
- -

Acknowledgments

Many thanks to Owen Holland for feedback, support and advice about SpikeStream. The interface

between SIMNOS and SpikeStream was developed in collaboration with Richard Newcombe, who

designed the spike conversion methods. Thanks also to Renzo De Nardi and Hugo Gravato Marques

in the Machine Consciousness lab at Essex and to everyone at the 2006 Telluride workshop. This

work was funded by the Engineering and Physical Science Research Council Adventure Fund

(GR/S47946/01).

- -

Contents

Acknowledgments

Contents

1. Introduction 1

 1.1 Overview 2

 1.2 Support 2

2. Installation 3

 2.1 Overview 4

 2.2 System Requirements for Linux Installation 4

 2.2.1 Operating System 4

 2.2.2 Hardware 4

 2.3 Dependencies 4

 2.3.1 Google Sparse Hash 4

 2.3.2 MySQL Database and Development Libraries 5

 2.3.3 MySQL++ 5

 2.3.4 Qt 5

 2.3.5 PVM (Parallel Virtual Machine) 5

 2.3.6 Qwt 6

 2.4 Build and Installation Using Scripts 6

 2.4.1 Unpack Distribution 6

 2.4.2 Set SPIKESTREAM_ROOT 7

 2.4.3 Set Build Variables 7

 2.4.4 Run Build Script 8

 2.4.5 Install SpikeStream 8

 2.5 Manual Installation Procedure 9

 2.5.1 SpikeStream Library 9

- -

 2.5.2 SpikeStream Application 10

 2.5.3 SpikeStream Simulation 10

 2.5.4 SpikeStream Archiver 11

 2.5.5 Neuron and Synapse Classes 11

 2.6 Cleaning Up and Uninstalling SpikeStream 12

 2.6.1 CleanSpikeStream Script 12

 2.6.2 UninstallSpikeStream Script 12

2.7 Common Build and Installation Problems 13

2.8 Virtual Machine Installation 14

2.8.1. Overview 14

2.8.2. Virtual Machine Files 15

2.8.3. Install VMware Player 15

2.8.4. Run Virtual Machine 15

3. Databases 16

 3.1 Introduction 17

 3.2 Setting up MySQL 17

 3.2.1 Introduction 17

 3.2.2 Start MySQL Server 18

3.2.3 Set Maximum Number of Connections 18

3.2.4 Configure Firewall 18

 3.3 Create Accounts 19

 3.3.1 Root Account 19

 3.3.2 SpikeStream Account 19

 3.4 Create Databases and Tables 19

 3.4.1 Create Database Script 19

 3.4.2 Manual Database Creation 20

4. Running SpikeStream 21

 4.1 Configuration 22

 4.2 PVM 22

 4.3 Monitoring and Debugging Information 22

- -

 4.4 Common Problems Running SpikeStream 23

 4.5 Error Messages 25

 4.6 Known Bugs and Missing Functionality 25

 5. Creating Neural Networks 27

 5.1 The Editor Tab 28

 5.1.1 Neuron Group Table 28

 5.1.2 Connection Group Table 29

 5.2 Adding Neuron Groups 29

 5.3 Editing Neuron Groups 30

 5.4 Deleting Neuron Groups 30

 5.5 Adding Connection Groups 30

 5.6 Deleting Connection Groups 35

 5.7 Other Ways to Create Neuron and Connection Groups 35

6. Viewing Neural Networks 36

6.1 Viewer Tab 37

6.1.1. Highlight 37

 ` 6.1.2 Render Settings 38

 ` 6.1.3 Connection Settings 38

 6.2 Network Viewer 39

 6.3 View Menu 41

7. Running a Simulation 42

 7.1 Simulation Tab 43

 7.2 Archive Name and Type 43

 7.3 Patterns and Devices 44

 7.4 Parameters 44

 7.4.1 Neuron Parameters 44

 7.4.2 Synapse Parameters 45

 7.4.3 Global Parameters 45

 7.4.4 Noise 46

- -

 7.5 Simulation Controls 47

 7.5.1 Initialise / Destroy 47

 7.5.2 Weight Buttons 47

 7.5.3 Transport Buttons 47

 7.5.4 Monitoring 48

 7.5.5 Noise Injection 49

 7.5.6 Docking Controls 50

 7.6 Network Probes 50

8. Archives 51

8.1 Archive Tab 52

8.1.1. Loading and Playing Back an Archive 52

8.1.2. Archive Statistics 53

 8.2 Archive Structure 54

9. Devices 56

 9.1 Introduction 57

 9.2 Sending and Receiving Spike Messages 57

 9.2.1 Synchronized TCP Network Input 57

 9.2.2 Synchronized TCP Network Vision Input 58

 9.2.3 Synchronized TCP Network Output 58

 9.2.4 Synchronized UDP Network Input 59

 9.2.5 Synchronized UDP Network Output 59

 9.2.6 Asynchronous UDP Network Input/ Output 60

 9.3 Adding Devices 60

 9.4 SpikeStream and SIMNOS 60

 9.4.1 Overview 60

 9.4.2 SIMNOS Device Database 61

 9.4.3 SIMNOS Receptors and Components 62

 9.4.4 Using SIMNOS Components 62

- -

10. Patterns 65

 10.1 Introduction 66

 10.2 Adding Patterns 66

 10.2.1 Pattern Manager 66

 10.2.2 Pattern Files 66

 10.2.3 Direct Pattern Generation 67

11. Saving and Loading Databases 68

 11.1 Introduction 69

 11.2 Saving Databases 69

 11.3 Loading Databases 70

11.4 Clear Databases 70

11.5 Import Connection Matrix 70

12. Neuron and Synapse Classes 71

 12.1 Introduction 72

 12.2 Creating Neuron and Synapse Classes 72

 12.2.1 Extend the Neuron or Synapse Class 72

 12.2.2 Synapse.h 72

 12.2.3 Neuron.h 73

 12.3 Build and Install Library 74

 12.4 Update Database 76

 12.4.1 Add Neuron and Synapse Types 76

 12.4.2 Add Parameter Tables 76

References 78

- -

1. Introduction

- 1 -

1.1 Overview

SpikeStream is a simulator that has been tested on medium sized networks of up to 100,000 spiking

neurons. It works in a modular distributed manner and can run in parallel across an arbitrary

number of machines. SpikeStream exchanges spikes with external devices over a network and

comes ready to work with the SIMNOS virtual humanoid robot (see section 9.4). More information

about the architecture of SpikeStream can be found in Gamez (2007). This manual covers the

installation of SpikeStream and use of its key features.

I have tried to make Linux installation as painless as possible using four scripts that set the

necessary variables, build SpikeStream, install SpikeStream and create the databases. However,

these depend on third party software and a database, and so a certain amount of work is required to

get the whole system running. For other operating systems a virtual machine distribution has been

prepared, which is covered in Section 2.8.

SpikeStream is a complex piece of software with many useful features and it is stable

enough to run experiments. However, it is still at an early stage of development and subject to a

number of bugs and limitations. Occasionally it will crash, but most of the time you will not lose

data because all changes are immediately stored in the database and restarting most often solves the

problem. If you let me know about any undocumented bugs and limitations, I will do my best to

solve them and any offers of help with SpikeStream are extremely welcome. If there is enough

interest, I will turn it into a collaborative open source project.

This manual is targeted at the user of SpikeStream who wants to use the simulation

functions and may want to extend the Neuron or Synapse classes to create their own neural and

synapse models. I have tried to make the information in this manual as accurate as possible, but

time limitations have preventing me from checking it as thoroughly as I would have liked.

Documentation of the source code is available in the doc folder of the distribution and at

http://spikestream.sourceforge.net.

1.2 Support

Feel free to get in touch if you have any problems building and running SpikeStream. You can

reach me at david@davidgamez.eu or on +44 (0) 7790 803 368. I have also set up a mailing list for

SpikeStream at spikestream-user@lists.sourceforge.net.

- 2 -

mailto:david@davidgamez.euo

2. Installation

- 3 -

2.1 Overview

Before installing SpikeStream it is recommended that you read the paper covering its architecture

and operation (Gamez, 2007). Sections 2.2-2.7 give full instructions for installing SpikeStream on

Linux and other UNIX based systems. If you just want to try SpikeStream out or use it on Windows

or OS X, it is available pre-installed on a SUSE 10.2 virtual machine, which can be run using the

VMware Player (see Section 2.8).

2.2 System Requirements for Linux Installation

2.2.1 Operating System

SpikeStream has been written and tested on SUSE 10.0 and SUSE 10.2. SpikeStream Simulation

and SpikeStream Archiver have also been tested on Debian 3.1. A few tweaks and hacks may be

required to get it working on other Linux and UNIX operating systems. It should be possible to get

SpikeStream running on Cygwin under Windows, but I have not attempted this yet.

2.2.2 Hardware

SpikeStream can run on a single machine or across a cluster. On the main workstation, hardware

graphics acceleration will speed up the visualization of large networks. A megabit network is useful

if you want to run SpikeStream across several machines.

2.3 Dependencies

SpikeStream depends on a number of other libraries, which must be installed first. Some of these

are only needed on the main workstation to compile and run SpikeStream Application. Others are

needed by all modules.

2.3.1 Google Sparse Hash

Fast and efficient dense and sparse hash maps developed by Google. Available at http://goog-

sparsehash.sourceforge.net/.

Install on all machines.

- 4 -

http://goog-sparsehash.sourceforge.net/
http://goog-sparsehash.sourceforge.net/

2.3.2 MySQL Database and Development Libraries

May form part of your Linux distribution. Otherwise available at www.mysql.org. You need the

development parts of MySQL as well as the server.

The development libraries need to be installed on all machines. The server only needs to be on the

machine(s) that are hosting the databases.

2.3.3 MySQL++

C++ wrapper for MySQL. Available at: http://tangentsoft.net/mysql++/ .

Install on all machines.

2.3.4 Qt

Provides a graphical user interface and many useful functions. Likely to come with your

distribution of Linux.

IMPORTANT NOTE: SpikeStream only compiles and runs using Qt version 3.*.*. It will not

compile using Qt 4.*.*. If 4.*.* is your default version of Qt, you need to install Qt 3.*.* in a

separate location to compile SpikeStream. In SUSE 10.2 the default Qt version is 4, but Qt 3 is also

installed and you can make Qt 3 the default by adding the Qt 3 directory to the start of your path in

your .bashrc file using: export PATH=$QTDIR/bin:$PATH. You can also directly invoke

this version of qmake on the command line by using $QTDIR/bin/qmake instead of qmake

when you generate the makefiles.

Qt is only needed on the main workstation.

2.3.5 PVM (Parallel Virtual Machine)

Used for distributed message passing and spawning of remote processes. Included with some Linux

distributions, otherwise install manually. Available at: http://www.netlib.org/pvm3/index.html.

IMPORTANT NOTES:

1. The build of PVM may break with recent versions of gcc. If it breaks with the error:

... src/global.h: 321: error: array type has incomplete element type

... src/global.h: 323: error: array type has incomplete element type

Replacing PVM_ROOT/src/global.h with global.h from the 'extras' folder of the

SpikeStream distribution should fix the problem.

- 5 -

http://www.netlib.org/pvm3/index.html
http://tangentsoft.net/mysql++/
http://www.mysql.org/

2. It can be useful to give user level accounts permission to write to

$PVM_ROOT/bin/LINUX. This makes it easier when you have to manually install

spikestreamarchiver and spikestreamsimulation, which have to be installed in this

directory to be launched by pvm.

3. On SUSE 10.2 (and perhaps elsewhere) you may get an error along the lines of :

”netoutput() sendto: Invalid argument” when adding a second host in pvm. This can be

fixed by adding an entry to your hosts file along the lines of:

[machine ip address] [machine name]

for example: 192.168.1.22 desktopmachine

If you install pvm yourself, don't forget to create a link to PVM_ROOT/lib/pvm from your bin

folder so that it can be run from anywhere. You may also want to install xpvm, which can be very

helpful for debugging processes and messages when things go wrong. Getting pvm to run

successfully across several machines can be tricky and is beyond the scope of this manual.

Install on all machines.

2.3.6 Qwt

Graph drawing libraries available at: http://qwt.sourceforge.net/.

Only needed on the main workstation.

2.4 Build and Installation Using Scripts

This section covers the installation of SpikeStream using scripts that set the variables, build the

modules and install the libraries. These are the quickest and easiest way to install SpikeStream on

Linux. If anything goes wrong with these scripts, section 2.5 covers manual installation of the

individual modules.

2.4.1 Unpack Distribution

When you have downloaded SpikeStream, you need to unpack it using the command:

tar -xzvf spikestream-0.1.tar.gz

This will extract it to a directory called spikestream-0.1. This will be the root directory for building

and running the application, so move this directory to its final location before moving on to the next

step.

- 6 -

http://qwt.sourceforge.net/

2.4.2 Set SPIKESTREAM_ROOT

SpikeStream depends on a shell variable called SPIKESTREAM_ROOT, which is essential for

building and running the application. This variable should be set to the root of the spikestream-0.1

directory. The best place to set this is in your .bashrc file by adding, for example:

export SPIKESTREAM_ROOT=/home/davidg/spikestream-0.1

This needs to be done on all machines that you build and run SpikeStream on and you need to make

sure that the remote shell invoked by pvm (which may be different from your default bash shell)

also has SPIKESTREAM_ROOT set correctly.

2.4.3 Set Build Variables

To keep everything as simple as possible, the locations of the libraries needed for building

SpikeStream are set by the SetSpikeStreamVariables script, which can be found in the scripts folder

of the distribution. Open this script up and check that the library and include locations match those

on your system:

#Location of MySQL

export MYSQL_INCLUDE=/usr/include/mysql

Location of MySQL++

export MYSQLPP_INCLUDE=/usr/local/include/mysql++

Location of Qwt files. Not needed for simulation builds

export QWT_ROOT=/usr/local/qwt

Location of Google hash map include files.

export GOOGLE_INCLUDE=/usr/local/include/google

When you are installing SpikeStream across several machines, the Qt and Qwt libraries are only

needed on the machine running SpikeStream Application. In this case, run the script with the option

“-s”.

SpikeStream cannot be built unless these variables have been set correctly for the type of

build. When you have checked the locations, save the script and try running it from the scripts

folder using:

./SetSpikeStreamVariables (Main workstation)

./SetSpikeStreamVariables -s (Other machines used in the simulation)

- 7 -

If it exits without errors, you can move on to the next stage of the installation. If you get errors

setting the variables, make sure that all of the required libraries are in the places set by the script

and SPIKESTREAM_ROOT and PVM_ROOT are set correctly.

2.4.4 Run Build Script

SpikeStream comes with a build script that compiles all of the modules and copies the ones that are

installed in the SPIKESTREAM_ROOT directory to their correct locations. This is not guaranteed

to work on every occasion, but can speed up the installation process considerably. If you do have

problems running this script it is worth taking a look inside it for the list of commands that are

needed to build and install the parts of the application. To run this script, change to the scripts

folder and type:

./BuildSpikeStream (Main workstation)

./BuildSpikeStream -s (Other machines used in the simulation)

If all goes well you should end up with the following output on the main workstation:

--------------- Build Results ----------------

SpikeStreamApplication: Built ok.

SpikeStreamSimulation: Built and installed ok.

SpikeStreamArchiver: Built and installed ok.

STDP1 Neuron: Built ok.

STDP1 Synapse Built ok.

SpikeStream built successfully.

If one of the libraries or applications does not build, you will have to track down the error by

looking at the configure and make output and either re-run the build script or install the missing

component(s) individually. Instructions for installing each of the components individually are given

in section 2.5.

2.4.5 Install SpikeStream

This script installs spikestreamsimulation and spikestreamarchiver in the

$PVM_ROOT/bin/LINUX directory, which often requires root privileges. Some neuron and

synapse libraries also need to be installed as root to enable dynamic linking and the install script

creates symbolic links between one of the default library locations on your system and the neuron

- 8 -

and synapse libraries in $SPIKESTREAM_ROOT/lib. The use of symbolic links is suggested

because it is anticipated that you will be recompiling the neuron and synapse libraries to implement

your own learning algorithms and the use of symbolic links saves you the trouble of installing them

as root each time you do this. If you are planning to use only the supplied neuron and synapse

classes, then copies of these can be placed in the specified locations. More information about this

can be found in section 12.3.

IMPORTANT NOTE: You should only install links to these libraries as root if you are the sole user

of SpikeStream on the system. Otherwise you may end up dynamically loading another user's

libraries!

To run the install script, get a root shell, make sure that SPIKESTREAM_ROOT is defined

in the root shell (“echo $SPIKESTREAM_ROOT” should return the correct location) and run:

 $SPIKESTREAM_ROOT/scripts/InstallSpikeStream

If everything has worked up to this point you can move on to set up the databases, as described in

section 3. If the build has broken for some reason, take a look at some of the common build and

installation problems covered in section 2.7. Instructions for manually building each component are

given in the next section.

2.5 Manual Installation Procedure

Once your have unpacked the distribution (section 2.4.1) and set the SPIKESTREAM_ROOT

variable (section 2.4.2), you are ready to manually build and install the SpikeStream components.

You should only install SpikeStream this way if you have run into some problems with the build

and installation scripts.

2.5.1 SpikeStream Library

This contains classes that are common to many parts of the system and should be compiled first.

• Check the locations in the SetSpikeStreamVariables script and run it using “.

./SetSpikeStreamVariables” (don't miss the second dot before the slash!).

• Change to directory $(SPIKESTREAM_ROOT)/spikestreamlibrary/

• Run the command: ./configure –libdir=$SPIKESTREAM_ROOT/lib

• Type make

• If everything goes ok, type make install. There should be a file called libspikestream.a

- 9 -

in the $SPIKESTREAM_ROOT/lib directory.

2.5.2 SpikeStream Application

This is the graphical application for editing neuron groups and launching simulations and only

needs to be built on the main workstation. It is a Qt project, so installation is a little different from

the other parts of the system.

• Check your version of Qt is correct by typing qmake –version. The output should

contain the version of Qt that qmake is using, for example (Qt 3.3.7). If your version is

greater than 3 you need to install Qt 3 on your system and make sure that qmake uses this

version of Qt. See section 2.3.4 for more on this.

• Check the locations and debug flags in the SetSpikeStreamVariables script and run it using:

. ./SetSpikeStreamVariables (don't miss the second dot before the slash!).

• Change to the $SPIKESTREAM_ROOT/spikestreamapplication directory and use qmake to

create the makefiles: qmake spikestreamapplication.pro

• Type make

• If everything goes ok, there should be a program called spikestreamapplication in the

$SPIKESTREAM_ROOT/spikestreamapplication/bin directory.

• If you want, create a symbolic link to $SPIKESTREAM_ROOT/bin or your local bin

directory using: ln -s $SPIKESTREAM_ROOT/spikestreamapplication/bin

/spikestreamapplication $SPIKESTREAM_ROOT/bin/spikestream.

You can try to run it, but it will not work properly until the database has been configured – see

section 3.

2.5.3 SpikeStream Simulation

This is the program that runs to simulate a neuron group. It is launched using pvm, so has to be

installed in the $PVM_ROOT/bin/LINUX directory on every machine that you want to run a

simulation on. If you are running SpikeStream across several different Linux versions, this program

will have to be recompiled for each architecture.

• Check the locations and debug flags in the SetSpikeStreamVariables script and run it using:

. ./SetSpikeStreamVariables (don't miss the second dot before the slash!).

• Change to the $SPIKESTREAM_ROOT/spikestreamsimulation directory.

• run the command: ./configure --bindir=$PVM_ROOT/bin/LINUX --

- 10 -

libdir=$SPIKESTREAM_ROOT/lib

• Type make

• If all goes well type make install. You will need to have write permission to the

$PVM_ROOT/bin/LINUX directory or change to superuser for this step.

• If everything goes ok, there should be a file called libspikestreamsimulation.a in the

$SPIKESTREAM_ROOT/lib directory and an executable file called spikestreamsimulation

in the $PVM_ROOT/bin/LINUX directory.

2.5.4 SpikeStream Archiver

This program stores firing patterns in the database. It is launched using pvm, so has to be in the

$PVM_ROOT/bin/LINUX directory of every machine that you want to run a simulation on. If you

are running SpikeStream across several different Linux versions, this program will have to be

recompiled for each architecture.

• Check the locations and debug flags in the SetSpikeStreamVariables script and run it using

. ./SetSpikeStreamVariables (don't miss the second dot before the slash!).

• Change to the $SPIKESTREAM_ROOT/spikestreamarchiver directory.

• run the command: ./configure --bindir=$PVM_ROOT/bin/LINUX

• Type make

• If all goes well type make install. You will need to have write permission to the

$PVM_ROOT/bin/LINUX directory or change to superuser for this step.

• If everything goes ok, there should be an executable file called spikestreamarchiver in the

$PVM_ROOT/bin/LINUX directory.

2.5.5 Neuron and Synapse Classes

Neuron and Synapse classes are stored as libraries that are dynamically loaded at runtime and the

name of each library should be added to NeuronTypes or SynapseTypes in the database. Some

neuron and synapse libraries may need to call methods on each other and so they need to be placed

in the $SPIKESTREAM_ROOT/lib directory to enable cross linking. Copies also need to be placed

in /user/local/lib to enable dynamic loading. Chapter 12 gives detailed information about adding

your own neuron and synapse classes to SpikeStream. Installation instructions are given for

STDP1Synapse here, which should be followed for each of the neuron and synapse libraries.

• Check the order in which the neuron and synapse classes need to be built. Some neuron and

synapse classes depend on each other so the build order may be important. For example,

- 11 -

STDP1Synapse must be built before STDP1Neuron.

• The neuron and synapse classes depend on the spikestreamsimulation library, so make sure

that this is installed correctly before commencing installation.

• Check the locations and debug flags in the SetSpikeStreamVariables script and run it using:

. ./SetSpikeStreamVariables (don't miss the second dot before the slash!).

• Change to the $SPIKESTREAM_ROOT/STDP1Synapse directory.

• run the command: ./configure

• Type make

• If all goes well copy the libstdp1synapse.so library to $SPIKESTREAM_ROOT/lib

directory.

• Log in as root and change to your system's library location: cd /usr/local/lib

• Create a link from your system's library location to the neuron library: ln -s -f

${SPIKESTREAM_ROOT}/lib/libstdp1synapse.so libstdp1synapse.so.1

• Add the information about the neuron class that you have installed to the database – see

section 12.4.

2.6 Cleaning Up and Uninstalling SpikeStream

2.6.1 CleanSpikeStream Script

SpikeStream can cleaned up using the CleanSpikeStream script. This removes all of the files in

SPIKESTREAM_ROOT created by the build script and runs make clean in each of the directories.

It also removes the “Makefile” files created by qmake in the spikestreamapplication directory. The

clean script does not remove spikestreamsimulation, spikestreamarchiver or the symbolic links to

libstdp1neuron.so and libstdp1synapse.so that are created by the InstallSpikeStream script. You

need to run the uninstall script to delete these components of SpikeStream.

2.6.2 UninstallSpikeStream Script

This script uninstalls spikestreamsimulation, spikestreamarchiver and deletes the symbolic links to

the neuron and synapse libraries. Use this when you want to remove all SpikeStream files from the

system except for those at SPIKESTREAM_ROOT.

IMPORTANT NOTE: This script must be run as root.

- 12 -

2.7 Common Build and Installation Problems

Some common build and installation problems are as follows.

1. When building SpikeStream application you are likely to get the warning “has virtual

functions but non-virtual destructor”. This is a known issue, which should be ignored. See

http://lists.trolltech.com/qt-interest/2005-10/msg00342.html.

2. You may get some strange Qt errors that break the build, such as:

In file included from NetworkDataXmlHandler.h:27,

 from ArchiveManager.h:28,

 from ArchiveManager.cpp:24:

NetworkMonitor.h:33:17: error: qgl.h: No such file or directory

In file included from ArchiveManager.h:28,

 from ArchiveManager.cpp:24:

NetworkDataXmlHandler.h:30:18: error: qxml.h: No such file or directory

In file included from SpikeStreamMainWindow.h:28,

 from ArchiveManager.cpp:28:

NetworkViewer.h:33:20: error: qaccel.h: No such file or directory

In file included from SpikeStreamMainWindow.h:29,

 from ArchiveManager.cpp:28:

NetworkViewerProperties.h:38:20: error: qtable.h: No such file or

directory

In file included from MonitorArea.h:28,

 from SimulationWidget.h:29,

 from SpikeStreamMainWindow.h:31,

 from ArchiveManager.cpp:28:

MonitorWindow.h:32:25: error: qdockwindow.h: No such file or directory

In file included from SimulationWidget.h:29,

 from SpikeStreamMainWindow.h:31,

 from ArchiveManager.cpp:28:

MonitorArea.h:37:23: error: qdockarea.h: No such file or directory

In file included from SpikeStreamMainWindow.h:34,

 from ArchiveManager.cpp:28:

LayerWidget.h:32:24: error: qpopupmenu.h: No such file or directory

These are almost certainly caused by compiling with the wrong Qt version. Check the Qt

version by using “qmake –version”. If the Qt version is 4.*.*, it will not work! You must

build SpikeStream Application using Qt 3.*.*. When you have sorted out the correct version

of Qt (see section 2.3.4) you need to remove the “Makefile” files from

spikestreamappliction and spikestreamapplication/src before running the build script again.

- 13 -

http://lists.trolltech.com/qt-interest/2005-10/msg00342.html

This can be done manually or by invoking the CleanSpikeStream script, which will do it for

you. A future version of SpikeStream will compatible with Qt 4.

3. Double check that all the libraries are installed in the places specified in the

SetSpikeStreamVariables script. If, during manual installation, you run this script without a

dot and space before it, then the variables will not be set.

4. Double check that SPIKESTREAM_ROOT and PVM_ROOT are set correctly for your

system. Both are crucial to a successful build. A common problem when running

SpikeStream across several machines is that the default shell invoked by pvm is different

from the one that has SPIKESTREAM_ROOT and PVM_ROOT set.

5. The error: “cp: cannot create regular file `/home/davidg/lib/

pvm3/bin/LINUX/spikestreamarchiver': Permission denied” is caused because you do

not have permission to access the directory where pvm is installed. Change to root before

running the installation script again or give all users write access to this directory. If you

lack superuser access you may need to create a local pvm installation.

6. A build problem related to permissions may occur if you copy the spikestream-0.1.tar.gz file

as root and then unpack and build it. This can cause errors building STDP1 Neuron and

STDP1 Synapse, which gcc attributes to inadequate permission to access the file .lib. To

solve this problem, set yourself as the user of spikesream-0.1.tar.gz and set its group to users

before unpacking it.

7. If the SpikeStream Application GUI looks like it was built in the 1970's and does not share

the look and feel of other KDE applications on your machine, rebooting may solve the

problem. Otherwise check that you are not compiling against an old version of Qt (before

3.*.*).

8. If you have database problems launching SpikeStream across several machines, make sure

that the database configuration is not set to 'localhost' – put the ip address in

spikestream.config instead.

If you cannot find a solution to your problem, see section 1.2 for further support.

2.8 Virtual Machine Installation

2.8.1 Overview

SpikeStream is also available pre-installed on a SUSE 10.2 virtual machine. This is a much bulkier

distribution (around 4GB) that enables it to be run on a variety of operating systems with the

minimum of installation difficulties. The disadvantages of this are the size, a slightly reduced

- 14 -

running speed and the fact that you have to boot up the virtual machine every time that you want to

run SpikeStream (although SpikeStream can be restarted any number of times once the virtual

machine has booted up). This manual only covers the basics and the VMware documentation should

be consulted for full instructions about installing the VMware Player and running virtual machines.

2.8.2 Virtual Machine Files

The virtual machine files are available on DVD (drop me an email if you would like to receive a

copy) or for download at: http://csres82.essex.ac.uk/~daogam/.

2.8.3 Install VMware Player

Download and install the free VMware Player from: http://www.vmware.com. If you want to use

SpikeStream with SIMNOS (see section 9.4) you will need to configure the networking between the

SUSE virtual machine and the host operating system so that you can ping each operating system

from the other and access the Devices database on the host operating system from SUSE. This is

not necessary if you are not using SIMNOS. Support with installation of VMware Player and its

networking can be found in the VMware documentation and forums.

2.8.4 Run Virtual Machine

Once SUSE 10.2 is running in your VMware Player, click the SpikeStream icon on the SUSE

desktop to start SpikeStream. Some of the devices that were present on the machine that was used to

create the virtual machine may not be available on your system – the DVD drive at location E: and

the floppy drive, for example. If you want to correct these problems or change the configuration of

the virtual machine, you will have to purchase a copy of VMware Workstation, since the free

VMware Player does not allow you to edit the virtual machine.

IMPORTANT NOTE: To reduce the size of the virtual machine distribution, the virtual hard drive

has been kept as small as possible. There is only about 500MB free space on the drive, so take care

not to over fill it or you may not be able to boot the virtual machine.

- 15 -

http://www.vmware.com/

3. Databases

- 16 -

3.1 Introduction

SpikeStream depends on a number of databases, which can be distributed across different machines.

The parameters for these databases are set in the $SPIKESTREAM_ROOT/spikestream.config file.

This file is only used on the main workstation since the database parameters are passed to

SpikeStream Simulation and SpikeStream Archiver as command line parameters. The SpikeStream

databases are as follows:

• NeuralNetwork. Stores neurons, synapses and the connections between them. Different

types of neuron and synapse classes are also stored here, along with parameters and the

amount of noise injected into each of the neuron groups.

• NeuralArchive. Stores patterns of spikes or firing neurons that are recorded by the user

during a simulation run.

• Patterns. Stores patterns that can be applied by the user to a layer during a simulation run.

More information about patterns is given in Chapter 10.

• Devices. Lists the devices that are available for SpikeStream to connect to. Also breaks the

device layer down into receptors and groups of receptors known as components. See

Chapter 9 for more about SpikeStream and external devices.

More detailed information about the structure and purpose of these databases can be found in the

SQL files in $SPIKESTREAM_ROOT/databases, which are used to create and populate the

databases. When running SpikeStream with SIMNOS, SIMNOS sets up and updates the Devices

and SIMNOSSpikeReceptors tables in the Devices database, and the host, username and password

of the Devices database needs to be coordinated with SIMNOS. This manual assumes that all four

databases will be set up using the same host, username and password.

3.2 Setting up MySQL

3.2.1 Introduction

Before SpikeStream can run, the correct databases need to be created and their user, host and

password information entered in the $SPIKESTREAM_ROOT/spikestream.config file. This only

needs to be done on the main workstation since the database parameters are passed to SpikeStream

Simulation and SpikeStream Archiver as command line parameters. You can go straight on to

section 3.4 if you already have a MySQL server and an account set up that you want to use with

- 17 -

SpikeStream. Details about setting up and running MySQL can be found in many places and there

is extensive MySQL documentation online. Only the basics are given here.

3.2.2 Start MySQL Server

When you have installed MySQL (see section 2.3.2), test to see if it is running using: ps -el |

grep mysql. This should return a line containing “mysqld” as one of the running processes. If this

is not listed, use chkconfig to enable the service. As superuser type: chkconfig –list mysql,

which should tell you if mysql is enabled or not. If it is not enabled for your current run level, type:

chkconfig mysql on and make sure that it is enabled.

Even when mysql is enabled, the daemon may not have started. To start the daemon go to

/etc/init.d/ and log in as root. Then run the mysql command by typing: ./mysql start, which

should start up the daemon. Check that it has started, then you are ready to set up the accounts.

3.2.3 Set Maximum Number of Connections

Each layer is handled by SpikeStream using a separate pvm process, which may have several

connections to the database. If you are going to be using a large number of layers it is a good idea to

increase the number of allowed connections to the database, which is set by default to 100. You can

view the maximum number of connections using:

SHOW VARIABLES LIKE 'max_connections';

and change the maximum number of connections using, for example:

SET GLOBAL max_connections=150;

3.2.4 Configure Firewall

You need to to allow external access to MySQL if you are running SpikeStream across several

machines and your system's firewall may need to be changed to allow this. In SUSE this can be

done by adding MySQL to the firewall configuration using YAST. If you are communicating with

SIMNOS on Windows you will also need to open ports for each device, in addition to the Devices

database (if this is on the Windows machine).

- 18 -

3.3 Create Accounts

3.3.1 Root Account

Log in as root using mysql -u root

Display the current accounts: SELECT user, host, password FROM mysql.user;

Set a password for root: SET password=PASSWORD(“secretpassword”)

Get rid of unnecessary users: DELETE FROM mysql.user WHERE user != “root”;

Get rid of logins from outside machine: DELETE FROM mysql.user WHERE host !=

“localhost”;

3.3.2 SpikeStream Account

Create accounts with the user SpikeStream and the password 'myPassword' that can access the database on

localhost or a subnetwork:

GRANT ALL ON *.* TO SpikeStream@localhost IDENTIFIED BY “myPassword”;

GRANT ALL ON *.* TO SpikeStream@'192.168.1.0/255.255.255.0' IDENTIFIED

BY “myPassword”;

If these have been created successfully it should be possible to log into the database locally or from

another machine on the same network using:

mysql -uSpikeStream -pmyPassword (local login with password “myPassword”)

mysql -uSpikeStream -pmyPassword -h192.168.1.9 (remote login with mysql hosted

on 192.168.1.9 and password “myPassword”)

You can create a different account for each database or put the databases on different machines. As

long as the privileges are set up correctly it should work fine. The details for each database need to

be added into the spikestream.config file on the main workstation.

3.4 Create Databases and Tables

3.4.1 Create Database Script

Once you have configured the account(s), you can use a SpikeStream script to set up the databases.

Open up the script in a text editor and change the user, host and password information to match that

which you set in section 3.3.2. When this information has been set correctly run it using:

- 19 -

mailto:SpikeStream@localhost

$SPIKESTREAM_ROOT/scripts/CreateSpikeStreamDatabases

IMPORTANT NOTE: This script will overwrite the contents of all SpikeStream databases that are

already on the system. It can also be used at a later point to reset all of the databases.

3.4.2 Manual Database Creation

Four SQL files are used to create the databases. These can be found at $SPIKESTREAM_ROOT/

database:

 NeuralNetwork.sql

 NeuralArchive.sql

 Patterns.sql

 Devices.sql

Another four SQL files are used to add neuron types, synapse types, probe types and devices to the

databases that have been created.

 AddNeuronTypes.sql

 AddSynapseTypes.sql

 AddProbeTypes.sql

 AddDevices.sql

Finally, each neuron and synapse type needs an entry in the NeuronTypes and SynapseTypes tables

indicating the location of their parameter table and the location of their class library. See the

CreateSpikeStreamDatabases script for the commands needed to load these sql files individually

into the database.

IMPORTANT NOTE: The NeuralNetwork SQL sets up the database so that neuron ids start at 10,

rather than 0. It is essential for the operation of the system that neuron ids 0-10 remain unused.

These ids are generated each time a neuron is added to the system and I am not certain what

happens when the automatically generated ids wrap around back to the beginning. It is worth

keeping an eye on this and periodically re-initialise the database if necessary.

- 20 -

4. Running SpikeStream

- 21 -

4.1 Configuration

Open up the $SPIKESTREAM_ROOT/spikestream.config file and make sure that the database

information is set correctly for the four databases. This only needs to be done on the main

workstation since the database parameters are passed to SpikeStream Simulation and SpikeStream

Archiver as command line parameters. I recommend leaving the database name untouched. You

may also want to set the default location for saving and loading files. Once the config file has been

saved you can start SpikeStream Application using the symbolic link spikestream in the

SPIKESTREAM_ROOT/bin directory.

4.2 PVM

On a single machine SpikeStream will launch pvm and run without problems. If you want to run

SpikeStream across several machines, you will need to start pvm and add the other machines as

hosts before starting a simulation using SpikeStream. The SpikeStream Application can be running

whilst you are doing this as long as a simulation is not initialised.

Getting pvm to work across several machines depends on being able to remotely invoke

commands on the other machines using rsh (it can also be configured using ssh, but this probably

incurs a significant performance penalty). Many Linux clusters are already set up for this, but

configuring it from scratch on a new distribution can be a tricky process since rsh is usually

disabled by default for security reasons. Finding the right place to set PVM_ROOT and

SPIKESTREAM_ROOT so that they is available when pvm is remotely invoked can also cause

problems. When pvm has been correctly configured you should be able to start it and add the

remote host using the commands:

pvm (should return the prompt: “pvm>”)

pvm>add newHostName

If this works typing conf should list the new virtual machine configuration. Once the virtual

machine has been configured you can use SpikeStream to launch hosts across multiple machines.

4.3 Monitoring and Debugging Information

Some of the monitoring and debugging information that is available when running SpikeStream is

as follows:

- 22 -

• The command line output of SpikeStream generally gives more information than is

explicitly displayed in error messages. You will need to launch SpikeStream from the

command line (rather than a desktop shortcut) to see this information.

• xpvm enables the monitoring of messages sent between the different processes.

• Output of processes started with pvm (all the simulation and archiving tasks) is routed to

/tmp/pvml.1000. It can also be picked up using the task output feature of xpvm, although

this can cause crashes when there is a large amount of output.

• Most SpikeStream modules have a file called Debug.h, which enables different types of

debugging information to be displayed. The relevant part will have to be recompiled for this

to take effect.

• pvm has a command line interface that lets you see what processes are running and kill them

if necessary. Type pvm and then “help” to find out more about the available commands and

look at the online documentation for pvm.

4.4 Common Problems Running SpikeStream

A number of problems can arise when running SpikeStream:

• You will occasionally get an error message “FAILURE TO UPDATE DATABASE WITH

TASKID”, even when everything is set up correctly between SpikeStream and its databases.

This is a bug that has not been sorted out. Restarting the simulation usually fixes the

problem.

• When you have built SpikeStream and try clicking on spikestreamapplication with the

mouse you may get an error message informing you that SPIKESTREAM_ROOT is not

defined and SpikeStream will exit. If SpikeStream runs ok when you type ./spikestream

in the SPIKESREAM_ROOT/bin directory, this problem can be solved by logging out of

your user account and logging in again. If SpikeStream does not run from the command line

either then you need to make sure that SPIKESREAM_ROOT is defined in the appropriate

file for your shell (probably .bashrc). See section 2.4.2 for more on this.

• Sometimes you will get errors along the lines of “mksocs() connect Connection Refused”.

This is probably due to a problem with pvm. If this happens, it is most likely due to some

old files left over in /tmp from a previous simulation run that crashed. The best solution is to

wait 30 seconds until SpikeStream times out, when it will ask you if you want to run the

CleanPVM script. Run this script and the problem should go away. Persistent problems can

often be solved by deleting all pvm related files from /tmp. The CleanPVM script can also

be separately invoked to reset pvm and delete unused files from /tmp.

- 23 -

• SpikeStream will fail to connect with databases and devices on other machines if the

firewalls on both machines are not set correctly.

• Simulations will not start if the dynamic neuron and synapse libraries cannot be found by

the operating system (see section 12.3). This may generate the message “libstdp1neuron.so:

cannot open shared object file” or “libstdp1neuron.so: cannot open shared object file”,

which can be caused by omitting to run the install script as part of the installation process. It

can also be caused by copying a library across from another machine, instead of recompiling

it for your system.

• Simulations will not start if pvm is not installed properly. You can check that pvm is

working correctly by typing pvm, which should return the pvm command prompt: pvm>.

• Loading a saved database occasionally creates problems when you have added or removed a

neuron or synapse type since the saved database contains tables with the old information.

Similar problems can occur with the Devices database. If SpikeStream generates parameter

errors or crashes after loading a database containing different neuron or synapse types,

restarting it usually resolves the problem., which is caused by a bug in the parameter

dialogs.

• If you have problems adding additional hosts to pvm make sure that you have rsh installed

on your system, which may have been left off the default install for security reasons. You

will also need to add the main workstation to your list of allowed hosts in .rhosts on the

remote machines so that pvm can invoke commands on them without being prompted for

the password. Use the IP address if you are working on a local network since the name of

the machine may not be resolved (this will have to be set up each time the machines boot if

using DHCP).

• With more recent versions of qwt you may get the error “libqwt.so.5: cannot open shared

object file: No such file or directory”. This linking error arises because the operating system

cannot find the qwt library that spikestream was compiled against. One way of solving this

problem is to create a symbolic link that points to the appropriate libraries. To solve the qwt

problem change to /usr/lib in super user mode, and type

ln -s /usr/local/qwt-5.0.2/lib/libqwt.so.5 libqwt.so.5

The details of this solution will change depending on the version of qwt that you are using.

• A similar problem can arise with mysqlpp libraries, which can be solved in a similar way by

changing to /usr/lib in super user mode and typing:

ln -s /usr/local/lib/libmysqlpp.so.2 libmysqlpp.so.2

- 24 -

Again, the specific paths and library will change depending on the versions that you are

using. Linking problems can also be solved by adding the appropriate locations to the

LD_LIBRARY_PATH system variable, which is probably the best bet if you do not have

root access to the system.

4.5 Error Messages

When SpikeStream Application detects an error it generally displays an error message. When this

error only affects the function currently being performed, SpikeStream will not exit, but you will

probably want to restart SpikeStream (if possible after sorting the problem out). For example, if you

get a database related error when loading a simulation, try to resolve the problem and then restart

the simulation. When the error is likely to corrupt the database or make future work impossible,

SpikeStream will immediately exit.

When simulation and archive tasks detect an error they will not exit immediately, but enter

an error state in which they only respond to exit messages. This is to enable the simulation manager

to do an explicit clean up after the end of the simulation without needing to restart and clean pvm.

If you get an error message from a task, destroy the simulation, determine the cause of the error if

possible and then restart the simulation. Let me know about any persistent problems and I will try to

resolve them.

4.6 Known Bugs and Missing Functionality

Known bugs and limitations in SpikeStream 0.1 are as follows:

• The probe feature is still under development and has not been fully implemented.

• Rotation of layers for patterns and devices is missing. Although it may be possible to

connect a layer with width 10 and length 25 up to a device or pattern with width 25 and

length 10, the simulation will not work. You are advised to only connect up layers to

patterns or devices with identical width and height.

• The ability to set and change the neuron spacing is not well tested. It should work, but is

best left at the default of 1.

• The simulation will only run for 232 time steps, which is around 1000 hours at 1 ms per

timestep. After this, the simulation clock will overflow with unknown consequences.

• On later versions of Qt 3, the Network Monitor goes black when resized beyond a certain

point. The firing patterns have been made dark red so that they can still be seen, but I have

- 25 -

not found a better work around for this problem, which will probably disappear when

SpikeStream is rewritten for Qt4.

• There is a limit to the maximum number of network monitors that can be open at once. This

is currently 100, which is set using the variable MAX_NUMBER_MONITOR_WINDOWS

in SPIKESTREAM_ROOT/include/GlobalVariables.h.

• Off center on surround connections are not implemented in the present version of

SpikeStream.

• Make defaults button is not implemented on most of the parameter dialogs.

• Neuron and synapse types can only be changed when SpikeStream Application is not

running. If SpikeStream Application is running when they are changed, it is likely to crash,

but this will not affect the data in the database and restarting solves the problem.

• The exchange of spikes between SIMNOS and SpikeStream (see section 9.4) is still at the

early stages. This feature does work, but expect a certain amount of sweat and hassle to get

everything working.

• The “Load Defaults” button is not implemented in the neuron or synapse parameters dialogs

and the “Make Defaults” button has not been implemented in the edit neuron or synapse

parameters dialogs.

• The canceling of operations is not well handled at present and may generate an error

message when canceling the loading of a simulation. A future version of SpikeStream will

address this problem by using separate threads to handle heavy operations.

• The recording of network patterns is buggy and currently runs without synchronization to

the spikesreamsimulation tasks. This occasionally results in the dropping of recorded time

steps, particularly at the beginning or end of the simulation run. You may also get an error:

“ArchiveWidget: MYSQL QUERY EXCEPTION MySQL server has gone away", which

can be resolved by restarting SpikeStream. These problems will be sorted out in a later

version of SpikeStream, which will tightly synchronize spikesreamarchiver with the

simulation tasks.

- 26 -

5. Creating Neural Networks

- 27 -

5.1 The Editor Tab

The creation and editing of neural networks is carried out on the Editor tab (see Figure 5.1). The top

table shows information about the current neuron groups and the bottom table contains information

about the connections between neuron groups.

Figure 5.1. Editor Tab

5.1.1 Neuron Group Table

The top half of the Editor tab contains the neuron group table which displays neuron group

information in the database. The start of each row has an eye and a magnifier symbol. Clicking on

the eye symbol hides or shows a neuron group and you can click on the column header to hide or

show all neuron groups. A single click on the magnifying glass zooms in to the side of the

appropriate neuron group. Click on it again and you are taken to the top of the appropriate neuron

group. A third click returns you to a wide view of the entire network.

- 28 -

5.1.2 Connection Group Table

The bottom half of the Editor tab is taken up with the connection group table, which displays

information about the connection groups in the database. At the left of each row is an eye symbol

that can be used to show or hide the connection groups and you can click on the table header to

view or hide all connection groups and to check or uncheck all of the tick boxes. Viewing of

connection groups is disabled by default and very large connection groups will only be loaded when

you attempt to view them, which may lead to a short delay whilst this is carried out. Virtual

connections can never be viewed and are coloured light grey. Clicking on the blue “View” button in

the connection group table shows the parameters that were used to create the connection group.

5.2 Adding Neuron Groups

Clicking on the “Add Neurons” button above the neuron group table displays the Neuron Group

Properties Dialog, shown in Figure 5.2.

Figure 5.2. Neuron Group Properties Dialog

This dialog allows you to set the following information about the layer.

 Name. The name of the new neuron group

 Neuron Group Type. This combo box has three options.

 2D Rectangular Layer. Creates a standard 2D layer 1 neuron thick.

 3D Rectangular Layer. Creates a 3D layer. This is not fully implemented yet.

 SIMNOS Component. Uses information from the Devices database to create a layer

that connects to a sub-part of an input layer - see section 9.4.

- 29 -

 Neuron Type. A list of the neuron classes in the NeuronTypes table.

 Width. The width of the neuron group in neurons.

 Length. The length of the neuron group in neurons.

 Neuron Spacing. Allows you to change the spacing between the neurons. WARNING: This

feature has not been fully tested and it is recommended to leave it at 1.

 Location. The location of the bottom left corner of the neuron group when seen from above.

Make sure that your selected location does not clash with an existing layer.

5.3 Editing Neuron Groups

Some of the properties of a neuron group can be changed at a later point in time by right clicking on

the neuron group in the neuron group table and selecting “Edit Neuron Group Properties” from the

popup menu.

5.4 Deleting Neuron Groups

Check the neuron groups that you want to delete and click on the “Delete” button. A dialog will

popup to confirm your decision. Clicking “Ok” will permanently delete the neuron group from the

database.

IMPORTANT NOTE: There is no undo function in SpikeStream and no method of reversing this

step. Future work on SpikeStream may look into using the MySQL rollback feature to undo

transactions.

5.5 Adding Connection Groups

SpikeStream comes with a number of predefined connection patterns. Once you are familiar with

SpikeStream you are likely to start creating your own connection patterns by directly editing the

database (see section 5.7). To use the built in connection patterns, start by clicking on “Add

Connections”. This launches the Connection Properties Dialog shown in Figure 5.3.

- 30 -

Figure 5.3. Connection Properties Dialog

The properties that can be set in this dialog are as follows:

 Connections within a single layer/ between layers. These radio buttons select between

inter and intra layer connections. Different types of connection are available for each.

 From layer. The starting layer for the connection.

 To layer. The layer that the connection is made to.

 Connection Type. Several different connection types are available in the current version of

SpikeStream.

 Simple Cortex. Neurons are connected with short range excitatory connections and

long range inhibitory connections. The parameters for this type of connection are

given in Table 5.1.

- 31 -

Parameter Description

Excitation connection probability The number of neurons connected to within the
excitation radius. Set to greater than 1 to increase the
connection density; set to less than 1 to reduce the
connection density.

Excitation radius Select neurons within this radius for the neuron to
connect to.

Excitation weight The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition connection density The proportion of neurons connected to within the
inhibition radius. Set to greater than 1 to increase the
connection density; set to less than 1 to reduce the
connection density.

Inhibition radius Neurons within this radius, but outside of the excitation
radius minus the overlap are selected for inhibitory
connections.

Inhibition weight The weight of inhibitory connections +/- the weight
range.

Normal weight distribution Randomness in the weight is selected using a normal
distribution. 1 switches normal distribution on; 0
switches it off.

Overlap Overlap between the inhibitory and excitatory
connections

Weight range The amount by which the weights can vary randomly.

Table 5.1. Simple cortex connection parameters

 Unstructured excitatory (inter) and Unstructured excitatory (intra).

Unstructured connections in which each neuron makes all excitatory or all inhibitory

connections. The parameters for this type of connection are given in Table 5.2.

Parameter Description

Excitation connection prob The probability of an excitatory neuron connecting to
another excitatory neuron. This parameter can vary
between 0 and 1.0.

Excitation weight The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Excitation weight range The range of the excitation weight.

Excitation percentage The percentage of excitatory neurons. Ranges from 0-
100.

Inhibition connection prob The probability of an inhibitory neuron connecting to
another inhibitory neuron. This parameter can vary
between 0 and 1.0.

Inhibition weight The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition weight range The range of the inhibitory weights.

Table 5.2. Unstructured excitatory (inter) and Unstructured excitatory (intra)
parameters

- 32 -

 On Center Off Surround. Rectangular connection with an excitatory centre and

inhibitory surround. The to layer must be smaller than the from layer for this type of

connection to work. The parameters for this type of connection are given in Table

5.3. WARNING: Some of these parameters are not fully tested.

Parameter Description

Excitation weight The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition weight The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inner length The length of the central excitatory connection area.

Inner width The width of the central excitatory connection area.

Outer length The length of the inhibitory connection area.

Outer width The width of the inhibitory connection area.

Overlap Overlap between the excitatory and inhibitory
connection areas.

Rotate One layer may be rotated relative to the other one.

Weight range The amount by which the weights can vary randomly.

Table 5.3. On center off surround connection parameters

 Off Center On Surround. Similar to on center off surround connections. Note that

the to layer must be smaller than the from layer for this type of connection to work.

The parameters for this type of connection are given in Table 5.4. IMPORTANT

NOTE: Not implemented at present.

Parameter Description

Excitation weight The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition weight The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inner length The length of the central inhibitory connection area.

Inner width The width of the central inhibitory connection area.

Outer length The length of the excitatory connection area.

Outer width The width of the excitatory connection area.

Overlap Overlap between the excitatory and inhibitory
connection areas.

Rotate One layer may be rotated relative to the other one.

Weight range The amount by which the weights can vary randomly.

Table 5.4 Off center on surround connection parameters

- 33 -

 Unstructured. Each neuron in the from layer is connected to a random number of

neurons in the to layer. The parameters for this type of connection are given in Table

5.5.

Parameter Description

Average weight The weight of connections +/- the weight range.
Weights can range from -1.0 to 1.0.

Connection density The proportion of neurons connected to. This parameter
can vary between 0 and 1.0.

Weight range The amount by which the weights can vary randomly.

Table 5.5. Unstructured connection parameters

 Virtual. In order to run the simulation, each neuron group needs to be connected to

at least one other neuron group. When there are no functional connections, virtual

connections need to be created between neuron groups so that they can be

synchronized in the simulation. NOTE: The simulation may also create temporary

virtual connections to enable synchronization between the layers. The creation and

destruction of these does not require any intervention by the user.

 Topographic. This works between two layers of exactly the same width and length

and creates topographic connections between the layers. The parameters for

topographic connections are given in Table 5.6.

Parameter Description

Average weight The weight of connections +/- the weight range.
Weights can range from -1.0 to 1.0.

Overlap When layers of different size are topographically
connected there can be an overlap between each set of
connections.

Rotate One layer can be rotated relative to the other.

Weight range The amount by which the weights can vary randomly.

Table 5.6. Topographic connection parameters

 Synapse Type. Selects one of the currently selected synapse classes for the connection.

 Delay Range. Sets the range of delay expressed in timesteps. The absolute value of the

delay for each connection is the update time per timestep multiplied by the number of

timesteps delay.

- 34 -

5.6 Deleting Connection Groups

Select the connection groups that you want to delete and press the “Delete” button above the

connections table. Press “Ok” to confirm deletion and the connection groups will be removed from

the database.

IMPORTANT NOTE: There is no undo function in SpikeStream and no method of reversing this

step. Future work on SpikeStream may look into using the MySQL rollback feature to undo

transactions.

5.7 Other Ways to Create Neuron and Connection Groups

The preset ways of creating and editing neuron and connection groups in SpikeStream Application

are hard coded and can only be changed by modifying SpikeStream. However, it is reasonably easy

to write your own programs or scripts to add new neurons or connection patterns to the

SpikeStream database. The following limitations apply when doing this:

 Any pair of neurons can only have a single connection between them.

 Each neuron group can only have one connection of each type between it. Thus, there can be

several connection groups of different types between two layers, but not two connection

groups of the same type.

 SpikeStream can visualise neuron groups of any shape, but it is currently unable to connect

patterns or devices to non-rectangular neuron groups, or to provide live monitoring of non-

rectangular neuron groups.

- 35 -

6. Viewing

Neural Networks

- 36 -

6.1 Viewer Tab

The Network Viewer (see Figure 6.1) enables networks to be viewed in three dimensions. This

three dimensional window is permanently on the right hand side of the screen and its size can be

adjusted by grabbing the dividing bar. The Network Viewer tab has controls that enable you to

view different aspects of the connections and set the rendering properties.

Figure 6.1. Network Viewer tab (left) and Network Viewer (right)

The controls available in the Network Viewer Tab are covered in the next few sections.

6.1.1 Highlight

Clicking on the highlight button launches the Highlight Dialog shown in Figure 6.2. Type or paste

in a list of comma separated neuron IDs that you want to highlight and click on “Add Highlight” to

highlight them. The colour can be changed by clicking on the colour field. Multiple groups of

neurons can be highlighted in different colours.

- 37 -

Figure 6.2 Highlight Dialog

6.1.2 Render Settings

Normally neurons are drawn using simple vertices, which considerably speeds up the rendering

time. However, if you want a more attractive view, you can check this box to draw neurons as grey

spheres. The render delay sets the time between the last navigation event in the Network Viewer

and the start of the render.

6.1.3 Connection Settings

When the Show Connections check box is selected the Network Viewer displays all of the

connections that are set as visible in the Connection Group Table. This part of the Network Viewer

tab is very useful for showing different aspects of the connections between neurons and it is also

used to select the neurons for monitoring or noise injection in the Simulation tab. If you want to

select a subset of the connections for viewing, the following options are available:

 All connections. Shows positive and negative connections.

 Positive connections. Only connections with positive weights are shown.

 Negative connections. Only connections with negative weights are shown.

 from/to. Connections from and to the selected neuron in the selected neuron group are

shown

- 38 -

 from. Connections from the selected neuron in the selected neuron group are shown

 to . Connections to the selected neuron in the selected neuron group are shown

 between. Connections between the first selected neuron and the second selected neuron are

shown. Use this mode to select an individual synapse for monitoring during a simulation.

The connection details check box displays information about the selected connections (see Figure

6.3. In this table, “Saved Weight” is the weight that is loaded up at the beginning of a simulation as

the synapses' starting weight. As the simulation progresses, this weight may change and the user can

view the current value of the weights by pressing “View Weights” in the Simulation tab. The

synapse's current weight is then visible in the “Temp Weight” column of this table. If the user

chooses to permanently save the weights during a simulation, their values are written to the Saved

Weight field and will become the starting weights when the simulation is next initialised.

Figure 6.3. Connection Details Table

6.2 Network Viewer

The Network Viewer shows all of the visible neurons and connections in three dimensions. This

display starts out with the Z axis vertical, the X axis horizontal and to the right and the Y axis going

- 39 -

into the display away from the viewer. You can navigate around this window using the following

controls:

 Arrow-left. Moves camera left.

 Arrow-right. Moves camera right.

 Arrow-up. Moves camera up.

 Arrow-down. Moves camera down.

 Ctrl + Arrow-left. Rotates camera left.

 Ctrl + Arrow-right. Rotates camera right.

 Ctrl + Arrow-up. Rotates camera up.

 Ctrl + Arrow-down. Rotates camera down.

 Ctrl + =. Zooms in.

 Ctrl + -. Zooms out.

 Ctrl + Y. Zooms out to show all layers.

When viewing connections from/to, from and to an individual neuron, the neuron will be

highlighted in red and the selected neuron can be changed using the following controls:

 ALT + Arrow-right. Selects the next neuron within the group moving along X positive.

 ALT + Arrow-left. Selects the next neuron within the group moving along X negative.

 ALT + Arrow-up. Selects the next neuron within the group moving along Y positive.

 ALT + Arrow-down. Selects the next neuron within the group moving along Y negative.

When viewing connections between two individual neurons, the from neuron will be highlighted in

red and the selected neuron can be changed using the controls that have just been outlined. The to

neuron will be highlighted in green and the selected to neuron can be changed using the following

controls.

 SHIFT + ALT + Arrow-right. Selects the next neuron within to the group moving along X

positive.

 SHIFT + ALT + Arrow-left. Selects the next neuron within the to group moving along X

negative.

 SHIFT + ALT + Arrow-up. Selects the next neuron within the to group moving along Y

positive.

- 40 -

 SHIFT + ALT + Arrow-down. Selects the next neuron within the to group moving along Y

negative.

WARNING: Occasionally the Network Viewer loses keyboard focus, which may cause the keyboard

to control other aspects of SpikeStream. This is rarely serious, but I have accidentally quit the

application on occasions by inadvertently navigating through the file menu. Click on the Network

Viewer to restore keyboard focus.

6.3 View Menu

The view menu on the main menu bar allows you to selectively refresh information in SpikeStream:

• View->Reload devices Ctrl+D. Reloads the list of devices in the Simulation tab.

• View->Reload patterns Ctrl+P. Reloads the list of patterns in the Simulation tab.

• View->Reload everything Shift+F5. Reloads everything, including neuron and connection

groups, parameters, patterns and devices.

- 41 -

7. Running a Simulation

- 42 -

7.1 Simulation Tab

The Simulation tab (see Figure 7.1) is used to control all aspects of a simulation.

Figure 7.1. Simulation tab

7.2 Archive Name and Type

At the top of the Simulation tab is a box where you can enter a name for the archive. This archive

will only be stored if you record data from the simulation. There is also an combo box that enables

you to select between recording the firing neuron patterns from a layer or the spikes emitted from a

layer. The firing neurons option is recommended because it has been more thoroughly tested. The

archive name can be changed at a later point using the Load Archive Dialog.

- 43 -

7.3 Patterns and Devices

The next part of the Simulation tab is another set of tabs that let you connect patterns and devices

up to layers in the simulation. Each of the combo boxes in these tables only displays the layers that

are the correct size for the pattern or device. Selecting the layer in the combo box will connect the

pattern or device up to the layer when the simulation is initialised. If you add a new device to the

Devices table you can refresh the devices table by clicking on “View->Reload devices” or pressing

CTRL+D. At the bottom of the pattern table is a text box where you can set the number of time

steps between each pattern. For example, if you set this to ten, a pattern will be applied every ten

time steps. This is particularly important when you are using patterns that are spread over time. See

Chapter 9 for more information on devices and Chapter 10 for more information about patterns.

7.4 Parameters

Parameters for the simulation are set using the four buttons in the “Parameters” section of the

Simulation tab.

7.4.1 Neuron Parameters

Clicking on the “Neuron Parameters” button brings up the dialog shown in Figure 7.2, where you

can set the parameters for the simulation. This dialog edits the neuron parameters table in the

database that matches the neurons' type and these parameters can be changed at any point during a

simulation run.

Figure 7.2. Neuron Parameters Dialog

To change the parameters, click on the edit button for a particular layer and an Edit Neuron

Parameters Dialog will be launched that enables you to adjust the parameters (see Figure 7.3).

- 44 -

Figure 7.3. Edit Neuron Parameters Dialog

Pressing “Ok” in this second dialog updates the Neuron Parameters Dialog, but will not update the

simulation until you press “Ok” or “Apply” within the Neuron Parameters Dialog. Boolean

parameters are set using the check boxes within the Neuron Parameters Dialog.

IMPORTANT NOTE: The “Load Defaults” button is not implemented in the Neuron Parameters

Dialog and the “Make Defaults” button has not been implemented in the Edit Neuron Parameters

Dialog.

7.4.2 Synapse Parameters

The editing of synapse parameters proceeds in an identical way to the editing of neuron parameters.

7.4.3 Global Parameters

This dialog (see Figure 7.4) controls parameters that are global to the simulation. Checking “Run

simulation in real time” will update the simulation clock in real time instead of using the time step

duration value. “Time step duration” enables you to set the amount of time that is simulated by each

time step. Smaller values will lead to a more accurate simulation, but may also increase the amount

of time taken to compute the simulation.

- 45 -

Figure 7.4. Global Parameters Dialog

7.4.4 Noise

This dialog (see Figure 7.5) enables you to add random noise to the neuron groups.

Figure 7.5. Noise Dialog

The second column enables or disables noise for the neuron group. The third column selects the

percentage of neurons that will be randomly selected from each neuron group at each time step.

There is also a “random” option that selects a random percentage of neurons at each time step. The

last column selects between direct and synaptic noise. In direct noise mode, the selected neurons are

directly fired by the simulation. In synaptic noise mode, the specified synaptic current is injected

into the neuron at each time step, which may or may not lead to firing.

- 46 -

7.5 Simulation Controls

The next set of controls are for running and monitoring of simulation and for the manual injection

of noise. These controls are only enabled when the simulation is initialised (see Figure 7.6).

Figure 7.6. Simulation controls

7.5.1 Initialise / Destroy

When initialise is pressed, pvm is used to launch the simulation across all the hosts that have been

added to the virtual machine. These are created as separate tasks running in parallel, with one task

per neuron group. An extra task is created for the archiving of the simulation. Pressing “Destroy”

causes all of these tasks to exit.

7.5.2 Weight Buttons

During a simulation run these buttons offer the following functions:

 Reload weights. Requests each task to reload its weights from the database.

 Save weights. Requests each task to save its current weights to the database.

 View weights. Requests each task to save its current weights to the “Temp Weight” field in

the database. This enables the user to view the weights without permanently changing them.

7.5.3 Transport Buttons

The simulation is run using a standard set of transport buttons:

- 47 -

 Play. Plays and stops the simulation.

 Step. Advances to the next time step. Strange behaviour with pvm message passing can lead

each step to take a second or two.

 Record. Records the simulation using the specified archive name.

 Stop. Stops the simulation.

A combo box after the stop button can be used to slow the simulation down, which is extremely

useful for monitoring what is going on in the simulation. The last combo on this row is used to

control the update mode of the simulation:

 Event driven. The fastest update mode. Neuron and synapse classes are only updated when

they receive a spike.

 Update all neurons. All neuron classes are updated at each time step. Synapses are only

updated when they receive a spike. Useful for neural models that display spontaneous

activity.

 Update all synapses. All synapse classes are updated at each time step. Neurons are only

updated when they receive a spike.

 Update everything. All neuron and synapse classes are updated at each time step. In this

mode, SpikeStream operates like a synchronous simulator.

7.5.4 Monitoring

The next set of controls are used to monitor what is going on in the simulation.

 Live Monitor. Launches a window displaying the firing state of the selected neuron group

or all the neuron groups. This window can display the spikes emitted by the neuron group or

the firing of the neurons in the neuron group.

 Monitor Neuron. Each neuron class can define its own set of variables for live monitoring.

Select a neuron using the Network Viewer or type in a neuron id and click this button to

draw a live graph of the monitored variables for the neuron (see Figure 7.7). NOTE: If this

is launched part way through a simulation, it may take a little while to adjust itself.

- 48 -

 Monitor Synapse.. Each synapse class can define its own set of variables for live

monitoring. To select a synapse you need to set the Network Viewer tab to 'between' mode.

You should have a green neuron and a red neuron highlighted. Select a synapse using the

Network Viewer and click “Monitor Synapse” to draw a live graph of the monitoring

variables for the synapse. NOTE: If this is launched part way through a simulation, it may

take a little while to adjust itself.

Closing these windows stops the monitoring data being sent from the tasks simulating the neuron

group.

Figure 7.7. Graphs of monitored neuron variables

NOTE: The values in this graph are sampled every time step so with a high time step value of 10ms,

for example, you may not see any change on the membrane potential in response to incoming spikes

because the neuron will have reset itself to zero at each time step.

7.5.5 Noise Injection

Controls that can be used to manually inject noise into a neuron group within a single simulation

step:

 Inject Noise. Fires the specified percentage of neurons once within a simulation step.

 Fire Neuron. Fires the specified neuron once within a simulation step. The neuron's id can

be typed into the field or selected using the Network Viewer.

- 49 -

7.5.6 Docking Controls

A number of buttons are available to selectively hide and show monitoring information.

 Dock All. Places all live monitor windows in the docking area. These windows will

continue to display the neuron patterns whilst they are in the docking area and they can be

dragged around and rearranged.

 Undock All. Restores all live monitor windows to their original location.

 Hide Graphs. Makes all graphs invisible and switches their plotting off.

 Show Graphs. Makes all the current graphs visible and switches their plotting on.

7.6 Network Probes

Clicking on “Tools->Probe manager” launches a dialog to manage the probes. Network Probes are

designed to run alongside the simulation and carry out actions on the neural network for testing

purposes. For example, a network probe might be created to stimulate parts of the network with

noise in order to identify its causal dependencies. NOTE: This feature is still under development

and should be ignored.

- 50 -

8. Archives

- 51 -

8.1 Archive Tab

The recording of archives is carried out in the Simulation tab. Archives are played back in the

Archive tab shown in Figure 8.1.

Figure 8.1. Archive tab

8.1.1 Loading and Playing Back an Archive

To load an archive press the “Load” button, which will open up the Load Archive Dialog, shown in

Figure 8.2, with controls to rename and delete archives. When you have selected your archive and

pressed “Ok”, the archive will be loaded and can be replayed, stepped through, rewound etc. using

the controls available in the Archive tab.

- 52 -

Figure 8.2. Load Archive Dialog

8.1.2 Archive Statistics

Statistics about the archive can be gathered by adding a statistics monitor to count the number of

times a neuron or range of neurons fires or the number of times neurons fire in a particular neuron

group. Clicking on the “Add Statistics Monitor” button launches the dialog shown in Figure 8.3. In

this dialog you can choose to monitor the number of times neurons fire in a particular layer or count

the number of times one or a number of neuron IDs fire, which is done by adding the neuron IDs as

a comma separated list. OR, AND and range operators are supported, for example: 12121 & 12121,

1323-56565, 123213|098098.

- 53 -

Figure 8.3. Archive Statistics Dialog

There is also a button that allows you to view the XML network model associated with the archive

(see next section), which may be different from the network model that is currently loaded into

SpikeStream.

8.2 Archive Structure

Each archive contains a summary of the neuron groups stored in XML format in the

NetworkModels table. An example of a network model is given below:

<?xml version="1.0" encoding="ISO-8859-1"?>

<neural_network>

<neuron_groupid="19">

<name>Learner</name>

<start_neuron_id>161429</start_neuron_id>

<width>1</width>

<length>1</length>

<location>10,1,10</location>

<spacing>1</spacing>

<neuron_type>6</neuron_type>

</neuron_group>

<neuron_group id="17">

- 54 -

<name>Generator</name>

<start_neuron_id>161427</start_neuron_id>

<width>1</width>

<length>1</length>

<location>1,1,1</location>

<spacing>1</spacing>

<neuron_type>6</neuron_type>

</neuron_group>

</neural_network>

Each network model is associated with one or more rows of firing patterns in the NetworkData

table, which are also stored in XML format. An example of NetworkData for one time step is given

below:

<?xml version="1.0" encoding="ISO-8859-1"?>

<network_pattern>

<neuron_group id="17">161427</neuron_group>

<neuron_group id="18">161428</neuron_group>

</network_pattern>

- 55 -

9. Devices

- 56 -

9.1 Introduction

SpikeStream can send and receive spikes across a network to and from an external device, such as a

real or virtual robot, camera, etc. This feature is still under development and only the TCP

synchronized method has been fully tested between SpikeStream and the SIMNOS virtual robot.

9.2 Sending and Receiving Spike Messages

A number of different methods exist for sending and receiving spike messages across a network.

Not all of them have been implemented and the synchronized TCP methods have been most

thoroughly tested. The next few sections outline the general procedure for sending and receiving

messages. More detail about this can be found in the SpikeStream Simulation code.

9.2.1 Synchronized TCP Network Input

This method uses TCP to send and receive spike packets across the network. This is designed to

work with devices that run in their own simulation time, such as the SIMNOS virtual robot (see

section 9.4), and it enables the two devices to remain perfectly synchronized. The procedure for

receiving this type of message is as follows:

 Wait to receive packet containing the data.

 Unpack the first four bytes, which contain the number of spikes in the message.

 Unpack the spikes, each of which is four bytes long.

 The first byte is the X position of the spike within the layer.

 The second byte is the Y position of the spike within the layer.

 The third and fourth byte contain the time delay of the spike. WARNING: This is untested

for non-zero values and should be set to zero for the moment.

 When all spikes have been unpacked send a confirmation message containing a single byte

to confirm that the data has been received. This has the value

SPIKESTREAM_DATA_ACK_MSG (defined in $SPIKESTREAM_ROOT/include/

DeviceMessages.h), which is currently set to 1, but may change.

 Fire neurons in the layer that received spikes from the device.

- 57 -

Since the layer connected to the device will not complete its simulation step until it has updated

itself, this method synchronises SpikeStream with the external device, which should also wait until

it receives the acknowledgment message.

9.2.2 Synchronized TCP Network Vision Input

This method is similar to the previous one, except that no delay is included within the packet and

the X and Y positions are defined using two bytes. The procedure for receiving this type of message

is as follows:

 Wait to receive packet containing the data.

 Unpack the first four bytes, which contain the number of spikes in the message.

 Unpack the spikes, each of which is four bytes long.

 The first two bytes are the X position of the spike within the layer.

 The next two bytes are the Y position of the spike within the layer.

 When all spikes have been unpacked send a message containing a single byte to confirm that

the data has been received. This has the value SPIKESTREAM_DATA_ACK_MSG

(defined in $SPIKESTREAM_ROOT /include/DeviceMessages.h), which is currently set to

1, but may change.

 Fire neurons in the layer that receive spikes from the device.

Since the layer connected to the device will not complete its simulation step until it has updated

itself, this method synchronises SpikeStream with the external device, which should also wait until

it has received the acknowledgment message.

9.2.3 Synchronized TCP Network Output

This method sends spikes in a synchronized manner from SpikeStream to an external device. The

procedure is as follows:

• Add the number of spikes as a four byte value to the packet.

• Add the spikes to the packet. The first byte is the X position, the second byte is the Y

position and the next two bytes are the delay, currently not used.

• Send the packet.

• Wait to receive a packet containing an acknowledgment that the data has been received.

This has the value DEVICE_DATA_ACK_MSG (defined in $SPIKESTREAM_ROOT/

include/ DeviceMessages.h), which is currently set to 3, but may change.

- 58 -

9.2.4 Synchronized UDP Network Input

This method creates a loose synchronization between the external device and SpikeStream by

timing the interval between spike packets and slowing the simulator down to match. This method

only works if the device can slow itself down as well. This method has been implemented on

SpikeStream, but it has not been fully tested and some tweaking of the SpikeStream Simulation

code may be necessary to get it working. The basic approach is as follows:

 The receive method runs as a separate thread which receives the spike messages and

unpacks them into a separate buffer.

 The first two bytes of each packet contain the synchronization information. The first 7 bits

are the time step count on the external device. This can overflow without problems since it

is there to indicate the rate of increase of the time steps in the external device. The

remaining bit is a flag to indicate whether the external device was delaying itself on the

previous time step.

 The rest of the packet is filled with spikes, with the first byte being the X position, the

second byte the Y position and the next two bytes a delay value, which is not currently used.

 When the packet has been unpacked, the receive method calculates the update time per time

step for the external device.

 When SpikeStream Simulation completes a simulation step, it sleeps if its own update time

per time step is less than that of the external device and if the external device is not

delaying itself.

 The SynchronizationDelay table in the Devices database is used to coordinate delay

information between independent SpikeStream tasks.

UDP is a potentially lossy method of transmission and the synchronization is also approximate.

This makes this approach a useful halfway step between the loss free TCP synchronization and the

potentially highly lossy sending and receiving of information to and from a live hardware device,

such as a robot, which is interacting with the real world.

9.2.5 Synchronized UDP Network Output

This method is virtually identical to synchronized UDP network input. SpikeStream needs both

input and output connections to a device to make this synchronization method work.

- 59 -

9.2.6 Asynchronous UDP Network Input/ Output

This method has been designed for using SpikeStream with a live device, but has not yet been

implemented. The procedure is something like the following.

 Input spikes are received by a separate thread that unpacks them into a buffer, which is used

to fire the neurons at each time step.

 Output spikes are transmitted at the end of each time step.

When it is implemented, the code will be similar to that used for the synchronized UDP input and

output, only without the delay.

9.3 Adding Devices

The Devices table in the Devices database contains a list of available devices that SpikeStream can

connect to and details about any new devices should be added here. The communication protocol

between SpikeStream and the device is determined by the Type field in this table. Definitions of the

different device types can be found in $SPIKESTREAM_ROOT/include/DeviceTypes.h. When a

device is selected in the Simulation tab, SpikeStream will attempt to connect to it using the

information provided. The “Firing Mode” option in the Devices table in the Simulation tab is used

to select whether the spikes from the device fire the neuron directly or inject the specified post

synaptic potential into the neuron.

9.4 SpikeStream and SIMNOS

9.4.1 Overview

The main external device that has been used and tested with SpikeStream is the SIMNOS virtual

robot created by Richard Newcombe, shown in Figure 9.1.

- 60 -

Figure 9.1. SIMNOS virtual robot

SIMNOS is a humanoid anthropomimetic robot whose body is inspired by the human

musculoskeletal system. Information about muscle length, joint angles and visual information

(available with a wide variety of preprocessing methods) is encoded by SIMNOS into spikes using

a selection of methods developed by Newcombe (Gamez, Newcombe, Holland & Knight, 2006) and

passed across the network to SpikeStream. SIMNOS can also receive muscle length data from

SpikeStream in the form of spiking neural events, which are used to control the virtual robot.

Together SIMNOS and SpikeStream provide an extremely powerful way of exploring sensory and

motor processing and integration. More information about SIMNOS can be found at

www.cronosproject.net, SIMNOS will be released soon and anyone interested in using it should

contact Richard Newcombe (r.a.newcombe@gmail.com) if they would like a free copy of the

current version.

9.4.2 SIMNOS Device Database

The Devices database works a little differently when you are using SIMNOS and SpikeStream

together. In this case, the Devices table in the Devices database is created automatically by the

SIMNOS spike servers, which enter their information into the Devices and

SIMNOSSpikeReceptors tables when they start. To use SIMNOS and SpikeStream you will need to

enter the details of the SIMNOS Device database into your spikestream.config file on the main

workstation. You will know that you are connecting correctly if you see the four entries in the

Devices table shown in Figure 9.2 (the exact entries depend on the configuration of SIMNOS):

- 61 -

mailto:r.a.newcombe@gmail.com
http://www.cronosproject.net/

Figure 9.2. SIMNOS device entries

When using SIMNOS, you need to manually create the SynchronizationDelay and

SIMNOSReceptors tables in the SIMNOS Devices database by pasting in the appropriate SQL from

Devices.sql.

9.4.3 SIMNOS Receptors and Components

Information is exchanged between SIMNOS and SpikeStream in the form of relatively large layers,

which connect to layers of equivalent size within the simulator. However, in many cases one wants

to connect neuron groups up to part of this incoming information, such as the data coming from a

single arm. It is to solve this kind of problem that the SIMNOS Receptors and Components

framework was created. The SIMNOSSpikeReceptors table contains a list of the receptors that are

available in SIMNOS, which are associated with a particular device. The SIMNOS Components

table consists of lists of receptors, which together constitute a SIMNOS component. These lists of

receptor IDs could correspond to the head, neck, arm, part of the visual field or any other

abstraction that you want to make of the data from a particular device. Entries in the

SIMNOSComponents database have to be created manually by the user and they can then be used

to connect a neuron group up to a part of an input or output layer, as explained in the next section.

9.4.4 Using SIMNOSComponents

1. Create a layer that matches the input width and length of the SIMNOS device. For this

example we will create a layer to connect to the Muscle Output of SIMNOS, which is

currently 50 neurons wide and 45 neurons long (NOTE: The width varies depends on the

spike conversion settings in SIMNOS).

2. Create an entry in the SIMNOSComponents database listing the receptors that you want to

connect to in this layer. You need to look in SIMNOSSpikeReceptors table for the receptor

IDs, which are associated with a description of the receptor. For example, to connect to the

- 62 -

first third and fourth receptor in the SIMNOS muscle output, we need to add an entry as

follows: INSERT INTO SIMNOSComponents (Name, ReceptorIDs, Width,

Length) VALUES ("Example component description",

"2001,2003,2004", 50, 3);

3. Click on the “Add Neurons” button to launch the Neuron Group Properties Dialog, enter a

name for the layer and select “SIMNOS Component from the “Neuron group type” combo

box. The Neuron Group Properties Dialog should look like Figure 9.3.

4. Since there is only one component and one input layer, you don't have any choices in the

other combo boxes and you just have to set a location for the new layer.

5. Press “Ok” and you will be presented with a dialog to set the properties for the connection

between the device input layer and the component layer that you have just created (see

Figure 9.4).

6. When you have set the connection properties, click “Ok” and you should see a new layer

with connections to the first third and fourth row of the device muscle output layer (see

Figure 9.5).

Figure 9.3. Creating a SIMNOS component

- 63 -

Figure 9.4. Setting connection properties for a SIMNOS component

Figure 9.5. SIMNOS component layer connected to device receptors

- 64 -

10. Patterns

- 65 -

10.1 Introduction

Patterns can be applied to layers in the network for training or testing purposes. Two different types

of pattern are available:

• Static. A snapshot of a firing pattern in the layer at a single point in time. This pattern will

be held for every time step that the pattern is held.

• Temporal. The pattern codes a firing pattern that is spread out over several time steps. Each

neuron will only be fired once at its specified time.

10.2 Adding Patterns

10.2.1 Pattern Manager

The Pattern Manager (see Figure 10.1) is used to load patterns from a file into the SpikeStream

database. Click on Tools->Pattern manager to launch the Pattern Manager, which will display a list

of patterns currently stored in the database. Patterns can be deleted by checking their associated box

and clicking the “Delete Pattern(s)” button. To load a pattern into the database from a file, click on

“Add Pattern(s)”, navigate to the file(s) that you want to add and then click “Ok”. If the pattern

file(s) loads up successfully you will see the new pattern(s) listed in the Pattern Manager.

Instructions for creating pattern files are given in the next section.

Figure 10.1. Pattern Manager

10.2.2 Pattern Files

The easiest way to create patterns is to manually or programatically generate pattern files and load

them into the database using the Pattern Manager. The format is as follows.

- 66 -

• First lines. Can contain any information you wish, such as comments, authorship, etc., but

must not contain hashes. All lines will be skipped by the parser until the information about

the pattern is reached.

• # Type. The type of the pattern. This line should either be “# Type: static” or “# Type:

temporal”.

• # Width. The width of the pattern, for example “# Width: 4”.

• # Height. The height of the pattern, for example “# Height: 4”.

• # Description. A short description of the pattern that will be added to the pattern database,

for example “# Description: Sample static pattern”.

• # Pattern data. After the information about the pattern, the file can contain one or more

pieces of pattern data. After each “#Pattern data:” heading there should be a width x height

matrix of numbers, separated by spaces, containing the pattern at that point in time. For

static patterns, these numbers must be either 1 or 0. For temporal patterns, they must be

between 0 and 250 (currently the maximum number of time steps). The numbers in temporal

patterns code the time that the neuron will be fired after the pattern has been loaded. For

example, if you create a pattern containing a number of fives and set the “Number of time

steps per pattern” in the Simulation tab to ten, then five time steps after the pattern was

loaded, the neurons corresponding to the fives in the pattern would be fired and after another

five time steps, the next pattern would be loaded. All of this will become much clearer when

you try out the static and temporal sample pattern files given in

SPIKESTREAM_ROOT/patterns/examples

NOTE: If your pattern does not behave as expected, make sure that you have the static / temporal

field set correctly for your pattern.

10.2.3 Direct Pattern Generation

Whilst the automatic generation of pattern files is probably the easiest way to generate patterns, it is

also possible to directly add patterns directly to the Patterns database without using the Pattern

Manager. In this case, you need to generate a pattern description and one or more rows of pattern

data. When you have added a couple of test patterns to the database using the Pattern Manager, a

look at the structure of the data will show you how to directly generate your own patterns.

- 67 -

11. Saving and

Loading Databases

- 68 -

11.1 Introduction

SpikeStream Application directly edits the database and so there is no need to explicitly save

anything when you close it apart from any weights that have been changed during a simulation run.

To enable users to save and load different neural networks, SpikeStream can save its databases to a

file and reload them at a later point.

11.2 Saving Databases

Click on “File->Save database” and you will be prompted to choose the file to save the databases

into. When the file is selected you will be presented with the Database Dialog shown in Figure 10.1.

This enables you to select which of the databases you want to save – for example, you may only

want to save the NeuralNetwork database into the file and leave out the Neural Archive, Patterns

and Devices databases. When you have checked the databases that you want to save, press “Ok”

and they will be saved into the specified file. Saving and loading of databases is carried out by the

SaveSpikeStreamDatabase and LoadSpikeStreamDatabase scripts, which use mysqldump.

Figure 11.1. Database Dialog

This operation stores everything in the database including the neuron, synapse, global and noise

parameters.

- 69 -

11.3 Loading Databases

Databases can only be loaded when the simulation is not initialized and an archive is not currently

being played back. The loading of databases follows the reverse procedure to saving of databases.

Click on “File->Load databases”. This will first warn you that the loading operation will overwrite

any of the databases that you choose to load. If you want to keep the current database you should

cancel the loading operation and save the current database in a separate file. When you are ready to

load the database, click “Yes” on this warning and use the file dialog to select the database that you

want to load. SpikeStream will then inspect this file to determine which databases are stored inside

it and present you with a Database Dialog containing a list of the databases that are available in the

file. Select the databases that you want to load and click ok.

IMPORTANT NOTE: In the present implementation, the adding and removing of neuron and

synapse types must be done without SpikeStream running. Loading up a database with different

neuron and synapse classes from the ones currently loaded will lead to errors. The database should

be ok, but you will need to restart SpikeStream to resolve the problem.

11.4 Clear Databases

The databases can only be cleared when the simulation is not initialized and an archive is not

currently being played back. Clicking on “File->Clear databases” resets all data in the databases

except the neuron, synapse and probe types. This operation is not reversible, so make sure that you

do not have any important information or saved simulation runs that you want to keep before

pressing “Yes” when the confirm dialog is displayed. If you want to reset everything back to its

default state including the neuron, synapse and probe types, use the load database feature (section

10.3) to load the file $SPIKESTREAM_ROOT/database/DefaultDatabase.sql.tar.gz. The

CreateSpikeStreamDatabases script can also be used to reset all the databases.

11.5 Import Connection Matrix

This feature is at an early stage of development and it is used to create a neuron group and set of

connections based on a connection matrix in which the x and the y axes are the neuron ids and the

values are the weights. After you have clicked File->Import connection matrix and selected the file

containing the connection matrix it will create the new layer at (0, 0, 0) using the default neuron and

synapse types. Before running this function you will need to create enough space at (0, 0, 0) for the

new layer.

- 70 -

12. Neuron and

Synapse Classes

- 71 -

12.1 Introduction

The dynamic class loading features of SpikeStream make it relatively easy to change the neuron and

synapse models without modifying the whole application. However, a certain amount of work is

required to get a new neuron or synapse class recognized by SpikeStream so that it can run in a

distributed manner.

IMPORTANT NOTE: Adding and removing synapse classes should be done without SpikeStream

running or you will get errors from the Neuron and Synapse parameters dialogs, which only load up

the Neuron and Synapse type information once during initialization of SpikeStream. This can also

occur when you have loaded a database with different neuron and synapse types or with a different

TypeID for the existing types. Restarting SpikeStream usually resolves the problem.

12.2 Creating Neuron and Synapse Classes

12.2.1 Extend the Neuron or Synapse Class

The first stage is to write the code for the neuron or synapse classes, which have to inherit from the

Neuron or Synapse classes in $SPIKESTREAM_ROOT/spikestreamsimulation/src. More

information about these classes can be found in the online source documentation, available on the

project website http://spikestream.sourceforge.net/pages/documentation.html

The easiest place to start when writing your own neurons or synapses is to look at

STDP1Neuron and STDP1Synapse and to tweak these to match your own neuron or synapse model

or learning rule. These examples also illustrate some of the areas that need to be handled carefully

by a neuron or synapse class. The methods that you need to extend are covered in the next two

sections.

12.2.2 Synapse.h

• virtual const string* getDescription() = 0; Returns a descriptive name for the synapse,

which can be useful for debugging class loading. The class that invokes this method is

responsible for cleaning up the string.

• virtual short getShortWeight() = 0; Returns the weight as a short between

MIN_SHORT_WEIGHT and MAX_SHORT_WEIGHT (defined in Synapse.h). This is a

virtual method because some implementations may need the state of the weight to be

calculated retrospectively.

- 72 -

• virtual double getWeight() = 0; Returns the weight as a double between

MIN_DOUBLE_WEIGHT and MAX_DOUBLE_WEIGHT. This is a virtual method

because some implementations may need the state of the weight to be calculated

retrospectively.

• virtual bool parametersChanged() = 0; Called when the parameters of the synapse have

changed. The parameters of the synapses are held as references to parameter maps and when

these are reloaded this method is called.

• virtual void processSpike() = 0; Called when a spike is routed to this synapse. In event-

based simulation the synapse should be updated by this method.

• virtual void calculateFinalState() = 0; Called to update synapse class when all synapses

are being updated at each time step. This method is never called during event based

simulation. In this mode, the synapse class is only updated whenever it processes a spike.

• virtual string getMonitoringInfo(); This method returns a string containing an XML

description of the variables that are available for monitoring within this class. Overload this

method and getMonitoringData() if you want to send monitoring information back to the

main application. This will enable you to view a graph of the weight, for example, as

described in section 7.5.4.

• virtual MonitorData* getMonitoringData(); Returns a monitor data struct (defined in

GlobalVariables.h) containing the data that is being monitored. This returned data must

match that defined in the string returned by getMonitoringInfo();

12.2.3 Neuron.h

• virtual void calculateFinalState() = 0; Calculates the final state of the neuron after all

spikes have been received. In synchronous simulation mode all neurons have this method

called on them at the end of each simulation step.

• virtual void changePostSynapticPotential(double amount, unsigned int

preSynapticNeuronID) = 0; This method is called when a synapse changes the membrane

potential of the neuron. The neuron should update itself when this method is called by

calling calculateFinalState().

• virtual const string* getDescription() = 0; Returns a description of this neuron class for

debugging only. Destruction of the new string is the responsibility of the invoking method.

• virtual bool setParameters(map<string, double> paramMap) = 0; Sets the parameters of

the neuron. These should be defined in their own database, whose name is listed in the

NeuronTypes database. This method is called on only one instance of the neuron class with

- 73 -

the parameters being set and held statically. The parametersChanged() method is called after

the static setting of the parameters to inform each neuron class that the parameters have

changed.

• virtual void parametersChanged() = 0; Called after the parameters have been statically

changed to inform each neuron class that the parameters have been changed. This enables

them to update their learning state, for example, after learning has been switched off.

• virtual string getMonitoringInfo(); This method returns an string containing an XML

description of the variables that are available for monitoring within this class. Overload this

method and getMonitoringData() if you want to send monitoring information back to the

main application. This will enable you to view a graph of the membrane potential, for

example, as shown in section 7.5.4.

• virtual MonitorData* getMonitoringData(); Returns a monitor data struct (defined in

GlobalVariables.h) containing the data that is being monitored. This returned data must

match that defined in the string returned by getMonitoringInfo();

12.3 Build and Install Library

When you have created your neuron and synapse classes, compile them as .so libraries and copy

them to $SPIKESTREAM_ROOT/lib. They need to have the standard library name format, such as

libstdp1neuron.so for a “stdp1neuron” library. More information about this procedure can be found

at: http://www.linux.org/docs/ldp/howto/Program-Library-HOWTO/shared-libraries.html. When

your neuron class calls methods that are unique to the synapse class – i.e. methods that are not

present in Synapse.h – you need to link against the synapse library to build the neuron class. This

can be done by passing information about the dynamic synapse library to gcc when you build the

neuron class. However, to run a simulation using the neuron class, the dynamic library that you

have linked against needs to be accessible by the operating system in one of the known locations.1

This can be done in one of three ways, which have to be carried out on every machine that you run

the simulation on.

Method 1: Change the LD_LIBRARY_PATH Environment Variable

One way to ensure that the operating system can find the dynamic libraries is to add the location of

your neuron and synapse libraries to the system path. This can be done by adding the following line

1 This step could probably be avoided by linking the neuron or synapse class against a static version of the other
neuron or synapse class. However, I have not tried this yet and it is probably more memory efficient to use a
dynamic library.

- 74 -

http://www.linux.org/docs/ldp/howto/Program-Library-HOWTO/shared-libraries.html

to your .bashrc file:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${SPIKESTREAM_ROOT}/lib

This can work fine if you are running SpikeStream on a single workstation, but it is likely to cause

problems running across multiple machines and is not recommended anyway.

Method 2: Add Links to Library in /usr/local/lib

This method creates a link from /usr/local/lib to the location of your libraries. For example, to

install STDP1Synapse, change to /usr/local/lib, log in as root and create the links using the

following command:

ln -s /home/davidg/spikestream/lib/libstdp1synapse.so

libstdp1synapse.so.1

This may have to be done using the full address of the library if SPIKESTREAM_ROOT has only

been defined for the user shell. The advantage of this approach is that it makes it easy to update the

libraries when developing the neuron and synapse classes and it is more portable across systems.

This approach is implemented by the InstallSpikeStream script, which is used to install the neuron

and synapse classes included in the SpikeStream distribution (see section 2.4.5).

IMPORTANT NOTE: You should only install links to these libraries as root if you are the sole user

of SpikeStream on the system. Otherwise you may end up dynamically loading another user's

libraries!

Method 3: Copy Library to /user/local/lib

If your dynamic libraries are rarely going to change, it makes more sense to install them

permanently by copying them to /usr/local/lib, rather than linking from /usr/local/lib to somewhere

else on the system. This approach only makes sense if the other parts of SpikeStream were installed

in /usr/local/bin as well. Since SpikeStream is still in the process of development, this option is not

recommended at this stage.

IMPORTANT NOTE: You should only install these libraries as root if you are the sole user of

SpikeStream on the system. Otherwise you may end up dynamically loading another user's

libraries!

- 75 -

12.4 Update Database

The final stage is to add appropriate entries and tables to the Neural Network database so that

networks can be created and simulated using the new neuron classes. This involves updating the

neuron and synapse types and adding tables for the neuron and synapse parameters. In these

examples, the neuron and synapse classes will be called Example Neuron and Example Synapse.

12.4.1 Add Neuron and Synapse Types

The NeuronTypes and SynapseTypes tables in the NeuralNetwork database hold information about

all of the available neuron and synapse types. To use your new neuron and synapse classes in

SpikeStream, they must have an entry in these tables. Before adding a new neuron type, select a

TypeID. This is a unique identifier for your neuron type which must not conflict with any of the

existing types. In this example, I have selected a TypeID of 2 since the only neuron class currently

in the database is an STDP1Neuron with a TypeID of 1. To add a new neuron type, use the

following SQL:

USE NeuralNetwork;

INSERT INTO NeuronTypes(TypeID, Description, ParameterTableName,

ClassLibrary) VALUES (1, "Example Neuron",

"ExampleNeuronParameters", "libexampleneuron.so");

The SQL for adding a new synapse type is similar:

USE NeuralNetwork;

INSERT INTO SynapseTypes(TypeID, Description, ParameterTableName,

ClassLibrary) VALUES (1, "Example Synapse",

"ExampleSynapseParameters", "libexamplesynapse.so");

12.4.2 Add Parameter Tables

Each neuron and synapse class has an associated parameter table in which the parameters for the

neuron or synapse model can be set individually for each neuron or connection group, which have

entries in the appropriate table. In order for this to work, the parameter table has be set up in a

specific fashion. The SQL for the STDP1Neuron and STDP1Synapse parameter tables is given

below:

- 76 -

USE NeuralNetwork;

CREATE TABLE STDP1NeuronParameters (
NeuronGrpID SMALLINT UNSIGNED NOT NULL,
CalciumIncreaseAmnt_val DOUBLE DEFAULT 1.0,
CalciumIncreaseAmnt_desc CHAR(100) DEFAULT "Calcium increase amount",
CalciumDecayRate_val DOUBLE DEFAULT 60.0,
CalciumDecayRate_desc CHAR(100) DEFAULT "Calcium decay rate",
RefractoryPeriod_val DOUBLE DEFAULT 1.0,
RefractoryPeriod_desc CHAR(100) DEFAULT "Refractory period (ms)",
MembraneTimeConstant_val DOUBLE DEFAULT 3.0,
MembraneTimeConstant_desc CHAR(100) DEFAULT "Membrane time constant (ms)",
RefractoryParamM_val DOUBLE DEFAULT 0.8,
RefractoryParamM_desc CHAR(100) DEFAULT "Refractory parameter M",
RefractoryParamN_val DOUBLE DEFAULT 3.0,
RefractoryParamN_desc CHAR(100) DEFAULT "Refractory parameter N",
Threshold_val DOUBLE DEFAULT 1.0,
Threshold_desc CHAR(100) DEFAULT "Threshold",
Learning_val BOOLEAN DEFAULT 0,
Learning_desc CHAR(100) DEFAULT "Learning",
PRIMARY KEY (NeuronGrpID));

CREATE TABLE STDP1SynapseParameters (
ConnGrpID SMALLINT UNSIGNED NOT NULL,
Learning_val BOOLEAN DEFAULT 0,
Learning_desc CHAR(100) DEFAULT "Learning",
Disable_val BOOLEAN DEFAULT 0,
Disable_desc CHAR(100) DEFAULT "Disable",
CalciumThreshUpLow_val DOUBLE DEFAULT 30.0,
CalciumThreshUpLow_desc CHAR(100) DEFAULT "Calcium threshold up low",
CalciumThreshUpHigh_val DOUBLE DEFAULT 120.0,
CalciumThreshUpHigh_desc CHAR(100) DEFAULT "Calcium threshold up high",
CalciumThreshDownLow_val DOUBLE DEFAULT 30.0,
CalciumThreshDownLow_desc CHAR(100) DEFAULT "Calcium threshold down low",
CalciumThreshDownHigh_val DOUBLE DEFAULT 40.0,
CalciumThreshDownHigh_desc CHAR(100) DEFAULT "Calcium threshold down high",
WeightChangeThreshold_val DOUBLE DEFAULT 0.8,
WeightChangeThreshold_desc CHAR(100) DEFAULT "Weight change threshold",
WeightIncreaseAmnt_val DOUBLE DEFAULT 0.1,
WeightIncreaseAmnt_desc CHAR(100) DEFAULT "Weight increase amount",
WeightDecreaseAmnt_val DOUBLE DEFAULT 0.1,
WeightDecreaseAmnt_desc CHAR(100) DEFAULT "Weight decrease amount",
PRIMARY KEY (ConnGrpID));

As you can see from the examples, each parameter table has a neuron or connection group id as its

primary key. The parameters themselves can either be boolean, which appears as a check box in the

parameter dialog, or doubles. Each value is defined using ExampleName_val, which stores the

value of the parameter and has the specified default, and ExampleName_desc, whose default is the

description of the value. As long as these conventions are adhered to in your parameter tables, you

should be able to set the parameters using the Neuron Parameters Dialog and Synapse Parameters

Dialog and the simulation should be able to access them without problems.

- 77 -

References

Gamez, David (2007). SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks.

Proceedings of ICANN 2007, forthcoming.

Gamez, David, Newcombe, Richard, Holland, Owen and Knight, Rob (2006). Two Simulation

Tools for Biologically Inspired Virtual Robotics. Proceedings of the IEEE 5th Chapter

Conference on Advances in Cybernetic Systems, Sheffield, pp. 85-90.

- 78 -

