RS

DC Motor Drive Module EDP-AM-MC2
EDP-AM-MC2 User Manual

Version 1.04

Electrocomponents plc Page 1

Contents
1.0 Introduction

2.0 Command/Slave module
EDP-AM-MC2 As A Command module
EDP-AM-MC2 As A Slave module

3.0 Provided Software
6 Step Hall Sensored Brushless DC Motor Control
Permanent Magnet Synchronous Motor - Sine wave Drive
PMSM with rotary encoder for position control

4.0 Solder Bridge and Link Options
Vcc_CM
I12C Address Selection
CAN bus
Voltage Reference — Vref
UARTS
Back EMF Detection
External Motor Controller Options
Rotary Encoder

5.0 Hardware Configuration
PSU Arrangements
Vcc_CM Options
Emulator Header
Serial Cables
Motor Drive — Connections for 6 Step BLDC and PMSM Drive
Motor Drive — Connections for PMSM with Position Control
External Inputs

6.0 Software Installation

7.0 Software Configuration for 6 Step BLDC Operation
Control Method
Motor Type
Motor Parameters
Fault Protection
12C Control

8.0 Software Configuration for Sine Wave PMSM Operation
Control Method
Motor Type
Motor Parameters
Fault Protection
12C Control

9.0 Software Configuration for Sine Wave PMSM with Space Vector Modulation (SVM)

10.0 Software Configuration for PMSM Position Control Using Rotary Encoder
Control Method
Motor Type

Electrocomponents plc Page 2

Motor Parameters
Fault Protection
12C Control

10.0

11.0

12.0

13.0

14.0

15.0

Software Configuration for PMSM With Space Vector Modulation
Mixing Motor Types and Controlling With 12C Commands
Observing 12C Traffic

Adding Your Own Motor Type
PMSM Sine Wave Driver with Position control

Changing The Rotary Encoder
Schematics and Layouts

Revision B
Revision C

Electrocomponents plc Page 3

1.0 Introduction

The core of the module is based around twin dsPIC33FJ128MC804 devices. These are 44 pin devices,
and are capable of running at 40MIPS each. The dsPICs and provide the motor drive and control
functionality to control the module.

The module is 3.3V design. The capability of the module is as follows.

Brushless DC Motor Control

Each dsPIC can drive a single three phase brushless DC motor.

Each drive has the capability to drive a sensored motor, with Hall sensor outputs, for basic 6
step commutation drive.

The motor drive can also drive sensorless motors, which use back EMF sensing for
commutation. The op amp circuitry required to do this is provided on the board.

Each dsPIC can be operated with a rotary encoder in replace of the Hall sensors for more
accurate position control/measurement.

Each output drive stage is rated for a 100W motor at 24V, giving a total of 200W per module.

Brushed DC Motor Control

The Motor Drive can be reconfigured as a full bridge, brushed DC, motor speed controller.
Each dsPIC controller has one full H bridge and one half bridge available to it.

By networking the two dsPIC MCU’s together it is therefore possible to have three complete
H bridge drivers.

In Brushed DC mode the Hall sensors input are not required and can be used as additional
three general purpose inputs per dsPIC.

Other Features

Each dsPIC motor drive MCU can sense its own motor current. Each dsPIC has an
instantaneous current sense input, an additional smoothed current sense input and a logic
level current FAULT comparator input.

Each dsPIC motor drive MCU can sense its own DC bus voltage for the motor, nominally 24V.
Each dsPIC motor drive MCU can read a local demand speed pot, and a local push button
mounted on the board.

Each dsPIC has access to the base board back plane, where it has access to an additional 3
input/output lines. These lines are not shared with the other dsPIC on the same module,
giving a total of 6 1/0 lines per module.

Each dsPIC module has its own dedicated RS232 communications interface. These are
available to access via a header on PCB.

Each dsPIC is connected to the Control 12C bus on the backplane and therefore has access to
all the other RS-EDP modules with an 12C interface and the two 12C devices mounted on the
base board, a serial E2PROM and a serial input DIP switch latch.

Each dsPIC has the option to be connected to the external CAN bus CAN_Tx & CAN_Rx signals
on the backplane via solder link options. With the addition of a communications module this
will provide the physical CAN layer required for CAN bus communication.

Each dsPIC device can be connected to the serial UARTO Tx/Rx signals on the backplane via
solder link options. This would allow for direct connection to the communications module
RS232 interface, the RS485 Interface and the isolated RS232 interface.

Each dsPIC has its own 12C address, selectable via solder link options on the board. There are
three links giving a total of 8 address combinations.

Up to four dsPIC modules can be connected to each base board.

Electrocomponents plc Page 4

e Each dsPIC can be debugged independently without interference from the other dsPICs /
Command Modules within the board system. This allows for the debugging of one dsPIC on a
module whilst the others are running complete software.

e The three phase bridge drive signals, and the Hall sensors input can be routed directly to the
backplane without going through the dsPIC. This will allow for a Command Module such as
an Infineon C167 or a ST Microelectronics STR9 to directly drive the motor via the bridge. The
external controller also has access to the current sense signal and the FAULT comparator
signal. This option is available via solder link options.

2.0 Command Module / Slave Module

The module itself can be configured to be a Command Module in its own right. If there is no other
command module in the system, then the EDP-AM-MC2 can be used as a Command Module.

EDP-AM-MC2 As A Command module

When the module is used as a Command Module, the solder link for the Vcc_CM on the EDP-AM-
MC2 board needs to be made. This provides the back plane with the necessary voltage to instruct all
the other modules that the system is a 3.3V system. i.e. The Analogue Module for example will
provide signals up to 3.3V. This Vcc_CM is also used by the RESET circuitry on the base board. The
RESET button will not work for example if this link is not made. As a Command Module, the dsPICis a
little restricted in 1/O and hence it may have difficulty is getting the full benefit from the RS-EDP
system. It can however communicate very adequately over the 12C bus and hence it will need to set
itself up as an 12C Master device in this case.

EDP-AM-MC2 As A Slave module

If the module is to be used as a Slave Module, then the solder link Vcc_CM must be open.

If a 5V Command Module is used in the system, such as the Infineon C167 module, then the solder
link Vcc_CM must be open on the EDP-AM-MC2 module, otherwise there will be a direct contention
between the 3.3V and 5.0V rails. A 5V Command Module will provide a master RESET signal that rises
up to Vcc_CM voltage, in this case 5.0V. The dsPIC module however, has been designed to
accommodate this and will not be damaged by a 5.0V reset signal. As a Slave Device the module is
controlled either via 12C packets generated from an 12C Master Device, or from push button control
and the demand pot on the circuit board.

3.0 Provided Software
The following evaluation software is provided with the EDP-AM-MC2

e 6 Step Hall Sensored Brushless DC (BLDC) Motor Control — Open Loop

e Permanent Magnet Synchronous Motor (PMSM) - Sine wave Drive

e Permanent Magnet Synchronous Motor (PMSM) — Space Vector Modulation (SVM)
e Position control using a PMSM and a rotary encoder

6 Step Hall Sensored Brushless DC Motor Control

This software is the simplest form of driving a brushless DC motor. The classical mechanical
commutation system of a standard brushed DC motor is replaced by an electronic equivalent based
of a three phase bridge driver and electronic Hall sensors.

As the motor rotates, the Hall sensors detect the position of the rotor and control the switching of
the bridge accordingly. A very basic PWM control of the bridge signals provides a way of varying the
voltage to the motor and hence its rotational RPM. Loading the motor, just like in the classic DC

Electrocomponents plc Page 5

motor will cause the motor to draw more current and to slow down. Stalling the motor produces a
stall current which is very high in relation to the normal running current. Like a standard brushed DC
motor the speed is proportional to the voltage applied and the torque is proportional to the current
drawn.

In this implementation the motor, it can be controlled either via 12C packets or via the demand pot
on the PCB and a start/stop switch. The board has been designed primarily with the 12C technique in
mind. The user must decide in advance which technique he wants to use, as he will have to change a
#define in the software before compilation. The push button and rotary pot is normally a good
method to start with and will allow the user to quickly set the system up and check to see if the
motor and Hall sensors have been wired correctly.

For more accurate speed control the customer can add his own additional PID loop into the software,
which will compensate for varying load demands on the motor.

Permanent Magnet Synchronous Motor - Sine wave Drive

In this implementation, a sine wave is constructed in software and used to drive the three motor
windings in a similar way to an inverter for a three phase induction motor. Each output of the PWM
bridge provides a pure sine wave, which is fed directly in the winding of a motor. Each of the three
phases provided is 120 phase degree shifted from the others. This way a rotating field can be
generated. The speed of rotation, in this case, is controlled in software and is independent of the
mechanical load. The motor does not slow down when a mechanical load is applied. The rotor of the
motor, a permanent magnet, follows the rotation of the sine wave exactly. As the rotor is a
permanent magnet rather than a winding there is no slippage like there is in a three phase induction
motor. Consequently more accurate rotational speeds can be achieved, and a PID speed loop
controller is not required.

In this implementation the motor can be controlled either via incoming 12C packets or via a motor
speed demand opt and a push button the PCB.

The board has been designed primarily with the 12C technique in mind. The user must decide in
advance which technique he wants to use, as he will have to change a #define in the software before
compilation. Like the 6 step controller above the push button and rotary pot is normally a good
method to start with and will allow the user to quickly set the system up and check to see if the
motor and Hall sensors have been wired correctly.

Theoretically the sine wave drive for the PMSM does not require Hall Effects to generate the
rotating field but this application still required them as it gives us a method of checking where the
rotor is prior to starting the sine wave generation. This allows the sine wave to initially synchronise
itself with the rotor position. The Hall sensors also allow you to detect and measure the rotational
speed of the motor. A stalled rotor for example can be detected by looking at Hall sensor transitions.

Permanent Magnet Synchronous Motor — Space Vector Modulation (SVM)

This implementation is very similar to the sine wave driver, but a mathematical treatment of driving
six switch elements in a bridge reveals that a better more powerful drive can be achieved using a
technique called Space Vector Modulation. The driving signals to each of the six bridge elements are
modified to produce a stronger voltage waveform resulting in higher torque and top speed. The
motor itself still sees a rotating sine wave and the three rotating voltage vectors are stronger.

As in the sine wave example, the speed of rotation, in this case, is controlled in software and is
independent of the mechanical load. The motor does not slow down when a mechanical load is
applied. The rotor of the motor, a permanent magnet, follows the rotation of the sine wave exactly.
As the rotor is a permanent magnet rather than a winding there is no slippage like there is in a three

Electrocomponents plc Page 6

phase induction motor. Consequently more accurate rotational speeds can be achieved, and a PID
speed loop controller is not required.

As in the sine wave example, in this implementation the motor can be controlled either via incoming
I12C packets or via a motor speed demand opt and a push button the PCB.

The board has been designed primarily with the 12C technique in mind. The user must decide in
advance which technique he wants to use, as he will have to change a #define in the software before
compilation. Like the 6 step controller above the push button and rotary pot is normally a good
method to start with and will allow the user to quickly set the system up and check to see if the
motor and Hall sensors have been wired correctly.

As in the sine wave example, the Hall effects are used to synchronise the sine wave when first
starting off and also to read the actual RPM. A stalled rotor can be detected by looking at Hall sensor
transitions.

PMSM with rotary encoder for position control

The above two examples of software are for speed control using BLDC motors. If we want position
control then we need a much better resolution than a 6 step Hall sensor input. To achieve this, a
rotary encoder is used. Typically these have a resolution of 500 or 1000 steps per revolution. The
dsPIC hardware multiplies these counts up by a factor of two to give even better measurement of
position.

The only drawback with this technique is there is no way of initially sensing where the rotor is prior
to running the motor. As the Hall sensor inputs have been given over to the quad encoder inputs it is
not possible to know the initial position of the rotor and hence when the motor first start up after a
power up sequence, the rotor may initially ‘snap’ to the sine wave when it first runs a sequence. Also,
as a position controller the initial power on sequence needs to find an absolute home position. This
home position locator is provided in the software. Typically a external sensor such as a limit switch is
used to tell the software the motor has reached the home position.

4.0 Solder Bridge Settings and Link Options

Before fitting the module PCBs into the base board, it’s worth configuring all of the solder bridge and
link options. Most of the links and bridges will be set up as factory defaults for the most popular
settings, but you may need to change some of these depending upon what you are trying to do.

If you are using more than one BLDC module then you will certainly need to alter some of these from
the factory default, in particular the 12C address selectors. The link settings are detailed as follows...

Vcc_CM

This link option is described in details in the section ‘Command Module/Slave Module’.

If the motor drive module is to be used as a Command Module the Vcc_CM link options (R101) must
be made. If there is another module in the system which is operating as a Command Module such as
an Infineon C167, then the link must be left open. This link option is available only on PCB revisions C
or later.

For PCB revision B the Vcc_CM is a left open and there is no solder link available. The Vcc_CM pin can
be tied to 3.3V if required by the use of the pins on the base board on the break out connector.
Connect the 3.3v on the baseboard P603 pin 44 to the VCC_CM pin P603 pin 43.

Electrocomponents plc Page 7

R101 - Vcc_CM Link Option

/
D [[s e P S 000000
5) eSS Ehed U0 BB 5 pa[O
g g 0 g = e
J & 1 9 [l—=l5l= POEY = &§§§&O
O 20e0l poeaa] [| E:EI =0 20 e
O [= Sl D][] ¥ ¥ ogooo O
O aied[] D(:) <: nm 1029
= . T =M= elslelle
2 2 i famr] [N o BERE e
O |5 s ° o] O DD Elljm] DUDUDUUUUDDU;;;HE 0 5|
O == Dq;;f;; B O S W
o - nu.DDL:)n:g DDa:l Dg = =
O O 5 b g |:| Zetd D ml:l % %
QLCHDDD czu g _8 Sz = O
I:‘ w0 |= A —I:IEII:IEID“ s =]
0 (=]
O o = Loey[] Dg 3 g |:| é%DDDQDD UDUDUDUUDDG gzzd 1]
o |22 g SoTRttd A =
s 0c— T £ D
8 soex[] Dg o g gtg D O e \D D D LOZA |:| O O
§ 2 5 DDD§:?+ viza[1] OO
&) — - = [0 weso] [5 qs@tﬁ% D = R R D)
(i} (] CZE}_I:) — D DldEH &
O |) %gggum OoCkren D gl] OD
O |o 8 = C=l2l=sndl [] oy £ I

Fig.4.1 Vcc_CM Link option for PCB revision C or later

12C Address Selection
The dsPIC on the top of the board (U201) has an 12C address selected via link options P201, P202 and
P203. The default settings on the board are as follows.

Top dsPIC (U201)

P201 - 2/3 (logic 0) (least significant address bit)
P202 - 2/3 (logic 0)

P203 - 2/3 (logic 0) (most significant address bit)

The dsPIC on the bottom side of the board (U202) has an 12C address selected via link options P205,
P206 and P207. The default settings on the board are as follows.

Bottom side dsPIC (U202)

P205 - 1/2 (logic 1) (least significant address bit)
P206 — 2/3 (logic 0)

P207 - 2/3 (logic 0) (most significant address bit)

The factory setting will likely be zero ohm links but these may be de-soldered and replaced with
solder bridges accordingly.

A link between positions 2 and 3 will be read as a logic 0.

A link between positions 1 and 2 will be read as a logic 1.

The actual 12C Address used in the software is this link option number above added to the base
address, which is defined in the ‘slave_address_defines.h’ file.

The relevant #define parameter is called ‘MICROCHIP_MOTOR_DRIVER_BASE’

Note: If four modules are used in a base board design, then the two upper I12C Address’s modules will
have to share External Input lines with other modules. See the section Hardware configuration —
External Inputs, for more detail on this.

Electrocomponents plc Page 8

Fig.4.2 Solder bridge options for the slave 12C address of the dsPIC

CAN bus

None of the applications contained in the code currently use the CAN bus.

The board has however been designed with CAN bus in mind. The base board supports a single CAN
channel and provides a path for the CAN TX and CAN RX signals to be routed through to the
Communication Module which translates these signals into the physical CAN bus layer signals CANH
and CANL.

There is only one CAN bus Tx/RX on the back plane so only one dsPIC can be connected to the
backplane at any one time. Both of the dsPICs on the board can optionally be connected to the CAN
bus but not both of them.

The factory default options for the CAN bus are disconnected. To connect a dsPIC to the backplane
CAN Tx/Rx signals you will need to populate the missing zero ohm links.
For the Top side dsPIC (U201)

Populate R204, R206 with zero ohm links. Note the designation of Rand not P !

For the Bottom side dsPIC (U202)
Populate R214 & R215 with zero ohms links. Note the designation of R and not P !

Electrocomponents plc Page 9

UL

Fig.4.3 Link options for the CAN bus

Electrocomponents plc Page 10

Voltage Reference — Vref

The voltage reference for the AD converters on the two dsPIC can be either the 3.3V rail from the
motherboard or it can be from an external reference IC provided from the Analogue Module.
Link option P204 can be used to select which voltage reference source is used.

The factory default setting is assumed to be the 3.3V from the base board.

P204 1/2 - The reference voltage for the analogue is 3.3V from the base board.
P204 2/3 - The reference voltage for the analogue is from the AN_REF signal on the backplane,
which is generated from the analogue module

Fig.4.4 Analogue voltage reference selector link option

UARTS

The motor drive module is well equipped to support RS232 communication. The module has the
facility to directly output RS232 data on to a pin header (P209) provided on the module. These
signals are standard RS232 physical layer signals.

Read also the section ‘Hardware Configuration’ for more details on the RS232 capability.

The module also has the capability to route both of the serial outputs of the dsPICs onto the back
plane as standard Tx/Rx signals at the TTL level. These are referred to as ASCO_TTL for the Topside
dsPIC and ASC1_TTL for the bottom side dsPIC. This means for a system with a Communications
Module, it can take this serial data in TTL format and convert it into the physical layer signals
required for RS232 communication to external monitors. The communications module also has
isolated RS232 and RS485 capability which may be useful in some system design. The backplane has
the capability to support up to three UART channels, however we only make use of two of them
here.

There are three resistor options/links per dsPIC serial channel.

For the Top side dsPIC (U201)
To use P209 header for RS232 Communication
R216 needs to be populated with a zero ohm link (factory default)
R201, R203 need to be removed (factory default)

Electrocomponents plc Page 11

To use the backplane ASCO channel for R$232 communication
R216 needs to be removed
R201, R203 need to be populated with zero ohm links

For the bottom side dsPIC(U202)
To use P209 header for RS232 Communication
R217 needs to be populated with a zero ohm link (factory default)
R212, R213 need to be removed (factory default)

To use the backplane ASC1 channel for R$232 communication
R217 needs to be removed
R212, R213 need to be populated with zero ohm links

Be careful when using the ASCO_TTL and ASC1_TTL signals on the backplane to ensure that no other
module is using the TX signals otherwise some contention will occur.

Fig.4.5 UART link options top and bottom side

Electrocomponents plc Page 12

Back EMF Detection

Contained on the bottom side of the PCB is some analogue circuitry for signal conditioning of the
signals which come off the motor windings. It is used for back EMF detection in a sensorless
brushless DC motor drive application. The circuitry is included for the user, but not actually used in
any of the provided software examples.

The factory default setting to disable this circuitry is as follows...
P502, P504, P506 — 1/2

P402, P404, P406 — 1/2

P503, P505, P507 — open

P403, P405,P407 — open

Fig.4.6 Back EMF circuitry link options

External Motor Controller Options

It is possible to drive a motor under the control of an external controller. The second dsPIC on the
bottom side (U202) can be replaced by another host controller on a command module.

The motor drive power stage signals and analogue current sensing and fault detection signals can be
passed to the back plane for control by an external motor control processor.

This means an external device such as a PIC32 can be used to drive the motor bridge and to make
decisions based on the current sense feedback, the fault signals feedback and the hall/rotary encoder
feedback. All this is possible with the circuitry associated with the bottom side dsPIC (U202) but not
the circuitry associated with the top side dsPIC. The circuit diagram will give more clarity to this when
studied. This means an external controller can only take the place of the bottom side dsPIC.

To enable the dsPIC module to be controlled via an external controller, the following link options
needs to be set.

Hall Signals & Encoder Signals to backplane

R538, R539, R540 — Populated with zero ohm link

Emergency Fault/Interrupt to Backplane
R542 - populated with zero ohm link

Current Sense Feedback
R541 — populated with zero ohm link

Electrocomponents plc Page 13

Motor Bridge Control Signals
R334, R335, R336, R337, R338, R339 - populated with zero ohm link

Note: The bottom side dsPIC (U202) will have to be programmed to remain invisible in the system to
prevent contention on the bridge drive pins.

The factory default, is for this feature to be disabled and all of the above zero ohm resistors are not
populated.

Fig.4.7 External motor control link options

Electrocomponents plc Page 14

Rotary Encoder

When using the rotary encoder the noise reduction capacitors on the input of the Hall sensor circuit
needs to be removed. This is because the data rate from the quad encoder is so fast that the edges
become rounded and the quad encoder will not be able to track the rotation at high speeds.

The capacitors related to the top dsPIC (U201) areC408, C409 and C410.
The capacitors related to the bottom dsPIC (U202) areC508, C509 and C510.

R2!

i

£
Z
£

0611 (1T TR204

A

T UU %
2E . R0 'ﬁiﬁm SN
g OO0 FAEE g mﬁﬁh = QDD fy
O = S tm 5
~ o E@E
el || g s o

A0I0000000I000m

Input smothing capacitors on Hall sensors

HEDD

GEbd BEYH BiPH

Q
bl
B E

Ra04[1207

[Viy=]

Fig.4.8 Hall sensor capacitors which need to be removed for quad encoder operation

Function Parts/Links Effected Factory Default
Vee_CM R101 Not present on B rev PCB
R101 C Rev — Not populated
12C Address Selection P201 (A0) Position 2-3
P202 (A1) Position 2-3
P203 (A2) Position 2-3
P205 (A0) Position 1-2
P206 (A1) Position 2-3
P207 (A2) Position 2-3
CAN bus R204, R206 Not populated
R214, R215 Not populated
Voltage Reference Vref P204 Position 1-2
UARTs R216 Populated
R201, R203 Not populated
R217 Populated
R212, R213 Not populated

Electrocomponents plc Page 15

Back EMF Detection P502, P504, P506 Position 1-2
P402, P404, P406 Position 1-2
P503, P505, P507 Open
P403, P405,P407 Open
External Motor Control Option R538, R539, R540 Not populated
R542 Not populated
R541 Not populated
R334, R335, R336, Not populated
R337, R338, R339 Not populated
Rotary Encoder/Hall Effect Input C408, C409, C410 Hall Switches (Capacitors populated)
C508, C509, C510 Hall Switches (Capacitors populated)

Table 4.0 Default Link Options

The basic configuration of your module is now complete, to install the module, line up the connectors
and press firmly along the length of the connectors.

Electrocomponents plc Page 16

5.0 Hardware Configuration

A single module can be used on its own without a Command Module or it can be used with other
modules in more complex arrangements.

PSU Arrangements

The diagram in FIG.1 below shows the PSU arrangements.

For best results the base board PSU will be isolated from the main motor drive power supply.
This will help isolate the motor switching noise from the modules and the backplane.

The grounding scheme employed on the motor drive module connects the Signal Ground and the
main Power Ground together at the terminal of the power ground on the motor drive module. This is
Pin8 on connector P501 on the motor drive module (this is the one with screw terminals). It is not
recommended to connect the ground on the 24V Power PSU to the ground on the base board, as this
will create a ground loop, which will cause a disturbance under high switching loads. This may result
in unexpected behaviour of the dsPIC.

The ground on the base board is also fed via an input filter choke, so the ground signal at the PSU
terminal is different from the signal ground used on the modules.

PSU Arrangement
Base
Board
L—PSU____~+12v2A
ov
Signal GND
Command Module
&) =
dsPic
) 2 4] Module
|
@ 9 | dsPic Module
Pin7, P501 = +24v
_@ i P501 : Pin8, P501 = PGND
/) 5 Bottom | [dsPic
(/)8 dsPIC 1 Medidle
|
+nc 147 |
ov /)8 Motor Drive | .
= sPic
) 1 Board L] _| Module
g |
= |
Q) |
@ 4 [
@ 5 P401 |
P Top | o+24v PSU arrangements for Multiple motor drive
@ o dsPIC 4 Power Ground modules and command module
@ T With Currert Limit
()2

Electrocomponents plc Page 17

Fig.5.0 PSU connections for BLDC modules

The main Power PSU should be adequately decoupled. If long cable runs are envisaged then
additional smoothing/filter capacitor should be added via the screw terminals. There is a 100nF
decoupling capacitor on the module between the +24V terminal and the PGnd terminal to help
reduce motor noise.

Vcc_CM Options

The Vcc_CM (Vec Command Module) is a voltage rail that tells the rest of the system to either use
5.0V or 3.3V as a reference. This reference is used to scale A/D converter readings from the analogue
module for example and also pulls up the #RESET line to this level. Consequently the user needs to
decide on a voltage level for this. This is usually decided by the Command Module.

If an Infineon SAB-C167 module is used as a Command Module, this rail is pulled up to 5.0V and
hence the system operates as a 5.0V system. This dsPIC module however is 3.3V system but the
RESET circuit has been designed to accommodate this. The dsPIC will not be damaged by a reset line
that floats up to 5.0V.

In an application where one of the dsPICs is a Command Module, then the Vcc_CM link,
option/solder bridge R101, needs to be made (PCB Rev C or later). Ensure this link is soldered when
the dsPIC is the Command Module.

It may well be that in an application where one of the dsPIC’s on the module is configured as a
Command Module and 12C Master and the other as an 12C Slave, then the Vcc_CM link should be
made as if the whole module was a Command Module, and the R101 link should be closed.

If the Infineon CM module has Vcc_CM configured as 5.0V and the dsPIC module has Vcc_CM solder
link made (configured as 3.3V), then there will be a direct short between the 3.3V and 5.0V power
supply rails. This should be avoided for obvious reasons.

For PCB revision B the Vcc_CM is a left open and there is no solder link available. The Vcc_CM pin can
be tied to 3.3V if required by the use of the pins on the base board on the break out connector.

The factory default setting is for the Vcc_CM link to be left open.

Emulator Header

There are two positions for the emulator header (P208), one for each of the two dsPICs. The one
closest to the edge of the PCB controls the dsPIC (U201) that is visible on the top of the PCB, whilst
the second emulator header controls the other one (U202) on the reverse side of the PCB. Whilst
debugging is useful to debug code on the device on the top of the board, as the MCU pins are
accessible for probing.

Having two positions for the emulator allows the emulator/programmer to debug and flash one of
the dsPIC MCU’s whilst the other one is running normal application code. Reset signals generated by
the emulator whilst debugging/programming are not propagated on to the #RESET line on the
backplane so all other dsPIC’s and other modules are not affected by the actions of the
debugger/programmer.

Note: When the REAL-ICE/ICD2 is running a debug session it is important on the early revisions of the
PCB (Rev.B) not to press the external reset line for any length of time as the RESET signal will try and
pull down the emulator control line. The baseboard #RESET line is, however, correctly asserted and
all other modules connected to the #RESET line will see the #RESET line function correctly.

Electrocomponents plc Page 18

On later versions on the PCB (Rev.C) this problem is fixed, and there are no restrictions on the
HRESET signal. For customer with the older version of the PCB who wish to fully use the #RESET signal
without restriction during the debug phase then simply remove the diode (D101/D102) and then
replace when the software is completed.

(= = == g L:00000% ~ [\pSerial Channel - Bottom dsPIC
C f 00| E‘ID Coeg i i 00, B iogogo

i | i | = = ek i EREE
0 |2 = Z063) yeena(] [] 10] o0 24 :
O = =] el LIS = ,|:]-]'-| (M0 == .“IDHE
Q g =R oS |8 - uj 03 o ?LJE' %Serial Channel - Top dsPIC
O = 3 = soca] [] |_| Dl: DD |_| . ﬂ[l" JHFTHF " mlgl n) P
A ' S el = T = =g
O o - en"CElé{i éa q! 008 O = =
Q |o & I 8 H‘Dj |—| v C”P” =i =i
= = wons = D:?—un nu, S3 S
o | s 4 wooS|;/ S hED08555 000000000
S | =28"= =T HHEH](| [If
= |8] p el
(ii . :- :_:§ =ia s) |_||:||:| J 00O B LD Debugger - Top dsPIC
(E 2 P # : 2 : 1 vz
o |Ei==t—rr gt - WY L Rl
- I: :I ‘.J!Ll_| — 2Ly B

= O Dhe

O ; . Emgg”l—ll |l oo :—H—:]
O o 8 [J=l=l=0 sanes] [Pin.1

1
Debugger and Serial Cable Connections Debugger - Bottom dsPIC

Fig.5.1 Debugger and serial cable connections

Serial Cables

Each dsPIC module is equipped with two full RS232 transceivers. This means each dsPIC has access to
physical layer Tx and Rx signals and can communicate freely with a host PC terminal. These ports are
enabled as the default setting for the link options also. These are very useful for debugging of the
application and report lots of details during the running of the application. If something does not
work correctly then plug in a terminal and more often than not the problems can be identified via the
help menu options or the text outputted from the dsPICs.

Provided with the kit is a header to allow each board to talk to two separate RS232 terminals.

Plug in the twin serial cable provided with the board. The PCB header end of the cable assembly has
pin 1 marked with a small arrow. Pin 1 on the corresponding header on the PCB (P209) is also
marked.

The serial configuration at the time of writing this support documents is as follows.
Check the C source code to see if this has changed since this document was written.

Baud rate: 115,200 baud
Data bits: 8

Stop bits: 1

Parity: None

Flow control: None

As you will no doubt appreciate you may be running out of serial ports on your PC. There are plenty
of USB-RS232 converters on the market, which should allow you to expand the number of serial
channels. | have found using Windows Hyper Terminal with Microsoft uncertified converters yields
PC system crashes. For this reason you might want to try the DSA’s MTTY Terminal Program. This has
proved a lot more robust than Hyper Terminal when using USB-RS232 converters. The most rugged
of systems | have tried uses a PMCIA adapter card to R$232 converter.

The options for DSA’s MTTY program in addition to the above settings are:
Local Echo — unticked
Display Errors — ticked

Electrocomponents plc Page 19

Add Cr or Lf — unticked
Autowrap — ticked
Use Parser — unticked

Fig.09 shows the cable access points on the PCB.

Electrocomponents plc Page 20

Motor Drive — Connections for 6 Step BLDC and PMSM Drive

The wiring diagram to connect two BLDC motors to the board is shown in Fig5.2. Note the Hall
sensors on the motors required +5V and Gnd to operate correctly. On the connector there is only
one set of 5V/Gnd connections, so for a twin motor application, these terminals will have to be
shared, to power the Hall sensors on both of the motors.

s +5v O
SGND (O
Aor1 O— @ !
Motor 2 Hall Bor2 O @ 2
dsPic (Uz202) < Sensors | @ 3
Reverse Side Cor3 O =
P501
Aot O D)
Mator @ 5
Phase Bor2 ()
Windding @ 6
_ Cor3 O)——
Q7
—/) & Motor Drive
@] Board
' +5v (O =
2
SGND () D
3
Aor1 () C gkl b 7@)
Motor 1 Hall Bor2 () | _@ 4
dsPic (Uz01) 4 SENSOrS ZE P401
Top Side Cor3() <
6
Aort O 2
Mator L «_® >
Phase Bor2 () e —
Windding L @ 8
g Cor3 1
24V PGND
PSU FIG.2

Fig.5.2 Motor connections for 6 Step BLDC and PMSM Drive

Electrocomponents plc Page 21

Motor Drive — Connections for PMSM with Position Control

The wiring diagram for the PMSM with Position Control using a 5V TTL rotary encoder is shown in
Fig.5.3

The wiring diagram for position control is slightly different from the one above, as there are no Hall
sensors to connect. The rotary encoder does however use the same connections.

Note: The noise reduction capacitor on the Hall sensor input need to be removed for rotary
encoder operation. See the section on link options.

8O

INDEX ()

GND(}—
+5v ()
5v Rota
5V Encoder 2 Enmde?’ A)

1orA O
Motor
Motor 2. 9 wingings 208 O

3aC () Y

GND(}——
v O : B, e}
5v Rota
5V Encoder 1 Encode?’ A O 1 1 |

Motor Drive
1 Board

8O

INDEX ()

1orA O
Motor

hiotor-1 Windings 2°0rB O

SISINNISININISNSISNINNNIS

3orC O—‘
+24V PGND

PMSM With Position Control using Rotary Encoder DC Supply FIG.3

Fig.5.3 Motor connections for PMSM with position control using rotary encoder

For applications that use a 24V rotary encoder the encoder can be powered off the +24V supply, but
the sensors output will have to be converted to TTL levels before entering the motor drive module.
The encoder input will be able to tolerate a reasonable degree of noise as there is a digital filter set
up on its inputs. However, too much noise will result in poor operation of the drive.

Make sure the PSU supply is adequately decoupled and the outputs from the quad encoder are
reasonably clean and free from noise.

Some rotary encoders have 4-20mA loop outputs. To use these types you will need to build an
interface board prior to entering the module, designed to handle such signals.

Electrocomponents plc Page 22

External Inputs

For the 6 Step BLDC and the PMSM Drive software there are 6 external inputs available which can be
directly read by the dsPIC MCU. These are available on the external edge connectors P601 and P602.
The inputs are as follows...

External Input O
dsPIC A (U201) (Top side dsPIC) External Input 0 is mapped to EVG12_GPIO60
dsPIC B (U202) (Bottom side dsPIC) External Input 0 is mapped to EVG15_GPIO63
External Input 1
dsPIC A (U201) (Top side dsPIC) External Input 1 is mapped to EVG13_GPIO61
dsPIC B (U202) (Bottom side dsPIC) External Input 1 is mapped to EVG16_GPl064
External Input 2
dsPIC A (U201) (Top side dsPIC) External Input 2 is mapped to EVG14_GPI062
dsPIC B (U202) (Bottom side dsPIC) External Input 2 is mapped to EVG17_GPIO65

The dsPICs are free to use these 1/0 pins for limit switches etc. The pins do not have any input
protection on them, and need to be protected if the cable runs are susceptible to noise. A
digital /0O module could also be used to expand the available I/0 pins using the 12C bus to
communicate.

For the PMSM with Position Control Software these sensor inputs are generally used for a home
sensor locating switch.

The position controller will require a ‘home’ sensor to reference itself against. This is normally a trip
or level switch sensor, included within the travel path of the motor actuator. This will signal when the
motor has reached its start of travel or home reference point.

There are 6 external input signals to the motor drive module. These have been allocated for this
purpose. Therefore, we can have up to 3 modules (a total of 6 dsPICs), each with its own unique
home sensor.

The allocation for these is based on the 12C address of the motor drive device. As we may have up to
3 modules (6 x dsPICs) the software has been written to accommodate this. As all three boards
cannot use a home sensor on GPIO60 for example, all three boards must access a different external
input. For this reason the software makes use of the 12C address, set with the DIP switch/Solder
Bridge settings on the motor drive board. The purpose of this is so all 6 dsPICs can be flashed with
the same version of the software.

The relationship between the DIP switch/Solder Bridge and the input channel read is detailed below.

For DIP switch == 0 and DIP switch == 1 (I12C address 64 & 65), we read the External Input 0
For DIP switch == 2 and DIP switch == 3 (12C address 66 & 67), we read the External Input 1
For DIP switch == 4 and DIP switch == 5 (I12C address 68 & 69), we read the External Input 2

If you are unsure as to what the solder bridge settings are on your board, one of the menu options in
the software will read the Dip Switch/Solder Bridge settings for you. From this you can determine
which external I/O pin you need to connect the External Input to.

Note: For applications that use four boards, we do not have enough I/0 for each dsPIC to have its
own unique dedicated input. For this reason the top two 12C address locations cannot be used with
the position control software, without modification to the provided software.

The original design of the board had these solder links as DIP switch setting, but due to the tight
constraints the DIP switch has been removed and replaced with solder bridge optons.

Electrocomponents plc Page 23

£
o/

™y
hoait
N
LN

TS

~
WS

e

I iy

A

® :
| — -
mje)| m¥e]|mEKe) d | 30
g 8 8 8 2 g u Ext Input O
O Ollo (] Top dsPIC
O OO
O OJ|O
O OfIo
O oI
O OJ|O Ext Input 2
O Of|0 Top dsPIC
ON®]| [OR®)
gq 20 = Ext Input 1
O(\rﬂﬂff""'pBouomcmpm
Ext Input 1
Top dsPIC
Ext Input O
Bottom dsPIC
@)
Ext Input 2
O Bottom dsPIC

O
O
O
O

000 —

Fig.5.4 Wiring diagram for home sensors

Electrocomponents plc

Page 24

6.0 Software Installation

The software has been written with the Microchip C Compiler C30 and developed using MPLAB
Version 8.14

To make use of the software and to configure the module for use, you will need to install the
software. Both the MPLAB IDE and the C Compiler is available from Microchip website. Download
these and install as per the manufacturer’s instructions.

7.0 Software Configuration for 6 Step BLDC Operation

For the purposes of setting the system up make sure you have a current limited power supply for the
main Motor PSU. This will prevent damage to the board and the motor.

Connect an RS232 terminal emulator to the device using the provided cable. Make sure the
orientation of this cable is correct otherwise the serial output will not work. Connect the header to
P209 on the PCB ensuring correct orientation, pin 1 is nearest to the corner of the PCB.

Open up the MPLAB project workspace called ‘RS_EDP_AM_MC2’ which should be located in the
‘RS_BLDC_Module\software’ directory.

Compile this project and see if the compilation goes to completion without problem. You may have
to tinker with the project slightly to ensure all the paths are correct and all of the relevant header
files can be found. The projects make use of the Microchip libraries to configure some of the device
peripherals.

Connect your Real ICE/ ICD2 debug tool to the device using the header cable provided. Use the tools
as a ‘Programmer’ initially rather than a ‘Debugger’ and set the project option to ‘Release’.

Once a successful application has been compiled you can download the code in to the flash memory
of the device. Program the code into the device. Once the code has been flashed the device should
start to run and message strings will start to be displayed on the terminal screen.

If all of this works correctly then you are ready to start to tune the motor drive board to the BLDC
motor.

Go back to the MPLAB project and locate the ‘defines.h’ header file. Open this header file and
examine the #defines and their description. Some of the major ones are described below.

Control Method

The header file allows you to specify how you want to control the motor, either through 12C packets
from an 12C Master or from the push button on the PCB and the demand speed pot on the PCB.

To enable us to get started it is best to select the control by push button option initially. This is the
most simplest of the control setting, and it will allow for basic tuning of the motor and the safety trip
levels.

The header file has the following code...

/* Select your control option below */

#define CONTROL_BY_I2C Ou
#define CONTROL_BY_PUSH_BUTTON 1u
#define CONTROL_METHOD CONTROL_BY_PUSH_BUTTON

Electrocomponents plc Page 25

As you can see there are two #defines followed by a third one which allows us to select either of the
other two defines.
For the control by push button the third line should read...

#define CONTROL_METHOD CONTROL_BY_PUSH_BUTTON
And for control by 12C packets from a master this third line should be change to
#define CONTROL_METHOD CONTROL_BY_I2C

So to start with, this line should read
#define CONTROL_METHOD CONTROL_BY_PUSH_BUTTON

Motor Type

The next set of #defines we need to alter are the ones which are specific to the motors.

The software has been written to accommodate two BLDC motors, the Hurst Dynamo and the Maxon
EC type. The Maxon EC type is a popular selling motor available from RS Components and the Hurst
one is available to order via Microchips web site.

/* Define The Motor Type */

#define HURST_DYNAMO_DMB0224C10002 1u /* Hurst Motor */
#define MAXON_EC_118898 2u /* Maxon motor */
#define MOTOR_TYPE MAXON_EC_118898

If you are going to use one of the two motors above then change the third #define to select one of
the predefined motor types.

i.e.

#define MOTOR_TYPE MAXON_EC_118898

or

#define MOTOR_TYPE HURST_DYNAMO_DMB0224C10002

Motor Parameters
The motor you have selected above has some additional defines related to it.
These are detailed below

/* This group of Defines relates to the motor types and hall effect combination */

#if (MOTOR_TYPE == HURST_DYNAMO_DMB0224C10002)
#define POLES 10u /* number of poles (2 x pole pairs) in the motor */
#define MAX_MOTOR_RPM 4000u
/* Approximate Maximum RPM spindle speed for the motor, when running at no load in the
application */
/* This parameter is not that relevant when using the 6 step control method */
/* This parameter is however significant when using the PMSM sine driver technique */

#define MAX_INSTANT_MOTOR_CURRENT 800u
/* Maximum allowable current in mA */
#define MAX_AVERAGED_MOTOR_CURRENT 800u

/* Maximum allowable filtered current in mA */

#define IMOTOR_AV_FAULT_DETECTION ENABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u

Electrocomponents plc Page 26

/* Alter this value to alter the trip sensitivity to this parameter */

#define IMOTOR_FAULT_DETECTION ENABLED
#define IMOTOR_COUNTER_THRESHOLD 300u
/* Alter this value to alter the trip sensitivity to this parameter */

#define EXT_COMPARATOR_FAULT_DETECTION ENABLED
#define EXT_FAULT_COUNTER_THRESHOLD 200u
/* Alter this value to alter the trip sensitivity to this parameter */

The main parameters for the 6 step configuration are the number of poles (2 x pole pairs) and the
type of fault detection and trip you wish to implement. The maximum RPM figure is not actually used
in the 6 step controller.

Initially we will set the both of the current trips and the external current comparator to off.
To do this alter the #define lines to

#define IMOTOR_AV_FAULT_DETECTION DISABLED
#define IMOTOR_FAULT_DETECTION DISABLED
#define EXT_COMPARATOR_FAULT_DETECTION DISABLED

These parameters can be one of two values, either ENABLED or DISABLED.

Once this is done we can recompile the software and download the flash into the board.
Flash the board with a programmer and set the code running. Check the RS232 monitor channel to
see if there is output.

The software has been written so that a countdown sequence is initiated. If a keyboard press is
registered during the countdown sequence the test menus are displayed. This will allow you to fully
exercise the hardware and ensure the motor and hall sensors are correctly configured before actually
running the motor in a real application.

Failure to press a key a key during this countdown sequence will result in the software executing in
the normal run mode motor drive software.

Start by sequencing through the menu options, ‘1’ to ‘b’ and exercise the hardware you have.
Note: All of the fault detection algorithms that are designed to protect the motor and circuitry
become disabled during this menu phase so make sure you have a current limited power supply.
These menus are a good way of checking the hardware is working correctly.

Electrocomponents plc Page 27

R DSA's MTTTY
Main File TT¥ Info

Part Baud Parity [ata Bitz Stop Bits B e

| | |10 w| [Mone <] |B ~| |1 v| ¥ Display Errors
- [Add Cror L
Fart... | Cornm Events... | Flioves Conitral... | Timeouts... | ¥ Autowrap

[Use Parser

i

icrachip BLOC & Step Hotor Driwe Test Softuare
irnuara Yergion:004

ontrol by: External I20 Connands

Tezz ANY key to Enter Test Henu

ount Down tiner...13

ozt Henu

- Tezt the RS232 Chatnel

- Tazt the Push Button

- Test the Hall Senzor Inputs

- Test the Solder Link I2C Slave Addvess options RA4, RB4, RBY
L - Tast the External Input Logic Leval Signals

- Tagt the Hotor Speed Control Pot

- Bead the Mbus woltage

- Test tha LED:

- Test Rotary Speed Heazurenent uzing THR

3 - Tost PUH Hotor Dvive Hodule

- Read the notor curvrent & FAULT zignal

- Test the IZC in HASTER HODE

- Test the I2C in SLAVE HODE

o - Tost the Reset input

- Test the 24L032 Serial EEFROH on the base board
- Test tha PCAYGYS on the base board

- Bend tha other dsPICs I2C control connands

q - Quit thiz nenu and run the nain progran

Floaze select the test option

o T

|| ¥
todem Status Comm Status
24085 EVENT. ERR A
[T CTS [DSR [RING [RLSDICD) | | [T CTSHaold [%OFFHold [T T Char BREAK
I~ DSRHaold I ®0OFF Sent T Charg: |0 24066:ERROR: BREAK

[RLSD Hold I EOF Sent B Chars: |0 ¥

Fig.7.0 Screen shot from main test menu

After running through options ‘1’ to ‘b’ exit the menu program with option ‘q’.
We are now in the main loop speed controller for the BLDC motor.

Centre the demand speed pot on the board and then press the START button on the PCB. The motor
will rotate at a speed determined by the pot setting. Move the pot and watch the motor.
Load the motor and notice how the speed of the motor varies with this loading.

Rotating the pot full clockwise will cause the motor to achieve maximum speed in the one direction
and then turning the pot anti clockwise fully will cause the motor to turn on the opposite direction at
full speed. Be careful not to twist the pot too fast as the rotor may not be able to accelerate too
quickly and may stall. If the motor cannot reach maximum speed as set in the #defines then this may
be due to the mechanical loading or due to the fact that the Vbus motor supply voltage is too low.

Once you are happy the motor can be rotated correctly and the wiring to the phases and the Hall
sensors is correct we can move on to including the fault protection circuitry in to the application.

Fault Protection
Open up the defines.h file again and go back to the motor parameters again, and alter the
parameters for the motor type you are using. Below it is shown for the Hurst motor.

Electrocomponents plc Page 28

#if (MOTOR_TYPE == HURST_DYNAMO_DMB0224C10002)
#define POLES 10u /* number of poles (2 x pole pairs) in the motor */
#define MAX_MOTOR_RPM 4000u

#define MAX_INSTANT_MOTOR_CURRENT 800u
/* Maximum allowable current in mA */

#define MAX_AVERAGED_MOTOR_CURRENT 800u
/* Maximum allowable filtered current in mA */

#define IMOTOR_AV_FAULT_DETECTION ENABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u
/* Alter this value to alter the trip sensitivity to this parameter */

#define IMOTOR_FAULT_DETECTION DISABLED
#define IMOTOR_COUNTER_THRESHOLD 300u
/* Alter this value to alter the trip sensitivity to this parameter */

#define EXT_COMPARATOR_FAULT_DETECTION DISABLED
#define EXT_FAULT_COUNTER_THRESHOLD 200u
/* Alter this value to alter the trip sensitivity to this parameter */

Start with the ‘Average Current’ setting and decide what level of average current in mA will be
denoted as a fault current. The Hurst motor has a high impedance winding so the fault current is
normally less than 1000mA. The fault current can be chosen with the following in mind...

e How hard will my motor need to accelerate?

e How much torque is required by my application?

e [fthereisashortin the wiring or winding, how much current will the drive see?
e |[f the rotor stalls, what is the likely fault current it will see?

Once you have some appreciation of this figure you can enter it as mA as shown below.

#define MAX_AVERAGED_MOTOR_CURRENT 800u

The Average Current and Instantaneous Current are obtained by two different methods. The
Average Current is derived from a signal that has lots of capacitor smoothing on it. Consequently this
gives some indication of the average running current for the motor, but is rather slow to react.

The Instantaneous Current signal is also measured by the unit but this signal does not have any
capacitor smoothing on it. Consequently its a quick acting signal but prone to noise. The Instanaeous
Current level can also be set with a #define

#define MAX_INSTANT_MOTOR_CURRENT 800u

This figure can be different from the Average Current figure.

We will concentrate on the Average Current figure initially and then enable the Instantaneous
Current option later.

OK, the Average Current trip level has been set, but the problem now arises in that during
acceleration the motor will demand more current. We will not want the motor to constantly trip out
due to noise spikes or when it is accelerates under load for example. To help with this, a basic trip

Electrocomponents plc Page 29

counter has been implemented, which checks the current every 1ms or so. If a fault condition is
present it adds one to the trip counter and if it is not present 1 is subtracted from it. Once the trip
counter hits a certain threshold, the fault is deemed to be present and the motor is stopped under an
emergency stop manoeuvre.

This trip level and whether it is ENABLED or not, is determined with the #defines...

#define IMOTOR_AV_FAULT_DETECTION ENABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u

As you can see here, the trip will activate after approximately 300ms or so of a fault condition being
present.

To get some indication of the current being drawn by your application have a look in the test menu
and run the ‘Read Motor Current & FAULT Signal’ test. The figure, in mA, is indicated.

Load the motor as it would be under normally running conditions and then try stalling the motor.
This will give you some indication as to what figures you should be using for the motor trip current.
Use a current limited PSU for this whilst doing these tests.

Set the #defines to a suitable level for your application and then recompile the code and download in
to the dsPIC.

Rerun the software, this time in the normal run mode, and see if the Average Current Trip function is
working.

Once you are happy with this, you can move on to the Instant Motor Current

#define MAX_INSTANT_MOTOR_CURRENT 800u
And it’s associated trip level.

#define IMOTOR_FAULT_DETECTION ENABLED

#define IMOTOR_COUNTER_THRESHOLD 300u

This is a slightly faster acting signal and provides a quick way of detecting a stalled rotor at high
speeds.

The last protection feature encompassed in the software relates to the external comparator that is
provided in hardware on the board. This is basically a trip level that is set on a potentiometer on the
board. The comparator is fed by the averaged filtered signal.

#define EXT_COMPARATOR_FAULT_DETECTION ENABLED

#define EXT_FAULT_COUNTER_THRESHOLD 200u

This feature is effectively duplicated by the software algorithms above but has been included as
another way of providing circuit protection. The FAULT signal is read by software but the condition
could be triggered by an Interrupt for a faster way of stopping the motor.

12C Control

Once you have the motor spinning under the control of the potentiometer and the stop button, we
can evolve the product so it can be controlled via 12C commands. As there are two dsPICs on the
board we can set one up to be an I2C Master and the other one to be set up as 12C Slave. Note there
can be only one I12C Master in the system as the software has not been written to cope with multi
master 12C operation.

Go back to the ‘defines.h’ file and modify the control method to...

#define CONTROL_BY_I2C Ou

Electrocomponents plc Page 30

#define CONTROL_BY_PUSH_BUTTON 1lu
#define CONTROL_METHOD CONTROL_BY_I2C

Recompile the code and flash both of the dsPICs with the same software.
Make sure the MPLAB is configured as a ‘Programmer’ and the build type is set for ‘RELEASE’, before
recompiling.

Once this is done, press the RESET button on the base board. Observe both of the two serial outputs
from the devices.

The serial output from the device with the blushless DC motor connected will be used as the 12C
Slave and the other one will use as the I12C Master.

For the 12C master device, hit the return key before the countdown sequence has expired.

From the menu option that is provided select some of the 12C commands.

= DSA's MTTTY
Main Fil= TT¥ Info

Port Baud Farity [ata Bitz Stop Bitz [localEche

| J |1152DD j |Nnne j |8 j |1 j [+ Dizplay Errors
[~ AddCror Lf
Fort... | Comm Events... | Flows Contral... ‘ Timeouts... ‘ ¥ Autowrap

I Use Parser

Yl

icrochip BLOC 6 Step Hotor Driwe Test Softuare
Irhuare Yers jon:004

ontrol by: External IZC Connands

rezz ANY key to Entar Test Henu

ount Down tiner...13

ary
1 - Tost the R3232 Channel
¢ - Tost the Push Button
3 - Taszt the Hall Senszor Inputs
q - Tazt the Solder Link I2C 5lawe Address optionz RAd, RE4, REY
L - Tast the External Input Logic Lewel Signals
fi - Taszt the Hotor Speed Control Pot

- Read the Nbuz woltage
0 - Test the LED:
0 - Tazt Rotary Speed Heasurenent using THR3
a - Test PHH Hotor Drive Hodule
b - Read the notor current & FAULT signal

- Test the I20 in HASTER HODE
d - Test the I2C in SLAYE HODE
p - Tozt the Beset input
- Test the 24LC32 Sevial EEPROH on the base board
- Tezt the PCAYGYS on the baze board
- Send the other dsPICz I2C control connandz
q - Quit this nenu and run the nain progran
Floaze zelect the test option

£ | >
kodem Status Conimn Status
24065:EVENT: ERR
I CTS T DSR I RING [RLSDICD) | CTSHold [XOFFHold [T Char BREAK 4
[” DSRHaold [#0OFF Sent T Chars: |0 24066 ERROR: BREAK

[RLSDHold I EOF Sent R Chars: |0 ~

Fig.7.1 Terminal screen shot of menu options

As menu options ‘1’ through to ‘b’ have already been selected and run, we do not need to repeat
them again here. Select menu options ‘c’ and check to see what other 12C devices the 12C Master can
see in the system.

Electrocomponents plc Page 31

K= DSA's MTTTY.
Main File TTY Info

Port Baud Parity [ata Bitz Stop Bits [e i il
| | [115200 +| [Mere <] |B EIRE v| W DisplayEnois T
- [~ AddCrarLf [
Font... | Cornm Events... | Flaw Cotitral... | Timeauts. .. | W Autowrap [t
= éea& {He Libl:ISI\.'DTtaEE T 5

- Test the LEDs

0 - Test Rotary Speed Heazurenent using THR3I

3 - Test PHH Hotor Drive Hodule

b - Read the notor current & FAULT signal

- - Test the I2C in HASTER HODE

il - Test the I2C in SLAVE HODE

b - Test the Resat input

W - Test the 24L032 Serial EEPROH on the base board
0 - Test the PCAY9GYS on the base board

h - Send the other dsPICs I20 control connands
i - Quit thiz nenu and vun the nain prograd
Flaaze select the test option

Test ing the I2C1 Peripheral In Hazter Hode
tarting with the GEMERAL CALL address (=00

o dewice responze fron GEMERAL CALL addvess
Polling the bus fron 7 bit addvess § to 148...
Found a device at slave address: 065, [xdl
Found a device at slave address: 066, Oxd2
Found a davice at zlave address: 067, Oxdd
Found a device at zlave address: 069, DOxdS
Found a device at slave address:; 081, Ox51
Finished testing the I2C1 Channel - In HASTER Hode...
Press any key to veturn to nain nenu...

w
< | >
todemn Status Cormnrm Status
3 ERRCR: BREAK
[~ CTS ™ DSR [RING I~ RLSD(CD) || I~ CTSHold I~ XOFFHold I~ TXChar || evmnr erm opea. —
[~ DSR Hold [®OFF Sent T Chars: |0 5. ERROR: BREAK
[~ RLSD Hold I EOF Sent A Chars: [0 v

Fig.7.2 12C master mode menu output

The 12C Master will poll the 12C bus and identify which devices respond with an acknowledge signal.
The above diagram shows four dsPIC 12C Slave devices at I12C address 65, 66, 67,and 69. The 12C
Master does not respond to its own 12C address ping. Consequently in the above system there are
four dsPICs configured as slaves and one configured as a master. If a dsPIC is configured as a master,
it is not possible with the current software for it to be used as a motor driver as well.

The other 12C address (081) identified in the above diagram, is the serial E2PROM present on the
base board. There may well be other devices identified including the serial input latch on the base
board and the devices on other modules.

Run test option ‘f’ Test The 24LC32 Serial EEPROM On The Base Board’ to ensure the I12C is
functioning correctly. If all is working correctly proceed to menu option ‘h’ — Send the other dsPICs
I2C Control Commands’.

[2C Haster Hoda Controller.
This nodule will conmunicate and contrel the other dsPIC I2C Slave devices
hooze the 20 Slave Address you want to control fron this davice
Frozz the + and - key to increase and decreaze the select ion
then Return to finish.
r [to quit and veturn to nain nenu.

ey Value is: 064 el
< | >
todem Status Comm Statuz
S ERROR: BREAK
[T CTS T DSR [RING I RLSDICD] | |l CTSHald [XOFFHold I T Char L EVENT: ERR BREAK 2
[~ DSRHold [XOFF Sent T Chars: |0 S.ERROR: BREAK,
[~ RLSD Hold [~ EOF Sent R Chars: [0 v

Fig.7.3 Selecting the 12C we want to control

Electrocomponents plc Page 32

As there may be up to 7 motor drives controllable via I12C packets from this one 12C Master in the
system, we need to tell the software which 12C device address we want to communicate with.
Select the address of the 12C Motor Drive Slave you want to control using the ‘+’ and *-* keys.

Once you have reached the I12C address, hit the return key and a complete new set of menu options
appears.

wst Honu for Slave Address:066
- Ping The Slave Address and Taszt For Acknonledge
- RBESET the $lave Addresz HCI

P - Energency Stop

- Nornal Stop

H - Set Meu Divection Az Foruard

L - Sot Hew Divection Az Reverso

6 - Set The RBanp Up Speed

7 - Set The Ranp Doun Speed

- Sat The Hotor Denand Speed Foruard/Clockuize

0 - Sat The Hotor Denand Speed Backuard/Counter Clockuize

3 - Start The Hotor Turning

b - Read The Tacho RPH Speeds

- Read The Hotor Currents

i - Read Tha Ybus Yaltages

& - Pead The Denand Speed Pot

f - Fead The Hall Sensors

0 - Read The Hotor Status Flags

h - Read The Haxinun RPH Speed OF The Hotor

£ - Ewecute A Sequence Of Tests

FETURN - Quit thiz nenu and return to Sub Heno

Please select the test option

4
Modemn Status Comm Status
FZERROR: BREAK S
[T CTS [DSR I RING I RLSDICD] (I CTSHald [XOFFHaold I T Char 4'EVENT: ERR BREAK

[DSRHold [XOFF Sent T Chars: |0 5.ERROR: BREAK,
[~ RLSD Hald I EOF Sent R Chars: |0 w

Fig.7.4 12C command menu

Built in to the software is a set of 12C Command, which will allow the 12C Master to communicate
with the 12C Slave devices. The command set is detailed in a text documents contained in the header
files directory called ‘Slave 12C Command Protocol.txt’

This describes the 12C packet contents, which has been implemented in software.

This command protocol is very similar for the motor drive algorithms from the 6 step controller
through to the position controller. There are extra commands added in the other drives as the drives
are more complicated and they require a more comprehensive command set.

From this menu, sequence through the options shown and become familiar with the features of the
provided software. Pingthe address initially to see if you have contact with the slave. If the slave
address you want to communicate to is going through its countdown sequence just after power up
then the Slave is not yet configured and will not respond. Once the sequence has finished the slave is
available for control. This can be easily shown by selecting the 12C menu option ‘1 — RESET the Slave
Address MCU’ followed immediately by option ‘O — Ping the Address’.

To get the motor to move in a 6 step drive, then the following sequence needs to be sent...

Menu option ‘4 — Set The New Direction As Forward’
Menu option ‘6 — Set the Ramp Up Speed’

Menu option ‘7’ — Set the Ramp Down Speed’

Menu option ‘8 — Set The Motor Demand Speed Forward’
Menu option ‘a — Set The Motor Turning’

For the ‘Ramp Up’ speed we can chose typical values of 1 — 20 depending on whether we want a
slow ramp up speed (small number) or a faster ramp up (larger number).

Electrocomponents plc Page 33

The user has to appreciate what load is on the motor unit to prevent the motor from stalling during
ramp up and ramp down. Too high a value will cause excessive current to be drawn and the fault
protection circuitry may activate also. The user therefore has to set the current trips and the
acceleration and deceleration ramps accordingly, based on his understanding of the load types being
driven.

In the 6 step controller the user can alter the speed of the drive on the fly without stopping the
motor. To do this select menu option ‘8’ and select a new speed using the ‘+’ and ‘- keys.
The slave motor will respond to the new demand speed.

To drive the motor in reverse or counter clockwise the user first has to stop the motor.
Select...

Menu option ‘3 — Normal Stop’.
The motor will then decelerate according to the ramp down profile selected.

Menu option ‘2 — Emergency Stop’ will cut power immediately to the drive and the motor will free
wheel to its stationary position. The ramp down profile is not respected during this emergency stop
phase.

To turn the motor in the opposite direction we have to set up the new direction and the reverse
demand speed.

Menu option ‘5 — Set The New Direction As Reverse’
Menu option ‘9 — Set The New Demand Speed Backwards/Counter Clockwise’
Menu option ‘a — Set The Motor Turning’

As the ramp up and ramp down rates have already been set, these do not have to be retransmitted.
The motor will accelerate to the new demand speed where it will remain until another command is
sent to it. The slave module keeps the Reverse and Forward speeds separately, so changing direction
does not always have to be followed by a new Demand Speed.

The motor must be stopped before changing direction. The motor cannot change direction when it’s
accelerating, decelerating or in normal running mode. The only way to change direction is when the

motor is in the stopped mode.

The master can poll the slave to determine what state it is in. The current states are detailed in the
‘defines.h’ file and they are...

/* Machine States for 12C Control */

#tdefine STOPPED Ou
#define STOPPING 1u
#define NEW_MOTOR_DEMAND_FORWARD 2u
#define NEW_MOTOR_DEMAND_REVERSE 3u
#define NORMAL_RUNNING 4u

The software for sine wave drive and for position control has a different selection of states as the
control strategy is different. You can poll the slave and determine what state it is. You can see this
status information with menu option ‘g — Read The Motor Status Flags’.

Start the motor running again and whilst it’s running select this menu option.

Electrocomponents plc Page 34

Roading the Status Flags fnd State Hachine
Press any key to cont inue
Fur/Stop Direction RPH FIt InstCur Awelur ExtCon Current State

FUNHING Clockuize HO FAULT HO FAULT HO FAULT HO FAULT Hornal Running B’
< »
Modem Status Comm Status
FERROR: BREAK e
[CT5 [~ DSR [RING [~ RLSD(CD) || I~ CTSHeld [~ XOFFHold [~ T Char A P i
[DSRHold [XOFF Sent T Chars; |0 SERROR: BREAK
[~ RLSD Hold [~ EOF Sent B Chars: [0 w

Fig.7.5 Reading the status information from the slave

Included in the status information is the RUN/STOP flag of the motor, the direction of the motor
rotation, and fault information relating to RPM, Instantaneous Current, Average Current and External
Current comparator. The current state (state machine) of the motor is also displayed which for the
one of the five states detailed above.

The sine drivers and position controller software make use of the RPM fault flag and also have an
extended state machine table.

The menu options also allow you to examine motor current and bus voltages etc.

Cycles through each of the menu options in turn, and watch the parameters displayed in real time on
the terminal. Where a parameter such as motor current is displayed, there are two figures displayed.
The first is normally the instantaneous figure and the second is normally a software averaged figure.

After completing all the menu options, run the last one, option ‘z — Exercise a Sequence of Tests’.
This last menu option puts together all of the above options and cycles through them one by one.
This last one provides a quick test of the motor.

If the motor trip currents need to be altered then alter the #defines in the ‘defines.h’ header file and
recompile. Then flash the new code into the SLAVE device you want to change. You do not need to
re-flash the master device in this case.

Re-flashing the MCU will cause that MCU to RESET but all other devices on the bus are unaffected.
This way each motor can be debugged and its software changed independently whilst the rest of the
system can be running and operating motors.

8.0 Software Configuration for Sine Wave PMSM Operation

The procedure for setting up a permanent magnet synchronous motor (PMSM) is similar to the one
for the Six Step Controller.

The software is contained in a different directory, called RS_BLDC_PMSM.

The MPLAB project workspace is called ‘RS_EDP_Microchip_PMSM’

Open this project workspace and examine the source files. The wiring for the 6 step controller is
exactly the same as for the sine wave drive PMSM. The same Hall sensors are used and the same
bridge driver also.

For the purposes of setting the system up make sure you have a current limited power supply for the
main Motor PSU. This will prevent damage to the board and the motor.

Connect an RS232 terminal emulator to the device using the provided cable. Make sure the
orientation of this cable is correct otherwise the serial output will not work. Connect the header to
P209 on the PCB ensuring correct orientation.

Compile this project and see if the compilation goes to completion without problem. As with the six
step controller you may have to tinker with the project slightly to ensure all the paths are correct and

Electrocomponents plc Page 35

all of the relevant header files can be found. The projects make use of the Microchip libraries to
configure some of the device peripherals.

Connect your debug tool to the device using the header cable provided. Use the tools as a
‘Programmer’ initially rather than a ‘Debugger’ and set the project option to ‘Release’.

Once a successful application has been compiled you can download the code in to the flash memory
of the device. Program the code into the device. Once the code has been flashed the device should
start to run and message strings will start to be displayed on the terminal screen.

If all of this works correctly then you are ready to start to tune the motor drive board to the BLDC
PMSM motor.

Go back to the MPLAB project and locate the ‘defines.h’ header file. Open this header file and
examine the #defines and their description. Some of the major ones are described below.

Control Method

The header file allows you to specify how you want to control the motor, either through 12C packets
from an 12C Master or from the push button on the PCB and the demand speed pot on the PCB.

A detailed description of this is contained in the above section for the 6 step controller.

To enable us to get started it is best to select the control by push button option initially.

The header file has the following code...

/* Select your control option below */

#define CONTROL_BY_I2C Ou

#define CONTROL_BY_PUSH_BUTTON 1u

#define CONTROL_METHOD CONTROL_BY_PUSH_BUTTON
Motor Type

Select the motor you wish to use. The one below is configured for the Hurst motor.

/* Define The Motor Type */

#define HURST_DYNAMO_DMB0224C10002 1u /* Hurst Motor */
#define MAXON_EC_ 118898 2u /* Maxon motor */
#define MOTOR_TYPE HURST_DYNAMO_DMB0224C10002

Motor Parameters
The motor parameter selection has some additional "#defines’ related to it. These are nominally the
RPM fault detection parameters.

All of the defines are detailed below
/* This group of Defines relates to the motor types and hall effect combination */
#if (MOTOR_TYPE == HURST_DYNAMO_DMB0224C10002)

#define POLES 10u

#define MAX_MOTOR_RPM 2500u
/* Note you will need to change the Amplitude Reduction Table in the ‘sine_driver.c’ file to
accommodate the change in Maximum RPM */

#define MAX_INSTANT_MOTOR_CURRENT 800u
#define MAX_AVERAGED_MOTOR_CURRENT 800u
#define MIN_MEASURABLE_RPM_SPEED 60u

Electrocomponents plc Page 36

#define RPM_FAULT_DETECTION DISABLED

#define RPM_COUNTER_THRESHOLD 1000u

#define IMOTOR_AV_FAULT_DETECTION DISABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u

#define IMOTOR_FAULT_DETECTION DISABLED
#define IMOTOR_COUNTER_THRESHOLD 300u

#define EXT_COMPARATOR_FAULT_DETECTION DISABLED
#define EXT_FAULT_COUNTER_THRESHOLD 200u

Note: Also the maximum RPM figure is significant in the sine driver PMSM software.
The reason for this is explained as follows...

When the motor is running at maximum RPM, 2500 RPM in this case we would expect the motor to
be receiving the full amplitude sign wave. This will effectively deliver maximum voltage and hence
maximum current to the motor. The motor as its spinning rather quickly it will deliver a back EMF
proportional to its rotational speed and hence the current flowing through the winding will be
limited. The torque available is proportional to the current, and the motor should be selected to be
able to provide enough torque for the application.

At low RPM the motor is not able to provide a strong back EMF and so the current in the winding
would increase massively unless the voltage to the motor is reduced accordingly. Consequently a
voltage reduction is necessary to prevent the motor from drawing excessive current at lower speeds.
This trade off is achieved by a Voltage/Frequency voltage reduction table. This technique is common
employed in three phase inverters or three phase AC motor drive applications. The ratio of V/f is
usually a constant but some allowances need to be made for the fact that the motor is a real item
and not a theoretical model.

Consequently any change in the Maximum RPM figure will ultimately reflect in a different voltage
reduction pattern or table.

The voltage reduction table is contained in the file ‘sine_driver.c’

A table is used rather than mathematics as it provides a quicker way of actually doing the maths.
Have a look at the two tables and you will note that a table entry of ‘255’ means full power sine wave
and a vale of ‘128’ for example is half of full scale voltage.

The relationship of the Voltage and Frequency is usually linear from full speed down to zero, with
some provision for maintaining a voltage at a minimum low level for really slow speeds. A details
study of the V/F relationship for PMSM with complete mathematical treatment can be found on the
web. Marek Stulraijter, Valeria Hrabovcova and Marek Franko have published a paper in the Journal
of Electrical Engineering Vol.58 No.2, 2007 entitled ‘Permanent Magnets Synchronous Motor Control
Theory’.

The sine wave V/F reduction table is selected automatically for the two motors profiled in here but
the user will have to create a new table for any new motors he uses.

The big advantage of this type of motor drive is that the rotor rotates in perfect synch with the
applied sine wave. Provided the torque of the load does not cause the motor to stall, the motor will
effectively rotate at the frequency of the driven sine wave. The other big advantage of this that the

Electrocomponents plc Page 37

applied torque is much smoother and so the motors run more silently and the consequent torque
ripple is much less. The disadvantage of this type of drive over the six step, is the switching losses are
much higher as a sine wave has to be reconstructed from a DC levels. It was also found that the
maximum RPM figure of the motors is much less when driven with a sine wave over the 6 step
approach.

To set the motor up, follow the same technique as for the 6 step by removing all of the fault
detection and trip elements. We would also have to switch off the RPM fault detection, which is a
new feature in the sine drive example.

Initially we will set the both of the current trips and the external current comparator to off.
To do this alter the #define lines to

#define IMOTOR_AV_FAULT_DETECTION DISABLED
#define IMOTOR_FAULT_DETECTION DISABLED
#define EXT_COMPARATOR_FAULT_DETECTION DISABLED
#define RPM_FAULT_DETECTION DISABLED

These parameters can be one of two values either ENABLED or DISABLED.

As we are driving the rotor with a predefined sine wave of a given frequency we should be able to
determine more easily whether we have a stalled rotor, as we can measure quite easily the RPM of
the motor from the Hall sensors inputs. By measuring the time between Hall transitions and knowing
the number of poles in the motor we can determine the actually rotating RPM. This can be compared
with the driven frequency and we can therefore determine whether we have a stalled rotor or not.
This technique does fall down at low RPM however as the timers used to measure the time between
Hall transitions will roll over. For this reason we have a minimum RPM speed at which the RPM fault
detection is deactivated. The user will need to specify the point at which he would like this to
operate. This is the purpose of the

#define MIN_MEASURABLE_RPM_SPEED 60u
Use a current limited power supply initially when first commissioning and setting up a motor.

Once this is done we can recompile the software and download the flash into the board.
Flash the board with a programmer and set the code running. Check the R$232 monitor channel to
see if there is output.

The software has been written so that a countdown sequence is initiated. If a keyboard press is
registered during the countdown sequence the test menus are displayed. This will allow you to fully
exercise the hardware and ensure the motor and hall sensors are correctly configured before actually
running the motor in a real application.

Failure to press a key a key during this countdown sequence will result in the software executing in
the normal run mode motor drive software.

Start by activating the menu options and then exercise the hardware you have by sequencing
through all of the options, one at a time. Note: All of the fault detection algorithms that are designed
to protect the motor and circuitry become disabled during this menu phase so make sure you have a
current limited power supply. These menus are a good way of checking the hardware is working
correctly.

The main menu for the PMSM looks identical to the 6 Step menus.

Electrocomponents plc Page 38

Exercise the menu options ‘1’ through to ‘b’ and when you are happy the hardware is functioning
correctly exit the menus, ‘q’ and the main control loop will start.

Centre the demand speed pot on the board and then press the START button on the PCB. The motor
will rotate at a speed determined by the pot setting.

Load the motor and notice how the speed of the motor does not vary. This is because the motor is
rotating in synch with the sine wave driving it. The current to the motor does however change
depending upon its loading. Too much load and the motor will stall.

Rotating the pot full clockwise will cause the motor to achieve maximum speed in the one direction
and then turning the pot anti clockwise fully will cause the motor to turn on the opposite direction at
full speed. This max speed is defined in the ‘#defines.h’ file. Be careful not to twist the pot too fast as
the rotor may not be able to keep up with the sudden changes in demand and it may stall. If the
motor cannot reach maximum speed as set in the #defines without stalling then this may be due to
the V/F table settings or due to the fact that the motor is unable to deliver the required torque at
this high speed setting. If this is the case then either reduce the maximum RPM figure or alter the V/F
table or try a different motor control algorithm.

Fault Protection
After doing these brief tests, go back to MPLAB and put the safety trips in place.

Start with the
#define IMOTOR_AV_FAULT_DETECTION ENABLED

And work thorough to include them all including the new RPM fault trip which was not present in the
Six Step Controller.
See the section on 6 Step Controller for more detail on the following three trips...

#define IMOTOR_AV_FAULT_DETECTION DISABLED
#define IMOTOR_FAULT_DETECTION DISABLED
#define EXT_COMPARATOR_FAULT_DETECTION DISABLED

The following trip requires some additional explanation...
#define RPM_FAULT_DETECTION ENABLED

The RPM detection algorithm is useful and relatively easy to implement.

The software will look at the target RPM speed and the actual RPM speed and make a comparison.
The user has two values for RPM. One is the ‘instantaneous RPM’ and the other in the ‘average RPM’
figure.

The fault detection algorithm is implemented in ‘fault_detection.c’ and makes use of the
‘instantaneous RPM’ value, as this is more up to date.

For the RPM fault detection algorithm to work, the target speed must be above the minimum speed
set in the #defines.h file. The RPM is said to be at fault when it lies outside two boundaries. The two
boundaries are 150% and 50% of the desired target speed. These are set up in the ‘fault_detection.c’
file. The instantaneous RPM will lag slightly the desired RPM during acceleration and deceleration.
The user can hand tweak this software to get safety/performance trade off.

Each time the fault detection algorithm is called, and it is deemed to be out of range, a fault counter
is incremented just like on the other trips. If it is in range the fault counter is decremented. When the
fault counter reaches a threshold count the fault is deemed to be present and the fault flag is set,
bringing any motor control activity to a stop.

Electrocomponents plc Page 39

12C Control

Once you have the motor spinning under the control of the potentiometer and the stop button, we
can evolve the product so it can be controlled via 12C commands. Like on the 6 step controller we can
set one dsPIC up to be an 12C Master and the other one to be set up as an 12C Slave.

Go back to the ‘defines.h’ file and modify the control method to...

#define CONTROL_BY_I2C Ou
#define CONTROL_BY_PUSH_BUTTON 1u
#define CONTROL_METHOD CONTROL_BY_I2C

Recompile the code and flash both of the dsPICs with the same software.
Make sure the MPLAB is configured as a ‘Programmer’ and the built type is set for ‘Release’, before
recompiling.

Once this is done, press the RESET button on the base board. Observe both of the two serial outputs
from the devices.

The serial output from the device with the blushless DC PMSM motor connected will be used as the
I2C Slave and the other one will use as the 12C Master.

For the 12C master device, hit the return key before the countdown sequence has expired.

From the menu option that is provided select some of the 12C commands.

As for the six step controller, we can exercise the 12C Menu options.

As menu options ‘1’ through to ‘b’ have already been selected and run, we do not need to repeat
them again here. Select menu options ‘c’ and check to see what other I12C devices the 12C Master can
see in the system. Identify the I12C Slave device you want to communicate to and then select menu
option ‘h — Send the other dsPIC I2C Commands’.

Select the 12C address you want to communicate to and press the return key. Like with the Six Step
controller software, the 12C Command Menu appears.

The menu options for this are the same as for the six step controller. Refer to the notes in the section
on the six step controller software.

9.0 Software Configuration for Sine Wave PMSM Operation with SVM

This block of software is pretty much identical to the Sine Wave Driver example in 8.0 above. The big
difference comes in calculating the PWM duty ration for each of the six bridge components. A Space
Vector Modulation algorithm is used instead of simply accessing a sine wave table. In an SVM
algorithm, only the first 60 degree of the sine wave table is used. The understanding of the SVM
technique is not part of this user manual but is well documented on the Internet. Please refer to the
theory of this for a more detailed understanding. What you will notice with this algorithm is that the
motors can be spun at a higher RPM and that the motors can yield a higher torque compared to a
pure sine wave drive.

11.0 Software Configuration PMSM Position Control Using Rotary Encoder
This software is based on the sine wave PMSM controller above. The Hall sensors inputs have now
been replaced by the inputs from a 5V rotary encoder. The input capacitors on the Hall sensor circuit
need to be removed, for reliable operation of the encoder. See the section on link options for more
detail.

Electrocomponents plc Page 40

Rotary Encoder

The rotary encoder outputs are usually denoted by A and B and Index, which together provide an
indication of the rotational speed and direction. As the encoder is rotated in one direction either the
A signal will lead the B signal or the B signal will lead the A signal. Therefore direction information is
easily obtained from the A & B pulses. There are generally 500 or 1000 A counts per revolution. The
INDEX signal provides a way of referencing the encoder to an absolute shaft position. The index pulse
is once per revolution.

The PCB has been designed to accommodate the hardware rotary encoder peripheral that is present
on the motor control dsPICs. These same pins that were used for the Hall sensors has been
reprogrammed for use as quadrature encoder inputs.

In the PMSM design we do not need the Hall sensors to sequence the commutation as we do in the 6
step controller, because we are going to be driving the motor bridge with a sine wave from a table.
The frequency of the sine wave will determine the rotational speed, as the rotor will follow the field.
In the Sine Driver PMSM example before, the Hall devices were used only to measure the RPM speed
and to initially determine where the rotor was to synchronise the sine wave with the rotor before
starting.

With a six step controller we only have six possible rotor positions that we can determine from the
Hall sensors. This makes stopping with any accuracy a real problem and a rotary encoder is therefore
required to improve upon this.

With the software included here it is possible to rotate the shaft of the motor very accurately and
results in the lab showed typical results of +/- 1 rotary encoder counts, with a 1000 count per
revolution. This is about +/- 0.1% of one revolution which in degrees is +/- 0.36 of one degree.

With a gear box this could of course be improved upon.

The theoretic limit for this is however based on the number of elements you have within your sine
wave generator table. As the table is 256 elements the theoretical limits for this 256 per revolution,
giving a theoretical resolution of 360/256 = 1.41 degrees.

The rotary encoder used was a 500 count type which was multiplied up internally by x2 to 1000
counts per revolution. The dsPIC quad encoder peripheral allows for either a x2 or x4 multiplication
on the input. The software has been written to accommodate a x2 multiplication.

Software Setup

The procedure for setting up the PMSM with position control, is similar to the one for the PMSM sine
wave driver above.

The software is contained in a different directory, called ‘RS_BLDC_PMSM_POSITION’.

The MPLAB workspace is called ‘Microchip_PMSM_ Position’

Open this project workspace and examine the source files. The wiring for the position controller is
different as it requires a rotary encoder rather than a Hall sensors input. The same bridge driver
arrangement is used however.

For the purposes of setting the system up make sure you have a current limited power supply for the
main Motor PSU. This will prevent damage to the board and the motor.

Connect an RS232 terminal emulator to the device using the provided cable. Make sure the
orientation of this cable is correct otherwise the serial output will not work. Connect the header to
P209 on the PCB ensuring correct orientation.

Electrocomponents plc Page 41

Compile this project and see if the compilation goes to completion without problem. As with the sine
wave PMSM controller you may have to tinker with the project slightly to ensure all the paths are
correct and all of the relevant header files can be found. The projects make use of the Microchip
libraries to configure some of the device peripherals.

Connect your debug tool to the device using the header cable provided. Use the tools as a
‘Programmer’ initially rather than a ‘Debugger’ and set the project option to ‘Release’.

Once a successful application has been compiled you can download the code in to the flash memory
of the device. Program the code into the device. Once the code has been flashed the device should
start to run and message strings will start to be displayed on the terminal screen.

If all of this works correctly then you are ready to start to tune the motor drive board to the BLDC
PMSM motor.

Go back to the MPLAB project and locate the ‘defines.h’ header file. Open this header file and
examine the #defines and their description. Some of the major ones are described below.

Control Method

The header file allows you to specify how you want to control the motor, either through 12C packets
from an 12C Master or from the push button on the PCB and the demand speed pot on the PCB.

A detailed description of this is contained in the above section for the 6 step controller.

To enable us to get started it is best to select the ‘control by push button’ option initially.

The header file has the following code...

/* Select your control option below */

#define CONTROL_BY_I2C Ou
#define CONTROL_BY_PUSH_BUTTON 1u
#define CONTROL_METHOD CONTROL_BY_PUSH_BUTTON

Select the CONTROL_BY_PUSH_BUTTON options as shown above.

Motor Type
Select the motor you wish to use. The one below is configured for the Hurst motor.

#define HURST_DYNAMO_DMB0224C10002 1u /* Hurst Motor */
#define MAXON_EC_ 118898 2u /* Maxon motor */
#define MOTOR_TYPE HURST_DYNAMO_DMB0224C10002

The Hurst Motor is a much better motor for position control as there are 5 pole pairs, which means it
has much smoother rotation at lower RPMs.

Motor Parameters
Setting the motors parameter for the position controller is exactly the same as for setting the
parameters for the PMSM Sine Driver example above.

Select your motor parameter, recompile and flash the motor drive modules.

Start by sequencing through the menu options ‘1’ through to ‘a’. This will exercise the hardware you
have, and find any potential problems prior to running the drive.

Note: All of the fault detection algorithms that are designed to protect the motor and circuitry
become disabled during this menu phase so make sure you have a current limited power supply.
These menus are a good way of checking the hardware is working correctly.

Electrocomponents plc Page 42

The main difference between the options for this drive and the other two is that the Hall sensors
menu option (‘3’) has been replaced by the rotary encoder option. Also the test for ‘Rotary Speed
Measurement using TM3’ is no longer required as TM3 is not used.

[DSA's MTTTY
Main File TTY Info

Fart Baud Parity Data Bits Stop Bits I loreliEee

| L J |1152UU j |N0ne j |8 j |1 j Iv Dizplay Erors
I Add CrorLf
| IV Autowrap

Microchip BLOC PHSH With Position Control Using A Rotary Encoder ~
Firnuare Yersion:003

ontrol by: Push Button & Denand Pot

Frazs ANY key to Enter The Test Henu

ount Down tiner...09

Test Henu

[l - Test the RE232 Channel

¢ - Tast the Push Button

- Test the Quad Encoder Hodule & RPH Calculat ion
¥ - Test the Solder Link I2C 5lawe Address options RA4, RE4, RE?
L - Test the External Input Logic Level Signals

5 - Test the Hotor Speed Control Pot

7 - Read the Ybuz woltage

- Test the LEDs

0 - Test PHH Hotor Drive Hodule

la - Read the notor curvent % FAULT signal

b - Test the I2C in HASTER HODE

- - Test the I2C in SLAVE HODE

il - Test the Reset input

o - Test the 24LC32 Serial EEPRON on the baze board
if - Test the PCROG?S on the base board

0 - Send the other dsPICs I2C control connands

¥ Use Parser

it

Font...| EommEvents...| Flows Contral... | Timeouts...

5 - Quit thiz nenu and run the nain progran
Floaze zelect the test option
< ¥
Modem Status Carmm Status
[T CTs | DSR [T RING [RLSD(CD) || [CTSHold | XOFFHold [~ T Char BREAK
I DSRHald I X0OFF Sent T Chars: |0 209558 ERROR: BRELK
[~ RLSD Hold [~ EOF Sent R Chars: [0 v

§99557.EVENT: ERR ~

Fig.10.0 Main Menu for position control using PMSM Sine Wave Driver

Exercise the menu options ‘1’ through to ‘a’ and when you are happy the hardware is functioning
correctly exit the menus, ‘q’ and the main control loop will start.

Centre the demand speed pot on the board and then press the START button on the PCB. The motor
will rotate at a speed determined by the pot setting. As this is position control software, the rotary
encounter counts can be seen on the screen. The rotary encoder count up in the one direction and
down in the other, passing through zero.

As the motor accelerates to a higher speed the counts also increase as well.

Load the motor and notice how the speed of the motor does not vary. This is because the motor is
rotating in synch with the sine wave driving it. The current to the motor does however change
depending upon its loading. Too much load and the motor will stall.

Rotating the pot full clockwise will cause the motor to achieve maximum speed in the one direction
and then turning the pot anti clockwise fully will cause the motor to turn on the opposite direction at
full speed. This max speed is defined in the ‘#defines.h’ file. Be careful not to twist the pot too fast as
the rotor may not be able to accelerate too quickly and may stall. If the motor cannot reach
maximum speed as set in the #defines then this may be due to the V/F table settings or due to the
fact that the motor is unable to deliver the required torque at this high speed setting. If this is the
case then either reduce the maximum RPM figure or alter the VF table or try a different motor
control algorithm. The motor supply voltage is also important.

Fault Protection
After doing these brief tests, go back to MPLAB and put the safety trips in place.

Electrocomponents plc Page 43

#define IMOTOR_AV_FAULT_DETECTION ENABLED

#define IMOTOR_AV_FAULT_DETECTION ENABLED
#define IMOTOR_FAULT_DETECTION ENABLED
#define EXT_COMPARATOR_FAULT_DETECTION ENABLED
#define RPM_FAULT_DETECTION ENABLED

The RPM calculation is done slightly differently in the position controller, as we have a rotary
encoder rather than the Hall sensors. The accuracy on the RPM measurement is much better.

As with the PMSM Sine Wave driver algorithm there are some limits user selectable relating to the
RPM fault detection.

Read the section on fault protection for the PMSM Sine Wave Driver for more details in this.

12C Control

Once you have the motor spinning under the control of the potentiometer and the stop button, we
can evolve the product so it can be controlled via 12C commands. Like on the PMSM without position
control we can set one dsPIC up to be an I2C Master and the other one to be set up as an 12C Slave.
Go back to the ‘defines.h’ file and modify the control method to...

#define CONTROL_BY_I2C Ou
#define CONTROL_BY_PUSH_BUTTON 1u
#define CONTROL_METHOD CONTROL_BY_I2C

Recompile the code and flash both of the dsPICs with the same software.
Make sure the MPLAB is configured as a ‘Programmer’ and the built type is set for ‘RELEASE’, before
recompiling.

Once this is done, press the RESET button on the base board. Observe both of the two serial outputs
from the devices.

The serial output from the device with the blushless DC PMSM motor connected will be used as the
I12C Slave and the other one will use as the 12C Master.

For the 12C master device, hit the return key before the countdown sequence has expired.

From the menu option that is provided select some of the 12C commands and check its working ok.

Select menu option ‘g — Send the other dsPIC 12C Commands’.

Select the 12C address you want to communicate to and press the return key. Like with the Six Step
controller software and the PMSM Sine driver, the 12C Command Menu appears.

The menu options for this are similar to the other two drives, but there are some additional options
for the new features.

Refer to the notes in the section on the six step controller software, for details on the basic menu
options.

Electrocomponents plc Page 44

[DSA's MTTTY.

Main File TT¥ Info

Part Baud Parity Data Bitz Stop Bitz [l E P
| | 1500 | fwore <] |8 =l | ¥ DisplayEmois
- [~ AddCrorlf [
Fart.. | Carmm Events... | Flows Contral... | Timeots. . | ¥ Autowrap r

120 Haster Hode Controller.
Thiz nodule will conmunicate and control the other dsPIC I2C Slawe devices

hoose the I2C Slave Address you want to control fron thiz dewice
Frozz the + and - key to increase and decrease the zelection
then Return to finish.

v [to quit and veturn to nain nenu.

e Yalue is: 064

Test Henu for Slave Address:064
0 - Ping The Slave Address and Test For Acknouledge
{1 - RESET the $lave Address HCU
- Energency Stop
- Hornal Stop
H - Set Mew Direction As Foruard
L - Set Mew Direction Az Reverse
% - Set The Ranp Up Speed
7 - Set The Ranp Doun Speed
- Sat The Hawinun Hotor Denand Speed Foruard/Clockuise
M - Set The Haxinun Hotor Denand Speed Backuard/Counter Clockuize
la - Sat The Hunber of Rotary Encoder Pulses You Hant To nowe
b - Start The Hotor Turning
- Goto/Locate Hone Posit ion
i - Read The Tacho RPH Speeds
o - Read The Hotor Currents
if - Read The Ybuz Moltages
P2 - Read The Denand Speed Pot
h - Read The Hall Senzors
i - Read The Hotor Status Flags
j - Read The Haxinun RPH Speed OF The Hotor
- Read The Rotary Encoder DifferencesOverzhoot Yalue
= - Execute A Sequence Of Tests
IRETURH - Quit this nenu and return to Sub Henu
Floase zelact the test option

<
Modem Status Comm Status
212.ERROR: BREAK
[T CTS 7 DSR I RING I~ RLSD(CD) || [~ CTSHaold | XOFFHold [T TXChar 13 EVENT: ERR 2
7 DSRHold I~ XOFF Sent T Chars: |0 214.ERROR: OWERRLN
I~ RLSD Hold |~ EOF Sent R Chars: [0 v

Fig.10.1 Position control using a rotary encoder — main 12C control menu

As you can see from the screen shot there are three new menu options.
These are...

‘a — Set the number of rotary encoder pulses you want to move’
‘c — Locate the home position’
‘k — Read the rotary encoder difference/overshoot’

The normal sequence of instructions for moving is as follows...

Menu option ‘4 — Set The New Direction As Forward’

Menu option ‘6 — Set the Ramp Up Speed’

Menu option ‘7’ — Set the Ramp Down Speed’

Menu option ‘8 — Set The Motor Demand Speed Forward’

Menu option ‘a — Set the rotary encoder pulses you want to move’
Menu option ‘b — Set The Motor Turning’

This sequence will move the rotary encoder the set number of pulses, with the exception of the very

first movement after power up.

After power up, the motor rotor is in an unknown position. The CPU cannot determine where the
rotor is, as it does not have any Hall sensor inputs. This will cause the rotor to snap to the sine wave

when the rotor first starts to move. The motor can snap in either direction.

Electrocomponents plc Page 45

To help with this the first task should be to locate the motor using a home command. A home
command will normally send a motor or linear actuator to one end of its travel at which point it
activates a trip switch. This trip switch tells the CPU that it has reached its end of travel and all
positions are now to be referenced against it.

In the menu option there is a ‘c — Goto/Locate the home position” which will turn the motor slowly in
a given direction until it reaches the home position sensor. This function will also back off and re-
approach the sensor at an even slower speed to get even more accuracy from this home position.

The ‘External Inputs’ are used for this task. One input is dedicated for each dsPIC is a 6 dsPIC design
(3 modules). See the section on Hardware Configuration and External Inputs to get more detail on
this. The 12C address and which external input is reference are related.

The speed of movement and direction of movement can be specified in an 12C packet to locate the
home position.

Note: After an emergency stop situation the power is removed from the bridge and the rotor will
freely rotate. After this has happened, the sine driver will lose track of where the rotor position is
and a ‘Goto home’ command should be re-issued to set the system up once again.

The final menu option that is new is the option ‘k — Read the rotary encoder difference/overshoot’.
This will upload a 32bit number from the target giving the exact number of the current rotary
encoder counter. This feature is provided to help prevent cumulative errors building up during travel.
i.e. After moving the motor through 10,050 counts for example there may be an error of +2 count
overshoot. The user can therefore read the rotary encoder prior to issuing a new movement
command to compensate for the previous error. So if the next movement is for 30,000 counts and
the previous error is an overshoot of +2, then we can issue a count of 30,000 — 2 = 29,998 counts.

The 12C protocol handles 16 bit data at a time so 32 bit commands take two consecutive 12C packets.
Full handshaking of 32 bit packets occurs in the 12C handlers, so that the danger to data corruption is
minimised.

The rotary encoder is reset to 0x80008000 before a new position command is activated. This gives a
possible encoder travel value of...

Clockwise:

Oxffff ffff — 0x8000 8000 = 7fff 7fff counts

Counter clockwise:

0x8000 8000 — 0x0000 0000 = 0x8000 8000 counts

This means the maximum travel in one command is 0x7fff 7fff clockwise and up to 0x8000 8000
counts counter clockwise before a roll over will occur.

No provision has been made in the software for roll over.

At 10,000 RPM, and with a 500x 2 rotary encoder, the rollover will take approximately 107 minutes
to occur.

12.0 PMSM with Space Vector Modulation (SVM) Signals

The sine wave driver produces thee sine waves which are reference to ground on each of the three
motor terminals. This produces a rotating sine wave field inside the motor and produces the rotation
we require. However we can use a slightly different approach to the drive signals which will produce
about 15% more torque. This means we can achieve higher RPM’s or we can turn heavier loads.

Electrocomponents plc Page 46

This technique is called Space Vector Modulation (SVM) and is detailed in Microchip application note
AN1017. Instead of producing a signal with reference to ground the SVM technique produces sine
waves relative to the other phases.

For the purposes of this user manual the full theory behind SVM is not included.

What is basically different from the sine wave drive is that we only need the first 60 degree of the
sine wave table. We also have to modify the way the PWM duty signals are generated.

Consequently the software for the SVM is almost identical. The main changes are as follows:

e Thefile ‘sine_driver.c’ and .h have been replaced by the files ‘space_vector_driver.c’ and .h.

e The #defines have been altered to increase the maximum RPM of the included motor types.
The voltage reduction table can be altered if you wish to keep the maximum RPM the same.
Leaving both the #define for the Maximum RPM and the data in the voltage reduction table
unaltered, will cause the motors to draw more current.

e The sine wave table has been changed from a 360 degree sign wave described in 256 bytes to
one in which only the first a 60 degrees is described in a table of 171 bytes.

13.0 Mixing Motor Types and Controlling With 12C Commands

The 12C command protocol has been written to ensure that all motor types can be mixed in a system.
So there can a 6 Step Controller, a PMSM Sine Wave Controller and a PMSM Position Controller with
rotary encoder all in one system. The 12C packets are all compatible with each other although some
of the 12C commands might not make much sense when directed at the wrong type of controller. l.e.
trying the read rotary encoder value from a six step controller, for example, will probably return a
garbage number.

As the ‘PMSM With Position Control’ has the most comprehensive test menus, then it probably
prudent to use this software as the 12C master device, whilst the 12C slaves in the system should be
flashed with the appropriate software.

14.0 Observing 12C Traffic

Each 12C slave device has the ability to observe the traffic that is being fired at it, or requested from
it. The main menu option ‘Test I12C in Slave mode’ will print all of the traffic that is fired at that
particular I12C address. Both read and write signals are displayed on the monitor, along with the data
payload. This provides a great way on ensuring the 12C communication is working correctly. 12C
packets that are aimed another address are not shown.

Electrocomponents plc Page 47

B DSA's MTITTY. o (=1t3

Main File TTY Info

Part Baud Parity [rata Bits Stop Bits [oeiEchs

[E | 15200 w| [None ~] | =N ~| ¥ DisplayErrors
[~ Add Cror LF
Font... | Comm Ewents... ‘ Flows Contral... | Timeouts... | WV Automrap

[Use Parser

AT

Traffic Identified: 056 003 D22 A
Traffic Identified: 057 003 030 3
Traffic Identified: 056 003 D25
Traffic Identified: 057 003 029
Traffic Identified: 056 003 031
Traffic Identified: 057 003 D28
Traffic Identified: 056 003 023
Traffic Identified: 057 003 029
Traffic Identified: 059 000 OO0
Traffic Identified: 059 000 OO0
Traffic Identified: 059 000 OO0
Traffic Identified: 059 000 OO0
Traffic Identified: 002 000 000
Traffic Identified: 014 000 00D
Traffic Identified: 011 003 255
Traffic Identified: 021 000 OO0
Traffic Identified: 022 157 D58
Traffic Identified: 020 000 000
Traffic Identified: 059 128 OO0
Traffic Identified: 059 000 OO0
Traffic Identified: 059 128 OO0
Traffic Identified: 059 000 OO0
Traffic Identified: 059 128 000
Traffic Identified: 003 000 OO0

<10 >

Mociem Statuz Comm Status |
906559.EVENT: ERR
[T CTST DSE [RING I RLSDICD)| | I CTSHold [®OFFHold [TX Char BREANK -

[~ DSRHold |~ XOFF Sent T Chars: [0 || 908560:ERROR: BREAK
I~ RLSD Hold [~ EOFSent AXChars [0 v

Fig.13.0: 12C Slave mode test — 12C bus traffic activity displayed

Electrocomponents plc Page 48

15.0 Adding Your Own Motor Type

The addition of a new motor and creating the software to run it will require some additional
explanation as there are several files which need to be modified. The type of drive you want to
control the motor is also significant and so this section is divided in three for the three motor drive
types supplied with the kit.

Six Step BLDC controller
The only file you need to modify is the ‘defines.h’” which specified some basic parameter types.
Open up ‘defines.h’ and create a new motor type will the following format...

/* Define The Motor Type */
#define HURST_DYNAMO_DMB0224C10002 1u /* Hurst Motor */
#define MAXON_EC_118898 2u /* Maxon motor */

/* My new motor below */
#define NEW_MOTOR_NAME 3u /* My new motor defined here */

And then make sure you select the new motor in the following define...

#define MOTOR_TYPE NEW_MOTOR_NAME
/* Select the one you want to use */
Once this has been done you then need to specify the new motor parameters as shown below...

#if (MOTOR_TYPE == NEW_MOTOR_NAME)
#tdefine POLES 10u /* number of poles in the new motor */
#define MAX_MOTOR_RPM 4000u /* Approximate Maximum RPM spindle speed */
/* This parameter is not that relevant when using
the 6 step control method */

#define MAX_INSTANT_MOTOR_CURRENT 800u
/* Maximum allowable current in mA */

#define MAX_AVERAGED_MOTOR_CURRENT 800u
/* Maximum allowable filtered current in mA */

#define IMOTOR_AV_FAULT_DETECTION DISABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u
#define IMOTOR_FAULT_DETECTION DISABLED
#define IMOTOR_COUNTER_THRESHOLD 300u
#define EXT_COMPARATOR_FAULT_DETECTION DISABLED
#define EXT_FAULT_COUNTER_THRESHOLD 200u

The values for the fault detection are values the user wishes to use with the new motor and the
process and enabling these selecting the values is detailed earlier in this manual.

There are no other files that need to be modified to include the new motor type.
PMSM Sine Wave Driver

For a motor which is to be driven by a sine wave of varying frequency, then the set up is a little bit
more involved. As withthe 6 step controller, we need to define a new motor

Electrocomponents plc Page 49

/* Define The Motor Type */
#define HURST_DYNAMO_DMB0224C10002 1u /* Hurst Motor */
#define MAXON_EC_118898 2u /* Maxon motor */

/* My new motor below */
#define NEW_MOTOR_NAME 3u /* My new motor defined here */

And then make sure you select the new motor in the following define...

#define MOTOR_TYPE NEW_MOTOR_NAME
/* Select the one you want to use */

Once this has been done you then need to specify the new motor parameters as shown below

#if (MOTOR_TYPE == NEW_MOTOR_NAME)
#tdefine POLES 10u
#define MAX_MOTOR_RPM 2500u

#define MAX_INSTANT_MOTOR_CURRENT 800u
#define MAX_AVERAGED_MOTOR_CURRENT 800u

#define MIN_MEASURABLE_RPM_SPEED 60u
/* The minimum rotational speed we can theoretically measure based on pole pairs */
/* and the resolution of TMR3 */

#define RPM_FAULT_DETECTION ENABLED
#define RPM_COUNTER_THRESHOLD 1000u

#define IMOTOR_AV_FAULT_DETECTION ENABLED
#define IMOTOR_AV_COUNTER_THRESHOLD 300u

#define IMOTOR_FAULT_DETECTION ENABLED
#define IMOTOR_COUNTER_THRESHOLD 300u

#define EXT_COMPARATOR_FAULT_DETECTION ENABLED
#define EXT_FAULT_COUNTER_THRESHOLD 200u

As you can see from the number of #defines there are several new ones added over and above the
ones defined for the six step controller. These relate to the RPM, one been for the lowest
measurable RPM at which you want the RPM trip to activate from. The other ones relate to the trip
sensitivity for the RPM and whether you want it enabled or not.

Once this has been done and you have fixed the Maximum RPM you want to run the drive at, the
next file you need to modify is the amplitude reduction table for the V/F trade off. This table is
contained in ‘sine_driver.c’

The ratio of V/F (i.e. voltage applied to the drive and the RPM) should be a constant under
theoretical treatment, with the exception of driving at low RPM speeds. In this driver we have a table
of values that slopes linearly from a minimum value up to a maximum.

The table in included within the file as shown below...

Electrocomponents plc Page 50

#if (MOTOR_TYPE == MAXON_EC_118898)

/* This table is optimised for max RPM speed of 3500 rpm */

uint8_t static const amplitude_reduction_table[256] =

{
65, 65, 66, 67, 68, 68, 69, 70, 71, 71, 72, 73, 74, 74, 75, 76,
76, 77, 78, 79, 79, 80, 81, 82, 82, 83, 84, 85, 85, 86, 87, 88,
88, 89, 90, 91, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 100,
100, 101, 102, 103, 103, 104, 105, 106, 106, 107, 108, 109, 109, 110, 111, 112,
112,113, 114, 115, 115, 116,117, 118, 118, 119, 120, 121, 121, 122, 123, 124,
124, 125, 126, 126, 127, 128, 129, 129, 130, 131, 132, 132, 133, 134, 135, 135,
136, 137, 138, 138, 139, 140, 141, 141, 142, 143, 144, 144, 145, 146, 147, 147,
148, 149, 150, 150, 151, 152, 153, 153, 154, 155, 156, 156, 157, 158, 159, 159,
160, 161, 162, 162, 163, 164, 165, 165, 166, 167, 168, 168, 169, 170, 171, 171,
172,173,173, 174, 175, 176, 176, 177, 178, 179, 179, 180, 181, 182, 182, 183,
184, 185, 185, 186, 187, 188, 188, 189, 190, 191, 191, 192, 193, 194, 194, 195,
196, 197, 197, 198, 199, 200, 200, 201, 202, 203, 203, 204, 205, 206, 206, 207,
208, 209, 209, 210, 211, 212,212, 213, 214, 215, 215, 216, 217, 218, 218, 219,
220, 220, 221, 222, 223, 223, 224, 225, 226, 226, 227, 228, 229, 229, 230, 231,
232, 232, 233, 234, 235, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243,
244, 244, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255
2

Maximum full power sine wave is represented with a value of 255 and minimum power or off would
be represented with a zero. There are 1024 speeds or frequencies at which the motor can operate
and only 256 elements within the table. Consequently the frequency or speed is divided by 4 to give
a table index which is then accessed to get the voltage reduction.

This table is generated by a spread sheet and then cut and pasted in to the software. The
spreadsheet used for this basic V/F table is contained in the documents section of the software.

It is called ‘frequency to voltage reduction table.xls’ .

You can tinker with the spreadsheet to get different V/F tables which you can use for the different
motors you might want to try. Too much over voltage will cause over saturation of the magnetic and
excessive current to be applied to the motor, which will end up as heat. Too little voltage for a given
frequency may cause under saturation and the rotor will stall at a given speed.

Create a new table for your motor using

#if (MOTOR_TYPE == NEW_MOTOR_NAME)

uint8_t static const amplitude_reduction_table[256] =
{

/* your V/F table here */

}

You can also amend the sine wave as well. You need not use a pure sine wave. For some applications
you may want to thicken the sine wave to give more power at a certain part of the cycle, or to
provide a faster leading edge for example. By modifying the sine wave table all of this is possible. The
sine wave is a 256 element tables defined as...

sint16_t static const ref_sine_table[256] = { /* data */};

This was also created by a spread sheet, this one called ‘sine wave table.xIs’
This is also included in the documents directory.

PMSM Sine Wave Driver with Position control

Electrocomponents plc Page 51

The above section on ‘PMSM Sine Wave Driver’ should be followed. In addition to this, you will need
to do the following.

The stopping sequence of the software requires information about the maximum speed of the motor
and the type of rotary encoder that is fitted. In the file ‘encoder_tables.h’ you will find a
mathematical algorithm that is used to compute the number of counts it will take to stop the motor
from a given speed. This table is made at compile time and uses the values for MAXIMUM_SPEED
and the number of encoder pulses per revolution. A table is built by a spreadsheet and then
imported in to the software. This means if the MAXIMUM_RPM value for that motor is changed or
the rotary encoder is changed for a different type then a new table has to be included in the
software.

The spreadsheet that generates the table is called ‘RPM Encoder Count Table.xls’.
Two spreadsheets are provided, one for the Maxon motor and one for the Hurst Motor.

Create a new spreadsheet for the new motor and then enter the values for Maximum RPM and the
number of rotary encoder pulses in a revolution and the table will be created automatically for you.
Cut and paste the output from the spreadsheet in to a new table in the C source module.

It should take the form like the other tables.
i.e.

#if (MOTOR_TYPE == NEW_MOTOR_NAME)

uint16_t rpm_to_encoder_counts_table[1024u] = { /* your new data from the new spreadsheet */};

Recompile the code, flash the MCU and try the software with the new values and the new motor.

This table is generated and placed in the FLASH area of memory rather than the SRAM. It therefore
requires a prebuilt table to be imported from a spreadsheet.

This table could however be generated at start up by the dsPIC MCU and placed in the SRAM area
instead.

16.0 Changing The Rotary Encoder

The rotary encoder provides the position controller with a series of counts which is used to stop the
motor at the required location. Consequently changing the rotary encoder will affect the behaviour
of the model and will cause a reduction in performance. To optimise the drive for a new rotary
encoder you should do the following.

In the ‘defines.h’ file there are some ‘defines which relate to the type of quad encoder you are using.
These are detailed below.

/* External Rotary Encoder */

#define EXTERNAL_QUAD_COUNT_PER_REVOLUTION 500u
/* The number of counts given by the external rotary encoder for one mechanical revolution */

#define QUAD_COUNTS_PER_REVOLUTION (EXTERNAL_QUAD_COUNT_PER_REVOLUTION * 2u)
/* Here the dsPIC multiplies this by two to give twice the resolution */
/* Do not alter this line, alter the one above if you encoder is different from 500 */

Electrocomponents plc Page 52

#define QUAD_MID_POINT 0x80008000u
/* This is the midpoint reset figure we will use */

The only line you need to modify here is the
#define EXTERNAL_QUAD_COUNT_PER_REVOLUTION 500u

Do not alter the other two lines.

The figure you use in the one specified in the manufacturers data sheet for the device, and is the
number of counts you will see in one mechanical revolution.

The dsPIC will multiply this up by a factor of two internally.

Once this has done you will need to create a new stopping table called
rpom_to_encoder_counts_table[1024u]

The process to do this is detailed n the Section 12 — ‘Adding Your Own Motor Type’ — sub section
‘PMSM Sine Wave Driver with Position control’. In the spread sheet table you will need to put in the
new value for the rotary encoder counts per revolution. For a 500 count rotary encoder this figure is
1000 and for a 512 count encoder the figure is 1024. The spreadsheet is already created for you in
the documents directory. Simply change the value and cut and paste the results in to the C code
table.

The second thing which needs to be done is to change the RPM calculation algorithm.
For the software to accurately know the RPM at any given time the RPM needs to be calculated.
For the position controller software this is done in the file ‘RPM.c’ file.

Read in the source code the section on how the RPM is calculated and then modify the #define...

#define RPM_UPDATE_RATE_IN_MS 120
/* RPM update rate in milliseconds. i.e. 240 = 240ms, or 120 = 120ms */

This is the sample period in which the number of rotary encoder pulses is measured and the RPM is
deduced from this. What follows is a mathematical calculation. To make the maths easier for the
dsPIC you can be clever about choosing the sample period. For 500 and 1000 count rotary encoder
the maths is very quick and accurate. For 512 and 1024 count encoders you can elect either to
implement a full maths function or to accept a slightly less accurate one but quicker.

The file’ RPM’c’ details this mathematical process.

Once these changes have been made, compile the code with the new values, and re-flash the MCU.

Electrocomponents plc Page 53

