
UG111 July 6, 2011 [optional]

Embedded System
Tools Reference
Manual
EDK (v13.2)

UG111 July 6, 2011

Embedded System Tools Reference Manual www.xilinx.com UG111 July 6, 2011
EDK (v13.2)

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/01/2011 13.1 EDK 13.1 release. Revision numbering format change to match release number.

07/06/2011 13.2 EDK 13.2 release. Changes in this release are:

• Obsoleted OPB and PLB IP.
• Added support for external simulation model for Micron Memory Models used

with XPS MIG.
• Added option for instyle instantiation and a new simulation option to support

Mentor Graphics QuestaSim.
• Added command line options to discover and to enable external memory.
• Changed the EDK diagram to match new flow.

07/06/2011 13.2_web EDK 13.2 web release has the following changes:

• Removed the obsolete OPB and PLB interface references.
• Added information on Questa simulation in command line mode (Chapter 5,

Command Line Mode).
• Added AXI BFM information in Chapter 6, Bus Functional Model Simulation.
• Added information regarding Revup actions when updating project from 12.x and

below to 13.x project (Chapter 15, Version Management Tools (revup).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 3
UG111 EDK (v.13.2) July 6, 2011

Table of Contents

Revision History . 2

Chapter 1: Embedded System and Tools Architecture Overview
Scope . 7
About EDK . 7
Design Process Overview . 8
EDK Overview . 10

Chapter 2: Platform Specification Utility (PsfUtility)
Tool Options . 19
MPD Creation Process Overview . 20
Use Models for Automatic MPD Creation. 21
DRC Checks in PsfUtility . 23
Conventions for Defining HDL Peripherals . 23

Chapter 3: Psf2Edward Program
Program Usage . 39
Program Options . 39

Chapter 4: Platform Generator (Platgen)
Features. 41
Tool Requirements . 41
Tool Usage . 42
Tool Options . 42
Load Path . 43
Output Files . 43
Synthesis Netlist Cache . 44

Chapter 5: Command Line Mode
Invoking XPS Command Line Mode. 45
Creating a New Empty Project . 45
Creating a New Project With an Existing MHS . 46
Opening an Existing Project . 46
Saving Your Project Files . 46
Setting Project Options. 46
Executing Flow Commands. 48
Reloading an MHS File . 48
Adding or Updating an ELF File . 49

http://www.xilinx.com

4 www.xilinx.com Embedded System Tools Reference Manual
UG111 EDK (v.13.2) July 6, 2011

Deleting an ELF File. 49
Archiving Your Project Files . 49
Restrictions . 49

Chapter 6: Bus Functional Model Simulation
Introduction . 51
Bus Functional Simulation Basics . 51
Bus Functional Model Use Cases . 52
Bus Functional Simulation Methods . 54
Getting and Installing the Platform Studio BFM Package . 55
Using the Platform Studio BFM Package. 55

Chapter 7: Simulation Model Generator (Simgen)
Simgen Overview . 61
Simulation Libraries . 61
Compxlib Utility . 63
Simulation Models . 63
Simgen Syntax . 66
Output Files . 68
Memory Initialization . 69
External Memory Simulation . 72
Simulating Your Design . 74

Chapter 8: Library Generator (Libgen)
Overview . 75
Tool Usage . 75
Tool Options . 75
Load Paths . 76
Output Files . 77
Generating Libraries and Drivers . 78
MSS Parameters. 79
Drivers. 80
Libraries . 80
OS Block. 81
Additional Resources . 81

Chapter 9: GNU Compiler Tools
Overview . 83
Compiler Framework. 84
Common Compiler Usage and Options . 85
MicroBlaze Compiler Usage and Options . 98
PowerPC Compiler Usage and Options . 114
Other Notes . 121

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 5
UG111 EDK (v.13.2) July 6, 2011

Additional Resources . 122

Chapter 10: Xilinx Microprocessor Debugger (XMD)
XMD Usage . 124
XMD Console . 125
XMD Command Reference . 126
XMD User Commands . 127
Connect Command Options . 140
XMD Internal Tcl Commands . 163

Chapter 11: GNU Debugger
Overview . 169
Tool Overview . 169
MicroBlaze GDB Targets . 170
PowerPC 405 Targets . 171
PowerPC 440 Targets . 172
Console Mode . 172
GDB Command Reference . 173
Additional Resources . 173

Chapter 12: Bitstream Initializer (BitInit)
Overview . 175
Tool Usage . 175
Tool Options . 175

Chapter 13: System ACE File Generator (GenACE)
Assumptions . 177
Tool Requirements . 177
GenACE Features . 178
GenACE Model . 178
The Genace.tcl Script . 179
Generating ACE Files . 182
Related Information. 187

Chapter 14: Flash Memory Programming
Overview . 189
Supported Flash Hardware . 190
Flash Programmer Performance . 191
Customizing Flash Programming . 191

Chapter 15: Version Management Tools (revup)
Overview . 197

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 6
UG111 EDK (v.13.2) July 6, 2011

Format Revision Tool Backup and Update Processes . 197
Command Line Option for the Format Revision Tool . 200
The Version Management Wizard . 200

Chapter 16: Microprocessor Peripheral Definition Translation tool
(MPDX)

XBD2 . 201
Define Constraints . 206

Appendix A: GNU Utilities
General Purpose Utility for MicroBlaze and PowerPC . 209
Utilities Specific to MicroBlaze and PowerPC. 209
Other Programs and Files. 211

Appendix B: Interrupt Management
Hardware Setup . 213
Software Setup and Interrupt Flow . 214
Software APIs. 219

Appendix C: EDK Tcl Interface
Introduction . 229
Understanding Handles . 229
Data Structure Creation . 230
Tcl Command Usage . 231
EDK Hardware Tcl Commands . 232
Tcl Example Procedures . 240
Tcl Flow During Hardware Platform Generation . 248
Additional Keywords in the Merged Hardware Datastructure 253

Appendix D: Interconnect Settings and Parameter Automations for AXI
Designs

Allowed Parameters in Master and Slave Interfaces . 255
Building Vectors . 257
Parameter Automations . 257

Appendix E: Additional Resources
Xilinx Resources . 261
ISE Documentation . 261
EDK Documentation . 261
EDK Additional Resources . 262

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 7
UG111 July 6, 2011

Chapter 1

Embedded System and Tools
Architecture Overview

Scope
This chapter describes the architecture of the embedded system tools and flows provided
in the Xilinx® Embedded Development Kit (EDK) for developing systems based on the
MicroBlaze™ embedded processors and the PowerPC® (405 and 440) processors.

About EDK
The Xilinx Embedded Development Kit (EDK) system tools enable you to design a
complete embedded processor system for implementation in a Xilinx FPGA device.

EDK is a component of the Integrated Software Environment (ISE®) Design Suite
Embedded and System Editions. ISE is a Xilinx development system product that is
required to implement designs into Xilinx programmable logic devices. EDK includes:

• The Xilinx Platform Studio (XPS) system tools suite with which you can develop your
embedded processor hardware.

• The Software Development Kit (SDK), based on the Eclipse open-source framework,
which you can use to develop your embedded software application. SDK is also
available as a standalone program.

• Embedded processing Intellectual Property (IP) cores including processors and
peripherals.

While the EDK environment supports creating and implementing designs, the
recommended flow is to begin with an ISE project, then add an embedded processor
source to the ISE project. EDK depends on ISE components to synthesize the
microprocessor hardware design, to map that design to an FPGA target, and to generate
and download the bitstream.

For information about ISE, refer to the ISE software documentation. For links to ISE
documentation and other useful information see Appendix E, Additional Resources.

http://www.xilinx.com

8 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

Design Process Overview
The tools provided with EDK are designed to assist in all phases of the embedded design
process, as illustrated in Figure 1-1.

Hardware Development
Xilinx FPGA technology allows you to customize the hardware logic in your processor
subsystem. Such customization is not possible using standard off-the-shelf microprocessor
or controller chips.

The term “Hardware platform” describes the flexible, embedded processing subsystem
you are creating with Xilinx technology for your application needs.

The hardware platform consists of one or more processors and peripherals connected to
the processor buses. XPS captures the hardware platform description in the
Microprocessor Hardware Specification (MHS) file.

The MHS file is the principal source file that maintains the hardware platform description
and represents in ASCII text the hardware components of your embedded system.

When the hardware platform description is complete, the hardware platform can be
exported for use by SDK.

Figure 1-1: Embedded Design Process Flow

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 9
UG111 July 6, 2011

Design Process Overview

Software Development
A board support package (BSP) is a collection of software drivers and, optionally, the
operating system on which to build your application. The created software image contains
only the portions of the Xilinx library you use in your embedded design. You can create
multiple applications to run on the BSP.

The hardware platform must be imported into SDK prior to creation of software
applications and BSP.

Verification
EDK provides both hardware and software verification tools. The following subsections
describe the verification tools available for hardware and software.

Hardware Verification Using Simulation

To verify the correct functionality of your hardware platform, you can create a simulation
model and run it on an Hardware Design Language (HDL) simulator. When simulating
your system, the processor(s) execute your software programs. You can choose to create a
behavioral, structural, or timing-accurate simulation model.

ISim (the ISE simulator) now supports simulation of embedded designs. When you create
a project in ISE and add an embedded project source, you can launch ISim from within ISE.
When no ISE project is used, you can launch the ISim software directly from within
Platform Studio.

Software Verification Using Debugging

The following options are available for software verification:

• You can load your design on a supported development board and use a debugging
tool to control the target processor.

• You can gauge the performance of your system by profiling the execution of your
code.

Device Configuration
When your hardware and software platforms are complete, you then create a
configuration bitstream for the target FPGA device.

• For prototyping, download the bitstream along with any software you require to run
on your embedded platform while connected to your host computer.

• For production, store your configuration bitstream and software in a non-volatile
memory connected to the FPGA.

http://www.xilinx.com

10 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

EDK Overview
An embedded hardware platform typically consists of one or more processors, peripherals
and memory blocks, interconnected via processor buses. It also has port connections to the
outside world. Each of the processor cores (also referred to as pcores or processor IPs) has a
number of parameters that you can adjust to customize its behavior. These parameters also
define the address map of your peripherals and memories. XPS lets you select from
various optional features; consequently, the FPGA needs only implement the subset of
functionality required by your application.

Figure 1-2 provides an overview of the EDK architecture structure of how the tools operate
together to create an embedded system.

X-Ref Target - Figure 1-2

Figure 1-2: Embedded Development Kit (EDK) Tools Architecture

ISE Tools

X10310

Processor Hardware
Platform (MHS)

Platform
Generator

NGC

Processor Software
Platform (MSS)

EDK Software
Libraries

(BSP, MLD...)

System and
Wrapper HDL

Implementation
Constraint File

(UCF)

PCore
HDL

Libraries,
OS, MLD

Drivers,
MDD

MPD, PAO

IP Models

Behavioral
HDL Model

Linker Script

JTAG Cable

Synthesis (XST)

CompXLib

NGD

NGDBuild

NGCBuild

NCD

MAP, PAR

Application Source
.c, .h, .s

.o, .a

Compiler (GCC)

system.BIT

system.BMM

Bitstream Generator

download.BIT

iMPACT

ELF

.a

system_BD.BMM

Bitstream Initializer

Simulation

download.CMD

Simulation
Generator

Structural
HDL Model

Simulation
Generator

Timing HDL/
SDF Model

Simulation
Generator

ISE Models

Library
Generator

Linker
(GCC)

Debugger
(XMD, GDB)

IP Library or User Repository

FPGA
Device

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 11
UG111 July 6, 2011

EDK Overview

EDK Tools and Utilities
The following table describes the tools and utilities supported in EDK and the subsections
that follow provide an overview of each tool, with references to the chapters that contain
additional information.

Table 1-1: EDK Tools and Utilities

Hardware Development and Verification

Xilinx Platform Studio An integrated design environment (GUI) in which you can
create your embedded hardware design.

The Base System Builder
Wizard

Allows you to quickly create a working embedded design
using any features of a supported development board or
using basic functionality common to most embedded
systems. For initial project creation it is recommended to
use the BSB wizard.

The Create and Import
Peripheral Wizard

Assists you in adding your own custom peripheral(s) to a
design. The CIP creates associated directories and data files
required by XPS. the Platform Specification Utility
(PsfUtility) tool enables automatic generation of
Microprocessor Peripheral Definition (MPD) files,
which are required to create IP peripherals that are
compliant with the Embedded Development Kit (EDK).
The CIP wizard in XPS supports features provided by
the PsfUtility for MPD file creation (recommended.)

Coprocessor Wizard Helps you add a coprocessor to a CPU.
(This applies to MicroBlaze-based designs only.)

Platform Generator (Platgen) Constructs the programmable system on a chip in the form
of HDL and synthesized netlist files.

XPS Command Line or “No
Window” Mode

Allows you to run embedded design flows or change tool
options from a command line.

Bus Functional Model Helps simplify the verification of custom peripherals by
creating a model of the bus environment to use in place of
the actual embedded system.

Simulation Model Generator
(Simgen)

Generates the hardware simulation model and the
compilation script files for simulating the complete system.

Simulation Library Compiler
(Compxlib)

Compiles the EDK simulation libraries for the target
simulator, as required, before starting behavioral
simulation of the design.

Software Development and Verification

Software Development Kit An integrated design environment, the Software
Development Kit (SDK) helps with the development of
software application projects.

Library Generator (Libgen) Constructs a BSP comprising a customized collection of
software libraries, drivers, and OS.

GNU Compiler Tools Builds a software application based on the platforms
created by the Libgen.

http://www.xilinx.com

12 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

Xilinx Platform Studio
Xilinx Platform Studio (XPS) offers the following features:

• Ability to add processor and peripheral cores, edit core parameters, and make bus
and signal connections to generate an MHS file.

• Support for tools described in Table 1-1, page 11.

• Ability to generate and view a system block diagram and/or design report.

• Project management support.

• Process and tool flow dependency management.

• Ability to export hardware specification files for import into SDK.

For more information on files and their formats see the Platform Specification Format
Reference Manual, which is linked in Additional Resources, page 261.

Refer to the Xilinx Platform Studio Help for details on using the XPS GUI. The following
subsections describe the tool and utility components of XPS.

Xilinx Microprocessor
Debugger

Used for software download and debugging. Also provides
a channel through which the GNU debugger accesses the
device.

GNU Debugger GUI for debugging software on either a simulation model
or target device.

Bitstream Initializer (Bitinit) Updates an FPGA configuration bitstream to initialize the
on-chip instruction memory with the software executable.

Debug Configuration Wizard Automates hardware and software platform debug
configuration tasks common to most designs.

System ACE File Generator
(GenACE)

Generates a Xilinx System ACE™ configuration file based
on the FPGA configuration bitstream and software
executable to be stored in a compact flash device in a
production system.

Flash Memory Programmer Allows you to use your target processor to program
on-board Common Flash Interface (CFI)-compliant parallel
flash devices with software and data.

Format Revision Tool and
Version Management Wizard

Updates the project files to the latest format. The Version
Management wizard helps migrate IPs and drivers created
with an earlier EDK release to the latest version.

Platform Specification Utility
(PsfUtility) and PSF2EDWARD
Program

The PsfUtility enables automatic generation of
Microprocessor Peripheral Definition (MPD) files
required to create an IP core compliant with EDK.
The psf2Edward is a command line program that
converts a Xilinx® Embedded Development Kit (EDK)
project into Edward, an internal XML format, for use in
programs such as the Software Development Kit (SDK).

Microprocessor Peripheral
Definition Translation tool
(MPDX)

The MPDX is a translation tool that generates the
IP-XACT files on disk for the BSB repository.

Table 1-1: EDK Tools and Utilities (Cont’d)

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 13
UG111 July 6, 2011

EDK Overview

The Base System Builder Wizard

The Base System Builder (BSB) wizard helps you quickly build a working system. Some
embedded design projects can be completed using the BSB wizard alone. For more
complex projects, the BSB wizard provides a baseline system that you can then customize
to complete your embedded design. BSB wizard can generate a single-processor design for
the supported processor types, and dual processor designs for MicroBlaze. For efficiency
in project creation, Xilinx recommends using the BSB wizard in every scenario.

Based on the board you choose, the BSB wizard allows you to select and configure basic
system elements such as processor type, debug interface, cache configuration, memory
type and size, and peripheral selection. BSB provides functional default values
pre-selected in the wizard that can be modified as desired.

If your target development board is not available or not currently supported by the BSB
wizard, you can select the Custom Board option instead of selecting a target board. Using
this option, you can specify the individual hardware devices that you expect to have on
your custom board. To run the generated system on a custom board, you enter the FPGA
pin location constraints into the User Constraints File (UCF). If a supported target board is
selected, the BSB wizard inserts these constraints into the UCF automatically.

For detailed information on using the features provided in the BSB wizard, see the Xilinx
Platform Studio Help.

The Create and Import Peripheral Wizard

The Create and Import Peripheral (CIP) wizard helps you create your own peripherals and
import them into XPS-compliant repositories or projects.

In the Create mode, the CIP wizard creates templates that help you implement your
peripheral without requiring detailed understanding of the bus protocols, naming
conventions, or the formats of special interface files required by XPS. By referring to the
examples in the template file and using various auxiliary design support files that are
output by the wizard, you can start quickly on designing your custom logic.

In the Import mode, this tool creates the interface files and directory structures that are
necessary to make your peripheral visible to the various tools in XPS.

For the Import operation mode, it is assumed that you have followed the required XPS
naming conventions. Once imported, your peripheral is available in the XPS peripherals
library.

When you create or import a peripheral, XPS generates the Microprocessor Peripheral
Definition (MPD) and Peripheral Analyze Order (PAO) files automatically:

• The MPD file defines the interface for the peripheral.

• The PAO file specifies to Platgen and Simgen what HDL files are required for
compilation (synthesis or simulation) for the peripheral and in the order of those files.

For more information about MPD and PAO files, see the Platform Specification Format
Reference Manual. A link to the document is available in Additional Resources, page 261.
For detailed information on using the features provided in the CIP wizard, see the Xilinx
Platform Studio Help.

http://www.xilinx.com

14 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

Platform Specification Utility (PsfUtility) and PSF2EDWARD Program

The PsfUtility enables automatic generation of Microprocessor Peripheral Definition
(MPD) files required to create an IP core compliant with EDK. Features provided by this
tool can be used with the help of the CIP wizard.

See Chapter 2, “Platform Specification Utility (PsfUtility).”

The psf2Edward is a command line program that converts a Xilinx® Embedded
Development Kit (EDK) project into Edward, an internal XML format, for use in external
programs such as the Software Development Kit (SDK). See Chapter 3, “Psf2Edward
Program.”

Coprocessor Wizard

The Configure Coprocessor wizard helps add and connect a coprocessor to a CPU. A
coprocessor is a hardware module that implements a user-defined function and connects
to the processor through an auxiliary bus. The coprocessor has a Fast Simplex Link (FSL)
interface. For MicroBlaze™ processor systems, the coprocessor connects to the FSL
interface. For PowerPC® processor systems, the coprocessor connects to the Auxiliary
Processor Unit (APU) interface of the PowerPC processor through the fcb2fsl bridge.

For details on the Fast Simplex Link, refer to its data sheet and the MicroBlaze Processor
Reference Guide (UG. For information about the APU bus, refer to the PowerPC reference
guides. For information on the fcb2fsl bridge, refer to its data sheet. Links to document
locations are available in the Additional Resources, page 261.

For instructions on using the Coprocessor wizard, refer to the Xilinx Platform Studio Help.

Platform Generator (Platgen)

Platgen compiles the high-level description of your embedded processor system into HDL
netlists that can be implemented in a target FPGA device.

Platgen:

• Reads the MHS file as its primary design input.

• Reads various processor core (pcore) hardware description files (MPD, PAO) from the
XPS project and any user IP repository.

• Produces the top-level HDL design file for the embedded system that stitches together
all the instances of parameterized pcores contained in the system. In the process, it
resolves the high-level bus connections in the MHS into the actual signals required to
interconnect the processors, peripherals and on-chip memories. (The system-level
HDL netlist produced by Platgen is used as part of the FPGA implementation
process.)

• Invokes the XST (Xilinx Synthesis Technology) compiler to synthesize each of the
instantiated pcores.

• Generates the block RAM Memory Map (BMM) file which contains addresses and
configuration of on-chip block RAM memories. This file is used later for initializing
the block RAMs with software.

Chapter 4, “Platform Generator (Platgen),” provides a detailed description of the Platgen
tool.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 15
UG111 July 6, 2011

EDK Overview

XPS Command Line or “No Window” Mode

XPS includes a “no window” mode that lets you run from an operating system command
line. Chapter 5, “Command Line Mode,” provides information on the command line
feature in XPS.

Bus Functional Model

Bus Functional Model (BFM) simulation simplifies the verification of hardware
components that attach to a bus. Chapter 6, “Bus Functional Model Simulation,” provides
information about BFM simulation.

Debug Configuration Wizard

The Debug Configuration wizard automates hardware and software platform debug
configuration tasks common to most designs.

You can instantiate a ChipScope™ analyzer core to monitor the AMBA AXI4 interface,
Processor Local Bus (PLB), or any other system-level signals. In addition, you can
configure the parameters of an existing ChipScope core for hardware debugging. You can
also provide JTAG-based virtual input and output.

To configure the software for debugging you can set the processor debug parameters.
When co-debugging is enabled for a ChipScope core, you can set up mutual triggering
between the software debugger and the hardware signals. The JTAG interface can be
configured to transport UART signals to the Xilinx Microprocessor Debugger (XMD).

For detailed information on using the features provided in the Debug Configuration
wizard, see the Xilinx Platform Studio Help.

Simulation Model Generator (Simgen)

The Simulation Platform Generation tool (Simgen) generates and configures various
simulation models for the hardware. To generate a behavioral model, Simgen takes an
MHS file as its primary design input. For generating structural or timing models, Simgen
takes its primary design input from the post-synthesis or post-place-and-route design
database, respectively. Simgen also reads the embedded application executable (ELF) file
for each processor to initialize on-chip memory, thus allowing the modeled processor(s) to
execute their software code during simulation.

Simgen also provides simulation models for external memory and has automated support
to instantiate memory models in the simulation testbench and perform connection with
the design under test. To compile memory model into the user library, Simgen also
generates simulator-specific compilation/elaboration commands into respective helper/
setup scripts.

Refer to Chapter 7, Simulation Model Generator (Simgen) for more information.

http://www.xilinx.com

16 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

Software Development Kit
The Software Development Kit (SDK) provides a development environment for software
application projects. SDK is based on the Eclipse open-source standard. SDK has the
following features:

• Can be installed independent of ISE and XPS with a small disk footprint.

• Supports development of software applications on single- or multi-processor systems.

• Imports the XPS-generated hardware platform definition.

• Supports development of software applications in a team environment.

• Ability to create and configure board support packages (BSPs) for third-party OS.

• Provides off-the-shelf sample software projects to test the hardware and software
functionality.

• Has an easy GUI interface to generate linker scripts for software applications,
program FPGA devices, and program parallel flash memory.

• Has feature-rich C/C++ code editor and compilation environment.

• Provides project management.

• Configures application builds and automates the make file generation.

• Supplies error navigation.

• Provides a well-integrated environment for seamless debugging and profiling of
embedded targets.

For more information about SDK, see the Software Development ToolKit (SDK) Help.

Library Generator (Libgen)

Libgen configures libraries, device drivers, file systems, and interrupt handlers for the
embedded processor system, creating a board support package (BSP). The BSP defines, for
each processor, the drivers associated with the peripherals you include in your hardware
platform, selected libraries, standard input and output devices, interrupt handler routines,
and other related software features. Your SDK projects further define software applications
to run on each processor, which are based on the BSP.

Taking libraries and drivers from the installation, along with any custom libraries and
drivers for custom peripherals you provide, SDK is able to compile your applications,
including libraries and drivers, into Executable Linked Format (ELF) files that are ready to
run on your processor hardware platform.

Libgen reads selected libraries and processor core (pcore) software description files
(Microprocessor Driver Definition (MDD) and driver code) from the EDK library and any
user IP repository.

Refer to Chapter 8, Library Generator (Libgen) and the Xilinx Platform Studio Help for more
information. For more information on libraries and device drivers, refer to the Xilinx
software components documented in the OS and Libraries Document Collection. Links to the
documentation are supplied in the Additional Resources, page 261.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 17
UG111 July 6, 2011

EDK Overview

GNU Compiler Tools

GNU compiler tools (GCC) are called for compiling and linking application executables for
each processor in the system. Processor-specific compilers are:

• The mb-gcc compiler for the MicroBlaze processor.

• The powerpc-eabi-gcc compiler for the PowerPC processor.

As shown in the embedded tools architectural overview (Figure 1-2, page 10):

• The compiler reads a set of C-code source and header files or assembler source files
for the targeted processor.

• The linker combines the compiled applications with selected libraries and produces
the executable file in ELF format. The linker also reads a linker script, which is either
the default linker script generated by the tools or one that you have provided.

Refer to Chapter 9, “GNU Compiler Tools,”, Chapter 11, “GNU Debugger,” and
Appendix A, GNU Utilities for more information about GNU compiler tools and utilities.

Xilinx Microprocessor Debugger

You can debug your program in software using an Instruction Set Simulator (ISS), or on a
board that has a Xilinx FPGA loaded with your hardware bitstream. As shown in
Figure 1-2, page 10, the Xilinx Microprocessor Debugger (XMD) utility reads the
application executable ELF file. For debugging on a physical FPGA, XMD communicates
over the same download cable as used to configure the FPGA with a bitstream. Refer to
Chapter 10, “Xilinx Microprocessor Debugger (XMD),” for more information.

GNU Debugger

The GNU Debugger (GDB) is a powerful yet flexible tool that provides a unified interface
for debugging and verifying MicroBlaze and PowerPC processor systems during various
development phases.

GDB uses Xilinx Microprocessor Debugger (XMD) as the underlying engine to
communicate to processor targets.

Refer to Chapter 11, “GNU Debugger,” for more information.

Simulation Library Compiler (Compxlib)

The Compxlib utility compiles the EDK HDL-based simulation libraries using the tools
provided by various simulator vendors. The Compxlib operates in both the GUI and batch
modes. In the GUI mode, it allows you to compile the Xilinx libraries (in your ISE
installation) using the libraries available in EDK.

For more information about Compxlib, see Simulation Models in Chapter 7 and the ISE
Command Line Tools User Guide. For instructions on compiling simulation libraries, refer to
the Xilinx Platform Studio Help.

http://www.xilinx.com

18 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 1: Embedded System and Tools Architecture Overview

Bitstream Initializer (Bitinit)

The Bitinit tool initializes the on-chip block RAM memory connected to a processor with
its software information. This utility reads hardware-only bitstream produced by the ISE
tools (system.bit), and outputs a new bitstream (download.bit) which includes the
embedded application executable (ELF) for each processor. The utility uses the BMM file,
originally generated by Platgen and updated by the ISE tools with physical placement
information on each block RAM in the FPGA. Internally, the Bitstream Initializer tool uses
the Data2MEM utility to update the bitstream file.

See Figure 1-2, page 10, to see how the Bitinit tool fits into the overall system architecture.
Refer to Chapter 12, “Bitstream Initializer (BitInit),” for more information.

System ACE File Generator (GenACE)

XPS generates Xilinx System ACE configuration files from an FPGA bitstream, ELF, and
data files. The generated ACE file can be used to configure the FPGA, initialize block RAM,
initialize external memory with valid program or data, and bootup the processor in a
production system. EDK provides a Tool Command Language (Tcl) script, genace.tcl,
that uses XMD commands to generate ACE files. ACE files can be generated for PowerPC
processors and MicroBlaze processors with Microprocessor Debug Module (MDM)
systems. For more information see Chapter 13, “System ACE File Generator (GenACE).”

Flash Memory Programmer

The Flash Memory Programming solution is designed to be generic and targets a wide
variety of flash hardware and layouts. See Chapter 14, “Flash Memory Programming.”

Format Revision Tool and Version Management Wizard

The Format Revision Tool (revup) updates an existing EDK project to the current version.
The revup tool performs format changes only; it does not update your design.

Backups of existing files such as the project file (XMP), the MHS and MSS files, are
performed before the format changes are applied.

The Version Management wizard appears automatically when an older project is opened
in a newer version of EDK (for example, when a project created in EDK 10.1 is opened in
version 11.3).

The Version Management wizard is invoked after format revision has been performed. The
wizard provides information about any changes in Xilinx Processor IPs used in the design.
If a new compatible version of an IP is available, then the wizard also prompts you to
update to the new version. For instructions on using the Version Management wizard, see
Chapter 15, “Version Management Tools (revup),” and the Xilinx Platform Studio Help.

Microprocessor Peripheral Definition Translation tool (MPDX)

For board designers not familiar with the IP-XACT tool, a board description can be
captured in an ASCII text file similar to the Microprocessor Peripheral Definition (MPD)
format that captures a pcore description. This MPD file is known as the Board-MPD. It
includes a translation tool, MPDX, which generates the IP-XACT files on disk for the BSB
repository. Chapter 16, Microprocessor Peripheral Definition Translation tool (MPDX)
describes how to use this tool.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 19
UG111 July 6, 2011

Chapter 2

Platform Specification Utility
(PsfUtility)

This chapter describes the features and the usage of the Platform Specification Utility
(PsfUtility) tool that enables automatic generation of Microprocessor Peripheral Definition
(MPD) files. MPD files are required to create IP peripherals that are compliant with the
Embedded Development Kit (EDK). The Create and Import Peripheral (CIP) wizard in the
Xilinx® Platform Studio (XPS) interface supports features provided by the PsfUtility for
MPD file creation (recommended).

Tool Options
Table 2-1 lists the PsfUtility Syntax options and their descriptions.

Table 2-1: PsfUtility Syntax Options

Option Command Description

Single IP MHS template -deploy_core
<corename>
<coreversion>

Generate MHS Template that instantiates a single
peripheral. Suboptions are:

-lp <Library_Path>— Add one or more additional IP
library search paths

-o <outfile>— Specify output filename; default is
stdout

Help -h, -help Displays the usage menu and then exits.

HDL file to MPD -hdl2mpd <hdlfile> Generate MPD from the VHDL/Ver/src/prj file.
Suboptions are:

-lang {ver|vhdl} — Specify language

-top <design> — Specify top-level entity or module
name

-bus {plbv46|axi4|axi4lite|
dcr|lmb|fsl m|s|ms|mb(1) [<busif_name>]}—
Specify one or more bus interfaces for the peripheral

-p2pbus <busif_name> <bus_std>
{target|initiator} — Specify one or more
point-to-point connections for the peripheral

-o <outfile> — Specify output filename; default is
stdout

1. Bus type mb (master that generates burst transactions) is valid for bus standard PLBv4.6 only.

http://www.xilinx.com

20 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

MPD Creation Process Overview
You can use the PsfUtility to create MPD specifications from the HDL specification of the
core automatically. To create a peripheral and deliver it through EDK:

1. Code the IP in VHDL or Verilog using the required naming conventions for Bus, Clock,
Reset, and Interrupt signals. These naming conventions are described in detail in
“Conventions for Defining HDL Peripherals” on page 23.

Note: Following these naming conventions enables the PsfUtility to create a correct and
complete MPD file.

2. Create an XST (Xilinx Synthesis Technology) project file or a PAO file that lists the HDL
sources required to implement the IP.

3. Invoke the PsfUtility by providing the XST project file or the PAO file with additional
options.

For more information on invoking the PsfUtility with different options, see the following
section, Use Models for Automatic MPD Creation, page 21.

PAO file to MPD -pao2mpd <paofile> Generate MPD from Peripheral Analyze Order (PAO) file.
Suboptions are:

-lang {ver|vhdl} — Specify language

-top <design> — Specify top-level entity or module
name

-bus {plbv46|axi4|axi4lite|dcr|lmb|fsl
m|s|ms|mb(1) [<busif_name>]}— Specify one or more
peripherals and optional interface name(s)

-p2pbus <busif_name> <bus_std>
{target|initiator} — Specify one or more
point-to-point connections of the peripheral

-o <outfile> — Specify output filename; default is
stdout

Display version
information

-v Displays the version number

Table 2-1: PsfUtility Syntax Options (Cont’d)

Option Command Description

1. Bus type mb (master that generates burst transactions) is valid for bus standard PLBv4.6 only.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 21
UG111 July 6, 2011

Use Models for Automatic MPD Creation

Use Models for Automatic MPD Creation
You can run the PsfUtility in a variety of ways, depending on the bus standard and bus
interface types used with the peripheral and the number of bus interfaces a peripheral
contains. Bus standards and types can be one of the following:

• AXI4 MASTER

• AXI4 SLAVE

• AXI4LITE MASTER

• AXI4LITE SLAVE

• AXI STREAMING (same as POINT TO POINT)

• DCR (design control register) SLAVE

• FSL (fast simplex link) SLAVE

• FSL MASTER

• LMB (local memory bus) SLAVE

• PLBV46 (processor local bus version 4.6) SLAVE

• PLBV46 MASTER

• POINT TO POINT BUS (special case)

Peripherals with a Single Bus Interface
Most processor peripherals have a single bus interface. This is the simplest model for the
PsfUtility. For most such peripherals, complete MPD specifications can be obtained
without any additional attributes added to the source code.

Signal Naming Conventions
The signal names must follow the conventions specified in “Conventions for Defining
HDL Peripherals” on page 23. When there is only one bus interface, no bus identifier need
be specified for the bus signals.

Invoking the PsfUtility
The command line for invoking PsfUtility is as follows:

psfutil -hdl2mpd <hdlfile> -lang {vhdl|ver} -top <top_entity>
-bus <busstd> <bustype> -o <mpdfile>

For example, to create an MPD specification for an PLB slave peripheral such as UART, the
command is:

psfutil -hdl2mpd uart.vhd -lang vhdl -top uart -bus plb s -o uart.mpd

Alternatively, you can use a .prj file as input for invoking PsfUtility, as follows:

psfutil -hdl2mpd uart.prj -lang vhdl -top uart -bus plb s -o uart.mpd

http://www.xilinx.com

22 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Peripherals with Multiple Bus Interfaces
Some peripherals might have multiple associated bus interfaces. These interfaces can be
exclusive bus interfaces, non-exclusive bus interfaces, or a combination of both. All bus
interfaces on the peripheral that can be connected to the peripheral simultaneously are
exclusive interfaces. For example, an OPB Slave bus interface and a DCR Slave bus
interface are exclusive because they can be connected simultaneously.

On a peripheral containing exclusive bus interfaces: a port can be connected to only one of
the exclusive bus interfaces.

Non-exclusive bus interfaces cannot be connected simultaneously.

Peripherals with non-exclusive bus interfaces have ports that can be connected to multiple
non-exclusive interfaces. Non-exclusive interfaces have the same bus interface standard.

Non-Exclusive and Exclusive Bus Interfaces

Signal Naming Conventions

Signal names must adhere to the conventions specified in “Conventions for Defining HDL
Peripherals” on page 23.

• For non-exclusive bus interfaces, bus identifiers need not be specified.

• For exclusive bus interfaces, identifiers must be specified only when the peripheral
has more than one bus interface of the same bus standard and type.

Invoking the PsfUtility With Buses Specified in the Command Line

You can specify buses on the command line when the bus signals do not have bus identifier
prefixes. The command line for invoking the PsfUtility is as follows:

psfutil -hdl2mpd <hdlfile> -lang {vhdl|ver} -top <top_entity>
[-bus <busstd> <bustype>] -o <mpdfile>

Exclusive and Non-exclusive Bus Interface Command Line Examples

For an example of a non-exclusive bus interface, to create an MPD specification for a
peripheral with a PLB slave interface and a PLB Master/Slave interface such as gemac, the
command is:

psfutil -hdl2mpd gemac.prj -lang vhdl -top gemac -bus plb s -bus plb ms
-o gemac.mpd

For an example of an exclusive bus identifier, to create an MPD specification for a
peripheral with a PLB slave interface and a DCR Slave interface, the command is:

psfutil -hdl2mpd mem.prj -lang vhdl -top mem -bus plb s -bus dcr s -o
mem.prj

Peripherals with Point-to-Point Connections
Some peripherals, such as multi-channel memory controllers, might have point-to-point
connections (BUS_STD = XIL_MEMORY_CHANNEL, BUS_TYPE = TARGET).

Signal Naming Conventions

The signal names must follow conventions such that all signals belonging to the
point-to-point connection start with the same bus interface name prefix, such as MCH0_*.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 23
UG111 July 6, 2011

DRC Checks in PsfUtility

Invoking the PsfUtility with Point-to-Point Connections from Command Line

You can specify point-to-point connections in the command line using the bus interface
name as a prefix to the bus signals.

The command line for invoking PsfUtil is:

psfutil -hdl2mpd <hdlfile> -lang {vhdl|ver} -top <top_entity>
-p2pbus <busif_name> <bus_std> {target|initiator} -o <mpdfile>

For example, to create an MPD specification for a peripheral with an MCH0 connection, the
command is:

psfutil -hdl2mpd mch_mem.prj -lang vhdl -top mch_mem -p2pbus MCH0
XIL_MEMORY_CHANNEL TARGET -o mch_mem.mpd

DRC Checks in PsfUtility
To enable generation of correct and complete MPD files from HDL sources, the PsfUtility
reports DRC errors. The DRC checks are listed in the following subsections in the order
they are performed.

HDL Source Errors
The PsfUtility returns a failure status if errors are found in the HDL source files.

Bus Interface Checks
For every specified bus interface, the PsfUtility checks and reports any missing or repeated
bus signals. It generates an MPD file when all bus interface checks are completed.

Conventions for Defining HDL Peripherals
The top-level HDL source file for an IP peripheral defines the interface for the design and
has the following characteristics:

• Lists ports and default connectivity for bus interfaces

• Lists parameters (generics) and default values

• Parameters defined in the MHS overwrite corresponding HDL source parameters

Individual peripheral documentation contains information on source file options.

For components that have more than one bus interface of the same type, naming
conventions must be followed so the automation tools can group the bus interfaces.

Naming Conventions for Bus Interfaces
A bus interface is a grouping of related interface signals. For the automation tools to
function properly, you must adhere to the signal naming conventions and parameters
associated with a bus interface.

http://www.xilinx.com

24 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

When the signal naming conventions are correctly specified, the following interface types
are recognized automatically, and the MPD file contains the bus interface label shown in
Table 2-2.

Naming Conventions for VHDL Generics
For peripherals that contain more than one of the same bus interface, a bus identifier must
be used. The bus identifier must be attached to all associated signals and generics.

Generic names must be VHDL-compliant. Additional conventions for IP peripherals are:

• The generic must start with C_.

• If more than one instance of a particular bus interface type is used on a peripheral, a
bus identifier <BI> must be used in the signal.

• If a bus identifier is used for the signals associated with a port, the generics associated
with that port can optionally use <BI>.

• If no <BI> string is used in the name, the generics associated with bus parameters are
assumed to be global. For example, C_DOPB_DWIDTH has a bus identifier of D and is
associated with the bus signals that also have a bus identifier of D. If only
C_OPB_DWIDTH is present, it is associated with all OPB buses regardless of the bus
identifier on the port signals.

Note: For the PLBV4.6 bus interface, the bus identifier <BI> is treated as the bus tag (bus
interface name). For example, C_SPLB0_DWIDTH has a bus identifier (tag) SPLB0 and is
associated with the bus signals that also have a bus identifier of SPLB0 as the prefix.

• For peripherals that have only a single bus interface (which is the case for most
peripherals), the use of the bus identifier string in the signal and generic names is
optional, and the bus identifier is typically not included.

• All generics that specify a base address must end with _BASEADDR, and all generics
that specify a high address must end with _HIGHADDR. Further, to tie these addresses
with buses, they must also follow the conventions for parameters, as listed above.

• For peripherals with more than one bus interface type, the parameters must have the
bus standard type specified in the name. For example, parameters for an address on
the PLB bus must be specified as C_PLB_BASEADDR and C_PLB_HIGHADDR.

The Platform Generator (Platgen) expands and populates certain reserved generics
automatically. For correct operation, a bus tag must be associated with these parameters.

Table 2-2: Recognized Bus Interfaces

Description Bus Label in MPD

Slave AXI interface S_AXI

Master AXI interface M_AXI

Slave DCR interface SDCR

Master FSL interface MFSL

Slave FSL interface SFSL

Slave LMB interface SLMB

Master PLBV4.6 interface MPLB

Slave PLBV4.6 interface SPLB

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 25
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

To have the PsfUtility infer this information automatically, all specified conventions must
be followed for reserved generics as well. This can help prevent errors when your
peripheral requires information on the platform that is generated.

Reserved Generic Names

Table 2-3 lists the reserved generic names.

Reserved Parameters

Table 2-4 lists the parameters that Platgen populates automatically.

Table 2-3: Automatically Expanded Reserved Generics

Parameter Description

C_<BI>AXI_ADDR_WIDTH AXI address width.

C_<BI>AXI_DATA_WIDTH AXI data width.

C_<BI>AXI_ID_WIDTH AXI master ID width.

C_<BI>AXI_NUM_MASTERS Number of AXI masters.

C_<BI>AXI_NUM_SLAVES Number of AXI slaves.

C_FAMILY FPGA device family.

C_INSTANCE Instance name of component.

C_<BI>DCR_AWIDTH DCR address width.

C_<BI>DCR_DWIDTH DCR data width.

C_<BI>DCR_NUM_SLAVES Number of DCR slaves.

C_<BI>FSL_DWIDTH FSL data width.

C_<BI>LMB_AWIDTH LMB address width.

C_<BI>LMB_DWIDTH LMB data width.

C_<BI>LMB_NUM_SLAVES Number of LMB slaves.

Table 2-4: Reserved Parameters

Parameter Description

C_BUS_CONFIG Defines the bus configuration of the MicroBlaze processor.

C_FAMILY Defines the FPGA device family.

C_INSTANCE Defines the instance name of the component.

C_DCR_AWIDTH Defines the DCR address width.

C_DCR_DWIDTH Defines the DCR data width.

C_DCR_NUM_SLAVES Defines the number of DCR slaves on the bus.

C_LMB_AWIDTH Defines the LMB address width.

C_LMB_DWIDTH Defines the LMB data width.

C_LMB_NUM_SLAVES Defines the number of LMB slaves on the bus.

http://www.xilinx.com

26 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Naming Conventions for Bus Interface Signals
This section provides naming conventions for bus interface signal names. The conventions
are flexible to accommodate embedded processor systems that have more than one bus
interface and more than one bus interface port per component. When peripherals with
more than one bus interface port are included in a design, it is important to understand
how to use a bus identifier. (As explained previously, a bus identifier must be used for
peripherals that contain more than one of the same bus interface. The bus identifier must
be attached to all associated signals and generics.)

The names must be HDL compliant. Additional conventions for IP peripherals are:

• The first character in the name must be alphabetic and uppercase.

• The fixed part of the identifier for each signal must appear exactly as shown in the
applicable section below. Each section describes the required signal set for one bus
interface type.

• If more than one instance of a particular bus interface type is used on a peripheral, the
bus identifier <BI> must be included in the signal identifier. The bus identifier can be
as simple as a single letter or as complex as a descriptive string with a trailing
underscore (_) peripheral. <BI> must be included in the port signal identifiers in the
following cases:

- The peripheral has more than one slave AXI port

- The peripheral has more than one master AXI port

- The peripheral has more than one slave LMB port

- The peripheral has more than one slave DCR port

- The peripheral has more than one master DCR port

- The peripheral has more than one slave FSL port

- The peripheral has more than one master FSL port

- The peripheral has more than one slave PLBV4.6 port

- The peripheral has more than one master PLBV4.6 port

- The peripheral has more than one port of any type and the choice of <Mn> or
<Sln> causes ambiguity in the signal names.

For peripherals that have only a single bus interface (which is the case for most
peripherals), the use of the bus identifier string in the signal names is optional, and the bus
identifier is typically not included.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 27
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

Global Ports
The names for the global ports of a peripheral, such as clock and reset signals, are
standardized. You can use any name for other global ports, such as the interrupt signal.

AXI Master - Clock and Reset (1)

M_AXI_ACLK
M_AXI_ARESETN

AXI Slave - Clock and Reset (1)
S_AXI_ACLK
S_AXI_ARESETN

LMB - Clock and Reset
LMB_Clk
LMB_Rst

PLBV46 Master - Clock and Reset
MPLB_Clk
MPLB_Rst

PLBV46 Slave - Clock and Reset
SPLB_Clk
SPLB_Rst

1. ACLK and/or ARESETN can be bus interface specific or can be global across bus interfaces. Global ports, must
be named ACLK and ARESETN.

http://www.xilinx.com

28 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Master AXI4 Ports
Master AXI4 ports must use the naming conventions shown in Table 2-5:

AXI4 Master Outputs

<BI>_awaddr : out std_logic_vector(C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_awlen : out std_logic_vector(7 downto 0);
<BI>_awsize : out std_logic_vector(2 downto 0);
<BI>_awburst : out std_logic_vector(1 downto 0);
<BI>_awprot : out std_logic_vector(2 downto 0);
<BI>_awcache : out std_logic_vector(3 downto 0);
<BI>_awvalid : out std_logic;
<BI>_wdata : out std_logic_vector(C_<BI>)_DATA_WIDTH-1 downto 0);
<BI>_wstrb : out std_logic_vector((C_<BI>_DATA_WIDTH/9)-1downto
0);

<BI>_wlast : out std_logic;
<BI>_wvalid : out std_logic;
<BI>_bready : out std_logic;
<BI>_araddr : out std_logic_vector (C_<BI>_ADDR_WIDTH-1 downto 0)
;

<BI>_arlen : out std_logic_vector(7 downto 0);
<BI>_arsize : out std_logic_vector(2 downto 0);
<BI>_arburst : out std_logic_vector(1 downto 0);
<BI>_arprot : out std_logic_vector(2 downto 0);
<BI>_arcache : out std_logic_vector(3 downto 0);
<BI>_arvalid : out std_logic;
<BI>_rready : out std_logic;

Examples:

m_axi_sg_awlen : out std_logic_vector(7 downto 0);
m_axi_sg_awsize : out std_logic_vector(2 downto 0);
m_axi_sg_awburst : out std_logic_vector(1 downto 0);

AXI4 Master Inputs

<BI>_awready : in std_logic;
<BI>_wready : in std_logic;
<BI>_bresp : in std_logic_vector(1 downto 0);
<BI>_bvalid : in std_logic;
<BI>_arready : in std_logic;
<BI>_rdata : in std_logic_vector (C_<BI>_DATA_WIDTH-1 downto 0) ;
<BI>_rresp : in std_logic_vector(1 downto 0);
<BI>_rlast : in std_logic;
<BI>_rvalid : in std_logic;

Examples:

m_axi_sg_awready : in std_logic;
m_axi_sg_bresp : in std_logic_vector(1 downto 0);
m_axi_sg_bvalid : in std_logic;

Table 2-5: Master AXI4 Port Naming Conventions

<BI> A bus identifier.

For peripherals with multiple AXI4 ports, the <BI> strings must be
unique for each bus interface. Trailing underline characters such as '_' in
the <BI> string are ignored.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 29
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

Slave AXI4 Ports
Slave AXI4 ports must use the naming conventions shown in Table 2-6:

AXI4 Slave Outputs

<BI>_awready : out std_logic;
<BI>_wready : out std_logic;
<BI>_bid : out std_logic_vector(C_<BI>_ID_WIDTH-1 downto 0);
<BI>_bresp : out std_logic_vector(1 downto 0);
<BI>_bvalid : out std_logic;
<BI>_arready : out std_logic;
<BI>_rid : out std_logic_vector(C_<BI>_ID_WIDTH-1 downto 0);
<BI>_rdata : out std_logic_vector(C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_rresp : out std_logic_vector(1 downto 0);
<BI>_rlast : out std_logic;
<BI>_rvalid : out std_logic

Examples:

s_axi_bid : out std_logic_vector(C_S_AXI_ID_WIDTH-1 downto 0);
s_axi_bresp : out std_logic_vector(1 downto 0);
s_axi_bvalid : out std_logic;

AXI4 Slave Inputs

<BI>_awid : in std_logic_vector(C_<BI>_ID_WIDTH-1 downto 0);
<BI>_awaddr : in std_logic_vector(C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_awlen : in std_logic_vector(7 downto 0);
<BI>_awsize : in std_logic_vector(2 downto 0);
<BI>_awburst : in std_logic_vector(1 downto 0);
<BI>_awlock : in std_logic;
<BI>_awcache : in std_logic_vector(3 downto 0);
<BI>_awprot : in std_logic_vector(2 downto 0);
<BI>_awqos : in std_logic_vector(3 downto 0);
<BI>_awvalid : in std_logic;
<BI>_wdata : in std_logic_vector(C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_wstrb : in std_logic_vector(C_<BI>_DATA_WIDTH/8-1 downto 0);
<BI>_wlast : in std_logic;
<BI>_wvalid : in std_logic;
<BI>_bready : in std_logic;
<BI>_arid : in std_logic_vector(C_<BI>_ID_WIDTH-1 downto 0);
<BI>_araddr : in std_logic_vector(C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_arlen : in std_logic_vector(7 downto 0);
<BI>_arsize : in std_logic_vector(2 downto 0);
<BI>_arburst : in std_logic_vector(1 downto 0);
<BI>_arlock : in std_logic;
<BI>_arcache : in std_logic_vector(3 downto 0);
<BI>_arprot : in std_logic_vector(2 downto 0);
<BI>_arqos : in std_logic_vector(3 downto 0);
<BI>_arvalid : in std_logic;
<BI>_rready : in std_logic;

Table 2-6: Slave AXI4 Port Naming Conventions

<BI> A bus identifier.

For peripherals with multiple AXI4 ports, the <BI> strings must be
unique for each bus interface. Trailing underline characters such as '_' in
the <BI> string are ignored.

http://www.xilinx.com

30 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Examples:

s_axi_arburst : in std_logic;
s_axi_arlock : in std_logic;
s_axi_arcache : in std_logic;

Master AXI4LITE Ports
Master AXI4LITE ports must use the naming conventions shown in Table 2-7:

AXI4LITE Master Outputs

<BI>_arvalid : out std_logic;
<BI>_araddr : out std_logic_vector(C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_arprot : out std_logic_vector(2 downto 0);
<BI>_rready : out std_logic;
<BI>_awvalid : out std_logic;
<BI>_awaddr : out std_logic_vector(C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_awprot : out std_logic_vector(2 downto 0);
<BI>_wvalid : out std_logic;
<BI>_wdata : out std_logic_vector(C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_wstrb : out std_logic_vector((C_<BI>_DATA_WIDTH/8)-1 downto
0);

<BI>_bready : out std_logic;

Examples:

m_axi_lite_wdata : out std_logic_vector(C_M_AXI_LITE_DATA_WIDTH-1
downto 0);

m_axi_lite_wstrb : out std_logic_vector((C_M_AXI_LITE_DATA_WIDTH/8)-1
downto 0);

m_axi_lite_bready : out std_logic;

AXI4LITE Master Inputs

<BI>_arready : in std_logic;
<BI>_rvalid : in std_logic;
<BI>_rdata : in std_logic_vector(C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_rresp : in std_logic_vector(1 downto 0);
<BI>_awready : in std_logic;
<BI>_wready : in std_logic;
<BI>_bvalid : in std_logic;
<BI>_bresp : in std_logic_vector(1 downto 0);

Examples:

m_axi_lite_rdata : in std_logic_vector(C_M_AXI_LITE_DATA_WIDTH-1
downto 0);

m_axi_lite_rresp : in std_logic_vector(1 downto 0);
m_axi_lite_awready : in std_logic;

Table 2-7: Master AXI4LITE Port Naming Conventions

<BI> A bus identifier.

For peripherals with multiple AXI4 ports, the <BI> strings must be
unique for each bus interface. Trailing underline characters such as '_' in
the <BI> string are ignored.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 31
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

Slave AXI4LITE ports
Slave AXI4LITE ports must use the naming conventions shown in Table 2-8:

AXI4LITE Slave Outputs
<BI>_AWREADY : out std_logic;
<BI>_WREADY : out std_logic;
<BI>_BRESP : out std_logic_vector(1 downto 0);
<BI>_BVALID : out std_logic;
<BI>_ARREADY : out std_logic;
<BI>_RDATA : out std_logic_vector(C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_RRESP : out std_logic_vector(1 downto 0);
<BI>_RVALID : out std_logic;

Examples:

<BI>_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
<BI>_RRESP : out std_logic_vector(1 downto 0);
<BI>_RVALID : out std_logic;

AXI4LITE Slave Inputs

<BI>_AWADDR : in std_logic_vector (C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_AWVALID : in std_logic;
<BI>_WDATA : in std_logic_vector (C_<BI>_DATA_WIDTH-1 downto 0);
<BI>_WSTRB : in std_logic_vector ((C_<BI>_DATA_WIDTH/8)-1 downto
0);

<BI>_WVALID : in std_logic;
<BI>_BREADY : in std_logic;
<BI>_ARADDR : in std_logic_vector (C_<BI>_ADDR_WIDTH-1 downto 0);
<BI>_ARVALID : in std_logic;
<BI>_RREADY : in std_logic;

Examples:

S_AXI_ARADDR : in std_logic_vector (C_S_AXI_ADDR_WIDTH-1 downto 0);
S_AXI_ARVALID : in std_logic;
S_AXI_RREADY : in std_logic;

Table 2-8: Slave AXI4LITE Port Naming Conventions

<BI> A bus identifier.

For peripherals with multiple AXI4 ports, the <BI> strings must be
unique for each bus interface. Trailing underline characters such as '_' in
the <BI> string are ignored.

http://www.xilinx.com

32 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Slave DCR Ports
Slave DCR ports must follow the naming conventions shown in Table 2-9.

Note: If <BI> is present, <Sln> is optional.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs:

<BI><Sln>_dcrDBus : out std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);
<BI><Sln>_dcrAck : out std_logic;

Examples:

Uart_dcrAck : out std_logic;
Intc_dcrAck : out std_logic;
Memcon_dcrAck : out std_logic;
Bus1_timer_dcrAck : out std_logic;
Bus1_timer_dcrDBus : out std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);
Bus2_timer_dcrAck : out std_logic;
Bus2_timer_dcrDBus : out std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);

DCR Slave Inputs

For interconnection to the DCR, all slaves must provide the following inputs:

<BI><nDCR>_ABus : in std_logic_vector(0 to C_<BI>DCR_AWIDTH-1);
<BI><nDCR>_DBus : in std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);
<BI><nDCR>_Read : in std_logic;
<BI><nDCR>_Write : in std_logic;

Examples:

DCR_DBus : in std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);
Bus1_DCR_DBus : in std_logic_vector(0 to C_<BI>DCR_DWIDTH-1);

Table 2-9: Slave DCR Port Naming Conventions

<Sln> A meaningful name or acronym for the slave output. <Sln> must not contain
the string DCR (upper, lower, or mixed case), so that slave outputs are not
confused with bus outputs.

<nDCR> A meaningful name or acronym for the slave input. The last three characters of
<nDCR> must contain the string DCR (upper, lower, or mixed case).

<BI> A bus identifier. Optional for peripherals with a single slave DCR port, and
required for peripherals with multiple slave DCR ports. <BI> must not contain
the string DCR (upper, lower, or mixed case). For peripherals with multiple slave
DCR ports, the <BI> strings must be unique for each bus interface.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 33
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

Slave FSL Ports
Table 2-10 contains the required Slave FSL port naming conventions:

FSL Slave Outputs

For interconnection to the FSL, slaves must provide the following outputs:

<BI><nFSL_S>_Data : out std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);
<BI><nFSL_S>_Control : out std_logic;
<BI><nFSL_S>_Exists : out std_logic;

Examples:

FSL_S_Control : out std_logic;
Memcon_FSL_S_Control : out std_logic;
Bus1_timer_FSL_S_Control: out std_logic;
Bus1_timer_FSL_S_Data : out std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);
Bus2_timer_FSL_S_Control: out std_logic;
Bus2_timer_FSL_S_Data : out std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);

FSL Slave Inputs

For interconnection to the FSL, slaves must provide the following inputs:

<BI><nFSL>_Clk : in std_logic;
<BI><nFSL>_Rst : in std_logic;
<BI><nFSL_S>_Clk : in std_logic;
<BI><nFSL_S>_Read : in std_logic;

Examples:

FSL_S_Read : in std_logic;
Bus1_FSL_S_Read : in std_logic;

Table 2-10: Slave FSL Port Naming Conventions

<nFSL> or
<nFSL_S>

A meaningful name or acronym for the slave I/O. The last five characters of
<nFSL_S> must contain the string FSL_S (upper, lower, or mixed case).

<BI> A bus identifier. Optional for peripherals with a single slave FSL port and
required for peripherals with multiple slave FSL ports. <BI> must not contain
the string FSL_S (upper, lower, or mixed case). For peripherals with multiple
slave FSL ports, the <BI> strings must be unique for each bus interface.

http://www.xilinx.com

34 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Master FSL Ports
Table 2-11 lists the required Master FSL ports naming conventions:

FSL Master Outputs

For interconnection to the FSL, masters must provide the following outputs:

<BI><nFSL_M>_Full : out std_logic;

Examples:

FSL_M_Full : out std_logic;
Memcon_FSL_M_Full : out std_logic;

FSL Master Inputs

For interconnection to the FSL, masters must provide the following inputs:

<BI><nFSL>_Clk : in std_logic;
<BI><nFSL>_Rst : in std_logic;
<BI><nFSL_M>_Clk : in std_logic;
<BI><nFSL_M>_Data : in std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);
<BI><nFSL_M>_Control : in std_logic;
<BI><nFSL_M>_Write : in std_logic;

Examples:

FSL_M_Write : in std_logic;
Bus1_FSL_M_Write : in std_logic;
Bus1_timer_FSL_M_Control: out std_logic;
Bus1_timer_FSL_M_Data : out std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);
Bus2_timer_FSL_M_Control: out std_logic;
Bus2_timer_FSL_M_Data : out std_logic_vector(0 to C_<BI>FSL_DWIDTH-1);

Table 2-11: Master FSL Port Naming Conventions

<nFSL> or
<nFSL_M>

A meaningful name or acronym for the master I/O. The last five characters of
<nFSL_M> must contain the string FSL_M (upper, lower, or mixed case).

<BI> A bus identifier. Optional for peripherals with a single master FSL port, and
required for peripherals with multiple master FSL ports. <BI> must not con-
tain the string FSL_M (upper, lower, or mixed case). For peripherals with mul-
tiple master FSL ports, the <BI> strings must be unique for each bus interface.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 35
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

Slave LMB Ports
Slave LMB ports must follow the naming conventions shown in Table 2-12:

Note: If <BI> is present, <Sln> is optional.

LMB Slave Outputs

For interconnection to the LMB, slaves must provide the following outputs:

<BI><Sln>_DBus : out std_logic_vector(0 to C_<BI>LMB_DWIDTH-1);
<BI><Sln>_Ready : out std_logic;

Examples:

D_Ready : out std_logic;
I_Ready : out std_logic;

LMB Slave Inputs

For interconnection to the LMB, slaves must provide the following inputs:

<BI><nLMB>_ABus : in std_logic_vector(0 to C_<BI>LMB_AWIDTH-1);
<BI><nLMB>_AddrStrobe : in std_logic;
<BI><nLMB>_BE : in std_logic_vector(0 to C_<BI>LMB_DWIDTH/
8-1);

<BI><nLMB>_Clk : in std_logic;
<BI><nLMB>_ReadStrobe : in std_logic;
<BI><nLMB>_Rst : in std_logic;
<BI><nLMB>_WriteDBus : in std_logic_vector(0 to C_<BI>LMB_DWIDTH-1);
<BI><nLMB>_WriteStrobe : in std_logic;

Examples:

LMB_ABus : in std_logic_vector(0 to C_LMB_AWIDTH-1);
DLMB_ABus : in std_logic_vector(0 to C_DLMB_AWIDTH-1);

Table 2-12: Slave LMB Port Naming Conventions

<Sln> A meaningful name or acronym for the slave output. <Sln> must not contain
the string LMB (upper, lower, or mixed case), so that slave outputs will not be
confused with bus outputs.

<nLMB> A meaningful name or acronym for the slave input. The last three characters
of <nLMB> must contain the string LMB (upper, lower, or mixed case).

<BI> Optional for peripherals with a single slave LMB port and required for
peripherals with multiple slave LMB ports. <BI> must not contain the string
LMB (upper, lower, or mixed case). For peripherals with multiple slave LMB
ports, the <BI> strings must be unique for each bus interface.

http://www.xilinx.com

36 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

Master PLBV4.6 Ports
Master PLBV4.6 ports must use the naming conventions shown inTable 2-13.

PLB v4.6 Master Outputs

For interconnection to the PLB v4.6, masters must provide the following outputs:

<BI>M_abort : out std_logic;
<BI>M_ABus : out std_logic_vector(0 to C_<BI|MPLB>_AWIDTH-1);
<BI>M_UABus : out std_logic_vector(0 to C_<BI|MPLB>_AWIDTH-1);
<BI>M_BE : out std_logic_vector(0 to C_<BI|MPLB>_DWIDTH/8-1);
<BI>M_busLock : out std_logic;
<BI>M_lockErr : out std_logic;
<BI>M_MSize : out std_logic;
<BI>M_priority : out std_logic_vector(0 to 1);
<BI>M_rdBurst : out std_logic;
<BI>M_request : out std_logic;
<BI>M_RNW : out std_logic;
<BI>M_size : out std_logic_vector(0 to 3);
<BI>M_TAttribute : out std_logic_vector(0 to 15);
<BI>M_type : out std_logic_vector(0 to 2);
<BI>M_wrBurst : out std_logic;
<BI>M_wrDBus : out std_logic_vector(0 to C_<BI|MPLB>_DWIDTH-1);

Examples:

IPLBM_request : out std_logic;
Bridge_M_request : out std_logic;
O2Ob_M_request : out std_logic;

PLB v4.6 Master Inputs

For interconnection to the PLBV4.6, masters must provide the following inputs:

<BI>MPLB_Clk : in std_logic;
<BI>MPLB_Rst : in std_logic;
<BI>PLB_MBusy : in std_logic;
<BI>PLB_MRdErr : in std_logic;
<BI>PLB_MWrErr : in std_logic;
<BI>PLB_MIRQ : in std_logic;
<BI>PLB_MWrBTerm : in std_logic;
<BI>PLB_MWrDAck : in std_logic;
<BI>PLB_MAddrAck : in std_logic;
<BI>PLB_MRdBTerm : in std_logic;
<BI>PLB_MRdDAck : in std_logic;

Table 2-13: Master PLBV4.6 Port Naming Conventions

<M> Prefix for the master output.

<PLB_M> Prefix for the master input.

<BI> A bus identifier. Optional for peripherals with a single
master PLBV46 port and required for peripherals with
multiple master PLBV46 ports.

For peripherals with multiple master PLBV46 ports, the
<BI> strings must be unique for each bus interface.
Trailing underline character '_' in the <BI> string are ig-
nored.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 37
UG111 July 6, 2011

Conventions for Defining HDL Peripherals

<BI>PLB_MRdDBus : in std_logic_vector(0 to C_<BI|MPLB>_DWIDTH-1);
<BI>PLB_MRdWdAddr : in std_logic_vector(0 to 3);
<BI>PLB_MRearbitrate : in std_logic;
<BI>PLB_MSSize : in std_logic_vector(0 to 1);
<BI>PLB_MTimeout : in std_logic;

Examples:

IPLB0_PLB_MBusy : in std_logic;
Bus1_PLB_MBusy : in std_logic;

Slave PLBV46 Ports
Table 2-14 shows the required naming conventions for Slave PLBV4.6 ports.

PLBV46 Slave Outputs

For interconnection to the PLBV4.6, slaves must provide the following outputs:

<BI>Sl_addrAck : out std_logic;
<BI>Sl_MBusy : out std_logic_vector(0 to C_<BI|SPLB>_NUM_MASTERS-1);
<BI>Sl_MRdErr : out std_logic_vector(0 to C_<BI|SPLB>_NUM_MASTERS-1);
<BI>Sl_MWrErr : out std_logic_vector(0 to C_<BI|SPLB>_NUM_MASTERS-1);
<BI>Sl_MIRQ : out std_logic;
<BI>Sl_rdBTerm : out std_logic;
<BI>Sl_rdComp : out std_logic;
<BI>Sl_rdDAck : out std_logic;
<BI>Sl_rdDBus : out std_logic_vector(0 to C_<BI|SPLB>_DWIDTH-1);
<BI>Sl_rdWdAddr : out std_logic_vector(0 to 3);
<BI>Sl_rearbitrate : out std_logic;
<BI>Sl_SSize : out std_logic(0 to 1);
<BI>Sl_wait : out std_logic;
<BI>Sl_wrBTerm : out std_logic;
<BI>Sl_wrComp : out std_logic;
<BI>Sl_wrDAck : out std_logic;

Examples:

Tmr_Sl_addrAck : out std_logic;
Uart_Sl_addrAck : out std_logic;
IntcSl_addrAck : out std_logic;

Table 2-14: Slave PLBV46 Port Naming Conventions

<Sl> Prefix for the slave output

<PLB> Prefix for the slave input

<BI> A bus identifier. Optional for peripherals with a single slave PLBV46 port
and required for peripherals with multiple slave PLBV46 ports.

For peripherals with multiple PLBV46 ports, the <BI> strings must be
unique for each bus interface. Trailing underline character '_' in the <BI>
string are ignored.

http://www.xilinx.com

38 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 2: Platform Specification Utility (PsfUtility)

PLBV4.6 Slave Inputs

For interconnection to the PLBV4.6, slaves must provide the following inputs:

<BI>SPLB_Clk : in std_logic;
<BI>SPLB_Rst : in std_logic;
<BI>PLB_ABus : in std_logic_vector(0 to C_<BI|SPLB>_AWIDTH-1);
<BI>PLB_UABus : in std_logic_vector(0 to C_<BI|SPLB>_AWIDTH-1
<BI>PLB_BE : in std_logic_vector(0 to C_<BI>PLB_DWIDTH/8-1);
<BI>PLB_busLock : in std_logic;
<BI>PLB_lockErr : in std_logic;
<BI>PLB_masterID : in std_logic_vector(0 to C_<BI|SPLB>_MID_WIDTH
-1);

<BI>PLB_PAValid : in std_logic;
<BI>PLB_rdPendPri : in std_logic_vector(0 to 1);
<BI>PLB_wrPendPri : in std_logic_vector(0 to 1);
<BI>PLB_rdPendReq : in std_logic;
<BI>PLB_wrPendReq : in std_logic;
<BI>PLB_rdBurst : in std_logic;
<BI>PLB_rdPrim : in std_logic;
<BI>PLB_reqPri : in std_logic_vector(0 to 1);
<BI>PLB_RNW : in std_logic;
<BI>PLB_SAValid : in std_logic;
<BI>PLB_MSize : in std_logic_vector(0 to 1);
<BI>PLB_size : in std_logic_vector(0 to 3);
<BI>PLB_TAttribute : in std_logic_vector(0 to 15);
<BI>PLB_type : in std_logic_vector(0 to 2);
<BI>PLB_wrBurst : in std_logic;
<BI>PLB_wrDBus : in std_logic_vector(0 to C_<BI|SPLB>_DWIDTH-1);
<BI>PLB_wrPrim : in std_logic;

Examples:

PLB_size : in std_logic_vector(0 to 3);
IPLB_size : in std_logic_vector(0 to 3);
DPORT0_PLB_size : in std_logic_vector(0 to 3);

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 39
UG111 July 6, 2011

Chapter 3

Psf2Edward Program

The psf2Edward is a command line program that converts a Xilinx® Embedded
Development Kit (EDK) project into Edward, an internal XML format, for use in external
programs such as the Software Development Kit (SDK).

The DTD for the Edward Format can be found in
<EDK installation directory>/data/xml/DTD/Xilinx/Edward.

Program Usage
You can use Psf2Edward to:

• Convert PSF project to XML format. To do this, use the following command:
psf2Edward -inp <psf input source> -xml <xml output file>
<options>

• Synchronize an existing XML file with a PSF project.
psf2Edward -inp <psf input source> -sync < XML file to sync>
<options>

Program Options
Psf2Edward has the following options:

Option Description

inp Input PSF source. This can be either a Microprocessor
Hardware Specification (MHS) file or a Xilinx
Microprocessor Project (XMP) file.

xml Output XML file.

sync Input sync XML file. This outputs to the same file.

p Part Name. This must be used if the PSF source is an MHS
file.

edwver Set schema version of Edward to write. For example, 1.1 and
1.2.

dont_run_checkhwsys Do not run full set of system drc checks.

exit_on_error Exit on first drc error. By default, non-fatal errors are
ignored.

http://www.xilinx.com

40 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 3: Psf2Edward Program

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 41
UG111 July 6, 2011

Chapter 4

Platform Generator (Platgen)

The Hardware Platform Generation tool (Platgen) customizes and generates the
embedded processor system, in the form of hardware netlists files.

By default, Platgen synthesizes each processor IP core instance found in your embedded
hardware design using the XST compiler. Platgen also generates the system-level HDL file
that interconnects all the IP cores, to be synthesized later as part of the overall Xilinx®
Integrated Software Environment (ISE®) implementation flow.

For more information, refer to the Platform Specification Format Reference Manual. A link to
this document is provided in Appendix E, Additional Resources.

Features
The features of Platgen includes the creation of:

• The programmable system on a chip in the form of hardware netlists (HDL and
implementation netlist files.)

• A hardware platform using the Microprocessor Hardware Specification (MHS) file as
input.

• Netlist files in various formats such as NGC and EDIF.

• Support files for downstream tools and top-level HDL wrappers to allow you to add
other components to the automatically generated hardware platform.

After running Platgen, XPS spawns the Project Navigator interface for the FPGA
implementation tools to complete the hardware implementation, allowing you full control
over the implementation. At the end of the ISE flow, a bitstream is generated to configure
the FPGA. This bitstream includes initialization information for block RAM memories on
the FPGA chip. If your code or data must be placed on these memories at startup, the
Data2MEM tool in the ISE tool set updates the bitstream with code and data information
obtained from your executable files, which are generated at the end of the software
application creation and verification flow.

Tool Requirements
Set up your system to use the Xilinx Integrated Development System. Verify that your
system is properly configured. Consult the release notes and installation notes for more
information.

http://www.xilinx.com

42 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 4: Platform Generator (Platgen)

Tool Usage
Run Platgen as follows:

platgen -p <partname> system.mhs

where:

platgen is the executable name.

-p is the option to specify a part.

<partname> is the partname.

system.mhs is the output file.

Tool Options
Table 4-1 lists the supported Platgen syntax options.

Table 4-1: Platgen Syntax Options

Option Command Description

Help -h, -help Displays the usage menu and then exits without running the Platgen
flow.

Filename -f <filename> Reads command line arguments and options from file.

Integration
Style

-intstyle
{ise|default}

Indicates contextual information when invoking Xilinx applications
within a flow or project environment.

Language -lang {verilog|vhdl} Specifies the HDL language output.

Default: vhdl

Log output -log <logfile[.log]> Specifies the log file.

Default: platgen.log

Library path for
user peripherals
and driver
repositories

-lp <Library_Path> Adds <Library_Path> to the list of IP search directories. A library
is a collection of repository areas.

Output
directory

-od <output_dir> Specifies the output directory path.

Default: The current directory.

Part name -p <partname> Uses the specified part type to implement the design.

Instance name -ti <instname> Specifies the top-level instance name.

Top-level
module

-tm <top_module> Specifies the top-level module name.

Top level -toplevel {yes|no} Specifies if the input design represents a whole design or a level of
hierarchy.

Default: yes

Version -v Displays the version number of Platgen and then exits without
running the Platgen flow.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 43
UG111 July 6, 2011

Load Path

Load Path
Figure 4-1 shows the peripheral directory structure.

To specify additional directories, use one of the following options:

• Use the current directory (from which Platgen was launched.)

• Set the EDK tool -lp option.

Platgen uses a search priority mechanism to locate peripherals in the following order:

1. The pcores directory in the project directory.

2. The <Library_Path>/<Library_Name>/pcores as specified by the -lp option.

3. The $XILINX_EDK/hw/<Library_Name>/pcores.

Note: Directory path names are case-sensitive in Linux. Ensure that you use pcore and not Pcore.

From the pcores directory, the root directory is the <peripheral_name>.

From the root directory, the underlying directory structure is as follows:

data/
hdl/
netlist/

Output Files
Platgen produces directories and files from the project directory in the following
underlying directory structure:

/hdl
/implementation
/synthesis

HDL Directory
The /hdl directory contains the following files:

• system.{vhd|v} is the HDL file of the embedded processor system as defined in the
MHS, and the toplevel file for your project.

• system_stub.{vhd|v} is the toplevel template HDL file of the instantiation of the
system. Use this file as a starting point for your own toplevel HDL file.

• <inst>_wrapper.{vhd|v} is the HDL wrapper file for the of individual IP
components defined in the MHS.

Figure 4-1: Peripheral Directory Structure

X10066

<Library Name>

-lp <library_path>

boards drivers pcores sw_services

http://www.xilinx.com

44 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 4: Platform Generator (Platgen)

Implementation Directory
The implementation directory contains implementation netlist files with the naming
convention <instance_name>_wrapper.ngc.

Synthesis Directory
The synthesis directory contains the system.[prj|scr] synthesis project file.

BMM Flow
Platgen generates the <system>.bmm and the <system>_stub.bmm in the
<Project_Name>/implementation directory.

• The <system>.bmm is used by the implementation tools when EDK is the top-level
system.

• The <system>_stub is used by the implementation when EDK is a sub-module of the
top-level system.

The EDK tools implementation tools flow using Data2MEM is as follows:

ngdbuild -bm <system>.bmm <system>.ngc
map
par
bitgen -bd <system>.elf

Bitgen outputs <system>_bd.bmm, which contains the physical location of block RAMs.

A block RAM Memory Map (BMM) file contains a syntactic description of how individual
block RAMs constitute a contiguous logical data space.

The <system>_bd.bmm and <system>.bit files are input to Data2MEM. Data2MEM
translates contiguous fragments of data into the proper initialization records for the
Virtex® series block RAMs.

Synthesis Netlist Cache
An IP rebuild is triggered when one of the following changes occur:

• Instance name change

• Parameter value change

• Core version change

• Core is specified with the MPD CORE_STATE=DEVELOPMENT option

• Core license change

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 45
UG111 July 6, 2011

Chapter 5

Command Line Mode

This chapter describes the XPS command line (no window) mode.

Invoking XPS Command Line Mode
To invoke the XPS command line or “no window” mode, type the command xps -nw at the
LINUX Shell or Windows command prompt. XPS performs the specified operation, then
presents a command prompt.

From the command line, you can:

• Generate the make files

• Run the complete project flow in batch mode

• Create an XMP project file

• Load a Xilinx Microprocessor Project (XMP) file created by the XPS GUI

• Read and reload project files

• Execute flow commands

• Archive your project

XPS batch provides the ability to query the EDK design database; Tcl commands are
available for this purpose. In batch mode for XPS, you can specify a Tcl script by using the
-scr option. You can also provide an existing XMP file as input to XPS.

Creating a New Empty Project
To create a new project with no components, use the command:

xload new <basename>.xmp

XPS creates a project with an empty Microprocessor Hardware Specification (MHS) file.
All of the files have same base name as the XMP file. If XPS finds an existing project in the
directory with same base name, then the XMP file is overwritten. However, if an MHS file
with same name is found, then they are read in as part of the new project.

http://www.xilinx.com

46 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 5: Command Line Mode

Creating a New Project With an Existing MHS
To create a new project, use the command:

xload mhs <basename>.mhs

XPS reads in the MHS file and creates the new project. The project name is the same as the
MHS base name. All of the files generated have the same name as MHS. After reading in
the MHS file, XPS also assigns various default drivers to each of the peripheral instances,
if a driver is known and available to XPS.

Opening an Existing Project
If you already have an XMP project file, you can load that file using the command:

xload xmp <basename>.xmp

XPS reads in the XMP file.

Saving Your Project Files
To save XMP and make files for your project, use the command:

save [xmp|make|proj]

Command save proj saves the XMP, MHS and make files. To save the make file, use the
save make command explicitly.

Setting Project Options
You can set project options and other fields in XPS using the xset command. You can also
display the current value of those fields by using xget commands. The xget command
also returns the result as a Tcl string result, which can be saved into a Tcl variable. Table 5-1
shows the options you can use with the xget and xset commands:

xset option <value>
xget option

Table 5-1: xset and xget Command Options

Option Name Description

arch Set the target device architecture.

dev Set the target part name.

enable_par_timing_error [0 | 1] When set to 1, enables PAR timing error.

external_mem_sim [0|1] When set to 1, enables external memory simulation. Default: 0.

gen_sim_tb [true|false] Generate test bench for simulation models.

hdl [vhdl|verilog] Set the HDL language to be used.

hier [top|sub] Set the design hierarchy.

intstyle [ise|sysgen|default] Set the instantiation style.

• intstyle = ise: the project is instantiated in Project Navigator.
• intstyle = sysgen: the project is instantiated in System Generator.

Default: default.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 47
UG111 July 6, 2011

Setting Project Options

is_external_mem_present xget command only. Returns 1 if AXI DDRx memory controller(
Virtex-6 and 7 series) is present; otherwise returns 0.

mix_lang_sim [true|false] Specify if the available simulator tool can support both VHDL and
Verilog.

package Set the package of the target device.

parallel_xst [yes|no] Set the parallel synthesis option.

Default: no.

sdk_export_bmm_bit [0|1] When set to 1, export BMM and BIT files for SDK.

sdk_export_dir <directory path> Directory to which to export SDK files.

Default: project_directory/sdk.

searchpath <directories> Set the search path as a semicolon-separated list of directories.

speedgrade Set the speedgrade of the target device.

sim_model
[structural|behavioral|timing]

Set the current simulation mode.

simulator
[mgm|ies|isim|questa|none]

Set the simulator for which you want simulation scripts generated.

mgm = Mentor Graphics ModelSim

ies = Cadence Incisive Enterprise Simulator

isim = ISE® Simulator (ISim)

questa = Mentor Graphics QuestaSim

none = No simulator specified.

sim_x_lib Set the simulation library. For details, refer to Chapter 7, “Simulation
Model Generator (Simgen).”

sim_elf|imp_elf Read Simulation/Implementation ELF files associated with the
processors. Instead of the xset command, use add_elf, ‘help elf’.

ucf_file Specify a path to the User Constraints File (UCF) to be used for
implementation tools.

usercmd1 Set the user command 1.

usercmd2 Set the user command 2.

user_make_file <directory path> Specify a path to the make file. This file should not be same as the make
file generated by XPS.

Table 5-1: xset and xget Command Options (Cont’d)

Option Name Description

http://www.xilinx.com

48 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 5: Command Line Mode

Executing Flow Commands
You can run various flow tools using the run command with appropriate options. XPS
creates a make file for the project and runs that make file with the appropriate target. XPS
generates the make file every time the run command is executed. Table 5-2 lists the valid
options for the run command:

run <option>

Reloading an MHS File
All EDK design files refer to MHS files. Any changes in MHS files have impact on other
design files. If there are any changes in the MHS file after you loaded the design, use the
the following command to re-read MHS and XMP files:

run resync

Table 5-2: run Command Options

Option Name Description

ace Generate the System ACE™ technology file after the BIT file is updat-
ed with block RAM information.

bits Run the Xilinx implementation tools flow and generate the bitstream.

bitsclean Delete the BIT, NCD, and BMM files in the implementation directory.

clean Delete all tool-generated files and directories.

download Download the bitstream onto the FPGA.

hwclean Delete the implementation directory.

init_bram Update the bitstream with block RAM initialization information.

makeiplocal Make an IP (and all its dependent libraries) local to the project.

netlist Generate the netlist.

netlistclean Delete the NGC or EDN netlist.

resync Update any MHS file changes into the memory, and rewrites the XMP
and makefile if required.

sim Generate the simulation models and run the simulator.

simmodel Generate the simulation models without running the simulator.

simclean Delete the simulation directory.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 49
UG111 July 6, 2011

Adding or Updating an ELF File

Adding or Updating an ELF File
You can add or update the ELF files associated with a processor instance using this
command:

xadd_elf <procinst> <elf type - sim|imp|both> <elf file>

Deleting an ELF File
You can delete the ELF file associated with a processor instance using this command:

xdel_elf <procinst> <elf type - sim|imp|both>

Archiving Your Project Files
To archive a project, use the command:

xps_archiver

The xps_archiver tool compacts the files into a zip file. Refer to the XPS Online Help for the
list of files that are archived.

Restrictions

XMP Changes
Xilinx recommends that you do not edit the XMP file manually. The XPS -batch mode
supports changing project options through commands. Any other changes must be done
from XPS.

Option Name Description

procinst The processor instance

elf type The type of ELF file(s) to add or update.

sim = simulation ELF file

imp = implementation ELF file

both = both simulation and implementation ELF files

<elf file> The file name to add/update

Option Name Description

procinst The processor instance

elf type The type of ELF file(s) to delete.

sim = simulation ELF file

imp = implementation ELF file

both = both simulation and implementation ELF files

http://www.xilinx.com

50 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 5: Command Line Mode

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 51
UG111 July 6, 2011

Chapter 6

Bus Functional Model Simulation

This chapter describes Bus Functional Model (BFM) simulation within Xilinx® Platform
Studio.

Note: BFM simulation can be run with ModelSim, QuestaSim, and ISim.

Introduction
Bus Functional Simulation provides the ability to generate bus stimulus and thereby
simplifies the verification of hardware components that attach to a bus. Bus Functional
Simulation circumvents the drawbacks to the two typical validation methods, which are:

• Creating a test bench: This is time-consuming because it involves describing the
connections and test vectors for all combinations of bus transactions.

• Creating a larger system with other known-good components that create or respond
to bus transactions: This is time-consuming because it requires that you describe the
established connections to the device under test, program the added components to
generate the bus transactions to which the device will respond, and potentially
respond to bus transactions that the device is generating. Such a system usually
involves creating and compiling code, storing that code in memory for the
components to read, and generating the correct bus transactions.

Bus Functional Simulation Basics
Bus Functional Simulation usually involves the following components:

• A Bus Functional Model

• A Bus Functional Language

• A Bus Functional Compiler

Bus Functional Models (BFMs)
BFMs are hardware components that include and model a bus interface. There are different
BFMs for different buses. For example, PLB BFM components are used to connect to their
respective bus.

For each bus, there are different model types. For example the PLB bus has PLB Master,
PLB Slave, and PLB Monitor BFM components. The same set of components and more
could exist for other busses, or the functionality of BFM components could be combined
into a single model.

http://www.xilinx.com

52 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 6: Bus Functional Model Simulation

Bus Functional Language (BFL)
The BFL describes the behavior of the BFM components. You can specify how to initiate or
respond to bus transactions using commands in a BFL file.

Bus Functional Compiler (BFC)
The BFC translates a BFL file into the commands that actually program the selected Bus
Functional Model.

Bus Functional Model Use Cases
There are two main use cases for Bus Functional Models:

• IP verification

• Speed Up simulation

IP Verification
When verifying a single piece of IP that includes a bus interface you concern yourself with
the internal details of the IP design and the bus interactions. It is inefficient to attach the IP
to a large system only to verify that it is functioning properly.

Figure 6-1 shows an example in which a master BFM generates bus transactions to which
the device under test responds. The monitor BFM reports any errors regarding the bus
compliance of the device under test.

Figure 6-1: Slave IP Verification Use Case

Monitor
BFM

Master
BFM

Slave Device
Under Test

Arbiter

Bus

X10847

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 53
UG111 July 6, 2011

Bus Functional Model Use Cases

Figure 6-2 shows an example in which a slave BFM responds to bus transactions that the
device under test generates. The monitor BFM reports any errors regarding the bus
compliance of the device under test.
X-Ref Target - Figure 6-2

Speed-Up Simulation
When verifying a large system design, it can be time consuming to simulate the internal
details of each IP component that attaches to a bus. There are certain complex pieces of IP
that take a long time to simulate and could be replaced by a Bus Functional Model,
especially when the internal details of the IP are not of interest. Additionally, some IP
components are not easy to program to generate the desired bus transactions.

Figure 6-3 shows how two different IP components that are bus masters have been
replaced by BFM master modules. These modules are simple to program and can provide
a shorter simulation time because no internal details are modeled.
X-Ref Target - Figure 6-3

Figure 6-2: Master IP Verification Use Case

Monitor
BFM

Master Device
Under Test

Slave BFM

Arbiter

Bus

X10848

Figure 6-3: Speed-Up Simulation Use Case

Monitor
BFM

Master
BFM

Component 1

Arbiter

Bus

Master
BFM

Component 2

X10849

http://www.xilinx.com

54 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 6: Bus Functional Model Simulation

Bus Functional Simulation Methods
There are two software packages that allow you to perform Bus Functional Simulation, and
each applies its own methodology:

• IBM CoreConnect™ Toolkit

• Xilinx EDK BFM Package

• AXI BFM

These software packages are not included with EDK, but they are required if you intend to
perform bus functional simulation.

You can download IBM CoreConnect™ Toolkit free of charge after you obtain a license for
the IBM CoreConnect Bus Architecture. Licensing CoreConnect provides access to a
wealth of documentation, Bus Functional Models, and the Bus Functional Compiler.

Xilinx provides a Web-based licensing mechanism that lets you obtain CoreConnect from
the Xilinx web site. To license CoreConnect, use an internet browser to access:
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm. After the
request is approved (typically within 24 hours), you receive an E-mail granting you access
to the protected web site from which to download the toolkit.

For further documentation on the CoreConnect Bus Architecture, refer to the IBM
CoreConnect web site:
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture

Note: There are some differences between IBM CoreConnect and the Xilinx implementation of
CoreConnect. These are described in the Processor IP Reference Guide, available in your
$XILINX_EDK/doc/usenglish directory. Refer to the following section “Device Control Register
Bus (DCR) V2.9” for differences in the DCR bus.

IBM CoreConnect Toolkit
The IBM CoreConnect Toolkit is a collection of toolkits. Each toolkit includes a collection of
HDL files that represents predefined systems, including a bus, bus masters, bus slaves, and
bus monitors.

You can modify the predefined systems included in the toolkits manually to connect the
hardware components you want to test. This is a labor-intensive process because you must
describe all the connections to the bus and ensure there are no errors in setting up the test
environment.

Refer to the CoreConnect Toolkit documentation for more information on how to verify
your hardware module.

Platform Studio BFM Package
The Platform Studio BFM package includes a set of CoreConnect BFMs, the Bus Functional
Compiler, and CoreConnect documents tailored for use within Platform Studio. The BFM
package lets you specify bus connections from a high-level description, such as an MHS
file. By allowing the Platform Studio tools to write the HDL files that describe the
connections, the time and effort required to set up the test environment are reduced.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture

Embedded System Tools Reference Manual www.xilinx.com 55
UG111 July 6, 2011

Getting and Installing the Platform Studio BFM Package

AXI BFM Package
The AXI BFM solution was created for Xilinx by Cadence Design Systems.

AXI BFMs enable Xilinx customers to verify and simulate communication with AXI-based
IP that is in development. Complete verification of these interfaces and protocol
compliance is outside the scope of the AXI BFM solution; for compliance testing and
complete system-level verification of AXI interfaces, the Cadence AXI UVC can be used.

The AXI BFM solution is an optional product that is purchased separate from the ISE
software. Licensing is handled through the standard Xilinx licensing scheme. A newlicense
feature, XILINX_AXI_BFM, is needed in addition to the standard ISE license features. A
license is checked out at simulation run time. While the Xilinx ISE software does not need
to be running while the AXI BFM solution is in use, the AXI BFM only operates on a
computer that has the Xilinx software installed and licensed.

The BFM solution is encrypted using either the Verilog P1735 IEEE standard or a
vendor-specific encryption scheme. To use the AXI BFM with Cadence IUS/IES simulator
products, an export control regulation license feature is required. Contact your Cadence
sales office for more information.

See the AXI BFM User Guide (UG783) and the AXI Bus Functional Model Data Sheet (DS824)
for more information. The Appendix E, Additional Resources contains a link to these
documents.

Getting and Installing the Platform Studio BFM Package
The use of the CoreConnect BFM components requires the acceptance of a license
agreement. For this reason, the BFM components are not installed along with EDK. Xilinx
provides a separate installer for these called the “Xilinx EDK BFM Package.”

To use the Xilinx EDK BFM Package, you must register and obtain a license to use the IBM
CoreConnect Toolkit at:

 http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm

After you register, you receive instructions and a link to download the CoreConnect
Toolkit files. You can then install the files using the registration key provided.

After running the installer, you can verify that the files were installed by typing the
following command:

xilbfc -check

A Success! message indicates you are ready to continue; otherwise, you will receive
instructions on the error.

Using the Platform Studio BFM Package
After successfully downloading and installing the Platform Studio BFM Package, you can
launch Platform Studio. The following components are available:

• PLB v4.6 Master BFM (plbv46_master_bfm)

The PLB v4.6 master model contains logic to initiate bus transactions on the PLB v4.6
bus automatically. The model maintains an internal memory that can be initialized
through the Bus Functional Language and may be dynamically checked during
simulation or when all bus transactions have completed.

• PLB v4.6 Slave BFM (plbv46_slave_bfm)

http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm
http://www.xilinx.com

56 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 6: Bus Functional Model Simulation

The PLB v4.6 slave contains logic to respond to PLB v4.6 bus transactions based on an
address decode operation. The model maintains an internal memory that can be
initialized through the Bus Functional Language and may be dynamically checked
during simulation or when all bus transactions have completed.

• PLB v4.6 Monitor (plbv46_monitor_bfm)

The PLB v4.6 monitor is a model that connects to the PLB v4.6 and continuously
samples the bus signals. It checks for bus compliance or violations of the PLB v4.6
architectural specifications and reports warnings and errors.

• BFM Synchronization Bus (bfm_synch)

The BFM Synchronization Bus is not a bus BFM but a simple bus that connects BFMs in
a design and allows communication between them. The BFM Synchronization Bus is
required whenever BFM devices are used.

These components may be instantiated in an MHS design file for the Platform Studio tools
to create the simulation HDL files.

Note: Xilinx has written an adaptation layer to connect the IBM CoreConnect Bus Functional
Models to the Xilinx implementation of CoreConnect. Some of these BFM devices have different data/
instruction bus widths.

PLB v4.6 BFM Component Instantiation
The following is an example MHS file that instantiates PLB v4.6 BFM components and the
BFM synchronization bus.

Parameters
PARAMETER VERSION = 2.1.0

Ports
PORT sys_clk = sys_clk, DIR = I, SIGIS = CLK
PORT sys_reset = sys_reset, DIR = IN

Components
BEGIN plb_v46
PARAMETER INSTANCE = myplb
PARAMETER HW_VER = 1.01.a
PARAMETER C_DCR_INTFCE = 0
PORT PLB_Clk = sys_clk
PORT SYS_Rst = sys_reset
END

BEGIN plb_bram_if_cntlr
PARAMETER INSTANCE = myplbbram_cntlr
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xFFFF8000
PARAMETER C_HIGHADDR = 0xFFFFFFFF
BUS_INTERFACE PORTA = porta
BUS_INTERFACE SPLB = myplb
END

BEGIN bram_block
PARAMETER INSTANCE = bram1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = porta
END

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 57
UG111 July 6, 2011

Using the Platform Studio BFM Package

BEGIN plbv46_master_bfm
PARAMETER INSTANCE = my_master
PARAMETER HW_VER = 1.00.a
PARAMETER PLB_MASTER_ADDR_LO_0 = 0xFFFF0000
PARAMETER PLB_MASTER_ADDR_HI_0 = 0xFFFFFFFF
BUS_INTERFACE MPLB = myplb
PORT SYNCH_OUT = synch0
PORT SYNCH_IN = synch
END

BEGIN plbv46_slave_bfm
PARAMETER INSTANCE = my_slave
PARAMETER HW_VER = 1.00.a
PARAMETER PLB_SLAVE_ADDR_LO_0 = 0xFFFF0000
PARAMETER PLB_SLAVE_ADDR_HI_0 = 0xFFFF7FFF
BUS_INTERFACE SPLB = myplb
PORT SYNCH_OUT = synch1
PORT SYNCH_IN = synch
END

BEGIN plbv46_monitor_bfm
PARAMETER INSTANCE = my_monitor
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE MON_PLB = myplb
PORT SYNCH_OUT = synch2
PORT SYNCH_IN = synch
END

BEGIN bfm_synch
PARAMETER INSTANCE = my_synch
PARAMETER HW_VER = 1.00.a
PARAMETER C_NUM_SYNCH = 3
PORT FROM_SYNCH_OUT = synch0 & synch1 & synch2
PORT TO_SYNCH_IN = synch
END

BFM Synchronization Bus Usage
The BFM synchronization bus collects the SYNCH_OUT outputs of each BFM component in
the design. The bus output is then connected to the SYNCH_IN of each BFM component.
Figure 6-4 depicts an example for three BFMs, and the MHS example above shows its
instantiation for PLB v4.6 BFMs.
Figure X-Ref Target - Figure 6-4

Figure 6-4: BFM Synchronization Bus Usage

BFM 1

SYNCH_OUT

BFM 2

SYNCH_IN SYNCH_OUT SYNCH_IN

FROM_SYNCH_OUT
BFM SynchC_NUM_SYNCH = 3
TO_SYNCH_IN

BFM 3

X10850

SYNCH_OUT SYNCH_IN

http://www.xilinx.com

58 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 6: Bus Functional Model Simulation

X-Ref Target - Figure 6-5

PLB Bus Functional Language Usage
The following is a sample BFL file written for the PLB v4.6 BFM Component Instantiation,
page 56, which instantiate the PLB v4.6 BFM components.

-- FILE: sample.bfl
-- This test case initializes a PLB master

-- Initialize my_master
-- Note: The instance name for plb_master is duplicated in the
-- path due to the wrapper level inserted by the tools

set_device(path=/system/my_master/my_master/
master,device_type=plb_master)

-- Configure as 64-bit master
configure(msize=01)

-- Write and read 64-bit data using byte-enable architecture
mem_update(addr=ffff8000,data=00112233_44556677)
mem_update(addr=ffff8008,data=8899aabb_ccddeeff)
write (addr=ffff8000,size=0000,be=11111111)
write (addr=ffff8008,size=0000,be=11111111)
read (addr=ffff8000,size=0000,be=11111111)
read (addr=ffff8008,size=0000,be=11111111)

-- Write and read 32-bit data using byte-enable architecture
mem_update(addr=ffff8010,data=11111111_22222222)
write (addr=ffff8010,size=0000,be=11110000)
write (addr=ffff8014,size=0000,be=00001111)
read (addr=ffff8010,size=0000,be=11110000)
read (addr=ffff8014,size=0000,be=00001111)

-- Write and read 16-bit data using byte-enable architecture
mem_update(addr=ffff8020,data=33334444_55556666)
write (addr=ffff8020,be=1100_0000)
write (addr=ffff8022,be=0011_0000)
write (addr=ffff8024,be=0000_1100)
write (addr=ffff8026,be=0000_0011)
read (addr=ffff8020,be=1100_0000)
read (addr=ffff8022,be=0011_0000)
read (addr=ffff8024,be=0000_1100)
read (addr=ffff8026,be=0000_0011)

-- Write and read 8-bit data using byte-enable architecture
mem_update(addr=ffff8030,data=778899aa_bbccddee)
write (addr=ffff8030,be=1000_0000)
write (addr=ffff8031,be=0100_0000)
write (addr=ffff8032,be=0010_0000)
write (addr=ffff8033,be=0001_0000)
write (addr=ffff8034,be=0000_1000)
write (addr=ffff8035,be=0000_0100)
write (addr=ffff8036,be=0000_0010)
write (addr=ffff8037,be=0000_0001)
read (addr=ffff8030,be=1000_0000)
read (addr=ffff8031,be=0100_0000)
read (addr=ffff8032,be=0010_0000)
read (addr=ffff8033,be=0001_0000)

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 59
UG111 July 6, 2011

Using the Platform Studio BFM Package

read (addr=ffff8034,be=0000_1000)
read (addr=ffff8035,be=0000_0100)
read (addr=ffff8036,be=0000_0010)
read (addr=ffff8037,be=0000_0001)

-- Write and read a 16-word line
mem_update(addr=ffff8080,data=01010101_01010101)
mem_update(addr=ffff8088,data=02020202_02020202)
mem_update(addr=ffff8090,data=03030303_03030303)
mem_update(addr=ffff8098,data=04040404_04040404)
mem_update(addr=ffff80a0,data=05050505_05050505)
mem_update(addr=ffff80a8,data=06060606_06060606)
mem_update(addr=ffff80b0,data=07070707_07070707)
mem_update(addr=ffff80b8,data=08080808_08080808)
write (addr=ffff8080,size=0011,be=1111_1111)
read (addr=ffff8080,size=0011,be=1111_1111)

More information about the PLB Bus Functional Language is in the PlbToolkit.pdf
document in the $XILINX_EDK/third_party/doc directory.

Bus Functional Compiler Usage
The Bus Functional Compiler provided in the CoreConnect toolkit is a Perl script called
BFC. The script uses a bfcrc configuration file that specifies to the script which simulator
is used and the paths to the BFMs. Xilinx EDK includes a helper executable called xilbfc,
that enables this configuration.

To compile a BFL file, type the following at a command prompt:

For ModelSim: xilbfc -s mti sample.bfl

For ISim: xilbfc -s isim sample.bfl

This creates a script targeted for the selected simulator that initializes the BFM devices. In
the case of ModelSim, it creates a file called sample.do. In the case of ISim, it creates a file
called sample.tcl.

Running BFM Simulations
To run the BFM simulation, you must:

1. Compile the simulation HDL files.
2. Load the system into the simulator.
3. Initialize the Bus Functional Models.
4. (Optionally) create a waveform list or load a previously created one.
5. Provide the clock and reset stimulus to the system.
6. Run the simulation.

http://www.xilinx.com

60 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 6: Bus Functional Model Simulation

ModelSim Example

The following is an example ModelSim script called run.do that you can write to perform
the BFM simulation steps:

do system.do
vsim system
do sample.do
do wave.do
force -freeze sim:/system/sys_clk 1 0, 0 {10 ns} -r 20 ns
force -freeze sim:/system/sys_reset 0, 1 {200 ns}
run 2 us

Note: If your design has an input reset that is active high, replace the reset line with:
force -freeze sim:/system/sys_reset 1 , 0 {200 ns}

At the ModelSim prompt, type:

do run.do

Questa Example

The following is an example Questa script called ???? that you can write to perform the
BFM simulation steps:

Need example

ISim Example

The following is an example ISim script called run.tcl that you can write to perform the
BFM simulation steps:

isim force add /system/sys_clk 1 -time 0 ns, -value 0 -time 10 ns
-repeat 20 ns
isim force add /system/sys_reset 1 -time 100 ns -value 0 -time 200 ns
do sample.tcl
do wave.do
run 2 us

At the ISim prompt, type:

source run.tcl

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 61
UG111 July 6, 2011

Chapter 7

Simulation Model Generator (Simgen)

This chapter introduces the basics of Hardware Description Language (HDL) simulation
and describes the Simulation Model Generator tool, Simgen, and usage of the Compxlib
utility tool.

Simgen Overview
Simgen creates and configures various VHDL and Verilog simulation models for a
specified hardware. Simgen takes, as the input file, the Microprocessor Hardware
Specification (MHS) file, which describes the instantiations and connections of hardware
components.

Simgen is also capable of creating scripts for a specified vendor simulation tool. The scripts
compile the generated simulation models.

The hardware component is defined by the MHS file. Refer to the “Microprocessor
Hardware Specification (MHS)” chapter in the Platform Specification Format Reference
Manual for more information. Appendix E, Additional Resources,, contains a link to the
document web site. For more information about simulation basics and for discussions of
behavioral, structural, and timing simulation methods, refer to the Platform Studio Online
Help.

Simulation Libraries
EDK simulation netlists use low-level hardware primitives available in Xilinx® FPGAs.
Xilinx provides simulation models for these primitives in the libraries listed in this section.

The libraries described in the following sections are available for the Xilinx simulation
flow. The HDL code must refer to the appropriate compiled library. The HDL simulator
must map the logical library to the physical location of the compiled library.

Xilinx ISE Libraries
ISE provides the following libraries for simulation:

• UNISIM Library

• SIMPRIM Library

• XilinxCoreLib Library

http://www.xilinx.com

62 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

UNISIM Library

The UNISIM Library is a library of functional models used for behavioral and structural
simulation. It includes all of the Xilinx Unified Library components that are inferred by
most popular synthesis tools. The UNISIM library also includes components that are
commonly instantiated, such as I/Os and memory cells.

You can instantiate the UNISIM library components in your design (VHDL or Verilog) and
simulate them during behavioral simulation. Structural simulation models generated by
Simgen instantiate UNISIM library components.

Asynchronous components in the UNISIM library have zero delay. Synchronous
components have a unit delay to avoid race conditions. The clock-to-out delay for these
synchronous components is 100 ps.

SIMPRIM Library

The SIMPRIM Library is used for timing simulation. It includes all the Xilinx primitives
library components used by Xilinx implementation tools. Timing simulation models
generated by Simgen instantiate SIMPRIM library components.

XilinxCoreLib Library

The Xilinx CORE Generator™ software is a graphical Intellectual Property (IP) design tool
for creating high-level modules like FIR Filters, FIFOs, CAMs, and other advanced IP.
You can customize and pre-optimize modules to take advantage of the inherent
architectural features of Xilinx FPGA devices, such as block multipliers, SRLs, fast carry
logic and on-chip, single- or dual-port RAM.

The CORE Generator software HDL library models are used for behavioral simulation.
You can select the appropriate HDL model to integrate into your HDL design. The models
do not use library components for global signals.

Xilinx EDK Library
The EDK library is used for behavioral simulation. It contains all the EDK IP components,
precompiled for ModelSim SE and PE, or Cadence Incisive Enterprise Simulator (IES). This
library eliminates the need to recompile EDK components on a per-project basis,
minimizing overall compile time. The EDK IP components library is provided for VHDL
only and can be encrypted.

The Xilinx Compxlib utility deploys compiled models for EDK IP components into a
common location. Unencrypted EDK IP components can be compiled using Compxlib.
Precompiled libraries are provided for encrypted components.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 63
UG111 July 6, 2011

Compxlib Utility

Compxlib Utility
Xilinx provides the Compxlib utility to compile the HDL libraries for Xilinx-supported
simulators. Compxlib compiles the UNISIM, SIMPRIM, and XilinxCoreLib libraries for
supported device architectures using the tools provided by the simulator vendor. You
must have an installation of the Xilinx implementation tools to compile your HDL libraries
using Compxlib.

Run Compxlib with the -help option if you need to display a brief description for the
available options:

compxlib -help

Each simulator uses certain environment variables that you must set before invoking
Compxlib. Consult your simulator documentation to ensure that the environment is
properly set up to run your simulator.

Note: Make sure you use the -p <simulator_path> option to point to the directory where the
ModelSim executable is, if it is not in your path.

The following is an example of a command for compiling Xilinx libraries for MTI_SE:

Compxlib -s mti_se -arch all -l vhdl -w -dir .

This command compiles the necessary Xilinx libraries into the current working directory.
Refer to the Command Line Tools User Guide for information Compxlib. Refer to the
“Simulating Your Design” chapter of the Synthesis and Simulation Design Guide to learn
more about compiling and using Xilinx ISE simulation libraries. A link to the
documentation website is provided in Appendix E, Additional Resources,.

Simulation Models
This section describes how and when each of three FPGA simulation models are
implemented, and provides instructions for creating simulation models using XPS batch
mode. At specific points in the design process, Simgen creates an appropriate simulation
model, as shown in the following figure.

Figure 7-1 illustrates the FPGA design simulation stages:
Figure X-Ref Target - Figure 7-1

Figure 7-1: FPGA Design Simulation Stages

Behavioral
Simulation

Functional Simulation

Design
Entry

Design
Synthesis

Design
Netlist

Design
Implementation

Implemented
Design Netlist

Timing
Simulation

Structural
Simulation

UG111_01_111903

http://www.xilinx.com

64 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

Behavioral Models
To create a behavioral simulation model as displayed in the following figure, Simgen
requires an MHS file as input. Simgen creates a set of HDL files that model the
functionality of the design. Optionally, Simgen can generate a compile script for a specified
vendor simulator.

If specified, Simgen can generate HDL files with data to initialize block RAMs associated
with any processor that exists in the design. This data is obtained from an existing
Executable Linked Format (ELF) file. Figure 7-2 illustrates the behavioral simulation
model generation.
X-Ref Target - Figure 7-2

Structural Models
To create a structural simulation model as shown in the following figure, Simgen requires
an MHS file as input and associated synthesized netlist files. From these netlist files,
Simgen creates a set of HDL files that structurally model the functionality of the design.

Optionally, Simgen can generate a compile script for a specified vendor simulator.

If specified, Simgen can generate HDL files with data to initialize block RAMs associated
with any processor that exists in the design. This data is obtained from an existing ELF file.
Figure 7-3 illustrates the structural simulation model simulation generation.
X-Ref Target - Figure 7-3

Note: The EDK design flow is modular. Platgen generates a set of netlist files that are used by
Simgen to generate structural simulation models.

Figure 7-2: Behavioral Simulation Model Generation

UG111_02_101705

MHS

ELF

Simgen

Script

HDL

Figure 7-3: Structural Simulation Model Generation

UG111_03_101705

MHS

ELF

Simgen

Script

HDL

NGC

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 65
UG111 July 6, 2011

Simulation Models

Timing Models
To create a timing simulation model as displayed in Figure 7-4, Simgen requires an MHS
file as input and an associated implemented netlist file. From this netlist file, Simgen
creates an HDL file that models the design and a Standard Data Format (SDF) file with the
appropriate timing information. Optionally, Simgen can generate a compile script for a
specified vendor simulator. If specified, Simgen can generate HDL files with data to
initialize block RAMs associated with any processor that exists in the design. This data is
obtained from an existing ELF file.
X-Ref Target - Figure 7-4

Single and Mixed Language Models
Simgen allows the use of mixed language components in behavioral files for simulation.
By default, Simgen takes the native language in which each component is written.
Individual components cannot be mixed language. To use this feature, a mixed language
simulator is required.

Xilinx IP components are written in VHDL. If a mixed language simulator is not available,
Simgen can generate single language models by translating the HDL files that are not in
the HDL language. The resulting translated HDL files are structural files.

Structural and Timing simulation models are always single language.

Figure 7-4: Timing Simulation Model Generation

UG111_04_101705

MHS

ELF

Simgen

Script

HDL

NCD

http://www.xilinx.com

66 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

Creating Simulation Models Using XPS Batch Mode
1. Open your project by loading your XMP file:

XPS% load xmp <filename>.xmp

2. Set the following simulation values at the XPS prompt.

a. Select the simulator of your choice using the following command:

XPS% xset simulator [mgm | questa | ies | isim | none]

Where:

mgm = Mentor Graphics ModelSim
questa = Mentor Graphics QuestaSim
ies = Cadence Incisive Enterprise Simulator (IES)
isim = ISE® Simulator (ISIM)

b. Specify the path to the Xilinx and EDK precompiled libraries using the following
commands:

XPS% xset sim_x_lib <path>
XPS% xset sim_edk_lib <path>

c. Select the Simulation Model using the following command:

XPS% xset sim_model [behavioral | structural | timing]

d. Enable or disable external memory simulation using following command:

xset external_mem_sim [0 | 1]

Optionally, before setting external memory simulation flag you might need to
check if a DDRx memory controller (for Virtex-6) is present in the system. Use the
following command:

xget is_external_mem_present

Check for more detail in External Memory Simulation, page 72.

3. To generate the simulation model, type:

XPS% run simmodel

When the process finishes, HDL models are saved in the simulation directory.

4. To open the simulator, type:

XPS% run sim

Simgen Syntax
At the prompt, run Simgen with the MHS file and appropriate options as inputs.

simgen <system_name>.mhs [options]

Requirements
Verify that your system is properly configured to run the Xilinx ISE tools. Consult the
release notes and installation notes that came with your software package for more
information.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 67
UG111 July 6, 2011

Simgen Syntax

Options
Table 7-1 list the supported Simgen options:

Table 7-1: Simgen Syntax Options

Option Command Description

EDK Library
Directory

-E <edklib_dir> Path to EDK simulation libraries directory.

This switch is not required if the -X switch is used. The default
location of the EDK libraries is inferred from the -X switch.

External Memory
Simulation

-external_mem_sim
[yes|no]

yes - Instantiate external memory model into testbench.

no - Generate testbench without external memory model
instances.

Default: no

External Memory
Model Entity/
Module name

-external_mem_module

<mem_module>

Simgen searches for an external memory model file with
name <mem_module>.v/vhd in the the /XPS project
directory. Inside the model file, a module declaration should
exist with the name <mem_module>.

The default value of the <mem_module> is:

• ddr3 if DDR3 is present in the system MHS.
• ddr2 if DDR2 is present in the system MHS.

Help -h, -help Displays the usage menu and then quits.

Options File -f <filename> Reads command line arguments and options from file.

HDL Language -lang [vhdl|verilog] Specifies the HDL language: VHDL or Verilog.

Default: vhdl

Log Output -log <logfile.log> Specifies the log file. Default: simgen.log

Library Directories -lp <Library_Path> Allows you to specify library directory paths. This option can
be specified more than once for multiple library directories.

Simulation Model
Type

-m [beh|str|tim] Allows you to select the type of simulation models to be used.
The supported simulation model types are behavioral (beh),
structural (str) and timing (tim).

Default: beh

Mixed Language N/A This option is depreciated. The tool assumes -mixed=yes.

Output Directory -od <output_dir> Specifies the project directory path. The default is the current
directory.

Target Part or Family -p <partname> Allows you to target a specific part or family. This option must
be specified.

Processor ELF Files -pe <proc_instance>
elf_file <elf_file>

Specifies a list of ELF files to be associated with the processor
with instance name as defined in the MHS.

Simulator -s
[mgm|questa|ies|isim]

Generates compile script and helper scripts for vendor
simulators. The options are:
mgm = Mentor Graphics ModelSim
questa = Mentor Graphics QuestaSim
ies = Cadence Incisive Enterprise Simulator (IES)
isim = ISE® Simulator (ISIM)

http://www.xilinx.com

68 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

Output Files
Simgen produces all simulation files in the /simulation directory, which is located inside
the /output_directory. In the /simulation directory, there is a subdirectory for each
simulation model such as:

output_directory/simulation/<sim_model>
Where <sim_model> is one of: behavioral, structural, or timing

After a successful Simgen execution, the simulation directory contains files listed in
Table 7-2.

Source Directory -sd <source_dir> Specifies the source directory to search for netlist files.

Testbench Template -tb Creates a testbench template file.

Use -ti and -tm to define the design under test name and the
testbench name, respectively.

Top-Level Instance -ti <top_instance> When a testbench template is requested, use
<top_instance> to define the instance name of the design
under test.

When design represents a sub-module, use
<top_instance> for the top-level instance name.

Top-Level Module -tm <top_module> When a testbench template is requested, use top_module to
define the name of the testbench.

When the design represents a sub-module, use
<top_module> for the top-level entity/module name.

Top-Level -toplevel [yes|no] yes - Design represents a whole design.

no - Design represents a level of hierarchy (sub-module).

Default: yes

Version -v Displays the version then quits.

Xilinx Library
Directory

-X <xlib_directory> Path to the Xilinx simulation libraries (unisim, simprim,
XilinxCoreLib) directory. This is the output directory of the
Compxlib tool.

Table 7-1: Simgen Syntax Options (Cont’d)

Option Command Description

Table 7-2: Simgen Output Files

Filename Description

peripheral_wrapper.[vhd|v] Modular simulation files for each component. Not applicable for timing
models.

system_name.[vhd|v] The top-level HDL file of the design.

system_name.sdf The SDF file with the appropriate block and net delays from the place
and route process used only for timing simulation.

xilinxsim.ini Initialization file for the ISim.

system.prj Project file specifying HDL source files and libraries to compile for the
ISim.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 69
UG111 July 6, 2011

Memory Initialization

Memory Initialization
If a design contains banks of memory for a system, the corresponding memory simulation
models can be initialized with data. You can specify a list of ELF files to associate to a given
processor instance using the -pe switch.

The compiled executable files are generated with the appropriate GNU Compiler
Collection (GCC) compiler or assembler, from corresponding C or assembly source code.

Note: Memory initialization of structural simulation models is only supported when the netlist file
has hierarchy preserved.

For VHDL/Verilog simulation models, run Simgen with the -pe option to generate .mem
files. These .mem files contain a configuration for the system with all initialization values.
For example:

simgen system.mhs -pe mblaze executable.elf -l vhdl ...
simgen system.mhs -pe mblaze executable.elf -l verilog ...

These .mem files are used along with your system to initialize memory. The BRAM blocks
connected to the mblaze processor contain the data in executable.elf.

Test Benches
Simgen is capable of creating test bench templates. If you use the -tb switch, simgen will
create a test bench which will instantiate the top-level design and will create default
stimulus for clock and reset signals.

Clock stimulus is inferred from any global port which is tagged SIGIS = CLK in the MHS
file. The frequency of the clock is given by the CLK_FREQ tag. The phase of the clock is
given by the CLK_PHASE tag, which takes values from 0 to 360.

<system_name>_fuse.sh Helper script to create a simulation executable (ISim only, when Simgen
does not create a test harness).

<system_name>_setup.[do|sh|tcl] Script to compile the HDL files and load the compiled simulation
models in the simulator.

<test_harness_name>.prj Project file specifying HDL source and libraries to compile for the ISim
(when Simgen creates a test harness).

<test_harness_fuse>.sh Helper script to create a simulation executable (ISim only, when Simgen
creates a test harness).

<test_harness>_setup.[do|sh|tcl] Helper script to set up the simulator and specify signals to display in a
waveform window or tabular list window (ModelSim only).

<test_harness>_wave.[do|sv|tcl] Helper script to set up simulation waveform display.

<test_harness>_list.do Helper script to set up simulation tabular list display (ModelSim only).

<instance>_wave.[do|sv|tcl] Helper script to set up simulation waveform display for the specified
instance.

<instance>_list.do Helper script to set up simulation tabular list display for the specified
instance (ModelSim only).

Table 7-2: Simgen Output Files (Cont’d)

Filename Description

http://www.xilinx.com

70 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

Reset stimulus is inferred for all global ports tagged SIGIS = RST in the MHS file. The
polarity of the reset signal is given by the RST_POLARITY tag. The length of the reset is
given by the RST_LENGTH tag.

For more information about the clock and reset tags, refer to the Platform Studio Online
Help.

VHDL Test Bench Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

entity system_tb is
end system_tb;

architecture STRUCTURE of system_tb is

 constant sys_clk_PERIOD : time := 10 ns;
 constant sys_reset_LENGTH : time := 160 ns;

constant sys_clk_PHASE : time 2.5 ns;

 component system is
 port (
 sys_clk : in std_logic;
 sys_reset : in std_logic;
 rx : in std_logic;
 tx : out std_logic;
 leds : inout std_logic_vector(0 to 3)
);
 end component;

 -- Internal signals

 signal leds : std_logic_vector(0 to 3);
 signal rx : std_logic;
 signal sys_clk : std_logic;
 signal sys_reset : std_logic;
 signal tx : std_logic;

begin

 dut : system
 port map (
 sys_clk => sys_clk,
 sys_reset => sys_reset,
 rx => rx,
 tx => tx,
 leds => leds
);

 -- Clock generator for sys_clk

 process
 begin
 sys_clk <= '0';

wait for (sys_clk_PHASE);

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 71
UG111 July 6, 2011

Memory Initialization

loop
 wait for (sys_clk_PERIOD/2);
 sys_clk <= not sys_clk;
 end loop;
 end process;

 -- Reset Generator for sys_reset

 process
 begin
 sys_reset <= '0';
 wait for (sys_reset_LENGTH);
 sys_reset <= not sys_reset;
 wait;
 end process;

 -- START USER CODE (Do not remove this line)
 -- User: Put your stimulus here. Code in this
 -- section will not be overwritten.
 -- END USER CODE (Do not remove this line)

end architecture STRUCTURE;

You can add your own VHDL code between the lines tagged BEGIN USER CODE and END
USER CODE. The code between these lines is maintained if simulation files are created
again. Any code outside these lines will be lost if a new test bench is created.

Verilog Test Bench Example

`timescale 1 ns/10 ps

`uselib lib=unisims_ver

module system_tb
 (
);

 real sys_clk_PERIOD = 10;
real sys_clk_PHASE = 2.5;
real sys_reset_LENGTH = 160;

 // Internal signals

 reg [0:3] leds;
 reg rx;
 reg sys_clk;
 reg sys_reset;
 reg tx;

 system
 dut (
 .sys_clk (sys_clk),
 .sys_reset (sys_reset),
 .rx (rx),
 .tx (tx),
 .leds (leds)
);

http://www.xilinx.com

72 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

// Clock generator for sys_clk

 initial
 begin
 sys_clk = 1'b0;

#(sys_clk_PHASE);forever
#(sys_clk_PERIOD/2)
sys_clk = ~sys_clk;

 end

 // Reset Generator for sys_reset

 initial
 begin
 sys_reset = 1'b0;
 #sys_clk_LENGTH sys_reset = ~sys_reset;
 end

 // START USER CODE (Do not remove this line)
 // User: Put your stimulus here. Code in this
 // section will be not be overwritten.
 // END USER CODE (Do not remove this line)

endmodule

You can add your own Verilog code between the lines tagged BEGIN USER CODE and END
USER CODE. The code between these lines is maintained if simulation files are created
again. Any code outside these lines is lost if you create a new test bench.

External Memory Simulation
Simgen provides simulation models for external memory and has automated support to
instantiate memory models in the simulation testbench and performs connection with the
design under test.
To compile memory model into the user library, Simgen also generates simulator-specific
compilation/elaboration commands into respective helper/setup scripts.

Restrictions
The restrictions on external memory simulation models are:

1. Supported for DDR2 and DDR3 (Virtex®-6 only).

2. Supported for Behavioral simulation only.

3. When you select external memory simulation, the memory model is instantiated only
if an AXI DDRx memory controller is present in the system. The IP nomenclature is
axi_<device family>_ddrx.
If the AXI memory controller is not present, Simgen continues to generate the
testbench without the external memory model.

4. The following are not supported in this release:

• 72-bit wide memory interface (for example, with ECC)

• RDIMM memory types

• 7 series DDRx

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 73
UG111 July 6, 2011

External Memory Simulation

Enabling External Memory Simulation

To enable external memory simulation, pass the following flag to Simgen:
-external_mem_sim [yes|no]

You can specify a memory model to Simgen by placing the file with the name
ddr2.v/vhd or ddr3.v/vhd in the project directory.
The file can be downloaded from memory vendor web sites, provided that it is renamed
accordingly. See Considerations and Use Restrictions, page 73.
An additional Simgen command line option lets you specify the external simulation file:

-external_mem_module <external memory entity/module name>

This option is not supported in the XPS GUI or XPS “no window” mode.
If a memory model is not found in the /XPS project directory, Simgen continues to
generate the testbench with a warning message.
The following are optional, recommended steps while working with XPS:

1. For better tracking of initialization of models on the simulator waveforms,
expose the phy_init_done pin on the top-level.
To make port external:

a. Go to XPS > System Assembly View .

b. Select the Port tab and expand the DDRx_SDRAM IP instance.

c. Select the phy_init_done pin.

d. In the net drop-down, select Make External.

2. To speed simulation, set the init_call manually to FAST in the MHS to speed
simulation (this feature is not available in the GUI IP configuration. To do so, add the
following parameter to the MHS under the axi_ddrx IP instance as follows:

PARAMETER C_BYPASS_INIT_CAL = FAST

3. The current flow was developed with version 1.60 of micron memory models. If you
are using a version of Micron memory model higher than 1.62, the model files must
have density defined before compilation. Add the following construct into model file.

`define <density>

Note: <density> values are one of the following: den1024Mb, den2048Mb, or den4096Mb in
the downloaded memory model file.

Considerations and Use Restrictions
1. The memory model is always instantiated with x8 configuration; consequently, if the

DQ_WIDTH parameter is 64 then eight instances are generated in the testbench and
other parameters are modified accordingly.

2. External memory simulation with multiple instances of DDRx memory controller in
XPS is not supported.

3. External memory simulation is supported only for Micron Memory Models used with
XPS MIG.

4. During simulation the following initialization errors can be observed in the simulator
console, but can be ignored for Behavioral simulation:

system_axi_tb.inst_ddr_00.dqs_neg_timing_check: at time 5485244.0 ps
ERROR: tDQSH violation on DQS bit 0 by 1039.0 ps.
system_axi_tb.inst_ddr_03.cmd_task: at time 3438850.0 ps ERROR: Load
Mode 0 Illegal value. Reserved address bits must be programmed to zero.

http://www.xilinx.com

74 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 7: Simulation Model Generator (Simgen)

5. There is no support from Simgen to allow an application to load an ELF into external
memory.

6. Other, non-supported external memory models must be manually instantiated and
connected in the simulation testbench and initialized according to the model
specifications.

Simulating Your Design
When simulating your design, there are some special considerations to keep in mind, such
as the global reset and tristate nets. Xilinx ISE tools provide detailed information on how to
simulate your VHDL or Verilog design. Refer to the “Simulating Your Design” chapter in
the ISE Synthesis and Simulation Design Guide for more information. Appendix E,
Additional Resources,, contains a link to the document website.

Helper scripts generated at the test harness (or testbench) level are simulator setup scripts.
When run, the setup script performs initialization functions and displays usage
instructions for creating waveform and list (ModelSim only) windows using the waveform
and list scripts. The top-level scripts invoke instance-specific scripts. You might need to
edit hierarchical path names in the helper scripts for test harnesses not created by Simgen.

Commands in the scripts are commented or not commented to define the displayed set of
signals. Editing the top-level waveform or list scripts allows you to include or exclude
signals for an instance; editing the instance level scripts allows you to include or exclude
individual port signals. For timing simulations, only top-level ports are displayed.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 75
UG111 July 6, 2011

Chapter 8

Library Generator (Libgen)

This chapter describes the Library Generator utility, Libgen, which is required for the
generation of libraries and drivers for embedded processors.

Overview
Libgen is the first Embedded Design Kit (EDK) tool that you run to configure libraries and
device drivers. Libgen takes an XML hardware specification file and a Microprocessor
Software Specification (MSS) file that you create. The hardware specification file defines
the hardware system to Libgen and the MSS file describes the content and configuration of
the software platform for a particular processor. Components are instantiated as blocks in
the MSS file, and configuration is specified using parameters. Libgen reads the MSS file
and generates the software components, configuring them as specified in the MSS.

For further description on generating the XML hardware specification file refer to the
Software Development Kit (SDK) documentation in the SDK Online Help. For further
description of the MSS file format, refer to the “Microprocessor Software Specification
(MSS)” chapter in the Platform Specification Format Reference Manual. A link to the document
is supplied in Appendix E, Additional Resources.

Note: EDK includes a Format Revision tool to convert older MSS file formats to a new MSS format.
Refer to Chapter 15, “Version Management Tools (revup),” for more information.

Tool Usage
To run Libgen, type the following:

libgen [options] <filename>.mss

Tool Options
Table 8-1 list the supported Libgen command options.

Table 8-1: Libgen Syntax Options

Option Command Description

Help -h, -help Displays the usage menu and quits.

Version -v Displays the version number of Libgen and quits.

Log output -log <logfile.log> Specifies the log file.

Default: libgen.log

http://www.xilinx.com

76 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 8: Library Generator (Libgen)

Load Paths
Figure 8-1 shows the directory structure of peripherals, drivers, libraries, and operating
systems.

Output directory -od <output_dir> Specifies the output directory output_dir. The default is
the current directory. All output files and directories are
generated in the output directory. The input file
filename.mss is taken from the current working
directory. This output directory is also called OUTPUT_DIR,
and the directory from which Libgen is invoked is called
YOUR_PROJECT for convenience in the documentation.

Source directory -sd <source_dir> Specifies the source directory <source_dir> for searching
the input files. The default is the current working directory.

Path to a software
component
repository

-lp <Repository_Path> Specifies a library containing repositories of user
peripherals, drivers, OSs, and libraries. Libgen looks for the
following:

Drivers in the directory <Library_Path>/drivers/

Libraries in the directory <Library_Path>/
sw_services/

OSs in the directory <Library_Path>/bsp/

Hardware
Specification File

 -hw <hwspecfile.xml> Specifies the hardware specification file (XML) to be used
for Libgen. The hardware specification file describes the
complete hardware system to LibGen.

Libraries -lib Use this option to copy libraries and drivers but not to
compile them.

Processor
instance-specific
Libgen run

-pe
<processor_instance_name>

This command runs Libgen for a specific processor instance.

Table 8-1: Libgen Syntax Options (Cont’d)

Option Command Description

Figure 8-1: Directory Structure of Peripherals, Drivers, Libraries, and OSs

X10133

-lp<library_path>

boards drivers

<Library Name>

pcores bsp sw_services

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 77
UG111 July 6, 2011

Output Files

Default Repositories
By default, Libgen scans the following repositories for software components:

• $XILINX_EDK/sw/lib/XilinxProcessorIPLib

• $XILINX_EDK/sw/lib

• $XILINX_EDK/sw/ThirdParty

It also treats the directory from which Libgen is invoked as a repository and therefore scans
for cores under sub-directories with standard directory names, such as drivers, bsp, and
sw_services. Figure 8-2 shows the repository directory structure.

Search Priority Mechanism
Libgen uses a search priority mechanism to locate drivers and libraries, as follows:

1. Search the current working directory:

2. Search the repositories under the library path directory specified using the -lp option:

3. Search the default repositories as described in “Default Repositories.”

Output Files
Libgen generates directories and files in the <YOUR_PROJECT> directory. For every
processor instance in the MSS file, Libgen generates a directory with the name of the
processor instance. Within each processor instance directory, Libgen generates the
following directories and files, which are described in the following subsections:

• The include Directory

• lib Directory

• libsrc Directory

• code Directory

Figure 8-2: Repository Directory Structure

X10134

<Library Name>

<my_driver>

pcores

src data

.c files .h files MDD Tcl

drivers

<my_driver>

src data

.c files .h files MDD Tcl

bsp

<my_os>

src data

.c files .h files MLD Tcl

sw_services

<my_library>

src data

.c files .h files MLD Tcl

http://www.xilinx.com

78 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 8: Library Generator (Libgen)

The include Directory
The include directory contains C header files needed by drivers. The include file
xparameters.h is also created through Libgen in this directory. This file defines base
addresses of the peripherals in the system, #defines needed by drivers, OSs, libraries and
user programs, as well as function prototypes. The Microprocessor Driver Definition
(MDD) file for each driver specifies the definitions that must be customized for each
peripheral that uses the driver. Refer to the “Microprocessor Driver Definition (MDD)”
chapter in the Platform Specification Format Reference Manual for more information. The
Microprocessor Library Definition (MLD) file for each OS and library specifies the
definitions that you must customize. Refer to the “Microprocessor Library Definition
(MLD)” chapter in the Platform Specification Format Reference Manual for more information.

A link to the Platform Specification Format Reference Manual is supplied in Appendix E,
Additional Resources.

lib Directory
The lib directory contains libc.a, libm.a, and libxil.a libraries. The libxil library
contains driver functions that the particular processor can access. For more information
about the libraries, refer to the introductory section of the OS and Libraries Document
Collection. A link to the document is supplied in Appendix E, Additional Resources.

libsrc Directory
The libsrc directory contains intermediate files and make files needed to compile the
OSs, libraries, and drivers. The directory contains peripheral-specific driver files, BSP files
for the OS, and library files that are copied from the EDK and your driver, OS, and library
directories. Refer to the Drivers, page 80, OS Block, page 81, and Libraries, page 80 sections
of this chapter for more information.

code Directory
The code directory is a repository for EDK executables. Libgen creates an xmdstub.elf
file (for MicroBlaze™ on-board debug) in this directory.

Note: Libgen removes these directories every time you run the tool. You must put your sources,
executables, and any other files in an area that you create.

Generating Libraries and Drivers

Overview
This section provides an overview of generating libraries and drivers.

The hardware specification file and the MSS files define a system. For each processor in the
system, Libgen finds the list of addressable peripherals. For each processor, a unique list of
drivers and libraries are built. Libgen does the following for each processor:

• Builds the directory structure as defined in the Output Files, page 77.

• Copies the necessary source files for the drivers, OSs, and libraries into the processor
instance specific area: OUTPUT_DIR/processor_instance_name/libsrc.

• Calls the Design Rule Check (DRC) procedure, which is defined as an option in the
MDD or MLD file, for each of the drivers, OSs, and libraries visible to the processor.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 79
UG111 July 6, 2011

MSS Parameters

• Calls the generate Tcl procedure (if defined in the Tcl file associated with an MDD or
MLD file) for each of the drivers, OSs, and libraries visible to the processor. This
generates the necessary configuration files for each of the drivers, OSs, and libraries in
the include directory of the processor.

• Calls the post_generate Tcl procedure (if defined in the Tcl file associated with an
MDD or MLD file) for each of the drivers, OSs, and libraries visible to the processor.

• Runs make (with targets include and libs) for the OSs, drivers, and libraries specific
to the processor. On the Linux platform, the gmake utility is used, while on NT
platforms, make is used for compilation.

• Calls the execs_generate Tcl procedure (if defined in the Tcl file associated with an
MDD or MLD file) for each of the drivers, OSs, and libraries visible to the processor.

MDD, MLD, and Tcl
A driver or library has two associated data files:

• Data Definition File (MDD or MLD file): This file defines the configurable parameters
for the driver, OS, or library.

• Data Generation File (Tcl): This file uses the parameters configured in the MSS file for
a driver, OS, or library to generate data. Data generated includes but is not limited to
generation of header files, C files, running DRCs for the driver, OS, or library, and
generating executables.

The Tcl file includes procedures that Libgen calls at various stages of its execution.
Various procedures in a Tcl file include:

• DRC
The name of DRC given in the MDD or MLD file

• generate
A Libgen-defined procedure that is called after files are copied

• post_generate
A Libgen-defined procedure that is called after generate has been called on all
drivers, OSs, and libraries

• execs_generate
A Libgen-defined procedure that is called after the BSPs, libraries, and drivers
have been generated

Note: The data generation (Tcl) file is not necessary for a driver, OS, or library.

For more information about the Tcl procedures and MDD/MLD related parameters, refer
to the “Microprocessor Driver Definition (MDD)” and “Microprocessor Library Definition
(MLD)” chapters in the Platform Specification Format Reference Manual. A link to the
document is supplied in Appendix E, Additional Resources.

MSS Parameters
For a complete description of the MSS format and all the parameters that MSS supports,
refer to the “Microprocessor Software Specification (MSS)” chapter in the Platform
Specification Format Reference Manual. A link to the document is supplied in Appendix E,
Additional Resources.

http://www.xilinx.com

80 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 8: Library Generator (Libgen)

Drivers
Most peripherals require software drivers. The EDK peripherals are shipped with
associated drivers, libraries and BSPs. Refer to the Device Driver Programmer Guide for more
information on driver functions. A link to the guide is supplied in Appendix E, Additional
Resources.

The MSS file includes a driver block for each peripheral instance. The block contains a
reference to the driver by name (DRIVER_NAME parameter) and the driver version
(DRIVER_VER). There is no default value for these parameters.

A driver has an associated MDD file and a Tcl file.

• The driver MDD file is the data definition file and specifies all configurable
parameters for the drivers.

• Each MDD file has a corresponding Tcl file which generates data that includes
generation of header files, generation of C files, running DRCs for the driver, and
generating executables.

You can write your own drivers. These drivers must be in a specific directory under
<YOUR_PROJECT>/<driver_name> or <library_name>/drivers, as shown in
Figure 8-1 on page 76.

• The DRIVER_NAME attribute allows you to specify any name for your drivers, which is
also the name of the driver directory.

• The source files and make file for the driver must be in the /src subdirectory under
the /<driver_name> directory.

• The make file must have the targets /include and /libs.

• Each driver must also contain an MDD file and a Tcl file in the /data subdirectory.

Open the existing EDK driver files to get an understanding of the required structure.

Refer to the “Microprocessor Driver Definition (MDD)” chapter in the Platform Specification
Format Reference Manual for details on how to write an MDD and its corresponding Tcl file.
A link to the document is supplied in Appendix E, Additional Resources.

Libraries
The MSS file includes a library block for each library. The library block contains a reference
to the library name (LIBRARY_NAME parameter) and the library version (LIBRARY_VER).
There is no default value for these parameters. Each library is associated with a processor
instance specified using the PROCESSOR_INSTANCE parameter. The library directory
contains C source and header files and a make file for the library.

The MLD file for each library specifies all configurable options for the libraries and each
MLD file has a corresponding Tcl file.

You can write your own libraries. These libraries must be in a specific directory under
<YOUR_PROJECT>/sw_services or <library_name>/sw_services as shown in
Figure 8-1 on page 76.

• The LIBRARY_NAME attribute lets you specify any name for your libraries, which is
also the name of the library directory.

• The source files and make file for the library must be in the /src subdirectory under
the /<library_name> directory.

• The make file must have the targets /include and /libs.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 81
UG111 July 6, 2011

OS Block

• Each library must also contain an MLD file and a Tcl file in the /data subdirectory.

Refer to the existing EDK libraries for more information about the structure of the libraries.

Refer to the “Microprocessor Library Definition (MLD)” chapter in the Platform
Specification Format Reference Manual for details on how to write an MLD and its
corresponding Tcl file. A link to the document is supplied in Appendix E, Additional
Resources.

OS Block
The MSS file includes an OS block for each processor instance. The OS block contains a
reference to the OS name (OS_NAME parameter), and the OS version (OS_VER). There is no
default value for these parameters. The bsp directory contains C source and header files
and a make file for the OS.

The MLD file for each OS specifies all configurable options for the OS. Each MLD file has
a corresponding Tcl file associated with it. Refer to the “Microprocessor Library Definition
(MLD)” and “Microprocessor Software Specification (MSS)” chapters in the Platform
Specification Format Reference Manual. A link to the document is supplied in Appendix E,
Additional Resources.

You can write your own OSs. These OSs must be in a specific directory under
<YOUR_PROJECT>/bsp or <library_name>/bsp as shown in Figure 8-1 on page 76.

• The OS_NAME attribute allows you to specify any name for your OS, which is also the
name of the OS directory.

• The source files and make file for the OS must be in the src subdirectory under the
/<os_name> directory.

• The make file should have the targets /include and /libs.

• Each OS must contain an MLD file and a Tcl file in the /data subdirectory.

Look at the existing EDK OSs to understand the structures. Refer to the “Microprocessor
Library Definition (MLD)” chapter in the Platform Specification Format Reference Manual for
details on how to write an MLD and its corresponding Tcl file. A link to the document is
supplied in Appendix E, Additional Resources.

Additional Resources
For more information, refer to the following documents. Links to these documents are
provided in Appendix E, Additional Resources.

• Platform Specification Format Reference Manual
http://www.xilinx.com/ise/embedded/edk_docs.htm

• OS and Libraries Document Collection
http://www.xilinx.com/ise/embedded/edk_docs.htm

• Device Driver Programmer Guide is located in the /doc/usenglish folder of your EDK
installation, file name: xilinx_drivers_guide.pdf.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

82 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 8: Library Generator (Libgen)

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 83
UG111 July 6, 2011

Chapter 9

GNU Compiler Tools

This chapter describes the GNU compiler tools.

Overview
EDK includes the GNU compiler collection (GCC) for both the PowerPC® (405 and 440)
processors and the MicroBlaze™ processor.

• The EDK GNU tools support both the C and C++ languages.

• The MicroBlaze GNU tools include mb-gcc and mb-g++ compilers, mb-as assembler
and mb-ld linker.

• The PowerPC processor tools include powerpc-eabi-gcc and powerpc-eabi-g++
compilers, powerpc-eabi-as assembler and the powerpc-eabi-ld linker.

• The toolchains also include the C, Math, GCC, and C++ standard libraries.

The compiler also uses the common binary utilities (referred to as binutils), such as an
assembler, a linker, and object dump. The PowerPC and MicroBlaze compiler tools use the
GNU binutils based on GNU version 2.16 of the sources. The concepts, options, usage, and
exceptions to language and library support are described Appendix A, “GNU Utilities.”

http://www.xilinx.com

84 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Compiler Framework
This section discusses the common features of both the MicroBlaze and PowerPC
processor compilers. Figure 9-1 displays the GNU tool flow.

Figure 9-1: GNU Tool Flow

cpp0

cc1 cc1plus

as

ld

(mb-as or powerpc-eabi-as)

(mb-ld or powerpc-eabi-ld)
Libraries

Output ELF File

Input C/C++ Files

UG111_05_101905

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 85
UG111 July 6, 2011

Common Compiler Usage and Options

The GNU compiler is named mb-gcc for MicroBlaze and powerpc-eabi-gcc for
PowerPC. The GNU compiler is a wrapper that calls the following executables:

• Pre-processor (cpp0)
This is the first pass invoked by the compiler. The pre-processor replaces all macros
with definitions as defined in the source and header files.

• Machine and language specific compiler
This compiler works on the pre-processed code, which is the output of the first stage.
The language-specific compiler is one of the following:

• C Compiler (cc1)
The compiler responsible for most of the optimizations done on the input C code
and for generating assembly code.

• C++ Compiler (cc1plus)
The compiler responsible for most of the optimizations done on the input C++
code and for generating assembly code.

• Assembler (mb-as for MicroBlaze and powerpc-eabi-as for PowerPC processors)
The assembly code has mnemonics in assembly language. The assembler converts
these to machine language. The assembler also resolves some of the labels generated
by the compiler. It creates an object file, which is passed on to the linker.

• Linker (mb-ld for MicroBlaze and powerpc-eabi-ld for PowerPC processors)
Links all the object files generated by the assembler. If libraries are provided on the
command line, the linker resolves some of the undefined references in the code by
linking in some of the functions from the assembler.

Executable options are described in:

• Commonly Used Compiler Options: Quick Reference, page 88

• Linker Options, page 93

• MicroBlaze Compiler Options: Quick Reference, page 99

• MicroBlaze Linker Options, page 106

• PowerPC Compiler Options: Quick Reference, page 114.

Note: From this point forward the references to GCC in this chapter refer to both the MicroBlaze
compiler, mb-gcc, and the PowerPC processor compiler, powerpc-eabi-gcc, and references to
G++ refer to both the MicroBlaze C++ compiler, mb-g++, and the PowerPC processor C++ compiler,
powerpc-eabi-g++.

Common Compiler Usage and Options

Usage
To use the GNU compiler, type:

<Compiler_Name> options files...

where <Compiler_Name> is powerpc-eabi-gcc or mb-gcc. To compile C++ programs,
you can use either the powerpc-eabi-g++ or the mb-g++ command.

http://www.xilinx.com

86 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Input Files
The compilers take one or more of the following files as input:

• C source files

• C++ source files

• Assembly files

• Object files

• Linker scripts

Note: These files are optional. If they are not specified, the default linker script embedded in the
linker (mb-ld or powerpc-eabi-ld) is used.

The default extensions for each of these types are listed in Table 9-1. In addition to the files
mentioned above, the compiler implicitly refers to the libraries files libc.a, libgcc.a,
libm.a, and libxil.a. The default location for these files is the EDK installation
directory. When using the G++ compiler, the libsupc++.a and libstdc++.a files are
also referenced. These are the C++ language support and C++ platform libraries,
respectively.

Output Files
The compiler generates the following files as output:

• An ELF file. The default output file name is a.exe on Windows.

• Assembly file, if -save-temps or -S option is used.

• Object file, if -save-temps or -c option is used.

• Preprocessor output, .i or .ii file, if -save-temps option is used.

File Types and Extensions
The GNU compiler determines the type of your file from the file extension. Table 9-1 lists
the valid extensions and the corresponding file types. The GCC wrapper calls the
appropriate lower level tools by recognizing these file types.

Table 9-1: File Extensions

Extension File type (Dialect)

.c C file

.C C++ file

.cxx C++ file

.cpp C++ file

.c++ C++ file

.cc C++ file

.S Assembly file, but might have preprocessor directives

.s Assembly file with no preprocessor directives

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 87
UG111 July 6, 2011

Common Compiler Usage and Options

Libraries
Table 9-2 lists the libraries necessary for the powerpc_eabi_gcc and mb_gcc compilers.

Libraries are linked in automatically by both compilers. If the standard libraries are
overridden, the search path for these libraries must be given to the compiler. The
libxil.a is modified by the Library Generator tool, Libgen, to add driver and library
routines.

Language Dialect
The GCC compiler recognizes both C and C++ dialects and generates code accordingly. By
GCC convention, it is possible to use either the GCC or the G++ compilers equivalently on
a source file. The compiler that you use and the extension of your source file determines
the dialect used on the input and output files.

When using the GCC compiler, the dialect of a program is always determined by the file
extension, as listed in Table 9-1, page 86. If a file extension shows that it is a C++ source file,
the language is set to C++. This means that if you have compile C code contained in a CC
file, even if you use the GCC compiler, it automatically mangles function names.

The primary difference between GCC and G++ is that G++ automatically sets the default
language dialect to C++ (irrespective of the file extension), and if linking, automatically
pulls in the C++ support libraries. This means that even if you compile C code in a .c file
with the G++ compiler, it will mangle names.

Name mangling is a concept unique to C++ and other languages that support overloading
of symbols. A function is said to be overloaded if the same function can perform different
actions based on the arguments passed in, and can return different return values. To
support this, C++ compilers encode the type of the function to be invoked in the function
name, avoiding multiple definitions of a function with the same name.

Table 9-2: Libraries Used by the Compilers

Library Particular

libxil.a Contain drivers, software services (such as XilMFS) and initialization
files developed for the EDK tools.

libc.a Standard C libraries, including functions like strcmp and strlen.

libgcc.a GCC low-level library containing emulation routines for floating point
and 64-bit arithmetic.

libm.a Math Library, containing functions like cos and sine.

libsupc++.a C++ support library with routines for exception handling, RTTI, and
others.

libstdc++.a C++ standard platform library. Contains standard language classes, such
as those for stream I/O, file I/O, string manipulation, and others.

http://www.xilinx.com

88 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Be careful about name mangling if you decide to follow a mixed compilation mode, with
some source files containing C code and some others containing C++ code (or using GCC
for compiling certain files and G++ for compiling others). To prevent name mangling of a
C symbol, you can use the following construct in the symbol declaration.

#ifdef __cplusplus
extern “C” {
£endif

int foo();
int morefoo();

#ifdef __cplusplus
}
£endif

Make these declarations available in a header file and use them in all source files. This
causes the compiler to use the C dialect when compiling definitions or references to these
symbols.

Note: All EDK drivers and libraries follow these conventions in all the header files they provide. You
must include the necessary headers, as documented in each driver and library, when you compile
with G++. This ensures that the compiler recognizes library symbols as belonging to “C” type.

When compiling with either variant of the compiler, to force a file to a particular dialect,
use the -x lang switch. Refer to the GCC manual on the GNU website for more
information on this switch. A link to the document is provided in the “Additional
Resources” on page 122.

When using the GCC compiler, libstdc++.a and libsupc++.a are not automatically
linked in. When compiling C++ programs, use the G++ variant of the compiler to make
sure all the required support libraries are linked in automatically. Adding -lstdc++ and
-lsupc++ to the GCC command are also possible options.

For more information about how to invoke the compiler for different languages, refer to
the GNU online documentation. A link to the documentation is provided in the
“Additional Resources” on page 261.

Commonly Used Compiler Options: Quick Reference
The summary below lists compiler options that are common to the compilers for
MicroBlaze and PowerPC processors.

Note: The compiler options are case sensitive.

To jump to a detailed description for a given option, click on its name.

General Options Library Search Options

-E

-S
-c

-g

-gstabs

-On
-v

-save-temps

-o filename

-Wp,option

-Wa,option
-Wl,option

--help

-B directory

-L directory
-I directory

-l library

-l libraryname

-L Lib Directory

Header File Search Option
-I Directory Name

Linker Options
-defsym _STACK_SIZE=value

-defsym _HEAP_SIZE=value

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 89
UG111 July 6, 2011

Common Compiler Usage and Options

General Options

-E

Preprocess only; do not compile, assemble and link. The preprocessed output displays on
the standard out device.

-S

Compile only; do not assemble and link. Generates a .s file.

-c

Compile and Assemble only; do not link. Generates a .o file.

-g

This option adds DWARF2-based debugging information to the output file. The
debugging information is required by the GNU debugger, mb-gdb or powerpc-eabi-gdb.
The debugger provides debugging at the source and the assembly level. This option adds
debugging information only when the input is a C/C++ source file.

-gstabs

Use this option for adding STABS-based debugging information on assembly (.S) files and
assembly file symbols at the source level. This is an assembler option that is provided
directly to the GNU assembler, mb-as or powerpc-eabi-as. If an assembly file is
compiled using the compiler mb-gcc or powerpc-eabi-gcc, prefix the option with
-Wa,.

-On

The GNU compiler provides optimizations at different levels. The optimization levels in
the following table apply only to the C and C++ source files.

Note: Optimization levels 1 and above cause code re-arrangement. While debugging your code,
use of no optimization level is recommended. When an optimized program is debugged through gdb,
the displayed results might seem inconsistent.

-v

This option executes the compiler and all the tools underneath the compiler in verbose
mode. This option gives complete description of the options passed to all the tools. This
description is helpful in discovering the default options for each tool.

Table 9-3: Optimizations for Values of n

n Optimization

0 No optimization.

1 Medium optimization.

2 Full optimization

3 Full optimization.
Attempt automatic inlining of small subprograms.

S Optimize for size.

http://www.xilinx.com

90 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

-save-temps

The GNU compiler provides a mechanism to save the intermediate files generated during
the compilation process. The compiler stores the following files:

• Preprocessor output –input_file_name.i for C code and
input_file_name.ii for C++ code

• Compiler (cc1) output in assembly format – input_file_name.s

• Assembler output in ELF format – input_file_name.s

The compiler saves the default output of the entire compilation as a.out.

-o filename

The compiler stores the default output of the compilation process in an ELF file named
a.out. You can change the default name using -o output_file_name. The output file
is created in ELF format.

-Wp,option

-Wa,option

-Wl,option

The compiler, mb-gcc or powerpc-eabi-gcc, is a wrapper around other executables such as
the preprocessor, compiler (cc1), assembler, and the linker. You can run these components
of the compiler individually or through the top level compiler.

There are certain options that are required by tools, but might not be necessary for the
top-level compiler. To run these commands, use the options listed in the following table.

-help

Use this option with any GNU compiler to get more information about the available
options.

You can also consult the GCC manual. A link to the manual is supplied in the “Additional
Resources” on page 122.

-B directory

Add directory to the C run time library search paths.

Table 9-4: Tool-Specific Options Passed to the Top-Level GCC Compiler

Option Tool Example

-Wp,option Preprocessor mb-gcc -Wp,-D -Wp, MYDEFINE ...
Signal the pre-processor to define the symbol
MYDEFINE with the -D MYDEFINE option.

-Wa,option Assembler powerpc-eabi-gcc -Wa,-m405...
Signal the assembler to target the PowerPC 405
processor with the -m405 option.

-Wl,option Linker mb-gcc -Wl,-M ...
Signal the linker to produce a map file with the
-M option.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 91
UG111 July 6, 2011

Common Compiler Usage and Options

-L directory

Add directory to library search path.

-I directory

Add directory to header search path.

-l library

Search library for undefined symbols.

Note: The compiler prefixes “lib” to the library name indicated in this command line switch.

Library Search Options

-l libraryname

By default, the compiler searches only the standard libraries, such as libc, libm, and libxil.
You can also create your own libraries. You can specify the name of the library and where
the compiler can find the definition of these functions. The compiler prefixes lib to the
library name that you provide.

The compiler is sensitive to the order in which you provide options, particularly the -l
command line switch. Provide this switch only after all of the sources in the command line.

For example, if you create your own library called libproject.a., you can include
functions from this library using the following command:

Compiler Source_Files -L${LIBDIR} -l project

Caution! If you supply the library flag -l library_name before the source files,
the compiler does not find the functions called from any of the sources. This is because the
compiler search is only done in one direction and it does not keep a list of available libraries.

-L Lib Directory

This option indicates the directories in which to search for the libraries. The compiler has a
default library search path, where it looks for the standard library. Using the -L option,
you can include some additional directories in the compiler search path.

Header File Search Option

-I Directory Name

This option searches for header files in the /<dir_name> directory before searching the
header files in the standard path.

http://www.xilinx.com

92 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Default Search Paths
The compilers, mb-gcc and powerpc-eabi-gcc, search certain paths for libraries and
header files. The search paths on the various platforms are described below.

Library Search Procedures

The compilers search libraries in the following order:

1. Directories are passed to the compiler with the -L <dir_name> option.

2. Directories are passed to the compiler with the -B <dir_name> option.

3. The compilers search the following libraries:

a. ${XILINX_EDK}/gnu/processor/platform/processor-lib/lib

b. ${XILINX_EDK}/lib/processor

Note: Processor indicates powerpc-eabi for the PowerPC processor and microblaze for
MicroBlaze.

Header File Search Procedures

The compilers search header files in the following order:

1. Directories are passed to the compiler with the -I <dir_name> option.

2. The compilers search the following header files:

a. ${XILINX_EDK}/gnu/processor/platform/lib/gcc/processor/
{gcc version}/include

b. ${XILINX_EDK}/gnu/processor/platform/processor-lib/include

Initialization File Search Procedures

The compilers search initialization files in the following order:

1. Directories are passed to the compiler with the -B <dir_name> option.

2. The compilers search ${XILINX_EDK}/gnu/processor/platform/
processor-lib/lib.

3. The compilers search the following libraries:

a. $XILINX_EDK/gnu/<processor>/platform/<processor-lib>/lib

b. $XILINX_EDK/lib/processor

Where:

• <processor> is powerpc-eabi for PowerPC processors, and microblaze for
MicroBlaze processors.

• <processor-lib> is powerpc-eabi for PowerPC processors, and
microblaze-xilinx-elf for MicroBlaze processors.

Note: platform indicates lin for Linux, lin64 for Linux 64-bit and nt for Windows Cygwin.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 93
UG111 July 6, 2011

Common Compiler Usage and Options

Linker Options

-defsym _STACK_SIZE=value

The total memory allocated for the stack can be modified using this linker option. The
variable _STACK_SIZE is the total space allocated for the stack. The _STACK_SIZE variable
is given the default value of 100 words, or 400 bytes. If your program is expected to need
more than 400 bytes for stack and heap combined, it is recommended that you increase the
value of _STACK_SIZE using this option. The value is in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the
program is greater than the stack size available, the program tries to write in other,
incorrect, sections of the program, leading to incorrect execution of the code.

Note: A minimum stack size of 16 bytes (0x0010) is required for programs linked with the
Xilinx-provided C runtime (CRT) files.

-defsym _HEAP_SIZE=value

The total memory allocated for the heap can be controlled by the value given to the
variable _HEAP_SIZE. The default value of _HEAP_SIZE is zero.

Dynamic memory allocation routines use the heap. If your program uses the heap in this
fashion, then you must provide a reasonable value for _HEAP_SIZE.

For advanced users: you can generate linker scripts directly from XPS.

Memory Layout
The MicroBlaze and PowerPC processors use 32-bit logical addresses and can address any
memory in the system in the range 0x0 to 0xFFFFFFFF. This address range can be
categorized into reserved memory and I/O memory.

Reserved Memory

Reserved memory has been defined by the hardware and software programming
environment for privileged use. This is typically true for memory containing interrupt
vector locations and operating system level routines. Table 9-5 lists the reserved memory
locations for MicroBlaze and PowerPC processors as defined by the processor hardware.
For more information on these memory locations, refer to the corresponding processor
reference manuals.

Note: In addition to these memories that are reserved for hardware use, your software environment
can reserve other memories. Refer to the manual of the particular software platform that you are
using to find out if any memory locations are deemed reserved.

Table 9-5: Hardware Reserved Memory Locations

Processor Family Reserved Memories Reserved Purpose
Default Text

Start Address

MicroBlaze 0x0 - 0x4F Reset, Interrupt, Excep-
tion, and other reserved
vector locations.

0x50

PowerPC 0xFFFFFFFC -
0xFFFFFFFF

Reset vector location. 0xFFFF0000

http://www.xilinx.com

94 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

I/O Memory

I/O memory refers to addresses used by your program to communicate with
memory-mapped peripherals on the processor buses. These addresses are defined as a part
of your hardware platform specification.

User and Program Memory

User and Program memory refers to all the memory that is required for your compiled
executable to run. By convention, this includes memories for storing instructions,
read-only data, read-write data, program stack, and program heap. These sections can be
stored in any addressable memory in your system. By default the compiler generates code
and data starting from the address listed in Table 9-5 and occupying contiguous memory
locations. This is the most common memory layout for programs. You can modify the
starting location of your program by defining (in the linker) the symbol
_TEXT_START_ADDR for MicroBlaze and _START_ADDR for PowerPC processors.

In special cases, you might want to partition the various sections of your ELF file across
different memories. This is done using the linker command language (refer to the Linker
Scripts, page 97 for details). The following are some situations in which you might want to
change the memory map of your executable:

• When partitioning large code segments across multiple smaller memories

• Remapping frequently executed sections to fast memories

• Mapping read-only segments to non-volatile flash memories

No restrictions apply to how you can partition your executable. The partitioning can be
done at the output section level, or even at the individual function and data level. The
resulting ELF can be non-contiguous, that is, there can be “holes” in the memory map.
Ensure that you do not use documented reserved locations.

Alternatively, if you are an advanced user and want to modify the default binary data
provided by the tools for the reserved memory locations, you can do so. In this case, you
must replace the default startup files and the memory mappings provided by the linker.

Object-File Sections
An executable file is created by concatenating input sections from the object files (.o files)
being linked together. The compiler, by default, creates code across standard and
well-defined sections. Each section is named based on its associated meaning and purpose.
The various standard sections of the object file are displayed in the following figure.

In addition to these sections, you can also create your own custom sections and assign
them to memories of your choice.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 95
UG111 July 6, 2011

Common Compiler Usage and Options

X-Ref Target - Figure 9-2

The reserved sections that you would not typically modify include:.init, .fini, .ctors,
.dtors, .got,.got2, and .eh_frame.

.text

This section of the object file contains executable program instructions. This section has the
x (executable), r (read-only) and i (initialized) flags. This means that this section can be
assigned to an initialized read-only memory (ROM) that is addressable from the processor
instruction bus.

.rodata

This section contains read-only data. This section has the r (read-only) and the i
(initialized) flags. Like the .text section, this section can also be assigned to an initialized,
read-only memory that is addressable from the processor data bus.

.sdata2

This section is similar to the .rodata section. It contains small read-only data of size less
than 8 bytes. All data in this section is accessed with reference to the read-only small data
anchor. This ensures that all the contents of this section are accessed using a single
instruction. You can change the size of the data going into this section with the -G option
to the compiler. This section has the r (read-only) and the i (initialized) flags.

Figure 9-2: Sectional Layout of an Object or Executable File

Text Section

Sectional Layout of an object or an Executable File

Read-Only Data Section

Small Read-Only Data Section

Small Read-Only Uninitialized Data Section

Read-Write Data Section

Small Read-Write Data Section

Small Uninitialized Data Section

Uninitialized Data Section

.text

.rodata

.sdata2

.sbss2

.data

.sdata

.sbss

.bss

Program Heap Memory Section

Program Stack Memory Section

.heap

.stack

X11005

http://www.xilinx.com

96 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

.data

This section contains read-write data and has the w (read-write) and the i (initialized)
flags. It must be mapped to initialized random access memory (RAM). It cannot be
mapped to a ROM.

.sdata

This section contains small read-write data of a size less than 8 bytes. You can change the
size of the data going into this section with the -G option. All data in this section is accessed
with reference to the read-write small data anchor. This ensures that all contents of the
section can be accessed using a single instruction. This section has the w (read-write) and
the i (initialized) flags and must be mapped to initialized RAM.

.sbss2

This section contains small, read-only un-initialized data of a size less than 8 bytes. You can
change the size of the data going into this section with the -G option. This section has the r
(read) flag and can be mapped to ROM.

.sbss

This section contains small un-initialized data of a size less than 8 bytes. You can change
the size of the data going into this section with the -G option. This section has the w
(read-write) flag and must be mapped to RAM.

.bss

This section contains un-initialized data. This section has the w (read-write) flag and must
be mapped to RAM.

.heap

This section contains uninitialized data that is used as the global program heap. Dynamic
memory allocation routines allocate memory from this section. This section must be
mapped to RAM.

.stack

This section contains uninitialized data that is used as the program stack. This section must
be mapped to RAM. This section is typically laid out right after the .heap section. In some
versions of the linker, the .stack and .heap sections might appear merged together into
a section named .bss_stack.

.init

This section contains language initialization code and has the same flags as .text. It must
be mapped to initialized ROM.

.fini

This section contains language cleanup code and has the same flags as .text. It must be
mapped to initialized ROM.

.ctors

This section contains a list of functions that must be invoked at program startup and the
same flags as .data and must be mapped to initialized RAM.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 97
UG111 July 6, 2011

Common Compiler Usage and Options

.dtors

This section contains a list of functions that must be invoked at program end, the same
flags as .data, and it must be mapped to initialized RAM.

.got2/.got

This section contains pointers to program data, the same flags as .data, and it must be
mapped to initialized RAM.

.eh_frame

This section contains frame unwind information for exception handling. It contains the
same flags as .rodata, and can be mapped to initialized ROM.

.tbss

This section holds uninitialized thread-local data that contribute to the program memory
image. This section has the same flags as .bss, and it must be mapped to RAM.

.tdata

This section holds initialized thread-local data that contribute to the program memory
image. This section must be mapped to initialized RAM.

.gcc_except_table

This section holds language specific data. This section must be mapped to initialized RAM.

.jcr

This section contains information necessary for registering compiled Java classes. The
contents are compiler-specific and used by compiler initialization functions. This section
must be mapped to initialized RAM.

.fixup

This section contains information necessary for doing fixup, such as the fixup page table,
and the fixup record table. This section must be mapped to initialized RAM.

Linker Scripts
The linker utility uses commands specified in linker scripts to divide your program on
different blocks of memories. It describes the mapping between all of the sections in all of
the input object files to output sections in the executable file. The output sections are
mapped to memories in the system. You do not need a linker script if you do not want to
change the default contiguous assignment of program contents to memory. There is a
default linker script provided with the linker that places section contents contiguously.

You can selectively modify only the starting address of your program by defining the
linker symbol _TEXT_START_ADDR on MicroBlaze processors, or _START_ADDR on
PowerPC processors, as displayed in this example:

mb-gcc <input files and flags> -Wl,-defsym -Wl,_TEXT_START_ADDR=0x100

powerpc-eabi-gcc <input files and flags> -Wl,-defsym
-Wl,_TEXT_START_ADDR=0x2000

mb-ld <.o files> -defsym _TEXT_START_ADDR=0x100

http://www.xilinx.com

98 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

The choices of the default script that will be used by the linker from the $XILINX_EDK/
gnu/<procname>/<platform>/<processor_name>/lib/
ldscripts area are described as follows:

• elf32<procname>.x is used by default when none of the following cases apply.

• elf32<procname>.xn is used when the linker is invoked with the -n option.

• elf32<procname>.xbn is used when the linker is invoked with the -N option.

• elf32<procname>.xr is used when the linker is invoked with the -r option.

• elf32<procname>.xu is used when the linker is invoked with the -Ur option.

where <procname> = ppc or microblaze, <processor_name> = powerpc-eabi or
microblaze, and <platform> = lin or nt.

To use a linker script, provide it on the GCC command line. Use the command line option
-T <script> for the compiler, as described below:

compiler -T <linker_script> <Other Options and Input Files>

If the linker is executed on its own, include the linker script as follows:

linker -T <linker_script> <Other Options and Input Files>

This tells GCC to use your linker script in the place of the default built-in linker script.
Linker scripts can be generated for your program from within XPS and SDK.

In XPS or SDK, select Tools > Generate Linker Script.

This opens up the linker script generator utility. Mapping sections to memory is done here.
Stack and Heap size can be set, as well as the memory mapping for Stack and Heap. When
the linker script is generated, it is given as input to GCC automatically when the
corresponding application is compiled within XPS or SDK.

Linker scripts can be used to assign specific variables or functions to specific memories.
This is done through “section attributes” in the C code. Linker scripts can also be used to
assign specific object files to sections in memory. These and other features of GNU linker
scripts are explained in the GNU linker documentation, which is a part of the online
binutils manual. A link to the GNU manuals is supplied in the “Additional Resources”
on page 122. For a specific list of input sections that are assigned by MicroBlaze and
PowerPC processor linker scripts, see “MicroBlaze Linker Script Sections” on page 107,
and “PowerPC Processor Linker Script Sections” on page 116.

MicroBlaze Compiler Usage and Options
The MicroBlaze GNU compiler is derived from the standard GNU sources as the Xilinx
port of the compiler. The features and options that are unique to the MicroBlaze compiler
are described in the sections that follow. When compiling with the MicroBlaze compiler,
the pre-processor provides the definition __MICROBLAZE__ automatically. You can use
this definition in any conditional code.

MicroBlaze Compiler
The mb-gcc compiler for the Xilinx™ MicroBlaze soft processor introduces new options as
well as modifications to certain options supported by the GNU compiler tools. The new
and modified options are summarized in this chapter.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 99
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

MicroBlaze Compiler Options: Quick Reference
Click an option name below to view its description.

Processor Feature Selection Options

-mcpu=vX.YY.Z

This option directs the compiler to generate code suited to MicroBlaze hardware version
v.X.YY.Z. To get the most optimized and correct code for a given processor, use this
switch with the hardware version of the processor.

The -mcpu switch behaves differently for different versions, as described below:

• Pr-v3.00.a: Uses 3-stage processor pipeline mode. Does not inhibit exception
causing instructions being moved into delay slots.

• v3.00.a and v4.00.a: Uses 3-stage processor pipeline model. Inhibits exception
causing instructions from being moved into delay slots.

• v5.00.a and later: Uses 5-stage processor pipeline model. Does not inhibit exception
causing instructions from being moved into delay slots.

-mlittle-endian / -mbig-endian

Use these options to select the endianness of the target machine for which code is being
compiled. The endianness of the binary object file produced is also set appropriately based
on this switch. The GCC driver passes switches to the sub tools (as, cc1, cc1plus, ld) to set
the corresponding endianness in the sub tool.

The default is -mbig-endian.

Note: You cannot link together object files of mixed endianness.

Processor Feature Selection Options
-mcpu=vX.YY.Z

-mno-xl-soft-mul

-mxl-multiply-high
-mno-xl-multiply-high

-mxl-soft-mul

-mno-xl-soft-div
-mxl-soft-div

-mxl-barrel-shift

-mno-xl-barrel-shift
-mxl-pattern-compare

-mno-xl-pattern-compare

-mhard-float
-msoft-float

-mxl-float-convert

-mxl-float-sqrt

General Program Options
-msmall-divides

-mxl-gp-opt

-mno-clearbss

-mxl-stack-check

Application Execution Modes
-xl-mode-executable

-xl-mode-xmdstub

-xl-mode-bootstrap
-xl-mode-novectors

MicroBlaze Linker Options
-defsym _TEXT_START_ADDR=value

-relax
-N

http://www.xilinx.com

100 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

-mno-xl-soft-mul

This option permits use of hardware multiply instructions for 32-bit multiplications.

The MicroBlaze processor has an option to turn the use of hardware multiplier resources
on or off. This option should be used when the hardware multiplier option is enabled on
MicroBlaze. Using the hardware multiplier can improve the performance of your
application. The compiler automatically defines the C pre-processor definition
HAVE_HW_MUL when this switch is used. This allows you to write C or assembly code
tailored to the hardware, based on whether this feature is specified as available or not.
Refer to the MicroBlaze Processor Reference Guide for more details about the usage of the
multiplier option in MicroBlaze. A link to the document is provided in Additional
Resources, page 122.

-mxl-multiply-high

MicroBlaze has an option to enable instructions that can compute the higher 32-bits of a
32x32-bit multiplication. This option tells the compiler to use these multiply high
instructions. The compiler automatically defines the C pre-processor definition
HAVE_HW_MUL_HIGH when this switch is used. This allows you to write C or assembly code
tailored to the hardware, based on whether this feature is available or not. Refer to the
MicroBlaze Processor Reference Guide for more details about the usage of the multiply high
instructions in MicroBlaze. A link to the document is provided in Additional Resources,
page 122.

-mno-xl-multiply-high

Do not use multiply high instructions. This option is the default.

-mxl-soft-mul

This option tells the compiler that there is no hardware multiplier unit on MicroBlaze, so
every 32-bit multiply operation is replaced by a call to the software emulation
routine__mulsi3. This option is the default.

-mno-xl-soft-div

You can instantiate a hardware divide unit in MicroBlaze. When the divide unit is present,
this option tells the compiler that hardware divide instructions can be used in the program
being compiled.

This option can improve the performance of your program if it has a significant amount of
division operations. The compiler automatically defines the C pre-processor definition
HAVE_HW_DIV when this switch is used. This allows you to write C or assembly code
tailored to the hardware, based on whether this feature is specified as available or not.
Refer to the MicroBlaze Processor Reference Guide for more details about the usage of the
hardware divide option in MicroBlaze. A link to the document is provided in the
Additional Resources section of this chapter.

-mxl-soft-div

This option tells the compiler that there is no hardware divide unit on the target
MicroBlaze hardware.

This option is the default. The compiler replaces all 32-bit divisions with a call to the
corresponding software emulation routines (__divsi3, __udivsi3).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 101
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

-mxl-barrel-shift

The MicroBlaze processor can be configured to be built with a barrel shifter. In order to use
the barrel shift feature of the processor, use the option -mxl-barrel-shift.

The default option assumes that no barrel shifter is present, and the compiler uses add and
multiply operations to shift the operands. Enabling barrel shifts can speed up your
application significantly, especially while using a floating point library. The compiler
automatically defines the C pre-processor definition HAVE_HW_BSHIFT when this switch is
used. This allows you to write C or assembly code tailored to the hardware, based on
whether or not this feature is specified as available. Refer to the MicroBlaze Processor
Reference Guide for more details about the use of the barrel shifter option in MicroBlaze. A
link to the document is provided in Additional Resources, page 261.

-mno-xl-barrel-shift

This option tells the compiler not to use hardware barrel shift instructions. This option is
the default.

-mxl-pattern-compare

This option activates the use of pattern compare instructions in the compiler.

Using pattern compare instructions can speed up boolean operations in your program.
Pattern compare operations also permit operating on word-length data as opposed to
byte-length data on string manipulation routines such as strcpy, strlen, and strcmp.
On a program heavily dependent on string manipulation routines, the speed increase
obtained will be significant. The compiler automatically defines the C pre-processor
definition HAVE_HW_PCMP when this switch is used. This allows you to write C or assembly
code tailored to the hardware, based on whether this feature is specified as available or not.
Refer to the MicroBlaze Processor Reference Guide for more details about the use of the
pattern compare option in MicroBlaze. A link to the document is provided in Additional
Resources, page 261.

-mno-xl-pattern-compare

This option tells the compiler not to use pattern compare instructions. This is the default.

-mhard-float

This option turns on the usage of single precision floating point instructions (fadd, frsub,
fmul, and fdiv) in the compiler.

It also uses fcmp.p instructions, where p is a predicate condition such as le, ge, lt, gt, eq,
ne. These instructions are natively decoded and executed by MicroBlaze, when the FPU is
enabled in hardware. The compiler automatically defines the C pre-processor definition
HAVE_HW_FPU when this switch is used. This allows you to write C or assembly code
tailored to the hardware, based on whether this feature is specified as available or not.
Refer to the MicroBlaze Processor Reference Guide for more details about the use of the
hardware floating point unit option in MicroBlaze. A link to the document is provided in
the Additional Resources, page 261.

-msoft-float

This option tells the compiler to use software emulation for floating point arithmetic. This
option is the default.

http://www.xilinx.com

102 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

-mxl-float-convert

This option turns on the usage of single precision floating point conversion instructions
(fint and flt) in the compiler. These instructions are natively decoded and executed by
MicroBlaze, when the FPU is enabled in hardware and these optional instructions are
enabled.

Refer to the MicroBlaze Processor Reference Guide for more details about the use of the
hardware floating point unit option in MicroBlaze. A link to the document is provided in
the Additional Resources, page 261.

-mxl-float-sqrt

This option turns on the usage of single precision floating point square root instructions
(fsqrt) in the compiler. These instructions are natively decoded and executed by
MicroBlaze, when the FPU is enabled in hardware and these optional instructions are
enabled.

Refer to the MicroBlaze Processor Reference Guide for more details about the use of the
hardware floating point unit option in MicroBlaze. A link to the document is provided in
the Additional Resources, page 261.

General Program Options

-msmall-divides

This option generates code optimized for small divides when no hardware divider exists.
For signed integer divisions where the numerator and denominator are between 0 and 15
inclusive, this switch provides very fast table-lookup-based divisions. This switch has no
effect when the hardware divider is enabled.

-mxl-gp-opt

If your program contains addresses that have non-zero bits in the most significant half (top
16 bits), then load or store operations to that address require two instructions.

MicroBlaze ABI offers two global small data areas that can each contain up to 64 K bytes of
data. Any memory location within these areas can be accessed using the small data area
anchors and a 16-bit immediate value, needing only one instruction for a load or store to
the small data area. This optimization can be turned on with the -mxl-gp-opt command
line parameter. Variables of size lesser than a certain threshold value are stored in these
areas and can be addressed with fewer instructions. The addresses are calculated during
the linking stage.

Caution! If this option is being used, it must be provided to both the compile and the link
commands of the build process for your program. Using the switch inconsistently can lead to
compile, link, or run-time errors.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 103
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

-mno-clearbss

This option is useful for compiling programs used in simulation.

According to the C language standard, uninitialized global variables are allocated in the
.bss section and are guaranteed to have the value 0 when the program starts execution.
Typically, this is achieved by the C startup files running a loop to fill the .bss section with
zero when the program starts execution. Optimizing compilers also allocates global
variables that are assigned zero in C code to the .bss section.

In a simulation environment, the above two language features can be unwanted overhead.
Some simulators automatically zero the entire memory. Even in a normal environment,
you can write C code that does not rely on global variables being zero initially. This switch
is useful for these scenarios. It causes the C startup files to not initialize the .bss section
with zeroes. It also internally forces the compiler to not allocate zero-initialized global
variables in the .bss and instead move them to the .data section. This option might
improve startup times for your application. Use this option with care and ensure either
that you do not use code that relies on global variables being initialized to zero, or that
your simulation platform performs the zeroing of memory.

-mxl-stack-check

With this option, you can check whether the stack overflows when the program runs.

The compiler inserts code in the prologue of the every function, comparing the stack
pointer value with the available memory. If the stack pointer exceeds the available free
memory, the program jumps to a the subroutine _stack_overflow_exit. This
subroutine sets the value of the variable _stack_overflow_error to 1.

You can override the standard stack overflow handler by providing the function
_stack_overflow_exit in the source code, which acts as the stack overflow handler.

Application Execution Modes

-xl-mode-executable

This is the default mode used for compiling programs with mb-gcc. This option need not
be provided on the command line for mb-gcc. This uses the startup file crt0.o.

-xl-mode-xmdstub

The Xilinx Microprocessor Debugger (XMD) allows debugging of applications in a
software-intrusive manner, known as XMDSTUB mode. Compile programs being
debugged in such a manner with this switch. In such programs, the address locations 0x0
to 0x800 are reserved for use by XMDSTUB. Using -xl-mode-xmdstub has two effects:

• The start address of your program is set to 0x800. You can change this address by
overriding the _TEXT_START_ADDR in the linker script or through linker options. For
more details about linker options, refer to Linker Options, page 93. If the start address
is defined to be less than 0x800, XMD issues an address overlap error.

• crt1.o is used as the initialization file. The crt1.o file returns the control back to the
XMDStub when your program execution is complete.

Note: Use -xl-mode-xmdstub for designs when XMDStub is part of the bitstream. Do not use
this mode when the system is complied for No Debug or when “Hardware Debugging” is turned ON.
For more details on debugging with XMD, refer to Chapter 11, GNU Debugger.

http://www.xilinx.com

104 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

-xl-mode-bootstrap

This option is used for applications that are loaded using a bootloader. Typically, the bootloader
resides in non-volatile memory mapped to the processor reset vector. If a normal executable is
loaded by this bootloader, the application reset vector overwrites the reset vector of the
bootloader. In such a scenario, on a processor reset, the bootloader does not execute first (it is
typically required to do so) to reload this application and do other initialization as necessary.

To prevent this, you must compile the bootloaded application with this compiler flag. On a
processor reset, control then reaches the bootloader instead of the application.

Using this switch on an application that is deployed in a scenario different from the one
described above will not work. This mode uses crt2.o as a startup file.

-xl-mode-novectors

This option is used for applications that do not require any of the MicroBlaze vectors. This
is typically used in standalone applications that do not use any of the processor’s reset,
interrupt, or exception features. Using this switch leads to smaller code size due to the
elimination of the instructions for the vectors. This mode uses crt3.o as a startup file.

Caution! Do not use more than one mode of execution on the command line. You will receive
link errors due to multiple definition of symbols if you do so.

Position Independent Code

The GNU compiler for MicroBlaze supports the -fPIC and -fpic switches. These
switches enable Position Independent Code (PIC) generation in the compiler. This feature
is used by the Linux operating system only for MicroBlaze to implement shared libraries
and relocatable executables. The scheme uses a Global Offset Table (GOT) to relocate all
data accesses in the generated code and a Procedure Linkage Table (PLT) for making
function calls into shared libraries. This is the standard convention in GNU-based
platforms for generating relocatable code and for dynamically linking against shared
libraries.

MicroBlaze Application Binary Interface
The GNU compiler for MicroBlaze uses the Application Binary Interface (ABI) defined in
the MicroBlaze Processor Reference Guide. Refer to the ABI documentation for register and
stack usage conventions as well as a description of the standard memory model used by
the compiler. A link to the document is provided in Additional Resources, page 261.

MicroBlaze Assembler
The mb-as assembler for the Xilinx MicroBlaze soft processor supports the same set of
options supported by the standard GNU compiler tools. It also supports the same set of
assembler directives supported by the standard GNU assembler.

The mb-as assembler supports all the opcodes in the MicroBlaze machine instruction set,
with the exception of the imm instruction. The mb-as assembler generates imm instructions
when large immediate values are used. The assembly language programmer is never
required to write code with imm instructions. For more information on the MicroBlaze
instruction set, refer to the MicroBlaze Processor Reference Guide. A link to the document is
provided in Additional Resources, page 261.

The mb-as assembler requires all MicroBlaze instructions with an immediate operand to be
specified as a constant or a label. If the instruction requires a PC-relative operand, then the
mb-as assembler computes it and includes an imm instruction if necessary.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 105
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

For example, the Branch Immediate if Equal (beqi) instruction requires a PC-relative
operand.

The assembly programmer should use this instruction as follows:

beqi r3, mytargetlabel

where mytargetlabel is the label of the target instruction. The mb-as assembler
computes the immediate value of the instruction as mytargetlabel - PC.

If this immediate value is greater than 16 bits, the mb-as assembler automatically inserts
an imm instruction. If the value of mytargetlabel is not known at the time of compilation,
the mb-as assembler always inserts an imm instruction. Use the relax option of the linker
remove any unnecessary imm instructions.

Similarly, if an instruction needs a large constant as an operand, the assembly language
programmer should use the operand as is, without using an imm instruction. For example,
the following code adds the constant 200,000 to the contents of register r3, and stores the
results in register r4:

addi r4, r3, 200000

The mb-as assembler recognizes that this operand needs an imm instruction, and inserts
one automatically.

In addition to the standard MicroBlaze instruction set, the mb-as assembler also supports
some pseudo-op codes to ease the task of assembly programming. Table 9-6 lists the
supported pseudo-opcodes.

Table 9-6: Pseudo-Opcodes Supported by the GNU Assembler

Pseudo Opcodes Explanation

nop No operation. Replaced by instruction:

or R0, R0, R0

la Rd, Ra, Imm Replaced by instruction:

addik Rd, Ra, imm; = Rd = Ra + Imm;

not Rd, Ra Replace by instruction: xori Rd, Ra, -1

neg Rd, Ra Replace by instruction: rsub Rd, Ra, R0

sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra

http://www.xilinx.com

106 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

MicroBlaze Linker Options
The mb-ld linker for the MicroBlaze soft processor provides additional options to those
supported by the GNU compiler tools. The options are summarized in this section.

-defsym _TEXT_START_ADDR=value

By default, the text section of the output code starts with the base address 0x28 (0x800 in
XMDStub mode). This can be overridden by using the -defsym _TEXT_START_ADDR
option. If this is supplied to mb-gcc compiler, the text section of the output code starts from
the given value.

You do not have to use -defsym _TEXT_START_ADDR if you want to use the default start
address set by the compiler.

This is a linker option and should be used when you invoke the linker separately. If the
linker is being invoked as a part of the mb-gcc flow, you must use the following option:

-Wl,-defsym -Wl,_TEXT_START_ADDR=value

-relax

This is a linker option that removes all unwanted imm instructions generated by the
assembler. The assembler generates an imm instruction for every instruction where the
value of the immediate cannot be calculated during the assembler phase.

Most of these instructions do not need an imm instruction. These are removed by the linker
when the -relax command line option is provided.

This option is required only when linker is invoked on its own. When linker is invoked
through the mb-gcc compiler, this option is automatically provided to the linker.

-N

This option sets the text and data section as readable and writable. It also does not
page-align the data segment. This option is required only for MicroBlaze programs. The
top-level GCC compiler automatically includes this option, while invoking the linker, but
if you intend to invoke the linker without using GCC, use this option.

For more details on this option, refer to the GNU manuals online. A link to the manuals is
provided in Additional Resources, page 261.

The MicroBlaze linker uses linker scripts to assign sections to memory. These are listed in
the following section.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 107
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

MicroBlaze Linker Script Sections
Table 9-7 lists the input sections that are assigned by MicroBlaze linker scripts.

Tips for Writing or Customizing Linker Scripts
The following points must be kept in mind when writing or customizing your own linker
script:

• Ensure that the different vector sections are assigned to the appropriate memories as
defined by the MicroBlaze hardware.

• Allocate space in the .bss section for stack and heap. Set the _stack variable to the
location after _STACK_SIZE locations of this area, and the _heap_start variable to
the next location after the _STACK_SIZE location. Because the stack and heap need
not be initialized for hardware as well as simulation, define the _bss_end variable
after the .bss and COMMON definitions. Note, however, that the .bss section
boundary does not include either stack or heap.

Table 9-7: Section Names and Descriptions

Section Description

.vectors.reset Reset vector code.

.vectors.sw_exception Software exception vector code.

.vectors.interrupt Hardware Interrupt vector code.

.vectors.hw_exception Hardware exception vector code.

.text Program instructions from code in functions and global
assembly statements.

.rodata Read-only variables.

.sdata2 Small read-only static and global variables with initial
values.

.data Static and global variables with initial values. Initialized
to zero by the boot code.

.sdata Small static and global variables with initial values.

.sbss2 Small read-only static and global variables without initial
values. Initialized to zero by boot code.

.sbss Small static and global variable without initial values.
Initialized to zero by the boot code.

.bss Static and global variables without initial values.
Initialized to zero by the boot code.

.heap Section of memory defined for the heap.

.stack Section of memory defined for the stack.

http://www.xilinx.com

108 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

• Ensure that the variables _SDATA_START__ , _SDATA_END__, SDATA2_START,
_SDATA2_END__, _SBSS2_START__ , _SBSS2_END__, _bss_start, _bss_end,
_sbss_start, and _sbss_end are defined to the beginning and end of the sections
sdata, sdata2, sbss2, bss, and sbss respectively.

• ANSI C requires that all uninitialized memory be initialized to startup (not required
for stack and heap). The standard CRT that is provided assumes a single .bss section
that is initialized to zero. If there are multiple .bss sections, this CRT will not work.
You should write your own CRT that initializes all the .bss sections.

Startup Files
The compiler includes pre-compiled startup and end files in the final link command when
forming an executable. Startup files set up the language and the platform environment
before your application code executes. Start up files typically do the following:

• Set up any reset, interrupt, and exception vectors as required.

• Set up stack pointer, small-data anchors, and other registers. Refer to Table 9-8,
page 108 for details.

• Clear the BSS memory regions to zero.

• Invoke language initialization functions, such as C++ constructors.

• Initialize the hardware sub-system. For example, if the program is to be profiled,
initialize the profiling timers.

• Set up arguments for the main procedure and invoke it.

Similarly, end files are used to include code that must execute after your program ends.
The following actions are typically performed by end files:

• Invoke language cleanup functions, such as C++ destructors.

• De-initialize the hardware sub-system. For example, if the program is being profiled,
clean up the profiling sub-system.

Table 9-8 lists the register names, values, and descriptions in the C-Runtime files.

The following subsections describe the initialization files used for various application
modes. This information is for advanced users who want to change or understand the
startup code of their application.

Table 9-8: Register Initialization in C-Runtime Files

Register Value Description

r1 _stack-16 The stack pointer register is initialized to point to the
bottom of the stack area with an initial negative offset
of 16 bytes. The 16 bytes can be used for passing in
arguments.

r2 _SDA2_BASE _SDA2_BASE_ is the read-only small data anchor
address.

r13 _SDA_BASE_ _SDA_BASE is the read-write small data anchor
address.

Other
registers

Undefined Other registers do not have defined values.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 109
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

For MicroBlaze, there are two distinct stages of C runtime initialization. The first stage is
primarily responsible for setting up vectors, after which it invokes the second stage
initialization. It also provides exit stubs based on the different application modes.

First Stage Initialization Files

crt0.o

This initialization file is used for programs which are to be executed in standalone mode,
without the use of any bootloader or debugging stub such as xmdstub. This CRT populates
the reset, interrupt, exception, and hardware exception vectors and invokes the second
stage startup routine _crtinit. On returning from _crtinit, it ends the program by
infinitely looping in the _exit label.

crt1.o

This initialization file is used when the application is debugged in a software-intrusive
manner. It populates all the vectors except the breakpoint and reset vectors and transfers
control to the second-stage _crtinit startup routine. On returning from _crtinit it
returns program control back to the XMDStub, which signals to the debugger that the
program has finished.

crt2.o

This initialization file is used when the executable is loaded using a bootloader. It
populates all the vectors except the reset vector and transfers control to the second-stage
_crtinit startup routine. On returning from _crtinit, it ends the program by infinitely
looping at the _exit label. Because the reset vector is not populated, on a processor reset,
control is transferred to the bootloader, which can reload and restart the program.

crt3.o

This initialization file is employed when the executable does not use any vectors and
wishes to reduce code size. It populates only the reset vector and transfers control to the
second stage _crtinit startup routine. On returning from _crtinit, it ends the program
by infinitely looping at the _exit label. Because the other vectors are not populated, the
GNU linking mechanism does not pull in any of the interrupt and exception handling
related routines, thus saving code space.

Second Stage Initialization Files

According to the C standard specification, all global and static variables must be initialized
to 0. This is a common functionality required by all the CRTs above. Another routine,
_crtinit, is invoked. The _crtinit routine initializes memory in the .bss section of
the program. The _crtinit routine is also the wrapper that invokes the main procedure.
Before invoking the main procedure, it may invoke other initialization functions. The
_crtinit routine is supplied by the startup files described below.

crtinit.o

This is the default second stage C startup file. This startup file performs the following
steps:

1. Clears the .bss section to zero.

2. Invokes _program_init.

3. Invokes “constructor” functions (_init).

4. Sets up the arguments for main and invokes main.

http://www.xilinx.com

110 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

5. Invokes “destructor” functions (_fini).

6. Invokes _program_clean and returns.

pgcrtinit.o

This second stage startup file is used during profiling. This startup files performs the
following steps:

1. Clears the .bss section to zero.

2. Invokes _program_init.

3. Invokes _profile_init to initialize the profiling library.

4. Invokes “constructor” functions (_init).

5. Sets up the arguments for main and invokes main.

6. Invokes “destructor” functions (_fini).

7. Invokes _profile_clean to cleanup the profiling library.

8. Invokes _program_clean, and then returns.

sim-crtinit.o

This second-stage startup file is used when the -mno-clearbss switch is used in the
compiler. This startup file performs the following steps:

1. Invokes _program_init.

2. Invokes “constructor” functions (_init).

3. Sets up the arguments for main and invokes main.

4. Invokes “destructor” functions (_fini).

5. Invokes _program_clean, and then returns.

sim-pgcrtinit.o

This second stage startup file is used during profiling in conjunction with the -mno-clearbss
switch. This startup files performs the following steps in order:

1. Invokes _program_init.

2. Invokes _profile_init to initialize the profiling library.

3. Invokes “constructor” functions (_init).

4. Sets up the arguments for main and invokes main.

5. Invokes “destructor” functions (_fini).

6. Invokes _profile_clean to cleanup the profiling library.

7. Invokes _program_clean, and then returns.

Other files

The compiler also uses certain standard start and end files for C++ language support.
These are crti.o, crtbegin.o, crtend.o, and crtn.o. These files are standard compiler
files that provide the content for the .init, .fini, .ctors, and .dtors sections.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 111
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

Modifying Startup Files
The initialization files are distributed in both pre-compiled and source form with EDK. The
pre-compiled object files are found in the compiler library directory. Sources for the
initialization files for the MicroBlaze GNU compiler can be found in the <XILINX_EDK>/
sw/lib/microblaze/src directory, where <XILINX_EDK> is the EDK installation area.

To fulfill a custom startup file requirement, you can take the files from the source area and
include them as a part of your application sources. Alternatively, you can assemble the files
into .o files and place them in a common area. To refer to the newly created object files
instead of the standard files, use the -B directory -name command-line option while
invoking mb-gcc.

To prevent the default startup files from being used, use the -nostartfiles on the final
compile line.

Note: The miscellaneous compiler standard CRT files, such as crti.o, and crtbegin.o, are
not provided with source code. They are available in the installation to be used as is. You might need
to bring them in on your final link command.

Reducing the Startup Code Size for C Programs

If your application has stringent requirements on code size for C programs, you might
want to eliminate all sources of overhead. This section describes how to reduce the
overhead of invoking the C++ constructor or destructor code in a C program that does not
require that code. You might be able to save approximately 220 bytes of code space by
making the following modifications:

1. Follow the instructions for creating a custom copy of the startup files from the
installation area, as described in the preceding sections. Specifically, copy over the
particular versions of crtn.s and xcrtinit.s that suit your application. For
example, if your application is being bootstrapped and profiled, copy crt2.s and
pg-crtinit.s from the installation area.

2. Modify pg-crtinit.s to remove the following lines:

brlid r15, __init
/* Invoke language initialization functions */
nop

and

brlid r15, __fini
/* Invoke language cleanup functions */
nop

This avoids referencing the extra code usually pulled in for constructor and destructor
handling, reducing code size.

3. Compile these files into .o files and place them in a directory of your choice, or include
them as a part of your application sources.

4. Add the -nostartfiles switch to the compiler. Add the -B directory switch if
you have chosen to assemble the files in a particular folder.

5. Compile your application.

If your application is executing in a different mode, then you must pick the appropriate
CRT files based on the description in Startup Files, page 108.

http://www.xilinx.com

112 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Compiler Libraries
The mb-gcc compiler requires the GNU C standard library and the GNU math library.
Precompiled versions of these libraries are shipped with EDK. The CPU driver for
MicroBlaze copies over the correct version, based on the hardware configuration of
MicroBlaze, during the execution of Libgen. To manually select the library version that you
would like to use, look in the following folder:

$XILINX_EDK/gnu/microblaze/<platform>/microblaze-xilinx-elf/lib

The filenames are encoded based on the compiler flags and configurations used to compile
the library. For example, libc_m_bs.a is the C library compiled with hardware multiplier
and barrel shifter enabled in the compiler.

Table 9-9 shows the current encodings used and the configuration of the library specified
by the encodings.

Of special interest are the math library files (libm*.a). The C standard requires the
common math library functions (sin()and cos(), for example) to use double-precision
floating point arithmetic. However, double-precision floating point arithmetic may not be
able to make full use of the optional, single-precision floating point capabilities in available
for MicroBlaze.

The Newlib math libraries have alternate versions that implement these math functions
using single-precision arithmetic. These single-precision libraries might be able to make
direct use of the MicroBlaze hardware floating point unit and could therefore perform
better. If you are sure that your application does not require standard precision, and you
would like to implement enhanced performance, you can change the version of the
linked-in library manually. By default, the CPU driver copies the double-precision version
(libm_*_fpd.a) of the library into your XPS project. To get the single precision version,
you can create a custom CPU driver that copies the corresponding libm_*_fps.a library
instead. Simply copy the corresponding libm_*_fps.a file into your processor library
folder (such as microblaze_0/lib) as libm.a.

When you have copied the library that you want to use, rebuild your application software
project.

Thread Safety
The MicroBlaze C and math libraries distributed with EDK are not built to be used in a
multi-threaded environment. Common C library functions such as printf(), scanf(),
malloc(), and free() are not thread-safe and will cause unrecoverable errors in the
system at run-time. Use appropriate mutual exclusion mechanisms when using the EDK
libraries in a multi-threaded environment.

Table 9-9: Encoded Library Filenames on Compiler Flags

Encoding Description

_bs Configured for barrel shifter.

_m Configured for hardware multiplier.

_p Configured for pattern comparator.

_mh Configured for extended hardware multiplier.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 113
UG111 July 6, 2011

MicroBlaze Compiler Usage and Options

Command Line Arguments
MicroBlaze programs cannot take command-line arguments. The command-line
arguments argc and argv are initialized to 0 by the C runtime routines.

Interrupt Handlers
Interrupt handlers must be compiled in a different manner than normal sub-routine calls.
In addition to saving non-volatiles, interrupt handlers must save the volatile registers that
are being used. Interrupt handlers should also store the value of the machine status
register (RMSR) when an interrupt occurs.

interrupt_handler attribute

To distinguish an interrupt handler from a sub-routine, mb-gcc looks for an attribute
(interrupt_handler) in the declaration of the code. This attribute is defined as follows:

void function_name () __attribute__ ((interrupt_handler));

Note: The attribute for the interrupt handler is to be given only in the prototype and not in the
definition.

Interrupt handlers might also call other functions, which might use volatile registers. To
maintain the correct values in the volatile registers, the interrupt handler saves all the
volatiles, if the handler is a non-leaf function.

Note: Functions that have calls to other sub-routines are called non-leaf functions.

Interrupt handlers are defined in the MicroBlaze Hardware Specification (MHS) and the
MicroBlaze Software Specification (MSS) files. These definitions automatically add the
attributes to the interrupt handler functions. For more information, refer to Appendix B,
“Interrupt Management.”

The interrupt handler uses the instruction rtid for returning to the interrupted function.

save_volatiles attribute

The MicroBlaze compiler provides the attribute save_volatiles, which is similar to the
interrupt_handler attribute, but returns using rtsd instead of rtid.

This attribute saves all the volatiles for non-leaf functions and only the used volatiles in the
case of leaf functions.

void function_name () __attribute__((save_volatiles));

Table 9-10 lists the attributes with their functions.

Table 9-10: Use of Attributes

Attributes Functions

interrupt_handler This attribute saves the machine status register and all the
volatiles, in addition to the non-volatile registers. rtid returns
from the interrupt handler. If the interrupt handler function is a
leaf function, only those volatiles which are used by the function
are saved.

save_volatiles This attribute is similar to interrupt_handler, but it uses
rtsd to return to the interrupted function, instead of rtid.

http://www.xilinx.com

114 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

PowerPC Compiler Usage and Options

PowerPC Compiler Options: Quick Reference

PowerPC Compiler Options
The PowerPC processor GNU compiler (powerpc-eabi-gcc) is built out of the sources
for the PowerPC processor port as distributed by GNU foundation. The compiler is
customized for Xilinx purposes. The features and options that are unique to the version
distributed with EDK are described in the following sections. When compiling with the
PowerPC processor compiler, the pre-processor automatically provides the definition
__PPC__. You can use this definition in any conditional code that you have.

-mcpu=440

Target code for the 440 processor. This includes instruction scheduling optimizations,
enable or disable instruction workarounds, and usage of libraries targeted for the 440
processor.

-mfpu={sp_lite, sp_full, dp_lite, dp_full, none}

Generate hardware floating point instructions to use with the Xilinx PowerPC processor
APU FPU coprocessor hardware. The instructions and code output follow the floating
point specification in the PowerPC Book-E, with some exceptions tailored to the APU FPU
hardware. Book-E is available from the IBM web page. Refer to the FPU hardware
documentation for more information on the architecture. Links to Book-E and to the FPU
documentation are available in Additional Resources, page 261.

The option given to -mfpu= determines which variant of the FPU hardware to target. The
variants are as follows:

sp_lite

Produces code targeted to the Single precision Lite FPU coprocessor. This version
supports only single precision hardware floating point and does not use hardware
divide and square root instructions. The compiler automatically defines the C
preprocessor definition HAVE_XFPU_SP_LITE when this option is given.

sp_full

Produces code targeted to the Single precision Full FPU coprocessor. This version
supports only single precision hardware floating point and uses hardware divide and
square root instructions. The compiler automatically defines the C preprocessor
definition HAVE_XFPU_SP_FULL when this option is given.

PowerPC Compiler Options
-mcpu=440

-mfpu={sp_lite, sp_full, dp_lite, dp_full, none}
-mppcperflib

-mno-clearbss

Linker Options
-defsym _START_ADDR=value

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 115
UG111 July 6, 2011

PowerPC Compiler Usage and Options

dp_lite

Produces code targeted to the Double precision Lite FPU coprocessor. This version
supports both single and double precision hardware floating point and does not use
hardware divide and square root instructions. The compiler automatically defines the
C preprocessor definition, HAVE_XFPU_DP_LITE, when this option is given.

dp_full

Produces code targeted to the Double precision Full FPU coprocessor. This version
supports both single and double precision hardware floating point and uses hardware
divide and square root instructions. The compiler automatically defines the C
preprocessor definition, HAVE_XFPU_DP_FULL, when this option is given.

Caution! Do not link code compiled with one variant of the -mfpu switch with code compiled
with other variants (or without the -mfpu switch). You must use the switch even when you are
only linking object files together. This allows the compiler to use the correct set of libraries and
prevent incompatibilities.

none

This option tells the compiler to use software emulation for floating point arithmetic.
This option is the default.

Refer to the latest APU FPU user guide for detailed information on how to optimize
use of the hardware floating point co-processor. A link to the guide is provided in
Additional Resources, page 261.

-mppcperflib

Use PowerPC processor performance libraries for low-level integer and floating
emulation, and some simple string routines. These libraries are used in the place of the
default emulation routines provided by GCC and simple string routines provided by
Newlib. The performance libraries show an average of three times increase in speed on
applications that heavily use these routines. The SourceForge project web page contains
more information and detailed documentation. A link to that page is provided in the
Additional Resources section of this chapter.

Caution! You cannot use the performance libraries in conjunction with the -mfpu switch. They
are incompatible.

-mno-clearbss

This option is useful for compiling programs used in simulation. According to the C
language standard, uninitialized global variables are allocated in the .bss section and are
guaranteed to have the value 0 when the program starts execution. Typically, this is
achieved by the C startup files running a loop to fill the .bss section with zero when the
program starts execution. Additionally optimizing compilers will also allocate global
variables that are assigned zero in C code to the .bss section.

In a simulation environment, the two language features above can be unwanted overhead.
Some simulators automatically zero the whole memory. Even in a normal environment,
you can write C code that does not rely on global variables being zero initially. This switch
is useful for these scenarios. It causes the C startup files to not initialize the .bss section
with zeroes. It also internally forces the compiler not to allocate zero-initialized global
variables in the .bss and instead move them to the .data section. This option may
improve startup times for your application. Use this option with care. Do not use code that
relies on global variables being initialized to zero, or ensure that your simulation platform
performs the zeroing of memory.

http://www.xilinx.com

116 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

PowerPC Processor Linker
The powerpc-eabi-ld linker for the PowerPC processor introduces a new option in
addition to those supported by the GNU compiler tools. The option is described below:

-defsym _START_ADDR=value

By default, the text section of the output code starts with the base address 0xffff0000
because this is the start address listed in the default linker script. This can be overridden by
using the above option or providing a linker script that lists the value for the start address.

You are not required to use -defsym _START_ADDR, if you want to use the default start
address set by the compiler. This is a linker option. Use this option when you invoke the
linker separately. If the linker is being invoked as a part of the powerpc-eabi-gcc flow,
use the option -Wl,-defsym -Wl,_START_ADDR=value.

The PowerPC linker uses linker scripts to assign sections to memory. Table 9-11 and the
following subsection lists the script sections.

PowerPC Processor Linker Script Sections

Table 9-11: Input Sections Assigned by the PowerPC Processor Linker Scripts

Section Description

.boot Processor reset vector code with initial branch to .boot0.

.boot0 Boot code.

.heap Section of memory defined for the heap.

.stack Section of memory defined for the stack.

.bss Static and global variables without initial values. Initialized to 0 by the
boot code.

.sbss Small static and global variables without initial values. Initialized to 0 by
the boot code.

.sbss2 Small read-only static and global variables with initial values. Initialized
to zero by the boot code.

.sdata Small static and global variables with initial values.

.data Static and global variables with initial values. These variables are
initialized to zero by the boot code.

.sdata2 Small read-only static and global variables with initial values.

.rodata Read-only variables.

.text Program instructions from code in functions and global assembly
statements.

.got2 Global Offset Table (GOT). The GOT is to define a place where position
independent code can access global data.

.got1 Global Offset Table (GOT). The GOT defines a place where position
independent code can access global data.

.fixup Fixup information, such as fixup record table.

.jcr Compiler-specific. Used by compiler initialization functions.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 117
UG111 July 6, 2011

PowerPC Compiler Usage and Options

Tips for Writing or Customizing Linker Scripts
The following points must be kept in mind when writing or customizing your own linker
script:

• The PowerPC processor linker is built with default linker scripts. This script assumes
a contiguous memory starting at address 0xFFFF0000. The script defines boot.o as
the first file to be linked. The boot.o file is present in the libxil.a library, which is
created by the Libgen tool. The script defines the start address to be 0xFFFF0000. To
specify a different start address, you can convey it to the linker using either a
command line assignment or an adjustment to the linker script.

• When writing or customizing your own linker script:

• Ensure that the .boot section starts at 0xFFFFFFFC. Upon power-up, the
PowerPC processor starts execution from the location 0xFFFFFFFC.

• The _end variable is defined after the .boot0 section definition. This section is a
jump to the start of the .boot0 section. The jump is defined to be 24 bits; hence
the .boot and .boot0 sections should not be more than 24 bits apart. On the
PowerPC 440 processor, the .boot0 section has a fixed location of 0xFFFFFF00.

• Allocate space in the .bss section for stack and heap.

• Set the _stack variable to the location after _STACK_SIZE locations of this area,
and the _heap_start variable to the next location after the _STACK_SIZE
location. Because the stack and heap need not be initialized for hardware as well
as simulation, define the _bss_end variable after the .bss and COMMON
definitions. Note that the .bss section boundary does not include either stack or
heap.

• Ensure that the variables _SDATA_START__ , _SDATA_END__, _SDATA2_START,
_SDATA2_END__, __SBSS2_START__ , _SBSS2_END__, _bss_start, _bss_end,
_sbss_start and _sbss_end are defined to the beginning and end of the
sections sdata, sdata2, sbss2, bss, and sbss, respectively.

• For the PowerPC 405 processor, ensure that the .vectors section is aligned on a
64K boundary. The PowerPC 440 processor does not require any special
alignment on the .vectors section. Include this section definition only when
your program uses interrupts and/or exceptions.

• Each (physical) region of memory must use a separate program header. Two
discontinuous regions of memory cannot share a program header.

• ANSI C requires that all uninitialized memory be initialized to startup (not
required for stack and heap.) The standard CRT provided assumes a single .bss
section that is initialized to zero. If there are multiple .bss sections, this CRT will
not work. You must write your own CRT that initializes the .bss sections.

.gcc_except_table Language specific data.

.tdata Initialized thread-local data.

.tbss Unititialized thread-local data.

Table 9-11: Input Sections Assigned by the PowerPC Processor Linker Scripts

Section Description

http://www.xilinx.com

118 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Startup Files
When the compiler forms an executable, it includes pre-compiled startup and end files in
the final link command. Startup files set up the language and the platform environment
before your application code can execute. Startup files typically do the following:

• Set up any reset, interrupt, and exception vectors as required.

• Set up stack pointer, small-data anchors, and other registers as required.

• Clear the BSS memory regions to zero.

• Invoke language initialization functions such as C++ constructors.

• Initialize the hardware sub-system. For example, if the program is to be profiled,
initialize the profiling timers.

• Set up arguments for and invoke the main procedure.

End files include code that must execute after your program is finished. End files typically:

• Invoke language cleanup functions, such as C++ destructors.

• Clean up the hardware subsystem. For example, if the program is being profiled,
clean up the profiling subsystem.

Table 9-12 lists the register initialization in the C runtime files.

The following subsection describes the initialization files. This information is for advanced
users who want to change or understand the startup code of their application.

Initialization File Description

The PowerPC processor compiler uses four different CRT files: xil-crt0.o,
xil-pgcrt0.o, xil-sim-crt0.o, and xil-sim-pgcrt0.o. The various CRT files
perform the following steps, with exceptions as described.

1. Invoke the function _cpu_init. This function is provided by the board support
package library and contains processor architecture specific initialization.

2. Clear the .bss memory regions to zero.
3. Set up registers. Refer to Table 9-12 for details.
4. Initialize the timer base register to zero.
5. Optionally, enable the floating point unit bit in the MSR.
6. Invoke the C++ language and constructor initialization function (_init).
7. Invoke main.
8. Invoke C++ language destructors (_fini).
9. Transfer control to exit.

Table 9-12: Register Initialization in C-Runtime Files

Register Value Description

r1 _stack-8 Stack pointer register initializes the bottom of the allocated stack, offset by 16 bytes. The
16 bytes can be used for passing in arguments.

r2 _SDA2_BASE _SDA2_BASE_ is the read-only small data anchor address.

r13 _SDA_BASE_ _SDA_BASE is the read-write small data anchor address.

Other
registers

Undefined Other registers do not have defined values.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 119
UG111 July 6, 2011

PowerPC Compiler Usage and Options

Start-up File Descriptions

xil-crt0.o

This is the default initialization file used for programs that are to be executed in standalone
mode, with no other special requirements. This performs all the common actions described
above.

xil-pgcrt0.o

This initialization file is used when the application is to be profiled in a software-intrusive
manner. In addition to all the common CRT actions described, it also invokes the
_profile_init routine before invoking main. This initializes the software profiling
library before your code executes. Similarly, upon exit from main, it invokes the
_profile_clean routine, which cleans up the profiling library.

xil-sim-crt0.o

This initialization file is used when the application is compiled with the -mno-clearbss
switch. It performs all the common CRT setup actions, except that it does not clear the
.bss section to zero.

xil-sim-pgcrt0.o

This initialization file is used when the application is compiled with the -mno-clearbss
switch. It performs all the common CRT setup actions, except that it does not clear the
.bss section to zero. It also invokes the _profile_init routine before invoking main.
This initializes the software profiling library before your code executes. Similarly, upon
exit from main, it invokes the _profile_clean routine, which cleans up the profiling
library.

Other files

The compiler also uses standard start and end files for C++ language support: ecrti.o,
crtbegin.o, crtend.o, and crtn.o. These files are standard compiler files that provide
the content for the .init, .fini, .ctors, and .dtors sections. The PowerPC default and
generated linker scripts also make boot.o a startup file. This file is present in the
standalone package for PowerPC (405 and 440) processors.

Modifying Startup Files
The initialization files are distributed in both pre-compiled and source form with EDK. The
pre-compiled object files are found in the compiler library directory. Sources for the
initialization files for the PowerPC compiler can be found in the <XILINX_EDK>/sw/lib/
ppc405/src directory, where <XILINX_EDK> is the EDK installation area.

Any time you need a custom startup file requirement, you can take the files from the
source area and include them as a part of your application sources. Alternatively, they can
be assembled into .o files and placed in a common area. To refer to the newly created
object files instead of the standard files, use the -B directory-name command line
option while invoking powerpc-eabi-gcc. To prevent the default startup files being used,
add -nostartfiles on final compile line. Note that the compiler standard CRT files for
C++ support, such as ecrti.o and crtbegin.o, are not provided with source code. They
are available in the installation to be used as is. You might need to bring them in on your
final link command if your code uses constructors and destructors.

http://www.xilinx.com

120 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Reducing the Startup Code Size for C Programs

If your application has stringent requirements on code size for C programs, you can
eliminate all sources of overhead. This section documents how to remove the overhead of
invoking the C++ constructor or destructor code in a C program that does not need them.
You might be able to save approximately 500 bytes of code space by making these
modifications.

1. Follow the instructions for creating a custom copy of the startup files from the
installation area, as described in the preceding sections. Specifically, you need to copy
over the particular version of xil-crt.s that suits your application. For example, if
your application is being profiled, copy xil-pgcrt0.s from the installation area.

Modify the CRT file to remove the following lines:
/* Call _init */
bl _init

and

/* Invoke the language cleanup functions */
bl _fini

This avoids referencing the extra code that is usually pulled in for constructor and
destructor handling, and reducing code size.

2. Either compile these files into .o files and place them in a directory of your choice, or
include them as a part of your application sources.

3. Add the -nostartfiles switch to the compiler. Add the -B directory switch if you
have chosen to assemble the files in a particular folder.

4. Compile your application.

Modifying Startup Files for Bootstrapping an Application

If your application is going to be loaded from a bootloader, you might not want to
overwrite the processor reset vector of the bootloader with that of your application. This
re-executes the bootloader on a processor reset instead of your application. To achieve this,
your application must not bring in boot.o as a startup file. Unlike other compiler startup
files, boot.o is not explicitly linked in by the compiler. Instead, the default linker scripts
and the tools for generating the linker scripts specify boot.o as a startup file. You must
remove the STARTUP directive in such linker scripts. You must also modify the ENTRY
directive to be _start instead of _boot.

Compiler Libraries
The powerpc-eabi-gcc compiler requires the GNU C standard library and the GNU
math library.

Precompiled versions of these libraries are shipped with EDK. These libraries are located
in $XILINX_EDK/gnu/powerpc-eabi/platform/powerpc-eabi/lib.

Various subdirectories under this top level library directory contain customized versions
of the libraries for a particular configuration. For instance, the /double directory contains
the version of libraries for use with a double precision FPU, whereas the /440 subdirectory
contains the version of libraries suited for use with PowerPC 440 processor.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 121
UG111 July 6, 2011

Other Notes

Thread Safety
The C and math libraries for the PowerPC processor distributed with EDK are not built to
be used in a multi-threaded environment. Common C library functions such as printf(),
scanf(), malloc(), and free() are not thread-safe and will cause unrecoverable errors
in the system at run-time. Use appropriate mutual exclusion mechanisms when using the
EDK libraries in a multi-threaded environment.

Command Line Arguments
PowerPC processor programs cannot take in command-line arguments. The
command-line arguments, argc and argv, are initialized to zero by the C runtime routines.

Other Notes

C++ Code Size

The GCC toolchain combined with the latest open source C++ standard library
(libstdc++-v3) might be found to generate large code and data fragments as compared
to an equivalent C program. A significant portion of this overhead comes from code and
data for exception handling and runtime type information. Some C++ applications do not
require these features.

To remove the overhead and optimize for size, use the -fno-exceptions and/or the
-fno-rtti switches. This is recommended only for advanced users who know the
requirements of their application and understand these language features. Refer to the
GCC manual for more specific information on available compiler options and their impact.

C++ programs might have more intensive dynamic memory requirements (stack and heap
size) due to more complex language features and library routines.

Many of the C++ library routines can request memory to be allocated from the heap.
Review your heap and stack size requirements for C++ programs to ensure that they are
satisfied.

C++ Standard Library

The C++ standard defines the C++ standard library. A few of these platform features are
unavailable on the default Xilinx EDK software platform. For example, file I/O is
supported in only a few well-defined STDIN/STDOUT streams. Similarly, locale functions,
thread-safety, and other such features may not be supported.

Note: The C++ standard library is not built for a multi-threaded environment. Common C++ features
such as new and delete are not thread-safe. Please use caution when using the C++ standard
library in an operating system environment.

For more information on the GNU C++ standard library, refer to the documentation
available on the GNU website. A link to the documentation is provided in Additional
Resources, page 261.

http://www.xilinx.com

122 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 9: GNU Compiler Tools

Position Independent Code (Relocatable Code)

The MicroBlaze and PowerPC processor compilers support the -fPIC switch to generate
position independent code. The PowerPC compiler supports the -mrelocatable switches
to generate a slightly different form of relocatable code.

While both these features are supported in the Xilinx compiler, they are not supported by
the rest of the libraries and tools, because EDK only provides a standalone platform. No
loader or debugger can interpret relocatable code and perform the correct relocations at
runtime. These independent code features are not supported by the Xilinx libraries, startup
files, or other tools. Third-party OS vendors could use these features as a standard in their
distribution and tools.

Other Switches and Features

Other switches and features might not be supported by the Xilinx EDK compilers and/or
platform, such as -fprofile-arcs. Some features might also be experimental in nature
(as defined by open source GCC) and could produce incorrect code if used inappropriately.
Refer to the GCC manual for more information on specific features. A link to the document
is provided in Additional Resources, page 261.

Additional Resources

GNU Information
• GCC Feature Reference:

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc

• Invoking the compiler for different languages:
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/
Invoking-G_002b_002b.html#Invoking-G_002b_002b

• GCC online manual: http://www.gnu.org/manual/manual.html

• GNU C++ standard library: http://gcc.gnu.org/onlinedocs/libstdc++/manual/
spine.html

• GNU linker scripts: http://www.gnu.org/software/binutils

PowerPC Information
• IBM Book-E:

http://www.ibm.com

• IBM PowerPC performance library: http://sourceforge.net/projects/ppcperflib

• APU FPU documentation: http://www.xilinx.com/support/
documentation/ip_documentation/apu_fpu_virtex5.pdf

MicroBlaze Information
• The MicroBlaze Processor Reference Guide: http://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf

http://www.xilinx.com
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Invoking-G_002b_002b.html#Invoking-G_002b_002b
http://www.gnu.org/manual/manual.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/spine.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/spine.html
http://www.gnu.org/software/binutils
http://www.ibm.com
http://sourceforge.net/projects/ppcperflib
http://www.xilinx.com/support/documentation/ip_documentation/apu_fpu_virtex5.pdf
http://www.xilinx.com/support/documentation/ip_documentation/apu_fpu_virtex5.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf

Embedded System Tools Reference Manual www.xilinx.com 123
UG111 July 6, 2011

Chapter 10

Xilinx Microprocessor Debugger (XMD)

The Xilinx® Microprocessor Debugger (XMD) is a tool that facilitates debugging programs
and verifying systems using the PowerPC® (405 or 440) processor or the MicroBlaze™
processor. You can use it to debug programs on MicroBlaze or PowerPC 405 processors
running on a hardware board, cycle-accurate Instruction Set Simulator (ISS).

XMD provides a Tool Command Language (Tcl) interface. This interface can be used for
command line control and debugging of the target as well as for running complex
verification test scripts to test a complete system.

XMD supports GNU Debugger (GDB) remote TCP protocol to control debugging of a
target. Some graphical debuggers use this interface for debugging, including the PowerPC
processor GDB and the MicroBlaze GDB (powerpc-eabi-gdb and mb-gdb) and the
Software Development Kit (SDK), the EDK, Eclipse-based software tool. In either case, the
debugger connects to XMD running on the same computer or on a remote computer on the
network.

XMD reads Xilinx Microprocessor Project the (XMP) system file to gather information
about the hardware system on which the program is debugged. The information is used to
perform memory range tests, determine MicroBlaze to Microprocessor Debug Module
(MDM) connectivity for faster download speeds, and perform other system actions.

Figure 10-1, page 124 shows the XMD targets.

http://www.xilinx.com

124 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

XMD Usage
xmd [-h] [-help] [-hw <hardware_specification_file>] [-ipcport
<port_number>][-nx] [-opt <optfile>][-v] [-xmp <xmpfile>]
[-tcl <tcl_file> <tcl_args>]

Figure 10-1: XMD Targets

UG111_13_01_091905

GDB Remote Protocol Interface

GDB and Platform Studio SDK

GDB Remote
protocol

XMD Socket
Interface

XMD Tcl Interface XMD Socket Interface

Xilinx Microprocessor Debug (XMD)

Manual debugger/TCL Scripts External debugger

PowerPC/MicroBlaze on board

JTAG Interface

Hardware on board

Serial Interface

MicroBlaze ISS

TCP Socket
Interface

MicroBlaze XMDSTUB using
Serial Interface PowerPC ISS/MicroBlaze UP

Table 10-1: XMD Options

Option Command Description

Help -h, -help Displays the usage menu and then quits.

Hardware Specification
File

 -hw <hw_spec_file> Specifies the XML file that describes the hardware
components.

Port Number -ipcport <port_number> Starts the XMD server at <portnum>. Internal XMD
commands can be issued over this TCP Port. If
[<port_number>] is not specified, a default val-
ue, 2345, is used.

No Initialization file -nx Does not source xmd.ini file on startup.

Option File -opt <connect_option_file> Specifies the option file to use to connect to target.
The option file contains the XMD connect command
to target.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 125
UG111 July 6, 2011

XMD Console

Upon startup, XMD does the following:

• If an XMD Tcl script is specified, XMD executes the script, then quits.

• If an XMD Tcl script is not specified, XMD starts in interactive mode. In this case, XMD
does the following:

1. Creates source ${HOME}/.xmdrc file. You can use this configuration file to form custom
Tcl commands using XMD commands:

• - hw option loads the XML file.

• When -nx option is not given, sources the xmd.ini file if present in the current
directory.

• -opt option uses Connect option file to connect to processor target.

• -ipcport option opens XMD socket server.

• -xmp option loads system XMP file.

2. Displays the XMD% prompt. From the XMD Tcl prompt, you can use XMD commands
for debugging, as described in the next section, XMD Command Reference, page 126.

XMD Console
The XMD console is a standard Tcl console, where you can run any available Tcl
commands. Additionally, the XMD console provides command editing convenience, such
as file and command name auto-fill and command history.

The available Tcl commands on which you can use auto-fill are defined in the
<EDK_Install_Area>/data/xmd/cmdlist file. The command history is stored in
$HOME/.xmdcmdhistory. To use different files for available command names and
command history, you can use environment variables $XILINX_XMD_CMD_LIST and
$XILINX_XMD_CMD_HISTORY to overwrite the defaults.

Tcl File -tcl <tclfile> <tclarg> Specifies the XMD Tcl script to run.

The <tclargs> are arguments to the Tcl script.
This Tcl file is sourced from XMD. XMD quits after
executing the script.

No other option can follow -tcl.

Version -v Displays the version, then quits.

XMP File -xmp <xmpfile> Specifies the XMP file to load.

Table 10-1: XMD Options (Cont’d)

Option Command Description

http://www.xilinx.com

126 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

XMD Command Reference

XMD User Command Summary
The following is a summary of XMD commands. To go to a description for a given
command, click on its name.

bpl rst

bpr rwr

bps run

con safemode [options]

connect state

cstp srrd

data_verify stackcheck

debugconfig state

dis stats

disconnect stop

dow stp

elf_verify
[<filename.elf>]

targets

fpga -f <bit-
stream>

terminal

mrd <address>
[<number of
words|half
words|bytes>
{w|h|b}]

tracestart

mwr tracestop

profile watch

read_uart xload

rrd

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 127
UG111 July 6, 2011

XMD User Commands

XMD User Commands
Table 10-2 displays XMD user commands and options. For a list of special register names
for MicroBlaze and PowerPC processors, refer to “Special Purpose Register Names” on
page 133. For connect command options, refer to “Connect Command Options” on page
140.

Table 10-2: XMD User Commands

command [options] Example Usage Description

bpl bpl Lists breakpoints and watchpoints.

bpr

bpr {all|<bp id>
|<address>| <function>}

bpr 0x400

bpr main

bpr all

Removes breakpoints and watchpoints.

bps

bps {<address>|
<function_name>} {sw | hw}

bps 0x400

bps main hw

Sets a software or hardware breakpoint at
<address> or start of <function name>. The
last downloaded ELF file is used for function
lookup. Defaults to software breakpoint.

close_terminal close_terminal Closes the terminal server opened by the
terminal command and the MDM Uart target
connection.

con

con [<Execute Start Address>]
[-block [-timeout <Seconds>]]

con

con 0x400

Continues from current PC or optionally
specified <Execute Start Address>.

If -block option is specified, the command
returns when the Processor stops on breakpoint
or watchpoint.

A -timeout value can be specified to prevent
indefinite blocking of the command.

The -block option is useful in scripting.

connect

connect <target_type(s)>

connect mb mdm

connect ppc

Connects to <target_type>. Valid target
types are: mb, ppc, and mdm. For additional
information, refer to “Connect Command
Options” on page 140.

cstp

cstp <number of cycles>

cstp

cstp 10

Steps through the specified number of cycles.

This is supported only on ISS targets.

data_verify

data_verify <binary_filename>
<load_address>

data_verify

system.dat 0x400

Verify if the <Binary filename> is
downloaded correctly at <Load Address> to
the target.

http://www.xilinx.com

128 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

debugconfig

debugconfig -step_mode
{disable_interrupt |
enable_interrupt}

debugconfig
-memory_datawidth_matching
{disable | enable}

debugconfig -reset_on_run
{system enable |
processor enable | disable}

debugconfig
-reset_on_data_dow
{system enable |
processor enable | disable}

debugconfig

debugconfig
-step_mode
enable_interrupt

debugconfig
-memory_datawidth_ma
tching enable

debugconfig
-reset_on_run system
enable

debugconfig
-reset_on_data_dow
processor enable

Configures the debug session for the target. For
additional information, refer to “Configure
Debug Session” on page 160.

dis

dis [<address in hex>] [<number
of words>]

dis 0x400 10 Disassemble instruction.

Supported on the MicroBlaze target only.

disconnect

disconnect <target id>

disconnect 0 Disconnects from the current processor target,
closes the corresponding GDB server, and
reverts to the previous processor target, if any.

dow dow executable.elf Downloads the given ELF or data file (with the
-data option) onto the memory of the current
target.

If no address is provided along with the ELF file,
the download address is determined from the
ELF file by reading its headers.

Only those segments of the ELF file that are
marked LOAD are written to memory.

dow <filename.elf>

dow <PIC filename.elf>
<load_address>

dow executable.elf
0x400

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 129
UG111 July 6, 2011

XMD User Commands

dow -data <binary_filename>
<load_address>

dow -data system.dat
0x400

If an address is provided with the ELF file (on
MicroBlaze targets only), it is treated as Position
Independent Code (PIC code) and downloaded
at the specified address.

Also, the R20 Register is set to the start address
according to the PIC code semantics.

The R20 Register is reserved for storing a pointer
to the Global Offset Table (GOT) in Position
Independent Code (PIC). It is non-volatile in
non-PIC code and must be saved across function
calls.

When an ELF file is downloaded, the command
does a reset, stops the processor at the reset
location by using software breakpoints, and
loads the ELF program to the memory. The reset
is done to ensure that the system is in a known
good state.
The reset behavior can be configured using the
following commands:

• debugconfig -reset_on_run
{system enable | processor enable
| disable}

• debugconfig -reset_on_data_dow
{system enable | processor enable
| disable}

Refer to the “Configure Debug Session” on page
160

elf_verify [<filename.elf>] elf_verify
executable.elf

Verify if the executable.elf is downloaded
correctly to the target. If ELF file is not specified,
it uses the most recent ELF file downloaded on
the target.

fpga -f <bitstream>

[-cable <cable_options>]|
[-configdevice
<configuration_options>] |
[-debugdevice <device_name>]

fpga -f download.bit

fpga -f download.bit
-cable type
xilinx_parallel

Loads the FPGA device bitstream. Optionally
specify the cable, JTAG configuration, and
debug device options.

For additional information, refer to “Connect
Command Options” on page 140.

mrd <address>
[<number of words|half
words|bytes> {w|h|b}]

mrd <Global Variable Name>

mrd 0x400

mrd 0x400 10

mrd 0x400 10 h

Reads <num> memory locations starting at
address. Defaults to a word (w) read.

If <Global Variable Name> name is
specified, reads memory corresponding to
global variable in the previously downloaded
ELF file.

mrd_var

mrd_var <Global Variable
Name> <filename.elf>

mrd_var global_var1
executable.elf

Reads memory corresponding to global variable
in the <filename.elf> or in a previously
downloaded ELF file.

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

http://www.xilinx.com

130 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

mwr

mwr <address> <values>

[<number of words/half words/
bytes> {w|h|b}]

mwr <Global Variable Name>
<values>

[<number of words/half words/
bytes> {w|h|b}]

mwr 0x400 0x12345678

mwr 0x400 0x1234 1 h

mwr 0x400
{0x12345678
0x87654321} 2

Writes to num memory locations starting at
<address> or <Global Variable Name>.
Defaults to a word (w) write.

profile

profile [-o <GMON Output
filename>]

profile -o
gproff.out

Writes a Profile output file, which can be
interpreted by mb-gprof or
powerpc-eabi-gprof to generate profiling
information.

Specify the profile configuration sampling
frequency in Hz, histogram bin size, and
memory address for collecting profile data.

For details about Profiling using XPS, search on
“Profiling” in the Platform Studio Online Help.

read_uart

read_uart [{start | stop}] [<TCL
Channel ID>]

read_uart start

read_uart stop

read_uart start
$channel_id

The read_uart start command redirects the
output from the mdm UART interface to an
optionally specified TCL channel (TCL
Channel ID).

The read_uart stop command stops
redirection.

A TCL channel represents an open file or a
socket connection. The TCL channel should be
opened prior to using the read_uart
command, using appropriate TCL commands.

rrd

rrd [<reg_num>]

rrd

rrd r1 (or) rrd R1

rrd 1

Reads all registers or reads <reg_num> register

rst

rst [-processor]

rst

rst - processor

Resets the system.

If the -processor option is specified, the
current processor target is reset.

If the processor is not in a “Running” state (use
the state command), then the processor will be
stopped at the processor reset location on reset.

rwr

rwr <register_number> |
register_name> |<Hex_value>

rwr pc 0x400 Registers writes from a <register_number>,
<register_name>, or <hex_value>.

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 131
UG111 July 6, 2011

XMD User Commands

run run Runs program from the program start address.
The command does a “reset”, stops the
processor at the reset location by using
breakpoints and loads the ELF program data
sections to the memory. Loading the ELF
program data sections ensures that the static
variables are properly initialized and “reset” is
done so the system is in a “known good” state.

The “reset” behavior can be configured using
the following commands:

• debugconfig -reset_on_run
{system enable | processor enable
| disable}

• debugconfig -reset_on_data_dow
{system enable | processor enable
| disable}

Refer to “Configure Debug Session” on page
160.

safemode [options]

safemode [-config <mode>

<exception_mask>]

safemode [{on|off}]

safemode -config
<mode>

<exception_mask>

safemode on

safemode off

Enables, disables, configures, and specifies files
to be read in safemode.

Changes the current safemode configuration.

Enables and disables safemode.

safemode [-config
<exception_id>
<exception_addr>]

safemode -config

<exception_id>

Changes exception handler ID and/or
addresses.

safemode[-info] safemode -info Displays the safemode information.

safemode [-elf <elf_file>] safemode -elf
<elf_file>

Specifies the ELF file to be debugged.

srrd

srrd [<register_name>]

srrd

srrd pc

Reads special purpose registers or reads
<reg_name> register.

stackcheck stackcheck Gives the stack usage information of the
program running on the current target. The most
recent ELF file downloaded on the target is
taken into account for stack check.

state

state [<target_id>]

state -system <system_id>

state

state <target_id>

state -system
<system_id>

When no target id is specified, the command
displays the current state of all targets.

When a <target_id> is specified, state of that
target is displayed.

When -system <system_id> is specified the
current state of all the targets in the system is
displayed.

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

http://www.xilinx.com

132 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

stats

stats [<filename>]

stats trace.txt

stats

Displays execution statistics for the ISS target.
The <filename> is the trace output from trace
collection.

stop stop Stops the target. For MicroBlaze, if the program
is stalled at memory or FSL access, it is stopped
forcibly.

stp

stp <number of instructions>

stp

stp 10

Steps through the specified number of
instructions.

targets

targets <target_id>

targets -system <system_id>

targets

targets 0

targets -system 1

Lists information about all current targets or
changes the current target.

terminal

terminal
[-jtag_uart_server]
[<port_number>]

[<baudrate>]

terminal

terminal
-jtag_uart_server
4321

high

JTAG-based hyperterminal to communicate
with mdm UART interface. The UART interface
should be enabled in the mdm.

If the -jtag_uart_server option is specified,
a TCP server is opened at <port_no>. Use any
hyperterminal utility to communicate with
opb_mdm UART interface over TCP sockets.

The <port_number> default value is 4321.

The <baudrate> determines the rate at which
the JTAG UART port reads the data. This option
can have the values low, med, or high. The
default setting is med.

Increasing the baud rate might affect other
debug operations, because XMD is busy polling
for data on the JTAG UART port.

tracestart

tracestart
[<pc_trace_filename>]

[-function_name
<func_trace_filename>]

tracestart
pctrace.txt

tracestart
pctrace.txt
-function_name
fntrace.txt

tracestart

Starts collecting instruction and function trace
information to <filename>.

Trace collection can be stopped and started any
time the program runs.

<filename> is specified on first tracestart only.

<pc_trace_filename> defaults to
isstrace.out.

<func_trace_filename> defaults to
fntrace.out.

This is supported on ISS targets only.

tracestop

tracestop [done]

tracestop

tracestop done

Stops collecting trace information. The done
option signifies the end of tracing.

Supported on ISS targets only.

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 133
UG111 July 6, 2011

XMD User Commands

Special Purpose Register Names

MicroBlaze Special Purpose Register Names

The following special register names are valid for MicroBlaze processors:

For additional information, descriptions, and usage of MicroBlaze special register names,
refer to the “Special Purpose Registers” section of the “MicroBlaze Architecture” chapter in
the MicroBlaze Processor Reference Guide. A link to the document is supplied in Appendix E,
Additional Resources.

Note: When MicroBlaze is debugged in XMDSTUB mode, only PC and MSR registers are accessible.

watch

watch {r | w} <address> [<data>]

watch r 0x400 0x1234

watch r 0x40X 0x12X4

watch r
0b01000000XXXX
0b00010010XXXX0100

watch r 0x40X

Sets a read or write watchpoint at address. If
the value compares to data, stop the processor.

Address and Data can be specified in hex 0x
format or binary 0b format.

Don’t care values are specified using X.

Addresses can be of contiguous range only.

Default value of data is 0xXXXXXXXX. That is, it
matches any value.

For the PowerPC processor, only absolute values
are supported.

xload

xload hw <hw_spec_file>

xload hw system.xml Loads hardware specification XML file. XMD
reads the XML file to gather instruction and data
memory address maps of the processor. This
information is used to verify the program and
data downloaded to processor memory. XPS
generates the hardware specification file during
the Export to SDK process.

Table 10-2: XMD User Commands (Cont’d)

command [options] Example Usage Description

pc msr ear esr zpr

fsr btr pvr0 pvr1 zpr

pvr2 pvr3 pvr4 pvr5 zpr

pvr6 pvr7 pvr8 pvr9

pvr10 pvr11 edr pid

http://www.xilinx.com

134 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

PowerPC 405 Processor Special Purpose Register Names

Table 10-3 lists the special register names that are valid for PowerPC 405 processors:

Note: XMD always uses 64-bit notation to represent the Floating Point Registers (f0-f31). In the
case of a Single Precision floating point unit, the 32-bit Single Precision value is extended to a 64-bit
value.

For additional information about PowerPC 405 processor special register names, refer to
the PowerPC 405 Processor Block Reference Guide. A link to the document is supplied in
Appendix E, Additional Resources.

Table 10-3: Special Register Names for PowerPC 405 Processors

ccr0 f0 f11 f22 iac1 pvr su0r

cr f1 f12 f23 iac2 sgr tbl

ctr f2 f13 f24 iac4 sler tbu

dac1 f3 f14 f25 iccr sprg0 tcr

dac2 f4 f15 f26 icdbdr sprg1 tsr

dbcr0 f5 f16 f27 lr sprg2 usprg0

dbcr1 f6 f17 f28 msr sprg3 xer

dbsr f7 f18 f29 pc sprg4 zpr

dccr f8 f19 f30 pid sprg5 su0r

dcwr f9 f20 pit sprg6 tbl

dear f10 f21 iac1 sprg7 tbu

dvc1 iac2 srr0

dvc2 srr1

esr srr2

evpr srr3

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 135
UG111 July 6, 2011

XMD User Commands

PowerPC 440 Processor Special Purpose Register Names

Table 10-4 lists the special register names that are valid for PowerPC 440 processors:

Note: XMD always uses 64-bit notation to represent the Floating Point Registers (f0-f31). In the
case of a Single Precision floating point unit, the 32-bit Single Precision value is extended to a 64-bit
value.

For additional information about PowerPC 440 processor special register names, refer to
the “Register Set Summary” section of the PowerPC 440 Processor Block Reference Guide.
A link to the document is supplied in Appendix E, Additional Resources.

XMD Reset Sequence
When the rst command is issued, XMD resets the processor or system to bring them back
to known states. Following are the sequences of operation that rst does for each type of
processors.

Table 10-4: PowerPC 440 Processor Special Purpose REgister Names

pc msr cr lr ctr xer

fpscr pvr sprg0 sprg1 sprg2 s prg3

srr0 srr1 tbl tbu icdbdr esr

dear ivpr tsr tcr dec csrr0

csrr1 dbsr dbcr0 iac1 iac2 dac1

dac2 pir rstcfg mmucr pid ccr1

dbdr ccr0 dbcr1 dvc1 dvc2 iac3

iac4 dbcr2 sprg4 sprg5 sprg6 sprg7

decar usprg0 ivor0 ivor1 ivor2 ivor3

ivor4 ivor5 ivor6 ivor7 ivor8 ivor9

ivor10 ivor11 ivor12 ivor13 ivor14 ivor15

inv0 inv1 inv2 inv3 itv0 itv1

itv2 itv3 dnv0 dnv1 dnv2 dnv3

dtv0 dtv1 dtv2 dtv3 dvlim ivlim

dcdbtrl dcdbtrh icdbtrl icdbtrh mcsr mcsrr0

mcsrr1 f0 f1 f2 f3 f4

f5 f6 f7 f8 f9 f10

f11 f12 f13 f14 f15 f16

f17 f18 f19 f20 f21 f22

f23 f24 f25 f26 f27 f28

f29 f30 f31

http://www.xilinx.com

136 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

PowerPC 405 Processors

1. Disable virtual addressing.

2. If reset address (0xFFFFFFFC) is writable and not on OCM, write a branch-to-self
instruction at the reset location. If the reset address is not writable, XMD cannot put the
processor into a known state.

3. Set DBCR0 to 0x81000000.

4. Issue reset signal (either system reset or processor reset) through JTAG Debug Control
Register (DCR). The processor starts running.

5. Stop the processor.

6. Restore the original instruction at reset address.

PowerPC 440 Processors

1. Set DBCR0 to 0x81000000.

2. Set register MMUCR to 0.

3. Set DBCR1 and DBCR2 to 0.

4. Set up TLB so that virtual addresses are the same as real addresses.

5. Synchronize with the shadow TLB.

6. If reset address (0xFFFFFFFC) is writable, write a branch-to-self instruction at the reset
location. If the reset address is not writable, XMD cannot put the processor into a
known state.

7. Issue reset signal (either system reset or processor reset) through JTAG DCR.
The processor starts running.

8. Stop the processor.

9. Restore the original instruction at reset address.

MicroBlaze

1. Set a hardware breakpoint at reset location (0x0).

2. Issue reset signal (system reset or processor reset).
The processor starts running.

3. After processor is stopped at reset location, remove the breakpoint.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 137
UG111 July 6, 2011

XMD User Commands

Recommended XMD Flows
The following are the recommended steps in XMD for debugging a program and
debugging programs in a multi-processor environment, and running a program in a debug
session.

Debugging a Program
To debug a program:

1. Connect to the processor.

2. Download the ELF file.

3. Set the required breakpoints and watchpoints.

4. Start the processor execution using the con command or step through the program
using the stp command.

5. Use the state command to check the processor status.

6. Use stop command to stop the processor if needed.

7. When the processor is stopped, read and write registers and memory.

8. To re-run the program, use the run command.

Debugging Programs in a Multi-Processor Environment
For debugging programs in a multi-processor environment:

1. Connect to processor1.

2. Use the debugconfig command to configure the reset behavior, which depends on
your system architecture. Refer to the “Configure Debug Session” on page 160.

3. Download the ELF file.

4. Set the required breakpoints and watchpoints.

5. Start the processor execution using the con command or step through the program
using the stp command.

6. Connect to processor2.

7. Use the debugconfig command to configure the reset behavior, which depends on
your system architecture. Refer to the “Configure Debug Session” on page 160.

8. Download the ELF file.

9. Set the required Breakpoints and Watchpoints.

10. Start the processor execution using the con command or step through the program
using the stp command.

11. Use the targets command to list the targets in the system. Each target is associated
with a <target id>; an asterisk (*) marks the active target.

12. Use targets <target id> to switch between targets.

13. Use the state command to check the processor status.

14. Use the stop command to stop the processor.

15. When the processor is stopped, read and write the registers and memory.

16. To re-run the program use the run command.

http://www.xilinx.com

138 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Running a Program in a Debug Session
1. Connect to the processor.

2. Download the ELF file.

3. Set the Breakpoint at the <exit> function.

4. Start the processor execution using the con command.

5. Use the state command to check the processor status.

6. Use the stop command to stop the processor.

7. When the processor is stopped, read and write the registers and memory.

8. To re-run the program use the run command.

Using Safemode for Automatic Exception Trapping
XMD allows you to trap exceptions in your program when errors occur. Such errors
include the execution of illegal instructions and bus errors. Use the following steps:

1. Download the program.

2. Run the safemode on command.

3. Start the program with the con command.

The program stops when an exception occurs. This feature is more useful when working
with the GUI debugger (either Insight GDB or SDK).

• When using SDK, check the Enable Safemode checkbox box in the Initialization tab
before running the program.

• When using GDB, download the program and run the safemode on command in
XMD console before running the program in GDB.

When the exception occurs the program stops and the GUI shows the line of code that
triggered the exception.

Processor Default Exception Settings
Table 10-5 and Table 10-6, page 139 show the factory default settings for exception
trapping settings by processor types:

Table 10-5: PowerPC Processor Exception Settings

Exception_id Trap Exception_Name

0 No External critical-interrupt exception.

1 Yes External bus error exception.

2 Yes Data storage exception.

3 Yes Instruction storage exception.

4 No External noncritical-interrupt exception.

5 No Unaligned data access exception.

6 Yes Illegal op-code exception.

7 Yes FPU non-available exception.

8 No System call instruction.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 139
UG111 July 6, 2011

XMD User Commands

9 Yes APU non-available exception.

10 No Time out exception on programmable interval timer.

11 No Time out exception on fixed interval timer.

12 No Time out exception on watchdog timer.

13 No Data TLB miss exception.

14 No Instruction TLB miss exception.

15 No Debug event exception.

16 Yes Assertion failure.

17 Yes Program exit.

Table 10-6: MicroBlaze Exception Settings

Exception_id Trap Exception_Name

0 Yes Fast Simplex Link exception.

1 No Unaligned data access exception.

2 Yes Illegal op-code exception.

3 Yes Instruction bus error exception.

4 Yes Data bus error exception.

5 Yes Divide by zero exception.

6 Yes Floating point unit exception.

7 Yes Privileged instruction exception.

8 Yes Data storage exception.

9 Yes Instruction storage exception.

10 Yes Data TLB miss exception.

11 Yes Instruction TLB miss exception.

12 Yes Assertion failure.

13 Yes Program exit.

Table 10-5: PowerPC Processor Exception Settings (Cont’d)

Exception_id Trap Exception_Name

http://www.xilinx.com

140 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Overwriting Exception Settings
There are two methods to overwrite the default exception settings:

1. Use the command xmdconfig [-mb_trap_mask|-ppc_trap_mask] [MASK]

This sets the mask for all targets in the current XMD session. To define your own
default setting for all XMD sessions, you can write that command in the .xmdrc file
which is located at your home directory.

2. Use the command safemode -config mode [MASK]

This sets the mask for current target only. While debugging a program, this is a
convenient way to change the trap settings.

Note: The current target is destroyed when you disconnect from the target.

Viewing Safemode Settings
You can view the current safemode setting with the safemode -info command.

In safe mode, XMD sets the breakpoint at the exception handlers that you want to trap.

• For MicroBlaze processors, all exceptions take PC to 0x20.

• For PowerPC processors, XMD detects the exception handler locations from the ELF
file.

The detection works on most Standalone or Xilkernel projects If another software platform
is used, the detection might fail. In such cases, set the exception handler address with the
safemode -config <exception_id> <exception_handler_addr> command:

Connect Command Options
XMD can debug programs on different targets (processor or peripheral.)

• When communicating with a target, XMD connects to the target and a unique target
ID is assigned to each target after connection.

• When connecting to a processor, the gdbserver starts, enabling communication with
GDB or SDK.

Usage

connect {mb | ppc | mdm} <Connection_Type> [Options]

Table 10-7 lists the connect command options.

The following sections describe connect options for different targets.

Table 10-7: Connect Command Options

Option Description

ppc Connects to PowerPC processor

mb Connects to MicroBlaze processor

mdm Connects to MDM peripheral

<Connection_Type> Connection method, target dependent

[Options] Connection options

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 141
UG111 July 6, 2011

Connect Command Options

PowerPC Processor Targets
Xilinx Virtex® series devices can contain one or two PowerPC (405 and 440) processor
cores. XMD can connect to these PowerPC processor targets over a JTAG connection on the
board. XMD also communicates over a TCP socket interface to an IBM PowerPC 405
Processor Instruction Set Simulator (ISS).

Use the connect ppc command to connect to the PowerPC processor target and start a
remote GDB server. When XMD is connected to the PowerPC processor target,
powerpc-eabi-gdb or SDK can connect to the processor target through XMD, and
debugging can proceed.

Note: XMD does not support Virtual Addressing. Debugging is only supported for Programs running
in Real Mode.

PowerPC Processor Hardware Connection

When connecting to a PowerPC processor hardware target, XMD detects the JTAG chain
automatically, and the PowerPC processor type and processors in the system, and connects
to the first processor. You can override or provide information using the following options.

Usage

connect ppc hw [-cable <JTAG Cable options>] {[-configdevice <JTAG chain
options>]} [-debugdevice <PowerPC options>]

JTAG Cable Options

The options listed in Table 10-8 let you specify the Xilinx JTAG cable used to connect to a
target.

Table 10-8: JTAG Cable Options

Option Description

esn <USB cable ESN> Specify the Electronic Serial Number (ESN) of the USB cable connected to the host
machine. Use this option to uniquely identify a USB cable when multiple cables are
connected to the host machine.

To read the ESN of the USB cable, connect the cable and use the xrcableesn command.

fname
<filename.svf>

Filename for creating the Serial Vector Format (SVF) file.

frequency
<cable speed in Hz>

Specify the cable clock speed in Hertz.

Valid Cables speeds are:

• For Parallel 4: 5000000 (default), 2500000, 200000
• For Platform USB: 24000000, 12000000, 6000000 (default), 3000000, 1500000,

750000

port <port name> Specify the port. Valid arguments for port are: lpt1, lpt2,usb21, usb22, ..

type <cable_type> Specify the cable type. Valid cable types are:

• xilinx_parallel3

• xilinx_parallel4

• xilinx_platformusb

• xilinx_svffile

In the case of xilinx_svffile, the JTAG commands are written into a file specified
by the fname option.

http://www.xilinx.com

142 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

JTAG Chain Options

Table 10-9 lists the options that let you specify device information of non-Xilinx devices in
the JTAG chain. Refer to “Example Showing Special JTAG Chain Setup for Non-Xilinx
Devices” on page 147.

PowerPC Processor Options

The following options allow you to specify the FPGA device to debug and the processor
number in the device. You can also map special PowerPC processor features such as
ISOCM, Caches, TLB, and DCR registers to unused memory addresses, and then access
them from the debugger as memory addresses. This is helpful for reading and writing to
these registers and memory from GDB or XMD.

Table 10-10 lists the PowerPC processor options

Note: These options do not create any real memory mapping in hardware.

Table 10-9: JTAG Chain Options

Option Description

devicenr <device position> The position of the device in the JTAG chain. The device position number starts
from 1.

irlength <length of the JTAG
Instruction Register>

The length of the IR register of the device. This information can be found in the
device BSDL file.

idcode <device idcode> JTAG ID code of the device. If the PowerPC processor JTAG pins are connected
directly to FPGA user IO pins, the irlength should be 4.

partname <device name> The name of the device.

Table 10-10: PowerPC Processor Options

Option Description

cpunr <CPU Number> PowerPC processor number to be debugged in a Virtex device with multiple
PowerPC processors. It starts from 1.

dcachestartadr
<D-Cache start address>

Start address for reading or writing the data cache contents.

dcrstartadr
<DCR start address>

Start address for reading and writing the Device Control Registers (DCR).
Using this option, the entire DCR address space
(210 addresses) can be mapped to addresses starting from the <DCR start
address> for debugging from XMD and GDB.

devicenr
<PowerPC device position>

Position in the JTAG chain of the Virtex device containing the PowerPC
processor. The device position number starts from 1.

dtagstartadr
<D-Cache start address>

Start address for reading or writing the data cache tags.

fputype {sp|dp} XMD does not automatically look for a Floating Point Unit (FPU) in the
PowerPC processor system. To force XMD to detect a FPU, specify this option
with the FPU type in the system. Options:

sp = Single Precision

dp = Double Precision

icachestartadr
<I-Cache start address>

Start address for reading or writing the instruction cache contents.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 143
UG111 July 6, 2011

Connect Command Options

PowerPC Processor Target Requirements

There are two possible methods for XMD to connect to the PowerPC processors over a
JTAG connection. The requirements for each of these methods are described in the
following subsections.

Debug connection using the JTAG port of a Virtex FPGA

If the JTAG ports of the PowerPC processors are connected to the JTAG port of the FPGA
internally using the JTAGPPC primitive, then XMD can connect to any of the PowerPC
processors inside the FPGA, as shown in the following figure. Refer to the PowerPC 405
Processor Block Reference Guide and the PowerPC 440 Processor Block Reference Guide for more
information. A link to the document is supplied in Appendix E, Additional Resources.

Debug connection using I/O pins connected to the JTAG port of the PowerPC
Processor

If the JTAG ports of the PowerPC processors are brought out of the FPGA using I/O pins,
then XMD can directly connect to the PowerPC processor for debugging. In this mode
XMD can only communicate with one PowerPC processor. If there are two PowerPC
processors in your system, you cannot chain them, and the JTAG ports to each processor
should be brought out to use FPGA I/O pins. Refer to the PowerPC 405 Processor Block
Reference Guide and the PowerPC 440 Processor Block Reference Guide for more information
about this debug setup. A link to the document is supplied in Appendix E, Additional
Resources.

Figure 10-2, page 144 illustrates the PowerPC processor target.

isocmdcrstartadr
<ISOCM (in Bytes) DCR
address>

DCR address corresponding to the ISOCM interface specified using the
C_ISOCM_DCR_BASEADDR parameter on PowerPC 405 processors.

isocmstartadr
<ISOCM start address>

Start address for the Instruction Side On-Chip Memory (ISOCM). Only for
PowerPC 405 processor.

isocmsize
<ISOCM size in Bytes>

Size of the ISBRAM memory connected to the ISOCM interface. Only for
PowerPC 405 processor.

itagstartadr
<I-Cache start address>

Start address for reading or writing the instruction cache tags.

romemstartadr
<ROM start address>

Start address of Read-Only Memory. This can be used to specify flash memory
range. XMD sets hardware breakpoints instead of software breakpoints.

romemsize
<ROM size in bytes>

Size of Read-Only Memory (ROM).

tlbstartadr
<TLB start address>

Start address for reading and writing the Translation Look-aside Buffer (TLB).

Table 10-10: PowerPC Processor Options (Cont’d)

Option Description

http://www.xilinx.com

144 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

X-Ref Target - Figure 10-2

Example Debug Sessions

Example Using a PowerPC 405 Processor Target

The following example demonstrates a simple debug session with a PowerPC 405
processor target. Basic XMD-based commands are used after connecting to the PowerPC
processor target using the connect ppc hw command.

At the end of the session, powerpc-eabi-gdb is connected to XMD using the GDB remote
target. Refer to Chapter 11, “GNU Debugger,” for more information about connecting GDB
to XMD.

XMD% connect ppc hw
JTAG chain configuration
--
Device ID Code IR Length Part Name
 1 0a001093 8 System_ACE
 2 f5059093 16 XCF32P
 3 01e58093 10 XC4VFX12
 4 49608093 8 xc95144xl

PowerPC405 Processor Configuration

Version.............................0x20011430
User ID.............................0x00000000
No of PC Breakpoints................4
No of Read Addr/Data Watchpoints....1
No of Write Addr/Data Watchpoints...1
User Defined Address Map to access Special PowerPC Features using XMD:
 I-Cache (Data)........0x70000000 - 0x70003fff
 I-Cache (TAG).........0x70004000 - 0x70007fff
 D-Cache (Data)........0x78000000 - 0x78003fff
 D-Cache (TAG).........0x78004000 - 0x78007fff
 DCR...................0x78004000 - 0x78004fff

Figure 10-2: PowerPC Processor Target

UG111_13_02_072407

XMD

JTAG

FPGA

PowerPC JTAG signals

JTAG PPC

PowerPC PowerPC

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 145
UG111 July 6, 2011

Connect Command Options

 TLB...................0x70004000 - 0x70007fff
Connected to “ppc” target. id = 0
Starting GDB server for “ppc” target (id = 0) at TCP port no 1234
XMD% rrd
 r0: ef0009f8 r8: 51c6832a r16: 00000804 r24: 32a08800
 r1: 00000003 r9: a2c94315 r17: 00000408 r25: 31504400
 r2: fe008380 r10: 00000003 r18: f7c7dfcd r26: 82020922
 r3: fd004340 r11: 00000003 r19: fbcbefce r27: 41010611
 r4: 0007a120 r12: 51c6832a r20: 0040080d r28: fe0006f0
 r5: 000b5210 r13: a2c94315 r21: 0080040e r29: fd0009f0
 r6: 51c6832a r14: 45401007 r22: c1200004 r30: 00000003
 r7: a2c94315 r15: 8a80200b r23: c2100008 r31: 00000003
 pc: ffff0700 msr: 00000000
XMD% srrd
 pc: ffff0700 msr: 00000000 cr: 00000000 lr: ef0009f8
 ctr: ffffffff xer: c000007f pvr: 20010820 sprg0: ffffe204
 sprg1: ffffe204 sprg2: ffffe204 sprg3: ffffe204 srr0: ffff0700
 srr1: 00000000 tbl: a06ea671 tbu: 00000010 icdbdr: 55000000
 esr: 88000000 dear: 00000000 evpr: ffff0000 tsr: fc000000
 tcr: 00000000 pit: 00000000 srr2: 00000000 srr3: 00000000
 dbsr: 00000300 dbcr0: 81000000 iac1: ffffe204 iac2: ffffe204
 dac1: ffffe204 dac2: ffffe204 dccr: 00000000 iccr: 00000000
 zpr: 00000000 pid: 00000000 sgr: ffffffff dcwr: 00000000
 ccr0: 00700000 dbcr1: 00000000 dvc1: ffffe204 dvc2: ffffe204
 iac3: ffffe204 iac4: ffffe204 sler: 00000000 sprg4: ffffe204
 sprg5: ffffe204 sprg6: ffffe204 sprg7: ffffe204 su0r: 00000000
usprg0: ffffe204
XMD% rst
Sending System Reset
Target reset successfully
XMD% rwr 0 0xAAAAAAAA
XMD% rwr 1 0x0
XMD% rwr 2 0x0
XMD% rrd
 r0: aaaaaaaa r8: 51c6832a r16: 00000804 r24: 32a08800
 r1: 00000000 r9: a2c94315 r17: 00000408 r25: 31504400
 r2: 00000000 r10: 00000003 r18: f7c7dfcd r26: 82020922
 r3: fd004340 r11: 00000003 r19: fbcbefce r27: 41010611
 r4: 0007a120 r12: 51c6832a r20: 0040080d r28: fe0006f0
 r5: 000b5210 r13: a2c94315 r21: 0080040e r29: fd0009f0
 r6: 51c6832a r14: 45401007 r22: c1200004 r30: 00000003
 r7: a2c94315 r15: 8a80200b r23: c2100008 r31: 00000003
 pc: fffffffc msr: 00000000
XMD% mrd 0xFFFFFFFC
FFFFFFFC: 4BFFFC74
XMD% stp
fffffc70:
XMD% stp
fffffc74:
XMD% mrd 0xFFFFC000 5
FFFFC000: 00000000
FFFFC004: 00000000
FFFFC008: 00000000
FFFFC00C: 00000000
FFFFC010: 00000000
XMD% mwr 0xFFFFC004 0xabcd1234 2
XMD% mwr 0xFFFFC010 0xa5a50000
XMD% mrd 0xFFFFC000 5
FFFFC000: 00000000

http://www.xilinx.com

146 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

FFFFC004: ABCD1234
FFFFC008: ABCD1234
FFFFC00C: 00000000
FFFFC010: A5A50000
XMD%
XMD%

Example Connecting to PowerPC440 Processor Target

To connect to the PowerPC 440 processor target use the connect ppc hw command.

XMD automatically detects the processor type and connects to the PowerPC 440 processor.

Use powerpc-eabi-gdb to debug software program remotely. Refer to Chapter 11, “GNU
Debugger,” for more information about connecting the GNU Debugger to XMD.

XMD% connect ppc hw
JTAG chain configuration
--
Device ID Code IR Length Part Name
 1 f5059093 16 XCF32P
 2 f5059093 16 XCF32P
 3 59608093 8 xc95144xl
 4 0a001093 8 System_ACE
 5 032c6093 10 XC5VFX70T_U

PowerPC440 Processor Configuration

Version.............................0x7ff21910
User ID.............................0x00f00000
No of PC Breakpoints................4
No of Read Addr/Data Watchpoints....1
No of Write Addr/Data Watchpoints...1
User Defined Address Map to access Special PowerPC Features using XMD:
 I-Cache (Data)........0x70000000 - 0x70007fff
 I-Cache (TAG).........0x70008000 - 0x7000ffff
 D-Cache (Data)........0x78000000 - 0x78007fff
 D-Cache (TAG).........0x78008000 - 0x7800ffff
 DCR...................0x78020000 - 0x78020fff
 TLB...................0x70020000 - 0x70023fff

Connected to "ppc" target. id = 0
Starting GDB server for "ppc" target (id = 0) at TCP port no 1234
XMD% targets
--
System(0) - Hardware System on FPGA(Device 5) Targets:
--
 Target(0) - PowerPC440(1) Hardware Debug Target*
XMD%

Example with a Program Running in ISOCM Memory and Accessing DCR
Registers

This example demonstrates a simple debug session with a program running on ISOCM
memory of the PowerPC 405 processor target. The ISOCM address parameters can be
specified during the connect command. If the XMP file is loaded, XMD infers the ISOCM
address parameters of the system from the MHS file.

Note: In a Virtex-4 device, ISOCM memory is readable. This enables better debugging of a program
running from ISOCM memory.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 147
UG111 July 6, 2011

Connect Command Options

XMD% connect ppc hw -debugdevice \
isocmstartadr 0xFFFFE000 isocmsize 8192 isocmdcrstartadr 0x15 \
dcrstartadr 0xab000000
JTAG chain configuration
--
Device ID Code IR Length Part Name
 1 0a001093 8 System_ACE
 2 f5059093 16 XCF32P
 3 01e58093 10 XC4VFX12
 4 49608093 8 xc95144xl

PowerPC405 Processor Configuration

Version.............................0x20011430
User ID.............................0x00000000
No of PC Breakpoints................4
No of Read Addr/Data Watchpoints....1
No of Write Addr/Data Watchpoints...1
ISOCM...............................0xffffe000 - 0xffffffff
User Defined Address Map to access Special PowerPC Features using XMD:
 I-Cache (Data)........0x70000000 - 0x70003fff
 I-Cache (TAG).........0x70004000 - 0x70007fff
 D-Cache (Data)........0x78000000 - 0x78003fff
 D-Cache (TAG).........0x78004000 - 0x78007fff
 DCR...................0xab000000 - 0xab000fff
 TLB...................0x70004000 - 0x70007fff
XMD% stp
ffffe21c:
XMD% stp
ffffe220:
XMD% bps 0xFFFFE218
Setting breakpoint at 0xffffe218
XMD% con
Processor started. Type “stop” to stop processor
RUNNING>
8
Processor stopped at PC: 0xffffe218
XMD%
XMD% mrd 0xab000060 8
AB000060: 00000000
AB000064: 00000000
AB000068: FF000000 <--- DCR register : ISARC
AB00006c: 81000000 <--- DCR register : ISCNTL
AB000070: 00000000
AB000074: 00000000
AB000078: FE000000 <--- DCR register : DSARC
AB00007c: 81000000 <--- DCR register : DSCNTL
XMD%

Example Showing Special JTAG Chain Setup for Non-Xilinx Devices

This example demonstrates the use of the -configdevice option to specify the JTAG
chain on the board in the event that XMD is unable to detect the JTAG chain automatically.

Automatic detection in XMD can fail for non-Xilinx devices on the board for which the
JTAG IRLengths are not known. The JTAG (Boundary Scan) IRLength information is
usually available in Boundary-Scan Description Language (BSDL) files provided by device
vendors. For these unknown devices, IRLength is the only critical information; the other
fields such as partname and idcode are optional.

http://www.xilinx.com

148 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

The options used in the following example are:

• Xilinx Parallel cable (III or IV) connection is done over the LPT1 parallel port.

• The two devices in the JTAG chain are explicitly specified.

• The IRLength, partname, and idcode of the PROM are specified.

• The debugdevice option explicitly specifies to XMD that the FPGA device of
interest is the second device in the JTAG chain.
In Virtex devices it is also explicitly specified that the connection is for the first
PowerPC processor, if there is more than one.

XMD% connect ppc hw -cable type xilinx_parallel port LPT1 -configdevice
devicenr 1 partname PROM_XC18V04 irlength 8 idcode 0x05026093
-configdevice devicenr 2 partname XC2VP4 irlength 10 idcode 0x0123e093
-debugdevice devicenr 2 cpunr 1

Adding Non-Xilinx Devices

You can add a non-Xilinx device either on the command line using the connect command
using the JTAF Chain options or by specifying it in the GUI. See Connect Command
Options, page 140 and JTAG Chain Options, page 142 and for more information.

PowerPC Processor Simulator Target

XMD can connect to one or more PowerPC 405 processor ISS targets through socket
connection. Use the connect ppc sim command to start the PowerPC 405 processor ISS
on a local host, connect to that host, and start a remote GDB server.

You can also use connect ppc sim to connect to a PowerPC 405 processor ISS running
on localhost or other machine.

When XMD is connected to the PowerPC 405 processor target, powerpc-eabi-gdb can
connect to the target through XMD and debugging can proceed.

Note: XMD does not support PowerPC 440 processor ISS targets.

Running PowerPC Processor ISS

XMD starts the ISS with a default configuration.

• The ISS executable file is located in the ${XILINX_EDK}/third_party/bin/
<platform>/ directory.

• The PowerPC 405 processor configuration file used is ${XILINX_EDK}/third_party/
data/iss405.icf.

You can run ISS with different configuration options and XMD can connect to the ISS
target. Refer to the IBM Instruction Set Simulator User Guide for more details. A link to the
document is supplied in Appendix E, Additional Resources.

The following are the default configurations for ISS.

• Two local memory banks
• Connect to XMD Debugger
• Debugger port at 6470...6490
• Data cache size of 16 K
• Instruction cache size of 16 K
• Non-deterministic multiply cycles
• Processor clock period and timer clock period of 5 ns (200 MHz).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 149
UG111 July 6, 2011

Connect Command Options

Table 10-11 lists the Local Memory Banks.

Figure 10-3 illustrates a PowerPC processor ISS target.
X-Ref Target - Figure 10-3

Usage:

connect ppc sim [-icf <Configuration File>] [-ipcport IP:<port>]

Table 10-11: Local Memory Banks

Name Start Address Length Speed

Mem0 0x0 0x80000 0

Mem1 0xfff80000 0x80000 0

Figure 10-3: PowerPC Processor ISS Target

Option Description

-icf
<configuration file>

Uses the given ISS configuration file instead of the default
configuration file. You can customize the PowerPC ISS
features such as cache size, memory address map, and
memory latency.

-ipcport: IP:<port> Specifies the IP address and debug port of a PowerPC
processor ISS that you have started. XMD does not spawn a
ISS, you must start the ISS.

X10885

XMD

PowerPC
Cycle_Accurate

ISS
ISS405.icf

TCP/IP Socket
Connection

http://www.xilinx.com

150 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Example Debug Session for PowerPC Processor ISS Target

XMD% connect ppc sim
Instruction Set Simulator (ISS)
PPC405,
Version 1.9 (1.76)
(c) 1998, 2005 IBM Corporation
Waiting to connect to controlling interface (port=6470,
protocol=tcp)....
[XMD] Connected to PowerPC Sim
Controlling interface connected....
Connected to PowerPC target. id = 0
Starting GDB server for target (id = 0) at TCP port no 1234
XMD% dow dhry2.elf
XMD% bps 0xffff09d0
XMD% con
Processor started. Type “stop” to stop processor

RUNNING>

DCR, TLB, and Cache Address Space and Access

The XMD sets up address space for you to access TLB entries and Cache entries. These
address spaces can be specified with tlbstartadr, icachestartadr, and
dcachestartadr as options to the connection command. If the TLB and Cache address
space is not specified, XMD uses a default unused address space for this purpose. When
connected, these address spaces are displayed in the XMD console. For example:

I-Cache (Data)........0x70000000 - 0x70007fff
I-Cache (TAG).........0x70008000 - 0x7000ffff
D-Cache (Data)........0x78000000 - 0x78007fff
D-Cache (TAG).........0x78008000 - 0x7800ffff
DCR...................0x78020000 - 0x78020fff
TLB...................0x70020000 - 0x70023fff

TLB Access

Each TLB entry is represented by a 4-word entry.Table 10-12 shows the 4-word entries
available for PPC405 and PPC440.

The total 64 TLB entries can be read from (or written to) the 256 words starting from the
TLB starting address.

Table 10-12: PPC405 and PPC440 TLB Entries

Word PPC405 PPC440

1 PID PID

2 TLBHI TLB Word0 (excluding PID)

3 TLBLO TLB Word1

4 Padded with 0’s TLB Word2

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 151
UG111 July 6, 2011

Connect Command Options

Cache Word Access

The cache entries are mapped to the address space in a way-by-way manner. Using the
provided example, if the cache line size is 32 byte and each way has 16 sets, then
0x70000000~0x700001FF is mapped to I-Cache way 0 and 0x70000200~0x700003FF
is mapped to I-Cache way 1.

Cache Tag and Parity Access

The cache tag address space contains the tag, status, and parity information of the cache
entries for the corresponding cache address space. In the provided example, the tag
information for I-Cache entry at 0x70000100 is available at 0x70008100 and the tag
information for the D-Cache entry at 0x78000600 is available at 0x78008600.

The PowerPC 405 processor uses one word to store the tag and status of one cache line and
one word to store parities.

The PowerPC 440 processor also uses two words (first word is tag low and second word is
tag high) to store the tag of one cache line. For more information on how to translate the tag
bits, refer to the icread and dcread instructions in the respective PowerPC405 User
Manual or PowerPC440 User Manual. A link to these documents can be found in
Appendix E, Additional Resources. Because the cacheline size is 32 bytes, the tag values
repeat within the same cacheline.

DCR Address Spaces

Although the DCR bus is not in the same address domain as the PLB bus, you can access
the DCR bus in XMD through the PLB address map. Each DCR address corresponds to one
DCR register, which has 4 bytes. When it is mapped to the PLB address, it needs 4 bytes of
address range. In the example shown in Example Debug Session for PowerPC Processor
ISS Target, page 150, the address mappings are:

Advanced PowerPC Processor Debugging Tips

Support for Running Programs from ISOCM and ICACHE

There are restrictions on debugging programs from PowerPC 405 processor ISOCM
memory and instruction caches (ICACHEs). One such restriction is that you cannot use
software breakpoints. In such cases, XMD can set hardware breakpoints automatically if
the address ranges for the ISOCM or ICACHEs are provided as options to the connect
command in XMD. In this case of ICACHE, this is only necessary if you try to run
programs completely from the ICACHE by locking its contents in ICACHE.

For more information, refer to the “Xilinx Platform Studio Help”.

The special features of the PowerPC processor can be accessed from XMD by specifying
the appropriate options to the connect command in the XMD console.

DCR Address Mapped Address

0x0 0x78020000

0x1 0x78020004

0x2 0x78020008

… ...

0x10 0x78020040

http://www.xilinx.com

152 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Debugging Setup for Third-Party Debug Tools

To use third-party debug tools such as Wind River SingleStep and Green Hills Multi, Xilinx
recommends that you bring the JTAG signals of the PowerPC processor (TCK, TMS, TDI,
and TDO,) out of the FPGA as User IO to appropriate debug connectors on the hardware
board.

You must also bring the DBGC405DEBUGHALT and C405JTGTDOEN signals out of the FPGA
as User IO.

In the case of multiple PowerPC processors, Xilinx recommends that you chain the
PowerPC processor JTAG signals inside the FPGA. For more information about connecting
the PowerPC processor JTAG port to FPGA User IO, refer to the JTAG port sections of the
PowerPC 405 Processor Block Reference Guide, and the PowerPC 440 Processor Block Reference
Guide. A link to the document is supplied in Appendix E, Additional Resources.

Note: DO NOT use the JTAGPowerPC module while bringing the PowerPC processor JTAG signals
out as User IO.

MicroBlaze Processor Target
XMD can connect through JTAG to one or more MicroBlaze processors using the MDM
peripheral. XMD can communicate with a ROM monitor such as XMDStub through a
JTAG or serial interface. You can also debug programs using built-in, cycle-accurate
MicroBlaze ISS. The following sections describe the options for these targets.

MicroBlaze MDM Hardware Target

Use the command connect mb mdm to connect to the MDM target and start the remote
GDB server. The MDM target supports non-intrusive debugging using hardware
breakpoints and hardware single-step, without the need for a ROM monitor.

Figure 10-3, page 153 illustrates the MicroBlaze MDM target.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 153
UG111 July 6, 2011

Connect Command Options

When no option is specified to the connect mb mdm, XMD detects the JTAG cable
automatically and chains the FPGA device containing the MicroBlaze-MDM system.

If XMD is unable to detect the JTAG chain or the FPGA device automatically, you can
explicitly specify them using the following options:

Usage:

connect mb hw [-cable <JTAG Cable options>] {[-configdevice <JTAG
chain options>]} [-debugdevice <MicroBlaze options>]

JTAG Cable Options and JTAG Chain Options

For JTAG cable and chain option descriptions, refer to Table 10-8, JTAG Cable Options
on page 141, and Table 10-9, JTAG Chain Options on page 142, respectively.

Figure 10-3: MicroBlaze MDM Target

X10843

JTAG

XMD

MicroBlaze Debug SignalsOPB/PLBv46 Bus

Multiple MicroBlaze
Processors

MicroBlaze

MDMUART

MicroBlaze

http://www.xilinx.com

154 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

MicroBlaze Options

Table 10-13 describes the MicroBlaze options.

MicroBlaze MDM Target Requirements

1. To use the hardware debug features on MicroBlaze, such as hardware breakpoints and
hardware debug control functions like stopping and stepping, the hardware debug
port must be connected to the MDM.

2. To use the UART functionality in the MDM target, you must set the C_USE_UART
parameter while instantiating the MDM core in a system.

Note: Unlike the MicroBlaze stub target, programs should be compiled in executable mode and
NOT in XMDSTUB mode while using the MDM target. Consequently, you do not need to specify an
XMDSTUB_PERIPHERAL for compiling the XMDStub.

Table 10-13: MicroBlaze Options

Option Description

cpunr <CPU Number> Specific MicroBlaze processor number to be
debugged in an FPGA containing multiple
MicroBlaze processors connected to MDM. The
processor number starts from 1.

devicenr
<MicroBlaze device position>

Position in the JTAG chain of the FPGA device
containing the MicroBlaze processor. The device
position number starts from 1.

romemstartadr
<ROM start address>

Start address of Read-Only Memory.

Use this to specify flash memory range. XMD sets
hardware breakpoints instead of software
breakpoints.

romemsize
<ROM Size in Bytes>

Size of Read-Only Memory.

tlbstartadr
<TLB start address>

Start address for reading and writing the
Translation Look-aside Buffer (TLB).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 155
UG111 July 6, 2011

Connect Command Options

Example Debug Sessions

Example Using a MicroBlaze MDM Target

This example demonstrates a simple debug session with a MicroBlaze MDM target. Basic
XMD-based commands are used after connecting to the MDM target using the connect
mb mdm command. At the end of the session, mb-gdb connects to XMD using the GDB
remote target. Refer to Chapter 11, “GNU Debugger,” for more information about
connecting GDB to XMD.

XMD% connect mb mdm
JTAG chain configuration
--
Device ID Code IR Length Part Name
 1 0a001093 8 System_ACE
 2 f5059093 16 XCF32P
 3 01e58093 10 XC4VFX12
 4 49608093 8 xc95144xl

MicroBlaze Processor Configuration:

Version............................7.00.a
Optimisation.......................Performance
Interconnect.......................PLBv46
No of PC Breakpoints...............3
No of Read Addr/Data Watchpoints...1
No of Write Addr/Data Watchpoints..1
Exceptions Support................off
FPU Support.......................off
Hard Divider Support...............off
Hard Multiplier Support............on - (Mul32)
Barrel Shifter Support.............off
MSR clr/set Instruction Support....on
Compare Instruction Support........on
PVR Supported......................on
PVR Configuration Type.............Base

Connected to MDM UART Target
Connected to “mb” target. id = 0
Starting GDB server for “mb” target (id = 0) at TCP port no 1234
XMD% rrd
 r0: 00000000 r8: 00000000 r16: 00000000 r24: 00000000
 r1: 00000510 r9: 00000000 r17: 00000000 r25: 00000000
 r2: 00000140 r10: 00000000 r18: 00000000 r26: 00000000
 r3: a5a5a5a5 r11: 00000000 r19: 00000000 r27: 00000000
 r4: 00000000 r12: 00000000 r20: 00000000 r28: 00000000
 r5: 00000000 r13: 00000140 r21: 00000000 r29: 00000000
 r6: 00000000 r14: 00000000 r22: 00000000 r30: 00000000
 r7: 00000000 r15: 00000064 r23: 00000000 r31: 00000000
 pc: 00000070 msr: 00000004
<--- Launching GDB from XMD% console --->
XMD% start mb-gdb microblaze_0/code/executable.elf
XMD%
<--- From GDB, a connection is made to XMD and debugging is done from
the GDB GUI --->
XMD: Accepted a new GDB connection from 127.0.0.1 on port 3791
XMD%
XMD: GDB Closed connection
XMD% stp

http://www.xilinx.com

156 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

BREAKPOINT at
 114: F1440003 sbi r10, r4, 3
XMD% dis 0x114 10
 114: F1440003 sbi r10, r4, 3
 118: E0E30004 lbui r7, r3, 4
 11C: E1030005 lbui r8, r3, 5
 120: F0E40004 sbi r7, r4, 4
 124: F1040005 sbi r8, r4, 5
 128: B800FFCC bri -52
 12C: B6110000 rtsd r17, 0
 130: 80000000 Or r0, r0, r0
 134: B62E0000 rtid r14, 0
 138: 80000000 Or r0, r0, r0
XMD% dow microblaze_0/code/executable.elf
XMD% con
Info:Processor started. Type “stop” to stop processor
RUNNING> stop
XMD% Info:User Interrupt, Processor Stopped at 0x0000010c
XMD% con
Info:Processor started. Type “stop” to stop processor
RUNNING> rrd pc
pc : 0x000000f4 <--- With the MDM, the current PC of MicroBlaze can be
 read while the program is running
RUNNING> rrd pc
pc : 0x00000110 <--- Note: the PC is constantly changing, as the

 program is running
RUNNING> stop
Info:Processor started. Type “stop” to stop processor
XMD% rrd
 r0: 00000000 r8: 00000065 r16: 00000000 r24: 00000000
 r1: 00000548 r9: 0000006c r17: 00000000 r25: 00000000
 r2: 00000190 r10: 0000006c r18: 00000000 r26: 00000000
 r3: 0000014c r11: 00000000 r19: 00000000 r27: 00000000
 r4: 00000500 r12: 00000000 r20: 00000000 r28: 00000000
 r5: 24242424 r13: 00000190 r21: 00000000 r29: 00000000
 r6: 0000c204 r14: 00000000 r22: 00000000 r30: 00000000
 r7: 00000068 r15: 0000005c r23: 00000000 r31: 00000000
 pc: 0000010c msr: 00000000
XMD% bps 0x100
Setting breakpoint at 0x00000100
XMD% bps 0x11c hw
Setting breakpoint at 0x0000011c
XMD% bpl
SW BP: addr = 0x00000100, instr = 0xe1230002 <-- Software Breakpoint
HW BP: BP_ID 0 : addr = 0x0000011c <--- Hardware Breakpoint
XMD% con
Info:Processor started. Type “stop” to stop processor
RUNNING>
Processor stopped at PC: 0x00000100
Info:Processor stopped. Type “start” to start processor
XMD% con
Info:Processor started. Type “stop” to stop processor
RUNNING>
Info:Processor started. Type “stop” to stop processor

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 157
UG111 July 6, 2011

Connect Command Options

MicroBlaze Stub Hardware Target

To connect to a MicroBlaze target, use the XMDStub (a ROM monitor running on the target) and
start a GDB server for the target. XMD connects to XMDStub through a JTAG or serial interface.
The default option connects using a JTAG interface.

MicroBlaze Stub-JTAG Target Options

Usage

connect mb stub -comm jtag [-cable {<JTAG Cable options>}]
[-configdevice <{JTAG chain options>}] [-debugdevice {<MicroBlaze
options>}]

JTAG Cable Options and JTAG Chain Options

For JTAG cable and chain option descriptions, refer to Table 10-8, JTAG Cable Options
on page 141 and Table 10-9, JTAG Chain Options on page 142, respectively.

MicroBlaze Option

MicroBlaze Stub-Serial Target Options

Usage

connect mb stub -comm serial {<Serial Communication options>}

Serial Communication Options

Table 10-14 lists the options that specify the MicroBlaze stub-serial target.

Note: If the program has any I/O functions such as print() or putnum() that write output onto
the UART or MDM UART, it is printed on the console or terminal in which XMD was started. Refer to
Chapter 8, “Library Generator (Libgen),” for more information about libraries and I/O functions.

Figure 10-4, page 158 illustrates a MicroBlaze sub target with an MDM Uart and a
UARTlite.

Option Description

devicenr
<MicroBlaze device position>

The position in the JTAG chain of the FPGA
device containing MicroBlaze.

Table 10-14: MicroBlaze Stub-Serial Target Options

Option Description

-baud
<serial port baud rate>

Specifies the serial port baud rate in bits per second
(bps). The default value is 19200 bps.

-port <serial port> Specifies the serial port to which the remote hardware
is connected when XMD communication is over the
serial cable.

The default serial ports are:

″ /dev/ttyS0 on Linux
″ Com1 on Windows

-timeout
<timeout in secs>

Timeout period while waiting for a reply from
XMDStub for XMD commands.

http://www.xilinx.com

158 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

X-Ref Target - Figure 10-4

Figure 10-4: MicroBlaze Stub Target with MDM UART and UARTlite

X10844

JTAG

XMD

OPB/PLBv46 Bus

MicroBlaze

UART

xmdstub

Local Memory

RS-232 (Serial Cable)

XMD

OPB/PLBv46 Bus

MicroBlaze

Uartlite

xmdstub

Local Memory

MDM

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 159
UG111 July 6, 2011

Connect Command Options

Stub Target Requirements

To debug programs on the hardware board using XMD, the following requirements must
be met:

• XMD uses a JTAG or serial connection to communicate with XMDStub on the board.
Therefore, an mdm or a UART designated as XMDSTUB_PERIPHERAL in the MSS file is
necessary on the target MicroBlaze system.

Platform Generator can create a system that includes a mdm or a UART, if specified in
its MHS file. The JTAG cables supported with the XMDStub mode are:

• Xilinx parallel cable

• Platform USB cable

• XMDStub on the board uses the MDM or UART to communicate with the host
computer; therefore, it must be configured to use the MDM or UART in the
MicroBlaze system.

The Library Generator (Libgen) can configure the XMDStub to use the
XMDSTUB_PERIPHERAL in the system. Libgen generates an XMDStub configured for the
XMDSTUB_PERIPHERAL and puts it in code/xmdstub.elf as specified by the XMDStub
attribute in the MSS file. For more information, refer to Chapter 8, “Library Generator
(Libgen).”

• The XMDStub executable must be included in the MicroBlaze local memory at system
startup.

Data2MEM can populate the MicroBlaze memory with XMDStub. Libgen generates a
Data2MEM script file that can be used to populate the block RAM contents of a
bitstream containing a MicroBlaze system. It uses the executable specified in
DEFAULT_INIT.

• For any program that must be downloaded on the board for debugging, the program
start address must be higher than 0x800 and the program must be linked with the
startup code in crt1.o.

mb-gcc can compile programs satisfying the above two conditions when it is run with
the option -xl-mode-xmdstub.

Note: For source level debugging, programs should also be compiled with the -g option. While
initially verifying the functional correctness of a C program, it is advisable to not use any mb-gcc
optimization option such as -O2 or -O3, as mb-gcc performs aggressive code motion optimizations
which might make debugging difficult to follow.

MicroBlaze Simulator Target

You can use mb-gdb and XMD to debug programs on the cycle-accurate simulator built in
to XMD.

Usage

connect mb sim [-memsize <size>]

http://www.xilinx.com

160 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

MicroBlaze Simulator Option

Simulator Target Requirements

To debug programs on the Cycle-Accurate Instruction Set Simulator using XMD, you must
compile programs for debugging and link them with the startup code in crt0.o.

The mb-gcc can compile programs with debugging information when it is run with the
option -g, and by default, mb-gcc links crt0.o with all programs.

The option is -xl-mode-executable.

The program memory size must not exceed 64 K and must begin at address 0. The program
must be stored in the first 64KB of memory.

Note: XMD with a simulator target does not support the simulation of OPB peripherals.

MDM Peripheral Target

You can connect to the mdm peripheral and use the UART interface for debugging and
collecting information from the system.

Usage

connect mdm -uart

MDM Target Requirements

To use the UART functionality in the MDM target, you must set the C_USE_UART
parameter while instantiating the mdm in a system.

UART input can also be provided from the host to the program running on MicroBlaze
using the xuart w <byte> command. You can use the terminal command to open a
hyperterminal-like interface to read and write from the UART interface. The read_uart
command provides interface to write to STDIO or to file.

Configure Debug Session

Configure the debug session for a target using the debugconfig command. You can
configure the behavior of instruction stepping and memory access method of the
debugger.

Usage

debugconfig [-step_mode {disable_interrupt | enable_interrupt}]
[-memory_datawidth_matching {disable | enable}]
[-reset_on_run {system enable | processor enable | disable}]
[-reset_on_data_dow {system enable | processor enable | disable}]

Table 10-15, page 161 lists the debug configuration options.

Option Description

memsize <size> The width of the memory address bus allocated in the
simulator. Programs can access the memory range from 0 to
(2size)-1. The default memory size is 64 KB.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 161
UG111 July 6, 2011

Connect Command Options

Table 10-15: Debug Configuration Options

Option Description

No Option Lists the current debug configuration for the current session.

-step_mode
{disable_interrupt |
enable_interrupt}

Configures how XMD handles instruction stepping.

disable_interrupt is the default mode. The interrupts are disabled
during step.

enable_interrupt enables interrupts during step.

If an interrupt occurs during step, the interrupt is handled by the
registered interrupt handler of the program.

-memory_datawidth_matching
{disable | enable}

Configures how XMD handles memory read and write. By default, the
data width matching is set to enable.

All data width (byte, half, and word) accesses are handled using the
appropriate data width access method. This method is especially useful
for memory controllers and flash memory, where the datawidth access
should be strictly followed.

When data width matching is set to disable, XMD uses the best possible
method, such as word access.

-reset_on_run
[system enable |
processor enable | disable]

Configures how XMD handles reset on program execution. A reset brings
the system to a known consistent state for program execution. This
ensures correct program execution without any side effects from a
previous program run. By default, XMD performs system reset on run (on
program download or program run).

To enable different reset types, specify:

debugconfig -reset_on_run processor enable

debugconfig -reset_on_run system enable

To disable reset, specify:

debugconfig -reset_on_run disable

-reset_on_data_dow
[system enable |
processor enable | disable]

Changes how XMD handles reset on data download.

A reset brings the system to a known consistent state for program
execution. This ensures correct program execution without any side
effects from a previous program run. By default, XMD performs system
reset on run (on program download or program run).

To enable different reset types, specify:

debugconfig -reset_on_data_dow processor enable

debugconfig -reset_on_data_dow system enable

To disable reset, specify:

debugconfig -reset_on_data_dow disable

-run_poll_interval
<time in millisec>

When the processor is run using either the run or con command, XMD
monitors the processor state at regular intervals (100 ms). If you want
XMD to poll less frequently, use this option to specify the poll interval.

http://www.xilinx.com

162 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Configuring Instruction Step Modes

XMD supports two instruction step modes. You can use the debugconfig command to
select between the modes. The two modes are:

• Instruction step with interrupts disabled:

This is the default mode. In this mode the interrupts are disabled.

• Instruction step with interrupts enabled:

In this mode the interrupts are enabled during step operation. XMD sets a hardware
breakpoint at the next instruction and executes the processor.

If an interrupt occurs, it is handled by the registered interrupt handler. The program
stops at the next instruction.

Note: The instruction memory of the program should be connected to the processor d-side
interface.

.XMD% debugconfig
Debug Configuration for Target 0

Step Mode.................... Interrupt Disabled
Memory Data Width Matching... Disabled

XMD% debugconfig -step_mode enable_interrupt
XMD% debugconfig
Debug Configuration for Target 0

Step Mode.................... Interrupt Enabled
Memory Data Width Matching... Disabled

Configuring Memory Access

XMD supports handling different memory data width accesses. The supported data
widths are word (32 bits), half-word (16 bits), and Byte (8 bits). By default, XMD uses
appropriate data width accesses when performing memory read and write operations. You
can use the debugconfig command for configuring XMD to match the data width of the
memory operation. This is usually necessary for accessing flash devices of different data
widths.

XMD% debugconfig
Debug Configuration for Target 0

Step Mode.................... Interrupt Disabled
Memory Data Width Matching... Enabled

XMD% debugconfig -memory_datawidth_matching disable
XMD% debugconfig
Debug Configuration for Target 0

Step Mode.................... Interrupt Disabled
Memory Data Width Matching... Disabled

Configuring Reset for Multiprocessing Systems

By default, XMD performs a system reset upon download of a program to a processor. This
behavior ensures a clean processor state before running the program. However, in
multiprocessing systems, downloading and running programs to the various processors
happens in sequence.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 163
UG111 July 6, 2011

XMD Internal Tcl Commands

Depending upon the system architecture, a system reset performed during download of a
program could cause programs downloaded to other processors, earlier in the sequence, to
get reset. This may or may not be desirable; consequently, use the debugconfig command
to disable system reset and or enable processor reset only on the various processors.

The following are example use cases:

Example 1: One Master Processor and Multiple Slave Processors

In this scenario, the program on the master processor gets downloaded and run first,
followed by the other processors. In this case, the user wants to enable system reset on
download to the master processor and only a processor reset (or no reset) on the other
processors.

Example 2. Peer Processors

In this case, the download sequence could be arbitrary and the user wants to enable only
processor reset (or no reset) at both the processors. This will ensure that downloading a
program to one of the peer processors, does not affect the system state for the other peers.

Refer the proc_sys_reset IP module documentation for more information on how the
reset connectivity and sequencing works through this module.

XMD Internal Tcl Commands
In the Tcl interface mode, XMD starts a Tcl shell augmented with XMD commands. All
XMD Tcl commands start with x, and you can list them from XMD by typing x?.

Xilinx recommends using the Tcl wrappers for these internal commands as described in
Table 10-1 on page 124. The Tcl wrappers print the output of most of these commands and
provide more options. While the Tcl wrappers are backward-compatible, the x<name>
commands will be deprecated.

The following Tcl command subsections are:

• Program Initialization Options

• Register/Memory Options

• Program Control Options

• Program Trace and Profile Options

• Miscellaneous Commands

http://www.xilinx.com

164 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Program Initialization Options

Table 10-16: Program Initialization Option

Option Description

xconnect <target> {mb|ppc|mdm} <connect type>
{options}

Connects to a processor or a peripheral target.
Valid target types are mb, ppc, and mdm.

Refer to Connect Command Options, page 140 for
more information on options.

xdebugconfig <target id>
[-step_mode <Step Type>]
[-memory_datawidth_matching {disable | enable}]
[-reset_on_run
{system enable| processor enable | disable}]

[-reset_on_data_dow {system enable | processor
enable | disable}]
[run_poll_interval <time in millisec>

Configures the debug session for the target. For
additional information, refer to the Configure
Debug Session, page 160.

xdisconnect [<target id>] [-cable] Disconnects from the target. Use the -cable
option command to disconnect from cable and
all targets.

xdownload <target_id> <filename> [load address]

xdownload <target_id> -data <filename>
<load_address>

Downloads the given ELF or data file, using the
-data option, onto the memory of the current
target.

If no address is provided along with ELF file, the
download address is determined from the ELF file
headers.

Otherwise, it is treated as Position Independent
Code (PIC code) and downloaded at the specified
address and Register R20 is set to the start address
according to the PIC code semantics.

XMD does not perform bounds checking, with the
exception of preventing writes into the XMDSTUB
area (address 0x0 to 0x800).

xrcableesn Returns the ESN values of USB cables connected to
the host machine.

xrjtagchain [-cable <cable_options>] Returns the Jtag Device Chain information of the
board connected to the host machine.

xfpga -f <bitstream>

[-cable <cable_options>]|
[-configdevice <configuration_options>] |
[-debugdevice <device_name>]

Loads the FPGA device bitstream and, optionally,
the cable configuration and debug device options.

xload_sysfile hw <hw_spec_file> Loads the hardware specification file.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 165
UG111 July 6, 2011

XMD Internal Tcl Commands

Register/Memory Options

xrut [Session ID] Authenticates the XMD session when
communicating over XMD sockets interface. The
session ID is first assigned and subsequent calls
return the session ID.

xtargets -listSysID

xtargets -system <system_ID>

[-print] [-listTgtID}

xtargets -target <target_ID> {-print | -prop}

Provides system and target information in the
current XMD session.

-listSysID returns a list of existing systems.

-system <system_ID> provides information on
the specified system.

-print prints the different targets in the system

-listTgtID returns a list of existing targets in
the system.

-target <target_ID> provides information on
the specified target. The options:

-print prints the target information

-prop returns the target properties

Table 10-16: Program Initialization Option (Cont’d)

Option Description

Table 10-17: Register/Memory Options

Option Description

xdata_verify <target id> <Binary
filename><load address>

Verifies if the <Binary filename> was downloaded
correctly at <load address> memory.

xdisassemble <inst> Disassembles and displays one 32-bit instruction.

xelf_verify <target id> [<filename>.elf] Verifies if the <filename>.elf is downloaded
correctly to memory.

If <filename>.elf is not specified, verifies the last
downloaded ELF file to target.

xrmem <target id> <address> {<number of
bytes|half|word>} {b | h | w}

xrmem <target id> -var <Global Variable Name>

Reads <number of bytes> of memory locations
from the specified memory address. Defaults to byte
(b) read. Returns a list of data values. The data type
depends on the data-width of memory access.

xwmem <target id> <address> {<number of
bytes>|half|word} {b | h | w} <value list>

xwmem <target id> -var <Global Variable Name>
<value list>

Writes <number of bytes> data value from the
specified memory address. Defaults to byte (b) write.

xrreg <target id> [reg] Reads all registers or only register number <reg>.

xwreg <target id> [reg] [value] Writes a 32-bit value into register number <reg>.

xstack_check <target id> Gives the stack usage information of the program
running on the current target. The most recent ELF file
downloaded on the target is taken into account for
stack check.

http://www.xilinx.com

166 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

Program Control Options
Figure X-Ref Target - Figure 10-5

Table 10-18: Program Control Options

Option Description

xbreakpoint <target id>
{addr | function name} {sw | hw}

Sets a breakpoint at the given address or start of function.

Note: Breakpoints on instructions immediately following
an IMM instruction can lead to undefined results for an
XMDStub target.

xcontinue <target id> [<Execute Start
Address>] [-block]

Continues from current PC or optionally specified
<Execute Start Address>.

If -block option is specified, the command returns when
the Processor stops on breakpoint or watchpoint. The
-block option is useful in scripting.

xcycle_step <target id> [cycles] Cycle steps through one clock cycle of PowerPC processor
ISS. If cycles is specified, then step cycles number of
clock cycles.a

xlist <target id> Lists all of the breakpoint addresses.

xremove <target id>
{<addr> | <function name> | <bp id> | all}

Removes one or more breakpoints or watchpoints.

xreset <target id> [reset type] Resets target. Optionally, provide target-specific reset
types such as the signals mentioned in Table 10-19 on
page 167.

xrun <target id> Runs program from the program start address.

xstate <target id> Returns the processor target state; running or stopped.

xstep <target id> Single steps one MicroBlaze instruction. If the PC is at an
IMM instruction, the next instruction also runs. During a
single step, interrupts are disabled by keeping the BIP flag
set. Use xcontinue with breakpoints to enable interrupts
while debugging.

xstop <target id> Stops the program execution.

xwatch <target id> {r | w} <address>
[<data value>]

Sets read/write watchpoints at a given <address> and,
optionally, check for <data value>. If <data value> is
not specified, watchpoints match any value. The address
and value can be specified in hex or binary format.

a.This command is for Simulator targets only.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 167
UG111 July 6, 2011

XMD Internal Tcl Commands

XMD MicroBlaze Hardware Target Signals

Program Trace and Profile Options

Miscellaneous Commands

Table 10-19: XMD MicroBlaze Hardware Target Signals

Signal Name (Value) Description

Non-maskable Break (0x10) Similar to the Break signal, but works even while the BIP flag
is already set.

Refer the MicroBlaze Processor Reference Guide for more
information about the BIP flag. A link to the document is
supplied in Appendix E, Additional Resources.

Processor Break (0x20) Raises the Brk signal on MicroBlaze using the JTAG UART
Ext_Brk signal. It sets the Break-in-Progress (BIP) flag on
MicroBlaze and jumps to address 0x18.

Processor Reset (0x80) Resets MicroBlaze using the JTAG UART Debug_Rst signal.

System Reset (0x40) Resets the entire system by sending an OPB Rst using the
JTAG UART Debug_SYS_Rst signal.

Table 10-20: Program Trace/Profile Options

Option Description

xprofile <target id> [-o <GMON
Output File>]

xprofile <target id>
-config [sampling_freq_hw <value>]
[binsize <value>] [profile_mem
<start addr>]

Generates profile output that can be read by
mb-gprof or powerpc-eabi-gprof.

Specify the profile configuration sampling
frequency in Hz, Histogram binary size,
and memory address for collecting profile
data.

xstats <target id> {options} Displays the simulation statistics for the
current session. Use the reset option to
reset the simulation statistics.a

a. This command is for ISS targets only.

xtracestart <target id> Starts collecting trace information.

xtracestop <target id> Stops collecting trace information.(a)

Table 10-21: Miscellaneous Commands

Command Description

xclean Cleans up any Xilinx resources that are using the cable.

xhelp Lists the XMD commands.

xverbose Toggles verbose mode on and off. Dumps debugging
information from XMD.

http://www.xilinx.com

168 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 10: Xilinx Microprocessor Debugger (XMD)

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 169
UG111 July 6, 2011

Chapter 11

GNU Debugger

This chapter describes the general usage of the Xilinx® GNU debugger (GDB) for the
MicroBlaze™ processor and the PowerPC® (405 and 440) processors.

Overview
GDB is a powerful and flexible tool that provides a unified interface for debugging and
verifying MicroBlaze and PowerPC (405 and 440) systems during various development
phases. It uses Xilinx Microprocessor Debugger (XMD) as the underlying engine to
communicate to processor targets.

Tool Overview

Tool Usage
MicroBlaze GDB usage:

mb-gdb <options> executable-file

PowerPC GDB usage:

powerpc-eabi-gdb <options> executable-file

Tool Options
The following options are the most common in the GNU debugger:

-command=FILE

Execute GDB commands from the specified file. Used for debugging in batch and
script mode.

-batch

Exit after processing options. Used for debugging in batch and script mode.

http://www.xilinx.com

170 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 11: GNU Debugger

-nx

Do not read initialization file .gdbinit. If you have issues connecting to XMD (GDB
connects and disconnects from XMD target), launch GDB with this option or remove
the .gdbinit file.

-nw

Do not use a GUI interface.

-w

Use a GUI interface (Default).

Debug Flow using GDB
1. Start XMD from XPS.

2. Connect to the Processor target. This action opens a GDB server for the target.

3. Start GDB from XPS.

4. Connect to Remote GDB Server on XMD.

5. Download the Program and Debug application.

MicroBlaze GDB Targets
The MicroBlaze GNU Debugger and XMD tools support remote targets. Remote
debugging is done through XMD. The XMD server program can be started on a host
computer with the Simulator target or the Hardware target.

The Cycle-Accurate Instruction Set Simulator (ISS) and the hardware interface provide
powerful debugging tools for verifying a complete MicroBlaze system. The debugger
mb-gdb connects to XMD using the GDB remote protocol over TCP/IP socket connection.

Simulator Target
The XMD simulator is a cycle-accurate ISS of the MicroBlaze system which presents the
simulated MicroBlaze system state to GDB.

Hardware Target
With the hardware target, XMD communicates with Microprocessor Debug Module (mdm)
debug core or an XMDSTUB program running on a hardware board through the serial cable or
JTAG cable, and presents the running MicroBlaze system state to GDB.

For more information about XMD, refer to Chapter 10, Xilinx Microprocessor Debugger
(XMD).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 171
UG111 July 6, 2011

PowerPC 405 Targets

Compiling for Debugging on MicroBlaze Targets
To debug a program, you must generate debugging information when you compile the
program. This debugging information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source line numbers and
addresses in the executable code. The mb-gcc compiler for the Xilinx MicroBlaze soft
processor includes this information when the appropriate modifier is specified.

The -g option in mb-gcc allows you to perform debugging at the source level. The
debugger mb-gcc adds appropriate information to the executable file, which helps in
debugging the code. The debugger mb-gdb provides debugging at source, assembly, and
mixed source and assembly.

Note: While initially verifying the functional correctness of a C program, do not use any mb-gcc
optimization option like -O2 or -O3 as mb-gcc does aggressive code motion optimizations which
might make debugging difficult to follow.

Note: For debugging with XMD in hardware mode using XMDSTUB, specify the mb-gcc option
-xl-mode-xmdstub. Refer to Chapter 10, Xilinx Microprocessor Debugger (XMD) for more
information about compiling for specific targets.

PowerPC 405 Targets
Debugging for the PowerPC 405 processor is supported by powerpc-eabi-gdb and
XMD through the GDB Remote TCP protocol. XMD supports two remote targets:
PowerPC 405 Hardware and Cycle-Accurate PowerPC Instruction Set Simulator (ISS).

To connect to a PowerPC 405 target:

1. Start XMD and connect to the board using the connect ppc command as described
in Chapter 10, Xilinx Microprocessor Debugger (XMD).

2. Select Run > Connect to target from GDB.

3. In the GDB target selection dialog box, specify the following:

• Target: Remote/TCP

• Hostname: localhost

• Port: 1234

4. Click OK.

The debugger powerpc-eabi-gdb attempts to make a connection to XMD. If successful,
a message is printed in the shell window where XMD started.

At this point, the debugger is connected to XMD and controls the debugging. The GUI can
be used to debug the program and read and write memory and registers.

http://www.xilinx.com

172 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 11: GNU Debugger

PowerPC 440 Targets
Debugging for the PowerPC 440 processor is supported by powerpc-eabi-gdb and
XMD through the GDB Remote TCP protocol.

XMD supports two remote targets: PowerPC 440 Hardware and Cycle-Accurate PowerPC
Instruction Set Simulator (ISS).

To connect to a PowerPC 440 target:

1. Start XMD and connect to the board using the connect ppc command as described
in Chapter 10, Xilinx Microprocessor Debugger (XMD).

2. From GDB select Run >Connect to target.

3. In the GDB target selection dialog box, specify the following:
Target: Remote/TCP
Hostname: localhost
Port: 1234

4. Click OK.

5. The debugger powerpc-eabi-gdb attempts to make a connection to XMD, adn if
successful, prints a message to the shell window where XMD was invoked.

6. Select View > Console to open the console window.

7. On the console type:
set arch powerpc:440 to set the architecture to a PowerPC 440 processor.

At this point, the debugger is connected to XMD in PowerPC 440 mode and controls the
debugging. The user interface can be used to debug the program and read and write
memory and registers.

Console Mode
To start powerpc-eabi-gdb in the console mode, type the following:

xilinx > powerpc-eabi-gdb -nw executable.elf

In the console mode, type the following two commands to connect to the board through
XMD:

(gdb) target remote localhost:1234
(gdb) load

The following text displays:

Loading section .text, size 0xfcc lma 0xffff8000
Loading section .rodata, size 0x118 lma 0xffff8fd0
Loading section .data, size 0x2f8 lma 0xffff90e8
Loading section .fixup, size 0x14 lma 0xffff93e0
Loading section .got2, size 0x20 lma 0xffff93f4
Loading section .sdata, size 0xc lma 0xffff9414
Loading section .boot0, size 0x10 lma 0xffffa430
Loading section .boot, size 0x4 lma 0xfffffffc
Start address 0xfffffffc, load size 5168
Transfer rate: 41344 bits/sec, 323 bytes/write.
(gdb) c
Continuing

For the console mode, these two commands can also be placed in the GDB startup file
gdb.ini in the current working directory.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 173
UG111 July 6, 2011

GDB Command Reference

GDB Command Reference
For help on using mb-gdb, select Help > Help Topics in the XPS main dialog box or type
help in the console mode.

To open a console window from the GBD main dialog box, select View > Console.

For comprehensive online documentation on using GDB, refer to the GNU web site. For
information about the mb-gdb Insight GUI, refer to the Red Hat Insight webpage. Links to
these documents are provided in the Additional Resources, page 173.

Table 11-1 describes the commonly used mb-gdb console commands. The equivalent GUI
versions can be identified in the mb-gdb GUI window icons. Some of the commands, such
as info target and monitor info, might be available only in the console mode.

Additional Resources
• GNU website: http://www.gnu.org

• Red Hat Insight webpage: http://sources.redhat.com/insight.

Table 11-1: Commonly Used GDB Console Commands

Command Description

load <program> Load the program into the target.

b main Set a breakpoint in function main.

c Continue after a breakpoint.

Note: Do not use the run command

l View a listing of the program at the current point.

n Steps one line, stepping over function calls.

s Step one line, stepping into function calls.

stepi Step one assembly line.

info reg View register values.

info target View the number of instructions and cycles executed for the
built-in simulator only.

p <xyz> Print the value of xyz data.

hbreak main Set hardware breakpoint in function main().

watch <gvar1> Set Watchpoint on Global Variable gvar1.

rwatch <gvar1> Set Read Watchpoint on Global Variable gvar1.

http://www.gnu.org
http://sources.redhat.com/insight
http://www.xilinx.com

174 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 11: GNU Debugger

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 175
UG111 July 6, 2011

Chapter 12

Bitstream Initializer (BitInit)

Overview
BitInit initializes the instruction memory of processors on the FPGA, which is stored in
block RAMs in the FPGA. This utility reads an Microprocessor Hardware Specification
(MHS) file, and invokes the Data2MEM utility provided in Xilinx® ISE® to initialize the
FPGA block RAMs.

Tool Usage
To invoke the BitInit tool, type the following:

% bitinit <mhsfile> [options]

Note: You must specify <mhsfile> before specifying other tool options.

Tool Options
Table 12-1 lists the supported options in BitInit.

Table 12-1: BitInit Syntax Options

Option Command Description

Input BMM file -bm Specifies the input BMM file which contains the address map and the
location of the instruction memory of the processor.

Default: implementation/<sysname>_bd.bmm

Bitstream file -bt Specifies the input bitstream file that does not have its memory
initialized.

Default: implementation/<sysname>.bit

Display Help -h Displays the usage menu and then quits.

Log file name -log Specifies the name of the log file to capture the log. Default:
bitinit.log

Libraries path -lp Specifies the path to repository libraries. This option can be repeated to
specify multiple libraries.

Output bitstream file -o Specifies the name of the output file to generate the bitstream with
initialized memory.

Default: implementation/download.bit

Part name -p <partname> Uses the specified part type to implement the design.

http://www.xilinx.com

176 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 12: Bitstream Initializer (BitInit)

BitInit also produces a file named data2mem.dmr, which is the log file generated during invocation
of the Data2MEM utility.

Specify the Processor
Instance name and list
of ELF files

-pe Specifies the name of the processor instance in associated ELF file that
forms its instruction memory. This option can be repeated once for each
processor instance in the design. Only one ELF per processor can be
initialized into block RAM.

Quiet mode -quiet Runs the tool in quiet mode. In this mode, it does not print status,
warning, or informational messages while running. It prints only error
messages on the console.

Display version -v Displays the version and then quits.

Table 12-1: BitInit Syntax Options (Cont’d)

Option Command Description

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 177
UG111 July 6, 2011

Chapter 13

System ACE File Generator (GenACE)

This chapter describes the steps to generate Xilinx® System ACE™ technology
configuration files from an FPGA bitstream and Executable Linked Format (ELF) data files.
The generated ACE file can be used to:

• Configure the FPGA

• Initialize block RAM

• Initialize external memory with valid program or data

• Bootup the processor in a production system

EDK provides a Tool Command Language (Tcl) script, genace.tcl, which uses Xilinx
Microprocessor Debug (XMD) commands to generate ACE files. ACE files can be
generated for PowerPC® (405 and 440) processors and the MicroBlaze™ processor with
Microprocessor Debug Module (MDM) systems.

Assumptions
This chapter assumes that you:

• Are familiar with debugging programs using XMD and with using XMD commands.

• Are familiar with general hardware and software system models in EDK.

• Have a basic understanding of Tcl scripts.

Tool Requirements
Generating an ACE file requires the following tools:

• a genace.tcl file

• XMD

• iMPACT (from ISE®)

http://www.xilinx.com

178 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

GenACE Features
GenACE:

• Supports PowerPC (405 and 440) processor and the MicroBlaze processor with MDM
targets.

• Generates ACE files from hardware (Bitstream) and software (ELF and data) files.

• Initializes external memories on PowerPC (405 and 440) processors and MicroBlaze
systems.

• Supports multi-processor systems.

• Supports single and multiple FPGA device systems.

GenACE Model
System ACE CF is a two-chip solution that requires the System ACE CF controller, and
either a CompactFlash card or one-inch Microdrive disk drive technology as the storage
medium. System ACE CF configures devices using Boundary-Scan (JTAG) instructions
and a Boundary-Scan Chain. The generated System ACE files support the System ACE CF
family of configuration solutions. The System ACE file is generated from a Serial Vector
Format (SVF) file, which is a text file that contains both programming instructions and
configuration data to perform JTAG operations.

XMD and iMPACT generate SVF files for software and hardware system files respectively.
The set of JTAG instructions and data used to communicate with the JTAG chain on-board
is an SVF file. It includes the instructions and data to perform operations such as:

• Configuring an FPGA using iMPACT

• Connecting to the processor target

• Downloading the program and running the program from XMD

These actions are captured in an SVF file format. The SVF file is then converted to an ACE
file and written to the storage medium. These operations are performed by the System
ACE controller to achieve the determined operation.

The following is the sequence of operations using iMPACT and XMD for a simple
hardware and software configuration that gets translated into an ACE file:

1. Download the bitstream using iMPACT. The bitstream, download.bit, contains
system configuration and bootloop code.

2. Bring the device out of reset, causing the Done pin to go high. This starts the processor
system.

3. Connect to the processor using XMD.

4. Download multiple data files to block RAM or external memory.

5. Download multiple executable files to block RAM or external memory. The PC points
to the start location of the last downloaded ELF file.

6. Continue execution from the PC instruction address.

The flow for generating System ACE files is BIT to SVF, ELF to SVF, binary data to SVF, SVF
to ACE file.

The following section describes the options available in the genace.tcl script.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 179
UG111 July 6, 2011

The Genace.tcl Script

The Genace.tcl Script
The genace.tcl script uses Xilinx Microprocessor Debug (XMD) commands to generate
ACE files. This script is located in the ${XILINX_EDK}/data/xmd/ directory.

Some non-supported boards might require some customization, such as changing the
delay of programming after FPGA configuration or modifying the processor reset
sequence. For these boards, copy the script to the local directory, make the required
changes, and then use it to generate the ACE file.

Table 13-1 list the genace.tcl script command options.

Syntax
xmd -tcl genace.tcl [-ace <ACE_file>][-board <board_type>][-data
<data_files> <load_address>][-elf <elf_files>][-hw <bitstream_file>]
[-jprog {true|false}][-opt <genace_options_file>]|
[-target <target_type> {ppc_hw|mdm}]

Table 13-1: genace.tcl Script Command Options

Options Default Description

-ace <ACE_file> none The output ACE file. The file prefix should not match any of
input files (bitstream, elf, data files) prefix.

-board <board_type>
[supported_board_list]

none This identifies the JTAG chain on the board (Devices, IR
length, Debug device, and so on). The options are given
with respect to the System ACE controller. The script
contains the options for some pre-defined boards. You must
specify the
-configdevice and -debugdevice option in the OPT
file.
Refer to the genace.opt file for details.

For Supported board type refer to “Supported Target
Boards in Genace.tcl Script” on page 182.

-data <data_file> <load_address> none List of data/binary file and its load address. The load
address can be in decimal or hex format (0x prefix needed).
If an SVF file is specified, it is used.

-elf <list_of_Elf_Files> none List of ELF files to download.
If an SVF file is specified, it is used.

-hw <bitstream_file> none The bitstream file for the system.
If an SVF file is specified, it is used.

-jprog [true|false} false Clear the existing FPGA configuration.
This option should not be specified if performing runtime
configuration.

http://www.xilinx.com

180 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

The options can be specified in an options file and passed to the GenACE script. The
options syntax is described in Table 13-2.

-opt <genace_options_file> none GenACE options are read from the options file.

-target <target_type> [ppc_hw|mdm] ppc_hw Target to use in the system for downloading ELF or Data
file. Target types are:

ppc_hw to connect to a PowerPC (405 and 440) processor
system.

mdm to connects to a MicroBlaze processor system. This
assumes the presence of mdm in the system.

Table 13-1: genace.tcl Script Command Options (Cont’d)

Options Default Description

Table 13-2: Genace File Options

Options Default Description

<Some Text> none The line starting with # is treated as a comment.

-ace <ACE_file> none The output ACE file. The file prefix should not match
any input file (bitstream, elf, data files) prefix.

-board <board_type>
[<user>|<supported_board_list>]

none This identifies the JTAG chain on the board (Devices,
IR length, Debug device, and so on). The options are
given with respect to the System ACE controller. The
script contains the options for some pre-defined
boards. Board type options are:

user for user-specific board. You must also specify
the -configdevice and
-debugdevice option in the OPT file.
Refer to the genace.opt file for details.

For a list of supported board types refer to “Supported
Target Boards in Genace.tcl Script” on page 182.

-configdevice
(only for -user board type)

none Configuration parameters for the device on the JTAG
chain:

devicenr: Device position on the JTAG chain

idcode: ID code

irlength: Instruction Register (IR) length

partname: Name of the device

The device position is relative to the System ACE
device and these JTAG devices must be specified in
the order in which they are connected in the JTAG
chain on the board.

This option is not available on the command line. Use
in OPT file only.

-data <data_file> <load_address> none List of data/binary file and its load address. The load
address can be in decimal or hex format (0x prefix
needed).
If an SVF file is specified, it is used.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 181
UG111 July 6, 2011

The Genace.tcl Script

Usage
xmd -tcl genace.tcl -jprog -target mdm -hw <implementation/
download.bit> -elf executable1.elf executable2.svf
-data image.bin 0xfe000000 -board ml507 -ace system.ace

Preferred genace.opt file:

-jprog
-hw implementation/download.bit
-ace system.ace
-board ml507
-target mdm
-elf executable1.elf executable2.svf
-data image.bin 0xfe000000

-debugdevice <XMD debug device
options> [cpu_version <version>]
[mdm_version <version>]

MB v7

MDM v1

The device containing either PowerPC (405 or 440)
processor or MicroBlaze to debug or configure in the
JTAG chain.

Specify the <XMD debug device options> such as:

position on the chain (devicenr)

number of processors (cpunr)

processor options (such as OCM, Cache addresses).

For a MicroBlaze system, the script assumes the
MicroBlaze v7 processor and MDM v1 versions.

The additional options for MicroBlaze versions are:
cpu_version {microblaze_v5 |
microblaze_v6 |
microblaze_v7|microblaze_v72}

The additional MDM versions are:

mdm_version {mdm_v1 | mdm_v2 | mdm_v3}

-elf <list of Elf or SVF files> none List of ELF files to download. If an SVF file is specified,
it is used.

-hw <bitstream file> none The bitstream file for the system. If an SVF file is
specified, it is used.

-jprog false Clear the existing FPGA configuration. Do not specify
this option if performing runtime configuration.

-start_address
<processor run address>

Start Address
of the last ELF
file (if ELF file
is specified):
else none.

 Specify the address at which to start processor
execution. This is useful when a data file is being
loaded and processor should execute from load
address.

-target <target type> ppc_hw Target to use in the system for downloading ELF/Data
file. Target types are:

ppc_hw to connect to a PowerPC (405 or 440)
processor system

mdm to connect to a MicroBlaze system. This assumes
the presence of mdm in the system.

Table 13-2: Genace File Options (Cont’d)

Options Default Description

http://www.xilinx.com

182 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

Supported Target Boards in Genace.tcl Script
Table 13-3 lists the boards supported in the genace.tcl script .

For a custom board, use the -configdevice option to specify the JTAG chain and use an
OPT file.

Generating ACE Files
System ACE files can be generated for the scenarios in the following subsections. An
example OPT file is given for each. Specify the use of the OPT file as follows:

xmd -tcl genace.tcl -opt genace.opt

For Custom Boards
If your board is not listed in the Supported Target Boards in Genace.tcl Script, page 182, the
JTAG Chain configuration of the board can be specified using the -configdevice option.
The options file in this case would be:

-jprog
-hw implementation/download.bit
-ace system.ace
-board user <= Note: The Board type is user
-configdevice devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
devicenr 2 idcode 0x1266093 irlength 14 partname XC2VP20 <= Note: The
JTAG Chain is specified here
-target ppc_hw
-elf executable.elf

Table 13-3: Supported Target Boards

Board name Board type Devices in the JTAG Chain

ML401 ml401 XCF32P > XC4VLX25 > XC95144XL

ML401 with
V4LX25 ES

ml401_es XCF32P > XC4VLX25-ES > XC95144XL

ML402 ml402 XCF32P > XC4VSX35 > XC95144XL

ML403 ml403 XCF32P > XC4VFX12 > XC95144XL

ML405 ml405 XCF32P > XC4VFX20 > XC95144XL

ML410 ml410 XC4FX60

ML411 ml411 XC4FX100

ML501 ml501 XC5vLX50

ML505 ml505 XC5vLX50T

ML506 ml506 XC5vSX50T

ML507 ml507 XC5VFX70T

ML510 ml510 XC5VFX130T

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 183
UG111 July 6, 2011

Generating ACE Files

Single FPGA Device

Hardware and Software Configuration

The options file for hardware and software configuration is:

-jprog
-hw implementation/download.bit
-ace system.ace
-board ml501
-target mdm
-elf executable1.elf executable2.elf

Hardware and Software Partial Reconfiguration

The options file for hardware and software partial reconfiguration is:

-hw implementation/download.bit
-ace system.ace
-board ml501
-target mdm
-elf executable1.elf executable2.elf

Hardware Only Configuration

The options file for hardware only configuration is:

-jprog
-hw implementation/download.bit
-ace system.ace
-board ml401

Hardware Only Partial Reconfiguration

The options file for hardware only partial reconfiguration is:

-hw implementation/download.bit
-ace system.ace
-board ml501

Software Only Configuration

The options file for software only configuration is:

-jprog
-ace system.ace
-board ml501
-target mdm
-elf executable1.elf

http://www.xilinx.com

184 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

Generating ACE for a Single Processor in Multi-Processor System
Many of the Virtex® family designs contain two PowerPC processors (405 and 440) or the
system might contain multiple MicroBlaze processors. To generate an ACE file for a single
processor use -debugdevice option. Use cpunr to specify the processor instance.

In the example we assume a configuration with two PowerPC processors and ACE file is
generated for processor number two. The options file for this configuration is:

-jprog
-hw implementation/download.bit
-ace system.ace
-board user
-configdevice devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
-debugdevice devicenr 1 cpunr 2 <= Note: The cpunr is 2
-target ppc_hw
-elf executable1.elf executable2.elf

Multi-Processor System Configuration
The assumed configuration is with two PowerPC processors and a MicroBlaze processor,
each loaded with a single ELF file. The board configuration is specified in the options file.

-jprog
-hw implementation/download.bit
-ace system.ace
-board user
-configdevice devicenr 1 idcode 0x1266093 irlength 14 partname XC2VP20
Options for PowerPC Processor 1 - Target Type, ELF files & Data files
-debugdevice devicenr 1 cpunr 1
-target ppc_hw
-elf executable1.elf
Options for PowerPC Processor 2 - Target Type, ELF files & Data files
-debugdevice devicenr 1 cpunr 2
-target ppc_hw
-elf executable2.elf
Options for MicroBlaze Processor - Target Type, ELF files & Data files
-debugdevice devicenr 1 cpunr 1
-target mdm
-elf executable3.elf

Note: When multi-processors are specified in an OPT file, processor-specific options such as target
type, ELF/data files should follow -debugdevice option for that processor. The cpunr of the
processor is inferred from -debugdevice option.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 185
UG111 July 6, 2011

Generating ACE Files

Multiple FPGA Devices
The assumed configuration is with two FPGA devices, each with a single processor and a
single ELF file. The configuration of the board is specified in the options file.

This configuration requires multiple steps to generate the ACE file.

1. Generate an SVF file for the first FPGA device. The options file contains the following:

-jprog
-target ppc_hw
-hw implementation/download.bit
-elf executable1.elf
-ace fpga1.ace
-board user
-configdevice devicenr 1 idcode 0x123e093 irlength 10 partname XC2VP4
-configdevice devicenr 2 idcode 0x123e093 irlength 10 partname XC2VP4
-debugdevice devicenr 1 cpunr 1

This generates the file fpga1.svf.

2. Generate an SVF file for the second FPGA device. The options file contains the
following:

-jprog
-target ppc_hw
-hw implementation/download.bit
-elf executable2.elf
-ace fpga2.ace
-board user
-configdevice devicenr 1 idcode 0x123e093 irlength 10 partname XC2VP4
-configdevice devicenr 2 idcode 0x123e093 irlength 10 partname XC2VP4
-debugdevice devicenr 2 cpunr 1 <= Note: The change in Devicenr

This generates the file fpga2.svf.

3. Concatenate the files in the following order: fpga1.svf and fpga2.svf to
final_system.svf.

4. Generate the ACE file by calling impact -batch svf2ace.scr.
Use the following SCR file:

svf2ace -wtck -d -m 16776192 -i final_system.svf -o final_system.ace
quit

On some boards; for example, the ML561, the FPGA DONE pins are all connected together.
For these boards, the FPGAs on the board must be configured with the hardware bitstream
at the same time, followed by software configuration. The following are the steps to
generate the ACE file for such an configuration. This procedure uses an ML561 board as an
example only:

http://www.xilinx.com

186 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

To generate an SVF file for hardware configuration for all FPGAs.

1. Create a SCR file (impact_download.scr) with the following contents and invoke
the impact -batch impact_download.scr command.

setMode -cf
setPreference -pref KeepSVF:True
addCollection -name Temp
addDesign -version 0 -name config0
addDeviceChain -index 0
setCurrentDeviceChain -index 0
setCurrentCollection -collection Temp
setCurrentDesign -version 0
addDevice -position 1 -file "ML561_FPGA1_Download.bit"
addDevice -position 2 -file "ML561_FPGA2_Download.bit"
addDevice -position 3 -file "ML561_FPGA3_Download.bit"
generate
quit

This generates the SVF file, config0.svf.

2. Generate an SVF file for the software on the first FPGA device. The options file
contains the following:

-jprog
-ace fpga1_sw.ace
-board user
-configdevice devicenr 1 idcode 0x22a96093 irlength 10 partname
xc5vlx50t
-configdevice devicenr 2 idcode 0x22a96093 irlength 10 partname
xc5vlx50t
-configdevice devicenr 3 idcode 0x22a96093 irlength 10 partname
xc5vlx50t
-debugdevice devicenr 1 cpunr 1
-target mdm
-elf executable1.elf

This generates the SVF file, fpga1_sw.svf.

3. Generate an SVF file for the software on the second FPGA device. The options file
contains the following:

-jprog
-ace fpga2_sw.ace
-board user
-configdevice devicenr 1 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-configdevice devicenr 2 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-configdevice devicenr 3 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-debugdevice devicenr 2 cpunr 1
-target mdm
-elf executable2.elf

This generates the SVF file, fpga2_sw.svf.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 187
UG111 July 6, 2011

Related Information

4. Generate an SVF file for the software on the third FPGA device. The options file
contains the following:

-jprog
-ace fpga3_sw.ace
-board user
-configdevice devicenr 1 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-configdevice devicenr 2 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-configdevice devicenr 3 idcode 0x22a96093 irlength 10
partname xc5vlx50t
-debugdevice devicenr 3 cpunr 1
-target mdm
-elf executable3.elf

This generates the SVF file, fpga3_sw.svf.

5. Concatenate the files in the following order: config0.svf, fpga1_sw.svf,
fpga2_sw.svf, and fpga3_sw.svf to final_system.svf.

6. Generate the ACE file by calling impact -batch svf2ace.scr. Use the following
SCR file:

svf2ace -wtck -d -i final_system.svf -o final_system.ace
quit

Related Information

CF Device Format
To have the System ACE controller read the CF device, do the following:

1. Format the CF device as FAT16.

2. Create a Xilinx.sys file in the /root directory. This file contains the directory
structure to use by the ACE controller.

Copy the generated ACE file to the appropriate directory. For more information refer to the
“iMPACT” section of the ISE Help.

http://www.xilinx.com

188 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 13: System ACE File Generator (GenACE)

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 189
UG111 July 6, 2011

Chapter 14

Flash Memory Programming

Overview
You can program the following in flash:

• Executable or bootable images of applications

• Hardware bitstreams for your FPGA

• File system images, data files such as sample data and algorithmic tables

The executable or bootable images of applications is the most common use case. When the
processor in your design comes out of reset, it starts executing code stored in block RAM at
the processor reset location. Typically, block RAM size is only a few kilobytes or so and is
too small to accommodate your entire software application image. You can store your
software application image (typically, a few megabytes-worth of data) in flash memory. A
small bootloader is then designed to fit in block RAM. The processor executes the
bootloader on reset, which then copies the software application image from flash into
external memory. The bootloader then transfers control to the software application to
continue execution.

The software application you build from your project is in Executable Linked Format
(ELF). When bootloading a software application from flash, ELF images should be
converted to one of the common bootloadable image formats, such as Motorola S-record
(SREC). This keeps the bootloader smaller and more simple. EDK provides interface and
command line options for creating bootloaders in SREC format. See the Xilinx Platform
Studio Help for instructions on creating a flash bootloader and on converting ELF images to
SREC. The Appendix E, Additional Resources contains a link the help.

Flash Programming from XPS
The Xilinx® Platform Studio (XPS) interface includes dialog boxes from which you can
program external Common Flash Interface (CFI) compliant parallel flash devices on your
board, connected through the external memory controller (EMC) IP cores. The
programming solution is designed to be generic and targets a wide variety of flash
hardware and layouts.

The programming is achieved through the debugger connection to a processor in your
design. XPS downloads and executes a small in-system flash programming stub on the
target processor. The in-system programming stub requires a minimum of 8 KB of memory
to operate. A host Tcl script drives the in-system flash programming stub with commands
and data and completes the flash programming. The flash programming tools do not
process or interpret the image file to be programmed, and the tools routinely program the
file as-is onto flash memory. Your software and hardware application setup must infer the
contents of the file being programmed.

http://www.xilinx.com

190 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 14: Flash Memory Programming

Supported Flash Hardware
The flash programmer uses the Common Flash Interface (CFI) to query the flash devices,
so it requires that the flash device be CFI compliant. The layout of the flash devices to form
the total memory interface width is also important. The following table lists the supported
flash layouts and configurations. If your flash layout does not match a configuration in
Table 14-1 you must then customize the flash programming session. Refer to “Customizing
Flash Programming” on page 191.

The physical layout, geometry information, and other logical information, such as
command sets, are determined using the CFI. The flash programmer can be used on flash
devices that use the CFI-defined command sets only. The CFI-defined command sets are
listed in Table 14-2.

By default, the flash programmer supports only flash devices which have a sector map that
matches what is stored in the CFI table. Some flash vendors have top-boot and
bottom-boot flash devices; the same common CFI table is used for both. The field that
identifies the boot topology of the current device is not part of the CFI standard.
Consequently, the flash programmer encounters issues with such flash devices.

Refer to “Customizing Flash Programming” on page 191 for more information about how
to work around the boot topology identification field.

The following assumptions and behaviors apply to programming flash hardware:

• Flash hardware is assumed to be in a reset state when programming is attempted by
the flash programming stub.

• Flash sectors are assumed to be in an unprotected state.

Table 14-1: Supported Flash Configurations

x8 only capable device forming an 8-bit data bus

x16/x8 capable device in x8 mode forming an 8-bit data bus

x32/x8 capable device in x8 mode forming an 8-bit data bus

x16/x8 capable device in x16 mode forming a 16-bit data bus

Paired x8 only capable devices forming a 16-bit data bus

Quad x8 only capable devices forming a 32-bit data bus

Paired x16 only capable devices in x16 mode, forming a 32-bit data bus

x32 /x8 capable device in x32 mode, forming a 32-bit data bus

x32 only capable device forming a 32-bit data bus

Table 14-2: CFI Defined Command Sets

CFI
Vendor ID

OEM Sponsor Interface Name

1 Intel/Sharp Intel/Sharp Extended Command Set

2 AMD/Fujitsu AMD/Fujitsu Standard Command Set

3 Intel Intel Standard Command Set

4 AMD/Fujitsu AMD/Fujitsu Extended Command Set

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 191
UG111 July 6, 2011

Flash Programmer Performance

The flash programming stub does not attempt to unlock or initialize the flash, and reports
an error if the flash hardware is not in a ready and unlocked state.

Note: The flash programmer does not currently support dual-die flash devices which require every
flash command to be offset with a Device Base Address (DBA) value. Examples of such dual-die
devices are the 512 Mbit density devices in the Intel StrataFlash® Embedded Memory (P30) family of
flash memory.

Flash Programmer Performance
The following factors determine the speed at which an image can be programmed:

• The flash programmer communicates with the in-system programming stub using
JTAG. Consequently, the inherent bandwidth of the JTAG cable is, in most cases, the
bottleneck in programming flash.

• When it is available on the system, it is best to use external memory as scratch
memory. This will allow the debugger to download the flash image data without
having to stream it in multiple iterations.

• It is desirable to implement the fastest configuration possible when using the
MicroBlaze soft processor. You can improve programming speed by turning on
features such as the barrel shifter and multiplier.

Customizing Flash Programming
Hardware incompatibilities, flash command set incompatibilities, or memory size
constraints are considerations when programming flash. This section briefly describes the
flash programming algorithm, so that, if necessary, you can plug in and replace elements of
the flow to customize it for your particular setup.

When you click the Program Flash button and select a hardware platform project, the
following sequence of events occurs:

1. A flash.tcl file is written out to the <hardware platform project>/
settings folder. This contains parameters that describe the flash programming
session and is used by the flash programmer Tcl file.

2. XPS launches XMD with the flash programmer Tcl script, executing it with a command
such as xmd -nx -hw <hardware platform project>/system.xml -tcl
flashwriter.tcl <hardware platform project>/settings/flash.tcl.
This flash programmer host Tcl comes from the installation. You can replace the
default flashwriter.tcl with your own driver Tcl to run when you click the
Program Flash button by placing a copy of the flashwriter.tcl file in your
<hardware platform project>/tmp directory. XMD searches for the specified
file in your project directory before looking for it in the installation.

3. The flash programmer Tcl script copies the flash programmer application source files
from the installation to the <hardware platform project>/tmp/ folder. It
compiles the application locally to execute from the scratch memory address you
specified in the dialog box. You can compile your own flash writer sources by
modifying your local copy of the flashwriter.tcl script to compile your own
sources instead of those from the installation.

http://www.xilinx.com

192 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 14: Flash Memory Programming

4. The script downloads the flash programmer to the processor and communicates with
the flash programmer through mailboxes in memory.
In other words, it writes parameters to the memory locations corresponding to
variables in the flash programmer address space and lets the flash programmer
execute.

5. The script waits for the flash programmer to invoke a callback function at the end of
each operation and stops the application at the callback function by setting a
breakpoint at the beginning of the function. When the flash programmer stops, the
host Tcl processes the results and continues with more commands as required.

6. While running, the flash programmer erases only as many flash blocks as required in
which to store the image.

7. The flashwriter allocates a streaming buffer (based on the amount of scratch pad
memory available) and iteratively stream programs the image file. The stream buffer is
allocated within the flashwriter. If there is enough scratch memory to hold the entire
image, the programming can be completed quickly.

8. When the programming is done, the flash programmer Tcl sends an exit command to
the flash programmer and terminates the XMD session.

The following is an example set of steps to perform for a custom flow:

XPS stores the flash settings and temporary files in the hardware platform project
directory. If multiple hardware projects exist in the workspace, the flash programmer
dialog box prompts you to select the hardware platform. In the following procedure,
<XPS project> refers to this hardware platform project.

1. Create a new subdirectory called tmp under the <XPS project> directory.

Note: If this folder already exists, skip this step.

2. Copy flashwriter.tcl from <edk_install>/data/xmd/flashwriter.tcl to
your <XPS project>/tmp directory.

3. Create a sw_services directory within your project.

4. Copy the <edk_install>/data/xmd/flashwriter directory to the /sw_services
directory.

5. Change the following line in the flashwriter.tcl file copy:

set flashwriter_src [file join $xilinx_edk "data" "xmd" "flashwriter"
"src"]

to

set flashwriter_src [file join “..” "sw_services" "flashwriter" "src"]

From this point when you use the Program Flash Memory dialog box in XPS , the flash
programming tools use the script and the sources you copied into the sw_services
directory. You can customize these as required.

If you prefer to not have the GUI overwrite the <XPS project>/settings/flash.tcl
file, run the command xmd -nx -hw system.xml -tcl tmp/flashwriter.tcl
settings/flash.tcl on the command line to use only the values that you specify in
the flash.tcl file.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 193
UG111 July 6, 2011

Customizing Flash Programming

Table 14-3 lists the available parameters in the <XPS project> directory.

Manual Conversion of ELF Files to SREC for Bootloader Applications
If you want to create SREC images of your ELF file manually instead of using the
auto-convert feature in XPS you can use the command line tools. For example, to create a
final software application image named myexecutable.elf, navigate in the console of
your operating system (Cygwin on Windows platforms) to the folder containing this ELF
file and type the following:

<platform>-objcopy -O srec myexecutable.elf myexecutable.srec

where <platform> is powerpc-eabi if your processor is a PowerPC 405 or 440
processor, or mb if your processor is a MicroBlaze.

This creates an SREC file that you can then use as appropriate. The utilities mb-objcopy
and powerpc-eabi-objcopy are GNU binaries that ship with EDK.

For information about creating a bootloader from within a GUI, see the Xilinx Platform
Studio Help. Appendix E, Additional Resources contains links to the help.

Table 14-3: Flash Programming Parameters

Variable Function

EXTRA_COMPILER_FLAGS For MicroBlaze, specify any compiler flags required
to turn on support for hardware features. For
example, if you have the hardware multiplier
enabled, add -mno-xl-soft-mul here. Do not set
this variable for the PowerPC processors.

FLASH_BASEADDR The base address of the flash memory bank.

FLASH_BOOT_CONFIG Refer to “Handling Flash Devices with Conflicting
Sector Layouts” on page 194.

FLASH_FILE A string containing the full path of the file to be
programmed.

FLASH_PROG_OFFSET The offset within the flash memory bank at which the
programming should be done.

PROC_INSTANCE The instance name of the processor used for
programming.

SCRATCH_BASEADDR The base address of the scratch memory used during
programming.

SCRATCH_LEN The length of the scratch memory in bytes.

TARGET_TYPE The type of the processor instance used for
programming: MicroBlaze or PowerPC®
(405 or 440) processor.

XILINX_PLATFORM_FLASH To enable use of the Xilinx Platform Flash XL flash
device.

XMD_CONNECT The connect command used in XMD to connect to the
processor.

http://www.xilinx.com

194 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 14: Flash Memory Programming

Operational Characteristics and Workarounds

Handling Xilinx Platform Flash Modes

Xilinx Platform Flash memory devices initialize in synchronous mode. You must set these
devices to asynchronous mode before performing device operations. When using the
Xilinx Software Development Kit, you can select a check box to inform the Flash
programming interface to treat the target device as Xilinx Platform Flash. This setting
enables an internal workaround in the programmer that sets the device to asynchronous
mode before programming.

Handling Flash Devices with 0xF0 as the Read-Reset Command

The CFI specification defines the read-reset command as 0xFF / 0xF0. By default the flash
programmer uses the 0xFF read-reset command. Certain devices require 0xF0 as the
read-reset command, however, the flash programmer is unable to determine this
automatically. Consequently, you might encounter issues when programming newer
devices.

In that event of an error occurring follow the documented steps inCustomizing Flash
Programming, page 191, then modify the #define FRR_CMD 0xFF in the cfi.c file to
#define FRR_CMD 0xF0.

Handling Flash Devices with Conflicting Sector Layouts

Some flash vendors store a different sector map in the CFI table and another (based on the
boot topology of the flash device) in hardware. Because the boot topology information is
not standardized in CFI, the flash programmer cannot determine the layout of your
particular flash device.

If your flash hardware has a sector layout that is different from the one specified in the CFI
table for the device, then you must create a custom flash programming flow. You must
determine whether the device is a top-boot or a bottom-boot flash device.

In a top-boot flash device, the smallest sectors are the last sectors in the flash. In a
bottom-boot flash device, the smallest sectors are the first sectors in the flash layout.

After you determine the flash device type, you must copy over the files to create a custom
programming flow.

• If you have a bottom-boot flash, add the following line in your /etc/
flash_params.tcl file:

set FLASH_BOOT_CONFIG BOTTOM_BOOT_FLASH

• If you have a top-boot flash, add the following line in your /etc/flash_params.tcl
file:

set FLASH_BOOT_CONFIG TOP_BOOT_FLASH

Next, run the flash programming from the command line with the following command:

xmd -tcl flashwriter.tcl

Internally, these variables cause the flash programmer to rearrange the sector map
according to the boot topology.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 195
UG111 July 6, 2011

Customizing Flash Programming

Data Polling Algorithm for AMD/Fujitsu Command Set

The DQ7 data polling algorithm is used during erasure and programming operations on
flash hardware that supports the AMD/Fujitsu command set.

Certain flash devices are known to use a configuration register to control the behavior of
the data polling DQ7 bit. Some known flash devices that offer this configuration register
feature are: AT49BV322A(T), AT49BV162A(T), and AT49BV163A(T).

It is required that DQ7 output 0 during an erase operation and 1 at the end of the
operation. Similarly, DQ7 must output inverted data during programming and the actual
data after programming is done. If your flash hardware has a different configuration when
using the Program Flash Memory dialog box, then the programming could fail.

Refer to your flash hardware datasheet for information about how to reset the
configuration so that DQ7 has the appropriate outputs upon erasure and ending.

http://www.xilinx.com

196 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 14: Flash Memory Programming

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 197
UG111 July 6, 2011

Chapter 15

Version Management Tools (revup)

This chapter introduces the version management tools in XPS.

Overview
When you open an older project with the current version of EDK, the Format Revision Tool
automatically performs format changes to an existing EDK project and makes that project
compatible with the current version.

Backups of existing files, such as Xilinx® Microprocessor Project (XMP) and
Microprocessor Hardware Specification (MHS), are performed before the format changes
are applied. These backup files are stored in the /revup folder in the project directory.

Updates to IP and drivers, if any, are handled by the Version Management wizard, which
launches after the format revision tool runs. The format revision tool does not modify the
IPs used in the MHS design; it only updates the syntax, so the project can be opened with
the new tools.

Format Revision Tool Backup and Update Processes
The Format Revision tool creates a backup of your files and a file name extension that
specifies the EDK release number. For example, EDK 11.1 files are saved with a .111
extension and then modified for EDK 12.x tools.

13.2 Changes
Tools are updated to reflect revision 13.2.

13.1 Changes
Tools are updated to reflect revision 13.1.

12.1 Changes
Tools are updated to reflect revision 12.1.

11.4 Changes
Tools are updated to reflect revision 11.4.

http://www.xilinx.com

198 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 15: Version Management Tools (revup)

11.3 Changes
Tools are updated to reflect revision 11.3.

• [Updates GenACE] A microblaze_v72 option was added to the - cpu_version
XMD debug device command in the Genace File Options in Table 13-2, page 180.

• [Updates XMD]

• An option to specify the FPGA device was added to the Program Control Options
in Table 10-18, page 166.

• A note was added to the dow command to clarify that only those segments of an
ELF file that are marked as LOAD are executed.

• References to ppc440 mode for ISS were removed.

• [Update BFM] The Bus Functional Model was added as a chapter of this document.

• [Update Flash Programmer] A work-around was added to allow the user to change a
flash program from synchronous to asynchronous in the TCL file.

11.2 Changes
Tools are updated to reflect revision 11.2.

• [Updates Flash Memory] The set/reset command documentation updated to include
information regarding new flash devices that require that the cfi.c file be modified.

• [Updates -configdevice option] The -configdevice option documentation
changed to reflect that the option is available in the OPT file only; -configdevice is
not available as a command line option.

11.1 Changes
Tools are updated to reflect revision 11.1.

• [Updates XMP] The following tags were removed from the XMP in 11.1:

• FpgaImpMode - Used to select between Xplorer and xflow flows. Beginning with
release 11.1, Xplorer is no longer supported in EDK. Instead, instantiate the
project in the ISE® Project Navigator to use Xplorer flow.

• EnableResetOptimization - ISE tools no longer require this setting to improve
timing.

• InsertNoPads, TopInst, NPL File - These settings are removed from the XMP.

• LockAddr, ICacheAddr, DCacheAddr - These settings for Address Generator
in the GUI were removed.

• Simulator, MixLangSim - Simulator settings are now applied across all XPS
projects. The simulator settings can be set in Edit > Preferences in the XPS GUI.

• [Updates Simgen]

• The CompEDKLib was removed and replaced by Compxlib.

• -E switch was deprecated.

• [Updates Command Line] The enable_reset_optimization option is obsoleted.

• [Updates PsfUtility]

• The -tbus suboption was obsoleted.

• the KIND_OF_* reserved generics were obsoleted.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 199
UG111 July 6, 2011

Format Revision Tool Backup and Update Processes

10.1 Changes
Tools are updated to reflect revision 10.1. The following tags were removed from the XMP
file in 10.1: UseProjNav, PnImportBitFile, PnImportBmmFile.

9.2i Changes
• [Updates XMP] The XMP tag, EnableResetOptimization, was added and its value

is set to 0 (false). If it is set to true, it will improve timing on the reset signal.

• [Updates XMP] The XMP tag, EnableParTimingError, was added and its value is
set to 0 (false). If it set to 1(true), the tools will error out if timing conditions are not
met after Place and Route.

Changes in 9.1i
• [Updates XMP] Simulation libraries path are removed from the project. Simulation

library paths are now applied across all the XPS projects for the machine.

• [Updates XMP] Stack and Heap size for custom linker scripts can no longer be
provided in the compiler settings dialog. These have to be specified in the custom
linker script. Stack and Heap size can be provided through the compiler settings
dialog for default linker scripts.

Changes in 8.2i
• [Updates MHS] For submodule designs, the Format Revision Tool expands any I/O

ports into individual _I, _O, and _T ports. This aligns with changes to Platgen; any
buffers in the generated stub HDL are not instantiated, and the interface of the
generated HDL stays the same as that in the MHS file.

• [Updates MHS] The Format Revision Tool changes the value of SIGIS for top-level
ports from DCMCLK to CLK. The value DCMCLK has been deprecated.

• The preprocessor, assembler, and linker specific options for a software application are
moved and included among the Advanced Compiler Options settings; individual
options have been eliminated.

• [Updates XMP] The synthesis tool setting is removed.

Changes in 8.1i
• [Update MSS] The PROCINST PARAMETER is added to LIBRARY blocks, which

ensures that a given library can be configured differently across different processor
instances in the system.

• [Updates Linkerscript] MicroBlaze™-based application linker script updates are
provided to allow the addition of new vector sections that support CRT changes.

• [Updates Linkerscript] MicroBlaze-based application linker script updates are
provided to allow the addition of new sections that support C++.

• [Updates Linkerscript] PowerPC® processor based application linker script updates
are provided to allow the addition of new sections that support C++.

• [No Project Updates] For MicroBlaze applications, the program start address is
changed from 0x0 to 0x50 to accommodate the change in size of xmdstub.elf.

• [No Project Updates] For projects that use the Spartan®-3 FPGA architecture, there is a
change to bitgen.ut.

http://www.xilinx.com

200 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 15: Version Management Tools (revup)

Changes in 7.1i
[Updates Linkerscript] PowerPC processor based application linker script updates are
provided to allow for the addition of new sections that support GCC 3.4.1 changes.

Changes in 6.3i
[Updates MHS] The EDGE and LEVEL subproperties on top-level interrupt ports are
consolidated into the SENSITIVITY subproperty in the MHS file.

Changes in 6.2i
• [No Project Updates] The mb-gcc compiler option related to the hard multiplier is

removed. This is based only on FPGA architecture.

• [Updates MSS] In the MSS file, the PROCESSOR block is split into two blocks,
PROCESSOR and OS. In conjunction with this change:

• The Linux and VxWorks LIBRARY blocks are renamed to reflect their new status
as OS blocks.

• With the introduction of the OS block, all peripherals used with Linux and
VxWorks operating systems are specified using a CONNECTED_PERIPHS
parameter, which replaces the CONNECT_TO parameter used in earlier versions.
When the Format Revision Tool runs, it collects old CONNECT_TO driver parameter
peripherals and collates them in the CONNECTED_PERIPHS parameter of the OS
block.

• In the MSS file PROCESSOR block, the following parameters are removed: LEVEL,
EXECUTABLE, SHIFTER, and DEFAULT_INIT.

• In the PROCESSOR block, the DEBUG_PERIPHERAL is renamed
XMDSTUB_PERIPHERAL.

Command Line Option for the Format Revision Tool
Run the Format Revision tool from the command line as follows:

revup system.xmp

The following option is supported:

-h (Help) – Displays the usage menu and then quits.

The Version Management Wizard
When an older project is opened for the first time with the new version of EDK, the Format
Revision Tool runs, and the Version Management Wizard opens. Some IP cores might have
been obsoleted or updated in the repository since the project was last processed, so the
wizard outlines the modifications, provides the option to automatically upgrade to the
latest backward-compatible revision or provides more information on how to upgrade to
the latest version of the core. The wizard also gives you the option to make similar updates
for drivers, if required. Backup copies of the MHS and MSS files are created before the
project is modified. You may choose to cancel the wizard at any time without modifying
the files, but, as a result, it may not be possible to run the project with the current version
of XPS.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 201
UG111 July 6, 2011

Chapter 16

Microprocessor Peripheral Definition
Translation tool (MPDX)

XBD2
The Xilinx® Base Description (XBD) file defines the supported interfaces of a given board,
system, or sub-system. XBD enables you to create a system-level design through the Base
System Builder (BSB) in Xilinx Platform Studio (XPS), without the requirement of reading
a board schematic or making pin constraint assignments. The following information is
included for a given board: FPGA architecture/family/speed grade, I/O list, I/O
configuration, and peripheral constraints.

The BSB reads IP-XACT natively when targeting Advanced eXtensible Interface (AXI)
designs. The IP-XACT-based board file set is referenced as XBD2. XBD2 models the FPGA
device in IP-XACT as a component XML description which defines the interfaces available
on the board. This allows designers familiar with IP-XACT to define a data-driven
mechanism leveraging the BSB system data to assemble designs.

For board designers not familiar with IP-XACT, the board description can be captured in
an ASCII text file similar to the Microprocessor Peripheral Definition (MPD) format
defined to capture a pcore description. This MPD file is known as the Board-MPD. It
includes a translation tool, MPDX, which generates the IP-XACT files on disk for the BSB
repository.

Constraints are captured in a Comma Separated Value (CSV) file and a Tcl file that you
provide. EDK provides the CSV file to capture pin constraints and the Tcl file to capture
more complex constraints such as timing constraints.

Note: Throughout the document, any reference to Board-MPD is the input to MPDX translation tool,
and reference to XBD2 (IP-XACT) is the output of MPDX.

The XBD2 file contains a number of spirit:busInterface elements, each corresponding to a
hardware module on the board. The type of the module is specified using the VLNV
reference of the spirit:busDefinition. The VLNV string is used to match an IP that can
communicate with this module.

Table 16-1, page 202 defines the migration of XBD IO_INTERFACE definitions to IP-XACT
bus definition XML equivalents. All XBD2 component XML files reference the bus
definitions outlined in this table. A V|L|N|V (VLNV) reference is provided, where:

• V is the vendor.

• L is the library catalog of the vendor.

• N is the name of the board.

• V is the board revision number.

http://www.xilinx.com

202 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 16: Microprocessor Peripheral Definition Translation tool (MPDX)

MPDX
Given a Board MPD input file, MPDX generates the IP-XACT equivalent repository files
for BSB.

BSB requires two IP-XACT files to capture the design requirements. One file is the RTL
description of the IO interfaces that capture the port direction, port width, and port names.
The RTL filename is <board>.xml.

Use the following command to generate the file:

% mpdx -mpd_data board -ipx_data rtl board.mpd

The other file is BSB_Component.xml, which captures a high-level representation of the
system.

Use the following command to generate the file:

% mpdx -mpd_data board -ipx_data hurri board.mpd

Table 16-1: IO_INTERFACE Details

XBD Feature IOTYPEXBD2 IP-XACT Equivalent Comments

XIL_CLOCK_V1 xilinx.com|bsb_lib.rtl_busdefs|clock|1.0 Clock

XIL_RESET_V1 xilinx.com|bsb_lib.rtl_busdefs|reset|1.0 Reset

XIL_TEMAC_V1 xilinx.com|bsb_lib.rtl_busdefs|gmii|1.0 GMII

XIL_IIC_V1 xilinx.com|bsb_lib.rtl_busdefs|i2c|1.0 IIC

XIL_MEMORY_V1 xilinx.com|bsb_lib.rtl_busdefs|ddr3_sdram1.0 DDR3 SDRAM

XIL_MEMORY_V1 xilinx.com|bsb_lib.rtl_busdefs|ddr2_sdram|1.0 DDR2 SDRAM

XIL_PCI_ARBITER_V1 Not supported PCI - arbitration_group

XIL_PCIE_V1 Not supported PCI Express

XIL_CPUDEBUG_V1 Not supported JTAG

XIL_TRACE_V1 N/A

XIL_ETHERNET_V1 xilinx.com|bsb_lib.rtl_busdefs|mii|1.0 MII

XIL_GPIO_V1 xilinx.com|bsb_lib.rtl_busdefs|gpio|1.0 GPIO

XIL_EMC_V1 xilinx.com|bsb_lib.rtl_busdefs|flash_nor|1.0 NOR flash

XIL_PS2 _V1 N/A

XIL_SPI_V1 xilinx.com|bsb_lib.rtl_busdefs|spi|1.0

XIL_SYSACE_V1 xilinx.com|bsb_lib.rtl_busdefs|sysace|1.0

XIL_TFT_V1 N/A

XIL_UART_V1 xilinx.com|bsb_lib.rtl_busdefs|uart|1.0 UART

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 203
UG111 July 6, 2011

XBD2

Board MPD
The following are detailed descriptions and examples of each element in the Board MPD.

On parameters and ports, a logical to physical mapping is defined with the IO_IS and
IO_IF tags. The mapping names are listed in the IP-XACT description of the high level
components. Some naming conventions are listed here.

• Parameter names: <interfaceName>_paramName

• Port names: <interfaceName>_portName

• IO_IF tag: <interfaceName>

• The IO_IS is taken from the spirit:id defined for the parameter within the high
level component.

• The high level IP-XACT component files reside in $XILINX_EDK/data/wizards/
ipxact/hurri/xilinx.com/components/.

Board Options
The VLNV reference is used as follows:

• V is the name of the vendor. Tools use this element to sort various board files based
on vendor name.

• L is the library catalog of the vendor.

• N is the name of the board. This is the name the tools display for you when a board is
selected.

• V is the board revision number.

An example is:

OPTION VLNV = xilinx.com|bsb_lib.boards|sp605|C

Reference Clock
IO_INTERFACE IO_IF = gclk, IO_TYPE =
xilinx.com|bsb_lib.rtl_busdefs|clock|1.0
PARAMETER refclk_frequency_0 = 200000000, DT = LONG,
ASSIGNMENT=CONSTANT, IO_IF =
clock_0, IO_IS = frequency
PORT GCLK = "", DIR = I, IO_IF = gclk, IO_IS = CLK, SIGIS=CLK,
ASSIGNMENT=REQUIRE

Reference Reset
IO_INTERFACE IO_IF = rst_1, IO_TYPE =
xilinx.com|bsb_lib.rtl_busdefs|reset|1.0
PARAMETER reset_polarity = 1, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
reset_0, IO_IS = RST_POLARITY
PORT RESET_N = "", DIR = I, IO_IF = rst_1, IO_IS = RESET, SIGIS=RST,
ASSIGNMENT=REQUIRE

http://www.xilinx.com

204 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 16: Microprocessor Peripheral Definition Translation tool (MPDX)

UART
IO_INTERFACE IO_IF = RS232_Uart_1, IO_TYPE =
xilinx.com|bsb_lib.rtl_busdefs|uart|1.0
PORT RS232_Uart_1_sout = "", DIR = O, IO_IF = RS232_Uart_1, IO_IS = sout
PORT RS232_Uart_1_sin = "", DIR = I, IO_IF = RS232_Uart_1, IO_IS = sin

GPIO
IO_INTERFACE IO_IF = DIP_Switches_8Bits, IO_TYPE =
xilinx.com|bsb_lib.rtl_busdefs|gpio|1.0
PARAMETER DIP_Switches_8Bits_GPIO_WIDTH_ID = 8, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = DIP_Switches_8Bits, IO_IS = C_GPIO_WIDTH
PARAMETER DIP_Switches_4Bits_ALL_INPUTS_ID = 1, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = DIP_Switches_8Bits, IO_IS = C_ALL_INPUTS
PARAMETER DIP_Switches_4Bits_IS_DUAL_ID = 0, DT = STRING, IO_IF =
DIP_Switches_4Bits, IO_IS = C_IS_DUAL
PORT DIP_Switches_8Bits_TRI_I = "", DIR = I, VEC = [7:0], IO_IF =
DIP_Switches_8Bits, IO_IS = TRI_I

DDR2 SDRAM
IO_INTERFACE IO_IF = MCB_DDR2, IO_TYPE =
xilinx.com|bsb_lib.rtl_busdefs|ddr2_sdram|1.0
PARAMETER C_MEM_PARTNO_ID = EDE1116AXXX-8E, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = MCB_DDR2, IO_IS = C_MEM_PARTNO
PARAMETER C_BYPASS_CORE_UCF_ID = 0, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_BYPASS_CORE_UCF
PARAMETER C_MEM_TRAS_ID = 45000, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_TRAS
PARAMETER C_MEM_TRCD_ID = 12500, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_TRCD
PARAMETER C_MEM_TRFC_ID = 127500, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_TRFC
PARAMETER C_MEM_TRP_ID = 12500, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF
= MCB_DDR2, IO_IS = C_MEM_TRP
PARAMETER C_MEM_TRP_ID = 12500, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF
= MCB_DDR2, IO_IS = C_MEM_TRP
PARAMETER C_MEM_TYPE_ID = DDR2, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF
= MCB_DDR2, IO_IS = C_MEM_TYPE
PARAMETER C_MEM_BURST_LEN_ID = 4, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_BURST_LEN
PARAMETER C_MEM_CAS_LATENCY_ID = 5, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_CAS_LATENCY
PARAMETER C_MEM_DDR2_RTT_ID = 50OHMS, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MEM_DDR2_RTT
PARAMETER C_MEM_DDR2_DIFF_DQS_EN_ID = YES, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = MCB_DDR2, IO_IS = C_MEM_DDR2_DIFF_DQS_EN
PARAMETER C_MCB_RZQ_LOC_ID = L6, DT = STRING, ASSIGNMENT=CONSTANT,
IO_IF = MCB_DDR2, IO_IS = C_MCB_RZQ_LOCPARAMETER C_MCB_ZIO_LOC_ID = C2,
DT = STRING, ASSIGNMENT=CONSTANT, IO_IF = MCB_DDR2, IO_IS =
C_MCB_ZIO_LOCPARAMETER MEMORY_0_BASEADDR_ID = 0x00000000, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = MCB_DDR2, IO_IS = MEMORY_0_BASEADDR
PARAMETER MEMORY_0_HIGHADDR_ID = 0x07ffffff, DT = STRING,
ASSIGNMENT=CONSTANT, IO_IF = MCB_DDR2, IO_IS = MEMORY_0_HIGHADDR
PORT mcbx_dram_clk = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = clk
PORT mcbx_dram_clk_n = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = clk_n
PORT mcbx_dram_cke = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = cke

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 205
UG111 July 6, 2011

XBD2

PORT mcbx_dram_odt = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = odt
PORT mcbx_dram_ras_n = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = ras_n
PORT mcbx_dram_cas_n = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = cas_n
PORT mcbx_dram_we_n = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = we_n
PORT mcbx_dram_ldm = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = ldm
PORT mcbx_dram_udm = "", DIR = I, IO_IF = MCB_DDR2, IO_IS = udm
PORT mcbx_dram_ba = "", DIR = I, VEC = [2:0], IO_IF = MCB_DDR2, IO_IS =
ba
PORT mcbx_dram_addr = "", DIR = I, VEC = [12:0], IO_IF = MCB_DDR2, IO_IS
= addr
PORT mcbx_dram_dq = "", DIR = IO, VEC = [15:0], IO_IF = MCB_DDR2, IO_IS
= dq
PORT mcbx_dram_dqs = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = dqs
PORT mcbx_dram_dqs_n = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = dqs_n
PORT mcbx_dram_udqs = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = udqs
PORT mcbx_dram_udqs_n = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = udqs_n
PORT rzq = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = rzq
PORT zio = "", DIR = IO, IO_IF = MCB_DDR2, IO_IS = zio

NOR FLASH
IO_INTERFACE IO_IF = Linear_Flash, IO_TYPE = xilinx.com|bsb_lib.rtl_busdefs|flash_nor|1.0
PARAMETER Linear_Flash_PHY_TYPE_0 = Linear Flash, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = PHY_TYPE
PARAMETER Linear_Flash_MEM_WIDTH_0 = 16, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = MEM_WIDTH
PARAMETER Linear_Flash_MEM_SIZE_0 = 33554432, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = MEM_SIZE
PARAMETER Linear_Flash_TCEDV_PS_0 = 130000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = TCEDV_PS
PARAMETER Linear_Flash_TAVDV_PS_0 = 130000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = TAVDV_PS
PARAMETER Linear_Flash_THZCE_PS_0 = 35000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = THZCE_PS
PARAMETER Linear_Flash_THZOE_PS_0 = 7000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = THZOE_PS
PARAMETER Linear_Flash_TWC_PS_0 = 13000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = TWC_PS
PARAMETER Linear_Flash_TWP_PS_0 = 70000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = TWP_PS
PARAMETER Linear_Flash_TLZWE_PS_0 = 35000, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = TLZWE_PS
PARAMETER Linear_Flash_EXCLUSIVE = SPI_FLASH, DT = STRING, ASSIGNMENT=CONSTANT, IO_IF =
Linear_Flash, IO_IS = EXCLUSIVE
PORT Linear_Flash_address = "", DIR = O, VEC = [0:23], IO_IF = Linear_Flash, IO_IS = address
PORT Linear_Flash_data = "", DIR = IO, VEC = [0:15], IO_IF = Linear_Flash, IO_IS = data
PORT Linear_Flash_ce_n = "", DIR = O, IO_IF = Linear_Flash, IO_IS = ce_n
PORT Linear_Flash_oe_n = "", DIR = O, IO_IF = Linear_Flash, IO_IS = oe_n
PORT Linear_Flash_we_n = "", DIR = O, IO_IF = Linear_Flash, IO_IS = we_n
PORT Linear_Flash_reset = "", DIR = O, IO_IF = Linear_Flash, IO_IS = reset
PORT Linear_Flash_adv_n = "", DIR = O, IO_IF = Linear_Flash, IO_IS = adv_n

http://www.xilinx.com

206 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 16: Microprocessor Peripheral Definition Translation tool (MPDX)

Define Constraints
Constraints are captured in a user-provided CSV file and a Tcl file. The CSV file contains
pin constraints and the Tcl file contains more complex constraints like timing constraints.
The file names are:

• CSV file: <board>_pins.csv

• Tcl file: <board>.tcl

XBD2 constraint specification is done with TGI calls to IP-XACT data model that explores
the topology of the design. Pin location constraints are associated with the port element
within the model capture of component XML. Constraints are in UCF format.

Figure 16-1 illustrates the constraint delivery model.

CSV Pin File
Designers often use a CSV file during FPGA design to capture pin locations. The BSB
framework uses the following as a standard:

• The CVS defines two mandatory columns: Pin Name, and Pin Index.

• Other columns, such as LOC, are optional.

• You can add or remove additional pin properties by adding or removing a column.

The Pin Name must be present and the field must match the name used in the Board MPD
file. The Pin Index column must be present and can have an empty field.

Pin Name,Pin Index,LOC,DRIVE,IOSTANDARD,SLEW,TIG
CLK_P,,K15,,,,
CLK_N,,K16,,,,
RESET,,N4,,,,TIG
RS232_Uart_1_sout,,L12,,,,
RS232_Uart_1_sin,,K14,,,,

Figure X-Ref Target - Figure 16-1

Figure 16-1: Constraint Delivery Model

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 207
UG111 July 6, 2011

Define Constraints

RS232_Uart_1_ctsN,,U10,,,,
RS232_Uart_1_rtsN,,T5,,,,
DIP_Switches_4Bits_TRI_I,0,D14,,LVCMOS25,,
DIP_Switches_4Bits_TRI_I,1,E12,,LVCMOS25,,
DIP_Switches_4Bits_TRI_I,2,F12,,LVCMOS25,,
DIP_Switches_4Bits_TRI_I,3,V13,,LVCMOS25,,

TCL
The BSB framework supports TGI calls through Tcl. TGI calls are defined in IP-XACT
documentation.

Tcl and ConstraintMan

bsb::definePinAttribute { nCHandle strPinName strAttName strAttValue }

Where:

- nCHandle—Is the instance pointer of ConstraintManager.

- strPinName—Is a concatenation of Pin Name and Pin Index fields
defined in the CSV. For example, "DIP_Switches_4Bits_TRI_I[0].

- strAttName—Is the attribute name. For example: LOC.

- strAttValue—Is the attribute value.

bsb:: getRepoDirPath { nCHandle }

Where:

- nCHandle—Is the instance pointer of ConstraintManager.

bsb::readPinData { strCsvPinFile }

Where:

- strCsvPinFile—Is the file that defines the CSV used for pins.

bsb::registerPinData { nCHandle nComIdXbd nDesignId strCsvFilePath }

- nCHandle —Is the instance pointer of ConstraintManager.

- nComIdXbd—Is the board MPD in memory.

- nDesignID —Is the HURRI design constructed by BSB.

- strCsvFilePath—Is the path to the CSV file.

bsb::registerRawUcfFile { nCHandle strUcfFilePath }

- nCHandle—Is the instance pointer of ConstraintManager.

- strUcfFilePath—Is the path to the UCF.

bsb::registerRawUcfFileForBusIf { nCHandle nDesignId vecBusIf }

- nCHandle —Is the instance pointer of ConstraintManager.

- nDesignID —Is the HURRI design constructed by BSB.

http://www.xilinx.com

208 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 6, 2011

Chapter 16: Microprocessor Peripheral Definition Translation tool (MPDX)

Example

The following example shows how to use the CSV pin file in a script:

nCHandle is instance pointer of ConstraintManager
nComIdXbd is the SP605
nDesignID is the HURRI design

proc RunUcfConstraintGen { nCHandle nComIdXbd nDesignId } {
 set nResult 0

 if { $nCHandle eq "" } {
 return $nResult
 }

 if { $nComIdXbd eq "" } {
 return $nResult
 }

 if { $nDesignId eq "" } {
 return $nResult
 }

 set bApiStatus [tgi::init "1.0" "fail" "Client connected"]
 if { $bApiStatus == 0 } {
 return 1
 }

 # Repository path
 set strRepoDirPath [bsb::getRepoDirPath $nCHandle]

 # Pin Constraints
 set strCsvFilePath [file join $strRepoDirPath "sp605_pins.csv"]

 set nResult [\
 bsb::registerPinData $nCHandle $nComIdXbd $nDesignId
$strCsvFilePath \
]
 if { $nResult != 0 } {
 return $nResult
 }

 return $nResult
}

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 209
UG111 July 06, 2011

Appendix A

GNU Utilities

This appendix describes the GNU utilities available for use with EDK.

General Purpose Utility for MicroBlaze and PowerPC

cpp
Pre-processor for C and C++ utilities. The preprocessor is invoked automatically by GNU
Compiler Collection (GCC) and implements directives such as file-include and define.

gcov
This is a program used in conjunction with GCC to profile and analyze test coverage of
programs. It can also be used with the gprof profiling program.

Note: The gcov utility is not supported by XPS or SDK, but is provided as is for use if you want to
roll your own coverage flows.

Utilities Specific to MicroBlaze and PowerPC
Utilities specific to MicroBlaze™ have the prefix “mb-,” as shown in the following
program names. The PowerPC® processor versions of the programs are prefixed with
“powerpc-eabi.”

mb-addr2line
This program uses debugging information in the executable to translate a program address
into a corresponding line number and file name.

mb-ar
This program creates, modifies, and extracts files from archives. An archive is a file that
contains one or more other files, typically object files for libraries.

mb-as
This is the assembler program.

http://www.xilinx.com

210 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix A: GNU Utilities

mb-c++
This is the same cross compiler as mb-gcc, invoked with the programming language set to
C++. This is the same as mb-g++.

mb-c++filt
This program performs name demangling for C++ and Java function names in assembly
listings.

mb-g++
This is the same cross compiler as mb-gcc, invoked with the programming language set to
C++. This is the same as mb-c++.

mb-gasp
This is the macro preprocessor for the assembler program.

mb-gcc
This is the cross compiler for C and C++ programs. It automatically identifies the
programming language used based on the file extension.

mb-gdb
This is the debugger for programs.

mb-gprof
This is a profiling program that allows you to analyze how much time is spent in each part
of your program. It is useful for optimizing run time.

mb-ld
This is the linker program. It combines library and object files, performing any relocation
necessary, and generates an executable file.

mb-nm
This program lists the symbols in an object file.

mb-objcopy
This program translates the contents of an object file from one format to another.

mb-objdump
This program displays information about an object file. This is very useful in debugging
programs, and is typically used to verify that the correct utilities and data are in the correct
memory location.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 211
UG111 July 06, 2011

Other Programs and Files

mb-ranlib
This program creates an index for an archive file, and adds this index to the archive file
itself. This allows the linker to speed up the process of linking to the library represented by
the archive.

mb-readelf
This program displays information about an Executable Linked Format (ELF) file.

mb-size
This program lists the size of each section in the object file. This is useful to determine the
static memory requirements for utilities and data.

mb-strings
This is a useful program for determining the contents of binary files. It lists the strings of
printable characters in an object file.

mb-strip
This program removes all symbols from object files. It can be used to reduce the size of the
file, and to prevent others from viewing the symbolic information in the file.

Other Programs and Files
The following Tcl and Tk shells are invoked by various front-end programs:

• cygitclsh30

• cygitkwish30

• cygtclsh80

• cygwish80

• tix4180

http://www.xilinx.com

212 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix A: GNU Utilities

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 213
UG111 July 06, 2011

Appendix B

Interrupt Management

This appendix describes how to set up interrupts in a Xilinx® embedded hardware system.
Also, this appendix describes the software flow of control during interrupts and the
software APIs for managing interrupts. To benefit from this description, you need to have
an understanding of hardware interrupts and their usefulness.

Hardware Setup
You must first wire the interrupts in your hardware so the processor receives interrupts.

The MicroBlaze™ processor has a single external interrupt port called Interrupt. The
PowerPC® 405 processor and the PowerPC 440 processor each have two ports for handling
interrupts. One port generates a critical category external interrupt and the other port
generates a non-critical category external interrupt, the difference between the two
categories being the priority level over other competing interrupts and exceptions in the
system. The critical category has the highest priority.

• On the PowerPC 405 processor, the critical and non-critical interrupt ports are named
EICC405CRITINPUTIRQ and EICC405EXTINPUTIRQ respectively.

• On the PowerPC 440 processor, the critical and non-critical interrupt ports are named
EICC440CRITIRQ and EICC440EXTIRQ respectively.

There are two ways to wire interrupts to a processor:

• The interrupt signal from the interrupting peripheral is directly connected to the
processor interrupt port. In this configuration, only one peripheral can interrupt the
processor.

• The interrupt signal from the interrupting peripheral is connected to an interrupt
controller core which in turn generates an interrupt on a signal connected to the
interrupt port on the processor. This allows multiple peripherals to send interrupt
signals to a processor. This is the more common method as there are usually more
than one peripheral on embedded systems that require access to the interrupt
function.

Figure B-1, page 214 illustrates the interrupt configurations.

http://www.xilinx.com

214 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

Software Setup and Interrupt Flow
Interrupts are typically vectored through multiple levels in the software platform before
the application interrupt handlers are executed. The Xilinx software platforms (Standalone
and Xilkernel) follow the interrupt flow shown in Figure B-2.

Figure B-1: Interrupt Configurations

Processor

Programmable
Timer

Interrupt
Port

Processor

Ethernet MAC

Interrupt
Port Interrupt

Controller

UART

Programmable
Timer

Interrupts without an

Interrupt Controller

Interrupts with an

Interrupt Controller

X11017

Figure B-2: Interrupt Flow

Software Platform/OS
Level Interrupt Vector

Lowest Level Interrupt
Vector

Optional Interrupt
Controller Vector Code

Application Interrupt
Handler

Located at an address that is either
fixed statically or fixed at run - time.
Usually, just a branch to the next

level vectoring code.

Save and restore of register context
happens here.

Vectoring of individual interrupts to
final handlers happens here.
Acknowledges to the interrupt

controller and statistics collection
are also options.

Final peripheral level or application
 level interrupt handling happens here.

X11018

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 215
UG111 July 06, 2011

Software Setup and Interrupt Flow

Interrupt Flow for MicroBlaze Systems
 MicroBlaze interrupts go through the following flow:

1. Interrupts have to be enabled on MicroBlaze by setting appropriate bits in the Machine
Status Registers (MSR).

2. Upon an external interrupt signal being raised, the processor first disables further
interrupts. Then, the processor jumps to an absolute, fixed address 0x0000_0010.

3. The software platform or OS provides vectoring code at this address which transfers
control to the main platform interrupt handler.

4. The platform interrupt handler saves all of the processor registers (that could be
clobbered further down) onto the current application stack.

5. The handler then transfers control to the next level handler. Because the next level
handler can be dependent on whether there is an interrupt controller in the system or
not, the handler consults an internal interrupt vectoring table to determine the
function address of the next level handler. It also consults the vectoring table for a
callback value that it must pass to the next level handler. Finally, the actual call is
made.

• On systems with an interrupt controller, the next level handler is the handler
provided by the interrupt controller driver. This handler queries the interrupt
controller for all active interrupts in the system. For each active interrupt, it
consults its internal vector table, which contains the user registered handler for
each interrupt line. If the user has not registered any handler, a default do-nothing
handler is registered. The registered handler for each interrupt gets invoked in
turn (in interrupt priority order).

• On systems without an interrupt controller, the next handler is the final interrupt
handler that the application wishes to execute.

6. The final interrupt handler for a particular interrupt typically queries the interrupting
peripheral and determines the cause for the interrupt. It does a series of actions that are
appropriate for the given peripheral and the cause for the interrupt. The handler is also
responsible for acknowledging the interrupt at the interrupting peripheral. After the
interrupt handler is finished, it returns back and the interrupt stack gets unwound all
the way back to the software platform level interrupt handler.

7. The platform level interrupt handler restores the registers it saved on the stack and
returns control back to the Program Counter (PC) location where the interrupt
occurred. The return instruction also enables interrupts again on the MicroBlaze
processor. The application resumes normal execution at this point.

Xilinx recommends that interrupt handlers be kept to a short duration and the bulk of
the work be left to the application to handle. This prevents long lockouts of other
(possibly higher priority) interrupts and is considered good system design.

Figure B-3, page 216 shows a MicroBlaze interrupt flow without an interrupt controller,
and Figure B-4, page 216 shows a MicroBlaze interrupt flow with an interrupt controller.

http://www.xilinx.com

216 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

Figure B-3: MicroBlaze Interrupt Flow without Interrupt Controller

Figure B-4: MicroBlaze Interrupt Flow with Interrupt Controller

INTR
…..
…..
…..
…..

Lookup the
interrupt handler
registered with

the OS and jump
to it.

Branch to OS
INTR handler

0x000_0008 microblaze_interrupt_handler.c
__interrupt_handler()

MB_InterruptVector
Table {
____________,

};

0x000_00 10

0x000_00 18

0x000_00 20

User Program

…..
…..

user or peripheral
interrupt handler

function

User or peripheral
interrupt handler

registered directly with
the OS layer

X11019

INTR
…..
…..
…..
….. Lookup the

interrupt handler
registered with

the OS and jump
to it.

Branch to OS
INTR handler

0x000_0008 microblaze_interrupt_handler.c
__interrupt_handler()

MB_InterruptVector
Table {
____________,
};

For each active
interrupt, call
the registered

interrupt
handler.

xintc.c
XIntc_DeviceInterruptHandler()0x000_00 10

0x000_00 18

0x000_00 20

User Program

…..
…..

user or peripheral
interrupt handler

function

HandlerTable {
____________,

};

XIntc_DeviceInterruptHandler()
registered with the

OS Layer
User or peripheral
interrupt handlers
registered with the
interrupt
controller driver

X11020

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 217
UG111 July 06, 2011

Software Setup and Interrupt Flow

Interrupt Flow for PowerPC Systems
Interrupts on the PowerPC processors go through the following flow:

1. Interrupts must be enabled on the PowerPC processor by setting appropriate bits in
the Machine Status Registers (MSR). Depending on whether critical or non-critical (or
both) interrupts are being used, appropriate bits must be set.

2. Upon the external interrupt signal being raised, the processor first disables further
interrupts. The processor then calculates an address for the interrupt type and jumps
to that address. The calculation varies between the PowerPC 405 processor and the
PowerPC 440 processor.

• The PowerPC 405 processor consults the software-set value of the Exception
Vector Prefix Register (EVPR) and adds a constant offset to this value (depending
on the interrupt type) to determine the final physical address where the vector
code is placed.

• The PowerPC 440 processor has independent offset registers for each interrupt
type (labeled IVOR0-IVOR15). Each offset register contains a value that is
appended to the Interrupt Vector Prefix register (IVPR) to obtain the final physical
address of the interrupt vector code.

3. The processor jumps to the calculated interrupt vector code address.

4. Each interrupt vector location contains a platform interrupt handler that is appropriate
for the interrupt type:

• For external critical and non-critical interrupts, the handler saves all of the
processor registers (that could be clobbered further down) onto the current
application stack.

• The handler then transfers control to the next level handler. Because this can be
dependent on whether there is an interrupt controller in the system, the handler
consults an internal interrupt vectoring table to determine the function address of
the next level handler.

• The handler also consults the vectoring table for a callback value that it must pass
to the next level handler. Then, the handler makes the actual call.

• On systems with an interrupt controller, the next level handler is the handler
provided by the interrupt controller driver. This handler queries the interrupt
controller for all active interrupts in the system. For each active interrupt, it
consults its internal vector table, which contains the user-registered handler for
each interrupt line.
If no handler is registered, a default do-nothing handler is registered. The
registered handler for each interrupt gets invoked in turn (in interrupt priority
order).

• On systems without an interrupt controller, the next handler is the final interrupt
handler that is executed by the application.

5. The final interrupt handler for a particular interrupt typically queries the interrupting
peripheral and determines the cause for the interrupt. It usually does a series of actions
that are appropriate for the given peripheral and the cause for the interrupt. The
handler is also responsible for acknowledging the interrupt at the interrupting
peripheral. When the interrupt handler completes its activity, it returns back and the
interrupt stack gets unwound back to the software platform level interrupt handler.

The platform level interrupt handler restores the registers that it saved on the stack and
returns control back to the Program Counter (PC) location where the interrupt occurred.

http://www.xilinx.com

218 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

The return instruction also enables interrupts again on the PowerPC processor. The
application resumes normal execution at this point.

It is recommended that interrupt handlers be of a short duration and that the bulk of the
interrupt work be done by application. This prevents long lockouts of other (possibly
higher priority) interrupts and is considered good system design.

Figure B-5 shows a PowerPC processor interrupt flow without an interrupt controller.

Figure B-6 shows a PowerPC processor interrupt flow with an interrupt controller.

Figure B-5: PowerPC Processor Interrupt Flow without Interrupt Controller

Figure B-6: PowerPC Processor Interrupt Flow with Interrupt Controller

INTR
…..
…..
…..
….. Lookup the

interrupt handler
registered with
the OS for the
current interrupt

type and jump to it.

xvectors.S
section .vectors

Interrupt Vectoring Code

User Program

…..
…..

user or peripheral
interrupt handler

function

User or peripheral
interrupt handlers
registered directly
with the OS layer

critical intr

external intr

Branch to
vectoring code

Branch to
vectoring code

XExc_VectorTable {
____________,

};

others

others …

…

X11021

INTR …..

…..

…..

…..

xvectors.S
section .vectors

Interrupt Vectoring Code

For each active
interrupt, call
the registered

interrupt
handler.

xintc.c
XIntc_DeviceInterruptHandler()

User Program

…..

…..

user or peripheral
interrupt handler

function

HandlerTable {
____________,

};

XIntc_DeviceInterruptHandler()
registered with the

OS layer

User or peripheral
interrupt handlers

registered with the
interrupt

controller driver

critical intr

external intr

Branch to
vectoring code

Branch to
vectoring code

XExc_VectorTable {
____________,

___________ __

};

others

others …

…

Lookup the
interrupt handler
registered with
the OS for the

current interrupt
type and jump to it.

X11022

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 219
UG111 July 06, 2011

Software APIs

Software APIs
This section provides an overview of the software APIs involved in handling and
managing interrupts, lists the available Software APIs by processor type, and provides
examples of interrupt management code.

Note: This chapter is not meant to cover the APIs comprehensively. Refer to the interrupt controller
device driver documentation as well as the reference documentation for the Standalone platform to
for all the details of the APIs.

Interrupt Controller Driver
 The Xilinx interrupt controller supports the following features:

• Enabling and disabling specific individual interrupts

• Acknowledging specific individual interrupts

• Attaching specific callback function to handle interrupt source

• Enabling and disabling the master

• Sending a single callback per interrupt or handling all pending interrupts for each
interrupt of the processor

The acknowledgement of the interrupt within the interrupt controller is selectable, either
prior to calling the device handler or after the handler is called. Interrupt signal inputs are
either edge or level signal; consequently, support for those inputs is required:

• Edge-driven interrupt signals require that the interrupt is acknowledged prior to the
interrupt being serviced to prevent the loss of interrupts which are occurring close
together.

• Level-driven interrupt input signals require the interrupt to be acknowledged after
servicing the interrupt to ensure that the interrupt only generates a single interrupt
condition.

API Descriptions

int XIntc_Initialize (XIntc * InstancePtr, u16 DeviceId)

Description Initializes a specific interrupt controller instance or driver. All the fields of the XIntc
structure and the internal vectoring tables are initialized. All interrupt sources are disabled.

Parameters InstancePtr is a pointer to the XIntc instance.

DeviceId is the unique id of the device controlled by this XIntc instance (obtained from
xparameters.h). Passing in a DeviceId associates the generic XIntc instance to a
specific device, as chosen by the caller or application developer.

http://www.xilinx.com

220 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

int XIntc_Connect (XIntc * InstancePtr, u8 Id, XInterruptHandler
Handler, void * CallBackRef)

Description Makes the connection between the Id of the interrupt source and the associated handler that
is to be run when the interrupt occurs. The argument provided in this call as the
CallBackRef is used as the argument for the handler when it is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Handler is the handler for that interrupt.

CallBackRef is the callback reference, usually the instance pointer of the connecting driver

The handler provided as an argument overwrites any handler that was previously connected.

void XIntc_Disconnect (XIntc* InstancePtr, u8 Id)

Description Disconnects the XIntc instance.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Void XIntc_Enable (XIntc * InstancePtr, u8 Id)

Description Enables the interrupt source provided as the argument Id. Any pending interrupt condition for
the specified Id occurs after this function is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

void XIntc_Disable (Xintc * InstancePtr, u8 Id)

Description Disables the interrupt source provided as the argument Id , such that the interrupt controller
does not cause interrupts for the specified Id. The interrupt controller continues to hold an
interrupt condition for the Id, but does not cause an interrupt.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 221
UG111 July 06, 2011

Software APIs

Hardware Abstraction Layer APIs
The following is a summary of exception functions, which can run on MicroBlaze,
PowerPC 405, and PowerPC 440 processors.

Header File

#include "xil_exception.h"

Typedef

typedef void(* Xil_ExceptionHandler)(void *Data)

This typedef is the exception handler function pointer.

int XIntc_Start (XIntc * InstancePtr, u8 Mode)

Description Starts the interrupt controller by enabling the output from the controller to the processor.
Interrupts can be generated by the interrupt controller after this function is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Mode determines if software is allowed to simulate interrupts or if real interrupts are allowed
to occur. Modes are mutually exclusive. The interrupt controller hardware resets in a mode that
allows software to simulate interrupts until this mode is exited. It cannot be re-entered after it
has been exited. Mode is one of the following valued:

XIN_SIMULATION_MODE enables simulation of interrupts only.

XIN_REAL_MODE enables hardware interrupts only.

This function must be called after Xintc initialization is completed.

void XIntc_Stop (XIntc * InstancePtr)

Description Stops the interrupt controller by disabling the output from the controller so that no interrupts
are caused by the interrupt controller.

Parameters InstancePtr is a pointer to the XIntc instance.

void Xil_ExceptionDisable()

Description Disable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only disables
non-critical exceptions.

void Xil_ExceptionEnable()

Description Enable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only enables
non-critical exceptions.

http://www.xilinx.com

222 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

Interrupt Setup Example
/***************************** Include Files ************************/

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "xil_exception.h"

/********************** Constant Definitions ***********************/
/*
 * The following constants map to the XPAR parameters created in the
 * xparameters.h file. They are only defined here such that a user can
 * easily change all the needed parameters in one place.
 */
#define TMRCTR_DEVICE_IDXPAR_TMRCTR_0_DEVICE_ID
#define INTC_DEVICE_IDXPAR_INTC_0_DEVICE_ID
#define TMRCTR_INTERRUPT_IDXPAR_INTC_0_TMRCTR_0_VEC_ID

/*
 * The following constant determines which timer counter of the device
 * that is used for this example, there are currently 2 timer counters
 * in a device and this example uses the first one, 0, the timer numbers
 * are 0 based

void Xil_ExceptionInit()

Description Initialize exception handling for the processor. The exception vector table is set up with the stub
handler for all exceptions.

void Xil_ExceptionRegisterHandler(u32 Id, Xil_ExceptionHandler Han-
dler,void *Data)

Description Make the connection between the ID of the exception source and the associated handler that runs
when the exception is recognized. Data is used as the argument when the handler is called.

Parameters Parameters:

Id contains the identifier (ID) of the exception source. This should be XIL_EXCEPTION_INT
or be in the range of 0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further
information.

Handler is the handler for that exception.

Data is a reference to data that is passed to the handler when it is called.

void Xil_ExceptionRemoveHandler(u32 Id)

Description Remove the handler for a specific exception ID. The stub handler is then registered for this
exception ID.

Parameters Id contains the ID of the exception source. It should be XIL_EXCEPTION_INT or in the range of
0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further information.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 223
UG111 July 06, 2011

Software APIs

 */
#define TIMER_CNTR_0 0

/*
 * The following constant is used to set the reset value of the timer
 * counter, making this number larger reduces the amount of time this
 * example consumes because it is the value the timer counter is loaded
 * with when it is started
 */
#define RESET_VALUE 0xF0000000

/********************* Function Prototypes *************************/

int TmrCtrIntrExample(XIntc* IntcInstancePtr,
 XTmrCtr* InstancePtr,
 u16 DeviceId,
 u16 IntrId,
 u8 TmrCtrNumber);

void TimerCounterHandler(void *CallBackRef, u8 TmrCtrNumber);

/********************** Variable Definitions ************************/
XIntc InterruptController; /* The instance of the Interrupt Controller
*/

XTmrCtr TimerCounterInst; /* The instance of the Timer Counter */

/*
 * The following variables are shared between non-interrupt processing
 * and interrupt processing such that they must be global.
 */
volatile int TimerExpired;

/**/
/**
* This function is the main function of the Tmrctr example using
* Interrupts.
*
* @paramNone.
*
* @returnXST_SUCCESS to indicate success, else XST_FAILURE to indicate
* a Failure.
*
* @noteNone.
*
***/

int main(void)
{

int Status;

/*
 * Run the Timer Counter - Interrupt example.
 */
Status = TmrCtrIntrExample(&InterruptController,

 &TimerCounterInst,
 TMRCTR_DEVICE_ID,

http://www.xilinx.com

224 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

 TMRCTR_INTERRUPT_ID,
 TIMER_CNTR_0);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

return XST_SUCCESS;

}

/**/
/**
* This function does a minimal test on the timer counter device and
* driver as a design example. The purpose of this function is to
* illustrate how to use the XTmrCtr component. It initializes a timer
* counter and then sets it up in compare mode with auto reload such that
* a periodic interrupt is generated.
*
* This function uses interrupt driven mode of the timer counter.
*
* @paramIntcInstancePtr is a pointer to the Interrupt Controller
* driver Instance
* @paramTmrCtrInstancePtr is a pointer to the XTmrCtr driver Instance
* @paramDeviceId is the XPAR_<TmrCtr_instance>_DEVICE_ID value from
* xparameters.h
* @paramIntrId is
XPAR_<INTC_instance>_<TmrCtr_instance>_INTERRUPT_INTR
* value from xparameters.h
* @paramTmrCtrNumber is the number of the timer to which this
* handler is associated with.
*
* @returnXST_SUCCESS if the Test is successful, otherwise XST_FAILURE
*
* @noteThis function contains an infinite loop such that if interrupts
* are not working it may never return.
*
***/
int TmrCtrIntrExample(XIntc* IntcInstancePtr,

 XTmrCtr* TmrCtrInstancePtr,
 u16 DeviceId,
 u16 IntrId,
 u8 TmrCtrNumber)

{
int Status;
int LastTimerExpired = 0;

/*
 * Initialize the timer counter so that it's ready to use,
 * specify the device ID that is generated in xparameters.h
 */
Status = XTmrCtr_Initialize(TmrCtrInstancePtr, DeviceId);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Initialize the interrupt controller driver so that
 * it's ready to use, specify the device ID that is generated in
 * xparameters.h

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 225
UG111 July 06, 2011

Software APIs

 */
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect a device driver handler that will be called when an
 * interrupt for the device occurs, the device driver handler performs
 * the specific interrupt processing for the device
 */
Status = XIntc_Connect(IntcInstancePtr, IntrId,

 (XInterruptHandler)XTmrCtr_InterruptHandler,
 (void *)TmrCtrInstancePtr);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Start the interrupt controller such that interrupts are enabled for
 * all devices that cause interrupts, specific real mode so that
 * the timer counter can cause interrupts thru the interrupt
 * controller.
 */
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Enable the interrupt for the timer counter
 */
XIntc_Enable(IntcInstancePtr, IntrId);

/*
 * Initialize the exception table.
 */
Xil_ExceptionInit();

/*
 * Register the interrupt controller handler with the exception table.
 */
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,

 (Xil_ExceptionHandler)
 XIntc_InterruptHandler,
 IntcInstancePtr);

/*
 * Enable exceptions.
 */
Xil_ExceptionEnable();
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Setup the handler for the timer counter that will be called from the
 * interrupt context when the timer expires, specify a pointer to the

http://www.xilinx.com

226 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

 * timer counter driver instance as the callback reference so the
 * handler is able to access the instance data
 */
XTmrCtr_SetHandler(TmrCtrInstancePtr,

 TimerCounterHandler,
 TmrCtrInstancePtr);

/*
 * Enable the interrupt of the timer counter so interrupts will occur
 * and use auto reload mode such that the timer counter will reload
 * itself automatically and continue repeatedly, without this option
 * it would expire once only
 */
XTmrCtr_SetOptions(TmrCtrInstancePtr, TmrCtrNumber,

 XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

/*
 * Set a reset value for the timer counter such that it will expire
 * earlier than letting it roll over from 0, the reset value is loaded
 * into the timer counter when it is started
 */
XTmrCtr_SetResetValue(TmrCtrInstancePtr, TmrCtrNumber, RESET_VALUE);

/*
 * Start the timer counter such that it's incrementing by default,
 * then wait for it to timeout a number of times
 */
XTmrCtr_Start(TmrCtrInstancePtr, TmrCtrNumber);

while (1) {
/*
 * Wait for the first timer counter to expire as indicated by the
 * shared variable which the handler will increment
 */
while (TimerExpired == LastTimerExpired) {
}
LastTimerExpired = TimerExpired;

/*
 * If it has expired a number of times, then stop the timer counter
 * and stop this example
 */
if (TimerExpired == 3) {

XTmrCtr_Stop(TmrCtrInstancePtr, TmrCtrNumber);
break;

}
}

/*
 * Disable the interrupt for the timer counter
 */
XIntc_Disable(IntcInstancePtr, DeviceId);

return XST_SUCCESS;
}

/**/
/**

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 227
UG111 July 06, 2011

Software APIs

* This function is the handler which performs processing for the timer
* counter. It is called from an interrupt context such that the amount
* of processing performed should be minimized. It is called when the
* timer counter expires if interrupts are enabled.
*
* This handler provides an example of how to handle timer counter
* interrupts but is application specific.
*
* @paramCallBackRef is a pointer to the callback function
* @paramTmrCtrNumber is the number of the timer to which this
* handler is associated with.
*
* @returnNone.
*
* @noteNone.
*
***/
void TimerCounterHandler(void *CallBackRef, u8 TmrCtrNumber)
{
XTmrCtr *InstancePtr = (XTmrCtr *)CallBackRef;

/*
 * Check if the timer counter has expired, checking is not necessary
 * since that's the reason this function is executed, this just shows
 * how the callback reference can be used as a pointer to the instance
 * of the timer counter that expired, increment a shared variable so
 * the main thread of execution can see the timer expired
 */
if (XTmrCtr_IsExpired(InstancePtr, TmrCtrNumber)) {
TimerExpired++;
if(TimerExpired == 3) {
XTmrCtr_SetOptions(InstancePtr, TmrCtrNumber, 0);

}
}

}

http://www.xilinx.com

228 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix B: Interrupt Management

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 229
UG111 July 06, 2011

Appendix C

EDK Tcl Interface

This appendix describes the various Tool Command Language (Tcl) Application Program
Interfaces (APIs) available in EDK tools and methods for accessing information from EDK
tools using Tcl APIs.

Introduction
Each time EDK tools run, they build a runtime data structure of your design. The data
structure contains information about user design files, such as Microprocessor Hardware
Specification (MHS), or library data files, such as Microprocessor Peripheral Definition
(MPD), Microprocessor Driver Definition (MDD), and Microprocessor library Definition
(MLD). Access to the data structure is given as Tcl APIs. Based on design requirements, IP,
driver, library, and OS writers that provide the corresponding data files can access the data
structure information to add some extra steps in the tools processing. EDK tools also use
Tool Command Language (Tcl) to perform various Design Rule Checks (DRCs), and to
update the design data structure in a limited manner.

Understanding Handles
The tools provide access points into the data structure through a set of API functions. Each
API function requires an argument in the form of system information, which is called a
handle.

For example, an IP defined in the Microprocessor Hardware Specification (MHS) file could
serve as a handle. Handles can be of various types, based on the kind of data to which they
are providing access. Data types include instance names, driver names, hardware
parameters, or hardware ports. From a given handle, you can get information associated
with that handle, or you can get other, associated handles.

http://www.xilinx.com

230 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

Data Structure Creation
EDK tools provide access to two basic types of run-time information:

• The original design and library datafile data structure:

The original data structure provides access only to the information present in various
data files. You can get a handle to such files as the MHS, MPD, MDD, and MLD. These
handles allow you to query the contents of the files with which they are associated.

• The merged data structure:

When EDK tools run, the information in the design files (MHS) is combined with the
corresponding information from library files (MPD) to create merged data structures:
hardware merged datastructure (also referred to as the hardware merged object). During
the process of creating the merged data structure, the tools also analyze various design
characteristics (such as connectivity or address mapping), and that information is also
stored in the merged data structures. A merged data structure provides an easy way to
access this analyzed information. For example, an instance of an IP in the MHS file is
merged with its corresponding MPD. Using the merged instances, complete
information can be obtained from one handle; it is not necessary to access the IP
instance and MPD handles separately.

Figure C-1 shows a marged hardware data structure creation.
Figure X-Ref Target - Figure C-1

Figure C-1: Merged Hardware Data Structure Creation

MHS

MPD

Merged
DataStructure

X10582

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 231
UG111 July 06, 2011

Tcl Command Usage

Tcl Command Usage

General Conventions
There are two kinds of Tcl APIs, which differ based on the type of data they return. Tcl APIs
return either:

• A handle or a list of handles to some objects.

• A value or a list of values.

The common rules followed in all Tcl APIs are:

• An API returns a NULL handle when an expected handle to another object is not
found.

• An API returns an empty string when a value is either empty or that value cannot be
determined.

Before You Begin
When you use XPS in non-GUI mode (xps –nw), you must first initialize the internal tool
database (the runtime datastructure) by loading the project with the xload command:

xload <filetype> <filename>.{MHS/XMP}

Refer to Chapter 5, Command Line Mode for more detail regarding xload.

To gain access to either the MHS Handle or the merged MHS Handle, use one of the
following commands after loading the project:

XPS% set original_mhs_handle [xget_handle mhs]

or

XPS% set merged_mhs_handle [xget_handle merged_mhs]

The following section provides the nomenclature of the EDK Hardware Tcl commands in
more detail.

http://www.xilinx.com

232 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

EDK Hardware Tcl Commands

Overview
This section provides a list of Tcl APIs available in the EDK hardware data structure. The
description of these commands uses certain terms, which are defined in the following
subsections.

Original MHS Handle (original_mhs_handle)

The handle that points to the MHS information only. This handle does not contain any
MPD information. If an IP parameter has not been specified in the MHS, this handle does
not contain that parameter.

Merged MHS Handle (merged_mhs_handle)

The handle that points to both the MHS and MPD information. A hardware datastructure/
merged object is formed when the tools merge the MHS and MPD information.

Note: Various Tcl procedures are also called within batch tools such as Platgen, Libgen, and
Simgen. Handles provided through batch tools always refer to the merged MHS handle. You do not
have access to the original MHS handle from the batch tools. The original MHS handle is needed only
when you must modify the design using the provided APIs so that the generated MHS design file can
be updated.

Original IP Instance Handle (original_IP_handle)

A handle to an IP instance obtained from the original MHS handle that contains
information present only in the MHS file.

Merged IP Instance Handle (merged_IP_handle)

Refers to the IP handle obtained from the merged MHS handle. The merged IP instance
handle contains both MHS and MPD information.

Note: Batch tools such as Platgen provide access to the merged IP instance handle only and not
the original IP instance handle. Consequently, the various property handles (the parameter and port
handles, for example) are merged handles and not the original handles.

Hardware Read Access APIs
The following sections contain a summary table and descriptions of defined hardware
read access APIs. To go to the API descriptions, which are provided in the following
section, click on a summary link.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 233
UG111 July 06, 2011

EDK Hardware Tcl Commands

API Summary

Hardware API Descriptions

xget_hw_busif_value <handle> <busif_name>

xget_hw_bus_slave_addrpairs <merged_bus_handle>
xget_hw_busif_handle <handle> <busif_name>

xget_hw_connected_busifs_handle <merged_mhs_handle> <businst_name> <busif_type>

xget_hw_connected_ports_handle <merged_mhs_handle> <connector_name> <port_type>

xget_hw_ioif_handle <handle> <ioif_name>
xget_hw_ioif_value <handle> <ioif_name>

xget_hw_ipinst_handle <mhs_handle> <ipinst_name>

xget_hw_mpd_handle <ipinst_handle>
xget_hw_name <handle>

xget_hw_option_handle <handle> <option_name>

xget_hw_option_value <handle> <option_name>
xget_hw_parameter_handle <handle> <parameter_name>

xget_hw_parameter_value <handle> <parameter_name>

xget_hw_pcore_dir_from_mpd <mpd_handle>
xget_hw_pcore_dir <ipinst_handle>

xget_hw_port_connectors_list <ipinst_handle> <portName>

xget_hw_parent_handle <handle>
xget_hw_port_connectors_list <ipinst_handle> <portName>

xget_hw_port_handle <handle> <port_name>

xget_hw_port_value <handle> <port_name>
xget_hw_proj_setting <prop_name>

xget_hw_proc_slave_periphs <merged_proc_handle>

xget_hw_subproperty_handle <property_handle> <subprop_name>
xget_hw_subproperty_value <property_handle> <subprop_name>

xget_hw_value <handle>

xget_hw_busif_handle <handle> <busif_name>

Description Returns a handle to the associated bus interface.

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<busif_name> is the name of the bus interface whose handle is required. If <busif_name> is
specified as an asterisk (*), the API returns a list of bus interface handles. To access an individual
bus interface handle, you can iterate over the list in Tcl.

http://www.xilinx.com

234 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

xget_hw_busif_value <handle> <busif_name>

Description Returns the value of the specified bus interface. The value is typically the instance name of the
bus to which the bus interface is connected. For a transparent bus interface, the value is the
connector (which is not a bus instance name.)

Arguments <handle> the handle to the MPD, original IP instance or merged IP instance.

<busif_name> is the name of the bus interface whose value is required.

xget_hw_bus_slave_addrpairs <merged_bus_handle>

Description Returns a list of slave addresses associated with the specified bus handle. The returned value is
a list of integers where:

The first value is the base address of any connected peripherals.

The second value is the associated high address.

The following values are paired base and high addresses of other peripherals.

Arguments <merged_bus_handle> is a handle to a merged IP instance pointing to a bus instance.

xget_hw_connected_busifs_handle <merged_mhs_handle> <businst_name>
<busif_type>

Description Returns a list of handles to bus interfaces that are connected to a specified bus.

Arguments <merged_mhs_handle> is a handle to the merged MHS.

<businst_name> is the name of the connected bus instance.

<busif_type> is one of the following: MASTER, SLAVE, TARGET, INITIATOR, ALL.

xget_hw_connected_ports_handle <merged_mhs_handle> <connector_name>
<port_type>

Description Returns a list of handles to ports associated with a specified connector. The valid handle type is
the merged MHS.

Arguments <merged_mhs_handle> is the handle to the merged MHS.

<connector_name> is the name of the connector.

<port_type> is source, sink, or all.

This API returns a list of handles to ports based on the <port_type>, where:

source is a list of ports that are driving the given signal.

sink is a list of ports that are being driven by the given signal.

all is a list of all ports connected to the given signal.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 235
UG111 July 06, 2011

EDK Hardware Tcl Commands

xget_hw_ioif_handle <handle> <ioif_name>

Description Returns the handle to an I/O interface associated with the handle.

Arguments <handle> is the handle to an MPD or a merged IP instance.

If an original IP instance handle is provided, this API returns a NULL.

<ioif_name> is the name of the I/O interface whose handle is required. If <ioif_name> is
specified as an asterisk (*), the API returns a list of I/O interface handles. To access an individual
I/O interface handle, you can iterate over the list in Tcl.

xget_hw_ioif_value <handle> <ioif_name>

Description Returns the value of the I/O interface. The value is specified in the MPD file and cannot be
overwritten in MHS.

Arguments <handle> is the handle to an MPD or a merged IP instance.

<ioif_name> is the name of the I/O interface whose value is required.

xget_hw_ipinst_handle <mhs_handle> <ipinst_name>

Description Returns the handle of the specified IP instance.

Arguments <mhs_handle> is the handle to either an original MHS or a merged MHS.

<ipinst_name> is the name of the IP instance whose handle is required. If <ipinstf_name> is
specified as an asterisk (*), the API returns a list of IP instance handles. To access an individual IP
instance handle, you can iterate over the list in Tcl.

xget_hw_mpd_handle <ipinst_handle>

Description Returns a handle to the MPD object associated with the specified IP instance.

Arguments <ipinst_handle> is a handle to the merged IP instance.

xget_hw_name <handle>

Description Returns the name of the specified handle.

Arguments <handle> is of specified type.

If <handle> is of type IP instance, its name is the instance name of that IP. For example, if the
handle refers to an instance of MicroBlaze called mymb in the MHS file, the value the API returns
is mymb. Similarly, to get the name of a parameter from a parameter handle, you can use the same
command.

http://www.xilinx.com

236 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

xget_hw_option_handle <handle> <option_name>

Description Returns a handle to the associated option.

Arguments <handle> is the associated option.

<option_name> is the name of the option whose value is required.

If specified as an asterisk (*), the API returns a list of option handles.

To access an individual option handle, you can iterate over the list in Tcl.

xget_hw_option_value <handle> <option_name>

Description Returns the value of the option. The value is specified in the MPD file and cannot be overwritten
in MHS

Arguments <handle> the handle to an MPD or a merged IP instance.

<option_name> is the name of the option whose value is required.

xget_hw_parameter_handle <handle> <parameter_name>

Description Returns the handle to an associated parameter

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<parameter_name> is the name of the associated parameter whose handle is required. If
<parameter_name> is specified as an asterisk (*), a list of parameter handles is returned. To
access an individual parameter handle, you can iterate over the list in Tcl.

xget_hw_parameter_value <handle> <parameter_name>

Description Returns the value of the specified parameter

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<parameter_name> is the name of the associated parameter whose value is required.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 237
UG111 July 06, 2011

EDK Hardware Tcl Commands

xget_hw_parent_handle <handle>

Description Returns the handle to the parent of the specified handle. The type of parent handle is determined
by the specified handle type. If the specified handle is a merged handle, the parent obtained
through this API will also be a merged handle.

Arguments <handle> is one of the following:

• PARAMETER, the parent is the MPD, IP instance, or the merged IP instance object.
• PORT, the parent is the MPD, IP instance, the merged IP instance, or the MHS object.
• BUS_INTERFACE, the parent is the MPD, IP instance, or the merged IP instance object.
• IO_INTERFACE, the parent is the MPD or the merged IP instance object.
• OPTION, the parent is the MPD or the merged IP instance object.
• IPINST, the parent is the MHS or the merged MHS object.
• For MHS or MPD, the parent is a NULL handle.

xget_hw_pcore_dir_from_mpd <mpd_handle>

Description Returns the pcore directory path for the MPD.

Arguments <mpd_handle> is the handle to the MPD.

xget_hw_pcore_dir <ipinst_handle>

Description Returns the pcore directory for the given IP instance.

Arguments <ipinst_handle> is the handle to the IP instance.

xget_hw_port_connectors_list <ipinst_handle> <portName>

Description If the value (connector) of the port is within an & separated list, this API splits that list and returns
a list of strings (connector names).

Arguments <ipinst_handle> is the handle to the IP instance (merged or original).

<portName> is the name of the port whose connectors are needed.

http://www.xilinx.com

238 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

xget_hw_port_handle <handle> <port_name>

Description Returns the handle to a port associated with the handle. If a handle is of type MHS, the returned
handle points to a global port of the given name.

Arguments <handle> is the handle to the MPD, original IP instance, merged IP instance, original MHS or
merged MHS.

<port_name> is the name of the port whose handle is required.

If <port_name> is specified as an asterisk (*), a list of port handles is returned. To access an
individual port handle, you can iterate over the list in Tcl.

If a handle is of type MHS (original or merged), the returned handle points to a global port with
the given name.

xget_hw_port_value <handle> <port_name>

Description Returns the value of the specified port. The value of a port is the signal name connected to that
port.

Arguments <handle> is the handle to the MPD, original IP instance, merged IP instance, original MHS or
merged MHS.

<port_name> is the name of the port whose value is required.

xget_hw_proj_setting <prop_name>

Description Returns the value of the property specified by prop_name.

Arguments <prop_name> is the name of the property whose value is needed. Options are: fpga_family,
fpga_subfamily, fpga_partname, fpga_device, fpga_package, fpga_speedgrade

xget_hw_proc_slave_periphs <merged_proc_handle>

Description Returns a list of handles to slaves that can be addressed by the specified processor

Arguments <merged_proc_handle> is a handle to the merged IP instance, pointing to a processor instance.
This returned list includes slaves that are not directly connected to the processor, but are accessed
across a bus-to-bus bridge (for example, opb2plb_bridge).

The input handle must be an IP instance handle to a processor instance, obtained from the merged
MHS only (not from the original MHS).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 239
UG111 July 06, 2011

EDK Hardware Tcl Commands

xget_hw_subproperty_handle <property_handle> <subprop_name>

Description Returns the handle to a subproperty associated with the specified <property_handle>.

Arguments <property_handle> is a handle to one of the following: PARAMETER, PORT, BUS_INTERFACE,
IO_INTERFACE, or OPTION.

<subprop_name> is the name of the subproperty whose handle is required. For a list of
sub-properties, please refer to “Microprocessor Peripheral Definition” “Microprocessor
Peripheral Definition (MPD)” in the Platform Specification Format Reference Manual
and“Additional Keywords in the Merged Hardware Datastructure” on page 253.

xget_hw_subproperty_value <property_handle> <subprop_name>

Description Returns the value of a specified subproperty.

Arguments <property_handle> is one of the following: PARAMETER, PORT, BUS_INTERFACE,
IO_INTERFACE, or OPTION.

<subprop_name> is the name of the subproperty whose value is required. For a list of
sub-properties, refer to “Microprocessor Peripheral Definition (MPD)” in the Platform
Specification Format Reference Manual and Additional Keywords in the Merged Hardware
Datastructure, page 253

xget_hw_value <handle>

Description Gets the value associated with the specified handle.

Arguments <handle> is of specified type.

If <handle> is of type IP instance, its value is the IP module name. For example, if the handle
refers to the MicroBlaze™ instance in the MHS file, the value the API returns is the name of the
IP, that is, microblaze. Similarly, to get the value of a parameter from a parameter handle, you
can use the same command.

http://www.xilinx.com

240 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

Tcl Example Procedures
The following are example Tcl procedures that use some of the hardware API Tcl
commands.

Example 1
This procedure explains how to get a list of IPs of a particular IPTYPE. Each IP provided in
the EDK repository has a corresponding IP type specified by the IPTYPE option, in the
MPD file. The merged_mhs_instance has the information from both the MHS file and the
MPD file. The process for getting a list of IPs of a particular IPTYPE is:

1. Using the merged_mhs_handle, get a list of all IPs.

2. Iterate over this list and for each IP, get the value of the OPTION IPTYPE and compare
it with the given IP type.

The following code snippet illustrates how to get the IPTYPE of specific IPs.

Procedure to get a list of IPs of a particular IPTYPE
proc xget_ipinst_handle_list_for_iptype {merged_mhs_handle iptype}
{
##Get a list of all IPs
 set ipinst_list [xget_hw_ipinst_handle $merged_mhs_handle “*”]
 set ret_list “”
foreach ipinst $ipinst_list {
Get the value of the IPTYPE Option.
 set curiptype [xget_hw_option_value $ipinst “IPTYPE”]
##if curiptype matches the given iptype, then add it to ## the
list that this proc returns.

if {[string compare -nocase $curiptype $iptype] == 0}{
lappend ret_list $ipinst

}
 }
 return $ret_list
}

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 241
UG111 July 06, 2011

Tcl Example Procedures

Example 2
The following procedure explains how to get the list of cores that are memory controllers in
a design. Memory controller cores have the tag, ADDR_TYPE = MEMORY, in their address
parameter.

Procedure to get a list of memory controllers in a design.
proc xget_hw_memory_controller_handles { merged_mhs } {

set ret_list “”

 # Gets all MhsInsts in the system
 set mhsinsts [xget_hw_ipinst_handle $merged_mhs “*”]

Loop through each MhsInst and determine if it has
#"ADDR_TYPE = MEMORY” in the parameters.

 foreach mhsinst $mhsinsts {

 # Gets all parameters of the IP
 set params [xget_hw_parameter_handle $mhsinst “*”]

 # Loop through each param and find tag “ADDR_TYPE = MEMORY”
 foreach param $params {
 if {$param == 0} {
 continue
 } elseif {$param == “”} {
 continue
 }
 set addrTypeValue [xget_hw_subproperty_value $param”ADDR_TYPE”]

 # Found tag! Add MhsInst to list and break to go to next MhsInst
 if {[string compare -nocase $addrTypeValue “MEMORY”] == 0} {
 lappend ret_list $mhsinst
 break
 }
 }
 }

 return $ret_list
}

http://www.xilinx.com

242 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

Advanced Write Access APIs
Advance Write Access APIs modify the MHS object in memory. These commands operate
on the original MHS handle and handles obtained from the MHS handle. The Write Access
APIs can be used to create the project only. They are disabled during the Platgen flow.

Advance Write Access Hardware API Summary

The following table provides a summary of the Advance Write Access APIs. To go to the
API descriptions, which are provided in the following section, click on a summary link.

Table C-1: Hardware Advanced Write Access APIs

Add Commands

xadd_hw_hdl_srcfile <ipinst_handle> <fileuse> <filename> <hdllang>
xadd_hw_ipinst_busif <ipinst_handle> <busif_name> <busif_value>

xadd_hw_ipinst_port <ipinst_handle> <port_name> <connector_name>

xadd_hw_ipinst <mhs_handle> <inst_name> <ip_name> <hw_ver>
xadd_hw_ipinst_parameter <ipinst_handle> <param_name> <param_value>

xadd_hw_subproperty <prop_handle> <subprop_name> <subprop_value>

xadd_hw_toplevel_port <mhs_handle> <port_name> <connector_name> <direction>

Delete Commands

xdel_hw_ipinst <mhs_handle> <inst_name>

xdel_hw_ipinst_busif <ipinst_handle> <busif_name>

xdel_hw_ipinst_port <ipinst_handle> <port_name>
xdel_hw_ipinst_parameter <ipinst_handle> <param_name>

xdel_hw_subproperty <prop_handle> <subprop_name>

xdel_hw_toplevel_port <mhs_handle> <port_name>

Modify Commands

xset_hw_parameter_value <busif_handle> <busif_value>

xset_hw_port_value <port_handle> <port_value>

xset_hw_busif_value <busif_handle> <busif_value>

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 243
UG111 July 06, 2011

Tcl Example Procedures

Advance Write Access Hardware API Descriptions

Add Commands

xadd_hw_hdl_srcfile <ipinst_handle> <fileuse> <filename> <hdllang>

Description Adds HDL files on the fly to the PAO. This API should only be used in batch tools like platgen/
simgen and not in xps batch as a design entry mechanism.

When adding VHDL files, those files are expected to be an instance-specific customization and,
consequently are added to a logical library called <instname>_<wrapper>_<hwver>.

VHDL files must be generated in the <projdir>/hdl/elaborate/
<instname>_<wrapper>_<hwver> directory.

While Verilog does not use libraries, the files must still be generated in the specified directory
structure and location.

Arguments <ipinst_handle> is the handle of the IP instance.

<fileuse> is {lib|synlib|simlib}.

<filename> is the specified filename.

<hdllang> is {vhdl|verilog}.

Example xadd_hw_hdl_srcfile $ipinst_handle lib xps_central_dma.vhd vhdl

xadd_hw_ipinst_busif <ipinst_handle> <busif_name> <busif_value>

Description Creates and adds a bus interface specified by <busif_name> and <busif_value> to the IP
instance specified by the <ipinst_handle>. This API returns a handle to the newly created
bus interface, if successful, and NULL otherwise.

Arguments <ipinst_handle> is the handle to the IP instance to which the bus interface has to be added.

<busif_name> is the name of the bus interface.

<busif_value> is the value of the bus interface.

Example Connect the ILMB bus interface from MicroBlaze to the ilmb_0 bus:

xadd_hw_ipinst_busif $mb_handle ILMB ilmb_0

http://www.xilinx.com

244 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

xadd_hw_ipinst <mhs_handle> <inst_name> <ip_name> <hw_ver>

Description Adds a new MHS instance to the MHS specified by <mhs_handle>. Returns a handle to the
newly created instance if successful, and NULL otherwise.

Arguments <mhs_handle> is the handle to the MHS in which this mhs instance has to be added.

<inst_name> is the instance name of the IP instance that needs to be added.

<ip_name> is the name of the IP that needs to be added.

<hw_ver> is the version of the IP that needs to be added.

Example Add a MicroBlaze v7.00.a IP with the instance name mblaze to the MHS:

xadd_hw_ipinst $mhs_handle mblaze microblaze 7.00.a

xadd_hw_ipinst_port <ipinst_handle> <port_name> <connector_name>

Description Creates and adds a port specified by <port_name> and <connector_name> to the IP instance
specified by the <ipinst_handle>.

This API returns a handle to the newly created port, if successful, and NULL otherwise.

Arguments <inst_handle> is the handle to the IP instance to which the port has to be added.

<port_name> is the name of the port.

<connector_name> is the name of the connector.

Example Add a clock port on a MicroBlaze instance and connect it to the sys_clk_s signal:

xadd_hw_ipinst_port $mb_handle Clk sys_clk_s

xadd_hw_ipinst_parameter <ipinst_handle> <param_name> <param_value>

Description Creates and adds a parameter specified by <param_name> and <param_value> to the IP
instance specified by the <ipinst_handle>. This API returns a handle to the newly created
parameter, if successful, and NULL otherwise.

Arguments <ipinst_handle> is the handle to the IP instance to which the parameter is to be added.

<param_name> is the name of the parameter.

<param_value> is the parameter value.

Example Add the C_DEBUG_ENABLED parameter to a MicroBlaze instance and set its value to 1:

xadd_hw_ipinst_parameter $mb_handle C_DEBUG_ENABLED 1

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 245
UG111 July 06, 2011

Tcl Example Procedures

Delete Commands

xadd_hw_subproperty <prop_handle> <subprop_name> <subprop_value>

Description Adds a subproperty to a property (parameter, port or bus interface).

Arguments <prop_handle> is a handle to the parameter, port or bus interface.

<subprop_name> is the name of the sub-property.

<subprop_value> is the value of the sub-property. For a list of sub-properties, refer to
“Microprocessor Peripheral Definition (MPD)” in the Platform Specification Format Reference
Manual and“Additional Keywords in the Merged Hardware Datastructure” on page 253.

Example Add DIR to a port:

xadd_hw_subproperty $port_handle DIR I

xadd_hw_toplevel_port <mhs_handle> <port_name> <connector_name>
<direction>

Description Adds a new top-level port to the MHS specified by <mhs_handle>. Returns a handle to the
newly created port if successful, and NULL otherwise.

Arguments <mhs_handle> is the handle to the MHS in which this top-level port has to be added.

<port_name> is the name of the port that needs to be added.

<connector_name> is the name of the connector.

<direction> is the direction of the port (I, O, or IO).

Example Add a top-level input port sys_clk_pin with connector dcm_clk_s:

xadd_hw_toplevel_port $mhs_handle sys_clk_pin dcm_clk_s I

xdel_hw_ipinst <mhs_handle> <inst_name>

Description deletes the IP instance with a specified instance name.

Arguments <mhs_handle> is the handle to the original MHS.

<inst_name> is the name of the instance to be deleted.

Example Delete an instance called mymb:

xdel_hw_ipinst $mhs_handle mymb

http://www.xilinx.com

246 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

xdel_hw_ipinst_busif <ipinst_handle> <busif_name>

Description Deletes a specified bus interface on an IP instance handle.

Arguments <ipinst_handle> is the handle of the IP instance.

<busif_name> is the name of the bus interface that is to be deleted.

Example Delete the ILMB bus interface from a MicroBlaze instance:

xdel_hw_ipinst_busif $mb_handle ILMB

xdel_hw_ipinst_port <ipinst_handle> <port_name>

Description Deletes a specified port on an IP instance handle.

Arguments <ipinst_handle> is the handle of the IP instance.

<port_name> is the name of the port to be deleted.

Example Delete a Clk port on a given MicroBlaze instance:

xdel_hw_ipinst_port $mb_handle Clk

xdel_hw_ipinst_parameter <ipinst_handle> <param_name>

Description Deletes a specified parameter on an IP instance handle.

Arguments <ipinst_handle> is a handle to the IP instance.

<param_name> is the name of the parameter to be deleted.

Example Delete the C_DEBUG_ENABLED parameter from a MicroBlaze instance:

xdel_hw_ipinst_parameter $mb_handle C_DEBUG_ENABLED

xdel_hw_subproperty <prop_handle> <subprop_name>

Description Deletes a specified subproperty from a property handle

Arguments <prop_handle> is a handle to a parameter, port, or bus interface.

<subprop_name> is the name of the subproperty.

Example Delete SIGIS subproperty from a given port:

xdel_hw_subproperty $port_handle SIGIS

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 247
UG111 July 06, 2011

Tcl Example Procedures

Modify Commands

xdel_hw_toplevel_port <mhs_handle> <port_name>

Description Deletes a top-level port with the specified name.

Arguments <mhs_handle> is the handle to the original MHS.

<port_name> is the name of the port to be deleted.

Example Delete a top-level port called sys_clk_pin:

xdel_hw_toplevel_port $mhs_handle sys_clk_pin

xset_hw_parameter_value <busif_handle> <busif_value>

Description Sets the value of the parameter to the given value.

Arguments <port_handle> is the handle to the port whose value must be set.

<port_value> is the value to be set.

Example Set the value of a parameter to 2:

xset_hw_parameter_value $param_handle 2

xset_hw_port_value <port_handle> <port_value>

Description Sets the value of the port to the given value.

Arguments <port_handle> is the handle to the port whose value must be set.

<port_value> is the value to be set.

Example Set the value of a port to “my_connection:”

xset_hw_port_value $port_handle my_connection

xset_hw_busif_value <busif_handle> <busif_value>

Description Sets the value of the bus interface to the given value.

Arguments <busif_handle> is the handle to the bus interface whose value must be set.

<busif_value> is the value to be set.

Example Set the value of a bus interface to “my_bus:”

xset_hw_busif_value $busif_handle my_bus

http://www.xilinx.com

248 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

Tcl Flow During Hardware Platform Generation

Input Files
Platgen, Simgen, Libgen and other tools that create the hardware platform work with the
MHS design file and the IP data files (MPD). Internally, the tools create the system view
based on these files. Each of the IP in the design has an MPD associated with it. Optionally,
it can have an associated Tcl file. Tcl files can contain DRC procedures, procedures to
automate calculation of parameters, or they can perform other tasks. The Tcl files that are
used during the hardware platform generation are present in the individual cores'
directory along with the MPD files. For Xilinx-supplied cores, the Tcl files are in the <EDK
install area>/hw/XilinxProcessorIPLib/pcores/<corename>/data/ directory.

Tcl Procedures Called During Hardware Platform Generation
Platgen (and many EDK batch tools, such as Libgen, Simgen, and Bitinit) run a few
predefined Tcl procedures related to each IP to perform DRCs and to compute values of
certain parameters on the IP. For information on the Tcl file for a given IP, see the Platform
Format Specification Reference Manual. A link to the document is supplied in Appendix E,
Additional Resources.

This section lists the Tcl procedures and describes how they can be called for user IP. Tcl
procedures can be classified based on:

• The action performed in that Tcl procedure.

• DRC

These procedures perform DRCs on the system but do not modify the state of the
system itself. The return code provided by these procedures is captured by
Platgen. Hence, if there is any error status returned by a DRC procedure, Platgen
captures the error and stops execution at an appropriate time.

• UPDATE

These procedures assume the system to be in a correct state and query the design
data structure using Tcl APIs to compute the values of certain parameters. The
tool uses the string these procedures return to update the design with the
Tcl-computed value.

• The stage during hardware platform creation at which they are invoked.

• IPLEVEL

These procedures are invoked early in processing performed within the tools.
These procedures assume that no design analysis has been performed and,
therefore, none of the system-level information is available.

• SYSLEVEL

These procedures are invoked later in processing, when the tool has performed
some system-level analysis of the design and has updated certain parameters. For
a list of such parameters, refer to the “Reserved Parameters” section of Chapter 2,
“Platform Specification Utility (PsfUtility).” Also note that some parameters may
be updated by Tcl procedures of IPs. Such parameters are governed solely by IP
Tcl and are therefore not listed in the MPD documentation.

Each Tcl procedure takes one argument. The argument is a handle of a certain type
in the data structure. The handle type depends on the object type with which the
Tcl procedure is associated. Tcl procedures associated with parameters are
provided with a handle to that parameter as an argument.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 249
UG111 July 06, 2011

Tcl Flow During Hardware Platform Generation

Tcl procedures associated with the IP itself are provided with a handle to a
particular instance of the IP used in the design as an argument. The following is a
list of the Tcl procedures that can be called for an IP instance.

Note: The MPD tag name that specifies the Tcl procedure name indicates the category to
which the Tcl procedure belongs.

Each of the following tags is a name-value pair in the MPD file, where the value
specifies the Tcl procedure associated with that tag. You must ensure that such a
Tcl procedure exists in the Tcl file for that IP.

• Tool-specific Tcl calls

• You can specify calls specific to either Platgen or Simgen.

Order of Execution for Tcl Procedures in the MPD

The Tcl procedures specified in the MPD are executed in the following order during
hardware platform generation:

1. IPLEVEL_UPDATE_VALUE_PROC (on parameters)

2. IPLEVEL_DRC_PROC (on parameters)

3. IPLEVEL_DRC_PROC (on the IP, specified on options)

4. SYSLEVEL_UPDATE_VALUE_PROC (on parameters)

5. SYSLEVEL_UPDATE_PROC (on the IP, specified on options)

6. SYSLEVEL_DRC_PROC (on parameters, ports)

7. SYSLEVEL_DRC_PROC (on the IP, specified on options)

8. FORMAT_PROC (on parameters)

9. Helper core Tcl Procedures

UPDATE Procedure for a Parameter Before System Level Analysis

You can use the parameter subproperty IPLEVEL_UPDATE_VALUE_PROC to specify the Tcl
procedure that computes the parameter value, based on other parameters on the same IP.
The input handle associates with the parameter object of a particular instance of that IP.

MPD snippet
PARAMETER C_PARAM1 = 4, …,
PARAMETER C_PARAM2 = 0, ..., IPLEVEL_UPDATE_VALUE_PROC = update_param2

Tcl computes value based on other parameters on the IP
Argument param_handle points to C_PARAM2 because the Tcl is
associated with C_PARAM2
proc update_param2 {param_handle} {
set retval 0;
set mhsinst [xget_hw_parent_handle $param_handle]
set param1val [xget_hw_param_value $mhsinst “C_PARAM1”]
if {$param1val >= 4} {
set retval 1;

}
return $retval

}

http://www.xilinx.com

250 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

DRC Procedure for a Parameter Before System Level Analysis

You can use the parameter subproperty IPLEVEL_DRC_PROC to specify the Tcl procedure
that performs DRCs specific to that parameter. These DRCs should be independent of
other PARAMETER values on that IP.

For example, this DRC can be used to ensure that only valid values are specified for that
parameter. The input handle is a handle to the parameter object for a particular instance of
that IP.

MPD snippet
PARAMETER C_PARAM1 = 0, ..., IPLEVEL_DRC_PROC = drc_param1

Tcl snippet
Argument param_handle points to C_PARAM1 since the Tcl is
associated with C_PARAM1
proc drc_param1 {param_handle} {
set param1val [xget_hw_value $param_handle
if {$param1val >= 5} {
error “C_PARAM1 value should be less 5”
return 1;

} else {
return 0;

}
}

DRC Procedure for the IP Before System Level Analysis

You can use the OPTION IPLEVEL_DRC_PROC to specify the Tcl procedure that performs this
DRC. The procedure should be used to perform DRCs at IPLEVEL (for example,
consistency between two parameter values). The DRCs performed here should be
independent of how that IP has been used in the system (MHS) and should only use
parameter, bus interface, and port settings used on that IP. The input handle is a handle to
an instance of the IP.

MPD Snippet
OPTION IPLEVEL_DRC_PROC = iplevel_drc
BUS_INTERFACE BUS = SPLB, BUS_STD = PLB, BUS_TYPE = SLAVE
PORT MYPORT = “”, DIR = I

Tcl snippet
proc iplevel_drc {ipinst_handle} {
set splb_handle [xget_hw_busif_handle $ipinst_handle “SPLB”]
set splb_conn [xget_hw_value $splb_handle]
set myport_handle [xget_hw_port_handle “MYPORT”]
set myport_conn [xget_hw_value $myport_handle]
if {$splb_conn == “” || $myport_conn == “”} {
error “Either busif SPLB or port MYPORT must be connected in the

design”
return 1;

}
else {
return 0;

}
}

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 251
UG111 July 06, 2011

Tcl Flow During Hardware Platform Generation

UPDATE Procedure for a Parameter After System Level Analysis

You can use the parameter subproperty SYSLEVEL_UPDATE_VALUE_PROC to specify the Tcl
procedure that computes the parameter value, based on other parameters of the same IP.
The input handle is a handle to the parameter object of a particular instance of that IP. Note
that when this procedure is called, system level parameters computed by Platgen (for
example, C_NUM_MASTERS on a bus) are already updated with the correct values.

MPD snippet
PARAMETER C_PARAM1 = 5, ..., SYSLEVEL_UPDATE_VALUE_PROC =
sysupdate_param1

Tcl snippet
proc sysupdate_param1 {param_handle} {
set retval [somehow_compute_param1]
return $reetval;

}

UPDATE Procedure for the IP Instance After System-Level Analysis

You can use the OPTION SYSLEVEL_UPDATE_PROC to perform certain actions associated
with a specific IP. This procedure is associated with the complete IP and not with a specific
parameter, so it cannot be used to update the value of a specific parameter.

For example, you can use this procedure to copy certain files associated with the IP in a
particular directory. The input handle is a handle to an instance of the IP:

MPD Snippet
OPTION SYSLEVEL_UPDATE_PROC = syslevel_update_proc
Tcl snippet
Proc myip_syslevel_update_proc {ipinst_handle} {
do something
return 0;

}

DRC Procedure for a Parameter After System Level Analysis

Use the tag SYSLEVEL_DRC_PROC to specify Tcl procedure that performs DRC on the
complete IP, based on how the IP has been used in the system. Input is a handle to the
parameter object of a particular instance of that IP.

PARAMETER C_MYPARAM = 5, ..., SYSLEVEL_DRC_PROC = sysdrc_myparam

http://www.xilinx.com

252 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

DRC Procedure for the IP After System Level Analysis

Use the OPTION SYSLEVEL_DRC_PROC to specify the Tcl procedure that performs DRC after
Platgen updates system level information. The input handle is a handle to an instance of
the IP. For example, if this particular IP has been instantiated, the procedure can check to
limit the number of instances of this IP, check that this IP is always used in conjunction
with another IP, or check that this IP is never used along with another IP.

MPD Snippet
OPTION SYSLEVEL_DRC_PROC = syslevel_drc
BUS_INTERFACE BUS = SPLB, BUS_STD = PLB, BUS_TYPE = SLAVE
PORT MYPORT = “”, DIR = O
Tcl snippet
proc syslevel_drc {ipinst_handle} {
set myport_conn [xget_hw_port_value $ipinst_handle “MYPORT”]
set mhs_handle [xget_hw_parent_handle $ipinst_handle]
set sink_ports [xget_hw_connected_ports_handle $mhs_handle

$myport_conn “SINK”]
if {[llength $sink_ports] > 5} {
error “MYPORT should not drive more than 5 signals”
return 1;

}
else {
return 0;

}
}

Platgen-specific Call

The OPTION PLATGEN_SYSLEVEL_UPDATE_PROC is called after all the common Tcl
procedures have been invoked. If you want certain actions to occur only when Platgen
runs and not when other tools run, this procedure can be used.

MPD Snippet
OPTION PLATGEN_SYSLEVEL_UPDATE_PROC = platgen_syslevel_update

Simgen-specific Call

The OPTION SIMGEN_SYSLEVEL_UPDATE_PROC is called after all the common Tcl procedures
have been invoked. If you want certain actions to occur when Simgen runs and not when
other tools run, this procedure can be used.

MPD Snippet
OPTION SIMGEN_SYSLEVEL_UPDATE_PROC = simgen_syslevel_update

FORMAT_PROC

The FORMAT_PROC keyword defines the Tcl entry point that allows you to provide a
specialized formatting procedure to format the value of the parameter.

The EDK tools deliver output files of two HDL types: Verilog and VHDL. Each format
semantic requires that the parameter values be normalized to adhere to a stylized
representation suitable for processing. For example, Verilog is case-sensitive and does not
have string manipulation functions. When developing an IP, you can use this Tcl entry
point to specify procedures to format string values based on the HDL requirements. Refer
to the Platform Specification Format Reference Manual for further details, and examples.
Appendix E, Additional Resources contains a link to the document.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 253
UG111 July 06, 2011

Additional Keywords in the Merged Hardware Datastructure

Helper Core Tcl Procedures

All the illustrated Tcl procedures must be specified in the top-level cores. If a top-level core
is using helper or library cores, you can execute Tcl procedures specific to those helper
cores, by using one of two procedures: SYSLEVEL_GENERIC_PROC and
SYSLEVEL_ARCHSUPPORT_PROC. These tcl procedures must be specified in the /data
directory of the helper core and must follow the same naming conventions as the other PSF
files. (For example: a Tcl file for the proc_common_v1_00_a core, must be named in a
corresponding nomenclature - proc_common_v2_1_0.tcl.)

• The SYSLEVEL_GENERIC_PROC procedure is a generic procedure used to print any
message.

• The SYSLEVEL_ARCHSUPPORT_PROC procedure is used to notify users of deprecated
helper cores.

For example, if the proc_common_v1_00_a core is deprecated, the core developer can print
a message in the tools every time this core is used within a non-deprecated top-level core,
by including this procedure in the tcl file of the helper core in the
proc_common_v2_1_0.tcl file of the proc_common_v1_00_a core as follows:

proc syslevel_archsupport_proc { mhsinst } {
print_deprecated_helper_core_message $mhsinst proc_common_v1_00_a

}

The PRINT_DEPRECATED_HELPER_CORE_MESSAGE procedure is provided by EDK tools to
generate a standard message for deprecated cores. It takes the handle to the top-level core
and the name of deprecated helper core as arguments.

Additional Keywords in the Merged Hardware Datastructure
Some keywords (sub-properties) that are created optionally on parameters, ports, and bus
interfaces in the merged hardware datastructure. These are used internally by tools and
can also be used by Tcl for DRCs. These additional keywords are:

• MHS_VALUE: When the merged object is created, it combines information from both
MHS and MPD. The default value is present in the MPD. However, these properties
can be overridden in the MHS. The tools have conditions when some values are
auto-computed and that auto-computed value will override the values in MHS also.
The original value specified in MHS is then stored in the MHS_VALUE sub-property.

• MPD_VALUE: When the merged object is created, it combines information from both
MHS and MPD. The default value is present in the MPD. However, these properties
can be overridden in the MHS. The tools have conditions when some values are
auto-computed and that auto-computed value will override the values in MHS also.
The value specified in MPD is consequently stored in the MPD_VALUE sub-property.

• CLK_FREQ_HZ: The frequency of every clock port in the merged hardware
datastructure, if available, is stored in a sub-property called CLK_FREQ_HZ on that
port. This is an internal sub-property and the frequency value is always in Hz.

• RESOLVED_ISVALID: If a parameter, port, or bus interface has the sub-property
ISVALID defined in the MPD, then the tools evaluate the expression to true (1) or false
(0) and store the value in an internal sub-property called RESOLVED_ISVALID on that
property.

• RESOLVED_BUS: If a port or parameter in an IP has a colon separated list of buses
(specified in the BUS tag) that it can be associated with in the MPD file, the tools
analyze the connectivity of that IP and determine to which of those buses the IP is
connected, and store the name of that bus interface in the RESOLVED_BUS tag. .

http://www.xilinx.com

254 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix C: EDK Tcl Interface

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 255
UG111 July 06, 2011

Appendix D

Interconnect Settings and Parameter
Automations for AXI Designs

The MPD and MHS Chapters of the Platform Specification Format Reference Manual (UG642)
describe the INTERCONNECT-related parameters that are captured on the end-point
master and slave bus interfaces. These parameters usually contain the
C_INTERCONNECT_<BusIf>_ prefix, where <BusIf> is the actual name of the bus
interface (such as "M_AXI_DP" in MicroBlaze).

Allowed Parameters in Master and Slave Interfaces
The following parameters are allowed in Master and Slave interfaces. These are described
in more detail in the MPD chapter of the Platform Specification Format Reference Manual.

For Master Interfaces, the allowed parameters are:

• C_INTERCONNECT_<BusIf>_BASE_ID

• C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC

• C_INTERCONNECT_<BusIf>_ACLK_RATIO

• C_INTERCONNECT_<BusIf>_ARB_PRIORITY

• C_INTERCONNECT_<BusIf>_AW_REGISTER

• C_INTERCONNECT_<BusIf>_AR_REGISTER

• C_INTERCONNECT_<BusIf>_W_REGISTER

• C_INTERCONNECT_<BusIf>_R_REGISTER

• C_INTERCONNECT_<BusIf>_B_REGISTER

• C_INTERCONNECT_<BusIf>_WRITE_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_READ_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_WRITE_ISSUING

• C_INTERCONNECT_<BusIf>_READ_ISSUING

For Slave Interfaces, the allowed parameters are:

• C_INTERCONNECT_<BusIf>_MASTERS

• C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC

• C_INTERCONNECT_<BusIf>_ACLK_RATIO

• C_INTERCONNECT_<BusIf>_SECURE

• C_INTERCONNECT_<BusIf>_AW_REGISTER

• C_INTERCONNECT_<BusIf>_AR_REGISTER

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com

256 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

• C_INTERCONNECT_<BusIf>_W_REGISTER

• C_INTERCONNECT_<BusIf>_R_REGISTER

• C_INTERCONNECT_<BusIf>_B_REGISTER

• C_INTERCONNECT_<BusIf>_WRITE_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_READ_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_WRITE_ACCEPTANCE

• C_INTERCONNECT_<BusIf>_READ_ACCEPTANCE

These parameters are:

• NON_HDL parameters, meaning that they do not affect the behavior of the end point
IP.

• Not present in the MPD of the IPs.

However, XPS tools allow these parameters to be specified as parameters in the MHS
instances of the peripherals connected to the AXI Interconnect (end point IPs) in the MHS
file.

In the context of the system as a whole, the AXI Interconnect needs to know about certain
properties of the IP interfaces to which that are connected. It is simpler to capture these
values on the end-point IPs. The main advantages to this approach are:

• The AXI Interconnect has vectored parameters to capture the values of parameters.
Because the interconnect allows up to 16 masters and 16 slaves to be connected to it,
the value of each forms part of a vectored value. Although it is possible to design a
smart interface to capture the values of these parameters in a non-vectored fashion, it
is inefficient to enter vectored values in the MHS by hand.

• IP information resides in a single location, so you can view core details, including
some system-level settings, at one place in the MHS.

• When you need to move a core from one AXI Interconnect to another, you need only
to change the bus interface name on the core. All AXI Interconnect-related settings are
preserved by the tools. As long as the other AXI Interconnect is an AXI Interconnect
with the same version, you do not need to specify the settings again.

The IP Configuration dialog boxes of the end point IPs include the Interconnect Settings
for BUSIF tab, which captures the values of these parameters. At runtime, the XPS tools
gather the values of these parameters from all the end-point IPs and transfer them onto the
AXI Interconnect.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 257
UG111 July 06, 2011

Building Vectors

Building Vectors
The AXI Interconnect allows a connection maximum of 16 masters and 16 slaves.
Additionally, parameters on the interconnect that capture the values of the masters/slaves
connected to it have vectored values. The tools capture these values on the end-point IPs,
and at run-time, and gather these values and build the necessary vectors that can be set as
the value of the parameters on the AXI Interconnect.

The tools also make some type-conversions, such as string-to-hex, to make it easier for you
and the AXI Interconnect to understand the values.

For example, you can specify the value of the AXI protocol of the peripherals that are
connected to the interconnect as "AXI4", "AXI3" or "AXI4LITE". These values are encoded
as 0, 1, and 2, respectively. In a design that has four slaves connected to the interconnect,
with protocol values and positions as shown below, the value of the protocol parameter is
constructed and set by the tools:

Slave at position 0 - protocol = axi4
Slave at position 1 - protocol = axi3
Slave at position 2 - protocol = axi4lite
Slave at position 3 - protocol = axi4lite
Value (256 bit) set on the interconnect is C_M_AXI_PROTOCOL =
"0x000
0000000000000000000000000000000000002000000020000000100000000"

Parameter Automations
The EDK tool automatically compute certain parameters in AXI designs to enable ease of
use and to optimize the designs. The following subsections list the auto-computed
parameters.

C_INTERCONNECT_<BusIf>_BASE_ID
This parameter is used to specify the unique Base ID for each master interface that is
connected to the interconnect. The master interfaces specify the number of variable
low-order ID bits using the C_<BusIf>_THREAD_ID_WIDTH parameter. The tools then
take into account the value of THREAD_ID_WIDTH of all the interfaces and generate unique
Base IDs for each interface.

The interconnect does some bookkeeping to enable the master interfaces connected to it to
issue multiple transactions at once, and ensures that they are returned in order. It appends
the Base ID value to all the transactions that the master issues, and it informs the slave
about the number of bits that it appended. The slave then ignores those bits in processing
the transaction. When the response from the slave reaches the interconnect, it strips off
those bits that it appended before sending the response to the master.

Ideally, the number of bits that the interconnect appends to make the master interfaces
unique should be as low as possible to minimize the packet size. The tools follow a general
algorithm to generate the BASE ID values and the values that the tools generate may not
always be optimal. To optimize it further, you can override the values generated by the
tools by specifying the BASE IDs in the MHS. However, if you chooses to override even a
single BASE ID, you must specify the BASE ID values for all the master interfaces in the
design.

http://www.xilinx.com

258 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

C_<BusIf>_AXI_ID_WIDTH
The AXI Interconnect appends the BASE ID bits to transactions. The slaves must know
how many bits are appended by the AXI Interconnect, which is specified in the
C_<BusIf>_AXI_ID_WIDTH parameter. Regardless of whether the tools computed the
BASE ID values or you specified them, the tools compute the maximum number of bits
necessary to make the masters unique and set that value as the AXI_ID_WIDTH on the AXI
Interconnect and the connected slaves.

C_INTERCONNECT_<BusIf>_ACLK_RATIO
This parameter determines whether the frequency of the clock port of the master/slave
interface is at an integer ratio with respect to the frequency of the clock port of the
interconnect.

The tools trace the IP clocks in the design to identify the value of the frequency of the clock
port. They do this based on the CLK_FREQ_HZ sub-property on the clock port (identified
by SIGIS = CLK tag in the MPD). If this sub-property does not exist, the tools create the
sub-property by tracing the clock port connection through bus interfaces, clock generator,
external ports, etc.

Once the clock frequencies are determined, the tools then compute the values of
C_INTERCONNECT_<BusIf>_ACLK_RATIO parameters. To compute this parameter, the
tools look at each interconnect in the design and identify the lowest clock frequency of all
the masters and slaves connected to that interconnect. That lowest frequency is then
considered as base 1. All the ratios are then computed with respect to that frequency.

For example, consider an AXI Interconnect (axi_0) with the following:

• Three masters, M1, M2, and M3 with frequencies of 200 MHz, 100 MHz, and 100
MHz, respectively, on their M_AXI interfaces

• Two slaves, S1 and S2, with frequencies of 100 MHz and 50 MHz, respectively, on their
S_AXI interfaces

• A clock frequency of 100 MHz on the AXI Interconnect

In this case, the tools compute the ratios to be:

• Lowest clock frequency is on S2 => ratio = 1

• Ratio of M1 with respect to S2 = 200:50 => 4

• Ratio of axi_0 with respect to S2 = 100:50 => 2 and so on.

The C_INTERCONNECT_<BusIf>_ACLK_RATIO parameters in the above example have
the values as shown below:

• For M1 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 4

• For M2 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 2

• For M3 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 2

• For axi_0 - parameter C_INTERCONNECT_ACLK_RATIO = 2

• For S1 (Slave) - parameter C_INTERCONNECT_S_AXI_ACLK_RATIO = 2

• For S2 (Slave) - parameter C_INTERCONNECT_S_AXI_ACLK_RATIO = 1

These values are automatically updated by the tools and you cannot override them.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 259
UG111 July 06, 2011

Parameter Automations

C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC
This parameter is used to specify whether the frequency of the clock port of the bus
interface (master/slave) is asynchronous with respect to the frequency of the clock port of
the interconnect. Whenever the interface is asynchronous with respect to the interconnect,
the interconnect inserts some additional logic to handle that situation.

As mentioned in the MHS Chapter of the Platform Specification Format Reference Manual
(UG642), tools require that all IPs in the design be connected to a clock port. So, when tools
identify the clock frequencies of different interfaces, they compute the ratio parameters. If
the ratio is a non-integer ratio, the IS_ACLK_ASYNC parameter is set to 1. Otherwise, if the
ratio is an integer ratio, the tools set the value of that parameter to 0.

To make a particular clock asynchronous with respect to the interconnect, you can override
the value of this parameter in the MHS. The tools will not update that parameter.

Note: If you override the C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC parameter for any
interface, the tools ignore that frequency when trying to identify the lowest clock for determining clock
ratios. Also, tools do not compute the ratio for that particular interface, as it is marked asynchronous.

C_<BusIf>_SUPPORTS_NARROW_BURST
If this parameter is present on the AXI slave interfaces, the tools automatically update it to
optimize the design. The tools analyze the design at run time. When there are no masters
connected to the interconnect that can generate narrow bursts, they set this parameter (on
the slave to '0') to disable narrow burst support logic and save resources.

C_<BusIf>_SUPPORTS_READ
If this parameter is present on the AXI slave interfaces, the tools automatically update it to
optimize the design. The tools analyze the design at run time. If there are no masters
connected to the interconnect that use the AR and R channels, they set this parameter (on
the slave to 0) to disable AR and R channels and save resources.

C_<BusIf>_SUPPORTS_WRITE
If this parameter is present on the AXI slave interfaces, it is automatically updated by the
tools to optimize the design. The tools analyze the design at run time. If there are no
masters connected to the interconnect that use the AW and W channels, they set this
parameter (on the slave to '0') to disable AW and W channels and save resources.

User Signal Width parameters on the AXI interconnect
The tools analyze the design at runtime and check the value of the user signal widths of all
masters and slaves connected to the interconnect. They then compute the maximum value
of the channel width for the AW, AR, and W channels between all the masters and set those
values on the interconnect. Similarly, they compute the maximum value of the channel
width for the R and B channels between all the slaves and set those values on the AXI
Interconnect.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com

260 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 261
UG111 July 06, 2011

Appendix E

Additional Resources

Xilinx Resources
• ISE Design Suite: Installation and Licensing Guide (UG798):

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/iil.pdf

• ISE Design Suite 13: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

• Xilinx® Documentation:
http://www.xilinx.com/support/documentation

• Xilinx Glossary:
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx Support: http://www.xilinx.com/support.htm

ISE Documentation
• Command Line Tools User Guide (UG628):

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/devref.pdf

• Xilinx Synthesis and Simulation Design Guide (UG626):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/sim.pdf

EDK Documentation
The following documents are available in your EDK install directory, in
install_directory\doc\usenglish. You can also access the entire documentation
set online at: http://www.xilinx.com/ise/embedded/edk_docs.htm.

Individual documents are linked below.

• EDK Concepts, Tools, and Techniques (UG683):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/edk_ctt.pdf

Note: The accompanying design files are in edk_ctt.zip.

• Embedded System Tools Reference Manual (UG111):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/est_rm.pdf

• Platform Specification Format Reference Manual (UG642):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf

• EDK Profiling Guide (UG448):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/edk_prof.pdf

• PowerPC 405 Processor Block Reference Guide (UG018):
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=13.2&locale=en&topic=release+notes
http://www.xilinx.com/support.htm
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=13.2&locale=en&topic=install
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=devref.pdf
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf
http://www.xilinx.com/support/documentation
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=sim.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=150312&license=RefDesLicense
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=glossary
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=est_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=edk_prof.pdf

262 www.xilinx.com Embedded System Tools Reference Manual
UG111 July 06, 2011

Appendix E: Additional Resources

• PowerPC 405 Processor Reference Guide (UG011):
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf

• PowerPC 440 Embedded Processor Block in Virtex-5 FPGAs (UG200):
http://www.xilinx.com/support/documentation/user_guides/ug200.pdf

• MicroBlaze Processor User Guide (UG081):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/
mb_ref_guide.pdf

• SDK Help

• XPS Help

EDK Additional Resources
• Xilinx® Platform Studio and EDK website:

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

• Xilinx Platform Studio and EDK Document website:
http://www.xilinx.com/ise/embedded/edk_docs.htm

• Xilinx XPS/EDK Supported IP website:
http://www.xilinx.com/ise/embedded/edk_ip.htm

• Xilinx EDK Example website:
http://www.xilinx.com/ise/embedded/edk_examples.htm

• Xilinx Tutorial website:
http://www.xilinx.com/support/documentation/dt_edk_edk13-2_tutorials.htm

• Xilinx Data Sheets:
http://www.xilinx.com/support/documentation/data_sheets.htm

• Xilinx Problem Solvers:
http://www.xilinx.com/support/troubleshoot/psolvers.htm

• Xilinx® ISE® Manuals:
http://www.xilinx.com/support/software_manuals.htm

• Additional Xilinx Documentation:
http://www.xilinx.com/support/library.htm

• GNU Manuals:
http://www.gnu.org/manual

• IBM CoreConnect Technology:
http://www.xilinx.com/products/intellectual-property/
dr_pcentral_coreconnect.htm

• AXI BFM User Guide (UG783): http://www.xilinx.com/support/documentation/
sw_manuals/xilinx13_2/ug783_axi_bfm.pdf

http://www.xilinx.com/products/intellectual-property/dr_pcentral_coreconnect.htm
http://www.xilinx.com/products/intellectual-property/dr_pcentral_coreconnect.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=ug783_axi_bfm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=ug783_axi_bfm.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf
http://www.xilinx.com/support/documentation/user_guides/ug200.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=index.html
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=index.html
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=edk+tutorials
http://www.xilinx.com/support/documentation/data_sheets.htm
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/library.htm
http://www.gnu.org/manual

	Embedded System Tools Reference Manual
	Revision History
	Chapter 1 Embedded System and Tools Architecture Overview
	Scope
	About EDK
	Design Process Overview
	Hardware Development
	Software Development
	Verification
	Device Configuration

	EDK Overview
	EDK Tools and Utilities
	Xilinx Platform Studio
	Software Development Kit

	Chapter 2 Platform Specification Utility (PsfUtility)
	Tool Options
	MPD Creation Process Overview
	Use Models for Automatic MPD Creation
	Peripherals with a Single Bus Interface
	Peripherals with Multiple Bus Interfaces
	Peripherals with Point-to-Point Connections

	DRC Checks in PsfUtility
	HDL Source Errors
	Bus Interface Checks

	Conventions for Defining HDL Peripherals
	Naming Conventions for Bus Interfaces
	Naming Conventions for VHDL Generics
	Naming Conventions for Bus Interface Signals
	Global Ports
	Master AXI4 Ports
	Slave AXI4 Ports
	Master AXI4LITE Ports
	Slave AXI4LITE ports
	AXI4LITE Slave Outputs
	Slave DCR Ports
	Slave FSL Ports
	Master FSL Ports
	Slave LMB Ports
	Master PLBV4.6 Ports
	Slave PLBV46 Ports

	Chapter 3 Psf2Edward Program
	Program Usage
	Program Options

	Chapter 4 Platform Generator (Platgen)
	Features
	Tool Requirements
	Tool Usage
	Tool Options
	Load Path
	Output Files
	HDL Directory
	Implementation Directory
	Synthesis Directory
	BMM Flow

	Synthesis Netlist Cache

	Chapter 5 Command Line Mode
	Invoking XPS Command Line Mode
	Creating a New Empty Project
	Creating a New Project With an Existing MHS
	Opening an Existing Project
	Saving Your Project Files
	Setting Project Options
	Executing Flow Commands
	Reloading an MHS File
	Adding or Updating an ELF File
	Deleting an ELF File
	Archiving Your Project Files
	Restrictions
	XMP Changes

	Chapter 6 Bus Functional Model Simulation
	Introduction
	Bus Functional Simulation Basics
	Bus Functional Models (BFMs)
	Bus Functional Language (BFL)
	Bus Functional Compiler (BFC)

	Bus Functional Model Use Cases
	IP Verification
	Speed-Up Simulation

	Bus Functional Simulation Methods
	IBM CoreConnect Toolkit
	Platform Studio BFM Package
	AXI BFM Package

	Getting and Installing the Platform Studio BFM Package
	Using the Platform Studio BFM Package
	PLB v4.6 BFM Component Instantiation
	BFM Synchronization Bus Usage
	PLB Bus Functional Language Usage
	Bus Functional Compiler Usage
	Running BFM Simulations

	Chapter 7 Simulation Model Generator (Simgen)
	Simgen Overview
	Simulation Libraries
	Xilinx ISE Libraries
	Xilinx EDK Library

	Compxlib Utility
	Simulation Models
	Behavioral Models
	Structural Models
	Timing Models
	Single and Mixed Language Models
	Creating Simulation Models Using XPS Batch Mode

	Simgen Syntax
	Requirements
	Options

	Output Files
	Memory Initialization
	Test Benches

	External Memory Simulation
	Restrictions
	Enabling External Memory Simulation
	Considerations and Use Restrictions

	Simulating Your Design

	Chapter 8 Library Generator (Libgen)
	Overview
	Tool Usage
	Tool Options
	Load Paths
	Default Repositories
	Search Priority Mechanism

	Output Files
	The include Directory
	lib Directory
	libsrc Directory
	code Directory

	Generating Libraries and Drivers
	Overview
	MDD, MLD, and Tcl

	MSS Parameters
	Drivers
	Libraries
	OS Block
	Additional Resources

	Chapter 9 GNU Compiler Tools
	Overview
	Compiler Framework
	Common Compiler Usage and Options
	Usage
	Input Files
	Output Files
	File Types and Extensions
	Libraries
	Language Dialect
	Commonly Used Compiler Options: Quick Reference
	General Options
	Library Search Options
	Header File Search Option
	Default Search Paths
	Linker Options
	Memory Layout
	Object-File Sections
	Linker Scripts

	MicroBlaze Compiler Usage and Options
	MicroBlaze Compiler
	MicroBlaze Compiler Options: Quick Reference
	Processor Feature Selection Options
	General Program Options
	MicroBlaze Application Binary Interface
	MicroBlaze Assembler
	MicroBlaze Linker Options
	MicroBlaze Linker Script Sections
	Tips for Writing or Customizing Linker Scripts
	Startup Files
	Modifying Startup Files
	Compiler Libraries
	Thread Safety
	Command Line Arguments
	Interrupt Handlers

	PowerPC Compiler Usage and Options
	PowerPC Compiler Options: Quick Reference
	PowerPC Compiler Options
	PowerPC Processor Linker
	PowerPC Processor Linker Script Sections
	Tips for Writing or Customizing Linker Scripts
	Startup Files
	Modifying Startup Files
	Compiler Libraries
	Thread Safety
	Command Line Arguments

	Other Notes
	Additional Resources
	GNU Information
	PowerPC Information
	MicroBlaze Information

	Chapter 10 Xilinx Microprocessor Debugger (XMD)
	XMD Usage
	XMD Console
	XMD Command Reference
	XMD User Command Summary

	XMD User Commands
	Special Purpose Register Names
	XMD Reset Sequence
	Recommended XMD Flows
	Debugging a Program
	Debugging Programs in a Multi-Processor Environment
	Running a Program in a Debug Session
	Using Safemode for Automatic Exception Trapping
	Processor Default Exception Settings
	Overwriting Exception Settings
	Viewing Safemode Settings

	Connect Command Options
	PowerPC Processor Targets
	MicroBlaze Processor Target

	XMD Internal Tcl Commands
	Program Initialization Options
	Register/Memory Options
	Program Control Options
	XMD MicroBlaze Hardware Target Signals
	Program Trace and Profile Options

	Chapter 11 GNU Debugger
	Overview
	Tool Overview
	Tool Usage
	Tool Options
	Debug Flow using GDB

	MicroBlaze GDB Targets
	Simulator Target
	Hardware Target
	Compiling for Debugging on MicroBlaze Targets

	PowerPC 405 Targets
	PowerPC 440 Targets
	Console Mode
	GDB Command Reference
	Additional Resources

	Chapter 12 Bitstream Initializer (BitInit)
	Overview
	Tool Usage
	Tool Options

	Chapter 13 System ACE File Generator (GenACE)
	Assumptions
	Tool Requirements
	GenACE Features
	GenACE Model
	The Genace.tcl Script
	Syntax
	Usage
	Supported Target Boards in Genace.tcl Script

	Generating ACE Files
	For Custom Boards
	Single FPGA Device
	Generating ACE for a Single Processor in Multi-Processor System
	Multi-Processor System Configuration
	Multiple FPGA Devices

	Related Information
	CF Device Format

	Chapter 14 Flash Memory Programming
	Overview
	Flash Programming from XPS

	Supported Flash Hardware
	Flash Programmer Performance
	Customizing Flash Programming
	Manual Conversion of ELF Files to SREC for Bootloader Applications
	Operational Characteristics and Workarounds

	Chapter 15 Version Management Tools (revup)
	Overview
	Format Revision Tool Backup and Update Processes
	13.2 Changes
	13.1 Changes
	12.1 Changes
	11.4 Changes
	11.3 Changes
	11.2 Changes
	11.1 Changes
	10.1 Changes
	9.2i Changes
	Changes in 9.1i
	Changes in 8.2i
	Changes in 8.1i
	Changes in 7.1i
	Changes in 6.3i
	Changes in 6.2i

	Command Line Option for the Format Revision Tool
	The Version Management Wizard

	Chapter 16 Microprocessor Peripheral Definition Translation tool (MPDX)
	XBD2
	MPDX
	Board MPD
	Board Options
	Reference Clock
	Reference Reset
	UART
	GPIO
	DDR2 SDRAM
	NOR FLASH

	Define Constraints
	CSV Pin File
	TCL

	Appendix A: GNU Utilities
	General Purpose Utility for MicroBlaze and PowerPC
	cpp
	gcov

	Utilities Specific to MicroBlaze and PowerPC
	mb-addr2line
	mb-ar
	mb-as
	mb-c++
	mb-c++filt
	mb-g++
	mb-gasp
	mb-gcc
	mb-gdb
	mb-gprof
	mb-ld
	mb-nm
	mb-objcopy
	mb-objdump
	mb-ranlib
	mb-readelf
	mb-size
	mb-strings
	mb-strip

	Other Programs and Files

	Appendix B: Interrupt Management
	Hardware Setup
	Software Setup and Interrupt Flow
	Interrupt Flow for MicroBlaze Systems
	Interrupt Flow for PowerPC Systems

	Software APIs
	Interrupt Controller Driver
	API Descriptions
	Hardware Abstraction Layer APIs
	Interrupt Setup Example

	Appendix C: EDK Tcl Interface
	Introduction
	Understanding Handles
	Data Structure Creation
	Tcl Command Usage
	General Conventions
	Before You Begin

	EDK Hardware Tcl Commands
	Overview
	Hardware Read Access APIs

	Tcl Example Procedures
	Example 1
	Example 2
	Advanced Write Access APIs

	Tcl Flow During Hardware Platform Generation
	Input Files
	Tcl Procedures Called During Hardware Platform Generation

	Additional Keywords in the Merged Hardware Datastructure

	Appendix D: Interconnect Settings and Parameter Automations for AXI Designs
	Allowed Parameters in Master and Slave Interfaces
	Building Vectors
	Parameter Automations
	C_INTERCONNECT_<BusIf>_BASE_ID
	C_<BusIf>_AXI_ID_WIDTH
	C_INTERCONNECT_<BusIf>_ACLK_RATIO
	C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC
	C_<BusIf>_SUPPORTS_NARROW_BURST
	C_<BusIf>_SUPPORTS_READ
	C_<BusIf>_SUPPORTS_WRITE
	User Signal Width parameters on the AXI interconnect

	Additional Resources
	Xilinx Resources
	ISE Documentation
	EDK Documentation
	EDK Additional Resources

