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Summary

1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models,

with attendant frustration. This paper compares three open-sourcemodel fitting tools and discusses general strat-

egies for defining and fittingmodels.

2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep

learning curve, while BUGS provides the greatest flexibility at the price of speed.

3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models

that are most common in your subfield) to specific suggestions about how to change the mathematical descrip-

tion ofmodels tomake themmore amenable to parameter estimation.

4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed exam-

ples of application of the three tools to a variety of typical ecological estimation problems; each example links

both to a detailed project report and to full source code and data.

Key-words: JAGS, optimization, parameter estimation, R, ADModel Builder,WinBUGS

Introduction

The size and scope of ecological data sets, and the computa-

tional power available to analyse them, have exploded in recent

years; ecologists’ ambition to understand complex ecological

systems has expanded in proportion. As a result, ecologists are

fitting ever more complicated models to their data. While

quantitatively sophisticated ecologists are gleaning rich

insights from cutting-edge techniques, ecologists without for-

mal training in statistics or numerical computation can become

horribly frustrated when trying to estimate the parameters of

complexmodels:

• Software for fitting suchmodels may be platform-dependent

or prohibitively expensive.

• Inflexible software forces users either to change their models

or tomodify the software.

• The documentation for fitting complex models is often

sparse – software developers assume that users who are fitting

complex models understand the associated, highly technical,

statistical and computational issues.

• Model fitting may stop with errors, or produce obscure

warnings, or get stuck at an obviously bad fit, depending on

subtle changes in the way the model or the starting values are

specified.
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• Software may get stuck at bad fits that are not obvious, or

local optima, without reporting convergence problems; few

diagnostics are provided to determine whether the model is

appropriate.

• Debugging capabilities are often poorly developed.
These challenges are a far cry from the old-school procedure

of designing a well-controlled field experiment with response

variables that are normally distributed (or transformable:

O’Hara & Kotze 2010; Warton & Hui 2011) and analysing

them according to simple ANOVA frameworks (Underwood

1996; Quinn & Keough 2002; Gotelli & Ellison 2004). Even

when logistical constraints required an experiment to be per-

formed in experimental blocks, the results could still be analy-

sed by figuring out the right category of experimental design

(e.g. nested or randomized block) and looking up the appropri-

ate sums of squares and degrees of freedom for F tests. ‘New

school’ ecologists want to handle data, often observational

and unbalanced, that are intrinsically non-normal, may be het-

eroscedastic, display nonlinear responses to continuous predic-

tor variables and involve complex correlation structures that

do not fit into the classical framework of nested and partly

nested designs. Rather than being restricted to models that fit

into classical statistical frameworks, ecologists should be able

to apply the model that seems most appropriate for their ques-

tions. Even well-behaved experimental data that are tradition-

ally analysed using ANOVA may be analysed with more

appropriate models, such as time-structured population

dynamics models (de Valpine 2003), to improve precision or

accuracy or address more complex ecological questions. Of

course, there is no free lunch: model complexity should always

be constrained by the available data (Ludwig &Walters 1985;

Adkison 2009).
In a nonlinear statistical model, the predicted values are

nonlinear functions of the parameters, not necessarily of the

predictor variables: thus, a quadratic model (y ¼ a þ bxþ
cx2) is linear in the statistical sense (y is a linear function of

the parameters a, b and c even though it is a nonlinear function

of the predictor variable x), while a power-law model

(y ¼ axb) is not: in the linear regression model y = a + bx, y

is a linear function of both the parameters a and b and the

predictor variable x.
In the power-law example, the model could be linearized by

taking logarithms – log y = log a + b log x. Note, however,

that the nonlinear model y∼a*x^b (using nls() in R) is dif-

ferent from the linear model log(y)∼1 + log(x) (using lm

()), because the former assumes an error term with a constant

standard deviation, while the latter assumes a constant coeffi-

cient of variation. However, most nonlinear models, such as

the supplementary examples listed in Table 1, require the use

of more general numerical optimization algorithms to estimate

best-fit parameter values. The user must explicitly define an

objective function that measures the fit of the model – typically

this computes the residual sum of squares, log-likelihood or

posterior probability – and pass it to the software as input. The

software then uses numerical methods to find either a single

value representing the best fit (in the case of maximum likeli-

hood estimation) or a sample of values from near the best fit

that represent a sample from the posterior distribution (in the

case of Bayesian estimation). In order to define the objective

function properly, users generally need to understand the

properties of a variety of probability distributions and deter-

ministic response functions (Clark 2007; McCarthy 2007;

Royle &Dorazio 2008; King et al. 2009; Link & Barker 2010).

Even once a model has been properly formulated, however,

fitting it to the data to estimate the parameters is often

challenging.

The bottom line is that if ecologists want to fit complex

models to complex data, they will need powerful, flexible

model-fitting tools. The good news is that these tools do exist:

the bad news is that there is a dearth of worked examples and

guidance for using them. In this paper, we report on the results

of a National Center for Ecological Analysis and Synthesis

(NCEAS) working group whose mission was to apply a set of

different tools to a broad spectrum of nonlinear ecological

modelling problems (Table 1), with the goals of (i) comparing

the performance and applicability of the tools in different situ-

ations and (ii) producing a series of worked examples that

could serve as guides for ecologists. The full results are avail-

able at https://groups.nceas.ucsb.edu/nonlinear-modelling/

projects; we encourage interested readers to browse and pro-

vide feedback.

In the interests of addressing the first problem above (expen-

sive and/or platform-dependent tools), we restricted our scope

to several general-purpose, powerful, but free and open-source

software (FOSS) tools: R, AD Model Builder and BUGS,

described below. Because they are free, they are available to

researchers with restricted budgets – such as students and

researchers in developing countries or at smaller, less research-

intensive institutions. Because they are open-source, they offer

transparency consistent with the philosophy of reproducible

research (Peng 2009) and allow end-users to modify the code

according to their particular needs. In practice, few working

ecologists are likely to look at the underlying source code for

these software tools, let alone modify it, but the availability of

the code for modification does allow rapid diversification and

Table 1. List of model-fitting projects executed in R, ADMB, and

BUGS (Detailed project reports and full source code and data for each

project are available from https://groups.nceas.ucsb.edu/nonlinear-

modeling/projects.)

Name Description

OrangeTree Nonlinear growthmodel (normal/least-squares)

Theta Theta-logistic population growthmodel (state-space)

Tadpole Size-dependence in predation risk (binomial response)

Weeds Simple population growthmodel

Min Time series ofmineralization (matrix-exponential

solution ofODEs): normal/least-squares

Owls Zero-inflated count data with random effects

Skate Bayesian state-spacemodel of winter skatemortality

(ADMB, BUGSonly)

Nmix N-mixturemodel with randomobserver effects

(ADMB, BUGSonly)

Wildflower Flowering probability as a function of size; binomial

GLMMwithmultiple random effects
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improvement by more computationally sophisticated ecolo-

gists. In the same spirit, all the source code for the worked

examples is available on the companionwebsite to this article.

We chose a variety of problems to exercise the capabilities of

these tools, to illustrate a wide range of challenges and to create

examples that would be useful to a broad set of users (Table 1).

All the problems are nonlinear, ranging from simple models of

normally distributed data tomore complexmodels incorporat-

ing random effects, unusual distributions (mixture distribu-

tions or zero-inflation), spatial and temporal correlation and

imperfect detection. One way in which our scope is restricted is

that all of our data sets are moderate-sized: the largest data set

was around 3600 observations of 10 variables (size on disk

c. 160 kB). Thus, we are not exploring ‘big data’ in this exer-

cise, and our methods emphasize parametric model fitting

rather than exploration of patterns (Breiman 2001). We also

do not investigate highly complexmodels that are used in some

applications such as fisheries stock assessment (Maunder et al.

2009; Fournier et al. 2012).

In the rest of this paper, we (i) describe the scientific and cul-

tural context for our work – what tools exist, in which fields

they are used and how the development of statistical methods,

software tools and particular scientific research projects can

interact for mutual benefit; (ii) provide details of our method-

ology for implementing the examples; and (iii) attempt to syn-

thesize useful general lessons from our experience that will help

nonstatistical ecologists with their model-fitting challenges.

The authors of this paper are all experts in at least one area of

computational or statistical ecology: while we tried conscien-

tiously to see things from the perspective of mainstream, non-

statistically expert ecologists, readers are cautioned to take

terms like ‘straightforward’ and ‘simple’ with a grain of salt.

Scientific and cultural environment

The current scientific and cultural climate is ripe for rapid

development and dissemination of new computational and sta-

tistical tools. Statistical and computational literacy of ecolo-

gists is increasing. On the other hand, there is lots of room for

improvement –many new approaches in nonlinear estimation

are still challenging even for motivated and statistically savvy

ecologists. Tools useful to ecologists are often under rapid

development, and as such theymay be buggy or lack documen-

tation, or have obscure interfaces.

We settled on three tools for constructing and fitting nonlin-

ear ecological models: R is well known within the statistical

and ecological communities and was released as free software

in 1995. A variety of books specific to ecological modelling or

data analysis are based on R (Bolker 2008; Reimann et al.

2008; Soetaert & Herman 2008; Stevens 2009; Zuur et al.

2009), while other more general R-based books are written by

and accessible to ecologists ( Crawley 2002, 2005, 2007). R is

mature and offers a convenient working environment: of the

tools we describe, R is the only one that offers a general plat-

form for data management and analysis – in fact, all of the

members of our group (even those who preferred other tools

for model fitting) relied onR for managing and preparing data

and for generating tabular and graphical output. A large vari-

ety of alternative graphical or script-editing interfaces are

available for R (e.g. Emacs/ESS, Vim-R, Notepad++, Tinn-R,

RStudio, RKward), as well as interfaces with many other tools

such as relational database management systems, geographical

information systems and other modelling tools such as the

ones we describe below.

Advantages:

• Interactive environment with convenient high-level syntax

for common tasks in statistical analysis and graphics.

• Very easy to install on all common platforms.

• As the most commonly used of these software tools, R has

the largest quantity of help and documentation available in the

form of books, mailing lists, courses and the likelihood of a

nearby colleague who is well versed in R.

• A very large number of packages is available for R – more

than 4000 packages in the central repository, including more

than 100 specifically related to ecological modelling.

This profusion can also be viewed as a disadvantage. Despite

the fact that all of these packages are easy to install from a cen-

tral location, it can be difficult to find and evaluate the quality

of third-party packages. Some resources that attempt to rem-

edy this problem are the R Environmetrics Task View (http://

cran.r-project.org/web/views/Environmetrics.html), the sos

package, and the CRANtastic website (http://crantastic.org/

search?q=ecology).

• It is relatively easy for users and beginning developers to cre-

ate their own packages and, if appropriate, post them to a cen-

tralized archive site.

Disadvantages:

• Originally designed for interactive data analysis, R is gener-

ally slower than compiled programming languages such as

Java, FORTRAN or C++ (or AD Model Builder, which is

based on compiled C++ code), although carefully written code

often compares favourably.

• Although lots of documentation is available, the documen-

tation that comes with R is unquestionably terse and directed

towards non-novice users. The standard advice given to hope-

ful R users is to find an R-oriented book (some are listed

above) that covers their area of interest.

AD Model Builder (ADMB; Fournier et al. 2012; http://

admb-project.org) is the most powerful but the least known

and least polished of the software tools we use. First released in

1993 and an open-source project since 2007, ADMB has a

vibrant user community within the fields of resource manage-

ment. In fisheries science, more than 90 peer-reviewed papers

have cited AD Model Builder. An integrated development

environment (ADMB-IDE) is available (Magnusson 2009),

facilitating the installation and use of the software. It is possi-

bly the fastest and most robust FOSS tool for general-purpose

nonlinear estimation. The user first writes a definition of the

objective function (typically the negative log-likelihood func-

tion) in an extension of the C++ language containing utility

functions for statistics and linear algebra. ADMB then com-

piles the model definition into an executable file that minimizes

the objective function for a specified set of data. In addition to

the speed advantage from compiling, ADMB implements

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 501–512
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automatic differentiation (AD), an algorithm that rapidly and

accurately calculates the derivatives of the objective function

(Griewank &Corliss 1992), unlike the optimization routines in

R, which typically rely on less-stable finite-difference approxi-

mations.

Advantages:

• ADMBwas often themost robust and fastest of the tools we

tested.

• Several alternative tools to evaluate the uncertainty of both

estimated parameters and derived quantities: the deltamethod,

profile likelihood and a post hoc Markov chain Monte Carlo

(MCMC) implementation (the [skate] example shows an

example ofMCMC inADMB).

• Estimation of random-effects models via a general Laplace

approximation routine (Skaug & Fournier 2006) that allows

the incorporation of continuous random effects into a general

model ([theta], [skate], [owls] projects). Our other soft-

ware tools are limited either to a specific subset of model types

(R) or to a specified list of deterministic functions and stochas-

tic distributions (BUGS).

• Support for constrained optimization (see Section ‘Con-

strain parameters’) and optimization in phases (or ‘masks’

Nash & Walker-Smith 1987), where some estimated parame-

ters remain constant until the final stages of the optimization,

when all parameters are estimated. Masks are also available in

the R packages bbmle, Rcgmin and Rvmmin, although they

cannot be switched on in the course of a single optimization

run as inADMB.

• ADMB’s algorithm is sufficiently robust that one can fit sim-

ple models with the default (all zero) starting parameters –

something that is rarely possible with the other tools we evalu-

ated. This is partly due to ADMB’s use of exact numerical

derivatives calculated by automatic differentiation.

• Once a model is successfully built in ADMB, the compiled

executable can be distributed as a stand-alone program and

run with new data sets (on the same platform/OS) indepen-

dently of any other tools, unlike R or BUGS code which

require full installations. For researchers who already use R,

the R2admb interface to R simplifies the task of preparing data

for input toADMBand analysing results fromADMBfits.

Disadvantages:

• Little documentation is available for ADMB: mainly the

user’s manual, an overview paper (Fournier et al. 2012),

resources on the ADMB project website and an active mailing

list. There is a single published book describing how to use

ADMB (Millar 2011) and the user community is small.

• Although it is difficult to make a precise comparison

between the ease of learning to use different tools, an informal

rating exercise of the participants in our group (all experienced

modellers) found that ADMB rated lowest on ease of use.

Scoring on a range from 1 = very hard to 5 = very easy, most

(11/16) participants gave ADMB a score of 2 (mean 2�1, range
1–3), while most (9/16) gave R a score of 4 (mean 3�6, range 2–
5). BUGS was intermediate, with a modal value of 3 (6/15,

mean 3�3, range 2–5).
• ADMB is still a relatively young project. The latest release

(11.0, July 2012) included several important bug fixes, as well

as new user functions that were not yet covered in the user

manual at the time of release.

BUGS (Bayesian inference Using Gibbs Sampling)

describes a family of tools that includes the original ‘clas-

sic’ BUGS, the widely used WinBUGS with a graphical

front-end for Windows, its open-source version Open-

BUGS and the independently developed JAGS, which

uses a largely compatible model description language. The

original BUGS and WinBUGS were developed in the

mid-1990s, the current open-source version (OpenBUGS)

first appeared in 2004, and JAGS was released in 2007

(Lunn 2009). Like ADMB, the user writes a model defini-

tion in a specialized language – in the case of BUGS, the

language is a special-purpose language designed for

describing hierarchical Bayesian models, with a syntax

based on defining relationships using probability distribu-

tions. After specifying data and initial values for the

parameters, the user then runs one or more Markov

chains based on the model definition, evaluates the suc-

cess of the chains in converging on a stable posterior dis-

tribution, either graphically or numerically, and draws

conclusions from the posterior sample (Lunn et al. 2012).

One obvious difference between BUGS and the other

software tools is that BUGS uses an explicitly Bayesian

framework. ADMB and R users most often work in the

frequentist or likelihood frameworks, although both tools

have the capability to use Bayesian inference as well. In

our analyses, we rarely found big differences between the

results of our Bayesian and frequentist analyses. The

point estimates sometimes differed slightly due to the dif-

ference between the posterior mean reported by BUGS

and the maximum likelihood estimate, which is approxi-

mately equal to the mode of the posterior distribution

when the prior distribution is uninformative. (The esti-

mated posterior densities in the [theta] project were

clearly asymmetric and non-Gaussian, leading to a large

difference between the posterior modes, medians and

means.) The confidence intervals reported by BUGS were

often slightly wider, because BUGS allows more naturally

for nonquadratic log-likelihood (or log-posterior) surfaces

and because its MCMC algorithm more easily accounts

for diverse sources of variation than the default algo-

rithms used by other tools: see the [owls] project for an

example.

Advantages:

• BUGS makes the power of the hierarchical Bayesian

approach available in a reasonably simpleway for awide range

of possiblemodels.

• BUGS defines relationships among observations and

parameters using shorthand notation for probability distribu-

tions, which some users findmore intuitive thanwriting out full

likelihood equations and priors.

• By requiring the user to write out hierarchical models

explicitly, users often gain a clearer understanding of their

models than when using more black-box approaches such

as the basic generalized linear models available in some R

packages.
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• BUGS handles discrete random variables, for example dis-

crete mixture models, which are not possible in ADMB and

which can only be done in R using special-purpose packages.

• Provides posterior distributions and confidence regions for

all parameters in the model and for quantities computed from

them, which can be challenging to do via other approaches.

Disadvantages:

• BUGS is generally the slowest by far of the approaches we

tested, although the results of a BUGS run do provide more

information on confidence intervals than the corresponding

deterministic fit via R or ADMB. Part of this speed penalty is a

characteristic of Bayesian analysis rather than of BUGS itself;

for example, MCMC analyses with ADMB usually take con-

siderably longer than ADMB’s maximum likelihood estima-

tion.

• BUGS is quirky, and debugging BUGS code is well known

to be challenging, due to the opacity of the underlying compu-

tations, cryptic error messages and the inherent difficulty of

building robustMCMC samplers for complexmodels.

• BUGS has the smallest range of available distributions and

functions of the three software tools tested, although there are

tricks for defining arbitrary distributions in WinBUGS or

JAGS (Spiegelhalter et al. 2002, p. 36; McCarthy 2007, p.

201), while OpenBUGS offers a generic dloglik distribution

(Spiegelhalter et al. 2011).

• BUGS has a confusing array of available variants (Open-

BUGS/LinBUGS/WinBUGS/JAGS) and interfaces to R

(iBUGS, R2jags, R2OpenBUGS, R2WinBUGS, rbugs,

rjags, runjags), running on various platforms. WinBUGS

and its R interface R2WinBUGS will run natively under Win-

dows, and under Linux or MacOS via WINE (a Windows

compatibility library which must be installed separately);

OpenBUGS will run natively on Windows and Linux, but

requiresWINE to run onMacOS, and its standard R interface

(BRugs) is not available from the central R package repository

(CRAN) and will only run on Windows. JAGS will run on all

three platforms, but is incompatible with some WinBUGS

extensions (GeoBUGS, PKBUGS, WBDiff), and has several

different R interface packages. Even the BUGS experts present

at the meeting had a hard time determining which versions

could run onwhich platforms!

• BUGS often has difficulty with complex, parameter-rich

models. Reformulating models in statistically equivalent but

computationally more stable and efficient forms can often

help, but doing so requires a great deal of experience and/or

understanding of the theory underlying the sampling algo-

rithms (or simple trial and error).

• BUGS enforces a Bayesian perspective, which users may not

prefer, although a relatively new method called data cloning

(Lele 2007; Ponciano et al. 2009), implemented in the R pack-

age dclone (S�olymos 2010), leverages the power of MCMC

to do frequentist analyses.

• Because BUGS uses Bayesian MCMC methods, users are

confronted with a number of additional decisions about which

priors are appropriate, how many chains to run for how long

and how to assess convergence. It may be especially difficult to

detect problems with unidentifiability (models whose parame-

ters cannot be estimated from the available data: see Section

‘Keep it simple, at least to start’); deterministic approaches

implemented in R and ADMB are more likely to (correctly)

report failure to fit suchmodels.

For further comparisons between ADMB and BUGS, see

Pedersen et al. (2011).

Case studies

We brainstormed to develop a diverse collection of problems.

In most cases, we had access to a real, sampled data set. To

assess metrics such as bias, mean squared error and coverage

that can only be computed when the truth is known, we wrote

simple programs to simulate new data sets, either with parame-

ter values based on the original fit or with reasonable values in

the same general region of parameter space. We then used an

automated framework to fit each model to each of the simu-

lated data sets, gather the estimated parameters and estimate

bias, variance, mean squared error and coverage. We

attempted to implement identical statistical models with each

computational tool (R, ADMB and BUGS), so the parameter

estimates should have been identical for all models for a given

simulated data set, but in fact this procedure was a good test of

the robustness of the approaches. Even with a correct model

all the programs would sometimes fail to converge to themaxi-

mum likelihood estimate. (Stochastic approaches such as the

MCMCalgorithms implemented by BUGS give slightly differ-

ent results on each run, but the answers should at least have

been very similar, taking into account the differences between

Bayesian and likelihood-based estimation). Furthermore, esti-

mating reliable confidence intervals that incorporate all rele-

vant components of variation is often the most unstable and

difficult part of an analysis, and the different packages often

used different approaches to confidence interval estimation.

Almost all data analyses involve an iterative process of

adjusting the statistical model to fit the characteristics of the

data (McCullagh & Nelder 1989, pp. 390–391). For the pur-

poses of comparison among the three software packages, we

tried to stick to our originally proposed model, even if data

exploration revealed problems such as overdispersion. This

approach kept the scope of our exploration contained and was

also useful because adjustingmodels to handle deviations from

the originally proposed model often had to be carried out dif-

ferently in different packages. In the associated write-ups of

the methods, however, we felt free to explore sensible varia-

tions of the original models, even if they could only be imple-

mented in a subset of the packages we covered.

Advice

It is hard to find accessible, practical advice onmaking numeri-

cal optimization work better: there is no ‘Dummies’ Guide to

Ecological Model Fitting’, and the guides that exist tend either

to assume a high level of mathematical and computational

sophistication or to be scattered across a wide range of fields:
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we suggest McCullough (2004), Press et al. (2007) and Jones

et al. (2009, ch. 12) as reasonable starting points. In this sec-

tion, we give some recommendations that emerged from our

working sessions.

FOLLOW THE HERD

It is generally wise to use the tools that are most popular

among researchers in your area. In addition to the greater

availability of examples and help, it will also be easier to con-

vince reviewers of the validity of familiar techniques, and

reviewers will be more likely to detect potential problems with

themethods used. That said, one should not hesitate to try new

methods when they are clearly more powerful than classical

ones, for example approaches based on modelling discrete dis-

tributions rather than transforming data (O’Hara & Kotze

2010), or mixed models for handling data with unbalanced

blocks (Pinheiro&Bates 2000).

Similarly, when formulating a problem, it is often a good

idea to use existing definitions, both because they will be more

easily accepted by reviewers and peers and because the stability

and other numerical properties of an established model are

more likely to have been considered by experts. For example,

Vonesh & Bolker (2005) used a novel equation to model a uni-

modal (hump-shaped) relationship for predation risk as a func-

tion of prey size. While they did get useful results, they later

realized (Bolker 2008) that they had found only one of two

possible ‘best’ fits to the data, that is, a local maximum of the

likelihood surface. A previously proposed model (Persson

et al. 1998), which we used in the [tadpole] project, allows

for similar shapes but appears to have only a single globalmax-

imum. Out of many possible relationships, the [wildflower]

project chose to use a logistic relationship between the number

of seed pods and the probability of flowering, in part so that

the model would fit into a standard generalized linear mixed

modelling framework.

When a nonstandard formulation is used, the results should

be compared to the standard definition, and the reason for any

deviations should be well understood.

KEEP IT SIMPLE, AT LEAST TO START

Most complex models are extensions of simpler models. Dur-

ing the initial stages of model fitting, it often makes sense to fit

reduced versions of themodel to build upworking code blocks,

to find potential problems with the data and to get initial esti-

mates of parameters for more complex models (see next sec-

tion). For model/code development, choose a subset of your

data that makes your code run fast during the debugging

phase.

In their Chapter 19 on ‘Debugging and speeding conver-

gence’, focussed on BUGS but applicable to complex models

in general, Gelman&Hill (2006) say:

‘Our general approach to finding problems in statistical

modelling software is to get various crude models (for

example, complete pooling or no pooling, or models with

no predictors) to work and then gradually build up to the

model that we want to fit. If you set up a complicated

model and you cannot get it to run – or it will but its

results do not make sense – then either build it up from

scratch, or strip it down until you can get it to work and

make sense.’

Their illustration of this concept (fig. 19.1, p. 416) shows a con-

tinuum between simple models that can be fit successfully and

complex models that cannot be fit, or that give nonsensical

results. Uriarte & Yackulic (2009) show a similar figure,

although they emphasize inference more than the nuts and

bolts of getting a workingmodel.

In extreme cases, ecologists try to fit unidentifiable models –

models that cannot, sometimes in principle and more often in

practice, be fitted at all with the available data. This happens

especially to inexperienced and enthusiastic modellers, but

even experts can get caught occasionally. Bolker (2009) says:

‘[u]nfortunately, it is hard to give a general prescription for

avoiding weakly unidentifiable parameters, except to stress

common sense again. If it is hard to imagine how one could

in principle distinguish between two sources of variation –

if different combinations of (say) between-year variation

and overdispersion would not lead to markedly different

patterns – then theymaywell be unidentifiable.’

There are more formal methods for detecting unidentifiability

(Luo et al. 2009; Cole et al. 2010; Lele et al. 2010), but they

are rather technical: common sense, and (in the spirit of the

previous section) using models that are similar to ones that

have previously been successfully fitted by other researchers in

the field is the only advice about identifiability that fits within

the scope of this paper.

Some specific suggestions to overcome problems when fit-

tingmodels to data:

• Initially, omit complexities of the model such as random

effects, zero-inflation or imperfect detection. The ‘complete

pooling’ referred to by Gelman and Hill above means leaving

the blocking factor out of the model completely, while ‘no

pooling’ means fitting the blocking factor as a fixed effect. In

some cases, such as analysis of nested designs (Murtaugh

2007), averaging over blocks gives exactly the same answers

for the fixed effects as a more complex mixed model. Do not fit

a complexmodel if a simple one will do.

• Hold some parameter values constant, or in Bayesian mod-

els use strong priors such as normal distributions with large

precision (i.e. small variances) to restrict parameters to a nar-

row range.

• Reduce themodel to a simpler form by setting some parame-

ters, especially exponents or shape parameters, to their null val-

ues. For example, fit a model with Poisson errors first before

trying one with negative binomial errors, or fit an exponential

survival model before a more complex model with Gamma- or

Weibull-distributed survival. ADMB formalizes this approach

by defining phases, where some model parameters are initially

held constant at their initial values, but estimated along with

the other parameters in later phases.
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PICK REASONABLE STARTING VALUES

Specifying good initial parameter values is important when fit-

ting complex models. New users are often surprised by this

requirement – if we already know the parameters, why are we

spending so much effort to fit the model? – but starting the

optimization sufficiently close to the best values often makes

the difference between success and failure.

• ADMB’s optimization methods are sufficiently robust that

one can often get by without explicitly stating initial parameter

values. In ADMB, unconstrained parameters are initially set

to zero by default and constrained parameters are set to the

midpoint of the constraint region. However, the [weeds] pro-

ject demonstrated a situationwhereADMB found a falsemini-

mumwhen starting from the default set of all-zero parameters.

• BUGS can in principle be usedwithout initial parameter val-

ues; initial values for the Markov chains are chosen randomly

from the prior distributions of the parameters. For complex

problems, or for models with unobserved (latent) categorical

variables in the definition, WinBUGS is very likely to crash or

have extreme difficulty converging when sensible initial values

are not set explicitly.

• R’s tools for fitting models almost all require initial parame-

ter values to be specified, although the nonlinear least-squares

function nls does allow for a class of ‘self-starting’ models.

R’s optimizing functions are more likely than ADMB’s to be

sensitive to the choice of starting values.

The most important step in specifying initial parameter val-

ues is simply to make sure that the values are of the right order

of magnitude. Problems at this stage can happen when a user

takes amodel from the literature, or inherits model-fitting soft-

ware from a colleague, whose parameter definitions they do

not understand. If you understand the definitions of parame-

ters and the biology of your system, you should be able to

guess parameter values at least within one or two orders of

magnitude. For parameters that are very uncertain (and whose

values must be positive), estimating the logarithms of the origi-

nal parameters (e.g. estimating the log of the growth rate rather

than the growth rate itself) can be helpful.

Here are some other strategies for finding reasonable start-

ing values for parameters:

• If possible, plot the data and ‘eyeball’ initial values for

parameters, or overlay predictions from suggested starting val-

ues to check that the predictions for the initial values are in the

same range as the observed responses.

• Fit simple models to subsets of the data. For example,

approximate the initial slope of a saturating function by fitting

a linear regressionmodel, or estimate an intercept by averaging

the first 5% of the data, or estimate an asymptote by averaging

the last 5%of the data.

• Fit approximate models to transformed data. For example,

estimate an exponential growth rate by fitting log (y) as a

function of x, or the parameters of a power function by fitting

log (y) vs. log (x). Similarly, estimate a Holling type II or

Michaelis–Menten function y = a/(b+x) by fitting a linear

regression to the inverse of y: 1/y = (1/a) � x + (b/a). If zeros

in the data preclude this transformation, either omit them or

add a small constant – the goal of this step is a decent first

approximation, not precise answers.

• As in Section ‘Keep it simple, at least to start’, start by build-

ing a model that is a restricted version of the target model, and

use its estimated parameters as starting points for estimation in

the full model.

Even these procedures can be difficult for very complex data

sets that are hard to represent graphically. In this case, one

must fall back on the ‘know the units of your parameters and

use common sense’ suggestions above.

RESHAPE THE GOODNESS-OF-F IT SURFACE

All model-fitting exercises can be thought of geometrically, as

an attempt to find the highest peak of the likelihood/posterior

surface (representing the maximum likelihood estimate or the

mode of the posterior density in Bayesian analyses) and

explore its neighbourhood (to construct confidence or credible

regions). In general, numerical estimation and calculation of

confidence intervals works best for likelihood surfaces with cir-

cular contours. Strongly anisotropic contours such as long and

skinny ellipses, or banana shapes, represent differences in vari-

ance among parameters; ellipses that run at angles to the axes

represent correlated parameters; and nonelliptical contours

represent parameters whose sampling distribution or posterior

densities are non-Gaussian (Bolker 2008, fig. 6.14).

One can often improve the shape of the likelihood surface,

and hence the stability and efficiency of model fitting, without

changing the biological meaning of the model or its goodness-

of-fit to the data, by changing the way the model is parameter-

ized. Like specifying starting values, the need to change param-

eterizations varies somewhat among software tools.

Depending on the robustness of the tool (ADMB is generally

the most robust, followed by R, JAGS and WinBUGS in that

order), reparameterization may be unnecessary, helpful or

essential.

Remove eccentricity by scaling

Parameters with strongly different scales lead to likelihood sur-

faces with different slopes or curvatures in different directions.

In turn, such surfaces can cause numerical problems for meth-

ods that (i) approximate the slope of the goodness-of-fit sur-

face (e.g. most of the built-in optimization methods in R use

so-called finite-difference approximations to compute deriva-

tives) or (ii) solve matrix equations to find the best directions in

parameter space to explore, or to estimate the curvature of the

surface at the best fit in order to construct confidence intervals

for the parameters. Rescaling parameters by appropriate con-

stants can thus improve the robustness of fit, as well as improv-

ing parameter interpretability (Schielzeth 2010). For

interpretation, researchers often scale the predictor variables

by their standarddeviations (Gelman&Hill 2006). For numer-

ical stability, the goal is for the derivatives of the scaled vari-

ables to be within an order of magnitude of each other.

Similarly, it is useful to scale the parameters so that their

expected starting values are all within an order of magnitude.
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In its original form, the [weeds] project problem had parame-

ters that ranged by three orders of magnitude, requiring

parameter scaling.

The parscale option in R’s optim function sets implicit

scales on the parameters. For example, using control=list
(parscale=abs(startvals)) scales the parameters

according to their starting values startvals (this works if all

the starting values are nonzero), while parscale=abs(coef
(fit)) would work to scale the parameters when re-starting a

fit (e.g. from a stopping point of an algorithm that might not

be a true optimum). However, some of the optimizers available

in contributed packages do not allow for scaling in this way –

although scaling can always be performed manually. The R

package optimx provides parameter scaling for a wider range

of optimization algorithms.

The set_scalefactor option in ADMB allows parame-

ter scaling, but only inmodels without random effects. Inmod-

els with random effects, any necessary parameter scaling must

be performedmanually.

Remove correlation in the likelihood surface

Strongly correlated likelihood surfaces can be difficult for both

hill-climbing algorithms (i.e. ADMB, R optim) and MCMC

algorithms (BUGS).

Centring. One simple strategy for removing correlation

among the parameters is to centre the predictor variables,

by subtracting their mean or by subtracting some mean-

ingful round number near the centre of the distribution

of the predictor variables (e.g. one might choose to sub-

tract 10 rather than �T ¼ 10�792 from a temperature vari-

able, thus using ‘difference from 10 �C’ rather than

‘difference from 10�792 �C’ as the new predictor). Centr-

ing redefines the intercept or reference level of the model

and strongly reduces or eliminates the correlation between

intercept and slope parameters. While it is often

recommended for purposes of interpretability (Schielzeth

2010), it can also improve fitting significantly. For exam-

ple, the BUGS code used for the [owls] project con-

verged much faster for centred than for noncentred

predictors, although the [wildflower] project did not

show a similar difference.

Centring only makes sense when the parameters enter the

model in a linear way, and when the relevant parameter is not

constrained to be positive. For example, switching from

y = exp (a + bx) to y ¼ expða þ bðx� �xÞÞ leaves the

meaning of the model unchanged, but switching from

y ¼ axb to y ¼ aðx� �xÞb changes the model fundamentally.

(On the other hand, changing from log (y) = a + b log (x)

to log (y) = a + b( log (x)� log (x)), or even logðyÞ ¼
a þ bðlogðxÞ � logð�xÞÞ, is OK.)

Orthogonalization. If parameters are still correlated after cen-

tring, one may be able to change parameters to reduce the cor-

relation. This can be done formally by working with matrix

transformations of the original parameters. More informally,

one can work with the known structure of the problem to

reduce correlation. For example, the shape (a) and scale (s)

parameters of a Gamma distribution are often strongly corre-

lated, leading to a curving ridge in the likelihood surface. If so,

reparameterizing the distribution in terms of the mean (=a�s)
and variance (¼ a�s2) will improve fitting. Changing the

parameterization of a nonlinear model can separate the prob-

lem in such a way that uncertainty does not contaminate all of

the parameters. For example, the [weeds] project used amodel

for the expected density of weeds w at time t:

wðtÞ ¼ b1=ð1þ b2 expð�b3tÞÞ, where b1 ¼ w1 is the asymp-

totic density, b2 is a combination of the initial density w0 and

the asymptotic density, and b3 is the maximum growth rate,

also proportional to the asymptotic density. The data for the

weeds example show only an accelerating curve, with little evi-

dence of saturation, making the asymptote (w1) hard to esti-

mate. Because b1, b2 and b3 all involve w1, the estimation

problem is challenging (although ADMB can solve it if given

reasonable starting values). Re-parameterizing the model to

change the second parameter from b2 to w0 separates the

poorly determined asymptotic density w1 from the other

parameters (w0, b3), making the model fitting faster and more

robust.

Make contours elliptical

Finally, by transforming parameters appropriately, for

example log-transforming, one can make the contours of the

likelihood surface more elliptical or equivalently make the

log-likelihood surface a quadratic function of the transformed

parameters: for example, log transformation is essential in the

[theta] project. While most optimizationmethods can handle

smooth surfaces that are not quadratic (surfaces with disconti-

nuities or sharp transitions present special challenges),

quadratic surfaces have particular advantages for inference

and computation of confidence intervals.

• Wald significance tests and confidence intervals, which are

based on a quadratic approximation to the likelihood surface

at its maximum, are most reliable when the surface is nearly

quadratic. Alternative approaches such as likelihood profile

confidence intervals relax this requirement, but require much

more computation, increase the chance of convergence prob-

lems andmay not be available in all software tools.

• Bayesian MCMC approaches do not depend on quadratic

surfaces, but many convenient analytical approximations such

as the Bayes (Schwarz) information criterion (BIC) and devi-

ance information criteria (DIC; Spiegelhalter et al. 2002) do.

In particular, they depend on multivariate normality of the

posterior distribution, which is equivalent to the log-posterior

surface being quadratic.

• When the posterior density ismultivariate normal, all Bayes-

ian posterior distributions are symmetric and hence the two

alternative approaches for constructing Bayesian confidence

intervals, quantiles and highest posterior density intervals,

agree with each other (and with frequentist confidence inter-

vals, if the priors are uninformative).
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CONSTRAIN PARAMETERS

When ‘box constraints’ (independent bounds on each parame-

ter) are available, it is often a good idea to specify them for

each parameter. This prevents parameters wandering to

extreme values where the surface may be very flat (and hence

derivatives may be calculated poorly, or MCMC chains get

stuck for a long time), or where numeric underflow or overflow

may lead to errors. (Numeric under- or overflow occurs when

some intermediate values in a computation are too small or

large to be represented as numeric floating-point variables at a

given precision. For example, in a typical modern computing

environment values smaller than about 10�308 are rounded

down to zero, and values larger than about �10308 are flagged

as infinite. While these problems can sometimes be solved by

increasing the precision of the calculation, it is usually more

useful to either rearrange the computation (for example fitting

parameters on a logarithmic scale) or avoid problematic

regions of parameter space by setting constraints.) The

[weeds] project required that the parameters be kept positive;

either fitting log-transformed parameters or setting box con-

straints workedwell.

Box constraints are available in ADMB, and constraints are

reasonably easy to set up in BUGS/JAGS by imposing priors.

The I() operator inWinBUGS/OpenBUGS or the dinter-

val() operator in JAGS can be used to impose truncation on

an existing prior distribution. Box constraints are less widely

available in R. The main implementation of box constraints in

base R, optim’s L-BFGS-B method, is more fragile than the

other optim algorithms: for example, it fails on NA values

when other optimizers can sometimes keep going. The

optimx, minqa and nloptr packages in R do offer a variety

of box-constrained algorithms.

Of course, as with starting values, one needs to know enough

about the problem to be able set reasonable bounds on the

parameter: trying to be conservative by setting extremely wide

bounds (such as �108) both negates any advantages of con-

straining the parameter in the first place and may lead to

crashes if the program tries to evaluate the objective function

at the bounds as part of its start-up process.

In addition to the general value of box constraints for keep-

ing optimization algorithms within sensible bounds, there are

some situations where an estimated parameter really lies on the

boundary of its set of possible values. Common cases are ran-

dom-effects variances or overdispersion parameters whose best

estimate is zero, or probabilities in a demographic model that

are estimated as zero due to a small sample. In this case, using

constraints to bound the variance parameter at zero works bet-

ter than the alternative strategy of fitting the variance parame-

ter on the log scale, because transformation will just move the

best estimate of the parameter to �∞. Researchers who inap-

propriately try to use transformation when the best-fit parame-

ters are really on the boundary are likely to see both parameter

estimates with very large magnitudes (and huge standard

errors) and warnings about convergence; both symptoms arise

because the optimization algorithm is trying to move towards

a point at infinity on a nearly flat surface.

Unfortunately, fitting with constraints can also add to the

challenge of optimization and inference. When the best-fitting

parameters are on the boundary, optimization algorithms can

behave badly. More generally, many of the standard

approaches to inference, such as inverting the negative Hessian

matrix to estimate the variance–covariance matrix of the

parameters, finding likelihood ratio test intervals, or using

AIC, are not applicable when parameters are on the boundary

of their feasible space (Pinheiro & Bates 2000; Hughes 2003;

Bolker, 2008). In some cases, simplifying the model can avoid

these problems, for example removing random effects with

estimated variances of zero.

CONSIDER ALTERNATE OPTIMIZERS

If none of the previous approaches have worked, one can

attempt to switch optimization algorithms, change to a differ-

ent implementation of the same algorithm or tune the parame-

ters that control the behaviour of the algorithm, such as the

convergence tolerance. These tricks are a last resort: if all of the

previously discussed problem-taming strategies have failed,

then these variations may not help. Furthermore, BUGS offers

little control of the MCMC samplers used, and ADMB uses a

single (albeit extremely robust) optimizer with few tunable

parameters. For those cases where there is room for improve-

ment, R does provide many different optimizers. A large vari-

ety of add-on packages augments the half-dozen choices

available within the built-in optim() function (see the useful

R Optimization Task View at http://cran.r-project.org/web/

views/Optimization.html#GeneralPurposeSolvers). In particu-

lar, the optimx package (Nash&Varadhan 2011), used in the

min, tadpole, and weeds projects, provides a wrapper for a

variety of optimizers coded in other packages. Roughly speak-

ing, users can choose among (i) derivative-free optimizers, gen-

erally robust but slow, and particularly useful for problems

with thresholds (the Nelder-Mead and BOBYQA optimizers

are good examples of this class); (ii) local optimizers that use

derivative information in some form (conjugate-gradient and

variable-metric methods) and (iii) stochastic optimizers that

handle problems with multiple peaks, at the cost of greatly

increased tuning needs and greatly decreased speed (simulated

annealing, genetic algorithms). Bolker (2008, chapter 7) and

Nash&Varadhan (2011) provide further details.

SIMULATE YOUR DATA

As has been pointed out before (Hilborn & Mangel 1997;

Hobbs & Hilborn 2006; Bolker 2009; K�ery & Schaub 2012),

simulating data that matches the estimation model is a good

idea. This is a best-case scenario – simulated data are always

well behaved, and the estimator is correctly specified because

we know the distributions that were used to generate the data –

but even in this best-case scenario, a complex model can fail.

Fitting amodel to simulated data rather than to real data sepa-

rates the process of identifying coding errors from the chal-

lenge of understanding whether your model is appropriate for

your data in the first place.
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• Some models in R have a built-in simulate method

that will simulate data consistent with a fitted model, but

one usually needs to start by fitting a model, so this tool

is actually more useful for testing model output than for

generating input to models. However, R has a sufficiently

large set of low-level tools, such as random-number gener-

ators for a wide range of distributions, with which users

can simulate almost any model. All of our projects used R

to simulate test data with which to evaluate the reliability

of the model fits.

• If all parameters are completely defined, that is, the parame-

ters are set to constants rather than having priors defined,

BUGS will simulate data from the appropriate distribution (in

R2jags, one must specify DIC=FALSE to stop JAGS from

trying to compute goodness-of-fit statistics).

• ADMB has built-in random-number generators and so can

also be used as a simulation tool, although many users prefer

to simulate inR.

SPEED THINGS UP

Afittingmethodmay be reasonably robust but too slow. For a

single estimate, one might be willing to wait an hour or a day

for an answer, but if one wants to use the method on many

data sets or use a computationally intensive method such as

bootstrapping or profile likelihood to find confidence intervals,

slowmethods are infeasible.

One option is to switch to another platform, for example

from R or BUGS to AD Model Builder or from BUGS to a

customMCMC sampler written inR.Re-coding an estimation

method is tedious, but often much faster than coding it in the

first place, because the major problems with the model or the

data will have been ironed out. Furthermore, having a compa-

rable fit from a completely independent method greatly

reduces the chances of undiscovered bugs or undiagnosed con-

vergence failures.

Some approaches, in particular the MCMC algorithms of

BUGS, can be accelerated by the use of distributed computa-

tion –multiple Markov chains can be run on different proces-

sors, either within a single multi-core machine, on a

computational cluster or via cloud services, for example by

using built-in capabilities of JAGS or the bugsparallel

package (http://code.google.com/p/bugsparallel/) for Win-

BUGS.

New, faster tools are always on the horizon. Some recent

candidates are INLA, a package for complex (especially

spatio-temporal) Bayesian models in R (Eidsvik et al. 2012;

Ruiz-C�ardenas et al. 2012); Stan (http://mc-stan.org/), a

BUGS-like language that promises greater speed and

modularity; LaplacesDemon (Hall 2012), an R package that

implements BUGS-like Bayesian samplers in a flexible way;

and the Julia language (http://julialang.org/), which aims to

combine the flexibility of R with the speed of lower-level

compiled languages. However, not all ecologists want to be

early adopters of new technology; using older, better-tested

and better-documented tools hasmany advantages.

Unfortunately, the other alternatives for speeding up opti-

mization, besides finding a faster computer, are package spe-

cific and often require great expertise in the underlying

mechanics of the package.

• InR, computations can often be sped up by appropriate vec-

torization. For moderate acceleration, one can byte-compile R

code. For large acceleration, one can re-write the likelihood

function in a lower-level language such as C++. However, these

changes will not help very much if the likelihood function is

already relying mostly on operations that R executes effi-

ciently, such as matrix manipulations, which are done by opti-

mized system libraries.

• The largest potential speed gain for ADMB users is in the

context of random-effects models, where using so-called sepa-

rable functions can greatly reduce memory use and increase

speed. See the ADMB-RE manual, and the [wildflower],

[owls], and [theta] projects, for details.

• BUGS models can sometimes be sped up simply by chang-

ing the formulation of the model. In Pedersen et al. (2011),

changing priors improved OpenBUGS’s speed, although the

same phenomenonwas not seenwhen using JAGS on the same

model in the [theta] project; the [wildflower] project

achieved faster convergence by changing the form of the priors

of the random-effect variances. Reparameterizing to remove

correlations (See Section ‘Remove correlation in the likelihood

surface’) can also speed convergence, as can adding redundant

parameters (an advanced technique described byGelman et al.

(2008)). Although it may take considerable effort, re-coding

one’s own MCMC sampler from scratch, as recommended by

Clark (2007), can sometimes pay off.

Discussion and conclusions

The breadth of knowledge required for successful modelling

cannot be conveyed in a single article – the suggestions above

are obviously just a starting point. We hope that interested

readers will visit our collection of worked examples (https://

groups.nceas.ucsb.edu/nonlinear-modelling/projects), where

they will find much more detailed and particular examples of

modelling practise.

In the examples, we tried to cover a reasonably broad spec-

trum of problems, but we can easily identify topics that were

left largely unaddressed. These include generalized additive

models, spatial and spatiotemporal estimation problems and

the estimation of systems defined in terms of continuous-time

dynamics, such as differential equations or continuous-time

Markov chains (Kristensen et al. 2004; Ionides et al. 2006;

Wood 2006:Diggle &Ribeiro 2007).

While the variety of software tools can be confusing, it is

good thatmultiple approaches, and evenmultiple implementa-

tions of the same approach, are available to ecologists. If they

are FOSS, somuch the better. Given how hard it is to be abso-

lutely certain that a model is fitted correctly, it is extremely use-

ful to compare results among software tools. We look forward

to better integration among the various tools (beyond the

improvements that were made as a result of our workshop), so
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that researchers can switch between platforms and compare

amongmethods without having to reformat their data or rede-

fine their problems. Estimating the parameters of complex eco-

logical models will never be simple, but the widening

availability of powerful computational engines, the improve-

ment of interfaces and the dissemination of basic principles

and worked examples can ease the burden for ecologists who

want to apply these tools to their data.
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