
Sample

Statement of Work

Produced for

 Great Software

2/5/2007

1

17

Statement of Work

Date: February 5, 2007

This document is the Statement of Work between Great Software, Inc. (the “Company,”) and
Software Experts.

Company Name: Great Software, Inc.
Service Provider Company/Name: Software Experts
Project Name: Project SG

Description of work to be performed.
Software Experts shall provide services in developing the application as per the
specification below. Customer shall provide all the information requested by
Software Experts. Failure to provide it in a timely manner will cause delays in the
project.

1.1 Status
The description below describes software requirements for the Ignoble form
design application. It is a normative appendix for a contract between software
vendor and customer. However, it does not have any meaning independent from
the software specifications provided by the Customer. The list of original user
specifications is provided in the Appendix A.
In areas described herein and Customer’s specification, this very description
takes precedence. Any changes conflicting with the original specifications
(including any requirements changes, additional functionality and any other
changes), this document are subject to start the Request For Change process.
Also the document describes proposed technical solution for the implementation
of the product.

1.2 Should/Will/Shall words meaning
The terms "must," "should," and "may" imply the following:

1.2.1. Must/Shall/Will
This is an absolute requirement for delivery in this release.

1.2.2 Should
Inclusion in this release is dependent of factors such as time, cost, and
complexity of implementation.

1.3 Business Requirements
The main is non-technical people wanting to quickly build a simple web-site with form.
So the application must hide all complexities of such operations.

1.3.1 Installation and functioning should not require administrative
privileges.

1.3.2 The application should hide technical details even by price of
decreased functionality.

1.3.3 The application should provide a comprehensive user manual and
support environment.

1.3.4 User interface must be as simple as possible.

1.3.5 The application architecture must be flexible to include additional
functionality in subsequent releases.

1.4 Software Requirements

1.4.1 Application framework
The application will be built on top of Eclipse RCP framework to provide cross-platform
support. Main menu and toolbars will be implemented as RCP Workbench
contributions.

1.4.1.1 Extensibility
The application will be designed and implemented to allow easy extension of
functionality of the result product. In order to achieve flexibility and extensibility
modular design will be used. This will allow us to develop and maintain the application
with low efforts.

1.4.2 Form Design

1.4.2.1 Blocks
The main building block of a Ignoble form will be block as in terms of CSS Level 2
layout. The form will be a collection of blocks without possibility to embed blocks into
each others.

1.4.2.1.1 Positioning
The form will be designed in a WYSIWYG manner. User will select a form component
and place it onto a Canvas. The system will use absolute positioning to layout
components on the users form. In other words form will be a collection of blocks with
CSS absolute positioning.

1.4.2.1.2 Appearance
The application will provide ability to change border style of each block. This includes
width, color and style of each border segment (top, left, bottom, right).
The application will provide a way to change background color of each block.

1.4.2.2 Inline layout
HTML inline flow will be used to layout text inside text blocks (see below).

1.4.2.2.1Font styles
The application will allow change font style of a piece of the text. This includes size,
family, weight and decorations.

1.4.2.2.2 Spell checking
The form designer will check spelling of the text in the text blocks and labels and
draw red line under misspelled words.

1.4.2.3 Form handling
Each form will be stored in the database as a table.

1.4.2.3.1 Versioning
Each database used by Ignoble form handling module will contain a table named
`Ignoble_form`. The table will store versions of the Ignoble form tables.
The form handling module will check if the database table has valid version before try
to write data into it. In the subsequent releases of the application a data migration
module should be developed to allow user upgrade forms transparently.

1.4.2.3.2 Fields
In order to gather information a notion of field will be used by the application. Field is
an editable piece of information stored in the database.
Each form field will be reflected onto one column of the database field directly.

1.4.2.3.2.1 Domains

Each field can be associated with one of data domains:
• String

• Text

• Number

• Phone

• E-mail

• Date

The field value will be cast to appropriate data type before write into the database.

1.4.2.3.2.1 Field types

The full list of the field types presents in the original Ignoble application specification.

1.4.2.4 CSS support
The visual editor will support CSS class assignments for block elements in the volume
enough for customization of block appearance in the editor. However, no effort will be
maid to account style inheritance and CSS Level 2 features.

1.4.2.5 Clipart
Insertion of raster image files in the following formats will be supported via image
form component:

• PNG

• GIF

• JPEG

• ICO

• TIFF

• BMP

The images should be inserted as is, without conversion or editing.

1.4.2.6 Auto-shapes support
The application will provide support for auto-shapes by rasterizing them during code
generation phase. So user will be able add following figures onto the form:

• Lines with/without arrows on the ends

• Rectangles

• Ellipses

• Rounded rectangles

1.4.3 Form storage

1.4.3.1 XML Format
The form data will be stored in XML format with XStream library. The library produces
light-weighted XML representation of a model graph with nearly zero effort.

1.4.3.2 Versioning
The XML will use processing instruction construct to distinguish different versions of
the form data. For example the following instruction can be used at the beginning of
the XML file:
<?xml version=’1.0’ encoding=’UTF-8’?>
<?seagrean version=’1.0’?>

1.4.4 Code generation

1.4.4.1 Target environment
The first release of the form build will be targeted to the LAMP (Linux Apache MySQL
PHP 4) platform.

1.4.4.2 Generation results
Ignoble code generator will produce following files:

1.4.4.2.1 Form meta-information
A file with meta-information describing form fields, their type, and database
connection parameters.

1.4.4.2.2 HTML
Is a plain XHTML document referencing all other form related files. The style
information will be applied via linked CSS with identifier selectors if block classes was
not specified in Visual editor.
The HTML file will not contain any server-side script to ease editing of the form.

1.4.4.2.2.1 Validation

The result HTML also will exploit javascript to valid field contents. In case of invalid
values form submit fill be abandoned and an alert window will be shown with error
description.

1.4.4.2.3 CSS
Is a stylesheet with style information for the form. Due the automatic management
style class names will be autogenerated.

1.4.4.2.4 Images
Rasterized auto-shapes and images inserted into the form by users.

1.4.4.2.5 Server-side form handling modules
Actually code generator will copy predefined versions of the server-side modules
wrote by Vendor developers to handle form submit.

1.4.5 Code editing
The application will allow edit code generated for the form implementation. The
software should try to reverse-engineer modified HT ML code into form model to build
correct representation in the visual editor. However due nature of visual designer this
is not always possible.

1.4.5.1 HTML/Code editor
The editor will be based on Amateras HTML editor (CPL 1.0). All changes maid into
the original code will be pushed back into the main source tree.

1.4.5.1.1 Structure highlighting
The editor will support HTML structure highlighting.

1.4.5.1.2 Tag auto-completion
The code editor will provide hint for tag auto-completion.

1.4.5.1.3 Printing
The editor must provide ability to print form code with structure highlighting.
Standard Printer/Page setup will be used to adjust printing parameters. The page will
be printed as it rendered on the screen. No additional elements/styles will be
introduced.

1.4.6 Administration setup

1.4.7 Form import
Ignoble application will provide ability to import forms from other file types. The
application should try to obtain meaningful labels for imported fields if possible. The
layout of original form will be abandoned.

1.4.7.1 Supported formats

1.4.7.1.1 PDF
Only the latest PDF versions support forms. So import of these PDF documents will be
supported.

1.4.7.1.2 HTML/PHP/ASP
During import of an html form, all php & asp code will be ignored.

1.4.8 Form merging
The application will provide a form merging wizard that will allow insert form into a
convenient HTML page template. This will be done by loading the template into
embedded browser control with interception of all HTML events by injected javascript.
The javascript will insert a colored block to the form template to mark position of the
form insertion. As Ignoble form is a block from CSS 2 layout view, the script will
insert a block element (div) also. This will allow imagine how the result of the merge
operation will look like.

1.4.9 Form upload

1.4.9.1 Catalogs structure
During upload a root folder for upload will be specified. Directory structure description
below is relative to the upload root.

Folder Description
Ignoble/<version> Storage for the Ignoble specific code.

<version> is a version identifier of
Ignoble server-side form handler.

<form name> The name of the html file for the form
handling

_Ignoble_forms_/<form
name>/<form version>/

Directory storing form specific files such
as images, javascripts, css and so on.

1.4.9.2 Protocols
The application will allow upload of the form via following protocols:

• FTP (Active or passive)

• SFTP (FTP over SSH channel)

Later another transfer protocols can be added.

1.4.9.3 Firewall & Proxy support
The application should try workaround protocol constraints by switching protocols
modes (Active/Passive) and protocols in case of connection failure.
However, the only way to pierce some corporate firewalls is usage of proxies. The
application should support HTTP/FTP/HTTPS proxy if appropriate for the protocol.

1.4.9.4 Upload verification
At the end of upload procedure the application should verify validity of the remote
code copy. It will be done by download of the form data and comparing with the
original local copy.

1.4.10 Server-side modules
Server-side modules will be reused by all site forms generated by Ignoble. So form
meta-information data will be used to handle form submits correctly.

1.4.10.1 Form handling module
So form meta-information will be used to obtain form handling information.

1.4.10.1.1 Validation
The module must check validness of the submitted form data before write into the
database. In case of invalid data, the module should show error page explaining
cause of the problem.

1.4.10.1.2 Database schema creation
At start the module should connect with the database and check presence of the table
used to store form data. If the table does not exist the module should create one.

1.4.11 Update manager

1.4.11.1 Automatic update
The update manager shall allow automatically download and install updates and
security fixes. However major updates and upgrade from Free to Pro versions should
be paid on the e-commerce web-site. So the manager will track compatibilities
between major version numbers and offer to update for the same major release only.
Availability of updates will be checked on the first run of the application and with 7
days interval after then. This will allow to lower load on update servers after release
of a new application version.

1.4.11.2 Paid functionality access
This will be achieved by distribution of the same binary codes for both Free and Paid
application releases. Paid functions will be opened on the correct activation of the
product.

1.4.11.3 Update manager extension
Special extension of the Eclipse update manager will be used to check whether the
public update can be installed for free. To check availability of the public update, the
update manager will check a file on the update server named updates.xml.
The file will contain information about updates available for the all application
versions. This file will also be used to track serial key compatibility between
application versions.

1.4.12 Serial numbers/licensing
Serial number is a sequence of alpha-numeric character uniquely identifying sold copy
of a media with the product. A certificate with serial number will be distributed with
software boxes or will be provided via e-commerce web-site.
A freshly installed application will function in the Free mode. To get access to Pro
functionality user must activate its application copy by connecting with Ignoble license
server and providing serial number. In case of successful activation, Pro functionality
will be unlocked until next reinstallation of the software.

1.4.12.1 License server
The initial version of the license server will not provide any administrative interface or
piracy prevention. The server will accept all license requests for existing product

number by default. However detailed logging of the operation will be used to incident
tracking. In the subsequent releases if needed we can add constraints onto number of
installations per serial number and use any-other antipiracy strategies.
Information about activated serials numbers and installations will be stored in MySQL
database accessible with standard DB tools.
Collection of serial numbers will be generated by concatenation of product version and
a random gamma. So each key will have the following structure:

SEAG-VVVV-RRRR-RRRR-CCCC,
where VVVV- product version number, RRRR – random gamma, CCCC – serial control
sum for typo prevention.

1.4.12.2 Activation schema
To enable paid functionality user must pass through the product activation procedure.
The application will provide an activation dialog to enter product serial number. Then
the number with information unique identifying user’s computer (MAC address is a
good example) will be passed to the license server.
The server will check validity of the license request. In a positive case it will encrypt
the license request with a private key by RSA algorithm and send it back to the
application.
The application will store the signed license. On each startup the app will try to
decrypt the license and check validity of the environment. If the environment will
match the license, paid functionality will be enabled.

1.4.13 Installation
The application will be installed in an easy way with native platform installer.

1.4.13.1 Required permissions
The application must not require administrative (superuser) rights to install correctly.

1.4.13.2 Runtime environment

1.4.13.2.1 Java
Java 1.4.2 shall be used to implement the application. This is the lowest common
denominator for available platforms.

1.4.13.2.2 Operating systems

1.4.13.2.2.1 Windows

The application must run on the following Windows versions: 2000, XP, Vista, 2003.

1.4.13.2.2.1.1 Installer
NSIS based self-extractable installer will be used.

1.4.13.2.2.1.2 Uninstall
The installer will register Ignoble in the Windows application registry to allow uninstall
via Windows->Control panel->Add/Remove programs applet.

1.4.13.2.2.1.3 Java Runtime Environment

The installer will be bundled with JRE environment needed to run the application. The
bundled JRE will be installed.

1.4.13.2.2.2 MacOS X

The application must run on MacOS X 10.4 and better.

1.4.13.2.2.2.1 Installation
a native dmg image will be used to distribute application. The application will be
installed by a simple drag’n’drop operation.

1.4.13.2.2.2.2 Uninstall
User will be able to install application just be moving application package (icon) into
the trash.

1.4.13.2.2.2.3 JRE Environment
Installed OS X JVM will be used to run the application.

1.4.14 Out of the project scope

1.4.14.1 Dreamweaver extension
Due the nature of the project technology profile the extension will be deferred until
the first release of the application.

1.5 Application architecture
The application will be built on top of Eclipse Rich Client Platform infrastructure. The
platform provide rich UI toolkit for development of cross-platform extensible desktop
applications. So it is a natural to use it as a foundation for the Ignoble application.

1.5.1 Data structure

Fig. 1 Data model structure

cd Data Model

Form

- ti tle: String
- descritpion: String
- method: String
- url: String

Table

- name: String
- database: String
- username: String
- password: String

Block

- top: int
- left: int
- right: int
- bottom: int

Flow

Text Field

- name: String
- required: boolean

Image

- src: String
- alt: String

TextInput

- maxLength: int
- size: int

Hidden

- value: String

TextArea

- cols: int
- rows: int
- maxLength: int

Checkbox

- checkedValue: String

RadioGroup

Hyperlink

- text: String
- url: String
- accessKey: String
- target: String
- tabIndex: int

Fieldset «interface»
IFocusable

- accessKey: String
- tabIndex: int

Domain
«interface»

IStyle

FileFieldButton

InlineBlock

- width: int
- height: int

SelectField

NameValuePair

- title: String
- value: String

**

«realize»

«realize»

1.5.2 Component break-down

Fig. 2 Component break-down

 On the Fig. 2 you can see component structure of the application. Each component of
the diagram represents Eclipse bundle (feature, plugin or fragment). The following
system extension points introduced:

Interface Purpose
IActionContribution Addition of new actions into application’s main menu bar

or main toolbar.
ISiteGenerator Addition of new form target environments.
IFormImport Addition of new imported form formats
IExportWizard Addition of new form export wizards
ISiteTransport Addition of new form upload protocols

id Component Model

EMF GEF

Eclipse RCP

IActionContribution

DataModel VisualEditor

Apache Velocity

Application ISiteGeneratorIFormImport

IExportWizard

IActionContribution

PhpSiteGeneratorISiteGenerator

PdfFormImport
IFormImport

HtmlFormImport
IFormImport

JTidy IText PhpFormAdmin

CodeEditor

PhpFormHandler

FormMergeWizard
IExportWizard

SiteUploader

ISiteTransport

FtpTransport

ISiteTransport

SftpTransport

ISiteTransport

1.5.3 Third-party components
Title Description Version License
XStream XML serialization/deserialization BSD
Eclipse RCP Application framework 3.3M4 EPL
Eclipse GEF Graphical editing framework 3.2.1 EPL
Amateras HTML
editor

Advanced HTML editor CPL

Jazzy Spell checker LGPL
Commons-Net FTP transfer Apache
JCraft Jsch SFTP transfer BSD
iText PDF reading MPL
NSIS Windows Installation builder GPL
FileStorm MacOS X DMG image builder Commercial

1.6 References
[DDS] Detailed description of Ignoble, Great Software Inc, December 2006

Communications Plan:
Collaboration space:
This project will utilize a collaboration space at url: http://crm.swxperts.com/clientportal
This space will be accessible through internet.
The space will be used to store:

 Project Status summaries

 Action item lists
 Any project review documents that the core team needs access to

 Other information

Communications
Project communication includes phone calls, faxes, emails, Instant Messaging etc. The primary
communication collaboration path will be Project Manager -Customer. The media and tools required for
the type of communication are listed below:

 Analyst to Customer
Media/Tools: Project Manager and Customer must maintain access to the following media and tools:
email, IM (Yahoo) and Microsoft Word.
Ground rules: Project Manager and Customer will check e-mail daily and reply within 12 hours.
Project Manager and Customer are available for online communications on mutually agreed hours.
Project Manager is accessible via Yahoo at
Customer is accessible via Yahoo at

Email distribution list
Customer and Project team will communicate via
Project Manager Alexey Bubba– ab@swxpwerts.com
Account Manager Brent Coats– ab@swxpwerts.com
Customer Carl Dresden - ab@swxpwerts.com

Weekly status reports and billing
Responsibility and Format: Account Manager will generate status reports and invoices for work
performed and email it to Customer and all participants from the distribution list.
Who receives the communication: Customer will have access to these reports and receive invoices.
Media/Tools: Deliverables are published in Microsoft Word or other media or tool specified by
Customer. Invoices are published in Adobe PDF.
Ground Rules: Invoices are to be paid upon receipt.

Deliverables & Key Milestones

Project Start Date: 02/19/2007Project End Date: 10/17/2007
Project Budget: $53736

Task title Deliverables Date Comments
Milestone 1

Application core 03/30/2007 A basic Eclipse application running on both
Windows and OS X platforms will be built.
The application will allow editing a form by
placing/moving/deleting the form blocks. Also
Open/Save/Save As functionality will be
implemented. During the milestone an
automatic build/test system will be setup.
This build server will run on a daily basis as
the minimum to enable for daily tracking of
the project progress.

Milestone 2

Form Editor 05/29/2007 Will include almost completed form editor
with support of inline and block layouts
together with HTML input controls. Also
Amateras HTML code editor will be integrated
into the system. However, it will not be
possible to generate form code.

Milestone 3

Integration
Release

07/25/2007 The application will enable generating
functioning form from the graphical
representation and edit it in the code editor.
The application framework will be enhanced
to have the visual design with global wizard
as described in the original SRS specification.
Also all HTML controls will be available in the
graphical form editor.

Alpha Testing Alpha Release 09/07/2007 The code stabilization release. As the result
of the milestone the release ready for
external testing shall be build. Intensive
testing/bug fixing in these release will be
done. Also Alpha is the last release before the
public release that will be able to
accommodate new functionality.

Beta Testing Beta Release 10/02/2007 This phase implies in-life product testing by
loyal third-party testers. This pursues two
things: the primary goal is to test the product
in the real-life in order to identify some
problems with compatibility/installation & etc.
The second goal is promotion. As the result of
this development phase a product quality
release will be built.

Final Release Final Release 10/17/2007 Final release of the ready product as per the
specifications.

Payment Schedule

Upfront payment 02/19/2007 - $4500
Milestone 1 03/30/2007 - $8956
Milestone 2 05/29/2007 - $8956
Milestone 3 07/25/2007 - $13412
Alpha 09/07/2007 - $8956
Final payment upon Release 10/17/2007 - $8956

Invoices are to be paid upon receipt.

Great Software, Inc. Software Experts, LLC
Name: .

Name: Paul Swengler .

By: _ . By: .

Title: Owner .

Title: CEO .

