## Pathway Studio<sup>®</sup> Explore 1.1, Affymetrix Edition

**Training Manual** 

Version 2.0

Page **1** of **68** 

#### Preface

This manual is for users of Pathway Studio® Explore, Affymetrix Edition Version 1.1.

Instructions for the installation of Pathway Studio Explore are not included in this manual. Please see the Pathway Studio Explore Installation Guide for information on the installation of Pathway Studio Explore and the ResNet Explore Database. The Installation Guide can be found on Ariadne's Technical Support site: <a href="http://www.ariadnegenomics.com/support/pathway-studio-explore/training-material/">http://www.ariadnegenomics.com/support/pathway-studio-explore/training-material/</a>.

#### How to Use this Manual

This manual is designed to walk you through some major workflows in Pathway Studio Explore. Each section has an introduction to the tools in Pathway Studio examples of how they can be used, followed by a hands-on work example. Each example builds on information from the previous exercises, and sometimes utilizes files generated from previous examples.

Two example data files accompany this training manual:

- GDS2126.gepr and GDS2126.txt This files contains the information needed to import a microarray experiment
- SCLC genes this is an MS Excel spreadsheet containing genes differentially expressed between normal lung and small cell lung tumor samples.

You will need to download these files to be able to reproduce the hands-on exercises. You can find these files in the same location in the Support section of Ariadne's website as this Training Manual.

ResNet® Explore Database and Pathway Studio® Explore software registered trademarks of Ariadne Genomics, Inc.

MS Excel® is a registered trademark of Microsoft Corporation.

Affymetrix GeneChip® is a trademark of Affymetrix, Inc.

Partek® is a registered trademark of Partek Incorporated.

#### **Other Training and Support Resources**

The Ariadne Technical Support site has additional resources available to enable Pathway Studio Explore users found at:

http://www.ariadnegenomics.com/support/pathway-studio-explore

#### Access to Technical Support

Technical Support for Ariadne's products can be easily accessed from Pathway Studio:

| Ε | 🛃 Pathway Studio® Explore - [Folders]                                                                                      |                |
|---|----------------------------------------------------------------------------------------------------------------------------|----------------|
|   | 脂 Home                                                                                                                     |                |
|   | 🧃 Database 🔻 📑 Import 👻 🥥 Tools 🔻                                                                                          |                |
|   | Search Database                                                                                                            | <mark>ب</mark> |
|   | ResNet Explore 1.0 (Mammal)         C:\Users\heatwole\Documents\EZPathway1         Data\resnet7explore.gpy         Folders |                |
|   | Database Release Notes                                                                                                     | ~              |
|   | Index of Database Content                                                                                                  | ~              |
|   | Quick Start                                                                                                                | ~              |
|   | Support & Training                                                                                                         | ^              |
|   | Welcome to Pathway Studio Explore                                                                                          | *              |
|   | Search for Answers                                                                                                         | -              |
|   | Training Manual                                                                                                            | -              |
|   | Downloads                                                                                                                  |                |
|   | Submit a Question                                                                                                          | -              |
|   | News & Updates                                                                                                             | ~              |
|   | About Pathway Studio® Explore                                                                                              | ~              |

# Links within the Information Pane in Pathway Studio take you directly to the support website. Registration and log-in to this website is required.

In addition, you can access the support site directly at:

http://www.ariadnegenomics.com/support/pathway-studioexplore

A link is provided here to submit questions directly to Technical Support.

In addition this Training Manual, you can access the Quick Start Guide through the Information Pane. This Quick Start Guide will walk you through the steps of some common analysis workflows for Pathway Studio.

#### **Quick Start Guides**

| 🚰 Pathway Studio® Explore - [Folders]                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 📑 Home                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
| 间 Database 🔻 🛃 Import 👻 😳 Tools                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                     |
| Search Database                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>P</i> <b>-</b>                                     |
| ResNetExplore 1.0.0.0 (Mammal)<br>C:\Users\Virginia\Documents\EZPathway1<br>Data\ResNetExplore.gpc<br>Folders & New Pathway<br>& New Group                                                                                                                                                                                                                                                                                                | ,                                                     |
| Database Release Notes                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                                     |
| Index of Database Content                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| Quick Start                                                                                                                                                                                                                                                                                                                                                                                                                               | ^                                                     |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore                                                                                                                                                                                                                                                                                                                                                              | <b>∧</b><br>hway                                      |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>gene/protein (or other entity) and build a p                                                                                                                                                                                                                                                                 | hway<br>boathway                                      |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>genc/protein (or other entity) and build a p<br>Examine experimental data to find: ontolog<br>pathways, main regulators associated with                                                                                                                                                                      | hway<br>bathway<br>gies,<br>results                   |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>gene/protein (or other entity) and build a p<br>Examine experimental data to find: ontolog<br>pathways, main regulators associated with<br>Examine a gene/protein list to find: ontolog<br>pathways, main regulators associated with                                                                         | hway<br>boathway<br>gies,<br>results<br>gies,<br>list |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>gene/protein (or other entity) and build a<br>Examine experimental data to find: ontolog<br>pathways, main regulators associated with<br>Examine a gene/protein list to find: ontolo<br>pathways, main regulators associated with                                                                            | hway<br>boathway<br>gies,<br>results<br>gies,<br>list |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>gene/protein (or other entity) and build a p<br>Examine experimental data to find: ontolog<br>pathways, main regulators associated with<br>Examine a gene/protein list to find: ontolo<br>pathways, main regulators associated with<br>Support & Training<br>News & Undates                                  | A<br>bathway<br>gies,<br>results<br>gies,<br>list     |
| Quick Start<br>Hands-on guide to key functionality of Pat<br>Studio® Explore<br>Search the ResNet® Explore Database for a<br>gene/protein (or other entity) and build a p<br>Examine experimental data to find: ontolog<br>pathways, main regulators associated with<br>Examine a gene/protein list to find: ontolo<br>pathways, main regulators associated with<br>Support & Training<br>News & Updates<br>About Pathway Studio® Explore | bathway bathway gies, results gies, list              |

| DENTIFY ENRICHMENT OF ONTOLOGIES     DENTIFY ENRICHMENT OF ONTOLOGIES     DENTIFY ENRICHMENT OF ONTOLOGIES     Subset of the second of th                                                                                                                                                                                                                             | Pathway Studio Quick Start Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Introduction:<br>You can run an enrichment analysis to seel if any known gene<br>ontologies are statilicially enriched in your microarray dataset using<br>analytical to off interpreting gene expression data to gain insights<br>into biological mechanisms. GSEA evaluates data at the level of gene.<br>GSEA is a statistically enriched in your microarray dataset<br>to correlated with the compared sample classes.<br>The entologies available in Pathway Studio & Explore include: Gene<br>Ontology groups and Ariadne Ontology groups. You can add to this<br>field by importing other groups into your database (not shown in this<br>compile)<br><b>Outime</b><br><b>9</b> . Open an experiment in Pathway Studio Explore.<br><b>1</b> . Open an experiment from the Folder Viewer.<br><b>1</b> . Open an experiment from the Folder Viewer.<br><b>1</b> . Open an experiment from the Folder Viewer.<br><b>1</b> . Folders <b>1</b> . Experiments<br><b>1</b> . <b>1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( IDENTIFY ENRICHMENT OF ONTOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Outline:<br>• Open an experiment in Pathway Studio Explore.<br>• Run the Gene Set Enrichment Analysis algorithm "Gene Set<br>Enrichment Analysis".<br>Procedure:<br>1. Open an experiment from the Folder Viewer.<br>↓ Folders ↓ Experiments ↓<br>↓ View ↓ @ Import ↓ @ Export ↓ . New<br>↓ Folders ↓ Depriments ↓<br>↓ Folders ↓ Depriments ↓<br>↓ Projects Name<br>↓ Projects Open<br>Preview<br>Gene Set Enrich<br>Gene Set Enrich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Introduction:<br>You can run an enrichment analysis to see if any known gene<br>ontologies are statistically enriched in your micrearray dataset using<br>ontologies are statistically enriched in your micrearray dataset using<br>analysicia tool for interpreting gene expersion data to gain insights<br>into biological mechanismu. OSEA evaluates data at the level of gene.<br>GSEA is a statistical text used to compare two sample groups (i.e.<br>thorow's, normal fissues) and determine which of three gene sets tend<br>to correlated with the compared sample classes.<br>The entologies available in Pathway Studio® Explore include: Gene<br>forology groups and Ariadne Ontology groups. You can add to this<br>list by importing other groups into your database (not shown in this<br>eample). | н |
| Procedure:<br>1. Open an experiment from the Folder Viewer.<br>Folders ×<br>Folders ×<br>F | Outline:<br>• Open an experiment in Pathway Studio Explore.<br>• Run the Gene Set Enrichment Analysis algorithm "Gene Set<br>Enrichment Analysis".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Folders ×      Polders ×      P                                                                                                                                                                                                                             | Procedure:<br>1. Open an experiment from the Folder Viewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Polders ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| L: View      Binport      P in Projects     Coss126     Open     Preview     Gene Set Enrich     Coss126     Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🕢 🕟 📓 Folders 🕨 🎉 Experiments 🕨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Codes     Codes     Pathways     Ontologies     Experiments     Projects     Coss126     Open     Preview     Gene Set Enrich     Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🔢 🚉 View 🕶 🚯 Import 👻 😰 Export 👻 🌅 Nev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Detrusys     Ortologies     Experiments     Directos     Projects     Project     Construction     Construction     Construction     Construction     Construction     Construction     Construction     Construction     Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Folders     Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| Projects     GDS2126     Open     Preview     Gene Set Enrich     Sith Matematic E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ontologies     Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Preview<br>Gene Set Enrich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Projects GDS2126 Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Gene Set Enrich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Preview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gene Set Enrich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Run Gene Set Enrichment Analysis" (GSEA). [Experiment Data<br/>Viewer: Tools → Gene Set Enrichment Analysis]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| <ol> <li>Kun "Gene Set Enrichment Analysis" (GSEA). [Experiment Data<br/>Viewer: Tools → Gene Set Enrichment Analysis]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Edit = Select = Tarle =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Kun Gene set Enrichment Analysis [GSEA]. [Experiment Data<br>Viewer: Tools → Gene Set Enrichment Analysis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cuit • IIII Select • III 10015 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| A: Nun Vene set Enrichment Analysis (OS-bA). [Experiment Data<br>Viewer: Tools -     Edit - Select - Tools -     Beid Dathmark form Colonian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s Ctd OAxe C Save Selection as Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.080e-01 Find Pathways/Groups Enriched with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |

## **Table of Contents**

| Preface                                                                               | 2            |
|---------------------------------------------------------------------------------------|--------------|
| Table of Contents                                                                     | 4            |
| Section 1: Introduction to Pathway Studio Explore and ResNet Explore Database         | 6            |
| What can Pathway Studio Explore do for you?                                           | 6            |
| MedScan Reader 3.0                                                                    | 7            |
| ResNet Explore Database                                                               | 8            |
| Curated Pathway Collection                                                            | 8            |
| Ariadne Gene Ontology/Gene Ontology                                                   | 9            |
| Section 2: Introduction to the Pathway Studio interface                               | 10           |
| Opening a Database                                                                    | 11           |
| Information Pane                                                                      | 11           |
| Folders View                                                                          | 12           |
| Exercise One: Open the local ResNet Explore Database                                  | 13           |
| Section 3: Building Pathways                                                          | 14           |
| Search ResNet for an Entity                                                           | 14           |
| Import a list of Entities                                                             | 14           |
| • Exercise Two: Search ResNet Explore for Entities and Relationships and Import a Pro | otein List17 |
| Build Pathway Tools in Pathway Studio                                                 | 21           |
| Build Pathway Tool – Quick Menus                                                      | 21           |
| Build Pathway Tool – Advanced Menu Desktop                                            | 22           |
| Graph View/ Entity Table view / Relation Table view                                   | 23           |
| Customizing tables, filtering by significance                                         | 23           |
| Viewing Details about Entities/Relationships                                          | 24           |
| Creating new Entities and Relationships                                               | 25           |
| Customization of Pathway Layouts                                                      | 26           |
| • Exercise Three: Building Pathways                                                   | 28           |
| Saving Pathway Images                                                                 |              |
| Exporting Pathways                                                                    |              |
| Section 4: Importing Experimental Data                                                |              |
| • Exercise Four: Import data                                                          |              |
| Section 5: Experimental data analysis tools                                           | 41           |
|                                                                                       | _            |

| Fisher's Exact Test                                                                                                             | 41 |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| • Exercise Five: Experimental Data Analysis – Fisher's Exact Test for Enriched Groups and Pathways                              | 46 |
| Gene Set Enrichment Analysis                                                                                                    | 50 |
| • Exercise Six: Experimental Data Analysis – Gene Set Enrichment Analysis                                                       | 52 |
| Sub-Network Enrichment Analysis                                                                                                 | 56 |
| Defining the Sub-Networks                                                                                                       | 56 |
| Both enrichment algorithms, Fisher's Exact Test and Gene Set Enrichment Analysis, can be used to identify enriched Sub-Networks | 59 |
| • Exercise Seven: Experimental Data Analysis – Sub-Network Enrichment Analysis (with GSEA)                                      | 60 |
| Appendix A: Definitions                                                                                                         | 65 |
| Appendix B: Deleting Entities and Relations from a Local Database (Pathway Studio Explore and ResNet Explore)                   | 67 |

## Section 1: Introduction to Pathway Studio Explore and ResNet Explore Database

Congratulations on your decision to utilize Pathway Studio Explore as an important tool to support your biological research. Pathway Studio Explore helps you to interpret experimental data in the context of pathways, gene regulation networks and protein interaction maps; interpret microarray and proteomics data, classify and prioritize proteins, draw pathway diagrams, and automatically update your pathways with newly published facts using MedScan Technology.

#### What can Pathway Studio Explore do for you?

• Identify relationships among proteins, small molecules, cell processes and diseases

What is known to interact with my protein? What processes are associated with my protein?



Build and reconstruct pathways from your microarray and other high-throughput data

Analysis Tools to find enriched networks in experimental data



#### MedScan Reader 3.0

MedScan technology is a Natural Language Processing Technology used to extract relationship information from biomedical literature. Ariadne utilizes MedScan technology to build the ResNet Explore Database, the mammalian (human, mouse and rat) database, of relationship information summarized from all abstracts in PubMed as well as information contained in 61 free full-text journals. ResNet Curator was applied to the extracted data to condense information and remove some technical false positives.

Here is an example of how MedScan works. MedScan reads sentences and identifies entities (proteins, complexes, small molecules, diseases etc.) in sentences, here depicted in red.

Sentence in scanned literature: "Axin binds beta-catenin and inhibits GSK-3beta."

• Identify Proteins in Dictionary (in red): [Entities] "Axin binds beta-catenin and inhibits GSK-3beta."

Next MedScan utilizes pattern rules to identify described relationships between the sentences

- Identify Interaction Type (in blue):
   [Relationships]
- "Axin binds beta-catenin and inhibits GSK-3beta."

The extracted facts are the relationships, which are added to the ResNet database:

Extracted Facts: Axin - beta-catenin relation: Binding Axin -> GSK-3beta relation: Regulation, effect: Negative

The sentences containing identified relationships are available for examination within the Pathway Studio interface as well as the literature reference.

| ProtModification Properties                   | Pathways                |                                    |
|-----------------------------------------------|-------------------------|------------------------------------|
| Relation Type: ProtModification<br>Add Remove | v Hide empty properties | Declare New Property Add Remove    |
| Category                                      | Property                | Value                              |
| Common Properties                             | MedLine Reference       | 15308560:10068                     |
| Local Properties                              | Sentence                | In vitro phosphorylation of PLSCR1 |
| All References                                | Journal                 | Blood                              |
| Reference 1                                   | Journal Reference       | v104 i12 p3731                     |
| Reference 2                                   | Journal Link            | http://www.bloodjournal.org/cgi/co |
| Reference 3                                   | CellType                | erythrocyte                        |
| Reference 4                                   |                         |                                    |
|                                               |                         | OK Cancel                          |

#### Types of Relationships Identified by MedScan

The MedScan dictionary contains lists of entity names. (There are eight types of relationships between entities identified by MedScan. To see a definition of entity types and relationships types, see Appendix A. All relations have directionality except Binding.)



#### **ResNet Explore Database**

The ResNet Explore database includes almost 700,000 unique relationships derived from over 19 million PubMed abstracts as well as 61 full-text journals. In addition to information extracted by MedScan, ResNet Explore includes MeSH terms for diseases based on the Medical Subject Headings (MeSH) from the National Library of Medicine (http://www.nlm.nih.gov/mesh/meshhome.html), GO terms from The Gene Ontology Consortium (http://www.geneontology.org/), Ariadne Ontology terms, and a collection of Ariadne curated reference pathways (227 receptor signaling pathways, 21 cellular process pathways and 39 metabolic pathways). Most small molecules in ResNet have identifiers from either PubChem (http://pubchem.ncbi.nlm.nih.gov/) or from the American Chemical Society (http://www.cas.org/).

#### **Curated Pathway Collection**

The ResNet Explore Database includes a collection of reference pathways including a large number of receptor signaling pathways, cellular process pathways and metabolism pathways. These can be found in the Pathways folder. Ariadne scientists have built these pathways based on general knowledge in order to provide you with useful building blocks to extend with your own specific expertise.



Receptor pathways curated into 227 signaling pathways

21 Cellular Process pathways

39 Metabolic Pathways

## Ariadne Gene Ontology/Gene Ontology

In addition to the well-known "GO" vocabulary from the Gene Ontology Consortium, Ariadne has prepared a robust ontology that has been optimized to provide the best results from analysis with Pathway Studio. Ariadne's Gene Ontology is designed to sort genes into the appropriate category, rather than to assign multiple categories to a gene. The ontology is relatively flat, containing only two groups, cellular process and molecular function. Additionally, the Ariadne Gene Ontology has been designed to minimize redundancy in the classification, and consequently avoids much of the redundancy found in analysis results produced using the Gene Ontology Consortium's vocabulary.



Organizes almost 9000 genes into 505 groups with three-tier biological hierarchy (created by Ariadne scientists)

This more succinct ontology can be used with Gene Set Enrichment Analysis and Fisher's Exact test to obtain meaningful results.

## Section 2: Introduction to the Pathway Studio interface

The major panes in the interface include: Information Pane (1), Folders Views (2), List Pane (3), Graph (and Relationship and Entity) View (4), Experiment Pane (5) (see following two figures).

| Pathway Studio® Explore - [Folders]                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                       |                            |                     | - • • |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|---------------------|-------|
| Home Database  Import  To Toc Database CAUSers/beastwoie/Documents/EZPathway1 DatabaseRtTeoplore.gpy Folders Folders New Group Database Release Notes Index of Database Content Quick Start Support & Training News & Updates About Pathway Studio® Explore | Folders × Fol | Pathways ><br>Ariadne Sign.<br>ort ←<br>Export ←<br>Name<br>Pathways<br>Atlas of Signaling                  | aling Pathways ><br>Tools =<br>Description<br>Cell Process Regulation | Info<br>Receptor Signaling | Find in this folder | 2.    |
| 3 1 matches for 'mybl2' Ø 104 matches for<br>B Edit ▼ Select ▼ O Tools ▼                                                                                                                                                                                    | or'abc' ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                           |                                                                       |                            | Find in this table  | 3     |
| Name Type<br>ABCB6 Protein<br>ABCA1 Protein<br>HEATR6 Protein<br>ABCA2 Protein<br>ABCA3 Protein                                                                                                                                                             | Description<br>ATP-binding cassette, sub-fam<br>ATP-binding cassette, sub-fam<br>HEAT repeat containing 6<br>ATP-binding cassette, sub-fam<br>ATP-binding cassette, sub-fam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iily B (MDR/TAP), member 6<br>iily A (ABC1), member 1<br>iily A (ABC1), member 2<br>iily A (ABC1), member 3 |                                                                       |                            | #                   |       |



## **Opening a Database**

To before working with Pathway Studio, you must first select to open the Explore Database (if it has not opened by default). The database hosted locally on your computer's hard drive.



To open a local database go to the Information Pane and select: Database > Open local.

## **Information Pane**

The Information Pane contains subheadings that provide useful links and information.



The header in the Information Pane indicates the database that is currently active in the Pathway Studio application.

Opening the "Index of the Database Content" tab reveals a summary of the information contained in the current database, such as totals for entity and relationship types, numbers of groups, pathways and experiments as well as ontologies.

### **Folders View**



The Folders View allows you to browse through the complete folder tree to find specific files. Pathways and Ontologies are provided in their respective folders. In the Experiments Projects folder you can create folders and subfolders as needed, and you now have the flexibility to save related items (group, pathway and experiment) in the same folder. This allows you easily organize your work.

Note: When working with this database you have complete freedom to manipulate the folders. This includes the ability to (accidently) delete reference pathways and ontology groups. It is advisable to keep all your work in the Experiments and Projects folders.

## • Exercise One: Open the local ResNet Explore Database

#### Begin Exercise:

**Objective**: To learn how open the Explore Database.

Let's begin using Pathway Studio by opening the local ResNet Explore Database. (To do this, the database must first be installed on your local computer.) Note: the first time you use Pathway Studio Explore, the Explore Database should automatically open.



- 1. In the Information Pane, go to Database > Open Local.
- 2. Select resnet7explore (gyp) to open the ResNet Explore database.
- 3. In the top of the Information Pane see "ResNet Explore 1.0 (Mammal)"
- 4. Select "Index of Database Content" to see a summary of the content in the local database: types and numbers of collections, experiments, entities and relationships.

End Exercise: Open the local ResNet Explore Database

## Section 3: Building Pathways

Pathway Studio Explore provides the tools to build pathways (networks) from the entities and relationships found in the ResNet Explore database. There are many ways to start to build pathways and only some examples will be shown here. You can start by searching the database to find an entity of interest and then query for relationships to that entity. Alternatively you can import a list of entities and query the relationships they have with each other and what other relationships in the database connect to them.

### Search ResNet for an Entity

The Quick Search Box in the Information Pane allows for a keyword search of the entire database. Simply type the keyword in the box and select the magnifying glass to the right of the box. To define more specific searches, utilize the options in the drop-down menu to the right of the magnifying glass. Note: you can search for relationships as well as entities.



The results of the search will appear in the bottom list pane.

## Import a list of Entities

You can import a list of entities by selecting the Import > Gene List. The Import Wizard appears

| Entity type:                   | Protein                  |                         | -                | Lookup in the Database             |
|--------------------------------|--------------------------|-------------------------|------------------|------------------------------------|
|                                | Protein                  |                         |                  |                                    |
| Identified by:                 | Small Molecule           |                         |                  |                                    |
|                                | Cell Process             |                         |                  |                                    |
|                                | Complex                  |                         | Not              | e: ambiguous matches are           |
|                                | Disease                  |                         | high             | lighted; please use the Delete     |
|                                | Functional Class         |                         | Sele             | cted button to resolve ambiguities |
|                                | Treatment                |                         |                  |                                    |
|                                | Input#                   | Entrez GeneID?          | Match            | Name in DB                         |
| Load from File                 |                          |                         |                  |                                    |
| Loud Hommen                    |                          |                         |                  |                                    |
| Paste from Clinhoard           |                          |                         |                  |                                    |
| r uste nom enpoond             |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
| Delete Selected                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
|                                |                          |                         |                  |                                    |
| ase select entity type, look u | up the entities in the d | latabase and press Fini | h to show matche | ed entities as a new group.        |
|                                |                          |                         |                  |                                    |
|                                |                          |                         | < Pack Nr        | avt > Cancel He                    |

-

Lookup in the Database

Note: ambiguous matches are highlighted; please use the Delete Selected button to resolve ambiguities.

Name in DB

<Back Next > Cancel Help

Import Wizard

Load from File.

Paste from Clipboard

Delete Selected

Entity type: Protein

Identified by: Entrez GeneID

Entrez GeneID Name Name+Alias GenBank ID Microarray ID Use Mapfile IPI ID Unigene ID Swiss-Prot ID KEGG ID Homologene I

Homologene ID RGD ID m<sup>iPC</sup>

Please select entity type, look up the entities in the database and press Finish to show matched entities as a new group.

miRBase ID MGI ID Hugo ID Note: Select this option for importing any entity list of IDs including: proteins/genes, small molecules, cell objects, cell processes, complexes, diseases, functional classes and treatments.

Once the type of entity to import is selected, a second menu is available to identify the specific ID types.

You can simply copy a list of IDs from an Excel spreadsheet or txt file to your clipboard, and then select Paste from Clipboard. The list will appear in the window. Select Lookup in the Database to find the entities.

| Entity type                   | e: Protein                            |                           | <b>•</b>             | Lookup in the Databa                                                               | ise                      |
|-------------------------------|---------------------------------------|---------------------------|----------------------|------------------------------------------------------------------------------------|--------------------------|
| Identified by                 | : Entrez GeneID                       |                           | •                    |                                                                                    |                          |
|                               |                                       |                           | Not<br>high<br>Sele  | e: ambiguous matches ar<br>lighted; please use the Do<br>cted button to resolve an | e<br>elete<br>nbiguities |
|                               | Input#                                | Entrez GeneID?            | Match                | Name in DB                                                                         | -                        |
|                               | 1                                     | 6192                      | OK                   | RPS4Y1                                                                             |                          |
| Load from File                | 2                                     | 4232                      | OK                   | MEST                                                                               |                          |
|                               | 3                                     | 4057                      | OK                   | LTF                                                                                | =                        |
| Paste from Clipboard          | 4                                     | 25805                     | OK                   | BAMBI                                                                              |                          |
|                               | 5                                     | 5947                      | OK                   | RBP1                                                                               |                          |
| Delete Celested               | 6                                     | 4311                      | OK                   | MME                                                                                |                          |
| Delete Selected               | 7                                     | 8836                      | OK                   | GGH                                                                                |                          |
|                               | 8                                     | 7447                      | OK                   | VSNL1                                                                              |                          |
|                               | 9                                     | 2938                      | OK                   | GSTA1                                                                              |                          |
|                               | 10                                    | 11130                     | OK                   | ZWINT                                                                              |                          |
|                               | 11                                    | 1164                      | OK                   | CKS2                                                                               |                          |
|                               | 12                                    | 4321                      | OK                   | MMP12                                                                              |                          |
|                               | 13                                    | 22943                     | OK                   | DKK1                                                                               |                          |
|                               | 14                                    | 11197                     | OK                   | WIF1                                                                               |                          |
|                               | 15                                    | 11272                     | OK                   | PRR4                                                                               |                          |
| ana alat atitut a laal        | · · · · · · · · · · · · · · · · · · · |                           | ish to show weatch a |                                                                                    |                          |
| ease select entity type, loop | cup the entities in th                | ie uatabase and press Fil | iish to show matche  | o enucies as a new group                                                           | •                        |

Note: if the imported ID list produces some ambiguous mapping, you have the opportunity to manually select the desired mapping. Use "Delete Selected" to remove any unwanted mapping. Choose to save your imported list as a group.

| Folders Save | New Pathway   | New Group ×                                               |               |
|--------------|---------------|-----------------------------------------------------------|---------------|
| Name         |               | Description                                               | Info          |
| 😢 LTF        |               | lactotransferrin                                          | 591 neighbors |
| SERPINI1     |               | similar to neuroserpin                                    | 92 neighbors  |
| 😣 DKK1       | Save Group As |                                                           | 7 neighbors   |
| 🛞 SPP1       | -             |                                                           | 90 neighbors  |
| MAGEA4       | Save in: 🎍    | Projects                                                  | neighbors     |
| MAGEA6       |               |                                                           | neighbors     |
| PTPRO        | Name: Ne      | w Group                                                   | neighbors     |
| 🛞 MMP12      |               |                                                           | 2 neighbors   |
| 🛞 MME        |               | Save Cancel                                               | 5 neighbors   |
| MAGEA3       |               |                                                           | neighbors     |
| 🔡 DLK1       |               | deita-like 1 nomolog (Urosophila)                         | 138 neighbors |
| CDKN3        |               | cyclin-dependent kinase inhibitor 3 (CDK2-associated d    | 95 neighbors  |
| SERPINA3     |               | serpin peptidase inhibitor, clade A (alpha-1 antiproteina | 263 neighbors |
| COT A4       |               |                                                           |               |

Once the entities that are the starting point in pathway building have been either identified by searching ResNet Explore or imported and saved as a Group, you are ready to start to build a pathway.

## • Exercise Two: Search ResNet Explore for Entities and Relationships and Import a Protein List

#### Begin Exercise:

**Objective:** To learn how to find entities and relationships contained in the ResNet Explore database either by searching the database or by importing a list of entities.

Let's begin by searching the ResNet Explore database for a specific protein:

1. Select the Search Database by Keyword option in the Information Pane and type in the protein name: MYBL2

| 🔀 Pathway Studio® Explore - [New Group] |
|-----------------------------------------|
| 📄 File 🔻 💷 Window 👻 🕜 Help 👻            |
| iii Home                                |
| 🧃 Database 🔻 💰 Import 👻 🥥 Tools 👻       |
| mybl2                                   |
| ResNet Explore 1.0 (Mammal)             |

The results of your search are found in the List Pane at the bottom of the screen.

| 🕒 Edit 🔻 | Select 🔻 🕥 Tools 👻                       |                      |              |   |
|----------|------------------------------------------|----------------------|--------------|---|
| Name     | Description                              | Entrez GeneID        | Connectivity | # |
| MYBL2    | similar to Myb-related protein B (B-Myb) | 4605, 510420, 17865, | 218          | 1 |

2. Examine the more specific search options found in the drop down menu just to the right of the Keyword search box:



- a. Search Entities by Keyword can specify specific entity types for your search
- b. Search Entities by Attribute use this option to search specific annotation fields for a selected entity type (left figure below)
- c. Search Relations by Attribute use this option to search specific annotation fields for a selected relationship type (right figure below)

| Search Entities by Attributes | 8              | Search Relations by Attributes | 23              |
|-------------------------------|----------------|--------------------------------|-----------------|
| Search For:                   |                | Search For:                    |                 |
| Оbj Туре                      | Total #        | Ођј Туре                       | Total #         |
| ✓ Protein                     | 106144         | ✓ Regulation                   | 449638          |
| Cell Process                  | 2179           | ChemicalReaction               | 8630 =          |
| Functional Class              | 3512 =         | Expression                     | 108889          |
| Disease                       | 3936           | DirectRegulation               | 19837           |
| Complex                       | 314            | MolSynthesis                   | 10084           |
| Small Molecule                | 1220 +         | Binding                        | 50559 +         |
| Add Condition                 | alue Logic and | Add Co<br>Attribute Operation  | Nalue Logic and |
| Alias                         |                | # of References                |                 |
| Cell Localization             |                | Authors                        |                 |
| Connectivity                  |                | CellLineName =                 |                 |
| Danio rerio Chromosom         |                | Connectivity                   |                 |
| Description                   |                | Effect                         |                 |
| EC Number                     |                | ISSN                           |                 |
| Entrez GeneID                 |                | Issue                          |                 |
| FunctionalClass               |                | Journal                        |                 |
| GenBank ID                    | OK Cancel      | Journal Link                   | OK Cancel       |
|                               |                | Lournal Reference              |                 |

Leave the tab in the List Pane containing the search results for MYBL2 open for now.

Now let's import of list of entity IDs. Use the MS Excel file provided with this training manual.

3. Open the MS Excel file that accompanies this manual (SCLC genes) and copy all the column contents with the header "name" to the clipboard.

|    | А             | В           | С        |
|----|---------------|-------------|----------|
| 1  | Entrez GeneID | Probesets   | Name     |
| 2  | 4232          | 202016_at   | MEST     |
| 3  | 5947          | 203423_at   | RBP1     |
| 4  | 4311          | 203434_s_at | MME      |
| 5  | 8836          | 203560_at   | GGH      |
| 6  | 7447          | 203797_at   | VSNL1    |
| 7  | 2938          | 203924_at   | GSTA1    |
| 8  | 4321          | 204580_at   | MMP12    |
| 9  | 22943         | 204602_at   | DKK1     |
| 10 | 11197         | 204712_at   | WIF1     |
| 11 | 11272         | 204919_at   | PRR4     |
| 12 | 5274          | 205352_at   | SERPINI1 |
| 13 | 1469          | 206224_at   | CST1     |
| 14 | 12            | 206262 at   |          |

4. Go to Import > Gene List. The Import Wizard is displayed.

Note: Use Import > Gene List to import any list of entities: proteins (genes), small molecules, cell objects, cell processes, complexes, diseases, functional classes and treatments. The "Identified by" ID list will reflect the selected entity type.

Note: Recall that in Pathway Studio the gene and the product of the gene (protein) are merged into one entity.

- 5. Select "Paste from Clipboard" to copy the list of protein names into the Wizard.
- 6. For "Entity type" select: Protein. For "Identified by" select: "Name+alias".
- 7. Select "Lookup in the Database" to identify the imported entities in the ResNet database.
- 8. "Not found" in the Match column indicates the entity was not found in (note that "Name" from the column header in the MS Excel sheet is indicated as "not found").

| Identified by       | Name+Alias |          | •         | 1. I I. <sup>2</sup> I. I                                                                   |                           |
|---------------------|------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------|
|                     |            |          |           | vote: ambiguous matches a<br>nighlighted; please use the D<br>Selected button to resolve ar | re<br>elete<br>nbiguities |
|                     | Input#     | Name?    | Match     | Name in DB                                                                                  |                           |
| 1 10 50             | 1          | Name     | not found |                                                                                             |                           |
| Load from File      | 2          | MEST     | OK        | MEST                                                                                        |                           |
| hata farm Clintanad | 3          | RBP1     | OK        | Pdxp                                                                                        |                           |
| aste from Clipboard | 4          | MME      | ambigous  | MME                                                                                         | 1                         |
|                     | 4          | MME      | ambigous  | MMP12                                                                                       |                           |
| Delete Celested     | 5          | GGH      | OK        | GGH                                                                                         |                           |
| Delete selected     | 6          | VSNL1    | OK        | VSNL1                                                                                       |                           |
|                     | 7          | GSTA1    | OK        | GSTA1                                                                                       |                           |
|                     | 8          | MMP12    | OK        | MMP12                                                                                       |                           |
|                     | 9          | DKK1     | OK        | DKK1                                                                                        |                           |
|                     | 10         | WIF1     | OK        | WIF1                                                                                        |                           |
|                     | 11         | PRR4     | ambigous  | PRR4                                                                                        |                           |
|                     | 11         | PRR4     | ambigous  | PVRL4                                                                                       |                           |
|                     | 12         | SERPINI1 | OK        | SERPINI1                                                                                    |                           |
|                     | 13         | CST1     | OK        | CST1                                                                                        |                           |
|                     |            |          |           |                                                                                             |                           |

- 9. Items with ambiguous mapping are highlighted (Note: lower case and capital letters are recognized differently).
- 10. Remove undesired mapping by highlighting the rows and click "Delete Selected" button to remove.
- 11. When all undesired mapping is removed, select "Finish" to import the list. The imported list will appear in a New Group window.

| Image: Save with the second        | 👩 Folders 🗄                                                                                                                         | New Group ×                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                                                                                                                                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| View V       Select V         Name       Description       Info         SERPINIL       similar to neuroserpin       92 neighbors         DKXI       similar to Dickkopf-1 (hdkk-1)       237 neighbors         MAGEA4       similar to MAGE-84       39 neighbors         MAGEA5       hypothetical protein (LOC782979)       14 neighbors         MMMP12       matrix metallopeptidase 12 (macrophage elastase)       262 neighbors         MMRE       similar to Tortein       70 neighbors         MMME       similar to Tortein (CO781934       70 neighbors         MAGEA5       hypothetical protein (LO781934       70 neighbors         OCKN3       cyclin-dependent kinase inhibitor 3 (CDK2-associated d       95 neighbors         SSRPINA3       serpin peptidase inhibitor 3 (CDK2-associated d       95 neighbors         GGFA       similar to Ribonucleoside-diphosphate reductase M2 c       41 neighbors         GGH       similar to Ribonucleoside-diphosphate reductase M2 c       43 neighbors         SKRDINL       visinin-like 1       59 neighbors         SVN11       visinin-like 1       59 neighbors         BAG2       BCL2-associated athanogene 2       25 neighbors         BAG2       BCL2-associated athanogene 2       25 neighbors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗷 🔡 🛃                                                                                                                               | 🔻 👔 Edit 👻 🕥 Tools 👻                                                                                                                                                                                                                                                                                                                                                                                                     | Find in this fo                                                                                          | lder 🔎                                                                                                                                                                              | • |
| Name         Description         Info           © SERPINII<br>© DKK1         similar to neuroserpin         92 neighbors           © MAGEAA         similar to Dickkopf-1 (hdkk-1)         237 neighbors           © MAGEAA         similar to MAGE-B4         39 neighbors           © MAGEAA         similar to MAGE-B4         39 neighbors           © MAGEAA         similar to protein toC782979         14 neighbors           © MMPL2         matrix metallopeptidase12 (macrophage elastase)         262 neighbors           © MMPL         similar to Mme protein         655 neighbors           © MMPL         similar to Mme protein         655 neighbors           © MME         similar to Mme protein         655 neighbors           © CKN3         serpin peptidase inhibitor 3 (CKC2-associated du         95 neighbors           © GSTA1         glutathione S-transferase A1         111 neighbors           © GGH         similar to human gamma-glutamyl hydrolase         43 neighbors           © VSNL1         visinn-like 1         59 neighbors           © MAGEA3         bL2-associated duh         111 neighbors           © GGH         similar to human gamma-glutamyl hydrolase         43 neighbors           © WSNL1         visinn-like 1         59 neighbors           © MAGEA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | View 🕶                                                                                                                              | Select 🔻                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                                                                     |   |
| SERPINII     similar to neuroserpin     92 neighbors       DKCl     similar to Dickkopf-1 (hdkk-1)     237 neighbors       MAGEA4     similar to MAGE-84     39 neighbors       MAGEA5     hypothetical protein LOC782979     14 neighbors       MMP12     similar to protein tyrosine phosphatase, receptor type, U     42 neighbors       MMREA5     hypothetical protein LOC782979     262 neighbors       MMRE     similar to me protein     262 neighbors       MMRE     similar to Tortein LOC781934     70 neighbors       MAGEA5     hypothetical protein LOC781934     70 neighbors       MAGEA5     hypothetical protein LOC781934     70 neighbors       MAGEA5     serpin peptidase inhibitor 3 (CDK2-associated d     95 neighbors       SERPINA3     serpin peptidase inhibitor, clade A (alpha-1 antiproteina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          | Info                                                                                                                                                                                | - |
| @ GGH         similar to human gamma-glutamyl hydrolase         43 neighbors           @ VSNL         visinin-like 1         59 neighbors           @ BAG2         BCL2-associated athanogene 2         25 neighbors           @ MEST         mesoderm specific transcript homolog (mouse)         46 neighbors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SERPINII     DKKI     MAGEA4     MAGEA4     MAGEA6     MPTRU     MMF12     MME     MAGEA3     CDKN3     SERPINA3     SGTA1     GRM2 | similar to neuroserpin<br>similar to DickkopF-1 (hdkk-1)<br>similar to MAGE-B4<br>hypothetical protein LOC782979<br>similar to protein tyrosine phosphata<br>matrix metallopeptidase 12 (macroph<br>similar to Mme protein<br>hypothetical protein LOC781934<br>cyclin-dependent kinase inhibitor 3 (<br>serpin peptidase inhibitor, clade A (a<br>glutathione S-transferase A1<br>similar to Kihonurlencide- chichospha | ise, receptor type, U<br>hage elastase)<br>CDK2-associated d<br>Ipha-1 antiproteina<br>te reductase M2 c | 92 neighbors<br>237 neighbors<br>39 neighbors<br>14 neighbors<br>42 neighbors<br>262 neighbors<br>655 neighbors<br>263 neighbors<br>263 neighbors<br>263 neighbors<br>111 neighbors | н |
| Image: System of the | GGH                                                                                                                                 | similar to human gamma-glutamy                                                                                                                                                                                                                                                                                                                                                                                           | nvdrolase                                                                                                | 43 neighbors                                                                                                                                                                        |   |
| BAG2         BCL2-associated athanogene 2         25 neighbors           MEST         mesoderm specific transcript homolog (mouse)         46 neighbors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VSNL1</b>                                                                                                                        | visinin-like 1                                                                                                                                                                                                                                                                                                                                                                                                           | .,                                                                                                       | 59 neighbors                                                                                                                                                                        |   |
| MEST mesoderm specific transcript homolog (mouse) 46 neighbors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 😣 BAG2                                                                                                                              | BCL2-associated athanogene 2                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          | 25 neighbors                                                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B MEST                                                                                                                              | mesoderm specific transcript homole                                                                                                                                                                                                                                                                                                                                                                                      | og (mouse)                                                                                               | 46 neighbors                                                                                                                                                                        | - |

12. Choose Save to save the group (provide a destination folder and name for the group – create a new folder if desired).

| Save Group | As                    |
|------------|-----------------------|
| Save in:   | Projects/PS6 Training |
| Name:      | Imported Protein List |
|            | Save                  |

## End Exercise: Search ResNet for Entities and Relationships and Import a Protein List

## **Build Pathway Tools in Pathway Studio**

Pathway Studio provides both quick short cut menus for pathway building as well as an advanced menu that allows you to define more specific network options.

#### **Build Pathway Tool – Quick Menus**

With the entities in a new Pathway View, select the Add tool to see the short cut menu for building pathways.



Each of these short cut menu options has easy-to-interpret submenus. Select the appropriate option for the desired pathway.

Note: If an option is grayed out, it is not an appropriate option for the number of entities selected.

Type(s) of Entities

The Relationship types and Entity types included in the Shortcut menu options:

| Neighbors from DB       Expression Targets       Expression, PromoterBinding       Proteins, Complexes, Functional Classes         Physical Interactions       Direct Regulation, Binding       Proteins, Complexes, Functional Classes         Protein Modification Targets       Protein Modification Targets       Proteins, Complexes, Functional Classes         Protein Modification Targets       Protein Modification       Proteins, Complexes, Functional Classes         Protein Modification Targets       Protein Modification       Proteins, Complexes, Functional Classes         Protein       Modification       Proteins, Complexes, Functional Classes         All       All       All         Direct Interactions       Physical Interactions       Direct Regulation, Binding |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expression Regulators     Expression, PromoterBinding     Proteins, Complexes, Functional Classes       Physical Interactions     Direct Regulation, Binding     Proteins, Complexes, Functional Classes       Protein Modification Targets     Prot Modification     Proteins, Complexes, Functional Classes       Protein Modification Targets     Prot Modification     Proteins, Complexes, Functional Classes       Protein     Modification     Proteins, Complexes, Functional Classes       Protein     Modification     Proteins, Complexes, Functional Classes       Enzymes     All     All       Direct Interactions     Physical Interactions     Direct Regulation, Binding                                                                                                           |
| Physical Interactions     Direct Regulation, Binding     Proteins, Complexes, Functional Classes       Protein Modification Targets     Prot Modification     Proteins, Complexes, Functional Classes       Protein     Modification     Prot Modification       Enzymes     All     All       Direct Interactions     Physical Interactions     Direct Regulation, Binding                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Protein Modification Targets<br>Protein Modification Targets<br>Protein Modification<br>Enzymes<br>All All All All<br>Direct Interactions Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Protein     Modification     Prot Modification     Proteins, Complexes, Functional Classes       Enzymes     All     All     All       Direct Interactions     Physical Interactions     Direct Regulation, Binding     Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Enzymes<br>All All All All<br>Direct Interactions Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All All All All All Direct Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Direct Interactions Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Expression Regulation Expression, PromoterBinding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Protein Modification Prot Modification Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Shortest Path Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Expression Regulation Expression, PromoterBinding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Protein Modification Prot Modification Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Common Targets Expression Targets Expression, Promoter Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Protein Modification Targets Prot Modification Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Common Regulators Expression Regulators Expression. PromoterBinding Proteins. Complexes. Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Physical Interactions Direct Regulation, Binding Proteins, Complexes, Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Protein Modification Prot Modification Proteins. Complexes. Functional Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Enzymes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Type(s) of Relationships

### Build Pathway Tool – Advanced Menu Desktop

The Advanced Menu option (Add > Advanced) opens a wizard that provides you to options for more specifically defining the pathway building filter options. After selecting the entities to including in your build pathway algorithm, the four wizard windows allow you to specify: a.) algorithm type for pathway building, b.) select the directionality of the resultant relationships, c.) the entities to be included in the pathway and d.) the relationships to be included in the new pathway.

## Graph View/ Entity Table view / Relation Table view

There are three options for viewing resultant pathways: Graph View, Entity Table View and Relation Table View.



## Customizing tables, filtering by significance

The Entity Table view and Relation Table view provide customizable tables of summary information of the pathway. Any information deleted from either of these tables is also deleted from the Graph View. Customize the columns of information by selecting Tools > Customize Columns.

| 🐻 Folders 📰     | Imported Prote | ein List 🔄 New Pathway 🗙                  |                                |        |             |      |        |                                  |                                    |      |
|-----------------|----------------|-------------------------------------------|--------------------------------|--------|-------------|------|--------|----------------------------------|------------------------------------|------|
| 🔄 🔡 Save        | 🔻 🔒 Print      | 🔻 🏢 Edit 🔻 🖍 Undo 👻 🥥 Tools               | ,                              |        |             |      |        |                                  | Find in this pathway               | -    |
| 🔠 View 👻 🧾 :    | Select 👻 🏭     | Add 🔻                                     |                                |        |             |      |        |                                  |                                    |      |
| Relation        | Туре           | Sentence                                  | MedLine Reference              | Connec | # of Refere | nces | Owner  | Journal Link                     | Journal Reference                  | ^    |
| → MYBL2>        | Regulation     | The BMYB gene is strongly induced at th   | 11264176:10173.15548681:10116  | 2      |             | 30   | Public | http://www.bloodjournal.org/c    | v97 i7 p2091, v64 i22 p8167, v23   | . =  |
| → MYBL2> a      | Regulation     | K Choose the Columns to be Displayed      |                                |        | ×           | 21   | Public | http://jcs.biologists.org/cgi/co | v119 i8 p1483, v19 i6 p719, v280   |      |
| → MYBL2> c      | Regulation     | N                                         |                                |        |             | 66   | Public | http://cancerres.aacrjournals.or | v65 i2 p439, v65 i21 p9751, v7 i4  |      |
| → MYBL2>        | Regulation     | A Available Columns:                      | Selected Colum                 | ns:    |             | 2    | Public | http://www.bloodjournal.org/c    | v105 i10 p3855, v280 i16 p15628    |      |
| → MYBL2> s      | Regulation     | Authors A                                 | Relation                       |        |             | 29   | Public | http://www.current-biology.co    | v7 i4 p26, v274 i51 p36741, v105   |      |
| → MYBL2> c      | Regulation     | E CellLineName                            | I ype<br>Septence              |        |             | 57   | Public | http://jcs.biologists.org/cgi/co | v119 i8 p1483, v119 i2 p6, v18 i2  |      |
| → MYBL2> c      | Regulation     | E Correlation                             | Add >> MedLine Refer           | ence   |             | 30   | Public | http://www.cancercell.org/cont   | v1 i4 p7, v59 i14 p3365, v62 i8 p2 | ŝ.   |
| → MYBL2> I      | Regulation     | B Effect                                  | Connectivity                   |        |             | 1    | Public | http://www.bloodjournal.org/c    | v95 i12 p3900                      |      |
| → MYBL2> v      | Regulation     | Found In Pathways                         | # of References                | 5      |             | 5    | Public | http://www.cancercell.org/cont   | v1 i4 p7, v64 i7 p2561, v65 i7 p28 | j. – |
| → neuroblasto   | Regulation     | I Issue                                   | Journal Link                   |        |             | 8    | Public | http://cancerres.aacrjournals.or | v59 i14 p3365, v275 i28 p21055,    |      |
| → Myeloid Leuk  | Regulation     | I Journal                                 | Journal Referen                | ice    |             | 1    | Public | http://www.bloodjournal.org/c    | v96 i3 p1013                       |      |
| → lung cancer   | Regulation     | F Mechanism                               |                                |        |             | 5    | Public | http://www.jbc.org/cgi/content   | v275 i14 p10692, v97 i7 p2091, v   |      |
| → MYBL2> g      | Regulation     | A MedlineTA                               | op                             |        |             | 6    | Public | http://jcs.biologists.org/cgi/co | v119 i8 p1483, v18 i23 p2837, v2   |      |
| → breast cancer | Regulation     | A Organ                                   | Down                           |        |             | 2    | Public | http://cancerres.aacrjournals.or | v60 i16 p4519                      |      |
| → MYBL2+>       | Regulation     | I                                         |                                |        |             | 13   | Public | http://cancerres.aacrjournals.or | v59 i14 p3365, v119 i8 p1483, v2   |      |
| → MYBL2> c      | Regulation     | F                                         | Or                             | Conc   |             | 36   | Public | http://www.genesdev.org/cgi/c    | v19 i6 p719, v278 i11 p9655, v11   |      |
| → cancer>       | Regulation     | 1                                         | ÖK                             | Canc   | .ci         | 8    | Public | http://cancerres.aacrjournals.or | v62 i15 p4499, v275 i28 p21055,    |      |
| → prostate canc | Regulation     | 1                                         |                                |        |             | 2    | Public | http://cancerres.aacrjournals.or | v62 i15 p4499, v62 i23 p6803       |      |
| → MYBL2> n      | Regulation     | Raschella Expression of Insulin-like Grow | 9408744:12121, 11134182:10669, | 2      |             | 10   | Public | http://edrv.endojournals.org/cg  | v18 i6 p801, v107 i1 p73, v275 i2  |      |
| → MYBL2> t      | Regulation     | Several genes novel to testicular tumorig | 11956097:10013                 | 2      |             | 1    | Public | http://cancerres.aacrjournals.or | v62 i8 p2359                       |      |
| → MYBL2>        | Regulation     | The defects caused by reduced B-Myb le    | 16551698:10038                 | 2      |             | 1    | Public | http://jcs.biologists.org/cgi/co | v119 i8 p1483                      | *    |
| 4               |                |                                           |                                |        |             |      |        |                                  | •                                  |      |

Note: In the Relationship View table you can see the number of references in the database that support an individual relationship. High numbers of references can be used as a measure of confidence for a relationship. Lower numbers of references can indicate newly identified relationships or potential false positives from MedScan. The reference sentence is available for you to examine in order for you to determine the accuracy of the interpretation by MedScan. Undesired (false positive) relationships can be manually deleted from the database. See **Appendix B**: Deleting Entities and Relations from a Local Database.

#### Viewing Details about Entities/Relationships

Detailed information about entities and relationships displayed in the Graph View can be seen by a.) mouse over the object or b.) double click to open the properties dialog.

| Bave - Marine - O               |                                |                           | Tura ur uns patriway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protein Properties              |                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| General Notes Found In Pathy    | vays Found In Groups           |                           | SAVAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name: MYBL2                     | Type: Protein                  | Lookup in DB              | e cancer de casidess<br>et experiences de casidess<br>et exysters<br>et exysters<br>et exysters<br>et exysters<br>et exysters<br>et exysters<br>et exysters<br>et experiences<br>et exysters<br>et experiences<br>et exysters<br>et experiences<br>et experiences |
| Description: similar to Myb-rel | lated protein B (B-Myb)        |                           | MORFALS<br>VISIANS IN MELK 194<br>DWEINLING EST SCI LUNG RE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Properties:                     | Declare New Proper             | ty Add Remove             | AFALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Category ^                      | Property                       | Value relid Leuxema       | Tiple peroxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| All Properties                  | Bos taurus Chromosome position | 13                        | TOP2X Symphome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| General Info                    | Cell Localization              | Nucleus 🛊 🗉 📴             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Local Properties                | Connectivity                   | 218                       | CONOT NOT NINE TO NINE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Alias                           | Entrez GeneID                  | 296344                    | MYBLS WARPI COLTAS" homeost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ariadne Ontology                | Entrez GeneID                  | 17865                     | DUFELS POPE PRIVE degenera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GenBank ID                      | Entrez GeneID                  | 4605                      | SKP2 BRBS: PD00158 met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GO Biological Process           | Entrez GeneID                  | <u>510420</u>             | HEPATA BECOME IN DAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GO Cellular Component           | Entrez GeneID                  | 445361 BFIEATE            | HEDITES OF POLYMENSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GO ID                           | FunctionalClass                | DNA binding               | CO. AT CONT OF BUS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GO Molecular Function           | Homologene ID                  | 1847 DNA degradation / // | FALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Microarray ID *                 | Hugo ID                        | 7548 cell activation pro  | dege                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                                | Brein tumor               | exphase florolast prolifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Here is an example of attribute information for a selected entity, viewed in the Properties dialog:

The properties dialog for the relationship provides reference information that supports the relationship. You can view the sentences identified by MedScan that support the relationship.

|    | Folders Imported Protein List             | 🚳 New Pathway 🗙      |                  |                                                                                                   |                                       |
|----|-------------------------------------------|----------------------|------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|
| 2  | 🔚 Save 🔻 🌐 Print 🔻 🛅 B                    | Edit 👻 🖍 Undo 👻      | 💭 Tools 🔻        |                                                                                                   | Find in this pathway 🖉 🔻              |
| 38 | View 👻 😹 Layout 👻 🧾 Select                | 👻 👬 Add 👻 🎐 Hig      | hlight 👻 🍐 Style | e 🔻 🐠                                                                                             | · · · · · · · · · · · · · · · · · · · |
|    | PromoterBinding Properties                |                      |                  | - • •                                                                                             | ACTL SCICHA                           |
|    | General Linked Entities Found In F        | Pathways             |                  |                                                                                                   | acter were coment                     |
|    | Relation Type: PromoterBinding Add Remove | I Hide empty propert | - Declare        | e New Property Add Remove                                                                         |                                       |
|    | Category                                  | Property             | Value            |                                                                                                   | Tipld perceitation                    |
|    | Common Properties                         | Journal Link         | http://www.ger   | nesdev.org/cgi/content/full/16/8/933                                                              | NX                                    |
|    | Local Properties                          | Tissue               | serum            | I\$                                                                                               | COLEAS BLAN PORTS                     |
|    | All References                            | MedLine Reference    | 11959842:10203   |                                                                                                   | Cros avecence                         |
|    | Reference 1                               | Sentence             | Robust binding   | of E2F4, p130, mSin3B, and HDAC1 to the                                                           | COLTAS TOTICS BS                      |
|    | Reference 2                               | Journal              | Genes Dev        | Robust binding of E2F4, p130, mSin3B, and HDAC1 to the er                                         | ndogenous B-myb promoter was          |
|    |                                           | Journal Reference    | v16 i8 p933      | observed in both cell lines (Fig. 6 B), in agreement with our lines (Figs. 2 B. 3 . 4 . and 6 A). | experiments using other mouse cell    |
|    |                                           |                      |                  | m OK Cancel                                                                                       |                                       |

#### **Creating new Entities and Relationships**

You can create a new entity or a new relationship between entities by using the Add > Entity or Add > New Relation between selected entities options in the New Pathway window.

To add a new Entity, provide appropriate information in the Add New Protein dialog:

| Name:          | My New Protein |          | Type: | Protein                                           | <ul> <li>Lookup in DB</li> </ul> |
|----------------|----------------|----------|-------|---------------------------------------------------|----------------------------------|
| Description:   |                |          |       | Cell Object<br>Cell Process<br>Complex<br>Disease |                                  |
| Properties:    |                |          | De    | Functional Class                                  | dd Remove                        |
| Category       |                | Property |       | Small Molecule                                    |                                  |
| All Properties |                |          |       | Treatment                                         |                                  |
| General Info   |                |          |       |                                                   |                                  |
| Alias          |                |          |       |                                                   |                                  |
| Ariadne Onte   | ology          |          |       |                                                   |                                  |
| GenBank ID     |                |          |       |                                                   |                                  |
| GO Biologica   | l Process      |          |       |                                                   |                                  |
| GO Cellular (  | Component      |          |       |                                                   |                                  |
| GO ID          |                |          |       |                                                   |                                  |
| GO Molecula    | r Function     |          |       |                                                   |                                  |
| Microarray II  | )              |          |       |                                                   |                                  |

Note: When you attempt to add a new entity to ResNet, Pathway Studio will first check to see if an entity with the given name already exists in the database. It is advisable not to create a new entity with the same name or identifier as an existing entity.

Use the Add New Protein dialog for all entities you choose to add to ResNet, not just protein entities.

| No ent                                                   | ities with a name or alias starting with                          | "My New Protein" has been f | ound. |
|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|-------|
| Name                                                     | Alias                                                             | Description                 |       |
|                                                          |                                                                   |                             |       |
|                                                          |                                                                   |                             |       |
|                                                          |                                                                   |                             |       |
|                                                          |                                                                   |                             |       |
|                                                          |                                                                   |                             |       |
|                                                          |                                                                   |                             |       |
| O Use entity set                                         | lected in the list                                                |                             |       |
| <ul> <li>Use entity sel</li> <li>Create new e</li> </ul> | lected in the list<br>ntity (Ignore entities in the list)         |                             |       |
| ◯ Use entity sel                                         | lected in the list<br>ntity (Ignore entities in the list)<br>Name | Value: My New Prot          | ein   |

If your identifier is unique, complete the dialog by providing the type of primary identifier (in the example shown "name") and select OK. This will create this new entity in ResNet.

#### Newly created entity:



You can permanently delete an entity or relationship from ResNet by selecting it in a Graph View, then when the mouse is in the white space of the graph, right-click and select "Delete Selected Entities/Relations from the Database." Note: if you do not find this option available in the menu it can be enabled by going to the Information Pane, selecting Tools > Program Options > Menu > Enable Advanced Menu for Pathways > Yes.

#### **Customization of Pathway Layouts**

There are multiple layout options for displaying a pathway. (Please see the User's Manual for a description of how each layout is calculated.)

The Layout by Localization options utilizes Gene Ontology cellular localization assignments when placing the entity with respect to cellular objects. Be aware that entities can have more than one legitimate localization assignment within Gene Ontology (an example would be a protein that shuttles between the nucleus and cytoplasm). In this case the layout displays only one of the localization assignments. You can change the assigned localization of an entity by selecting the entity, right-click, choose "Localization in Pathway" and choose the desired cellular localization.

You can change the default layout view by choosing Layout > Set Default Layout.



#### • Exercise Three: Building Pathways

#### Begin Exercise:

**Objective:** To build pathways using both the Quick Menu and the Advanced Menu option and to become familiar with basic functionality used for viewing and modifying pathways.

#### Build Pathway Tool – Quick Menu

Let's build a simple pathway displaying all connections in the ResNet Explore database to our protein MYBL2.

- 1. Select "New Pathway" from the Information Pane. A new pathway view will open to the right.
- 2. Click and drag the MYBL2 protein icon from the List Pane below and drag it to the new pathway window.
- 3. With the MYBL2 protein entity selected (highlighted in blue) go to the Add menu and select > Neighbors from DB > All. This will identify all entities connected to MYBL2 in the database.

| Pathway Studio                                                                                                                                                | Explore - [New Pathw                                     | /ay]                                  |                                |                                                                                                                                                                                                               |                                                                                                                                             | . • |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| ] File ▼ 💷 Wi                                                                                                                                                 | ndow 🔻 😢 Help 🔻                                          |                                       |                                |                                                                                                                                                                                                               |                                                                                                                                             |     |    |
| 🎒 Home 📃                                                                                                                                                      | Palette 🔝 Images                                         |                                       | 🤌 Folders 🔄 New Pathway 🗙      |                                                                                                                                                                                                               |                                                                                                                                             |     |    |
| 间 Database 🔻                                                                                                                                                  | 🚯 Import 🔻 🥥 To                                          | ols 👻 🛛                               | 🖻 🔡 Save 🔻 🖶 Print 💌 🛅 Ed      | dit 👻 🖍 Undo 👻 🥥 Tools 👻                                                                                                                                                                                      | Find in this pathway                                                                                                                        | 1   | ρ. |
| mybl2                                                                                                                                                         | 8                                                        | •                                     | 🛚 View 👻 📑 Layout 👻 📃 Select 🖲 | 🖌 👬 Add 👻 🌮 Highlight 👻 🔗 Style 👻 📰                                                                                                                                                                           | • •                                                                                                                                         |     | •  |
| ResNet Explo<br>C:\Users\heatwo<br>Database<br>Index of Database<br>Index of Database<br>Quick Start<br>Support & Traini<br>News & Updates<br>About Pathway S | re 1.0 (Mammal)<br>le\Documents\EZPathw<br>ore.gpy<br>rs | ay<br>v<br>v<br>v<br>v<br>v<br>v<br>v | MYBL2                          | Entity<br>New Relation between Selected Entities<br>Relations between Selected and Unselected<br>Neighbors from DB<br>Direct.Interactions<br>Shortest Path<br>Common Targets<br>Common Regulators<br>Advanced | Expression Targets<br>Expression Regulators<br>Physical Interactions<br>Protein Modification Targets<br>Protein Modification Enzymes<br>All |     |    |
| 🖇 2 matches fo                                                                                                                                                | r 'mybl2' ×                                              |                                       |                                | -                                                                                                                                                                                                             |                                                                                                                                             |     |    |
| 🗎 Edit 🔻 🛄 :                                                                                                                                                  | Select 🔻 🥥 Tools 🔻                                       |                                       |                                |                                                                                                                                                                                                               | Find in this table                                                                                                                          | 1   | P  |
| lame                                                                                                                                                          | Туре                                                     |                                       | Description                    |                                                                                                                                                                                                               |                                                                                                                                             | #   |    |
|                                                                                                                                                               |                                                          |                                       | and the second second          | 1 1 ( 1 ) ( 1 )                                                                                                                                                                                               |                                                                                                                                             |     |    |

4. The Results Preview window displays a summary of information about the resultant pathway. You can manually review the results here and manually delete any undesired entities or relationships at this time.

| Name           |             | Туре         |          | <mark>م</mark> ` | I.  | Description            | Connectivity | 1 |
|----------------|-------------|--------------|----------|------------------|-----|------------------------|--------------|---|
| ✓ EP300        |             | Protein      |          | New              |     | E IA binding protein p | 2            |   |
| myeloid bi     | ood cell    | Cell Process |          | New              |     |                        | 1            |   |
| Cell prolite   | ration      | Cell Process |          | New              |     |                        | 1            |   |
| Cell contac    | τ           | Cell Process |          | New              |     |                        | 1            | - |
| <+             | MYBL2       | lame         | Protein  | i ype            |     | Expression             | positive     |   |
|                | MIDL2       |              | Protein  | 1                |     | Proteincation          | unknown      |   |
| Done. Total ti | me: 00:00:0 | 00 Total obj | ects che | ecked: 3         | 376 | lu sustadada 0         |              |   |

- 5. To visualize the resultant pathway, select "Finish".
- 6. Select the "Fit All Entities to Window" button (found in upper right) to view the entire pathway in the window.



7. The Advanced Visualization Tool bar provides many functions to optimize your pathway view. Select the icon to display the bottom tool bar row.



8. Select: Resize > Size All Entities to Labels to better visualize the names of the entities.



#### Build Pathway Tool – Advanced Menu

Now let's use a different Build Pathway algorithm to build a pathway from the list of imported proteins.

1. Right-click the group icon from the saved list of imported proteins. Select "Show contents in Bottom Pane." This will open the group list in the List Pane.

| 🔁 Pathway Studio® Explore - [Folders]                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                                                                                                                       |        | -                  |     |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-----|
| 📄 File 💌 💷 Window 💌 😧 Help 💌                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                                                                                                                       |        |                    |     |
| 📑 Home                                                                                        | 🍺 Folders 🛪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                       |        |                    |     |
| 🧃 Database 🕶 💰 Import 👻 🥥 Tools 🕶                                                             | 🕢 🕨 📑 Folders 🔸 🕌 Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Find in this folder | <i>P</i> -                                                                                                                                                            |        |                    |     |
| mybl2 🔎 👻                                                                                     | 🏢 🛋 View 🔻 👪 Import 👻 👔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) Export 👻 📑 N      | ew 🔻 🥥 Tools 💌                                                                                                                                                        |        |                    |     |
| ResNet Explore 1.0 (Mammal)<br>CAUser/Nestwole/Document/EZPathway1<br>Data/vesnet?explore.gpy | Inders     Inderse     Inders     Inders     Inders     Inder | Name<br>mybl2 pro   | Description Description Open Preview Sonw Contents in Bottom Pane Send To Export as RNEF Find Similar Pathways/Groups Cut Copy Copy Contents Delete Rename Properties | )<br>, |                    |     |
| B Edit ▼ Select ▼ O Tools ▼                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                                                                                                                       |        | Find in this table |     |
| Name Description                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Entrez GeneID                                                                                                                                                         | Conne  | ctivity #          |     |
| COL1A1     Collagen type L alpha 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 12842 1277 29393                                                                                                                                                      | Conne  | 187                | 1   |
| TGFB1 transforming growth facto                                                               | r, beta 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 59086, 7040, 21803                                                                                                                                                    |        | 2523               | 2   |
| BGF epidermal growth factor (b                                                                | eta-uroqastrone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 25313, 1950, 13645                                                                                                                                                    |        | 1923               | 3   |
| 3 CCND1 cyclin D1                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 595, 12443, 58919                                                                                                                                                     |        | 1044               | 4   |
| TP53 tumor protein p53                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 22059, 24842, 7157                                                                                                                                                    |        | 2414               | 5 👻 |

2. Select "New Pathway" the Information Pane and select all the entities in the List Pane. Click and drag the entire list to the new pathway window. Select "Fit all Entities to Window" in the upper right to visualize all the entity icons.

| 🖉 🔚 Save 🔻 🌐 Print 🔻 🛅 Edit 🔻 🖒 Undo 👻 🥥 Tools 👻 🛛 Find in this pathway    | - |
|----------------------------------------------------------------------------|---|
| 🐹 View 🔻 😹 Layout 👻 🗌 Select 👻 🎊 Add 🔻 🎐 Highlight 👻 🖓 Style 👻 🐠 🛞 💮 👘 🛞 🛞 | Ð |
| •                                                                          |   |
| • • •                                                                      |   |
| •                                                                          |   |
| • • •                                                                      |   |
|                                                                            |   |
| • •                                                                        |   |
| • • •                                                                      |   |
| • •                                                                        |   |
| • •                                                                        |   |

3. Choose Select > All to select all entities. Then choose Advanced from the Add menu. The Advanced Build Pathway wizard will appear.

Let's find common transcriptional regulators shared by at least two members of our group.

- 4. In the Select Algorithm window, select "Add common regulators". This will identify upstream regulators that shared by two or more members of the group. Recall that some relations have directionality, which allows us to define direction of influence.
- 5. Next select the type of entity or entities for the regulators. In this example, select proteins.

| Select Algorithm Type             | s | et Filter Parameters |                |           |                   |
|-----------------------------------|---|----------------------|----------------|-----------|-------------------|
| Add neichbors                     |   | Entity Type          | Use Filter     | Operation | Value             |
| the four partice                  |   | ✓ Protein            | ALL            | \$        |                   |
| # of expansion                    |   | Cell Process         |                |           |                   |
| Add direct interactions           |   | Functional Class     |                |           |                   |
| 0                                 |   | Disease              |                |           |                   |
|                                   |   | Complex              |                |           |                   |
| Add shortest path                 |   | Small Molecule       |                |           |                   |
|                                   |   | Treatment            |                |           |                   |
| Add common regulators             |   |                      |                |           |                   |
| Add neighbors from group          |   |                      |                |           |                   |
| Group:                            |   |                      |                | Ch        | eck all Clear all |
| <back next=""> Cancel Help</back> |   |                      | < <u>B</u> ack | Next > C  | ancel Help        |

6. Finally, select the types of relation the transcriptional regulators will have with the targets. In this example, we will select Expression and PromoterBinding. Although regulation could also be utilized, the category of Regulation contains by far the largest number of relationships and is less specific, so we will leave it out for now.

| Relation Type                  | Use Filter |    | Operation | Value            |
|--------------------------------|------------|----|-----------|------------------|
| Regulation                     |            |    |           |                  |
| ChemicalReaction               |            |    |           |                  |
| <ul> <li>Expression</li> </ul> | ALL        | \$ |           |                  |
| DirectRegulation               |            |    |           |                  |
| MolSynthesis                   |            |    |           |                  |
| Binding                        |            |    |           |                  |
| PromoterBinding                | ALL        | ŧ  |           |                  |
| ProtModification               |            |    |           |                  |
| MolTransport                   |            |    |           |                  |
|                                |            |    |           |                  |
|                                |            |    | Che       | ck all Clear all |
|                                |            |    | Che       | ck all Clear all |

7. When the algorithm is finished, select Finish to view the pathway. Note: at the bottom of the Results Preview window there is a summary of the resultant pathway. In the example below, 16 shared potential transcriptional regulators were identified and 42 relations between those regulators and the starting group of entities will be added to the pathway view.

| Name       | Type          | ັρι         | Description           |                          | Connectivity | 1 |
|------------|---------------|-------------|-----------------------|--------------------------|--------------|---|
| CSF2       | Protein       | New         | colony stimulating fa | actor 2                  | 2            | 5 |
| ⊻ IL4      | Protein       | New         | interleukin 4         |                          | 2            |   |
| HGF        | Protein       | New         | hepatocyte growth     | factor                   | 2            |   |
| ✓ IFNG     | Protein       | New         | interferon, gamma o   | or immune type           | 6            |   |
| CTN        | Protein       | New         | catanin (cadharin ac  | enristed protein) hets 1 | 2            | 1 |
| Direction  | En            | ity Name    | Entity Type           | Relation Type            | Effect       | _ |
|            | MM            | P12         | Protein               | Expression               | positive     |   |
|            | MM            | E           | Protein               | Expression               | positive     |   |
| Done. Tota | al time: 00:1 | 00:04 Total | objects checked: 58   | 1                        |              |   |

- 8. Use the "Fit All Entities to Window" button to maximize the pathway view.
- 9. Select "Resize > Fit All Entities to Labels" in the Advanced Visualization tool bar.
- 10. As this pathway depicts upstream transcriptional regulators, select "Hierarchical Layout" from the layout menu. This will display the transcriptional regulators above the targets they regulate.
- 11. If needed, adjust the x and y-axis scale of the image by selecting Advanced Scaling from the menu in the far upper right. (Uncheck "Keep Aspect Ratio" before changing horizontal and vertical proportions.)

|                      | Advanced Graph Scaling                                                                                |
|----------------------|-------------------------------------------------------------------------------------------------------|
| Find in this pathway | Scale entity positions   Scale entity sizes   Scale entity labels   Horizontal:   Vertical:     100 % |
| Show Magnifier       | ✓ Keep Aspect Ratio                                                                                   |
| Advanced Scaling     | Apply Close                                                                                           |

12. The new pathway contains the original group list and new transcriptional regulators. Let's select the members of the original group. From the List Pane, choose Select > All, then Select > Mirror Selection to active pathway. The original members will be selected (blue line around selected entities). Alternatively you can Select > All, Edit > copy the list, then in the pathway view Select > Entities on Clipboard.



Now let's find shared transcriptional targets for our original list of proteins.

- 13. With the original group members selected, go to the Add menu and select Advanced.
- 14. Select algorithm type > Add common targets. This will find targets shared by two or more from our selected list.
- 15. Select Entity type Proteins and Relation type Expression and PromoterBinding.
- 16. Select Finish to view the pathway. Adjust the visualization by first selecting Layout > Hierarchical Layout, fit the pathway to the window.
- 17. Select the members of the original group by Select > All and then Select > Mirror Selection to Active Pathway

Let's add highlighting (a color halo) to the upstream regulators and the downstream targets.

- 18. With the original list selected, go to Select > Invert Selection. Now the added upstream regulators and downstream targets are selected. (Note: relations will also be selected which is ok as highlight won't apply to relationships.)
- 19. Choose Highlight > blue to highlight the upstream regulators and downstream targets. None of the members of your original list will be highlighted.
- 20. Save the pathway with the name "Upstream Regulators and Downstream Targets."



## End Exercise: Building Pathways

## Saving Pathway Images

Right-click on the pathway to access the four options for saving an image:

a.) Copy Picture to clipboard (available to paste into many programs),

b.) Save Picture As (saves the pathway image as a \*.gif - default or \*.jpeg, \*.png, \*.tif, and \*.bmp),

c.) Save Picture with Legend (save an image of a pathway with a legend included. There are also options to scale the image size -height/width and a choice of image resolutions from screen resolution up to 1200 dpi).

d.) Save Pathway as HTML (export and save the pathway to an HTML file which enables the visualization of a pathway outside of Pathway Studio such as Internet Explorer. The HTML figure has hyperlinks for entities.)

Options for saving a pathway image are also found in the Advanced Visualization Tool bar menu when selecting the camera icon.



## Exporting Pathways

From the folder view select the pathway file for export and select Export. A menu box appears with options for destinations to export the file.



The third option, "Selected Items as RNEF" opens an export wizard that allows for more flexibility in selecting data about the pathway for export.

|                                                                                                         | Туре                                                                                  | Source       | Owner |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|-------|
| MYBL2 network                                                                                           | Pathway                                                                               |              | Admin |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
|                                                                                                         |                                                                                       |              |       |
| xport options for reference                                                                             | ed items:                                                                             |              |       |
|                                                                                                         | the referenced items                                                                  |              |       |
| Do not export content of                                                                                |                                                                                       | 200          |       |
| Do not export content of<br>Save complete informa                                                       | tion for entities and relation                                                        | /113         |       |
| Do not export content of<br>Save complete informa<br>Save only major proper                             | tion for entities and relatio<br>ties for entities and relatio                        | ns           |       |
| Do not export content of<br>Save complete informa<br>Save only major proper<br>Use custom filter to exp | tion for entities and relation<br>ties for entities and relation<br>ort specific data | ns<br>Filter |       |

## Section 4: Importing Experimental Data

Experimental data will be directly imported into Pathway Studio from Partek® after an initial analysis of the differentially expressed genes has been performed. See instructions provided by Partek for explanations of the data generated and exported into Pathway Studio Explore.

For the purpose of this Training Manual, two files of microarray data, GDS2126.gepr and GDS2126.txt have been provided. The following exercise demonstrates how to import this file so that the experiment data is available for use in the remaining training exercises. This experiment contains gene expression data from synovial tissues from patients with rheumatoid arthritis and osteoarthritis and well as normal controls.

#### • Exercise Four: Import data

Note: This example is not your standard workflow for moving experimental data into Pathway Studio Explore. This example is solely to generate an experiment data file for further training examples to be used here. When you use Pathway Studio Explore for your research needs, your data will be imported directly from Partek.

#### Begin Exercise: Import data (non standard workflow)

Objective: import a file of microarray data into Pathway Studio Explore.

1. Place the files, GDS2126.gepr and GDS2126.txt on your computer desktop.

2. With Pathway Studio Explore open, double click on the GDS2126.gepr file. The following dialog will appear:

| Import and Analyze Experiment                                                                                                                                                                                                            |                                                                         |                                                              | X                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------|
| Destination folder:                                                                                                                                                                                                                      | Projects                                                                |                                                              |                  |
| Experiment Name:                                                                                                                                                                                                                         | gds2126                                                                 |                                                              |                  |
| p-value cutoff:                                                                                                                                                                                                                          | (no cutoff)                                                             | (filters out row only if p-value<br>exceed specified cutoff) | s in all samples |
| Post-Import Steps:                                                                                                                                                                                                                       |                                                                         |                                                              |                  |
| <ul> <li>GSEA Ariadne Pathways an</li> <li>GSEA Ariadne Pathways an</li> <li>GSEA Gene Ontology - OA</li> <li>GSEA Gene Ontology - RA</li> <li>GSEA Gene Ontology - RA</li> <li>SNEA - OA vs. Ctrl</li> <li>SNEA - RA vs Ctrl</li> </ul> | ıd Ontology - OA vs. (<br>ıd Ontology - RA vs C<br>.vs. Ctrl<br>vs Ctrl | .trl<br>trl                                                  |                  |
| Open the experiment to colo                                                                                                                                                                                                              | or pathways in the res                                                  | ults Start                                                   | Cancel           |

3. Select the desired destination folder where the experiment will be imported.

4. Some experimental analysis options have been selected by default (Gene Set Enrichment Analysis and Sub-Network Enrichment Analysis). For the purpose of this training session, uncheck all the analysis. We will introduce and explain these tools below prior to running these analyses. When the import has completed, select "Finish"

| Import and Analyze Experiment                                                                               |       |                                                                            | ×   |
|-------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|-----|
| Destination folder:                                                                                         |       | Projects/Training                                                          |     |
| Experiment Name:                                                                                            | gd    | s2126                                                                      |     |
| p-value cutoff:                                                                                             |       | (filters out row only if p-values in all sampl<br>exceed specified cutoff) | les |
| Experiment import complete                                                                                  |       |                                                                            |     |
| Experiment Import started<br>Mapping probes to entities<br>Mapping completed. 11950 pr<br>No tools selected | robes | were mapped to entities using property LocusLink ID                        | *   |
|                                                                                                             |       | Start                                                                      | h   |

The Experiment Table will open automatically.

| 📑 gds2126 ×                            |             |                 |            |                 |  |  |  |  |
|----------------------------------------|-------------|-----------------|------------|-----------------|--|--|--|--|
| Link 🝸 🔻 🗈 Edit 👻 🔄 Select 👻 🥥 Tools 👻 |             |                 |            |                 |  |  |  |  |
| III View ▼ 🤫 Colors ▼ Find probe       |             |                 |            |                 |  |  |  |  |
| Name                                   | OA vs. Ctrl | OA vs. Ctrl : p | RA vs Ctrl | RA vs Ctrl : pv |  |  |  |  |
| МАРКЗ                                  | 0.2180      | 5.080e-01       | -0.1990    | 5.290e-01       |  |  |  |  |
| TIE1                                   | -0.2968     | 4.940e-01       | -0.4092    | 6.780e-01       |  |  |  |  |
| CYP2C19                                | -1.0393     | 4.050e-01       | -0.0494    | 9.820e-01       |  |  |  |  |
| CXCR5                                  | 0.7845      | 5.740e-01       | 1.0190     | 5.220e-01       |  |  |  |  |
| CXCR5                                  | -0.1713     | 9.370e-01       | 1.2458     | 3.220e-01       |  |  |  |  |
| DUSP1                                  | -0.2578     | 7.140e-01       | -0.4002    | 5.080e-01       |  |  |  |  |
| MMP10                                  | -0.4918     | 8.010e-01       | -0.9154    | 6.080e-01       |  |  |  |  |
| DDR1                                   | 0.0956      | 8.620e-01       | -0.1134    | 7.950e-01       |  |  |  |  |
| EIF2AK2                                | 0.8167      | 3.820e-01       | 0.8275     | 3.410e-01       |  |  |  |  |
| HINT1                                  | -0.1156     | 8.740e-01       | -0.3861    | 3.480e-01       |  |  |  |  |
| RABGGTA                                | 0.1931      | 7.510e-01       | 0.4647     | 1.380e-01       |  |  |  |  |
| MAPK11                                 | -0.5302     | 6.360e-01       | -0.5809    | 6.550e-01       |  |  |  |  |
| YWHAE                                  | -0.8455     | 5.440e-01       | -0.0109    | 9.900e-01       |  |  |  |  |
| PCAF                                   | 0.3495      | 8.400e-01       | 0.5316     | 6.780e-01       |  |  |  |  |
| SMAD5                                  | 0.2637      | 7.810e-01       | -0.0301    | 9.820e-01       |  |  |  |  |
| POLG                                   | -0.3515     | 3.660e-01       | -0.2671    | 3.880e-01       |  |  |  |  |
| LTMK1                                  | 0.1080      | 9.350e-01       | 0.6239     | 3.840e-01       |  |  |  |  |

## End Exercise: Import data

## Section 5: Experimental data analysis tools

The experimental data analysis tools in Pathway Studio provide two different enrichment analysis algorithms, the Fisher's Exact Test and Gene Set Enrichment Analysis. Identification of enrichment of defined gene sets (pathways and groups) as well as user-defined sub-network identified in the ResNet database are both possible.

| gene                                                                                                     | Known Gene Sets                                         | Sub-Networks                                         |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| sets                                                                                                     | (ontologies, curated pathways)                          | (user defined from ResNet)                           |
| algorithms                                                                                               |                                                         |                                                      |
| Fisher's Exact Test<br>(experimental values <u>not</u><br>utilized)                                      | Find Pathways/Groups Enriched<br>with Selected Entities | Find Sub-Networks Enriched with<br>Selected Entities |
| Gene Set Enrichment<br>Analysis (GSEA)<br>(experimental values <u>are</u><br>considered in the analysis) | Gene Set Enrichment Analysis                            | Sub-Network Enrichment Analysis                      |

#### Names of the tools as they appear in Pathway Studio

## Fisher's Exact Test

Fisher's Exact test is a statistical test used to determine if there are nonrandom associations between two categorical variables. You can use the Fisher's Exact test to see if there are gene groups (such as ontology groups) or pathways that are statistically enriched in your list of genes. In addition you can identify if subnetworks are enriched.

For more information about the Fisher's Exact test see: <u>http://mathworld.wolfram.com/FishersExactTest.html</u>

In gene expression analysis, the Fisher's Exact test is typically run on the list of genes that have been determined (ex. by fold change / p-value) to be statistically significantly differently expressed between experimental conditions. The experimentally derived values are not utilized in the Fisher's Exact test when calculating enrichment in the gene list.

You can launch the Fisher's Exact test from the Group view by selecting the proteins in the group, then rightclick and select "Find Pathways/Groups Enriched with Selected Entities".

| Polders SCLC genes × |                                                      |                    |  |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| 🐼 🔚 Save 🔻 🗎 Edit    | 😰 📊 Save 🔻 🏢 Edit 🔻 🥥 Tools 👻                        |                    |  |  |  |  |  |  |  |  |  |
| View - Select -      |                                                      |                    |  |  |  |  |  |  |  |  |  |
| Name                 | Description                                          | Info               |  |  |  |  |  |  |  |  |  |
| 3 SERPINII           | similar to neuroserpin                               | 101 neighbors      |  |  |  |  |  |  |  |  |  |
| BKK1                 | dickkopf homolog 1 (Xenopus                          | s la 297 neighbors |  |  |  |  |  |  |  |  |  |
| 😣 MAGEA4             | Open                                                 |                    |  |  |  |  |  |  |  |  |  |
| 😢 MAGEA6             | Preview                                              |                    |  |  |  |  |  |  |  |  |  |
| 😂 PTPRO              |                                                      |                    |  |  |  |  |  |  |  |  |  |
| B MMP12              | Find Sub-Networks Enriched with Selected Entities    |                    |  |  |  |  |  |  |  |  |  |
| See MME              | Find Pathways/Groups Enriched with Selected Entities |                    |  |  |  |  |  |  |  |  |  |
| 😂 MAGEA3             | Build Pathway from Selection                         |                    |  |  |  |  |  |  |  |  |  |
| , 🍪 CDKN3            |                                                      |                    |  |  |  |  |  |  |  |  |  |
| SERPINA3             | Сору                                                 |                    |  |  |  |  |  |  |  |  |  |
| 😂 GSTA1              | Delete                                               |                    |  |  |  |  |  |  |  |  |  |
| 😂 RRM2               |                                                      |                    |  |  |  |  |  |  |  |  |  |
| SGH GGH              | Properties                                           |                    |  |  |  |  |  |  |  |  |  |
| 😣 RBP1               | retinol binding protein 1, cellu                     | lar 168 neighbors  |  |  |  |  |  |  |  |  |  |
| SNL1                 | visinin-like 1                                       | 67 neighbors       |  |  |  |  |  |  |  |  |  |

You can also launch the Fisher's Exact Test from the Experiment Pane. First filter the view of your results table by fold change / p-value to identify the list of statistically significant genes.

Filter a table by selecting the filter icon and choosing: "Filter Probes by Value"



You can define two filters, in this example fold change range and p-value range.

| ter Probes by Value                            |                |           | <b>E</b>     |
|------------------------------------------------|----------------|-----------|--------------|
| elect samples of interest                      | Se             | elect All | Unselect All |
| Sample                                         | Т              | уре       |              |
| OA/N                                           | S              | ample     |              |
| RA/N                                           | S              | ample     |              |
|                                                |                |           |              |
|                                                |                |           |              |
|                                                |                |           |              |
|                                                |                |           |              |
|                                                |                |           |              |
|                                                |                |           |              |
| Eiltering conditions (cossify at least one on  | in may or n y  | alua cut  | toff)        |
| Filtering conditions (specify at least one - n | in, max or p-v | alue cui  | (on)         |
|                                                | min            |           | max          |
| Hide probes within   range range               | -1.2000        | to        | 1.2000       |
| Hide probes with p-values exceeding            | (no cutoff)    |           |              |
|                                                |                |           |              |
|                                                |                | OK        | Cancel       |

Note: Applying this filter does not remove the rows that are filtered out. The rows containing values that do not meet the filter criteria are displayed in gray.

To run an analysis on only the probes that did meet the filter criteria, you must first choose "Select Unfiltered Probes."

| You can apply this filter to one or more than one |                                             |  |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| dataset.                                          | In addition, you can choose Highlight       |  |  |  |  |  |  |  |
| Probes by                                         | y value to highlight the probes in the list |  |  |  |  |  |  |  |
| that meet                                         | the filter criteria.                        |  |  |  |  |  |  |  |

| Name   | OA/N    | OA/N : pvalue |
|--------|---------|---------------|
| CD19   | 0.1164  | 7.711e-01     |
| CCR7   | 0.1429  | 7.293e-01     |
| THPO   | -0.5120 | 6.201e-01     |
| GSTT2  | 0.6160  | 2.957e-01     |
| RABEPK | -0.1451 | 4.270e-01     |
| IRAK1  | -0.3257 | 1.490e-01     |
| APBB1  | -0.1878 | 7.976e-02     |
| NR3C1  | 0.1583  | 6.077e-01     |
| ABO    | -0.9554 | 4.373e-02     |
| BIRC3  | -2.0447 | 3.001e-05     |
| GPR33  | 0.9192  | 7.073e-03     |
| CCR9   | 0.8968  | 2.277e-03     |
| ISG15  | 0.5487  | 6.431e-02     |
| EPHA1  | 0.4140  | 1.652e-01     |
| 00.054 | 0.0004  | 0.000 04      |

In addition, you can determine this list of genes in an analysis outside of Pathway Studio, and import the resultant list into Pathway Studio for Fisher's Exact test analysis.

To run the Fisher's Exact test from the Experiment Pane, select the genes to be included in the analysis by choosing "Select Unfiltered Probes", then right-click on the gene name column and select "Find Pathways/Groups Enriched with Selected Entities."

| ☐ GDS2126 × |                                      |          |                   |                    |              |             |      |   | GDS2126 | i ×                     |     |                  |                     |
|-------------|--------------------------------------|----------|-------------------|--------------------|--------------|-------------|------|---|---------|-------------------------|-----|------------------|---------------------|
|             | Link 🖓 🕶 Edit 👻 🛄 Select 👻 🥥 Tools 👻 |          |                   |                    |              |             |      |   |         | 📄 Link 📑                | 7.  | 🗎 Edit 👻 📗       | Select 👻 🔘 T        |
|             | III View                             | 🤫        | Colors 🔻          |                    | Find probe   |             | ρ.   | - |         | III View 🕶              | - 3 | Colors 🔻         |                     |
|             | Name                                 |          | OA/N              | p-values for       | RA/N         | p-values fo | or R | ^ |         | Name                    |     | OA/N             | p-values for        |
|             | disease st                           | tate     |                   | ]                  |              |             |      | - |         | disease state           |     |                  |                     |
|             | DDIT4                                |          | -3.2274           | 1.108e-07          | -2.1787      | 6.397e-04   |      |   |         | DDIT4                   |     | -3.2274          | 1.108e-07           |
|             | H1FX                                 |          | -2.2321           | 3.932e-07          | -2.1971      | 7.210e-04   |      |   |         | H1FX                    |     | -2.2321          | 3.932e-07           |
|             | H1FX                                 |          | -1.1628           | 7.150e-07          | -1.1660      | 1.276e-03   |      |   |         | H1FX                    |     | -1.1628          | 7.150e-07           |
|             | MMP3                                 |          | 3.8320            | 3.986e-06          | 4.3299       | 5.974e-05   |      |   |         | MMP3                    |     | 3.8320           | 3.986e-06           |
|             | RAB8A                                |          | 0.6196            | 5.130e-06          | 0.5693       | 9.755e-03   |      |   |         | RAB8A                   |     | 0.6196           | 5.130e-06           |
|             | ІТРКС                                |          | -3.1132           | 6.559e-06          | -2.0506      | 5.059e-06   |      |   |         | ІТРКС                   |     | -3.1132          | 6.559e-06           |
|             | TSC22D3                              |          | -1.4353           | 7.789e-06          | -1.1027      | 1.186e-03   |      |   |         | TSC22D3                 |     | 1 //252          | 7 790 0 06          |
|             | MAQA                                 |          | -2.1788           | 8.079e-06          | -3.3359      | 6.010e-06   |      |   |         | MAOA                    | Bi  | uild Pathway fr  | om Selection        |
| T           | FAS                                  | Build Pa | thway from Sele   | ction              |              | -05         |      |   |         | Save Selection as Group |     |                  |                     |
|             | HNI                                  | Save Se  | ection as Group   | •                  |              | -03         |      |   |         | HNRNPA1                 | Fi  | nd Pathways/G    | Groups Enriched wit |
|             | VEG                                  | Find Pat | thways/Groups E   | nriched with Seleo | ted Entities | e-01        |      |   |         | VEGFA                   | Fi  | nd Sub-Netwo     | rks Enriched with S |
|             | GAE                                  | Find Sul | b-Networks Enric  | hed with Selected  | Entities     | e-03        |      |   |         | GADD45A                 | C   | opv              |                     |
|             | GNE                                  | ~        |                   |                    |              | e-05        |      |   |         | GNE                     | -   |                  |                     |
|             | тст                                  | Сору     |                   |                    |              | <u>e-01</u> |      |   |         | TCTA                    | Se  | elect Unfiltered | Probes              |
|             | SLC                                  | Select U | nfiltered Probes  |                    |              | e-05        |      |   |         | SLC36A1                 | Br  | ring Selected Pi | robes Together      |
|             | MA                                   | Bring Se | elected Probes To | gether             |              | e-03        |      |   |         | MAFF                    | Pr  | roperties        |                     |
|             | TNF                                  | Properti | es                |                    |              | e-02        |      |   |         | TNFRSF11A               |     | 2.0172           | 2.275e-05           |
|             | РРАРZВ                               | - ·      | -1.1413           | 2./50e-05          | -1./81/      | 4.347e-05   |      |   |         | PPAP2B                  |     | -1.1413          | 2.750e-05           |
|             | TRIM14                               |          | 1.9815            | 2.888e-05          | 1.7270       | 5.693e-04   |      |   |         | TRIM14                  |     | 1.9815           | 2.888e-05           |
|             | HSPA1A                               |          | -2.0447           | 3.001e-05          | -2.1024      | 1.782e-04   |      |   |         | HSPA1A                  |     | -2.0447          | 3.001e-05           |
|             | FADS1                                |          | -1.8955           | 3.342e-05          | -1.7986      | 3.151e-05   |      |   |         | FADS1                   |     | -1.8955          | 3.342e-05           |
|             | RGS19                                |          | 1.0190            | 3.780e-05          | 1.0598       | 5.787e-05   |      | - |         | RGS19                   |     | 1.0190           | 3.780e-05           |
|             | •                                    | Þ        | ۲ III             |                    |              |             | Þ    |   |         | 4                       | •   | • III            |                     |
|             |                                      |          |                   |                    |              |             |      |   |         |                         |     |                  |                     |

| 🔢 View                                                                             | )e | <i>.</i> •                                                         |                                                               |                                                   |                                                               |     |  |
|------------------------------------------------------------------------------------|----|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-----|--|
| Name                                                                               |    | OA/N                                                               | p-values for                                                  | RA/N                                              | p-values fo                                                   | r R |  |
| disease stat                                                                       | (e |                                                                    |                                                               |                                                   |                                                               |     |  |
| DDIT4                                                                              |    | -3.2274                                                            | 1.108e-07                                                     | -2.1787                                           | 6.397e-04                                                     |     |  |
| H1FX                                                                               |    | -2.2321                                                            | 3.932e-07                                                     | -2.1971                                           | 7.210e-04                                                     |     |  |
| H1FX                                                                               |    | -1.1628                                                            | 7.150e-07                                                     | -1.1660                                           | 1.276e-03                                                     |     |  |
| MMP3                                                                               |    | 3.8320                                                             | 3.986e-06                                                     | 4.3299                                            | 5.974e-05                                                     |     |  |
| RAB8A                                                                              |    | 0.6196                                                             | 5.130e-06                                                     | 0.5693                                            | 9.755e-03                                                     |     |  |
| ТРКС                                                                               |    | -3.1132                                                            | 6.559e-06                                                     | -2.0506                                           | 5.059e-06                                                     |     |  |
| TSC22D3                                                                            |    | 1 //050                                                            | 7 790 - 06                                                    | 1 1027                                            | 1 196- 02                                                     | 1   |  |
| MAOA                                                                               | B  | uild Pathway                                                       | from Selection                                                |                                                   |                                                               |     |  |
| FASN                                                                               | S  | ave Selection                                                      | as Group                                                      |                                                   |                                                               |     |  |
| HNRNPA1                                                                            | F  | ind Pathways                                                       | s/Groups Enriched wit                                         | h Selected Er                                     | ntities                                                       |     |  |
| VEGFA                                                                              | F  | nd Sub-Networks Enriched with Selected Entities                    |                                                               |                                                   |                                                               |     |  |
| GADD45A                                                                            | c  | Copy                                                               |                                                               |                                                   |                                                               |     |  |
| Chir                                                                               |    |                                                                    |                                                               |                                                   |                                                               |     |  |
| GNE                                                                                | S  | elect Unfilter                                                     | ed Probes                                                     |                                                   |                                                               |     |  |
| GNE<br>TCTA                                                                        |    |                                                                    | Dealage Teasther                                              |                                                   |                                                               |     |  |
| GNE<br>TCTA<br>SLC36A1                                                             | В  | Iring Selected                                                     | Probes rogether                                               |                                                   |                                                               |     |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF                                                     | B  | ring Selected                                                      | refores rogerner                                              |                                                   |                                                               |     |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF<br>TNFRSF11Å                                        | B  | roperties<br>2.0172                                                | 2.275e-05                                                     | 1.4092                                            | 2.796e-02                                                     | J   |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF<br>TNFRSF11Å<br>PPAP2B                              | P  | ring Selected<br>Properties<br>2.0172<br>-1.1413                   | 2.275e-05<br>2.750e-05                                        | 1.4092<br>-1.7817                                 | 2.796e-02<br>4.347e-05                                        | ]   |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF<br>TNFRSF11Å<br>PPAP2B<br>TRIM14                    | P  | ring Selected<br>2.0172<br>-1.1413<br>1.9815                       | 2.275e-05<br>2.750e-05<br>2.888e-05                           | 1.4092<br>-1.7817<br>1.7270                       | 2.796e-02<br>4.347e-05<br>5.693e-04                           | J   |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF<br>TNFRSF11Å<br>PPAP2B<br>TRIM14<br>HSPA1A          | P  | Properties<br>2.0172<br>-1.1413<br>1.9815<br>-2.0447               | 2.275e-05<br>2.750e-05<br>2.888e-05<br>3.001e-05              | 1.4092<br>-1.7817<br>1.7270<br>-2.1024            | 2.796e-02<br>4.347e-05<br>5.693e-04<br>1.782e-04              | J   |  |
| GNE<br>TCTA<br>SLC36A1<br>MAFF<br>TNFRSF11Å<br>PPAP2B<br>TRIM14<br>HSPA1A<br>FADS1 | P  | ring Selected<br>2.0172<br>-1.1413<br>1.9815<br>-2.0447<br>-1.8955 | 2.275e-05<br>2.750e-05<br>2.888e-05<br>3.001e-05<br>3.342e-05 | 1.4092<br>-1.7817<br>1.7270<br>-2.1024<br>-1.7986 | 2.796e-02<br>4.347e-05<br>5.693e-04<br>1.782e-04<br>3.151e-05 | J   |  |

The Find Pathways/Groups Enriched with Entities dialog opens. Here you can select by check box the groups and pathways to include in the analysis. In Pathway Studio you have available the classic Gene Ontology as well as Ariadne Ontology and the Ariadne reference pathway collection to use in the analysis. In addition you can include any pathways and groups you have created in the analysis.

| Find Pathways/Groups Enriched with Entities                                                                                                                                                            | ×  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Find Pathways/Groups enriched with 308 selected entities                                                                                                                                               |    |
| (1 non-entities in selection will not be used)                                                                                                                                                         |    |
| Look in:                                                                                                                                                                                               |    |
| Pathways         Ariadne Metabolic Pathways         V Ariadne Signaling Pathways         User's pathways         V Ariadne Ontology         GO         C cellular_component         Molecular_function |    |
| biological_process                                                                                                                                                                                     |    |
| User's groups                                                                                                                                                                                          |    |
| Expand the content of functional classes, cell processes and complexes in target gene se                                                                                                               | ts |
| OK Cancel                                                                                                                                                                                              |    |

Note: Some types of entities, such as functional classes in the Cellular Process pathways contain proteins that have been mapped to them. To include these proteins in the analysis make sure the check box labeled, "Expand the content of functional classes and complexes in target gene sets" is selected.

The results of the enrichment analysis are displayed in a table in the List Pane, ranked by p-value.

| Enriched Pathways/Group   | Enriched Pathways/Groups ×                                |                |                        |         |                 |                                                   |            |                            |   |   |  |
|---------------------------|-----------------------------------------------------------|----------------|------------------------|---------|-----------------|---------------------------------------------------|------------|----------------------------|---|---|--|
| 🔚 Save 👔 Edit 🕶 🛄 Se      | 🔚 Save 👔 Edit 🔻 🛄 Select 🔻 🥥 Tools 👻 Find in this table 🔎 |                |                        |         |                 |                                                   |            |                            |   |   |  |
| Name                      | Туре                                                      | Total Entities | Expanded # of Entities | Overlap | Percent Overlap | Overlapping Entities                              | ^ 🔎 p-v    | Data Source                | # | - |  |
| 🛅 Estrogen-like           | Group                                                     | 9              | 9                      | 2       | 22              | PGR,ESRRB                                         | 0.00120421 | Ariadne Ontology           | 1 |   |  |
| 🚳 Melanogenesis           | Pathway                                                   | 51             | 682                    | 13      | 1               | ITPKC, ADM, TGFA, VEGFA, CXCL12, PRKCB, CSF1R, ED | 0.00286401 | Ariadne Signaling Pathways | 2 |   |  |
| ECM degradation           | Group                                                     | 14             | 14                     | 2       | 14              | MMP3,MMP14                                        | 0.00298662 | Ariadne Ontology           | 3 |   |  |
| 🚳 Adipocytokine Signaling | Pathway                                                   | 52             | 780                    | 14      | 1               | ADIPOQ,IL6R,FASN,ADFP,TNFRSF11A,FABP4,ACSL1       | 0.00334572 | Ariadne Signaling Pathways | 4 |   |  |
| Concogenes Concogenes     | Group                                                     | 273            | 273                    | 6       | 2               | RABL3, CSF1R, ETS2, RET, MYBL1, MAFF              | 0.00531976 | Ariadne Ontology           | 5 |   |  |
| Gonadotrope Cell Activat  | Pathway                                                   | 71             | 698                    | 12      | 1               | ITPKC, ADM, TGFA, VEGFA, MMP3, PRKCB, MMP14, CS   | 0.00976601 | Ariadne Signaling Pathways | 6 |   |  |
| 🛅 Adiponectin             | Group                                                     | 2              | 2                      | 1       | 50              | ADIPOQ                                            | 0.0117851  | Ariadne Ontology           | 7 |   |  |
| CADD45                    | Group                                                     | 3              | 3                      | 1       | 33              | GADD45A                                           | 0.0176263  | Ariadne Ontology           | 8 | - |  |

The "# of Entities" indicates the number of entities shown in the group or pathway. The "Expanded # of Entities" includes the total number of entities shown on the pathway and contained in complexes and functional classes. The "Overlap" is the number of proteins shared in common between your input group and the resultant group or pathways. The Percent Overlap expresses the overlap of the input list with the entities in the identified object in percent value. The overlapping entities are listed in the Overlapping Entities column. Data Source indicates the source of the group or pathway.

You can save the results of the analysis by exporting to MS Excel: Select > All, Tools > Send Data to Excel. In addition, you can save the results in Pathway Studio by selecting "Save" from the tool bar just above the table.

## • Exercise Five: Experimental Data Analysis – Fisher's Exact Test for Enriched Groups and Pathways

#### **Begin Exercise:**

**Objective**: To run a Fisher's Exact test analysis on a filtered list from gene expression data to identify ontology groups and pathways enriched in the significantly differentially expressed gene set.

Let's use the osteoarthritis and rheumatoid arthritis synovial tissue data set to run the Fisher's Exact test.

#### **Fisher's Exact Test**

1. Filter the table by selecting the filter icon and selecting "Filter Probe by Value".

| i gds2126 ×                            |   |                   |                |        |              |       |             |  |  |  |
|----------------------------------------|---|-------------------|----------------|--------|--------------|-------|-------------|--|--|--|
| 🗃 Link 🕎 🗣 Edit 🔻 🛄 Select 👻 🥥 Tools 👻 |   |                   |                |        |              |       |             |  |  |  |
| III View                               |   | Filter Probes by  | Value          |        |              |       | Find probe  |  |  |  |
| Name                                   |   | Highlight Probe   | es by Value    |        | Ctrl         | RAV   | s Ctrl : pv |  |  |  |
| МАРКЗ                                  | • | Don't Filter by V | alue           |        | 0            | 5.29  | )e-01       |  |  |  |
| TIE1                                   |   | Filter Probes by  | Active Pathway |        | 2            | 6.78  | 0e-01       |  |  |  |
| CYP2C19                                |   | Hide Unmanner     | d Prohes       |        | 4            | 9.820 | 0e-01       |  |  |  |
| CXCR5                                  | _ | ooro              | J              | 5.220  | 0e-01        |       |             |  |  |  |
| CXCR5                                  |   | -0.1713           | 9.370e-01      | 1.245  | 58 3.220e-01 |       | 0e-01       |  |  |  |
| DUSP1                                  |   | -0.2578           | 7.140e-01      | -0.400 | )2           | 5.080 | 0e-01       |  |  |  |
| 1 10 10 10                             |   |                   |                |        |              |       |             |  |  |  |

- 2. Set the filter for the Osteoarthritis data set (check that box) to include only genes with a log change range greater than 1.5 (i.e. set the range to be outside of -1.5 and 1.5), and set the p-value cut off at 0.05.
- 3. Select "Set Filter." All genes that don't meet the filter criteria and displayed in gray.
- 4. Right click and choose "Select Unfiltered Probes." Then right click and select "Find pathways/groups Enriched with Selected Entities". This runs the Fisher's Exact test.

| □ GDS2126 ×                              |           |                                                    |                          |           |         |  |  |  |  |
|------------------------------------------|-----------|----------------------------------------------------|--------------------------|-----------|---------|--|--|--|--|
| 📄 Link 🝸 🗸 🗈 Edit 🔻 🧾 Select 👻 🥥 Tools 👻 |           |                                                    |                          |           |         |  |  |  |  |
| III View ▼ 🧐 Colors ▼ Find probe 🔎 ▼     |           |                                                    |                          |           |         |  |  |  |  |
| Name                                     |           | OA/N                                               | p-values for $\triangle$ | RA/N      | p-val 🔺 |  |  |  |  |
| disease state                            |           |                                                    |                          |           |         |  |  |  |  |
| H1FX                                     |           | -1.1628                                            | 7.150e-07                | -1.1660   | 1.276   |  |  |  |  |
| MMP3                                     |           | 3.8320                                             | 3.986e-06                | 4.3299    | 5.974   |  |  |  |  |
| RAB8A                                    |           | 0.6196                                             | 5.130e-06                | 0.5693    | 9.755   |  |  |  |  |
| ІТРКС                                    |           | -3.1132                                            | 6.559e-06                | -2.0506   | 5.059   |  |  |  |  |
| TSC22D3                                  |           | -1.4353                                            | 7.789e-06                | -1.1027   | 1.186   |  |  |  |  |
| MAOA                                     |           | -2.1788                                            | 8.079e-06                | -3.3359   | 6.010   |  |  |  |  |
| FASN                                     | D.,       | a area                                             | Calendian                | 2 6 6 9 7 | 2.025   |  |  |  |  |
| HNRNPA                                   | DU<br>Car | and Patriway from Selection                        |                          |           |         |  |  |  |  |
| VEGFA                                    | Sal       | ave selection as oroup                             |                          |           |         |  |  |  |  |
| GADD454                                  | Fin       | nd Pathways/Groups Enriched with Selected Entities |                          |           |         |  |  |  |  |
| GNE                                      | Fin       | ind Sub-Networks Enriched with Selected Entities   |                          |           |         |  |  |  |  |
| ТСТА                                     | Co        | opy                                                |                          |           |         |  |  |  |  |
| SLC36A1                                  |           |                                                    |                          |           |         |  |  |  |  |
| MAFF                                     | Sel       | lect Unfiltered Pro                                | bes                      |           |         |  |  |  |  |
| TNFRSF1:                                 | Bri       | ng Selected Prob                                   | es logether              |           |         |  |  |  |  |
| PPAP2B                                   | Pro       | operties                                           |                          |           |         |  |  |  |  |
| TRIM14                                   |           | 1.9815                                             | 2.888e-05                | 1.7270    | 5.693   |  |  |  |  |
| HSPA1A                                   |           | -2.0447                                            | 3.001e-05                | -2.1024   | 1.782   |  |  |  |  |
| FADS1                                    |           | -1.8955                                            | 3.342e-05                | -1.7986   | 3.151   |  |  |  |  |
| RGS19                                    |           | 1.0190                                             | 3.780e-05                | 1.0598    | 5.787   |  |  |  |  |
| ADH1A                                    |           | -2.6042                                            | 3.812e-05                | -4.7348   | 7.362   |  |  |  |  |
| NPR1                                     |           | -1.2410                                            | 4.103e-05                | -1.4594   | 8.106 🚽 |  |  |  |  |
| 4                                        | Þ         | < III                                              |                          |           | •       |  |  |  |  |

|   | 0032120 ×     |                                                      |                          |                  |         |  |  |  |
|---|---------------|------------------------------------------------------|--------------------------|------------------|---------|--|--|--|
|   | 📄 Link 🕎 🔻    | 🗎 🗈 Edit 🔻 🛄                                         | Select 👻 🕥 To            | lect 🔻 😳 Tools 👻 |         |  |  |  |
|   | 🏢 View 👻 🧐    | Colors -                                             | Colors   Find probe      |                  |         |  |  |  |
|   | Name          | OA/N                                                 | p-values for $\triangle$ | RA/N             | p-val 📩 |  |  |  |
|   | disease state |                                                      |                          |                  |         |  |  |  |
|   | H1FX          | -1.1628                                              | 7.150e-07                | -1.1660          | 1.276   |  |  |  |
|   | MMP3          | 3.8320                                               | 3.986e-06                | 4.3299           | 5.974   |  |  |  |
|   | RAB8A         | 0.6196                                               | 5.130e-06                | 0.5693           | 9.755   |  |  |  |
|   | ITPKC         | -3.1132                                              | 6.559e-06                | -2.0506          | 5.059   |  |  |  |
|   | TSC22D3       | -1.4353                                              | 7.789e-06                | -1.1027          | 1.186   |  |  |  |
|   | MAOA          | -2.1788                                              | 8.079e-06                | -3.3359          | 6.010   |  |  |  |
|   | FASN          | -3.2558                                              | 8.461e-06                | -3.5697          | 2.835   |  |  |  |
|   | HNRNPA1       | 1 2500                                               | 1 100 - 05               | 1.0250           | 1 41 2  |  |  |  |
| I | VEGFA         | Build Pathway from Selection                         |                          |                  |         |  |  |  |
|   | GADD45A       | Save Selection as Group                              |                          |                  |         |  |  |  |
|   | GNE           | Find Pathways/Groups Enriched with Selected Entities |                          |                  |         |  |  |  |
|   | ТСТА          | Find Sub-Networks Enriched with Selected Entities    |                          |                  |         |  |  |  |
|   | SLC36A1       | Сору                                                 |                          |                  |         |  |  |  |
|   | MAFF          | с н. сн н                                            |                          |                  |         |  |  |  |
|   | TNFRSF11A     | Select Unfiltered I                                  | Probes                   |                  |         |  |  |  |
|   | PPAP2B        | Bring Selected Pro                                   | obes logether            |                  |         |  |  |  |
|   | TRIM14        | Properties                                           |                          |                  |         |  |  |  |
|   | HSPA1A        | -2.0447                                              | 3.001e-05                | -2.1024          | 1.782   |  |  |  |
|   | FADS1         | -1.8955                                              | 3.342e-05                | -1.7986          | 3.151   |  |  |  |
|   | RGS19         | 1.0190                                               | 3.780e-05                | 1.0598           | 5.787   |  |  |  |
|   | ADH1A         | -2.6042                                              | 3.812e-05                | -4.7348          | 7.362   |  |  |  |
|   | NPR1          | -1.2410                                              | 4.103e-05                | -1.4594          | 8.106 🖵 |  |  |  |
|   | ۰ ۲           | •                                                    |                          |                  | •       |  |  |  |

- 5. Select "Ariadne Signaling Pathways" and "Ariadne Ontology" for the analysis and then select "OK" to run the analysis. (Make sure the check box for "Expand the content of functional classes and complexes in target gene sets" is selected.
- 6. See the results in the List Pane.
- 7. Find the top pathway in the list and right-click and select "Open" to see it in a pathway view.

| Pathway Studio® Explore - [Adipocytokine Signaling] |                              |                                |                     |                          |         |                         |                   |                 |              | ×                      |   |          |
|-----------------------------------------------------|------------------------------|--------------------------------|---------------------|--------------------------|---------|-------------------------|-------------------|-----------------|--------------|------------------------|---|----------|
| 🔹 📄 Folders 🖂 Ner                                   | w Pathway                    | Adipocytok                     | ine Signaling ×     |                          |         | 🗒 gds2126 ×             |                   |                 |              |                        |   |          |
| 📔 🗵 🖬 🖛 📾                                           | - 🗈 -                        | မာ • 🔘 •                       | · Find in this pa   | thway                    | o 🗸     | Link 🖓 🕶                | 🗈 Edit 👻 🛄        | Select 👻 🥥 To   | ools 🔻       |                        |   |          |
| े 🔎 🐹 View 🕶 👧 🔹                                    | - 🔲 - 🕷                      | i + 🧐 + 🍐                      | • 📰 😑 –             | - •                      | $\odot$ | 📰 View 🔻 🧐              | Colors -          |                 |              | Find probe             |   | o 🗸      |
|                                                     |                              |                                |                     |                          |         | Name                    | OA vs. Ctrl       | OA vs. Ctrl : p | RA vs Ctrl R | A vs Ctrl : pv         |   |          |
| E                                                   |                              | therity                        | Cyrtok<br>ine       |                          |         | H1FX                    | -2.2321           | 2.480e-03       | -1.9489 5.   | 970e-02                |   |          |
|                                                     | ý                            | <u></u>                        | Ý                   |                          |         | TRIM14                  | 1.9815            | 1.890e-02       | 1.6201 8     | 110e-02                |   |          |
|                                                     | 3                            | - <u>~</u>                     |                     |                          |         | TNFRSF11A               | 2.0172            | 1.690e-02       | 1.9371 5.    | 730e-02                |   |          |
|                                                     | Λ                            |                                | ¥                   |                          |         | TF                      | -2.4251           | 2.510e-02       | -2.8490 5.   | 850e-02                |   | Е        |
|                                                     |                              | H 💭 🐧                          |                     |                          |         | HDC                     | 2.2631            | 2.720e-02       | 0.5737 6.    | 580e-01                |   |          |
| C                                                   | L                            | 10 19                          |                     |                          |         | ADH1B                   | -2.6801           | 3.760e-02       | -4.3567 6.   | .060e-02               |   |          |
| P                                                   |                              |                                | ( and Der           |                          |         | Scrg1                   | 2.8258            | 2.720e-02       | 0.6012 8     | 620e-01                |   |          |
| 1 1                                                 | 11                           |                                |                     |                          |         | SDC4                    | -1.7723           | 3.390e-02       | -1.5538 6    | 370e-02                |   |          |
|                                                     |                              |                                |                     |                          |         | MTHFD2                  | -1.7694           | 4.080e-02       | -1.3384 6    | 540e-02                |   |          |
| -                                                   |                              | X 1 T                          |                     |                          |         | ACSL1                   | -1.5598           | 2.510e-02       | -1.2185 9    | 320e-02                |   |          |
|                                                     |                              |                                |                     |                          |         | 1/1.50                  | 4.0450            | 4.500 00        | 8 6420 8     | .680e-02               |   |          |
|                                                     |                              | , LA                           | TI.                 |                          |         | Open                    |                   |                 | 6            | .880e-02               |   |          |
|                                                     | (iii) (iii)                  | 2 🗠 🛛                          | a                   |                          |         | Preview                 |                   |                 | 1.           | 720e-02                |   |          |
|                                                     |                              |                                | <1                  |                          |         | Find Pathways/Gro       | oups Enriched wi  | s 3.            | 130e-02      |                        |   |          |
|                                                     |                              |                                |                     |                          |         | Find Sub-Network        | s Enriched with S | 1               | 720e-02      |                        |   |          |
|                                                     |                              |                                |                     |                          |         | Find Similar Pathw      | /ays/Groups       | 2               | 500e-02      |                        |   |          |
| Η                                                   |                              | 2 🥮 🗴                          | <b>r (e</b> ) (e)   |                          |         | Build Pathway from      | m Selection       | 2               | 2.660e-02    |                        |   |          |
|                                                     |                              | - WAT                          | Hank.               | -                        |         | Com                     | 440e-02           |                 |              |                        |   |          |
| erci/iso acias de<br>pren                           | egred ome<br>stion divisi Is | acid acid e<br>los oxid import | acid acid acid meta | tenso plycero<br>ot 5 de |         | Copy<br>Come Contractor |                   | 5               | 5.760e-02    |                        |   |          |
|                                                     |                              |                                |                     |                          |         | Copy Contents           |                   |                 |              |                        | _ | F.       |
| Repriched Pathways/Grou                             | ins x                        |                                |                     |                          |         | open cocation           |                   |                 |              |                        |   |          |
| Children and States                                 |                              |                                |                     |                          |         | Mirror Selection T      | o Active Pathway  |                 |              |                        | _ |          |
| 📋 Edit 🔻 🛄 Select 🔻 🕻                               | 🔉 Tools 🔻                    |                                |                     |                          |         | Mirror Selection Fr     | rom Active Pathy  | vay             |              | Find in this table     |   |          |
| Name                                                | Туре                         | # of Entities                  | Expanded # of En    | Overlap                  | Pe      | Select Contents or      | n Active Pathway  |                 | )-va         | Data Source            | # | <b>^</b> |
| Adipocytokine Signaling                             | Pathway                      | 52                             | 780                 | 10                       |         | Properties              |                   |                 | 68143        | Ariadne Signaling Path |   | 1 🗏      |
| 🔁 Aromatic aminoacid me                             | Group                        | 125                            | 125                 | 3                        | -       | 2 111110000             | опцодопца         |                 | 0.00003429   | Ariadne Ontology       |   | 2        |
| Adiponectin                                         | Group                        | 2                              | 2                   | 1                        |         | 50 ADIPOQ               |                   |                 | 0.00561144   | Ariadne Ontology       |   | 3        |
| GADD45                                              | Group                        | 3                              | 3                   | 1                        |         | 33 GADD45/              | A                 |                 | 0.00840575   | Ariadne Ontology       |   | 4        |
| Lipid transport                                     | Group                        | 55                             | 55                  | 2                        |         | 3 ADEP,EA               | BP4               |                 | 0.0103221    | Ariadne Ontology       |   | 5        |
| His metabolism                                      | Group                        | 4                              | 4                   | 1                        |         | 20 HDC                  |                   |                 | 0.0111925    | Ariadose Ontology      | - | 7        |
| Melanogenesis                                       | Pathway                      | 51                             | 682                 | 7                        |         | 1 VEGEA C               | XCI 12 ADM MAG    | DA ADHIB ADHIA  | 0.0195043    | Ariadne Signaling Path |   | R        |
| Maf                                                 | Group                        | 7                              | 7                   | 1                        |         | 14 MAFF                 |                   |                 | 0.0195074    | Ariadne Ontology       |   | 9        |
| Burnero emuno : r                                   |                              |                                |                     |                          |         |                         |                   |                 | 0.0255074    |                        |   | -        |

8. If the proteins in the pathway are not colored by the experimental values (here red and blue), then select the "Link" button above the Experiment Pane. This will apply the colorized values of the experiment to the nodes on the pathway.

| 🕅 gds2126 ×                              |                                                 |                 |            |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------------------|-----------------|------------|--|--|--|--|--|--|
| 🔄 Link 🔽 🗣 🗎 Edit 🔻 🛄 Select 🔻 🥥 Tools 🔻 |                                                 |                 |            |  |  |  |  |  |  |
| Eink colorin                             | Link coloring and selection with active pathway |                 |            |  |  |  |  |  |  |
| Name                                     | OA vs. Ctrl                                     | OA vs. Ctrl : p | RA vs Ctrl |  |  |  |  |  |  |
| H1FX                                     | -2.2321                                         | 2.480e-03       | -1.9489    |  |  |  |  |  |  |
| <b>TON 11</b>                            |                                                 |                 |            |  |  |  |  |  |  |

9. With the "Link" function active (the pathway nodes colored by the experiment values) select the second dataset, rheumatoid arthritis, by clicking that column header. Do you see any change in the expression levels of any of the proteins in the pathway?

Osteoarthritis

#### Rheumatoid arthritis



10. Find the members of an ontology group that overlap with your gene list, right click on the ontology group and select "Copy Contents." This will copy the proteins in the ontology to the clipboard. Note: if the ontology contains a child ontology group, the contents of that lower level will not be copied.

| About Pathway Studi                                     | io 🗸                                                                                                                 |          |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
|                                                         | <b>Open</b><br>Preview                                                                                               |          |  |  |  |  |
|                                                         | Find Pathways/Groups Enriched with Selected Entities<br>Find Similar Pathways/Groups<br>Build Pathway from Selection |          |  |  |  |  |
|                                                         | Сору                                                                                                                 |          |  |  |  |  |
|                                                         | Copy Contents                                                                                                        |          |  |  |  |  |
|                                                         | Open Location                                                                                                        |          |  |  |  |  |
| <ul> <li>Ø Enriched Path</li> <li>Bedit ▼ Se</li> </ul> | Mirror Selection To Active Pathway<br>Mirror Selection From Active Pathway<br>Select Contents on Active Pathway      |          |  |  |  |  |
| Name                                                    | Properties                                                                                                           |          |  |  |  |  |
| ECM degradation                                         | la -                                                                                                                 | Bathurse |  |  |  |  |
| ALK -> STAT signa                                       | aing                                                                                                                 | Group    |  |  |  |  |
| GADD45                                                  |                                                                                                                      | Group    |  |  |  |  |
|                                                         |                                                                                                                      | Group    |  |  |  |  |

11. In the Experiment Pane choose: Select > Entities on Clipboard. The proteins of the ontology group will be highlighted in the Experiment table.

| RA and AO synovial tissue × |              |               |              |                |   |  |  |  |
|-----------------------------|--------------|---------------|--------------|----------------|---|--|--|--|
| 📄 Link 🝸 🖲                  | - 🗈 Edit - 📃 | Select 🔻 🕥 To | ools 🔻       |                |   |  |  |  |
| 💷 View 🔻 💡                  | Colors 🔻     | Find probe    | ۶            | •              |   |  |  |  |
| Name                        | OA vs Normal | p-values for  | RA vs Normal | p-values for R | ^ |  |  |  |
| disease state               |              |               |              |                |   |  |  |  |
| JMJD6                       | -4.0087      | 1.989e-003    | -1.3712      | 1.553e-001     |   |  |  |  |
| MMP1                        | 10.2186      | 2.008e-003    | 25.3763      | 4.960e-003     | 1 |  |  |  |
| PDE4A                       | -3.6573      | 2.028e-003    | -3.2914      | 1.160e-002     |   |  |  |  |
| STXBP5L                     | -3.3703      | 2.075e-003    | -1.0146      | 9.752e-001     |   |  |  |  |
| STMN2                       | 4.6250       | 2.323e-003    | 2.1641       | 1.698e-001     |   |  |  |  |
| MT2A                        | -3.0628      | 2.353e-003    | -2.4260      | 5.068e-002     |   |  |  |  |
| NID2                        | 3.8366       | 2.357e-003    | 3.2449       | 4.084e-003     | Ξ |  |  |  |
| 3.8-1                       | 4.0255       | 2.387e-003    | 2.7571       | 3.152e-002     |   |  |  |  |
| CD27                        | 10.2953      | 2.406e-003    | 32.1093      | 2.663e-005     |   |  |  |  |
| MMP7                        | -4.0085      | 2.596e-003    | -3.8596      | 1.181e-002     |   |  |  |  |
| CNR1                        | -3.4803      | 2.792e-003    | -4.8477      | 1.177e-002     |   |  |  |  |
| LAMA2                       | -3.4851      | 2.812e-003    | -10.5789     | 1.398e-003     |   |  |  |  |
| APOBEC3G                    | 3.0230       | 2.857e-003    | 6.0628       | 2.301e-004     |   |  |  |  |
| C6orf32                     | -3.9680      | 2.861e-003    | -1.2433      | 3.332e-001     |   |  |  |  |

Right-click and select "Bring Selected Probes Together" to see all overlapping probes groups together in the experiment list.

- 12. Results of the analysis can be saved by exporting to MS Excel: Select > All, Tools > Send Data to Excel.
- 13. Leave the experiment tab open for use in the following exercise.

#### End Exercise: Experimental Data Analysis – Fisher's Exact Test

## Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) is similar to the Fisher's Exact test in that it identifies statistical enrichment in experimental data of known groups (such as ontologies) and curated pathways. Gene Set Enrichment analysis differs from Fisher's Exact test in that the **rank** (based on the absolute value of the ratios of the experimental data values) of the genes in the experimental dataset is taken into consideration when identifying enrichment and the entire dataset can be used (no statistical threshold needs to be initially defined).

Potential Advantages of Gene Set Enrichment over Fisher's Exact Test:

- Threshold relevance In Fisher's Exact test only the subset of genes determined by a relevance threshold is considered. This list can be variable depending on the user defined chosen threshold (ex. fold change or p-value).
- In Fisher's Exact Test the rank position of the gene in the experimental results is not considered (it is either on the list or its not). In GSEA rank is considered.
- GSEA is able to identify when many members of a pathway are changed even if none are changed above the threshold used in the Fisher's Exact test (correlation).

It is unnecessary and not recommended to filter your data set by fold change/p-value prior to running the Gene Set Enrichment Analysis; however you can filter to remove genes with high p-values if desired.

Note: The Gene Set Enrichment Analysis algorithm was developed at the Broad Institute, (<u>http://www.broad.mit.edu/gsea/</u>). The Broad Institute has curated a large number of gene sets that can be used in this analysis. Gene sets downloaded from the Broad Institute can then be imported into Pathway Studio by selecting Advanced in the Import menu in the Information Pane. Select Gene Sets/Gene Sets in Broad Institute Format to download these gene sets.

| 📑 gds2126 × |                                   |           |                                                                                                           |             |                     |   |  |  |
|-------------|-----------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|-------------|---------------------|---|--|--|
| 📄 Link 🕎 🔻  | Eink ▼ In Edit ▼ Select ▼ Tools ▼ |           |                                                                                                           |             |                     |   |  |  |
| 💷 View 👻 🧐  | Colors 🔻                          |           | Build I                                                                                                   | Pathway fro | m Selection         |   |  |  |
| Name        | OA vs. Ctrl                       | OA vs. Ct | Save S                                                                                                    | election as | Group               | 1 |  |  |
| H1FX        | -2.2321                           | 2.480e-03 | Find Pathways/Groups Enriched with Selected Entities<br>Find Sub-Networks Enriched with Selected Entities |             |                     |   |  |  |
| TRIM14      | 1.9815                            | 1.890e-02 |                                                                                                           |             |                     |   |  |  |
| TNFRSF11A   | 2.0172                            | 1.690e-02 | 02 Gene Set Enrichment Analysis                                                                           |             |                     |   |  |  |
| TF          | -2.4251                           | 2.510e-02 | 0e-02 Sub-Network Enrichment Analysis                                                                     |             |                     |   |  |  |
| HDC         | 2.2631                            | 2.720e-02 | .720e-02 Remap Experiment Data                                                                            |             |                     |   |  |  |
| ADH1B       | -2.6801                           | 3.760e-02 | Send 9                                                                                                    | elected Ro  | ws to Excel         |   |  |  |
| Scrg1       | 2.8258                            | 2.720e-02 | Send 9                                                                                                    | elected Ro  | ws to Text Format   |   |  |  |
| SDC4        | -1.7723                           | 3.390e-02 | bend s                                                                                                    | refected no | ins to reaction dat |   |  |  |
| MTHFD2      | -1.7694                           | 4.080e-02 | Experi                                                                                                    | ment Prope  | erties              |   |  |  |
| ACSL1       | -1.5598                           | 2.510e-02 | -1.21                                                                                                     | 85          | 9.320e-02           |   |  |  |
| KLF9        | -1.6458                           | 4.500e-02 | -1.64                                                                                                     | 30          | 8.680e-02           |   |  |  |
| ADIPOQ      | -2.3233                           | 2.580e-02 | -6.57                                                                                                     | 86          | 6.880e-02           |   |  |  |
| IGHM        | 6.0716                            | 2.510e-02 | 7.631                                                                                                     | 1           | 1.720e-02           |   |  |  |

Launch GSEA from the Tools menu in the Experiment Pane.

Select the dataset for the analysis, the gene sets (ontologies/pathways,) and the preferred algorithm. You will get similar results from both the Mann-Whitley U-Test or the Kolmogorov-Smirnov algorithms however the

Mann-Whitley U-Test will run much faster. As with the Fisher's Exact test, check the box "Expand the contents of functional classes and complexes in target gene sets, to include those genes in your analysis.

| Gene Set Enrichment Analysis of g                              | jds2126                              |                                                                                   |
|----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Sample to analyze:                                             | OA vs. Ctrl 🔹                        | Gene Set Categories                                                               |
| Enrichment algorithm:                                          | Mann-Whitney U-Test (faster) 🔹 🔻     |                                                                                   |
| Enrichment p-value cut-off:                                    | 0.05                                 | cellular_component     cellular_function     biological_process     User's groups |
| complexes in target gene se                                    | ts                                   |                                                                                   |
| Limit the analysis to the hig<br>(no filter saved with the exp | hlighted/filtered probes<br>eriment) |                                                                                   |
|                                                                |                                      |                                                                                   |
|                                                                |                                      | Run Cancel                                                                        |

Select "Run" to compute the results and view the results in the bottom List Pane. Enriched gene sets are ranked by p-value.

| ☑ Significant Gene Sets for GDS2126: OA/N × |         |                |                  |                  |                                           |               |             |                        |    |   |
|---------------------------------------------|---------|----------------|------------------|------------------|-------------------------------------------|---------------|-------------|------------------------|----|---|
| 🔓 Save 👔 Edit 🔻 🔲 Select 👻 🥥 Tools 💌        |         |                |                  |                  |                                           |               |             |                        | P  | ٣ |
| Name                                        | Туре    | Total Entities | Expanded # of En | # of Measured En | Measured Entities                         | Median change | ^ 🔎 p-va    | Gene Set Category      | #  | * |
| 🚳 T-cell receptor -> NFATC sig              | Pathway | 37             | 172              | 49               | PIK3C2G, TRBV19, TRAV20, CD86, CD80, CD8  | 1.48681       | 2.18275e-06 | Ariadne Signaling Path | 4  |   |
| 🚳 Melanogenesis                             | Pathway | 51             | 682              | 515              | ALDH3B2, AOC2, CALML3, GPR183, GPR18,     | 1.02095       | 2.88109e-06 | Ariadne Signaling Path | 5  |   |
| Focal Adhesion Regulation                   | Pathway | 41             | 308              | 253              | PIK3C2G, ITGBL1, TAOK3, EGF, PLG, HGF, FG | 1.08994       | 1.10461e-05 | Ariadne Signaling Path | 6  |   |
| 🚳 Gap Junction Regulation                   | Pathway | 51             | 639              | 469              | GPR183, GPR18, GUCY1A2, SGSM3, TAOK3,     | 1.00207       | 1.23365e-05 | Ariadne Signaling Path | 7  |   |
| Mast Cell Activation                        | Pathway | 64             | 529              | 383              | CALML3, AP2S1, CLTB, IFNA16, PIK3C2G, ST  | 1.0827        | 1.37767e-05 | Ariadne Signaling Path | 8  |   |
| T-cell receptor -> ATF/CREB                 | Pathway | 49             | 189              | 66               | PIK3C2G, TRBV19, TRAV20, RAC1, CD86, CD   | 1.43807       | 1.45816e-05 | Ariadne Signaling Path | 9  |   |
| TGF family                                  | Group   | 25             | 25               | 16               | TGFB1, BMP4, BMP7, TGFB2, TGFB3, BMP2, I  | -1.20278      | 9.44121e-05 | Ariadne Ontology       | 10 |   |
| T-cell receptor -> CREBBP si                | Pathway | 36             | 176              | 47               | CALML3, PIK3C2G, TRBV19, TRAV20, CD86,    | 1.48681       | 0.000134352 | Ariadne Signaling Path | 11 | - |

## • Exercise Six: Experimental Data Analysis – Gene Set Enrichment Analysis

#### Begin Exercise:

Objective: To run the Gene Set Enrichment Analysis (GSEA) on a gene expression data set to find ontology groups and pathways that are enriched in the dataset and to compare the results of GSEA to the results obtained by the Fisher's Exact test.

Let's use the osteoarthritis and rheumatoid arthritis synovial tissue data set to run the Gene Set Enrichment Analysis and find Ariadne Pathways and Ariadne Ontology groups enriched in the experimental results.

1. If a filter has been applied to the experimental dataset, remove the filter before continuing.



2. Select Tools > Gene Set Enrichment Analysis.

| Gene Set Enrichment Analysis of                                                           | gds2126                                                                                               |                                                                                                                                      |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Sample to analyze:<br>Enrichment algorithm:                                               | OA vs. Ctrl   Mann-Whitney U-Test (faster)  Mann-Whitney U-Test (faster) Kolmogorov-Smirnov (classic) | Gene Set Categories<br>Pathways<br>Ariadne Metabolic Pathways<br>Variadne Signaling Pathways<br>User's pathways<br>Variadne Ontology |
| Enrichment p-value cut-off:<br>Expand the content of funct<br>complexes in target gene se | 0.05<br>ional classes, cell processes and<br>ts                                                       | GO<br>GO<br>Cellular_component<br>— molecular_function<br>— biological_process<br>— User's groups                                    |
| Limit the analysis to the hig<br>(no filter saved with the exp                            | hlighted/filtered probes<br>eriment)                                                                  |                                                                                                                                      |
|                                                                                           |                                                                                                       | Run Cancel                                                                                                                           |

- 3. Select: Sample to analysis: (osteoarthritis vs control), Gene Set Categories: Ariadne Signaling Pathways and Ariadne Ontology, Enrichment algorithm, Mann-Whitney U-Test, p-value cut-off: 0.05, check "Expand the contents of functional classes and complexes in target gene sets." When finished, select "Run" to compute the results. The results appear in the List Pane, sorted by p-value.
- 4. Right-click on the top pathway and select open to view the pathway. See that this pathway contains many functional classes.

| Pathway Studio® Explore - [Gonadotrope Cell Activation] |              |                 |                    |                     |            |             |                |               |                       |            |       |
|---------------------------------------------------------|--------------|-----------------|--------------------|---------------------|------------|-------------|----------------|---------------|-----------------------|------------|-------|
| • • 🔂 🔂 Folde                                           | ers 🔺 Nev    | v Pathway 🔝     | Gonadotrope Cell A | ctivation ×         |            |             | gds2126 ×      |               |                       |            |       |
|                                                         | - 🖶          | - h - 🗠         | - 🔿 - 🛛 F          | ind in this pathway | / P        | - 🕞         | Link 🝸 🖣       | 📄 Edit 👻      | 🔲 Select 👻 🕥 T        | ools 🔻     |       |
| 🗄 🔎 🔉 View                                              | - 🛒 -        | - *             | 🎐 <b>-</b> 👌 - 🔮   |                     | • • •      |             | View 🔻 🄫       | Colors 🔻      | Find probe            | _          | o - ا |
| <b>^</b>                                                |              |                 |                    |                     |            | Nam         | ie             | OA vs. Ctrl   | OA vs. Ctrl : p       | RA vs Ctrl | *     |
|                                                         |              | <u>e</u> -@     | · 🐵 💿              |                     |            | MAP         | K3             | 0.2180        | 5.080e-01             | -0.1990    |       |
| 1                                                       |              | t de            |                    |                     |            | TIE1        |                | -0.2968       | 4.940e-01             | -0.4092    |       |
|                                                         |              |                 | to T               |                     |            | CYP2        | 2C19           | -1.0393       | 4.050e-01             | -0.0494    |       |
|                                                         |              |                 | a a                |                     |            | CXC         | 85             | 0.7845        | 5.740e-01             | 1.0190     |       |
|                                                         |              | - `@ <i>[</i> @ | r 👰 🧟              |                     |            | CXC         | 85             | -0.1713       | 9.370e-01             | 1.2458     |       |
| 4                                                       |              | _ & @           | 600                | <b>—</b>            |            | DUSE        | 71             | -0.2578       | 7.140e-01             | -0.4002    |       |
|                                                         |              |                 |                    | I                   |            | MM          | -              | -0.4918       | 8 010e-01             | -0.9154    |       |
|                                                         |              | 0               |                    | <b>9</b>            |            | DDR         | 1              | 0.0956        | 8.620e=01             | -0.1134    | _     |
| · -                                                     |              | 🗢 🗠 🏟           |                    |                     |            | EIE2        |                | 0.01/7        | 2.020 01              | 0.0075     |       |
|                                                         |              | @               |                    | d.                  |            | Open        |                |               |                       |            |       |
|                                                         |              |                 |                    | X                   |            | Preview     |                |               |                       |            |       |
|                                                         |              |                 |                    | Ψ                   |            | Find Path   | ways/Groups    | Enriched wit  | h Selected Entities   |            |       |
|                                                         |              | <u>a</u>        |                    |                     |            | Find Sub-   | Networks En    | riched with S | elected Entities      |            | _     |
|                                                         |              |                 |                    |                     |            | Find Simil  | ar Dathways    | Groups        |                       |            |       |
|                                                         |              |                 |                    |                     |            | Puild Datk  | ai Fatiways/   | loction       |                       |            |       |
|                                                         |              | -               |                    | <b>•</b>            |            | bullu Pau   | iway noni se   | lection       |                       |            | _     |
| -                                                       |              | 🕘 🙍             |                    |                     |            | Сору        |                |               |                       |            |       |
|                                                         |              | Po              |                    |                     |            | Copy Cor    | itents         |               |                       |            |       |
| -                                                       |              |                 |                    |                     |            | Open Loc    | ation          |               |                       |            | F F   |
|                                                         |              | 1 21 25 . 0.1   | <u>.</u>           |                     | -          | Mirror Sel  | ection To Ac   | tive Pathway  |                       |            |       |
| Significant G                                           | ene Sets for | gds2126: OA vs. | Ct ×               |                     |            | Mirror Sel  | ection From    | Active Pathw  | av                    |            |       |
| 📄 Edit 🔻 🛄                                              | Select 🔻 🕻   | 🕽 Tools 🔻       |                    |                     |            | Select Co   | atents on Act  | ive Dathway   | uy                    |            | P - 9 |
| Name                                                    | Type         | # of Entities   | Expanded # of      | # of Measured       | Mea        | Select Col  | iterits on Aci | ive ratilivay |                       | #          |       |
| 🔊 Gonadotrop                                            | Pathway      | 71              | 698                | 520                 | KITL       | Properties  |                |               |                       |            | 1 E   |
| NK Cell Acti                                            | Pathway      | 59              | 523                | 376                 | EGR1, MA   | PK1, VWF,   | . :            | L.10926 1J    | 05843e-07 Ariadne Si  | gnali      | 2     |
| 🚳 Skeletal Myo                                          | Pathway      | 70              | 569                | 431                 | KITLG, EPO | , VEGFA, .  |                | L.02328 8.    | 72919e-07 Ariadne Si  | gnali      | 3     |
| 🚳 T-cell recept                                         | Pathway      | 37              | 172                | 49                  | CD4, CD3E  | , SYK, PT   | . :            | L.48679 2.    | 20931e-06 Ariadne Si  | gnali      | 4     |
| 🚳 Melanogene                                            | Pathway      | 51              | 682                | 515                 | KITLG, EPO | ), VEGFA, . |                | L.02094 3.    | 01022e-06 Ariadne Si  | gnali      | 5     |
| 🚳 Focal Adhesi                                          | . Pathway    | 41              | 308                | 253                 | KITLG, EPO | ), VEGFA, . | . :            | L.08998 6.    | 11858e-06 Ariadne Si  | gnali      | 6     |
| 🐴 Mast Cell Ac                                          | Pathway      | 64              | 529                | 383                 | EGR1, MA   | PK1, TNFS.  |                | L.08267 8.    | 70775e-06 Ariadne Si  | gnali      | 7     |
| 🗟 Gap Junctio                                           | Pathway      | 51              | 639                | 469                 | KITLG, EPO | ), VEGFA, . | . :            | 1.00208 1.    | 27845e-05 Ariadne Si  | gnali      | 8     |
| T-cell recept                                           | Pathway      | 49              | 189                | 66                  | CDC42, PR  | KCA, CD     |                | L.43804 1.    | 48001e-05 Ariadne Si  | gnali      | 9     |
| TGF family                                              | Group        | 25              | 25                 | 16                  | TGFB1, BN  | 1P2, TGFB   |                | -1.2028 9.    | 49468e-05 Ariadne Or  | ntolo      | 10    |
| 🛛 🐴 T-cell recept                                       | Pathway      | 36              | 176                | 47                  | CD4, CD3E  | , SYK, PT   |                | L.48679 0     | .00013587 Ariadne Sie | qnali      | 11 🔻  |

5. Select a functional class and right-click to open the properties view. Select the members tab to see the members of the functional class. Select "Open list in bottom pane."

| E Function                                                        | nal Class Pro                       | perties           |  |                  | - • •     |
|-------------------------------------------------------------------|-------------------------------------|-------------------|--|------------------|-----------|
| General                                                           | Members                             | Found In Pathways |  |                  |           |
| i HRA<br>KRA<br>MRJ<br>RAL<br>RAL<br>RA<br>RA<br>RA<br>RRA<br>RRA | NS<br>S<br>AS<br>NS<br>A<br>S<br>S2 |                   |  |                  |           |
|                                                                   |                                     |                   |  | Open list in bot | ttom pane |
|                                                                   |                                     |                   |  | ОК               | Cancel    |

- 6. With the Functional Class open in the list pane choose Select > All, Edit > Copy. This copies the list of proteins to the clipboard.
- 7. In the Experiment Pane, choose Select > Entities on Clipboard. Next, right-click and choose "Bring Selected Probes Together." This will group all the selected proteins in the table together. If no proteins are selected, there is no overlap between the selected functional class and your dataset.

| 📑 gds                                    | 2126 × | ]                   |                   |                   |  |  |  |  |
|------------------------------------------|--------|---------------------|-------------------|-------------------|--|--|--|--|
| 🔄 Link 🝸 👻 🛅 Edit 🔻 🛄 Select 👻 🥥 Tools 👻 |        |                     |                   |                   |  |  |  |  |
| III View ▼ 🧐 Colors ▼ Find probe 🔎 ▼     |        |                     |                   |                   |  |  |  |  |
| Name                                     |        | OA vs. Ctrl         | OA vs. Ctrl : p   | RA vs Ctrl        |  |  |  |  |
| NRAS                                     |        | 0.3834              | 8.950e-01         | 1.4004            |  |  |  |  |
| HRAS                                     |        | -0.2210             | 4.970e-01         | -0.5423           |  |  |  |  |
| RRAS                                     |        | 0.0673              | 9.170e-01         | -0.1510           |  |  |  |  |
| KRAS                                     |        | 0.0719              | 9.470e-01         | -0.0087           |  |  |  |  |
| KRAS                                     |        | 0.4586              | 4.530e-01         | 0.2972            |  |  |  |  |
| HRAS                                     |        | 0.0530              | 8.960e-01         | -0.2722           |  |  |  |  |
| RRAS                                     |        | 0.3117              | 5.080e-01         | -0.0044           |  |  |  |  |
| MRAS                                     |        | -0.0269             | 9.890e-01         | -0.2000           |  |  |  |  |
| RALA                                     |        | -0.1031             | 9.150e-01         | 0.5532            |  |  |  |  |
| HINT1                                    | В      | uild Pathway from   | Selection         |                   |  |  |  |  |
| RABGGT                                   | S      | ave Selection as Gr | oup               |                   |  |  |  |  |
| MAPK11                                   | F      | ind Pathways/Grou   | ups Enriched with | Selected Entities |  |  |  |  |
| YWHAE                                    | F      | ind Sub-Networks    | Enriched with Sel | ected Entities    |  |  |  |  |
| PCAF                                     |        |                     |                   |                   |  |  |  |  |
| SMAD5                                    | C      | Сору                |                   |                   |  |  |  |  |
| POLG                                     | В      | ring Selected Prob  | es Together       |                   |  |  |  |  |
| LIMK1                                    | P      | roperties           |                   |                   |  |  |  |  |
| IL13RA2<br>∢                             |        |                     | 0.5306-01         | -0.2243           |  |  |  |  |

- 8. To find the overlap of pathways and groups between the results of the Fisher's Exact test and the Gene Set Enrichment Analysis for a dataset, first choose the tab containing the Fisher's Exact test result (labeled "Enriched Pathways/Groups"). This will allow you to examine what pathways/groups in your results that are unique to one of the algorithms and which are common to both.
- 9. Choose Select > All, Edit > Copy.
- 10. Next, choose the GSEA results tab "Significant Gene Sets". Choose Select > Entities on Clipboard. The groups and pathways that are in both analysis results will be selected.

| 🕝 Enriched Pathways/Groups 🕖 Significant Gene Sets for gds2126: OA vs. Ct × |                       |                       |        |     |                        |                            |  |  |  |
|-----------------------------------------------------------------------------|-----------------------|-----------------------|--------|-----|------------------------|----------------------------|--|--|--|
| 🗈 Edit 👻 🛄 Select 👻 🥥 Tools 👻                                               |                       |                       |        |     |                        |                            |  |  |  |
| Name                                                                        | All                   | All                   |        |     | # of Measured Entities | Measured entities          |  |  |  |
| 🛃 Gonadot                                                                   | Entities on Clipboard | Entities on Clipboard |        |     | 520                    | KITLG, EPO, VEGFA, MET, EG |  |  |  |
| 📓 NK Cell A                                                                 | Minne Colortion To    | A stille Distle       |        | 523 | 376                    | EGR1, MAPK1, VWF, NCR2, T  |  |  |  |
| 📓 Skeletal I                                                                | Wirror Selection To   | Active Pathy          |        | 569 | 431                    | KITLG, EPO, VEGFA, MET, IG |  |  |  |
| 🐴 T-cell rec                                                                | Mirror Selection From | m Active Pat          | hway   | 172 | 49                     | CD4, CD3E, SYK, PTPRC, CD8 |  |  |  |
| 📓 Melanog                                                                   | Select Contents on A  | Active Pathw          | ay     | 682 | 515                    | KITLG, EPO, VEGFA, MET, MA |  |  |  |
| 🗟 Focal Ad                                                                  | Invert Selection      |                       | Ctrl+I | 308 | 253                    | KITLG, EPO, VEGFA, MET, MA |  |  |  |
| 🔏 Mast Celi 🗛                                                               | cuvation              | Patriway              | 04     | 529 | 383                    | EGR1, MAPK1, TNFSF10, CDC  |  |  |  |
| 📓 Gap Junctio                                                               | on Regulation         | Pathway               | 51     | 639 | 469                    | KITLG, EPO, VEGFA, MET, MA |  |  |  |
| 🐴 T-cell recep                                                              | tor -> ATF/CREB sign  | Pathway               | 49     | 189 | 66                     | CDC42, PRKCA, CD4, PRKCQ   |  |  |  |
| TGF family                                                                  |                       | Group                 | 25     | 25  | 16                     | TGFB1, BMP2, TGFB2, INHBA  |  |  |  |
| 🐴 T-cell recep                                                              | tor -> CREBBP signali | Pathway               | 36     | 176 | 47                     | CD4, CD3E, SYK, PTPRC, CD8 |  |  |  |
| A A A STORE                                                                 | Indiata a Description | Detlement             | E4     | 520 | 407                    | KITLO FRO VECEA MET M      |  |  |  |

11. Choose Tools > Send Data to Excel to save the selected groups and pathways to an Excel spreadsheet.

End Exercise: Experimental Data Analysis – Gene Set Enrichment Analysis

#### Sub-Network Enrichment Analysis

For every entity in the ResNet database, the Sub-Network Enrichment Analysis (SNEA) algorithm uses the relationships in the ResNet database to build "sub-networks" based on user specified criterion. It then uses these sub-networks and the Fisher's Exact test or GSEA algorithm to identify the networks that are significantly enriched.

The user-defined sub-networks consist of a single "regulator" gene and its targets. The significance of the target expression levels in every built network is evaluated. The result is the identification of individual "regulators" which most likely affect the differentially expressed genes, thus providing the one plausible explanation for the observed expression changes in the experiment.

#### Defining the Sub-Networks

Setting user-defined criteria for building the sub-networks involves first defining the "regulator" (also referred to as the "seed") and then the "neighbors" (the "targets" defined by selecting specific relationship types).

For example, defining a protein seed and promoter binding relationships will give these types of networks:



The network consists of the target proteins with which the seed protein has a promoter binding relationship.

The Sub-Network Enrichment Analysis menu provides some short-cut menu options (see table below) or you can use the "custom" options for more flexibility in sub-network definitions.

| Run Enrichment analysis for       OA vs. Ctrl       in gds2126         against dynamically generated sub-networks of Proteins         Sub-networks are generated by connecting entities to their neighbors in the database.         The choice of neighbors is:         Expression Targets         Binding Partners         Protein Modification Targets         Custom         Custom         Limit the returned results to         100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         0.05       enrichment probes         (rifter saved with the experiment)         Imit the analysis to the highlighted/filtered probes         (roffilter saved with the experiment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sub-Network Enrichment Ar    | nalysis of gds2126                                                |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|----|
| against dynamically generated sub-networks of Proteins<br>Sub-networks are generated by connecting entities to their neighbors in the database.<br>The choice of neighbors is:<br>Image: Second Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run Enrichment analysis fo   | or OA vs. Ctrl 🔹 in gds2126                                       |    |
| Sub-networks are generated by connecting entities to their neighbors in the database.   The choice of neighbors is: <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> </pre> <pre> <pre> <pre> </pre> </pre>       <pre> <pre> <pre> <pre> </pre> </pre>    </pre>       <pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre>    </pre>    </pre>    </pre> </pre> </pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> | against dynamically          | generated sub-networks of Proteins                                |    |
| The choice of neighbors is:     Expression Targets   Binding Partners   Protein Modification Targets   Custom   Limit the returned results to   100   sub-networks with best p-values; use   0.05   enrichment p-value cut-off.   0.05   enrichment p-value cut-off.   Clean up resulting sub-networks by removing neighbors not present in the experiment   OK   Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sub-networks are generate    | -<br>d by connecting entities to their neighbors in the database. |    |
| Expression Targets   Binding Partners   Protein Modification Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The choice of neight         | pors is:                                                          |    |
| Expression Targets       S         Protein Modification Targets       m         Custom       Custom         Limit the returned results to       100         100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Cuint the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Imit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Imit Clean up resulting sub-networks by removing neighbors not present in the experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                                                   |    |
| Protein Modification Targets       m         Custom       Custom         Limit the returned results to       100 sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Binding Partners             |                                                                   | s  |
| Custom         Limit the returned results to         100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protein Modificatio          | on Targets                                                        | m  |
| Limit the returned results to          100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Custom                       |                                                                   |    |
| Limit the returned results to          100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                                                   |    |
| Limit the returned results to          100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                   |    |
| Limit the returned results to          100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                   |    |
| Limit the returned results to          100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                   |    |
| 100       sub-networks with best p-values; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit the returned results t | 0                                                                 |    |
| 100       sub-networks with best p-value; use         0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                          | -                                                                 |    |
| 0.05       enrichment p-value cut-off.         Limit the analysis to the highlighted/filtered probes (no filter saved with the experiment)         Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 SU                       | ib-networks with best p-values; use                               |    |
| <ul> <li>Limit the analysis to the highlighted/filtered probes<br/>(no filter saved with the experiment)</li> <li>Clean up resulting sub-networks by removing neighbors not present in the experiment</li> <li>OK Cancel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 er                      | richment p-value cut-off.                                         |    |
| <ul> <li>□ Limit the analysis to the highlighted/filtered probes<br/>(no filter saved with the experiment)</li> <li>☑ Clean up resulting sub-networks by removing neighbors not present in the experiment</li> <li>OK Cancel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                                                   |    |
| Image: Clean up resulting sub-networks by removing neighbors not present in the experiment         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit the analysis to the    | highlighted/filtered probes                                       |    |
| Clean up resulting sub-networks by removing neighbors not present in the experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                   |    |
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clean up resulting sub-      | networks by removing neighbors not present in the experiment      |    |
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | OK                                                                | el |

See definitions for these short-cut menu options in table below.

Note: Ariadne recommends that you check the box "Clean up resulting sub-networks by removing neighbors not present in the experiment." This way, only measured entities for which experimental data exists (for example proteins/genes in a microarray experiment) are included in the network. (A small molecule or a disease would not have experimental data on a gene expression microarray and would have no expression data associated with it.)

Sub-network preset conditions for short-cut menu:

| Sub-network Type         | Seed    | Neighbors | Relationship         | Direction     |
|--------------------------|---------|-----------|----------------------|---------------|
| Expression Targets       | Gene    | Gene      | Promoter Binding,    | Outbound from |
|                          |         |           | Expression           | seed          |
| Protein Binding Partners | Protein | Protein   | Binding              | No direction  |
| Protein Modification     | Protein | Protein / | Protein Modification | Outbound from |
| Targets                  |         | Complex   |                      | seed          |

Use the custom menu to select specific seeds and relationships.

| Advanced Parameters<br>Generate sub-networks as neighbors of:<br>Protein | Connected by:    |
|--------------------------------------------------------------------------|------------------|
| Functional Class                                                         | ChemicalReaction |
| Complex                                                                  | Expression       |
| Small Molecule                                                           | DirectRegulation |
|                                                                          | MolSynthesis     |
|                                                                          | Binding          |
|                                                                          | PromoterBinding  |
|                                                                          | ProtModification |
|                                                                          | MolTransport     |
|                                                                          |                  |
|                                                                          |                  |
| L                                                                        |                  |
|                                                                          | OK Cancel        |

Note: all relationships are outbound from seed to regulators except when relation is binding, which has no directionality.

The results of the SNEA are viewed in a table sorted by p-value. Each network is named by the regulator of the network.

| Brriched Sub-networks for gds2126: OA vs. Ct × |                      |                         |               |                                        |               |              |         |
|------------------------------------------------|----------------------|-------------------------|---------------|----------------------------------------|---------------|--------------|---------|
| 📄 Edit 🔻 📃 Select 🔻 🥥 Tools                    | . •                  |                         |               |                                        |               | Find in thi  | s table |
| Name                                           | Total # of Neighbors | # of Measured Neighbors | Gene Set Seed | Measured Neighbors                     | Median change | ^́ ₽ p-value | #       |
| Expression Targets of HSD11B1                  | 7                    | 7                       | HSD11B1       | TIMP1, MMP9, TIMP2, MMP7, MMP1, I      | 1.50483       | 0.00135834   | 1       |
| Expression Targets of LCN2                     | 7                    | 7                       | LCN2          | PPARG, HMOX1, CDH1, IRS1, ATF5, VEG    | -2.17543      | 0.00149916   | 2       |
| Expression Targets of IL18BP                   | 7                    | 7                       | IL18BP        | CCL5, IL1B, TNF, MMP9, IFNG, VCAM1,    | -1.42662      | 0.00223295   | 3       |
| Expression Targets of DCN                      | 23                   | 21                      | DCN           | RHOA, IL1B, IL6, MMP14, MMP1, NCAN     | -1.58195      | 0.00245946   | 4       |
| Expression Targets of SPARC                    | 20                   | 20                      | SPARC         | MMP3, MMP1, FN1, MMP2, CDK2, TNF       | 1.31887       | 0.00252243   | 5       |
| Expression Targets of EIF2S1                   | 11                   | 9                       | EIF2S1        | DDIT3, MYC, PHLDA1, ATF3, NFKBIA, C    | -2.34404      | 0.00269447   | 6       |
| Expression Targets of CCNC                     | 5                    | 5                       | CCNC          | VCAM1, TYMS, CDC2, MYC, CCNH           | 2.25355       | 0.00287694   | 7       |
| Expression Targets of exosome                  | 6                    | 6                       | exosome       | MMP1, IFNG, TNF, SERPINE1, IL6, PRF1   | -1.69525      | 0.00295389   | 8       |
| Expression Targets of chemokine                | 62                   | 57                      | chemokine     | AKT1, CSF2, SELE, TNFSF11, CXCL12, CX  | 1.28138       | 0.00311814   | 9       |
| Expression Targets of CCL3                     | 25                   | 24                      | CCL3          | ITGAM, CCL21, IL10, MMP9, IL2, FLT3L   | 1.31741       | 0.00332672   | 10      |
| Expression Targets of SREBF1                   | 105                  | 88                      | SREBF1        | PCSK6, IL8, VEGFA, PDX1, ESR1, PPAT, F | -1.28129      | 0.00412663   | 11      |
| Expression Targets of CD8A                     | 120                  | 105                     | CD8A          | ILARA GZMA ICAMI BREI KLRKI CD         | 1 31605       | 0.00496164   | 12      |

When networks are the same size, those with greater differential gene expression will have better p-values. When differential expression is equal, larger networks will have better p-values than smaller networks.

Better p-value



Both enrichment algorithms, Fisher's Exact Test and Gene Set Enrichment Analysis, can be used to identify enriched Sub-Networks.

|                                                                                                          | Known Gene Sets<br>(ontologies, curated pathways)       | Sub-Networks<br>(user defined from ResNet)           |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Fisher's Exact Test<br>(experimental values <u>not</u><br>utilized)                                      | Find Pathways/Groups Enriched<br>with Selected Entities | Find Sub-Networks Enriched with<br>Selected Entities |
| Gene Set Enrichment<br>Analysis (GSEA)<br>(experimental values <u>are</u><br>considered in the analysis) | Gene Set Enrichment Analysis                            | Sub-Network Enrichment Analysis                      |

Names of the tools as they appear in Pathway Studio

## • Exercise Seven: Experimental Data Analysis – Sub-Network Enrichment Analysis (with GSEA)

#### Begin Exercise:

**Objective:** To run the Sub-Network Enrichment Analysis on a gene expression dataset to identify dynamically defined transcriptional regulatory networks enriched in the dataset and to visualize multiple networks in one view to allow for identification of overlap between networks.

Let's use the osteoarthritis and rheumatoid arthritis synovial tissue data set to run the Sub-Network Enrichment Analysis and find transcriptional regulatory networks enriched in the experimental dataset.

1. If a filter has been applied to the experimental dataset, remove the filter before continuing.



- 2. Select Tools > Sub-Network Enrichment Analysis
- 3. In the Run Enrichment analysis menu, select the osteoarthritis study.
- 4. In the choice of neighbors menu select "Custom"

| Sub-Network Enrichment Analy  | rsis                                                                      |
|-------------------------------|---------------------------------------------------------------------------|
| Run Enrichment analysis for   | OA vs Normal                                                              |
| against dynamically ge        | nerated sub-networks of Proteins                                          |
| Sub-networks are generated b  | y connecting entities to their neighbors in the database.                 |
| The choice of neighbor        | s is:                                                                     |
| ſ                             | Expression Targets<br>Binding Partners<br>Decision Modification<br>Custom |
| Limit the returned results to |                                                                           |
| 100 sub-                      | networks with best p-values; use                                          |
| 0.05 p-va                     | ue cut-off.                                                               |
| Clean up resulting sub-net    | works by removing neighbors not present in the experiment                 |
|                               | OK Cancel                                                                 |

5. Here we will define transcriptionally regulated networks: Select Protein for the (transcriptional) regulator "seed" and select Expression and PromoterBinding to define the transcriptionally regulated "target" network. Note: We will not utilize Regulation in this example, as this is the largest relation category in ResNet.

| Advanced Parameters                             | ×                                                                                                                                                                                                                      |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generate sub-networks as neighbors of:          | Connected by:                                                                                                                                                                                                          |
| Protein Functional Class Complex Small Molecule | <ul> <li>Regulation</li> <li>Expression</li> <li>Binding</li> <li>ProtModification</li> <li>MolTransport</li> <li>DirectRegulation</li> <li>PromoterBinding</li> <li>MolSynthesis</li> <li>ChemicalReaction</li> </ul> |
|                                                 | OK Cancel                                                                                                                                                                                                              |

- 6. Select OK
- 7. In the Sub-Network Analysis tool ensure that the box "Clean up resulting sub-networks by removing neighbors not present in the experiment", then select OK to run the analysis.
- 8. View the results in the List Pane. Each network is named by the "seed" (the regulator).

| Brriched Sub-network   | s for gds2126: OA vs. Ct | x                       |               | -                                                     |               |            |    |   |
|------------------------|--------------------------|-------------------------|---------------|-------------------------------------------------------|---------------|------------|----|---|
| 🗈 Edit 🔻 📃 Select 🔻    | 😳 Tools 🔻                |                         |               |                                                       | Find in t     | his table  | P  | Ŧ |
| Name                   | Total # of Neighbors     | # of Measured Neighbors | Gene Set Seed | Measured Neighbors                                    | Median change | ^ 🔎 p-va   | #  | - |
| 🚳 Neighbors of HSD11B1 | 7                        | 7                       | HSD11B1       | TIMP1, MMP9, TIMP2, MMP1, MMP7, IL1B, TNF             | 1.50483       | 0.00137118 | 1  |   |
| Neighbors of LCN2      | 7                        | 7                       | LCN2          | PPARG, HMOX1, CDH1, IRS1, ATF5, VEGFA, ADIPOQ         | -2.17543      | 0.00149553 | 2  |   |
| Neighbors of IL18BP    | 7                        | 7                       | IL18BP        | CCL5, TNF, IL1B, MMP9, IFNG, VCAM1, IL4               | -1.42662      | 0.00224365 | 3  |   |
| Neighbors of DCN       | 23                       | 21                      | DCN           | RHOA, IL1B, MMP14, IL6, MMP1, NCAN, IFNG, CCL2, IL8   | -1.58195      | 0.00249681 | 4  |   |
| Neighbors of SPARC     | 20                       | 20                      | SPARC         | MMP3, MMP1, MMP2, FN1, CDK2, MMP14, BMP2, TNFR        | 1.31887       | 0.00255866 | 5  |   |
| Neighbors of EIF2S1    | 11                       | 9                       | EIF2S1        | DDIT3, MYC, PHLDA1, ATF3, CCND1, NFKBIA, NOS2, AT     | -2.34404      | 0.00271077 | 6  |   |
| Neighbors of CCNC      | 5                        | 5                       | CCNC          | VCAM1, TYMS, CDC2, MYC, CCNH                          | 2.25355       | 0.00288025 | 7  |   |
| Neighbors of CCL3      | 25                       | 24                      | CCL3          | ITGAM, CCL21, IL2, MMP9, IL10, FLT3LG, ICOSLG, CXCL1  | 1.31741       | 0.00342162 | 8  |   |
| Neighbors of SREBF1    | 105                      | 88                      | SREBF1        | PCSK6, VEGFA, IL8, ESR1, PDX1, PPAT, FABP6, ACSL1, AD | -1.28129      | 0.00440584 | 9  |   |
| R Naighborg of CD9A    | 120                      | 105                     | CDRA          | TINDA GTMAA TOAMAL DEEL VIEWL CORE OVOLO DOOD         | 1 21605       | 0.00524220 | 10 |   |

9. Let's view the top four networks in one pathway. Select the top four networks, right-click and choose "Union Selected Pathways." In the "Combine Pathway (Union)" window, select OK.

| 1 T                   | Open<br>Preview                    |                                      |        |  |  |
|-----------------------|------------------------------------|--------------------------------------|--------|--|--|
| E                     | Find Pathways/Groups Enr           | iched with Selected Entities         |        |  |  |
|                       | Find Sub-Networks Enriche          | ed with Selected Entities            |        |  |  |
|                       | Find Similar Pathways/Gro          | ups                                  |        |  |  |
|                       | Build Pathway from Select          | on                                   |        |  |  |
|                       | Сору                               |                                      |        |  |  |
|                       | Copy Contents                      |                                      |        |  |  |
|                       | Open Location                      |                                      |        |  |  |
|                       | Union Selected Pathways            |                                      |        |  |  |
|                       | Intersect Selected Pathways        |                                      |        |  |  |
|                       | Subtract Selected Pathways         |                                      |        |  |  |
| - <b>-</b>            | Mirror Selection To Active Pathway |                                      |        |  |  |
| Enriched Sub-n        | Mirror Selection From Acti         | Mirror Selection From Active Pathway |        |  |  |
| 📄 Edit 🔻 📃 Sele       | Select Contents on Active          | Pathway                              |        |  |  |
| Name                  | Properties                         |                                      | et S   |  |  |
| Neighbors of HSE      | Copy Gene Set Seeds                |                                      | 1      |  |  |
| 🚳 Neighbors of LCNz   | 1                                  |                                      | LUNZ   |  |  |
| 🚳 Neighbors of IL18BP |                                    | 7                                    | IL18BP |  |  |
| Neighbors of DCN      | 23                                 | 21                                   | DCN    |  |  |
| Neighbors of SPARC    | 20                                 | 20                                   | SPARC  |  |  |
| Neighbors of EIF2S1   | 11                                 | 9                                    | EIF2S1 |  |  |
| Neighbors of CCNC     | 5                                  | 5                                    | CCNC   |  |  |
| Neighbors of CCL3     | 25                                 | 24                                   | CCL3   |  |  |
| Neighbors of SREBF1   | 105                                | 88                                   | SREBE1 |  |  |

| Selected Pathways: |        |  |  |
|--------------------|--------|--|--|
| Pathway            |        |  |  |
| ✓ Neighbors of H   | SD11B1 |  |  |
| ✓ Neighbors of LC  | CN2    |  |  |
| Neighbors of IL:   | 18BP   |  |  |
| ✓ Neighbors of D   | CN     |  |  |
|                    |        |  |  |
|                    |        |  |  |
|                    |        |  |  |
|                    |        |  |  |
|                    |        |  |  |
|                    |        |  |  |

The resultant network should look something like this (using the dynamic layout). Note: although your network may look similar, the dynamic layout may generate a slightly different layout than the one see here.



Now let's modify this network to better view the entity names and emphasize the four regulators in this network by applying highlighting.

- 10. Select "Fit all entities to window" to maximize the size of the network in the window.
- 11. Open the Advanced Visualization tool bar and select "Size All Entities to Labels" in the Resize menu.

Page **62** of **68** 

12. Next, using the control key, select the four regulators, BP1, CCR7, IV and CD69. Note that selected entities have a blue halo. One of the selected entities will also have small white boxes around it. Click on the corner white box and expand the size of this entity.





- 13. With the other three entities (regulators) still selected, go to the Advanced Visualization tool bar and select "Make Same Size" from the Resize menu. This will expand all the regulators to the same larger size.
- 14. While the four regulators remain selected, go to the highlight menu and select the blue highlight. This will put a blue halo around the regulators. Your network should look similar to this:



Note that two of the four regulators is gray. This is because these regulator were not measured in the gene expression experiment. The Sub-Network Enrichment Analysis is able to utilize all the relationship information in ResNet to identify potentially important regulators for a gene expression experiment, even if that specific regulator was not included on the microarray.

#### End Exercise: Experimental Data Analysis – Sub-Network Enrichment Analysis (with GSEA)

This Training Manual gave examples of three of the four enrichment analysis options highlighted below: Fisher's Exact Test of known gene sets, Gene Set Enrichment Analysis of known gene sets and Sub-Network Enrichment Analysis (GSEA) of Sub-Networks.

| gene<br>sets                                                                                             | Known Gene Sets<br>(ontologies, curated pathways)       | Sub-Networks<br>(user defined from ResNet)           |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| algorithms                                                                                               |                                                         |                                                      |
| Fisher's Exact Test<br>(experimental values <u>not</u><br>utilized)                                      | Find Pathways/Groups Enriched<br>with Selected Entities | Find Sub-Networks Enriched with<br>Selected Entities |
| Gene Set Enrichment<br>Analysis (GSEA)<br>(experimental values <u>are</u><br>considered in the analysis) | Gene Set Enrichment Analysis                            | Sub-Network Enrichment Analysis                      |
|                                                                                                          |                                                         |                                                      |

In addition, you can run the Fisher's Exact Test on any list of proteins to find enriched sub-networks. Keep in mind that if you start with a short protein list, most of your enriched sub-networks will also be small. The Find Sub-Networks Enriched with Entities dialog allows you to set a threshold for the size of the sub-network to be returned.

| Find Su | ib-Networks Enric  | ched with Entities                                                | ×   |
|---------|--------------------|-------------------------------------------------------------------|-----|
| Find S  | Sub-Networks en    | riched with 41 selected entities                                  |     |
|         |                    |                                                                   |     |
| Sub-r   | networks are gene  | erated by connecting entities to their neighbors in the database. |     |
| TI      | he choice of neig  | hbors is:                                                         |     |
|         | Expression Tar     | nets                                                              |     |
|         | Binding Partne     | rs                                                                |     |
|         | Protein Modifi     | cation Targets                                                    |     |
|         | Custom             | -                                                                 |     |
|         |                    |                                                                   |     |
|         |                    |                                                                   |     |
|         |                    |                                                                   |     |
|         |                    |                                                                   |     |
|         |                    |                                                                   | _   |
| Filter  | returned results   |                                                                   | 1   |
|         | 2                  | or more selected entities should be present in a sub-network      | L 1 |
|         |                    |                                                                   |     |
| Limit   | the returned resu  | lts to                                                            |     |
|         | 100                | sub-networks with best p-values; use                              |     |
|         | 0.05               | enrichment n-value cut-off                                        |     |
|         | 0.00               | cincinicity voide car on                                          |     |
| Cle     | ean up resulting s | ub-networks by removing neighbors not in the original selection   |     |
|         |                    |                                                                   |     |
|         |                    |                                                                   |     |
|         |                    | OK                                                                | el  |

## **Appendix A: Definitions**

#### Entity definitions:

**Protein:** The principal source of proteins and their annotation in ResNet is Entrez Gene. The level of detailzation of proteins in ResNet Mammal is the Gene. This means that if proteins are encoded by the same gene, they will have the same identifier.

**Small molecule:** Symbolizes metabolites, drug and other chemicals of low molecular weight (< 1 KDa). It also can be used to represent non-biological polymers of larger molecular weight.

**Cell object:** Symbolizes cellular organelles and other sub-cellular components. A majority of cell process entities coincide with the part of the Gene Ontology cellular component classification that excludes protein complexes.

**Cell process:** Symbolizes biological processes. A majority of Cell process entities coincide with Gene Ontology biological processes classification.

**Disease:** Symbolizes diseases and other health conditions and processes.

**Treatment:** Symbolizes non-chemical treatments and environmental conditions such as cold shock, draught etc.

**Complex:** This is a container entity that symbolizes several polypeptides that form the complex via physical interaction. The complex is usually well-characterized in the literature, performs well-defined function and is referred in the literature by a specific name. A majority of complex entities coincide with part of Gene Ontology cellular classification that describes protein complexes.

**Functional class:** This is a container entity that symbolizes functional classes of proteins. Majority of functional class entities coincide with Gene Ontology molecular function classifications.

#### **Relationship definitions:**

**MolTransport:** Indicates that the regulator changes the localization of the target. Describes events of molecular translocation, export, import or release

**Regulation:** Indicates that the regulator changes the activity of the target. The mechanism of the regulation is either unknown or has not been specified in the sentence describing the relation.

**Chemical Reaction:** Symbolizes either enzyme catalyzed or spontaneous chemical reaction, i.e. transformation of one set of Small Molecules into another. Usually must have at least one substrate show with the link incoming to control and one product shown with the link outgoing from control. Enzyme is shown as undirected link between Functional Class or Protein entity and control

Binding: Physical interaction between molecules

**ProtModification:** Indicates that the regulator molecule changes the protein modification of the target molecule. Usually indicates the direct interaction, i.e. the regulator catalyses the chemical modification reaction.

**DirectRegulation:** Indicates that the regulator influences the target activity by physically interacting with it. Expression: Indicates that the regulator changes the protein level of the target, by means of regulating its gene expression or protein stability.

PromoterBinding: Indicates that the regulator binds the promoter of the target.

**MolSynthesis:** Indicates that the regulator changes the concentration of the target. Usually Small Molecule is a target in MolSynthesis

## Appendix B: Deleting Entities and Relations from a Local Database (Pathway Studio Explore and ResNet Explore)

When you delete a relation or entity from a pathway view, it is only removed from that specific pathway but still remains in the ResNet database.

To permanently delete a relation or entity from the ResNet database, select the relation or entity, move the mouse cursor to an empty area of the pathway, right-click and select "Delete Selected Entities/Relations from Database."



Note: If "Delete Selected Entities/Relations from the Database" does not appear as a menu option, in the Information Pane go to Tools > Program Options. Next, select "Menu" then change "Enable Advanced Menu for Pathways" from "No" to "Yes."

| 🔁 Pathway Studio® Explore - [Ar | iadne Ontology]       |
|---------------------------------|-----------------------|
| iii Home                        |                       |
| 间 Database 🔻 🚯 Import 🔻         | 😳 Tools 🔻             |
| Search Database                 | 👔 Program Options 🔎 🔻 |
|                                 |                       |

| View            | Option                                                | Value |
|-----------------|-------------------------------------------------------|-------|
| ayout           | Auto-hide application menu bar (use Alt to show/hide) | Yes 🌻 |
| Menu<br>General | Enable advanced Database menu                         | Yes 🌲 |
|                 | Enable advanced Export menu                           | No 🌻  |
|                 | Enable advanced menu for pathways                     | Yes 🌻 |
|                 | Shortcut for Build Pathway (F8)                       | Yes   |
|                 |                                                       | No    |
|                 |                                                       |       |

If you have any questions about Pathway Studio Explore, please contact us at:

#### Ariadne Support Team

Call Monday – Friday 9:00 am – 5:00 pm Eastern time (GMT -5:00) 866-340-5040 (US and Canada toll-free) or +1-240-453-6301 Email: <u>support@ariadnegenomics.com</u> <u>http://www.ariadnegenomics.com/support/pathway-studio-explore</u>