table 7-3.  Additionally, the default turn direction when it is completely blocked is given by the global
variable sfPreferredTurnDir, which should be set to either sfLEFTTURN or sfRIGHTTURN.  User programs
and other behaviors can set this variable to change the action of this behavior.

Table 7-2. Valid behavior closure state values

State argument Action

sfON Behavior starts running.

sfOFF Behavior stops running.

sfTOGGLE Behavior’s run state is toggled.



Saphira Software Manual

75

behavior *sfStopCollision

Slows the robot sharply to avoid immediate obstacles. This behavior differs from sfAvoidCollision in
that it doesn’t turn the robot; some other behavior must do that. Takes three parameters, listed in the Table
7-4.

behavior *sfKeepOff

Gently steers the robot around and away from distant objects. The behavior takes two parameters and
uses the global variable sfPreferredTurnDir, described in the Table 7-5. The priority for sfKeepOff should
always be less than (higher priority number) than that for sfAvoidObstacle when they are invoked together.

Table 7-3. Avoid collision behavior parameters

Parameter Effect

sfFLOAT Front sensitivity to obstacles. Value from 0.5 (not sensitive)
to 3.0 (very sensitive).

sfFLOAT Side sensitivity to obstacles. Value from 0.5 (not sensitive)
to 3.0 (very sensitive).

sfFLOAT Turning gain: controls how rapidly the robot turns away
from obstacles. Value from 4.0 (slow turn) to 10.0 (fast
turn).

sfFLOAT Standoff. Defines the avoidance “bubble” around the robot.
Value from flakey_radius (at the robot) to flakey_radius +
standoff (standoff mm from the robot).

sfPreferredTurnDir This global variable controls the default direction of turn
when the front is blocked.  Values are sfLEFTTURN or
sfRIGHTTURN.

Table 7-4. Stop collision behavior parameters

Parameter Effect

sfFLOAT Front sensitivity to obstacles. Value from 0.5 (not sensitive)
to 3.0 (very sensitive).

sfFLOAT Side sensitivity to obstacles. Value from 0.5 (not sensitive)
to 3.0 (very sensitive).

sfFLOAT Standoff. Defines the avoidance “bubble” around the robot.
Value from flakey_radius (at the robot) to flakey_radius +
standoff (standoff mm from the robot).



7: Saphira Behaviors

76

behavior *sfGoToPos

Sends the robot to a given point. Takes three parameters, described in Table 7-6.

behavior *sfAttendAtPos

Moves the robot near a given goal position and points the robot towards the goal position. Takes three
parameters, described in Table 7-7.

behavior *sfFollow

Tells the robot to follows a lane, as represented by a lane artifact. The lane structure is a directed point
with a width, although the width is ignored in this behavior since there are explicit parameters for the
latitude the robot is allowed in the lane. There is also a goal point, representing a position in the lane that
the robot is to achieve.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes seven
parameters, described in Table 7-8.  This behavior sets the sfPreferredTurnDir variable depending on how
the robot is misaligned with the lane.  

Table 7-5. Keep off behavior parameters

Parameter Effect

sfFLOAT Caution speed. Robot slows to this speed when more distant
obstacles are detected. Value in mm/sec.

sfFLOAT Sensitivity to obstacles. Value from 0.2 (not sensitive) to 2.0
(very sensitive).

sfPreferredTurnDir This global variable controls the default direction of turn
when the front is blocked.  Values are sfLEFTTURN or
sfRIGHTTURN.

Table 7-6. Go to position behavior parameters

Parameter Effect

sfFLOAT Speed (in mm/sec). Robot moves at this speed towards goal position.

sfPTR Goal position. Should be a pointer to a point artifact.

sfFLOAT Success radius (in mm). Defines how close the robot must be to the
goal position before the behavior goal is satisfied.

Table 7-7. Attend at position behavior parameters

Parameter Effect

sfFLOAT Speed. Robot moves at this speed towards goal position. Value in
mm/sec.

sfPTR Goal position. Should be a pointer to a point artifact.

sfFLOAT Success radius. Defines how close the robot must be to the goal
position before the behavior goal is satisfied. Value in mm.



Saphira Software Manual

77

behavior *sfFollowCorridor

Tells the robot to follow a corridor, as represented by a corridor artifact. The corridor structure is a
directed point with a width; the width is used to set up a lane down the center of the corridor for the robot
to follow. There is also a goal point, representing a position in the lane that the robot is to achieve.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes two
parameters, described in Table 7-9. This behavior sets the sfPreferredTurnDir variable depending on how
the robot is misaligned with the corridor.

behavior *sfFollowDoor

Tells the robot to go in a doorway, as represented by a door artifact. The direction is whether to go in or
out of the doorway; this could be decided automatically by the position of the robot, but isn’t because the
robot may already be on the correct side.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes two
parameters, described in Table 7-10. This behavior sets the sfPreferredTurnDir variable depending on how
the robot is misaligned with the lane through the doorway.

Table 7-8. Follow lane behavior parameters

Parameter Effect

sfPTR Lane. This is a point or lane artifact representing a line the robot is
to follow. Parameters below define allowed deviations from the line.

sfPTR Goal position. The robot moves along the lane in the direction of the
goal until it reaches it. Should be a pointer to a point artifact.

sfFLOAT Right edge (in mm). Distance the robot is allowed to wander from
the right side of the line.

sfFLOAT Left edge (in mm). Distance the robot is allowed to wander from the
left side of the line.

sfFLOAT Speed off lane (in mm/sec). How fast the robot travels when it is out
of the lane.

sfFLOAT Speed in lane (in mm/sec). How fast the robot travels when it is in
the lane.

sfFLOAT Turn ratio. How important it is to be near the center vs. aligned in
the right direction; 0.0: direction overrides; 1.0: center overrides.

Table 7-9. Follow corridor behavior parameters

Parameter Effect

sfPTR Corridor. This is a corridor artifact the robot is to follow. The path
of the robot is bounded by a lane set in from the sides of the
corridor.

sfPTR Goal position. The robot moves along the corridor in the direction of
the goal until it reaches it. This should be a pointer to a point
artifact.



7: Saphira Behaviors

78

behavior *sfTurnTo

Turns the robot to point in the direction of a goal position. The robot always turns in the direction that
makes the smallest turn. Parameters are given in Table 7-11.

Table 7-10. Follow door behavior parameters

Parameter Effect

sfPTR Door. This is a door artifact the robot is to go in or out of. The path
of the robot is bounded by a narrow lane perpendicular to the door.

sfINT Direction (sfIN or sfOUT).  “In” means into the room, “out” means
out of the room and into the corridor.

Table 7-11. Turn to parameters

Parameter Effect

sfPTR Goal position. The robot turns until it points towards this goal.
Should be a pointer to a point artifact.

sfFLOAT Success angle (in radians). If the robot is within this angle of
pointing towards the goal, it will have succeeded.

sfFLOAT Turn speed. How fast the robot turns to the goal. Value of 0.5 is
slow speed, 2.0 is fast.



Saphira Software Manual

79

8. Intentions and PRS-lite
Saphira includes a reactive planning system that is derived from SRI’s work on the Procedural

Reasoning System. We call Saphira’s version PRS-lite, because it has only a subset of the functionality of
the full PRS system. In compensation, it is small and fast enough that it can be used to control the robot
within same 100 millisecond cycle time as the rest of the Saphira system.

The main task of PRS-lite is to coordinate behaviors and interpretation processes. In this sense, it acts
like a high-level supervisor, checking the state of the LPS, deciding when to switch behaviors on and off,
and which interpretation processes to invoke. So, for example, a routine such as patrolling the corridor
could be written in PRS-lite. This routine would check that the robot was in a corridor, decide which way
to move, invoke a corridor-following behavior, check its progress, reverse the direction of the robot when it
arrived at the end of the corridor, and so on. It might even invoke contingency behaviors if the corridor is
blocked or if the robot loses its way outside the corridor.

PRS-lite is not a planner, however. It does not have even a limited capability of doing means-ends
analyses (PRS can, though). Saphira does have a topological planner and a plan executor (written in PRS-
lite), but they are not documented in this version of the system.

8.1. Intention Schemas
PRS-lite routines are called intention schemas. In the full version of PRS, intention schemas achieve a

goal and can be invoked to satisfy that goal. In PRS-lite, the goals are implicit, but the term intention
schema is retained.

Intention schemas are much like Saphira processes: they are finite-state machines that are called every
100 milliseconds to update their state. They additionally incorporate other capabilities, including
parameters, timeouts, invocation of sub-intentions, and success/failure reporting.

The states of all active intentions are displayed in Saphira’s Intentions window, invoked from the
Function menu of the Saphira interface (see Chapter 3, “The Saphira Client”).

A good way to explain the workings of an intention is by example. The following intention schema
sfFindAndFollow checks whether the robot is in a corridor, and then has it follow that corridor until it ends
or until the robot is not facing along the corridor.

8.1.1. Initialize intention
point follow_target;
#define CHECK_CORRIDOR 20
#define FOLLOW_CORRIDOR 10
#define  WAIT_REMOVE 11

In this first part, we set up a global point that is used by the “follow corridor” behavior as a target, as
well as define some convenient names for the states of the intention. Note that these states are all 10 or
greater, meaning they are user defined.

8.1.2. Find a corridor
void /* for following corridors */
sfFindAndFollow(void)
{
 static process *p = NULL;
 static point *e;
 beh_params par; /* need this because we haven’t defined a



8: Intentions and PRS lite

80

convenience function */
 switch(process_state)
  {
  case sfINIT:
  case sfRESUME:
   add_point_check(&follow_target);
   process_state = CHECK_CORRIDOR;
   break;

The above code defines the initial and resumed states of the intention. We then add the target point to
the pointlist. Next, we set the process state to check for a corridor:

  case CHECK_CORRIDOR:
   if (current_environment != NULL &&

 current_environment->type == CORRIDOR)
{
 e = current_environment;
 process_state = FOLLOW_CORRIDOR;
 follow_target.x = 10000.0; follow_target.y = 0;
 par = beh_alloc(7);
 FOL_LANE(par) = current_environment;
 FOL_TARGET(par) = &follow_target;
 p = intend_beh(&follow_corridor,"follow it",0,par,2);
}

   break;

Whenever the robot is in a corridor, the current_environment variable is set to an artifact representing
that corridor by the registration processes. If the robot is not in a corridor or other recognizable place, this
variable is NULL. The intention checks current_environment, and when it is not NULL it saves the
environment artifact and sets up the follow_corridor behavior. It does this by first constructing a target
point 10 meters in front of the robot (note how easy this is with robot-centered coordinates), and then by
invoking the intend_beh function. This is a special PRS-lite function that initializes a behavior and a
supervising intention at the same time. The argument 0 is a timeout condition (that is, no timeout), and the
argument 2 is the priority level of the behavior. The state is thereby changed to follow a corridor.

8.1.3. Follow the corridor
  case FOLLOW_CORRIDOR:
   if (current_environment != e ||

 finished(p)       ||
 aligned_in_lane(e,&follow_target,80.0,110.0) < 0.5 )
{
 process_state = WAIT_REMOVE;
 p->state = sfREMOVE;
 p = NULL;
}

   break;

When the current environment changes, the behavior accomplishes its goal, or the robot is no longer
aligned towards the target, the intention sets the state of the follow_corridor intention to REMOVE, and
changes its own state.

  case WAIT_REMOVE:
   process_state = CHECK_CORRIDOR;
   break;

The intention waits one cycle while the follow_corridor intention actually gets removed, and then it
goes back to waiting for a corridor environment.



Saphira Software Manual

81

8.1.4. Finished
  case sfINTERRUPT: /* clean up here */
   if (p) p->state = sfREMOVE;
   process_state = sfSUSPEND;
   break;
  }
}

The INTERRUPT state is reached when the user or another intention requests an interrupt. The intention
responds by getting rid of any follow_corridor actions and then suspending.

8.2. Intention Parameters
An intention closure or simply intention is the instantiation of an intention schema to a particular set of

parameters. Functions which manipulate intentions use a pointer to the intention structure. If p is a pointer
to an intention structure, then p->params is the beh_param structure holding its parameters.

8.3. Intention Schema Instantiation
An intention schema is a function with no arguments, returning void.

process *sfInitIntention (void (*fn)(void), char *name, int timeout, ...)

The sfInitIntention function instantiates and returns an intention closure, giving it the name name, and a
timeout value of timeout (see below; a timeout of 0 means indefinite execution). The parameters of the
intention are listed at the end of the function call in a manner similar to the sfInitBehavior function). The
parameter list must end with sfEND.

8.4. Intention Termination and Removal
Like processes, intentions have a state that is an integer. The intention starts in the sfINIT state and any

user-defined states must be 10 or greater. Unlike a process, an intention can terminate and remain inactive
but not removed. In addition to the states defined for processes, there are special states for intentions to
indicate their termination condition.

int finished (process *p)

The finished function returns 1 if the intention closure p has terminated. Otherwise, it returns 0. The
termination states for intentions are SUCCESS, FAILURE, and TIMEOUT. (The state of an intention may
be accessed with p->state, where p is a pointer to the intention closure.)

Timing-out is a way to limit the amount of time an intention has to perform its task. A timeout
parameter can be specified when an intention is instantiated. It is the number of 100-millisecond cycles the
intention may execute before Saphira terminates it with a TIMEOUT status.

If an intention schema is instantiated from within another intention, the instantiation is called a child
intention. The field p->dad of the intention closure is a pointer to the parent.

An intention is removed from the list of active intentions when any one of the following three
conditions exist:

1.  Its state is sfREMOVE.

2.  It has terminated (finished(p) is true), and it has no parent, or its parent has terminated.
3.  Its parent is removed.

These rules guarantee that an intention with a termination condition of SUCCESS, FAILURE, or
TIMEOUT can be checked by an active parent. If there is no active parent, these terminated intentions will
be removed. Note that an active parent is responsible for removing its terminated children by setting their
state to sfREMOVE.



8: Intentions and PRS lite

82

8.5. Invoking Behaviors
There is a special facility for invoking behaviors from intentions. An intention “wrapper” is placed

around the behavior, monitoring its state and adding a timeout capability. Behaviors are invoked with the
function intend_beh.

process *intend_beh (behavior *b, char *name, int timeout,
beh_params params, int priority)

The intend_beh function instantiates a “dummy” intention and a behavior, using the params argument
for the behavior. The priority of the behavior is given by priority, and a timeout can be specified; a timeout
of 0 is indefinite execution.

The syntax of this function is awkward, as it forces you to construct a beh_param structure. In future
versions of Saphira, the function will take a variable number of parameter arguments, as does
sfInitIntention.

8.6. Packet Communication Functions
Saphira contains several functions that help you manage communications between your client

application and the Pioneer server directly (PSOS; see Chapter 4), rather than going through the Saphira
OS. Do not use these functions to parse information packets or send motor control commands if you start
up the Saphira OS with sfStartup .

int sfConnectToRobotint port, char *name)

(This Saphira function tries to open a communications channel to the robot server on port type port with
name name. Returns 1 if successful; 0 if not.    

Table 8-2  Port types and names for server connections

Port types sfLOCALPORT connect to simulator on the host machine

sfTTYPORT connect to Pioneer on a tty port

Port names sfCOMLOCAL local pipe or mailslot name

sfCOM1 tty port 1 (/dev/ttya or /dev/cua0 for UNIX;
COM1 for MSW; modem for Mac)

sfCOM2 tty port 2 (/dev/ttyb or /dev/cua1 for UNIX,
COM2 for MSW, printer for Mac)

This function also sets the global variables sfRobotName, sfRobotClass, and sfRobotSubclass according
to the information returned from the robot; see the table below.  Assuming the environment variable
SAPHIRA is set correctly, it will autoload the correct parameter file from the params  directory, using first
the subclass if it exists, and then the class.

Table 8-3  Robot names and classes

(char *)sfRobotName See robot descriptions for information on how to set the
name.  The simulator returns the name of the machine it is
running on.

(char *)sfRobotClass Robot classes are B14, B21, and Pioneer

(char *)sfRobotSubclass Subclasses are subtypes, e.g., in Pioneer-class robots the
subclass is the OS type, currently PSOS41.



Saphira Software Manual

83

void sfDisconnectFromRobot (void)

Sends the server a close command, then shuts down the communications channel to the server.

void sfResetRobotVars (void)

Resets the values of all internal client variables to their defaults. Should be called after a successful
connection.

void sfRobotCom (int com)
void sfRobotComInt (int com, int arg)
void sfRobotCom2Bytes(int com, int b1, int b2)
void sfRobotComStr (int com, char *str)
void sfRobotComStrn (int com, char *str, int n)

These Saphira functions packetize and send a client command to the robot server. Use the command
type appropriate for the type of argument. See Section 5.2 for a list and description of currently supported
PSOS commands.

The string commands send stings in different formats: sfRobotComStr  sends out a null-terminated
string (its str argument), and sfRobotComStrn  sends out a pascal-type string, with an initial string
count; in this case str can contain null characters.

The function sfRobotCom2Bytes  sends and integer packed from two bytes, and upper byte b1, and
a lower byte b2.

int sfWaitClientPacket (int ms)
int sfHaveClientPacket (void)

Use sfWaitClientPacket to have Saphira listen to the client/server communication channel for up to ms
milliseconds, waiting for an information packet to arrive from the server. If Saphira receives a packet
within that time period, it returns 1 to your application. If it times out, Saphira returns 0. This function
always waits at least 100 ms if no packet is present.  To poll for a packet, use sfHaveClientPacket.

void sfProcessClientPacket (void)

When invoked by the sfProcessClientPacket function, Saphira waits for a client packet to be received,
and then parses it into the sfRobot structure and sonar buffers.

int  sfClientBytes (void)
int  sfReadClientByte (void)
int  sfReadClientSint(void)
int  sfReadClientUsint (void)
int  sfReadClientWord (void)
char *sfReadClientString (void)

These functions return the contents of packets, if you want to dissect them yourself rather than using
sfProcessClientPacket.  SfClientBytes returns the number of bytes remaining in the current packet.  The
other functions return objects from the packet: bytes, small integers (2 bytes), unsigned small integers (2
bytes), words (4 bytes), and null-terminated strings.



Saphira Software Manual

85

9. Saphira Vision
Current versions of Saphira have both generic vision support and explicit support of the Fast Track

Vision System (FTVS), which is available as an option for the Pioneer 1 Mobile Robot.  The FTVS is a
product from Newton Labs, Inc., adapted for Pioneer. The generic product name is the Cognachrome
Vision System. Details about the system, manuals, and development libraries can be found at Newton
Labs’ Web site: http://www.newtonlabs.com .

With Saphira, the FTVS intercepts packet communication from the client to robot server, interprets
some commands from the client, and sends new vision information packets back to the client.  Saphira
includes support for setting some parameters of the vision system, but not for training the FTVS on new
objects, or for viewing the output of the camera.  For this, please see the FTVS user manual about
operating modes.  In the future, we intend to migrate some of the training functions to the Saphira client.
We also intend to have Saphira display raw and processed video.

 Saphira also includes built-in support for interpreting vision packet results.  If your robot has a vision
system, Saphira will automatically interpret vision packets and store the results as described below.

9.1.  Channel modes
The FTVS supports three channels of color information: A, B, and C.  Each channel can be trained to

recognize its own color space. Each channel also supports a processing mode, which determines how the
video information on that channel is processed and sent to Saphira. A channel is in one of three modes:

1.  BLOB_MODE  0
2.  BLOB_BB_MODE 2
3.  LINE_MODE 1
 [Note: these definitions, as well as other camera definitions, can be found in 

handler/include/chroma.h

 To change the channel mode from a Saphira client, issue the command:

sfRobotComStr (VISION_COM,"pioneer_X_mode=N")

where the mode N is 0, 1, or 2, and the channel X is a, b, or c (small letters).  On startup, the vision
system channels are set to BLOB_MODE.

The processing performed in BLOB_MODE, BLOB_BB_MODE, and LINE_MODE are explained in
the FTVS manual.

In line mode, several FTVS parameters affect the processing:
line_bottom_row /* first row for line processing */
line_num_slices /* how many row we process */
line_slice_size /* how many pixels thick each row is */
line_min_mass /* number of pixels needed to

   determine a line segment */

These parameters can be set using, for example,

  sfRobotComStr (VISION_COM,"line_bottom_row=0")

9.2. Vision Packets
If the FTVS is working properly, it will send a vision packet every 100 ms to the Saphira client.  In the

information window, the VPac slot should read about "10", indicating that 10 packets/second are being
delivered.  If it reads "0", the vision system is not sending information.

Saphira parses these packets into a vision information structure:
   struct vinfo {



9: Saphira Vision

86

    int type; /* BLOB, BLOB_BB or LINE MODE */
    int x, y; /* center of mass */
    int area; /* size */
    int h, w; /* height and width of bounding box */
    int first, num; /* first and number of lines */
  };

In BLOB_MODE, the x, y , and area  slots are active. The x,y coordinates are the center of mass of
the blob in image coordinates, where the center of the image is 0, 0.  For the lens shipped with the FTVS,
each pixel subtends approximately 1/3 degree:

#define DEG_TO_PIXELS 3.0 /* approximately 3 pixels per degree */

This constant lets a client convert from image pixel coordinates to angles.  The area is the approximate
size of the blob in pixels.  If the area is zero, no blob was found.

In BLOB_BB_MODE, the bounding box of the blob is also returned, with h and w being the height and
width of the box in pixels.

 In LINE_MODE, the slots x , first , and num are active.  The value x  is the horizontal center of the
line.  first  is the first (bottom-most) row with a line segment, and num is the number of consecutive
rows with line segments.  If no line was found, num is zero.

 Global variables hold information for each channel, as follows:
extern struct vinfo sfVaInfo, sfVbInfo, sfVcInfo;

For example, to see if channel A is in BLOB_MODE, use
 sfVaInfo.type == 0

9.3. Sample Vision Application
 The sample Saphira client which enables the FTVS can be found as the source file

handler/src/apps/btech.c  and /chroma.c .  The compiled executables are found in the bin/
directory.  These files define functions to put the channels into BLOB_BB_MODE, to turn the robot
looking for a blob on channel A, to draw the blob on the graphics window, and to approach the blob.

void setup_vision_system(void)

 Sets up parameters of the vision system, putting all channels into BLOB_BB_MODE and initializing
line parameters.

int found_blob(int channel, int delta)

 Returns the X-image-coordinate of a blob on channel (0=A, 1=B, 2=C), if the blob's center is within
delta pixels of the center of the image.  If no blob is found with these parameters, it returns -1000.

void draw_blobs(void)

Process for drawing any blobs found by the vision system.  The blob is drawn as a rectangle centered at
the correct angular position, and at a range where a surface two feet on a side would produce the perceived
image size.  The size of the rectangle is proportional to the image area of the blob.

void find_blob(void)

Intention for turning left until a blob is found in the center of the image on channel A, or until 20
seconds expires.

void search_and_go_blob(void)

Intention for finding a blob (using find_blob) on channel A, then approaching it.  Uses sonars to detect
when it is close to the blob.



Saphira Software Manual

87

10. Sample Parameter File.
The following is a sample parameters file used by Pioneer simulator and Saphira client to describe the

physical robot and its characteristics. See also the pioneer.p  file in the params  folder of your Saphira
software.

;; Parameters for the Pioneer robot
;;
;; counts/rev = 6300 (5-inch wheels)
;;
AngleConvFactor 0.0009973 ; radians per encoder count diff (2PI/6300)
DistConvFactor 0.079 ; $13F4 ticks per 5*PI (inches) distance
VelConvFactor 2.0 ; mm/sec per encoder count per 1/50 sec
RobotRadius 220.0 ; radius in mm
RobotDiagonal 90.0 ; half-height to diagonal of octagon

;; These are for seven sonars: five front, two sides
;;
;; Sonar parameters
;; SonarNum N is number of sonars
;; SonarUnit I X Y TH is unit I (0 to N-1) description
;;  X, Y are position of sonar in mm, TH is bearing in degrees
;;
RangeConvFactor 0.229 ; sonar range mm per 1 usec tick
;;
SonarNum 7
;;         #  x   y   th
;;--------------------------------
SonarUnit 0 120 80 90
SonarUnit 1 100 100 20
SonarUnit 2 130 40 10
SonarUnit 3 130  0  0
SonarUnit 4 130 -40 -10
SonarUnit 5 100 -100 -20
SonarUnit 6 120 -80 -90
SonarUnit 7  0  0  0



Saphira Software Manual

89

11. Sample World Description File
Worlds for the simulator are defined as a set of line segments using absolute or relative coordinates.

Comment lines begin with a semicolon. All other nonblank lines are interpreted as directives.
The first two lines of the file describe the width and height of the world, in millimeters. The simulator

won’t draw lines outside these boundaries. It’s usually a good idea to include a “world boundary”
rectangle, as is done in the example below, to keep the robot from running outside the world.

Any entry in the world file that starts with a number is interpreted as creating a single line segment. The
first two numbers are the X, Y coordinates of the beginning and the second two are the coordinates of the
end of the line segment. The coordinate system for the world starts in the lower left, with +Y pointing up
and +X to the right (Figure B-1).

+X, 0 degrees

+Y, 90 degrees

0,0

Figure B-1. Coordinate system for world definition files

The position of segments may also be made relative to an embedded coordinate system. The push x y
theta directive in the world file causes subsequent segments to use the coordinate system with origin at x,y
and whose x axis points in the direction. The theta. push directives may be nested, in which case the new
coordinate system is defined with respect to the previous one. A pop directive reverts to the previous
coordinate system.

The position x y theta directive positions the robot at the indicated coordinates.
The following is a fragment of the simple.wld  world description file found in the worlds  directory

of Saphira.

;;; Fragment of a simple world

width 38000
height 30000

  0 0 0 30000 ; World frontiers
  0 0 38000 0
  38000 30000 0 30000
  38000 30000 38000 0



World Description File

90

push 10000 14000 0

;; upper corridor          ; length = 14,600; width = 2,000
  0 12000 3000 12000 ; EJ 231 - J. Lee
  3900 12000 4200 12000 ; EJ 233 - D. Moran
  5100 12000 8000 12000 ; EJ 235 - J. Bear
  8900 12000 9200 12000 ; EJ 237 - E. Ruspini
  10000 12000 12000 12000 ; EJ 239 - J. Dowding
  12800 12000 14600 12000

;; Starting position

position 17500 14000 -90



Saphira Software Manual

91

12. Saphira API Reference

Artifacts Page
void sfAddAngle 67
void sfAdd2Angle 67
void sfAddPoint(point *p) 67
void sfAddPointCheck(point *p) 67
void sfChangeVP(point *p1, point *p2, point *p3) 68
point *sfCreateGlobalPoint(float x, float y, float th) 66
point *sfCreateLocalPoint(float x, float y, float th) 66
point *sfFindArtifact(int id) 67
point *sfGlobalOrigin 67
void sfMoveRobot(float dx, float dy, float dth) 68
void sfNormAngle 67
void sfNorm2Angle 67
void sfNorm3Angle 67
void sfPointBaricenter(point *p1, point *p2, point *p3) 68
float sfPointDist(point *p) 68
float sfPointDistPoint(point *p1, point *p2) 68
void sfPointMove(point *p1, float dx, float dy, point *p2)68
float sfPointNormalDist(point *p) 68
float sfPointNormalDistPoint(point *p, point *q) 68
float sfPointPhi(point *p) 67
float sfPointXo(point *p) 68
float sfPointXoPoint(point *p, point *q) 68
float sfPointYo(point *p) 68
float sfPointYoPoint(point *p, point *q) 68
void sfRemPoint(point *p) 67
point *sfRobotOrigin 67
void sfSetGlobalCoords(point *p) 66
void sfSetLocalCoords(point *p) 66
void sfSubAngle 67
void sfSub2Angle 67
void sfUnchangeVP(point *p1, point *p2, point *p3) 68

Behaviors
BEHCLOSURE sfFindBehavior(char *name) 78
BEHCLOSURE sfInitBehavior(behavior *b, int priority,

int running, ...) 77
BEHCLOSURE sfInitBehaviorDup(behavior *b, int priority,

int running, ...) 77
int sfBehaviorControl 74
void sfBehaviorOff(BEHCLOSURE b) 78
void sfBehaviorOn(BEHCLOSURE b) 78
void sfKillBehavior(BEHCLOSURE b) 78
void sfSetBehaviorState(BEHCLOSURE b, int state) 78

Behaviors; Predefined Saphira
behavior *sfAttendAtPos 80
behavior *sfAvoidCollision 79
behavior *sfConstantVelocity 79
behavior *sfFollow 80
behavior *sfFollowCorridor 81
behavior *sfFollowDoor 81



API Reference

92

behavior *sfGoToPos 80
behavior *sfKeepOff 80
behavior *sfStop 79
behavior *sfStopCollision 79
behavior *TurnTo 82

Direct Motion Control
int sfDoneHeading 57
int sfDonePosition(int dist) 57
void sfSetDHeading(int dhead) 57
void sfSetHeading(int head) 57
void sfSetMaxVelocity(int vel) 57
void sfSetPosition(int dist) 57
void sfSetRVelocity(int rvel) 56
void sfSetVelocity(int vel) 56
void sfTargetHead(void) 57
void sfTargetVel(void) 57

Drawing and Color
void sfDrawCenteredRect(float x, float y, float w, float h)69
void sfDrawRect(float x,float y,float dx,float dy) 69
void set_vector_buffer(int w) 69
void sfSetLineColor(int color) 69
void sfSetLineType(int w) 69
void sfSetLineWidth(int w) 69
void sfSetPatchColor(int color) 69

Fuzzy Variables
float down_straight(float x, float min, float max) 75
float f_and(float x, float y) 76
float f_eq(float x, float c, float delta) 75
float f_greater(float x, float c, float delta) 75
float f_not(float x) 76
float f_or(float x, float y) 76
float f_smaller(float x, float c, float delta) 75
float straight_up(float x, float min, float max) 75

Intentions
int finished(process *p) 85
process *intend_beh(behavior *b, char *name, int timeout,

beh_params params, int priority) 86
process *sfInitIntention(void (*fn)(void), char *name,

 int timeout, ...) 85

Map File
int sfLoadMapFile(char *name) <Unix; MSW> 71
int sfLoadMapFile(char *name, int vref) <Mac> 71

Occupancy
int sfOccBox(int xy,  int cx, int cy, int h, int w) 63
int sfOccBoxRet(int xy, int cx, int cy, int h, int w,

float *x, float *y) 63
int sfOccPlane(int xy, int source, int d, int s1, int s2) 64
int sfOccPlaneRet(int xy, int source, int d, int s1, int s2,

float *x, float *y) 64



Saphira Software Manual

93

OS and Window Functions
int myButtonFn(int x, int y, int b) 52
int myKeyFn(int ch) 52
void sfButtonProcFn(int (*fn)()) 52
void sfErrMessage(char *str) 52
void sfErrSMessage(char *str, ...) 52
void sfKeyProcFn(int (*fn)()) 52
void sfOnConnectFn(void (*fn)()) 51
void sfOnDisconnectFn(void (*fn)()) 51
void sfOnStartupFn(void (*fn)()) 51
float sfScreenToWorldX(int x, int y) 52
float sfScreenToWorldY(int x, int y) 52
void sfSetDisplayState(int menu, int state) 51
void sfSMessage(char *str, ...) 52
void sfStartup(HANDLE hInst, int cmdShow, int async) 51
void sfStartup(int async) 51
void sfPause(in ms) 51
int sfIsConnected 51

Packet Functions
char *sfReadClientString(void) 88
int sfClientBytes(void) 88
int sfConnectToRobot(int port, char *name) 86
int sfHaveClientPacket(void) 87
int  sfReadClientByte(void) 88
int  sfReadClientSint(void) 88
int  sfReadClientUsint(void) 88
int  sfReadClientWord(void) 88
int sfWaitClientPacket(int ms) 87
void sfDisconnectFromRobot(void) 87
void sfProcessClientPacket(void) 87
void sfResetRobotVars(void) 87
void sfRobotCom(int com) 87
void sfRobotCom2Bytes(int b1, int b2) 87
void sfRobotComInt(int com, int arg) 87
void sfRobotComStr(int com, char *str) 87
void sfRobotComStrn(int com, char *str, int n) 87

Processes
process *sfFindProcess(char *name) 59
process *sfInitProcess(void *fn(void), char *name) 59
void sfInterruptProcess(process *p) 59
void sfInterruptSelf(void) 59
void sfResumeProcess(process *p 59
void sfSetProcessState(process *p, int state) 59
void sfSuspendProcess(process *p, int n) 59
void sfSuspendSelf(int n) 59

Processes; Predefined
void sfInitBasicProcs(void) 53
void sfInitControlProcs(void) 53
void sfInitInterpretationProcs(void) 53
void sfInitRegistrationProcs(void) 53



API Reference

94

Sensor Interpretation
wall sfLeftWallHyp 69
wall sfRightWallHyp 69

Sonars
float sfFrontMaxRange 63
void sfSetFrontBuffer(int n) 63
void sfSetSideBuffer(int n) 63
int sfSonarRange(int num) 56
int sfSonarNew(int num) 56
float sfSonarXCoord(int num) 56
float sfSonarYCoord(int num) 56

State Reflection
struct robot sfRobot 54
int sfStalledMotor(int which) 55
void sfTargetHead(void) 57
void sfTargetVel(void) 57

Vision
void draw_blobs(void) 90
void find_blob(void) 90
int found_blob(int channel, int delta) 90
sfRobotComStr(VISION_COM,"line_bottom_row=0") 89
sfRobotComStr(VISION_COM,"pioneer_X_mode=N") 89
void search_and_go_blob(void) 91
void setup_vision_system(void) 90



Saphira Software Manual

95

Index

A
ActivMedia, Inc. 1
API

artifacts 63
Drawing and Color 66. See  drawing and color
Fuzzy variables 71. See  fuzzy variables
General See  API
maps 67. See  maps
Motor stall 54
OS functions 51
window mode See  OS functions

argument types 44
Artifacts 15, 63

points and lines 64. See  points and lines
async sample client 32
Asynchronous routines 9, 28
Attend at position parameters 76
autoconfiguration 47
Avoid collision parameters 74

B
bat 15
battery 15
Behavior arguments 73
behavior closure states 74
Behavior executive 70
Behavior grammar 69, 70
behavior.beh 74
Behaviors

sfInitBehavior 73
Behaviors

arguments 73
Attend At Position 76
Avoid Collision 74
behavior.beh 74
closure states 74
Constant Velocity 74
Description 11
Follow Corridor 77
Follow Door 77
Follow Lane 76
Go To Position 76
grammar 69, 70
implementing 71

init function 72
input parameters 72
invoking 73
keep off 18, 75
Predefined 74
rules 72
schema 72
sfBehaviorOff 74
sfBehaviorOn 74
sfFindBehavior 74
sfKillBehavior 74
sfSetBehaviorState 74
Stop Collision 75
Turn To 78
update function 72
window 17

Behaviors window 17
Behaviors: 73

C
C++ programs 28
Channel modes 85
checksum 42
chroma.h 85
Client

artifacts 15
bat 15
battery 15
Behaviors window 17
commands 43. See Client commands
connect menu 16
connect menu: See  files menu. See  connect menu
control point 14
CPU 15
display 13
display menu 16. See  display menu
files menu 16
functions menu 16
grow 16
Information area 15
Intentions window 20
keyboard 16
main window 13
messages 15
MPac 15
obstacle sensitivity 15



Index

96

position 15
Processes window 19
shrink 16
sonars 14
sonars menu 16. See  sonars menu
SPac 15
Starting 1
status 15
velocity 15
velocity vectors 15
VPac 15

Client commands
argument types 44
communication rate 43
composition 44
General 43
PSOS 44
saphira.h 44

Client installation See Installation
Clients

async example 32
direct example 31
nowin example 35
packet example 38
saphira example 35

COMDHEAD 44
COMDIGOUT 44
Communication packets 41. See  packets
communications rate 45
COMOPEN 44
COMORIGIN 44
compiling clients 27

MS Visual C++ 31
system requirements 27
Unix clients 29

COMPOLLING 44
Components

Optional 1
COMPTUPOS 44
COMPULSE 44
COMSETO 44
COMSTEP 44
COMTIMER 44
COMVEL 44
config.h 32
configuration 48
connect 16
connect menu

connect 16
disconnect 16, 25

Connecting 12
CPU 15
Customer resources

FTP 4
Newsgroups 4
Support 5

D
data types 42
delete map 16
direct client example 31
Direct motion control 11, 55, 70
disconnect 16, 25
display

states 52
display menu 16

local 16
occ grid 16
single step 16
wake 16

display states 52
down_straight 71
draw_blobs 86
drawing and color

set_vector_buffer 67
sfDrawCenteredRect 67
sfDrawRect 67
sfSetLineColor 67
sfSetLineType 67
sfSetLineWidth 67
sfSetPatchColor 67

E
errors 43
exit menu 26

F
f_and 71
f_eq 71
f_greater 71
f_not 71
f_or 71
f_smaller 71
Fast Track Vision System 85
files menu

delete map 16
save map 16

find_blob 86
finished 81
Follow corridor parameters 77
Follow door parameters 77
Follow lane parameters 76
Follow the corridor 80
found_blob 86
FTP See  Customer resources
functions menu 16
Fuzzy variables 71

combination functions 71
down_straight 71
f_eq 71



Saphira Software Manual

97

f_greater 71
f_or 71
f_smaller 71
straight_up 71

G
Go to position parameters 76
grow 16, 25
Gzip See  Installation

H
Handler

include 27

I
Includes 27
information area 26
information packet 45
Installation 2
intend_beh 82
Intention schemas 79
Intentions

finished 81
Follow the corridor 80
intend_beh 82
invoking behaviors 82
parameters 81
schemas 79
sfInitIntention 81
window 20

Intentions window 20

K
Keep off behavior 18
Keep off parameters 75
keyboard 16, 37
keyboard actions 37
Konolige, Dr. Kurt 1

L
load menu

load param file 25
load world file 25

load param file 25
load world file 25
local 16
Local Perceptual Space 59, 60
LPS 59. See  Local Perceptual Space

M
main window 13
majordomo See  Customer resources
manual drive 16
maps

file format 67
registration and creation 68
sfLoadMapFile 68

Menus See  also Client
Saphira client 15
Simulator 25

micro-tasking OS 7, 8, 28, 29
micro-tasks7, 8, 9, 11, 19, 20, 28, 29, 31, 32, 33, 35, 36, 53, 57. See proce
motion setpoint 11, 55
Motor stall 54

sfStalledMotor 55
mouse 37
mouse actions 37
MPac 15
MS Visual C++ 31
myButtonFn 52
myKeyFn 52

N
Newton Labs, Inc 85
nowin example client 35

O
occ grid 16
occupancy

sfOccBox 61
sfOccBoxRet 61
sfOccPlaneRet 62

occupancy: 62
Open Agent Architecture (OAA) 5, 10, 12
OS functions

sfIsConnected 51
sfPause 51

OS functions
display states 52
myButtonFn 52
myKeyFn 52
sfButtonProcFn 52
sfErrMessage 52
sfErrSMessage 52
sfKeyProcFn 52
sfMessage 52
sfOnConnectFn 51
sfOnDisconnectFn 51
sfOnStartupFn 51
sfScreenToWorldX 52
sfScreenToWorldY 52
sfSetDisplayState 51



Index

98

sfSMessage 52
sfStartup 51

os.h 32

P
packet client example 38
packet communication 7, 9, 31, 33, 54, 85
packet functions

sfRobotCom2Bytes 83
packet functions

port types and names 82
sfClientBytes 83
sfConnectToRobot 82
sfDisconnectFromRobot 83
sfHaveClientPacket 83
sfProcessClientPacket 83
sfReadClientByte 83
sfReadClientSint 83
sfReadClientString 83
sfReadClientUsint 83
sfReadClientWord 83
sfResetRobotVars 83
sfRobotCom 83
sfRobotComInt 83
sfRobotComStr 83
sfRobotComStrn 83
sfWaitClientPacket 83

packets
checksum 42
data types 42
errors 43
protocols 41

Parameter File 87
parameter files 24
PCOMCLOSE 44
pioneer-users See  Customer resources
Pkzip See  Installation
points and lines

sfAdd2Angle 65
sfAddAngle 65
sfAddPoint 65
sfAddPointCheck 65
sfChangeVP 66
sfCreateGlobalPoint 64
sfCreateLocalPoint 64
sfFindArtifact 65
sfGlobalOrigin 65
sfMoveRobot 66
sfNorm2Angle 65
sfNorm3Angle 65
sfNormAngle 65
sfPointBaricenter 65
sfPointDist 65
sfPointDistPoint 65
sfPointMove 66

sfPointNormalDist 65
sfPointNormalDistPoint 65
sfPointPhi 65
sfPointXo 66
sfPointXoPoint 66
sfPointYo 66
sfPointYoPoint 66
sfRemPoint 65
sfRobotOrigin 65
sfSetGlobalCoords 64
sfSetLocalCoords 64
sfSub2Angle 65
sfSubAngle 65
sfUnchangeVP 66

port
names 47
types 47

port types and names 82
Predefined Behaviors 74
Procedural Reasoning System 10, 79
Procedural Reasoning System (PRSlite) 11
Processes

sfFindProcess 58
sfInitProcess 58
sfInterruptProcess 58
sfInterruptSelf 58
sfResumeProcess 58
sfSetProcessState 58
sfSuspendProcess 58
sfSuspendSelf 58
state values 57
window 19

Processes window 19
PRS-lite 79. See  Intentions
PSOS 41, 44

R
README 27
Real World Interface, Inc. 1
recenter menu 26
Registration 10, 11, 49, 53, 67
robot configuration 48
ROBOT_SOCKET 24
RWI See  Real World Interface, Inc.

S
Saphira

API 51. See  API
Behaviors 11, 69. See  Behaviors
colors 67
compiling clients 27
General description 1
Global Map Space (GMS) 10
Intentions 79. See  Intentions



Saphira Software Manual

99

maps 67
multiprocessing 57
Occupancy functions 61. See  occupancy
packet functions 82. See  packet functions
Path 3
processes 52, 57, 58. See  Saphira processes
PRS-lite See  Intentions
Quick start 3
Representation of space 10
Robots 1
Servers 41
vision 85

Saphira behaviors 69
Saphira colors 67
SAPHIRA environment variable 3, 27, 30, 31, 82
saphira example client 35
Saphira maps 67
Saphira processes 52

52, 53
sfInitControlProcs 53
sfInitInterpretationProcs 53
sfInitRegistrationProcs 53

Saphira vision 85
saphira.c 27
Saphira: Local Perceptual Space (LPS) 10
saphira-users See  Customer resources
save map 16
search_and_go_blob 86
sensor interpretation 53, 66
Sensor interpretation routines 11
Server

Information packet 45
Server information packet 45
SERVER_NAME 12
Servers 41

autoconfiguration 47
Pioneer Server Operating System 41
ports 47. See  ports
position integration 49
sfCOMCLOSE 48
sfCOMDHEAD 48
sfCOMOPEN 48
sfCOMPOLLING 50
sfCOMPULSE 48
sfCOMSETO 48
sfCOMSYNC 47
sfCOMVEL 48
shut down 47
sonars 50
start up 47

set_vector_buffer 67
setup_vision_system 86
sfAdd2Angle 65
sfAddAngle 65
sfAddPoint 65
sfAddPointCheck 65

sfAttendAtPos 76
sfAvoidCollision 74
sfBehaviorControl 70
sfBehaviorOff 74
sfBehaviorOn 74
sfButtonProcFn 52
sfChangeVP 66
sfClientBytes 83
sfCOMCLOSE 48
sfCOMDHEAD 48
sfCOMOPEN 48
sfCOMPOLLING 50
sfCOMPULSE 48
sfCOMRVEL 48
sfCOMSETO 48
sfCOMSYNC 47
sfCOMVEL 48
sfCOMVEL2 48
sfConnectToRobot 82
sfConstantVelocity 74
sfCreateGlobalPoint 64
sfCreateLocalPoint 64
sfDisconnectFromRobot 83
sfDoneHeading 56
sfDonePosition 56
sfDrawCenteredRect 67
sfDrawRect 67
sfErrMessage 52
sfErrSMessage 52
sfFindArtifact 65
sfFindBehavior 74
sfFindProcess 58
sfFollow 76
sfFollowCorridor 77
sfFollowDoor 77
sfFrontMaxRange 61
sfGlobalOrigin 65
sfGoToPos 76
sfHaveClientPacket 83

52, 53
sfInitBehavior 73
sfInitBehaviorDup 73
sfInitControlProcs 53
sfInitIntention 81
sfInitInterpretationProcs 53
sfInitProcess 58
sfInitRegistrationProcs 53
sfInterruptProcess 58
sfInterruptSelf 58
sfIsConnected 51
sfKeepOff 75
sfKeyProcFn 52
sfKillBehavior 74
sfLeftWallHyp 66
sfLoadMapFile 68
sfMessage 52



Index

100

sfMoveRobot 66
sfNorm2Angle 65
sfNorm3Angle 65
sfNormAngle 65
sfOccBox 61
sfOccBoxRet 61
sfOccPlane 62
sfOccPlaneRet 62
sfOnConnectFn 51
sfOnDisconnectFn 51
sfOnStartupFn 51
sfPause 51
sfPointBaricenter 65
sfPointDist 65
sfPointDistPoint 65
sfPointMove 66
sfPointNormalDist 65
sfPointNormalDistPoint 65
sfPointPhi 65
sfPointXo 66
sfPointXoPoint 66
sfPointYo 66
sfPointYoPoint 66
sfProcessClientPacket 83
sfReadClientByte 83
sfReadClientSint 83
sfReadClientString 83
sfReadClientUsint 83
sfReadClientWord 83
sfRemPoint 65
sfResetRobotVars 83
sfResumeProcess 58
sfRightWallHyp 66
sfRobot 54
sfRobotCom 83
sfRobotCom2Bytes 83
sfRobotComInt 83
sfRobotComStr 83, 85
sfRobotComStrn 83
sfRobotOrigin 65
sfScreenToWorldX 52
sfScreenToWorldY 52
sfSetBehaviorState 74
sfSetDHeading 56
sfSetDisplayState 51
sfSetFrontBuffer 61
sfSetGlobalCoords 64
sfSetHeading 56
sfSetLineColor 67
sfSetLineType 67
sfSetLineWidth 67
sfSetLocalCoords 64
sfSetMaxVelocity 56
sfSetPatchColor 67
sfSetPosition 56
sfSetProcessState 58

sfSetRVelocity 56
sfSetSideBuffer 61
sfSetVelocity 56
sfSMessage 52
sfStalledMotor 55
sfStartup 51
sfStopCollision 75
sfSub2Angle 65
sfSubAngle 65
sfSuspendProcess 58
sfSuspendSelf 58
sfTargetHead 56
sfTargetVel 56
sfUnchangeVP 66
sfWaitClientPacket 83
shrink 16, 25
shut down 47
Simulator

connect menu 25. See  connect menu
Description 23
display menu 25
exit menu 26
General description 1
grow 25
information area 26
load menu 24, 25. See  load menu
Menus 25
mouse actions 26
parameter files 24
pioneer.exe 23
recenter menu 26
ROBOT_SOCKET 24
shrink 25
socket 24
Starting 23
wake 25
Worlds 25

single step 16
Sonar buffers 59

sfFrontMaxRange 61
sfSetFrontBuffer 61
sfSetSideBuffer 61

sonars 50
sonars menu

clear buffer 16
sonars on 16

SPac 15
SRI International ii, 1, 4, 5, 7, 12, 27, 68, 79
start up 47
startup callback 32
State reflection 53
state reflector 9, 11, 31, 32, 38, 39, 45, 53, 55, 56, 59

sfRobot 54
Stop collision parameters 75
straight_up 71
support See  Customer resources



Saphira Software Manual

101

SYNC0 44
SYNC0 47
SYNC1 44
SYNC1 47
SYNC2 44
SYNC2 47

T
TurnTo 78

U
Unix clients 29
user process 36

sample 36

V
ver53 2. See  also Installation
Vision 85

channel modes 85. See  Vision:

chroma.h 85
draw_blobs 86
find_blob 86
found_blob 86
packets 85
sample application 86
search_and_go_blob 86
setup_vision_system 86
sfRobotComStr 85

Vision packets 85
VPac 15

W
wake 16, 25
World Description File 89
World files 25

Z
Zip See  Installation



Saphira Software Manual

103

Warranty & Liabilities

The developers and  marketers of Saphira software shall bear no liabilities for operation and use with
any robot or any accompanying software except that covered by the warranty and period. The developers
and marketers shall not be held responsible for any injury to persons or property involving the Saphira
software in any way. They shall bear no responsibilities or liabilities for any operation or application of the
software, or for support of any of those activities. And under no circum stances will the developers,
marketers, or manufacturers of Saphira take responsibility for or support any special or custom
modification to the software.

Saphira Software Manual Version 5.3, January 1997


