
DesignOriented Verification and Evaluation:
The DOVE Project

Tony Cant, BrendanMahony and Jim McCarth y

Inf ormation Networks Division
Inf ormation SciencesLaboratory

DSTO–TR–1349

ABSTRACT

DOVE is a graphical tool for modelling andreasoning aboutstatemachine de-
signs for critical systems. This report summarizes its technical development,and
incorporatestheusermanual.

RELEASE LIMIT ATION

ApprovedFor PublicRelease



DST
�

O–TR–1349

DOVE ReleaseNotice

DOVE is being releasedon theunderstanding that it will beusedfor research purposesonly,
andthat anyreferenceto it acknowledgesDSTO.Thecodecanbefreelycopiedanddistributedas
long asanycopies includethis releaseinformation. Requests for commercial useof DOVEshould
bemadedirectly to DSTO.

TheCommonwealthof Australia ownsthecopyright in DOVEandanyotherintellectual prop-
erty in or relating to DOVEandyouwill havea non-exclusive licenceonly to useDOVE for your
research.

As a user of DOVE, you accept the sole risk of interpreting and applying DOVE, which is
provided asa general research tool only and should not be regardedor relied on asany form of
professional advice or service in relation to your research. TheCommonwealthof Australia gives
no warranty, other thanmayreasonably beimpliedby legislation, that DOVEis freeof fault or is
thecorrector soleresearch tool to beusedfor your research, andwill not beliable to youor any
third party for anylossor damagehowsoevercaused whether dueto your negligenceor otherwise,
arising fromtheuseof DOVEor relianceon theinformation containedin DOVE.

Publishedby

DSTO InformationSciencesLaboratory
POBox1500
Edinburgh,South Australia, Australia 5111

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

c
�

Commonwealthof Australia 2002
ARNo. AR012–457
October, 2002

APPROVED FOR PUBLIC RELEASE

ii



DSTO–TR–1349

“BushPotato”,by Glory Ngarla
Reproducedby kind permissionof
DacouAboriginal Gallery

DesignOrientedVerification

andEvaluation:

TheDOVE Project

ExecutiveSummary

Critical systems,suchassafety-critical andsecurity-critical systems,require thehighestlevels
of engineering assurance. The achievementof suchhigh levels of assurancemustbe basedon
theadoption of themostrigorousavailableanalysistechniques. Themostsophisticatedassurance
techniquesmake useof formal languageswith strictly-defined semantics andare referred to as
formal methods. international standards(for example UK Defence Standards00-55 [13] and00-
56 [14]; ITSEC[3]; andDef(AUST) Standard 5679 [1]) mandate therigorousanalysisof system
designsthrough theapplication of formal methodstechniques. Thus,thereis a clearneedfor tool
support which will facilitate such analysesthroughthevarious stages of thedesign process.

Thetool for DesignOrientedVerificationandEvaluation (DOVE), wasdevelopedby theDe-
fenceScienceandTechnology Organisation (DSTO) in Australia to meetthis challenge. It pro-
videsa simple,but powerful, meansof applying formal modelling andverification techniques to
thedesign of safety- andsecurity-critical systems.TheDOVE tool is unusual amongformalmeth-
odstoolsin thattheoverridingaimhasbeento provideaminimalist approachto theapplicationof
formal methods. In other words,it will aid thedi � erent participants of thedesign processwithout
significantdisruptionof theirstandardpractice. Broadly speaking, it is expectedthattheuserswill
fall into threerelated categories: system designers, who have expertise in particular application
domains and wish to usethe tool to model and explore systems of interest; evaluators, with a
general, ratherthandetailed, understanding of the application andproof structure, who mustbe
convincedof thesoundness of thedesign (e.g.,by animation) andproofs (e.g.,by replay) without
constructing any themselves; andverifiers, who have expertise in the useof the prover, but not
necessarily of a givenapplication.

The DOVE tool hasthreemain components: a graph editor, for constructing statemachine
diagrams;ananimator, for exploring symbolic execution of themachine;andaprover, for verify-
ing critical propertiesof themachine.Thisseparationprovidesadegreeof flexibilit y in thedesign
processwhich is essential whendealing with large-scaleengineeringproblems.

DOVE adopts the ubiquitous statemachine as its basic design model. Statemachines are
familiar to mostdesign orientedprofessions, particularly in theengineering andcomputerscience

iii



DST
�

O–TR–1349

fields. They arean e� ective meansof communicating systemdesigns to a variety of people and
areeasyto representandto manipulatewith a graphical userinterface.

This manual is written at three di� erent levels. At one level it providesan analysis of the
problem of tool support for formal design, andthe formalisation of statemachinemodelling of
critical systems.Below this is a straightforward introduction to theuseof theDOVE tool, largely
“tutorial” in nature, based around a specific examplestatemachine. It allows the reader quickly
to get into experimentingwith statemachinedesign. The lowestlevel providesa morecomplete
description of theDOVE tool andsomeof its finer points, to beusedmoreasa referencesource
or asbackground for theinteresteduser.

DOVE hasbeendesignedby:

Tony Cant
Katherine Eastaugh� e
Jim Grundy
Jim McCarthy
Brendan Mahony
Maris Ozols

Programmingsupport from:

Tim Anstee, University of SouthAustralia
Moira Clarke, EborComputing
Geo� Tench,CSC(Australia)

Contributions from:

HelenDaniel
Tony Dekker
Mark Klink
ChuchangLiu
JohnYesberg

Correspondencepursuantto DOVE should beaddressedto:

TrustedComputer SystemsGroup
InformationNetworksDivision
InformationSciencesLaboratory
Defence ScienceandTechnology Organisation
POBox 1500, Edinburgh
SouthAustralia 5111
Email: �����	��
������������������������������������ 

iv



DSTO–TR–1349

Authors

Tony Cant
TCSgroup

Tony Cant,Ph.D.,is a SeniorResearch Scientist within the Trusted
Computer SystemsGroupof DSTO. He leads a section that carries
out research into high assurancemethodsandtools, focusing on ap-
proachesto machine-assisted reasoning about their critical proper-
ties. He also provides technical and policy adviceto the Defence
Materiel Organisationonsafety managementissues,andis theeditor-
in-chief of theDef (Aust) 5679 Standardentitled ”The Procurement
of Computer-BasedSafetyCritical Systems”,published by theLand
EngineeringAgency

Brendan Mahony
TCSgroup

Brendan Mahony has actively investigated the application of for-
mal mathematics to the developmentof trusted systemsin a num-
ber of areas, including multi-level securesystems,security proto-
cols, real-time,concurrent,andreactive systemssince 1988. He was
awardeda PhDin real-time systemsverification from theUniversity
of Queensland in 1991 and hasworked for the TrustedComputer
Systemsgroup at theDSTO since1995.

Jim McCarth y
TCSgroup

JimMcCarthycameto theTrustedComputer Systemsgroupin 1998,
via a career in theoretical physics dating back to his Ph.D.at Rock-
efeller University in 1985. He is working asa Research Scientist to
develop high assurancemethods andtools, to modelspecific (typi-
cally infosec) critical systems,andto monitor progressin Quantum
Computation.

v



DST
�

O–TR–1349

vi



DSTO–TR–1349

Contents

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Intr oduction 1

1.1 Readingthis report asa usermanual . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Designassurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.4 Reviews andChecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.5 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 TheDOVE approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Useof graphical interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Useof existing design strategies . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Useof generic softwarecomponents. . . . . . . . . . . . . . . . . . . . . 4

1.4 Statemachine design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Theeditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Theanimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Theprover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 DOVE state machines 9

2.1 Systemattributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Statemachine definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Scopeof DOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



DST
�

O–TR–1349

Chapter 3 A first look at DOVE 21

3.1 StartingDOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 DOVE files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Statemachine graphfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Nowebfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Theoryfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Imagefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 High-resolution documentation file . . . . . . . . . . . . . . . . . . . . . 24

3.3 DOVE tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Edit mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Animationmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Proofmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Editing the state machine 27

4.1 Graphediting on thecanvas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Graphlayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Themenubarof theDOVE statemachinewindow . . . . . . . . . . . . . . . . . 31

4.2.1 TheFile menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 TheEdit menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 TheView menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 TheDefinitionsmenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.5 Otherdisplayson themenubar . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 TheLet declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 TheGuarddeclaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Theactionlist declaration . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.4 Editing,deleting andrenamingtransitions. . . . . . . . . . . . . . . . . . 39

4.4 Mandatory elements of statemachine design . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Theidentifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Rulesfor initi alisation of thestatemachine . . . . . . . . . . . . . . . . . 41

4.4.3 Namingrules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



DSTO–TR–1349

4.4.4 Declaration andtype rules . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.5 Checkassignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Tutorial: construction of Tra! cLights . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Moving graphobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Labelling graphobjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.4 Machinedefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.4.1 Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.4.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.4.3 Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.4.4 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.4.5 Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.5 Renaminga transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.6 Saving andreloading thestatemachine . . . . . . . . . . . . . . . . . . . 49

Chapter 5 Animation 51

5.1 DOVE windowdisplay in animationmode. . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 TheWatchVariable window . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2 The "��$#&%'������( window . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.3 Pathconditionsin the "��$#)%$������( window . . . . . . . . . . . . . . . . . . 53

5.2 Animationvia thestatemachine graph . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Startingtheanimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.3 TheAnimationControls . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.4 NamedAnimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 TheAnimatormenubar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 TheFile menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 TheWindowsmenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.3 Exiting Animation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Tutorial: animation of Tra! cLights . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



DST
�

O–TR–1349

Chapter 6 Managing Proofs 61

6.1 Window display on entering proof mode . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 ThePropertiesManager window . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 *�(��,+	�,(��,-/.������� 0 reporting . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.2 The 1�+���#����' menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.3 Exiting theproof mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Tutorial: examplepropertiesin Tra! cLights . . . . . . . . . . . . . . . . . . . . . 64

6.4 TheProver window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.1 Framesandbuttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4.2 Themenubar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2.1 The 2�#�3�� menu . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2.2 The *�(������ menu . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2.3 The 4�#���5 menu . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.2.4 The 1�+	��#,���0 menu . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.2.5 The .65	��+ menu . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Proofmanagement:ending, saving, loading andrestarting proofs . . . . . . . . . . 69

6.6 TheTheoremBrowserwindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.1 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.2 Themenubar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.3 Matching termsfacility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Proofvisualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 7 Proof strategiesand tactics 75

7.1 Proofin DOVE7 XIsabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.1 Interactive proof tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.2 Theoremsandinference . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.3 Proof-stateandtactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.4 Temporalsequents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 TheDOVE proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Theprimarytactics of theDOVE proof strategy . . . . . . . . . . . . . . . 81

7.2.2 Augmenting thebasicstrategy . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 TheDOVE Tacticsframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 Primarytactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



DSTO–TR–1349

7.3.2 8��9%�+���(���3;:	���6<$#6��� tactics . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.3 =9������(�������#���� tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.4 >��,�$��#��� �(�����#,��� tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Introductory Tutorial: theDOVE proof strategy . . . . . . . . . . . . . . . . . . . 87

7.4.1 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.3 Back-substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 AdvancedTutorial: proof management in practice . . . . . . . . . . . . . . . . . . 90

7.5.1 Intermediatelemmamethod . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5.2 "����/=6�����,(�#������ method. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5.3 Using :���,����(�?�3���,� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Methodsusedin theAdvancedTutorial . . . . . . . . . . . . . . . . . . . . . . . 96

7.6.1 Keepinginvariantsusing "����@=9�����,(	#����	� . . . . . . . . . . . . . . . . . 97

7.6.2 Proofscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.6.3 A brief look at the ?����#��A8�������#��� used . . . . . . . . . . . . . . . . . . 99

7.6.4 Applying constantdefinitionsvia ?����#��A8�������#��� . . . . . . . . . . . . . 101

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendices

A TheTra! cLightsstate machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B Syntaxof DOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.1 Transition definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 Sequent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Rulesof temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.1 Structural rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.2 Rewriting equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D Statemachine diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.1 Checksin compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.2 Diagnostic messagesin compilation . . . . . . . . . . . . . . . . . . . . . 124

D.2.1 Initialisation checks . . . . . . . . . . . . . . . . . . . . . . . . 124

D.2.2 Edgeto transition checks . . . . . . . . . . . . . . . . . . . . . 124

D.2.3 StructureChecks . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.2.4 Uncommitteddata. . . . . . . . . . . . . . . . . . . . . . . . . 125

xi



DST
�

O–TR–1349

D.3 Parsingerrorsin definitions . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.3.1 Typeerrorsin definingtypeabbreviationsandvariables . . . . . 126

D.3.2 Errorsin transition input . . . . . . . . . . . . . . . . . . . . . 126

D.3.3 Errorsin property input . . . . . . . . . . . . . . . . . . . . . . 127

E Dealingwith errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E.1 Generaloverview of error interaction . . . . . . . . . . . . . . . . . . . . 129

E.2 Known bugsor design flaws in DOVE . . . . . . . . . . . . . . . . . . . . 130

E.2.1 Edit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.2.2 Animation mode . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.2.3 Proofmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

F Troubleshooting DOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

G Questions andanswersabouttheformal proof model . . . . . . . . . . . . . . . . 134

G.1 Whatis a formal theory, anyway? . . . . . . . . . . . . . . . . . . . . . . 134

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



DSTO–TR–1349

Figures

1.1 DOVE processesblock diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 DOVE state machinestructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 statemachine graphfor the 8�(�������#���B�#���<��� example. . . . . . . . . . . . . . . . 10

2.2 A possible execution pathfor the 8�(�������#��,B	#���<	�� machine. . . . . . . . . . . . . 13

3.1 DOVE state machinewindowat startup. . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 DOVE modebuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 A DOVE statemachine during nodemovement . . . . . . . . . . . . . . . . . . . 29

4.2 Thestatemachine segmentiniti ally. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Theeditedstatemachine segment. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Thelabelledstate machinesegment. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 TheWatchVariableswindow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 DOVE display afteronestepin ananimation. . . . . . . . . . . . . . . . . . . . . 53

6.1 ThePropertiesManager window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Theedit property dialogwindow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Theprover window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Thestructureof a theorem(or proof state). . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Theassumption inferencerule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Theresolution inferencerule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 TreeDisplayafter configurationtacticsapplied . . . . . . . . . . . . . . . . . . . 93

xiii



DST
�

O–TR–1349

xiv



DSTO–TR–1349

Glossary

Thefollowing is a glossary of technical termsthat areusedin this UserManual. Most of the
termsaredefined in a DOVE-specificcontext.

Action: A program which changesthevaluesof a statemachine’s heapvariables.

Axiom: A proposition which is truea priori in a given theory – it makesup partof thedefinition
of thetheory.

Behaviour: A sequenceof configurationsexhibitedduringanexecution of a state machine.

Configuration: The values of all of the observable attributes of a statemachine, including the
control state, the last transition, andthememory.

Discharging a subgoal: Proving that a subgoal is a theorem through the application of a single
tactic.

Formal design: Expressingthestatemachinein thechosenformal language.

Formal language: A languagewhich hasstrict rulesof grammarandunambiguoussemantics.
DOVE hasformal languagesfor describing statemachines andtheir properties.

Formal proof: A procedurefor deriving a theorem, using only theaxiomsandinferencerulesof
a theory.

Goal: Theoriginal proposition to beproved.

Guard: A Boolean condition in the state machine memorywhich determinesif a transition is
enabled.

Heap variable: A namedcomponent of a statemachine’s memorydescribing attributesdeter-
minedby themachine.

Infer encerule: A function for derivingnew theoremsfrom knowntheoremsin agiventheory. In
Isabelle all inferencerules belong to the *� �(	� theory.

Input vari able: A namedcomponentof a statemachine’s memorywhich describestheenviron-
mentwhich thestate machineobservesor makesuseof during computation.

Lemma: A theoremwhich is only constructedto beusedin theproof of another (more“impor-
tant”) theorem.

Memory: Thecollection of a statemachine’s heapandinput variables.

Proof state: The list of currently unproved subgoalsat a given stage in the proof construction.
Thesubgoalsarealwaysconstructed suchthatif they canbeprovedto be theoremsthenthe
original goal of theproof is alsoa theorem. A proof is completewhenall thesubgoalshave
beendischarged.

Proof tool (Automatic): Computersoftwarewhichattemptsto constructa formalproof of agiven
proposition.

xv



DST
�

O–TR–1349

Proof tool (Interactive): Computersoftwarewhichhelpsahumanoperator to constructa formal
proof of a givenproposition.

Property: A statement describing a collection of possible behaviours of a statemachine. In
DOVE, propertiesareexpressedin temporal logic. Thetermproperty is overloadedto also
referto theproposition thatthebehaviours of a statemachine satisfy a property.

Proposition: A truth valuedstatementin a formal language.

State: A nodein a statemachine’s control graph.

Statemachine: A modelof computation in which the control logic is described (anddepicted)
asa graph in which thenodes describe thepossible control statesandthearcsdescribe the
allowedtransitions for eachstate. DOVE statemachinesareaugmentedwith a memory.

Subgoal: A proposition which appearsasanintermediate stepin theproof of a goal.

Tactic: A program usedto transform the current proof state. Thenew proof stateintroducedby
the tactic is alwaysonefrom which the previousproof statecanbe logically inferred; that
is. theprevioussubgoalscanbeconstructed from thenew subgoalsandexisting theorems
using the inferencerules. A tactic is neither a theoremnor an inferencerule, but will make
useof theoremsand inferencerules. Generally a tactic will work by transforming a single
subgoal, but this is not mandatory.

Temporal logic: A formal language for expressingthepropertiesof statemachines. Mechanisms
areprovided for testing both the current configuration andpastconfigurations, aswell as
theordering of events.

Temporal sequent: A formal mechanismfor stating propositionsabout thebehaviour of a state
machine. A sequent consistsof a list of hypothesisproperties anda target property, written
in theform

CED
, ...,

C � F�G 8
It states the proposition that if the state machine satisfiesthe hypothesis properties it also
satisfiesthetarget property.

Theorem: A proposition which canbe derived from the axiomsof a theory using the inference
rules. In particular, the axioms themselves are theorems. The Isabelle proof tool hasa
reservedtype called ��<�% , andonly axiomsandtheresults of inferencerules have this type.
This ensures theintegrity of theIsabelle reasoning system.

Theory: A collection of formal objects andthe axiomswhich describe their meaning. Isabelle
alsomaintains a databaseof theoremsthathave beenprovedin a theory.

Theory file: A file containing a programwhich Isabelle uses to construct a theory.

Transition: An arcin a state machine’s control graph andits associatedguard andaction.

xvi



DSTO–TR–1349

Chapter 1

Intr oduction

Broadly speaking, it is expected that DOVE userswill fall into three related categories: system
designers, who have expertisein particular applicationdomainsandwish to usethetool to model
andexplore systemsof interest; evaluators, with a general, rather thandetailed, understanding of
the applicationandproof structure,who mustbeconvincedof the soundnessof the design(e.g.,
by animation) andproofs (e.g.,by replay) withoutconstructing any themselves;andverifiers, who
have expertisein theuseof theprover, but not necessarily of a givenapplication.

The benefitsto these users from usingDOVE areflexibili ty, clarity, andease-of-use. These
derivefrom theunderlying design of thetool, aswill bediscussedin detail below. Themainpoints,
briefly, are:

H DOVE clearly separatesthe activities of design modelling, design animation and design
verification. This providesa degree of flexibili ty in the designprocesswhich is essential
whendealing with large-scaleengineering problems.

H DOVE adopts the ubiquitous state machineasits basicdesign model. Statemachinesare
familiar to mostdesign oriented professions, particularly in the engineeringandcomputer
sciencefields.They areane� ectivemeansof communicating systemdesignsto avariety of
people andareeasyto representandto manipulatewith a graphical userinterface.

H DOVE providesanintelligent graphical interfacewhich emphasisesbothsimplicity of use,
andautomatedsupport for designandanalysis activities.Thisprovidesproductivity benefits
to boththenovice andtheexperienced user.

It is also important to note that the useof state machinesreducesthe training e� ort required to
startmakinge� ective useof theDOVE tool.

1.1 Readingthis report asa usermanual

As a user manual, this report is written at two di � erentlevels. At onelevel it is a straightfor-
wardintroduction to theuseof theDOVE tool, largely “tutorial” in nature,basedaround aspecific
examplestate machine. It allows thereader quickly to get into experimenting with statemachine
design. Theother level providesa morecompletedescription of the DOVE tool andsomeof its

1



DST
�

O–TR–1349

finer points. It is expectedthat this latter thread would beused moreasa referencesource, or as
background for the interesteduser. As many readers prefersimply to downloada tool anduseit,
this section providesa guideto theintroductory andtutorial aspectsof themanual.

Firstly, thereader maywantto perusetheremainderof this introduction, at leastto gainconfi-
dence with thedefinitionsandmeaningsof thevarious conceptsin thedesign process.For a brief
overviewof DOVE’s implementationof statemachines,it is highly desirable to readChapter2. It
concentrateson an example, andis fairly “hands-on”, giving the readera firm graspof what the
tool is about.

Thereader should thenhave a quick look at Chapter3, particularly Section3.1, which rapidly
discuss the necessary preliminariesto setting up a DOVE session. Moreover, the preambleto
Section3.2hasa useful discussionof “good practice” in file management while usingthetool.

After thesepreliminariesthereaderwill beableto attemptthe“tutorial sessions”, whichappear
asthelastsectionsin theremaining chapters;specifically, Sections4.5, 5.4, 6.3, 7.4and7.5. Most
of thesecanbe followed “blindly”, but it is expected that reference to earlier material in those
chapterswill beuseful during thesessions. Thelast tutorials,Sections7.4and7.5, aresomewhat
harder in thattheproof strategy is incorporatedin thediscussion.

1.2 Designassurance

DOVE is primarily atool for producinghigh assurancesystemdesigns.Thereasonfor placing
sucha high importanceon thelevel of design assuranceof a system is thatexperiencehasshown
that it is in this phase that extra assurancee� orts can have the most e� ect. Designerrors are
relatively easyand inexpensive to correct if detected during the actual designphase,but when
left undetectedthrough to later stagesof the developmentcanbecomedi! cult andexpensive to
eradicate. In theextremecase, a design errorcanleadto thecompletewastageof all subsequent
developmente� orts. It is also significantly easier to detect errors in the design phase, because
designsshould besmall,elegant, andeasyto understand. As with mostareasof humanendeavour,
themoretime spentin planning andpreparation, thesmoother theexecution.

The design assuranceprocess,as embodied in the DOVE system, covers a range of issues
which areworth discussing at this point.

1.2.1 Modelling

Modelling is theactivity of discoveringa simpledescription of somereal-world system. De-
sign modelling providesincreasedunderstanding of, andconfidence in, a design. Depending on
the degreeof accuracy required, models may vary in sophistication from simple diagrams, to
scaled physical models, to complex mathematical objects.

1.2.2 Animation

Animation is the processof exercising a designmodel to observe its behaviour. Animation
maybeusedto determinetheaccuracy of a modelor elseto determinethefitness-for-purpose of

2



DSTO–TR–1349

a design. Themethod of animating a modelis dependenton theform of themodel. Scalemodels
aregenerally tested physically, while mathematical modelsmaybesubjectedto formal reasoning
or to computer simulation.

1.2.3 Verification

Verification is the activity of direct mathematical or logical proof that a modelmeetscertain
critical requirements. Verificationmay be either rigorous– that is, demonstrated by arguments
thatareconvincing to humanevaluators– or elseformal, that is, demonstrated by argumentsthat
have beenor areamenable to beingcheckedby computers. Although it canbeexpensive to carry
out, design verification can be a very e� ective way of providing design assurance,as well as
discoveringdesign flaws.

1.2.4 Reviewsand Checks

Reviews andchecks aredesign analysis activitiescarried out by external parties. Subjecting
a design to the scrutiny of an objective (or at leastmoreobjective) observer canaddgreatly to
confidencein theadequacy andcorrectnessof a design.

1.2.5 Stakeholders

Designassuranceactivities can involve a number of parties, with widely di � ering roles and
capabilities. Systemdesignersaregenerally expertsin theapplication domainof thesystem,but
they may, in consequence,have a narrowrangeof mathematical andlogical competencies. Veri-
fierswill befamiliarwith arangeof verygeneral mathematicalandlogical techniques,but maynot
possessthespecific skills necessary for successfuldesign in aparticularapplicationdomain.Eval-
uators andcertifiersreview the developmentprocessfor compliancewith appropriate standards
andbestpractice. Although evaluatorsmaynot have detailedknowledgeof eithertheapplication
domainor formal proof techniques, it is the evaluatorsthat the design assuranceactivit ies must
convince.

1.3 The DOVE approach

An important factor in promoting morewidespreaduseof formalmethodsin designassurance
is theprovisionof tool support. TheDOVE system providestoolsfor constructing, presenting and
reasoning about formal design-models.Thedesign anddevelopmentof DOVE hasbeeninformed
by three basic beliefs, outlined below, aboutthe provision of tool support for the applicationof
formal methods.

1.3.1 Useof graphical interfaces

Theprovision of a powerful graphical user interfaceis critical to thesuccessful application of
formal methodsto large-scale designs. The power of a tool’s userinterfaceshould not be seen

3



DST
�

O–TR–1349

simply in termsof providing anattractive display andeasy-to-usepoint-and-click control of tool
functionality. It is important that theinterfaceshould alsoprovide a powerful visual metaphor for
the design modelbeing analysed. A suitablevisual metaphor makes the application of the tool
moreintuitive andprovidesvital feedback whenusingthe tool. Suchan interfaceenhancesthe
appeal of the tool for novice users,reducesthe e� ort required to achieve basiccompetency, and
makesformal modelling lesserror-prone.

1.3.2 Useof existingdesignstrategies

It is important that formal methods tools should not simply provide a powerful interfaceto
formal modelling andanalysis techniques. They should alsointegratewell with existing design
methods. Fromaverypragmaticpoint of view, this is desirablebecauseit facilitatesacceptanceof
thetool amongstthoseinvolvedin thedesign process.However, evenfrom apurer design point of
view it hastheadvantageof allowingthetool to bemodestin scope. It allows thetool to betightly
focusedonthejob of providing suitableformal analysissupport,without theneedto addresswider
methodological issues.

1.3.3 Useof genericsoftwarecomponents

As depicted in Figure1.1, the DOVE prototype hasprimarily beenbuilt using three exist-
ing tools and7 or languages: theTcl7 Tk script language[6], the functional programminglanguage
ML [7], andthe interactive theorem-proving system Isabelle [9]. The userinterfacecomponent
andthegraphical representation of thestatemachineareimplementedin Tcl andTk. Theprocess
communication language,Expect [5], is used to implement communication between Tcl7 Tk and
ML. All parsing of userinput is carried directly in Isabelle, while proofs arecarried out using
XIsabelle [2], a graphical front-endto Isabelle.

1.4 Statemachinedesign

The statemachine is a widely usedsystem design model, forming an important component
of many existing design processesanddesign support tools. Statemachinesprovide a powerful,
flexible modelof computation. They areableto treata wide rangeof design issues at convenient
levels of abstraction. They arereadily amenable to the application of powerful automated tools,
suchassiliconcompilers [10], aswell asformalanalysis techniques. Furthermore,whenrendered
in the form of transition graphs, statemachinesprovide an important design visualisation tool,
ableto communicate e� ectively to a wide rangeof stakeholders.

TheDOVE systemadoptsthestatemachineasthebasicmodelof system design. This hasthe
dual benefitsof providing a basic design modelwhich is easily rendered graphically andwhich
allows theDOVE tool to bereadily integratedinto existing design practices.

Themainfeaturesof DOVE statemachinesaredisplayedin Figure1.2. Thediagrampresents
a DOVE modelof theoperation of a setof tra! c lights at a north-south7 east-west roadjunction,
andwe maynotesomegeneral features.

4



DSTO–TR–1349

State Machine Language

Standard ML

Isabelle

Tcl/Tk/Expect

Edit Animate Prove

Design Database

Figure 1.1: DOVEprocessesblock diagram

H Eachstatemachinehasa number of attributesor variables(seeSection2.1) used to record
information for future computations and to communicatewith the environment. For ex-
ample,in the tra! c-lights statemachine, the variable I�B�#���<	� records the colour currently
desplayedby thenorthfacingtra! c light.

H In DOVE thecontrol logic of a system is modelledby its state7 transition graph. Thegraph
consists of a number of statenodes, represented as circles, and a number of transitions
between states, represented asline vectors.

H Eachstatenode representsa decision point in the behaviour of the statemachine. The
transitions out of eachnode represent thepossible next actions in eachstate. For example,
in the "$3�36J	��� statethetra! c-lightsstatemachinemayeitherperformthe K�L�>�<����	����M�(����6�
transition andgo to the state K,L�M�(����6� or elseperform the I	.�>�<	���	���,M�(����6� transition and
go to thestateI�.�M�(����6� .

The tra! c lights examplewill be usedextensively throughout this manual andappearsin full in
Appendix A.

5



DST
�

O–TR–1349

Figure 1.2: DOVEstatemachinestructure

TheDOVE system providesthreebasiccomponentsfor treating statemachine designs.

1.4.1 The editor

Thestate machine editor providesan intelligent, graphical environment dedicatedto thecon-
struction of statemachinedesigns.Thetransition graph of astatemachineis constructedby laying
outnodesandedgesonagrid using simplepoint-and-click operations. Elementsof thegraphmay
also be moved around, modified, or deleted using conventional mouse-based commands. The
editor usesintelligentgraph-layout algorithmsto providea visually pleasing andreadily compre-
hensible rendering of thetransition graph. Thelogical relationshipsbetweentransition edgesand
statenodesaremaintainedautomatically during modification.

Thegraphical renderingof thestatemachineproducedby theeditor providesa vital aid to the
comprehension andanalysisof thedesign. An important feature is theeditor’s ability to generate
high-resolution renderings suitable for presentation to a wide rangeof stakeholders. The on-
screen rendering is alsousedextensively to informthedesign-analysisactivit iesof theotherDOVE
components.

6



DSTO–TR–1349

1.4.2 The animator

DOVE providessymbolic animation featuresthat cangive increasedconfidencein a design.
A DOVE animation is a ’what-if ’ style experiment on the state machine, which investigates the
way in which the state machineevolves in a given situation. Eachanimation experiment con-
sistsof performing a sequenceof transitions from someinitial configurationof thestate machine.
Animationthusservesasa form of rigorousdesign-validation.

The animation process is performedby manipulating the transition graph rendered by the
editor. An initi al situationis installed by interactingwith thegraphandthedesiredexecution path
is determinedby mouse-basedpoint-and-click operations. Theanimator determinesthe result of
the chosenexperiment, interactively updating the display to reflectthe results of each execution
step.

1.4.3 The prover

Themostpowerful aspectof the DOVE tool is its ability to formally verify the propertiesof
statemachine designs. The aim of verification is to demonstrate logically that a statemachine
design satisfiesa given collection of requirements. Eachrequirementis expressedin a formal
language,specifically designed to support the description of the behavioural properties of state
machines. The prover component providesa powerful environment for proposing, proving, and
maintaining theconsistency of theseproperties.

An importantaspectof theDOVE proofprocessis thevisual feedbackthatis o� ered.Thetran-
sition graphis usedextensively asa way of informing theuseraboutthecurrentproof state.The
proof itself is alsopresented in a graphical modewhich supports powerful high-level navigation
andmanipulation features.

7



DST
�

O–TR–1349

8



DSTO–TR–1349

Chapter 2

DOVE statemachines

Thestate machine is a modelof computation. Thecontrol flow of the model is determined by a
graphin which the nodes representdecision points andthe linking transitions represent the cor-
responding allowedchoices. Experience hasshown that statemachine diagramsarean e� ective
meansof presenting systemdesignsto a wide rangeof audiences.Tracingpossible control paths
by following transitions from aninitial state to a final stateis a natural andintuitive way of com-
prehending a design. If states andtransitions aregiven properly evocative names,the reader can
quickly gainastrongintuition aboutthepurposeandintendedbehaviour of astatemachinedesign.

For example, consider thestatemachinediagramfor the tra! c-lightsexamplerepresented in
Figure2.1(seeAppendix A for moredetails). It is relatively straightforwardto determinethebasic
behaviourof thesystem justfrom looking atthediagram.Computation beginsby performingsome
initialisation action, then progresses to the "�3�36J���� state. From here,either the E7 W or the N7 S
lights cancycle through green to amberto red,at which point the system is backin the "�3�3�J	���
state.

Unfortunately astatemachinediagramis alongwayfrom beingamachine-executablespecifi-
cation of systembehaviour. Moreover, even‘properly evocative’ namescanbemisleading to some
readers. For example, in the tra! c-light diagram,there is no way of determining from thegraph
anddescription aboveexactlywhathappensduring initialisation – or evenof beingabsolutely sure
that the N7 S lights arenot a� ectedby the K�L�>�<����	����M�(����6� transition. In order to addressthese
problems,DOVE augments the statemachine mechanism with programmingfeatures that have
well-defined,formal semantics. In this way, thestatemachinediagramcanbemadeto serveasan
invaluableaid to comprehension within a high-assurancedesign process.

This chapterpresentsabrief introduction to theway in which DOVE augments theconcept of
statemachinediagramsandthewayin whichthis is used to provideassuranceof criticalproperties
of statemachines.Although thematerial in this chapter is presentedin aninformal way, it should
berememberedthatin theDOVE tool theseconceptsareformalisedusing theHigher OrderLogic
(HOL object logic) of the Isabelle proof tool [9]. This occasionally hasimpacts on the features
availablein DOVE, which will beemphasisedin footnotesfor thebenefit of theinformedreader.

9



DST
�

O–TR–1349

AllRed

NSAmberEWAmber

EWGreen NSGreen

EWChangeAmber

EWChangeGreen

NSChangeAmber

NSChangeGreen

WaitEWWaitNS

WaitTO
N

WaitTO
N

EWChangeRed NSChangeRed

Figure 2.1: statemachinegraph for the 8�(�������#��,B�#���<	�� example.

2.1 Systemattr ibutes

In order to increasethefidelity of statemachinemodels,DOVE introducesthenotion of system
attributes. Attributesareobservablequantities associatedwith thebehaviour of thesystem. In a
DOVE statemachine, these attributesfall into three distinct categories.

H Input variablesareintroducedby theuser to representthepointsat which external entities
(theexternal environment)mayinfluence themachineevolution.

H Heapvariablesareintroduced by theuserto storeoutputsto theenvironmentor intermediate
results in theexecutionsof themachine.

H The current state andthe last transition, the observableaspects of the control logic at any
point in an execution of the machine, aretracked automatically by the DOVE tool via the
statemachinegraph input by theuser.

Theheap andinputvariablesarereferredto collectively asthememory. Thecollectedvaluesof all
thesystem attributesat a particular point in a computationis calleda configuration of thesystem.

The input andheap variablesusedto helpdescribe the tra! c-lights example arepresentedin
Table2.1. Theheap includessuch observablesasthecurrentcolour of eachof thelights ( K�B	#���<	� ,
L�B�#���<	� , I�B�#���<	� , and .,B�#���<�� ), the last direction to showgreen ( B���,��M�(����6� ), and the time at
which anamberlight is to changeto red( "�%�O���(�8�%�1� 	� ). Theinput variablesrecordthenumberof
carswaiting at eachredlight ( K�>��,($ , L	>��,($ , I�>��,(� , .,>��,(� ) andthecurrenttime ( ��#&%'� ).

An importantpoint to note about Table2.1 is the fact that theDOVE statemachinelanguage
is strongly typed. Eachof the system attributesis assigneda type which determinesthe kind of
informationit represents. Thetype �	��� is astandardIsabelle7 HOL typeandrepresentsthenatural
numbers. Theother typesin thetra! c-lights example( P'#�(�������#,�,� and >���3,�� �( ) areenumerated

10



DSTO–TR–1349

Variables
Name Type

B���,��M�(	���6� P'#�(�������#,�,�
K�B	#���<	� >���3,�, �(
L�B	#���<	� >���3,�, �(
I�B	#���<	� >���3,�, �(
.�B	#���<	� >���3,�, �(
",%�O���(�8,%�1� 	� �	���

Inputs
Name Type
K�>��,(� �	���
L�>��,(� �	���
I�>��,(� �	���
.,>��,(� �	���
��#)%'� �����

Table2.1: Systemattributes for thetraQ c-lightsexample.

types(Isabelle7 HOL datatypes) which have beendefinedlocally to thestatemachine. Thedefini-
tion of local types is discussedin moredetail in Chapter4. In this example, >���3,�� �( hasvalues
J	��� , ",%�O���( or M�(	���6� , while P$#�(�������#,��� canbe I	. or K,L .

2.2 Transitions

The power of systemattributes in DOVE statemachinesis that they allow eachtransition to
beassociated with a simpleprogram.Eachsuchtransition programconsistsof three parts.

The B����SR partallowsthedefinition of abbreviations which canbeusedto simplify thetransi-
tion definition. This is explainedin moredetail in Chapter4.

The M, 	�,(���R part, alsoreferred to astheguard, of a transition describesa Booleancondition
on thesystemattributes(both heapandinput variables)which mustbesatisfied for the transition
to occur. A state machine canonly perform (fire) a transition if it is in a state from which the
transition is allowedand thesystemattributessatisfy theguard.

The "����SR part, alsoreferred to asthe action, of a transition describesthe way in which the
system’s memoryis changed whenthe transition fires. The action is expressedasa parallel as-
signment to anumber of heapvariables.Only thevariablesassignedto by theaction maychange.
Input variablesareupdatedindependently by theenvironment,andsocannever beassignedto in
any action.

All sectionsof thetransition’s definition areoptional: if theGuard is omitted, it is definedas
True (i.e., thetransition alwaysfires),andif theAct partis missing, it will bedefined asSkip (the
transition doesnothing).

As anexample, thedefinition of the K�L�>,<	���	���,M�(	���6� transition1 is asfoll ows.

M, ��,(���R ( B���,��M�(����6� T I�. )
"	���SR K�B�#���<	� U M�(����6�

L�B�#���<	� U M�(	���6�
1NotethatDOVE is fairly lenientin its handling of thesyntaxfor transitions.In particular, reservedwordssuchas

True, False, If , Then andElse arecase-insensitive, while the identifiersAnd andOr (alsocase-insensitive) may be
usedin placeof thesymbols& and V , respectively. Whitespaceis ignored.

11



DST
�

O–TR–1349

Thetransition guardis thatthe B������M�(	���6� variableshould be I	. ; i.e., thattheN7 Slightswerethe
lastto besetgreen. Thee� ectof thetransition is to settheE7 W lights to green.

The“wait-busy” transitions,suchasthe L	��#���8�1 transition, arerequiredto prevent “deadlock”.
This is elaboratedin Section2.9below.

2.3 Initialisa tion

EachDOVE statemachinemusthave at least onestate.Exactly onestatein thestatemachine
mustbe definedasthe initial state(in termsof execution); this should be definedin the Initial-
isation Window, invoked via the =9�$#���#���3�#�,����#,��� option below the P$����#6�$#���#����' menuitem.
This window mustalsobeusedto specify theiniti alisation condition, which actsasa requirement
on theiniti al valuesof theheap variables. Theinitialisation neednot fully determine thevalueof
every attribute,sincethe initial valuesof someattributes maynot be important to the correct be-
haviour of thestatemachine. If no particular initialisation is required,the initialisation condition
maybesetto 8�(� �� .

Theiniti alisation condition for thetra! c-lights exampleis asfollows.

( I�B�#���<�� T J	��� ) "���� ( .�B	#���<	� T J	��� ) "���� ( K�B�#���<	� T J	��� ) "��	� ( L�B�#���<	� T J���� )
It requires that all the tra! c lights initially showred. This means, for example, that the heap
variable B���,��M�(������ may initially be either I	. or K�L . It doesnot matterwhich setof lights goes
greenfirst, providedthey alternatecorrectly thereafter.

2.4 Statemachinedefinitions

A state machinedesignis completely definedby:

H its statemachine diagram,

H its initial state,

H its system attributes,

H its initialisation predicate,and

H its transition definitions.

Theminimumrequirementsfor a legal state machinedefinition in DOVE areasfollows:

H Theremustbeat least onenode.

H Exactly onenode in the statemachinemust be definedas the initial stateof all machine
executions.

H Theremustbeaninitialisation condition, which is a Boolean expression.

12



DSTO–TR–1349

AllRed

NSAmberEWAmber

EWGreen NSGreen

EWChangeAmber

EWChangeGreen

NSChangeAmber

NSChangeGreen

WaitEW
N

WaitNS
N

WaitTO WaitTO

EWChangeRed NSChangeRed

Figure 2.2: A possible executionpathfor the 8�(�������#��,B�#���<	�� machine

W�X�Y�X�Z [$\�\6] ^ _�`�a ^ _,`�[ ^ [�\�\�] ^ b�c�a ^ b	c�[
d Y�W,X�a�e	Z�Z6f b	c b�c b	c _�` _,` _�`
b d�g�h�i X ]	Z�j ]�Z�j ]�Z�j ]	Z�j a�e�Z�Z6f [,k�l�Z�e
_ d�g�h�i X ]	Z�j a�e�Z�Z�f [�k�l�Z�e ]	Z�j ]	Z�j ]	Z�j

Table2.2: A possible execution of the 8�(�������#��,B�#���<	�� machine

2.5 Executions

A DOVE statemachineis interpretedasoperating in thefollowing manner.

An initial versionof thememoryis constructedsoasto satisfytheinitialisation condition and
the machine is placed in chosen initial state. At eachsubsequentpoint in the computation the
current stateandmemoryareconsultedto determinewhich transitionsareenabled. A transition is
enabled if andonly if thestatemachine graphallows thetransition from thecurrent state andthe
current memorysatisfies the transition’s guard condition. If morethanonetransition is enabled,
either mayfire. In this way, themachineproceedsto tracea paththroughthestatemachinegraph,
asdepictedin Figure2.2.

As execution movesaround the statemachinegraph, a sequenceof statemachineconfigura-
tionsis generated, onefor eachstatevisited.Suchasequenceof configurationsis called ahistory.
A history which canbe constructedby a given state machine is called an execution of that state
machine. Theexecution associated with theexecution pathdescribed in Figure2.2 is depicted in
Table2.2.

An importantproperty of statemachineexecutions is that they areprefixclosed; i.e., that if a
givenhistory is anexecution, thensoareall of its prefixes. In otherwords,thehistoriesobtained
by successively dropping the final configuration from an execution are all executions. This is
becauseeachnew statemachineexecution is generatedby extending someexisting execution with
thenext allowedtransition andstate.

13



DST
�

O–TR–1349

2.6 Animation

As describedabove,onesimplewayto comprehendastatemachinediagramis to tracevarious
execution pathsvisually. Suchan inspection actually correspondsto thegeneration of a possible
(partial) history of the statemachine. The history traced neednot be complete becauseit is not
necessaryto commencein theinitial state.Thehistory maynotrepresentanactual execution of the
statemachine, becauseit is possibleto tracepathsonthediagramwhicharelogically disallowedby
the transition guards. For example,the 8�(�������#��,B�#���<	�� machine cannot perform K,L�>�<����	����J	���
andthen K�L	>�<	�������,M�(	���6� becausethevalueof B���,��M�(����6� will disallow this. With theaddition
of system attributesandtransition guards, it is possible to usethis informal mechanism of path
tracing to generate a great dealof useful informationabout a statemachinedesign.

Theenhancedversion of path tracingsupportedby DOVE is calledanimation.2 Thetechnique
consistsof choosinga beginning stateandtracing a sequenceof contiguous transitions from that
state. DOVE supports this techniqueby calculating thenew valuesof any heapvariables thatare
updatedand(crucially) by calculating what is termedthepathcondition. Thepathcondition is a
Booleanexpressionwhich representsthe logical requirementson beginning configuration for the
traced path to be possible (only possible becauseotherpathsmay alsobe possible if morethan
one transition guardis enabled). If the newly calculatedpath is not possible (i.e., if the guard
governing the mostrecently fired transition actually prohibited the firing of that transition in the
current configurationof thestatemachine), thepathcondition will be false.

The animation mechanism is a useful way of ensuring that all variables areupdated asex-
pected in critical situations, andfor confirming intuition aboutwhencertain execution pathsare
possible or impossible. In this way, assuranceof thecorrectnessof thestatemachine design can
bepromotedto a high level in an intuitive ande! cient manner. However, sinceanimation corre-
spondsessentially to a sophisticated form of testing, animation cannot provide thehighest levels
of assuranceof statemachinecorrectness. Thehighestlevelsof assurancecanonly begained by
mathematical proof thatthedesign satisfiesits requirements.

2.7 Properties

In DOVE, high-level system requirementsarerepresentedascollectionsof mathematicalprop-
ertieson statemachinehistories. Eachproperty generatesthecollection of historieswhich satisfy
theproperty. A statemachineis saidto satisfy aproperty if andonly if everyexecutionof thestate
machine satisfiesthe property. In the foll owing we introducethe languageusedto describe sys-
tem propertiesandillustratethe evaluation of suchproperties on the 8�(�������#��,B�#���<	�� execution
depictedin Table2.3. We referto this tableasthe truth table for thepropertieson this execution.

In order to specify properties easily, DOVE adopts a form of temporal logic. The aim of
temporal logics is to provide a convenientnotation for describing properties of entire histories.
TheDOVE temporal logic providesfacilities for inspectingthevaluesof all variablesin thecurrent
configuration, in any previousconfiguration,and,importantly, for constraining theorderin which
eventscanoccur.

2Note that in generalthe term animationmay refer to a muchwider rangeof techniques than that supportedby
DOVE.

14



DSTO–TR–1349

m6n,o�n,p q�r�r&s t u6v�w t u9v,q t q�r�r&s t x�y)w t x�y&q
z o�m9n6w�{�p�p&| x�y x�y x�y u6v u9v u9vx z�}6~9� n s�p�� s�p�� s�p�� s�p�� w�{�p�p)| q�����p9{u z�}6~9� n s�p�� w�{�p�p&| q6����p9{ s�p�� s�p�� s�p��

x z�}6~)� n � w�{�p�p&| � � � � � �q�n x�y)w�{�p�p)|� ����r } p�mx z�}6~)� n � w�{�p�p&| � � � � � �
� {�p)� }6�)� m�r)�
( x z�}6~)� n � w�{�p�p&| ) � � � � � �

� } {�m9n � � � � � �� | } n } o�r�r&�
( x z�}6~9� n � s�p�� ) � � � � � �
q�r���o)��m
( x z�}6~9� n � s�p�� ) � � � � � �
y � ��p�n } ��p
( x z�}6~)� n � w�{�p�p&| ) � � � � � �
��� m9n6s�p���p&|�n�r&�
( q�n q�r�r&s�p�� )
(
z o�m9n6w�{�p,p&| � x�y )

� � � � � �

Table2.3: Someproperties evaluatedon an execution of the 8�(�������#���B�#���<��� machine

The simplestproperties arewritten asBoolean expressions on the current valuesof the ma-
chineattributes.For example,theexpression

I�B	#���<	� T M�(����6�
canbeused to determine if thenorth light is green in thecurrent configuration. Table2.3 shows
theresult of evaluating thisexpressionin eachof theconfigurationsof theexecution pathshown in
Figure2.2. Theonly statein which this is trueis I	.�M�(	���6� . Fromsuchconfiguration propertieswe
canbuild up a wholefirst orderpredicatelogic usingtheusual operators =&%�+$3�#��� , I���� , 2���(�"�3�3 ,
etc.

So as to allow access to the current stateand the last transition, the special temporal logic
constructors "	� and ?�- respectively areintroduced. For example, theexpression

( "	� I	.�M�(������ ) =)%�+�3�#��� I�B�#���<	� T M�(	���6�
saysthat the north light mustbe green if the machine is currently in the I	.,M�(������ state. From
Table2.3 it canbeseenthat this property is true in every configurationof theexampleexecution.
This is becausetheproperty I�B�#���<	� T M�(������ need only be true whenthe machineis actually in
the I	.,M�(������ state(sinceotherwise theassumptionto the implication, "�� I�.�M�(����6� , is false, and
thustheimplication is true).

In the above examples, ‘currently’ meansthe last configuration of the history beingconsid-
ered.In orderto gainaccessto earlier configurations,temporallogic addsspecial operatorscalled
modalities.

15



DST
�

O–TR–1349

The *�(�����#,�� '�3�- modaloperator asksif apropertywastrueof thehistory gainedby removing
thelastconfigurationfrom thecurrent history. For example,

*�(	���	#,�, '�3�- ( I�B	#���<	� T M�(����6� )
saysthat the north light wasgreen in the previousconfiguration. From Table2.3 it canbe seen
thatthetruth tablefor this property is just thatof I�B�#���<	� T M�(����6� shifted alongonecolumn,with
theaddition that thepropertyis truein thefirst configuration.

The constant 2�#�(��� canbe usedto determine if the current configuration is in fact the first
one.Thetruth tablefor 2�#�(��� is alsoshownin Table2.3. Thevalueof all *�(��,�	#,�� 0�3�- properties
is taken to be true in the first configuration, by convention. Sincethis convention is essentially
arbitrary, it is a good ideato make all *�(�����#,�� '�3�- propertiesconditional on not beingin thefirst
configuration. For example, it is better to write

( I�����2�#�(��� ) =&%�+�3�#����*�(��,�	#,�� 0�3�- ( I�B�#���<	� T M�(������ )
sincethis makesit explicit that the *�(	���	#,�, '�3�- property is not very meaningful in thefirst con-
figuration.

The =6�$#���#���3�3�- modaloperator determinesif something is truein thefirst configuration. For
example,

=9�'#���#���3�3�- ( I�B�#���<	� T J���� )
saysthatthenorth light is redin theiniti al configuration. Referring onceagainto Table2.3, it can
beseen thatthis property is truein every configurationbecauseit is truein thefirst.

The "$365���-� and .,�6%'����#&%0� modaloperatorsallow theconsideration of all theconfigurations
in a history. For example,

"�3�5��,-� ( I�B	#���<�� T J	��� )
saysthatthenorth light mustberedin every configurationof thehistory and

.,��%'����#)%'� ( I�B�#���<	� T M�(������ )
saysthat it mustbe greenin at least oneconfiguration of the history. Onceagainthe truth ta-
blesfor theseproperties aredepicted in Table2.3. It is important to note from these tablesthat
oncean“always” property becomesfalseit remainsfalsein all future configurations, andonce a
“sometimes”property becomestrueit remains true.

The :������J	�����6�	��3�- operator is importantin selecting pointsof particularinterestin a history.
It takes two argumentswhich areproperties: thefirst selects thepoints of interestandthesecond
describesa desiredproperty. For example,

:��	,��J	�����6�	��3�- ( "�� "�3�36J	��� ) ( B���,��M�(����6� T I	. )

16



DSTO–TR–1349

saysthat the last time that themachinewasin the "�3�36J���� state, the B���,��M�(	���6� variable hadthe
value I	. . Thetruth tablefor this property shows thatit is truefor thefirst threeconfigurationsand
then falsefor the last three, becausethe value of B������M�(	���6� is K�L when "�3�3�J	��� is visited the
second time.

Thereareseveralothermodaloperatorssupportedby DOVE, but theabove arethemostcom-
monly used. A full account of DOVE’s temporal logic is presentedin AppendixC.

2.8 Verification

Verification in DOVE corresponds to proving that all executions of a statemachinesatisfya
requiredproperty. This condition is representedusing the turnstile operator. For example,

F�G�"�365	�,-� ( "�� "�3�3�J	��� =&%�+$3�#��� K�B�#���<	� T J���� )
claimsthat theproperty "�� "�3�3�J	��� =&%�+�3�#��� K�B�#���<	� T J	��� is actually trueof thetra! c-lights
machine. For technical reasonsthat arediscussedin Chapter7 it is importantto apply the "$365���-�
operator to all desired machine propertiesin DOVE.

The basicproof technique in DOVE (the mechanics arediscussedin detail in Chapter7) is
induction on theexecutionsof thestatemachine. Supposethatall theinitial configurationssatisfy
the property. Suppose,further, that for every execution of the statemachinewhich satisfiesthe
property, all enabled transitions take the statemachine to an execution which also satisfiesthe
property. Thentheproperty musthold for all executions.

Whatis particularly powerful about DOVE is thefactthattheinduction stepis reinterpretedas
a simplestatement in temporal logic. For any giventemporal property, DOVE is ableto calculate
a property which describeswhatmusthave been truein thepreviousstatein order for thecurrent
history to satisfy thegivenproperty. This is done by a process called back-substitution.

Thebasicideain back-substitution is to replaceoccurrencesof attributenameswith thevalues
assignedto themby thelasttransition. For example, if thelasttransition was K�L	>�<	��������J	��� , then
theproperty

"�� "�3�36J���� =)%�+�3�#��� K�B�#���<	� T J	���
is back-substituted to the(trivially true)property

"�3�36J	��� T "�3�3�J	��� =&%�+�3�#��� J	��� T J	���
becausetheedgewith transition K,L�>�<����	����J	��� endson "�3�36J���� , afterwhich K�B�#���<�� is setto J	��� .
Thedetails of how thelasttransition information is determinedarediscussedin Chapter7.

In general, back-substitution throughagivenedgeE, appliedto agivenproperty � , returnsthe
weakest propertywhichensures � ; i.e.,thelargestsetof historiesfor whichtheexecution extended
asdeterminedby E satisfies � . Theresult is known astheweakest temporal precondition. It is ob-
vious that, asdiscussedabove, this is obtainedfor a configuration property by replacingvariables
with thevaluesdeterminedby thetransition in edgeE. Sincea general property is generatedfrom

17



DST
�

O–TR–1349

configuration propertiesby the modaloperators, to determine its weakest temporal precondition
we simply need to know how to distributeback-substitution through thevarious modalities. Here
we just list a few3 of theresults, writing O	���,��) �O to representtheoperation of back-substitution
through a givenedge:

H O	������9 �O 8 � 8 ;

H O	������9 �O ( � "���� � ) � ( O������$) �O�� ) "���� ( O	������) �O�� ) ;

H O	������9 �O ( I���� � ) � ( I���� ( O�������9 �O�� )) ;

H O	������9 �O ( 2���(�"�3�3 x H � x) � 2���(�"�3�3 x H ( O	�����$) �O�� x)

H O	������9 �O ( *�(����	#��� '�3�- � ) ��� ; and

H O	������9 �O ( "$365��,-$ � ) � (( O	�����$) �O�� ) "���� ( "�365	�,-� � )) .

As a simpleexample, consider a property of theform

*�(	���	#,�, '�3�-�"�365	�,-� � .

Theaction of back-substitution leaves

"�3�5��,-� � .

At this point it is convenientto extract thecurrentstateinformation by expanding via the simple
rewrite

( "$365��,-$ � ) � ( � "���� ( *�(�����#,�� '�3�-�"$365���-� � )) .

To bespecific, theproperty

*�(	���	#,�, '�3�-�"�365	�,-� ( "�� "$3�36J���� =)%�+�3�#��� K�B�#���<�� T J	��� )
is back-substituted to

( "	� "�3�3�J	��� =&%�+$3�#��� K�B�#���<	� T J	��� ) "����
*�(	���	#,�, '�3�-�"�365	�,-� ( "�� "$3�36J���� =)%�+�3�#��� K�B�#���<�� T J	��� ) .

This kind of result will beusedrepeatedly in Chapter7.

Oncethe back-substitution of a required property hasbeendetermined,the induction step
becomesa ‘simple’ matterof proving that therequiredproperty implies its own back-substitution
– rememberthat theback-substitution of a propertyensuresthatpropertywill be true in thenext
state. Theprocessmaybeabit morecomplicatedthanthis in practice,becauseit maybenecessary

3The knowledgeablereaderwill perhapsbe surprisedat the simpledistribution through �&�&� . However, the back-
substitutionis only appliedfor theactionpartof thetransition,which– by constructionasa list of variableassignments
– is deterministic. This provides greatsimplification in the distribution propertiesand is crucial to the e� ciency of
verificationin theDOVE tool.

18



DSTO–TR–1349

to back-substitute several times before the implication can be proved. Sucha computation is
equivalentto generalising theinductionhypothesisto extensionby ahistory of several stepsinstead
of the usual one. For uniformity of the tactic presentation we have extended the notion of back-
substitution to alsoapply to the initial case of the induction proof, whereits action is simply to
insert the state machine’s initi al predicateinto the hypothesesandattemptto show the resulting
initial configuration property. For this reason it is necessaryto decomposethe property under
2�#�(��� or I���� 2�#�($,� before the edgedecomposition (in the I����¡2�#�(��� part) required for the
back-substitution described above. Several examplesof such inductive proofs will be found in
Chapter7.

2.9 Scopeof DOVE

From the previous discussion it is clear that in DOVE we restrict our attention to properties
that canbe representedasa setof finite sequences of configurations. This restriction is crucial
to thee� ectivenessof this back-substitution technique. It alsohasimportant implications for the
kinds of propertiesthat canbe treated by DOVE. The following is somewhat technical, andthe
impatient reader maywish to omit this section on a first reading.

Thefirst point to make is that this choice impliesa restriction to only thosepropertieswhich
canbedeterminedby consideration of individual execution traces. Many importantsystemprop-
ertiescanonly bedeterminedby consideration of all thepossible executions.A simpleexampleof
sucha property is determinism. Determinismrequires that thereis exactly oneallowed response
to any given sequenceof inputs. Clearly this cannot be established simply by considering indi-
vidual executions. (Actually, by first reasoningabstractly about thestructureof statemachines it
is possible to show that for any givenstatemachinethereis a simpleproperty which corresponds
to determinism,namelythatonly oneguard is enabledat eachpoint in every execution.) Another
important exampleof a whole-systemproperty is the non-interferenceprivacy-property of secu-
rity critical systems. Suchproperties cannot be treated directly by DOVE-style verification, and
canonly be treated indirectly whenan equivalentsimpleproperty canbe determinedby abstract
argument(asin thecaseof determinism).

The literatureidentifies two major categories of simpleproperties [4]. A property is a safety
property if andonly if it canbefalsifiedin a finite time. This meansthata safetyproperty canbe
describedfully by thefinite historieswhichsatisfy it. An infinite history satisfiesasafety property
if andonly if all of its finite prefixessatisfy theproperty. That is to saythatsafety propertiesare
prefix closed. Alternatively, a property is a livenessproperty if andonly if it cannot be falsified
in a finite time. This meansthata liveness property cannot becharacterisedproperly by thefinite
historieswhich satisfy it – i.e., liveness propertiesarenot prefix closed.

SinceDOVE deals solely with finite histories, the classof properties treated by DOVE is
exactly the safety properties. This choice hasbeen madein order to make property verification
in DOVE assimpleaspossible. However, asnow discussed,provided the right timing model is
adopted,it is possible to do without livenessproperties.

To seethis, consider the purposeof livenessproperties. Livenesspropertiesareoften char-
acterised informally as thoseproperties which require a computation to make ‘good’ progress,
andsafety propertiesasthosepropertieswhich ensure no ‘bad’ progressis made. If theseintu-

19



DST
�

O–TR–1349

itive characterisations werecorrect absolutely, thenaninability to treatlivenesswould bea major
weaknessfor DOVE.

However, it is simplynot truethat‘safety’ in critical systemsis purelyabout ensuringno ‘bad’
progressis made.Sometimes, aswhenrespondingto adangeroussituation, it is critical that‘good’
progressbemade,while making‘no progress’is ‘bad’ progress.This is oneof thosecaseswhere
theuseof natural languagecanleadto considerableconfusiondueto di � erent meaningsof aword
(in this case‘progress’) being usedclosetogetheranddueto unstatedassumptions. Theunstated
assumptions in the above characterisations of safety andlivenessarethat a failure to progressis
possible andthat it cannever be‘bad’; i.e., ‘no progressis good progress’.In practice,someform
of progressis always made,becauseof the‘endlessmarchof time.’

The question of whether‘no progress is good progress’ can be side-stepped by adopting a
clockwork modelof time,thatis by identifying theprogressof thestatemachinewith theprogress
of (abstract)time. Thisensuresthatprogressis alwaysmade,becausetime is alwayspassing.Un-
der this assumption, safety propertiescanbeusedto approximate any desired livenessproperty4.
For example,insteadof requiring that a greenlight eventually turn red, require that it turn red
within a certain numberof transitions or, moregenerally, before someincreasingattribute (such
asclock time) reaches a certain value.

Thus,theminimumrequirementfor treating livenesspropertiesthroughsafety approximations
is that thestate machine is alwaysableto perform sometransition – sucha machine is saidto be
deadlock-free. A deadlock-freestatemachinealways makessomeprogress,e� ectively disallow-
ing the‘no progressis good progress’option. Any givenstatemachinecanalwaysbeconvertedto
deadlock-freestatemachine by adding ‘busy-wait’ transitions which fire whenno othertransition
is enabled. For example,this is thepurposeof the L	��#��,8�1 transition in thetra! c-lights example.

It is important to note that DOVE itself doesnot enforce a clockwork model of time. The
designermustexplicitly modelany aspectsof time which arecritical to statement and7 or proof of
critical propertiesof thestatemachine.Themoresophisticatedtheprogressproperty to beproved
themoresophisticatedmustbethemodelof time imposedon thestatemachine. TheDOVE tool
o� ersno helpto theusereither in determining therequiredmodelof time or in imposing it on the
statemachine;but it doesallow theuserthefreedomadopt themodelbestsuited to theirparticular
problem.

4For thetechnicallyminded,this fact follows from thestatusof livenesspropertiesaslimits of sequencesof safety
properties,muchastheirrationalnumbersarelimits of sequencesof rationalnumbers.

20



DSTO–TR–1349

Chapter 3

A first look at DOVE

This chapter providesa brief introduction to the DOVE tool. Detaileddiscussions of the com-
ponents introducedhereappear in later chapters. Beforestarting, DOVE andthe other required
packagesmust have beeninstalled according to the instructions in the file =6�',����3�3¢�£+' found
in the distribution documentation. It is explained in those instructions how the usermust add
DOVE’s bin directory to the user’s path variable and how to overide the set of standard re-
sources(eg colours, fonts, window geometriesandso forth) chosen by DOVE. If required, fur-
ther detailed information on acquiring andinstalling DOVE canbe found at the DOVE web site
( <	����+¤R¦¥�¥�5�5�5��§��,���¨���������6�������§�������§�6 �¥	��6(	3�¥�#�����¥�������� ).

3.1 Starting DOVE

Figure3.1showstheDOVE statemachinewindow of theexampleTra! cLightsstatemachine
on startup, andthefoll owing should bereadwith this figurein mind.

Thesyntax for starting DOVE canbesummarisedas:

© �����	�«ª¬G�GG)<®F�ª¯%'���6<'#9����°�°
Thefollowing optionsaresupported.

H G&< , prints out this list of options.

H %$���6<$#6��� , where“machine” stands for theuser-chosenmachinename.

Theexamplein Figure3.1wasstarted by thecommand

© �����	�A8�(�������#��,B�#���<	��
The beginning user may like to experiment with this statemachinepackage, which is included
with theDOVE installation in thedirectory K�±��9%�+�3����¥�8�(�������#��,B�#���<	�� . Typing

© �����	�A8�(�������#��,B�#���<	��

21

http://www.dsto.defence.gov.au/esrl/itd/dove


DST
�

O–TR–1349

Figure 3.1: DOVEstate machinewindow at startup.

in this directory will openthe statemachine graphwith default settings. Alternatively, the user
maysimply type

© �����	�
anda DOVE session will startwith a blankgrid, readyfor defininga new statemachine.

3.2 DOVE files

DOVE makesuseof a numberof local files, which aregeneratedin the courseof a DOVE
session. This section briefly describes what the files are and how they are used, but first the
standardDOVE file-structureconventionsareconsidered. Theimpatient user whois not interested
in thesubtletiesof thevariousfilesshould just readthepreamble aboutfile management, andthen
skip to Section3.3beforeproceeding to thelater chapters.

The first stepis to decide on a working title for the systemdesign underconsideration, and
thencreate a so-namedworking directory to hold thefiles for this statemachine. TheDOVE tool
should thenbeexecuted from theworking directory, andall theassociatedDOVE files should be
stored there.

In the caseof the tra! c-lights statemachine example, the working title of the design is
8�(�������#���B�#���<��� . In orderto build this design, a directory 8�(�������#���B�#���<	�� is created.

© %�����#�(²8�(�������#��,B	#���<	��
TheDOVE tool is theninvoked from this directory.

22



DSTO–TR–1349

© ���²8�(�������#���B�#���<	��© �����	�A8�(�������#��,B�#���<	��
By convention, all theDOVE files associatedwith the 8�(�������#���B�#���<��� design havenamesbegin-
ning with 8�(�������#��,B�#���<	�� . For example,a typical listing of the 8�(�������#��,B	#���<��� directory after
a DOVE session would beasfollows.

© ¥�O$#6��¥	3�
8�(�������#��,B�#���<	��¢�£:�B 8�(�������#��,B�#���<	��¢�£+���3�-�%03�G�³´�£µ 8�(�������#��,B�#���<	��9¶��,(���+�<¤�¦+$
8�(�������#��,B�#���<	��¢�·��5 8�(�������#��,B�#���<	��¢�¸�%$�
8�(�������#��,B�#���<	��¢�£+���� 8�(�������#���B�#���<���E�§��<�-

In theremainderof this section thepurposesof thesefiles areconsideredin detail.

3.2.1 Statemachinegraph file

All of theinformationrequiredto describethestatemachine is storedin afile with an �%'� suf-
fix, standing for ‘statemachine graph’ ( for example, 8�(�������#���B�#���<	��E�¹�%$� ), which includesthe
informationneeded to bothdraw thestate machinegraph andto determinewhich transitions join
which states.Furthermore,it includesall of themathematical definitionsnecessaryfor generating
thelogical theorieswhich areusedto reason about thestate machine.

It is generally inadvisablefor theuserto edit the �%$� file by hand.

3.2.2 Nowebfiles

The �	�,5	��O packageis a literateprogrammingenvironmentwhich DOVE usesto producethe
documentation files discussedin thefoll owing subsection. Thefile 8�(�������#���B�#���<���E�£��5 , written
by DOVE during the compilation process, contains the instructions ���,5	��O needs to createthe
documentation files andto inserttheindexing andcross-referencinginformation.

3.2.3 Theory files

The logical theory associatedwith the statemachine is stored in two files. The first hasa
nameof the form º��§��<�- (for example, 8�(�������#��,B�#���<	��E����<�- ) and contains an Isabelle theory
definition describing the state machine. The second hasa nameof the form ºS�£:�B (for example,
8�(�������#���B�#���<���E�£:�B ) andcontainscommands, in theML programminglanguage,which provide
a customisedIsabelle environmentfor reasoning about the statemachine. Both of thesefiles are
generatedfrom the ���,5	��O file.

3.2.4 Imagefile

In orderto makee! cient useof thestatemachine theory, theIsabelle commands in the º��§��<�-
and ºS�£:�B files are compiled into an ML imagefile which is given the base-nameof the state

23



DST
�

O–TR–1349

machine and the extension nameof the ML compiler for which it was created (for example,
8�(�������#���B�#���<���E�£+���3�-,%03�G�³»�£µ ). The imagefile is an executable file, and is invoked whenever
DOVE beginsto prove a property.

3.2.5 High-r esolutiondocumentationfile

The DOVE tool is ableto output high-resolution documentation in Portable Display Format
(PDF).Thedocumentation is placed in a file of theform ºS�£+���� . Thedocumentation file includes
extension hyper-indexing andcross-referencing of the various definitions in thestatemachine as
well asrecording any remaining parsing errors. This makesit aninvaluabletool in understanding
anddebugginga design.

3.3 DOVE tools

Whenstartedasdiscussedabove, theDOVE session begins in theDOVE statemachine win-
dow exemplifiedby Figure3.1. The grid section, calledthe “canvas”, is usedfor editing graphs
andthepresentation of animation andproof visualisations.

DOVE hasthree modesof operation: edit, animation, andproof. The threemodebuttons in
themenubarof theDOVE statemachinewindow areusedto move betweenthese modes.If the
default colour schemeis beingusedthenthe buttonsareeither blue or green, blue indicatingthe
current mode.The initial setting for theDOVE session is edit mode.As a further visual aid, the
mousecursor appearsdi � erently in thedi � erent modes,aslisted below.

(a) Edit (b) Animate (c) Proof

Figure 3.2: DOVEmodebuttons

3.3.1 Edit mode

Thedesign of statemachinesis carried out in theedit mode,which canbeentered by clicking
on theedit (“pencil”) icon (Figure3.2(a)) on themenubar. Theoperationsthat canbeperformed
in edit modearediscussedin Chapter4.

In edit modethecursor appearsasthedefault mouse-cursor.

3.3.2 Animation mode

Animation modeis used to observehow variablesevolvesymbolically duringexecution of the
statemachine. It is entered by selecting the button with the picture of a runner (Figure3.2(b)).
Theoperationsthat canbeperformedin theanimation modearediscussedin Chapter5.

In animation modethecursorappearsasanarrow pointing right.

24



DSTO–TR–1349

3.3.3 Proof mode

The proof modehastwo main functions: to enable the definition, editing and inspection of
proof queries; andto carry out a proof of a particular query. It is enteredby selecting thebutton
with thepicture of theturnstile (Figure3.2(c)). Theoperations thatcanbeperformedin theproof
modearediscussedin Chapter 6.

In proof modethecursor appears asa turnstile.

25



DST
�

O–TR–1349

26



DSTO–TR–1349

Chapter 4

Editing the statemachine

The DOVE statemachine window is the main interfaceto the DOVE session. It appearsupon
startup, with thenameof thecurrently displayedstatemachinegraph shownin the title bar. The
structureof thewindow is clearfrom theexamplein Figure3.1, andtheusershould refer to this
figurewhenreading thefollowing sections.

Thespecification of a statemachinein DOVE requires

H the graph of the statemachine, consisting of nodes andedges,to be drawn in the DOVE
statemachinewindow, and

H thevariablesandtransitionswhich make up thestate machineto bedefined.

In this chapter thesepoints areexpandedin turn. The menuoptions will be explainedafter the
discussionof graphdrawing, sincethey arenot needed in thegeometricalconstruction. However,
it is worth noting at this point that thereis a menuoption for undoing andredoing changesin the
graph, aswell asmenuoptionsmodifying thedisplay.

Thereareanumberof rulesthatneed to befollowedwhendesigningstatemachinesin DOVE.
Thesearediscussedin Section4.4 below. After a cursory examination of these, the “hands-on”
reader maywish to movequickly to thetutorial session in Section4.5, referring to earlier sections
whenrequired.

4.1 Graph editing on the canvas

The canvas refers to the grid-lined areaunder the menubar. It is herethat the graph editing
operationsarecarried out,usingthemouseandthekeyboard.Thecanvassizeis fixed,but thegrid
sizecanbe changedin a given session (via the menubar, asdiscussedbelow) andit is the grid
sizewhich fixesthescale sizeof thegraph. Moreover, just a portion of thecanvasis displayedin
thewindow andscroll barsareprovidedto accesstheremainder. Thus,it is not expectedthat the
availablecanvasareawill imposeany limitationson statemachine design.

Thebasicobjects of thestatemachinegraphs arelabellednodes, andlabelled,directededges
(circlesandarcs,respectively). Thenodeshave four distinguishedpoints,or vertices, at thecardi-
nal points on thecircle – i.e., at theN, S,E, W compassdirections. All edgelines begin andend

27



DST
�

O–TR–1349

at thevertices.Thecommands of thegraphediting interfaceallow creation,deletion, movement,
andrenaming of thebasic objects. A quick synopsismaybeuseful.

H Creation is done with mousebutton 1, anddeletion with Control-button-1(i.e., holding the
Control key down andpressing mousebutton 1).

H Movementof objectsis performedthroughclicking ontheitemwith mousebutton 25, mov-
ing to thedesired location,andreleasingmousebutton 2.

H To renameanitem,movethemouse-pointer ontothecorresponding text. At thispointa text
cursor will startblinking – noticethatpressing themousebuttonsis not required – andthe
keyboardcanthenbeusedfor editing.

Thesecommandsarediscussedsystematically below.

4.1.1 Graph layout

Thevisiblegrid of theDOVE canvasis not justaguideto theuser’seye,it is anintegral partof
theautomaticgeometric construction: all basic objectswithin astatemachinegraphare“snapped”
to thegrid.

H Onceplaced,anodeautomaticallycentersto theclosestposition on thegrid, andadjustsits
verticesto lie on thegrid’s axes.

H Edgelineslie on grid lines,asmuchaspossible.

This leads to neat graphpresentation without theuserbeing requiredto perform fine-scaleediting.

As a final preliminary, notethatDOVE prevents theuserfrom placing thebasicgraph objects
too closely for neatgraphlayout. During any movementof anobject theuseris informedof the
areasthat the object cannot occupy. Theseareas, called blocks, are temporarily shaded in red
during themove,asdepictedin Figure4.1. If thecursorentersablock during amove, themoving
object is shown at its mostrecent legal position (on theedgeof theblock), andoncethemove is
completed(by button release) theobjectwill becreatedat themostrecent legalposition (snapping
to the grid as normal). The shading is also displayedif the creation of an object violating the
separation requirementis attempted. The shading is thenremoved once the illegal creation has
beenabandoned (i.e.,oncethebutton hasbeenreleased).

4.1.2 Nodes

Nodesappear assolid white circles with a black outline, andwith the nodenameasa text
string centredon thecircle. Thecentreof thecircle is snappedto agrid point, andthenoderadius
is equal to onegrid spacing. Thenode thenintersectsthegrid at four points, thenode vertices.

5On a standardthree-buttonmouse,mousebutton2 is themiddlebutton. On a standardtwo buttonmouse,it is the
right button.Thetool is setup sothat,in fact,mousebutton2 or mousebutton3 canbeusedinterchangeably.

28



DSTO–TR–1349

Figure 4.1: A DOVEstate machineduring node movement

nodecreation: Tocreateanode,click mousebutton1 onanunoccupiedareaof thecanvas.Recall
thata certain minimumseparationbetweennodes is requiredby DOVE. If this is violated,
theareaswhich aretoo closeto thepoint clickedon will betemporarily highlighted in red.

nodedeletion: To delete a node, hold the Control key down andclick on the node with mouse
button 1. Note thatwhentheControl key is held down themousecursor becomesa “skull
andcross-bones” to indicatethat thesystemis readyto delete.

nodemoving: To move a node, placethe mousecursor insidethe required node andpress and
hold mousebutton 2. Move thenodeto therequiredlocation, andthenreleasethebutton6.
Whilst moving the node,thosepartsof the canvasthat are too close to another nodewill
be highlightedas red blocks and it will not be possible to drag the nodeinto one of the
highlightedareas (seeFigure4.1). Whenthebutton is releasedDOVE will redisplay all the
edges attachedto thenode, andremove theredhighlighting on thecanvas.

noderenaming: When first created, all nodes have the default name I������ . The namecanbe
changedby placing the cursor inside the node, at which point a blinking text cursor will
appear at the endof the node’s label allowing editing of the label to be carriedout via the
keyboard. Whenthemousecursor is movedo� thenode, thenew namewill beregistered.
Nodesmusthave distinct node names.7

6Fromnow on this collectionof operationswill bereferredto as“dragging with mousebutton2”.
7 Preciserulesfor theallowedrangeof namesarepresentedin AppendixB.

29



DST
�

O–TR–1349

4.1.3 Edges

Edgesaredrawn asaconnectedsequenceof black horizontalandvertical line segmentswhose
endsaresnappedto the grid. The junctions of the vertical andhorizontal segments aredrawn as
a smootharc. Edgesaredirectedandlabelled. Theedgemustbegin andendat a node vertex; an
arrowhead indicatesthedirection of theedge. Theedge labelappears asa text string in a position
initially chosen by DOVE.

Di � erentedgesmay have segments which overlap. To assistin distinguishing the di� erent
edges andcorresponding labels, when the cursor movesonto an edge(or edgelabel) the entire
edgeandedgelabel arehighlighted in blue. Thehighlighting is removed oncethe cursormoves
o� theedge or edge label.

Edge creation Holding down mousebutton 1 while the mousecursor is on a node, and then
dragging with themouse,will createanedgewhich leavesthatnode from thevertex closest to the
point clickedon. If mousebutton 1 is releasedwhile themousecursor is insidea node, theedge
will be attachedto the vertex closest to the release point. DOVE will thenproducea snapped-
to-grid pathfor the newly created edge.If mousebutton 1 is releasedwhile the mousecursor is
over something other thana node, thenthe edge is not created anddisappears. It is possible to
create anedgeleaving andentering thesamenode,but only at two di� erent vertices on thenode.
Unusual kinks or wigglesin the newly created edgepathcanbe straightened out by moving the
corresponding edgelabel. It is good styleto lay out thegraph sothatno kinks remain.

Edge deletion To delete an edge,while holding the Control key down click on the edgewith
mousebutton 1. WhentheControl key is helddown themousecursor becomesa skull andcross-
bones to indicatethatthesystemis ready to delete.

Edgemoving DOVE considersedges ashaving threeseparateparts which canbemoved inde-
pendently: thestartandfinishpointsandtheedge label. Theusercanexperimentby clicking with
mousebutton 2 to seewhich region of theedgeDOVE assigns to thedi � erent parts.

Moving edgelabels An edgelabel canbe draggedusing mousebutton 2, andwill snapto the
grid whenreleased.Edgelabels mustnot be too closeto nodes, so the prohibited areasaredis-
played asredblocksduring themove. Sincetheedgesdrawn by DOVE mustgothroughthelabel,
by moving thelabeltheuserhasconsiderable control over thegraphlayout.

Moving edgeendpoints Againusing mousebutton2, anedgeendpoint canbedraggedto anew
position. If mousebutton 2 is releasedwith the endpoint over a node,the new endpoint for the
edgewill be thevertex of thatnodeclosest to thereleasepoint. DOVE thenproducesa new path
for theedge. Theedgelabelcanagainbemovedto achieve thedesired layout. If mousebutton 2
is releasedwith theendpoint away from a node,thentheedgereverts to its original path.

30



DSTO–TR–1349

Edge renaming Whenfirst created, all edges have the default label8 K������ . The namecanbe
changedasfor node renaming discussedabove, theblinking text cursor beingactivatedwhenthe
mousecursor is placedanywhere on thedesired edgeor label.

4.2 The menubar of the DOVE statemachinewindow

The menubar contains a numberof pull-down menusandbuttons. At a given point in the
DOVE session a given menuoption may not be available,asindicatedby a “greying out” of its
namein the menu. Options which communicatewith the file directory are directed through a
pop-up file-navigator window. Similarly, options which make declarations for defining the state
machine are directed through a pop-up dialog box. Finally, certain commandoptions require
confirmation from theuser. In thefollowing subsectionstheoptionsarediscussedsystematically.

4.2.1 The File menu

New clears the current statemachine andmakesreadyfor the design of a new machine. The
useris askedto confirmtherequest if thecurrent state machinegraphis not saved. This option is
only availableduring Edit mode.

Restore restoresthecurrently loaded graphto thelastsavedversion. Theuseris asked to confirm
the request before the restore takes place. The option is not available if the current graphwas
started from a blank canvasandnever saved, or if no modificationsweremadesince the last load
or save. This option is only available during Edit mode.

Load File presents the user with a file-navigator for loading the required statemachinegraph
file. In doing so, DOVE clearsthe current statemachineand loadsthe required state machine
from thefile. If the current statemachine graph is not saved(i.e., it hasbeenmodifiedsince the
lastsave or load) theuseris first askedto confirm thattheoperationis to go ahead. Theuser may
browseother directoriesto find other º��¸&%$� filesby clickingin the P'#�(���������(�#��� frameof thefile
navigator. The B������ operationhasthekeyboard accelerator :	�����	G6B . This option is only available
during Edit mode.

Save saves the current statemachine to the filenamecurrently displayed on the DOVE state
machine window title bar, without asking theuserfor confirmation. Theoption is available if the
current graphhaspreviously beensaved to, or loaded from, a file, and if there hasbeensome
modification sincethe last save or load operation was performed. The .��,��� operation hasthe
keyboardaccelerator :	������G�. .

SaveAs presentstheuserwith afile-navigatorfor saving thecurrent statemachineto aspecified
file. This operationalsorenamestheimagefile. This option is only availableduring Edit mode.

8Though calledanedgelabelhere,it is actuallya label for thetransitionassociatedwith theedge.This is relevant
whenthestatemachineis defined,seethemenuitem ¼�½)¾À¿�Á¬Â¬�&Â¹�¸¿ in Section4.2.4for furtherdetails.

31



DST
�

O–TR–1349

CreateDocumentation presentstheuserwith a >�(��������ÃP	���6 �%'�6�	������#,�,� window which lists
any known problemswith thecurrent statemachine (if any), andprovidestwo buttons:

H >���������3 which cancelsthedocumentation request,

H >�(	�������ÃP����6 �%'���	������#,��� which continues.

If there havebeen modificationssincethelastsave (or if thestatemachine hasnever beensaved),
the useris required to save the statemachine before the >�(��������ÃP	���6 �%0�6�	������#,�,� window will
appear. If theuserchoosesto continueafterreviewingthe >�(��������ÃP	���6 �%0�6�	������#,�,� window, then
the documentation files discussedin 3.2 areproduced,andDOVE startsup Acrobat – if it isn’t
already running – to display thePDFoutput.

Quit DOVE terminatesthe DOVE statemachine window, andany otherDOVE tools that the
editor hasstartedup (e.g., "��$#&%'������( or *�(����	��( ). If there have beenmodificationssincethe last
save or load, the useris required to confirm the action of quitting. The Quit operation hasthe
keyboardaccelerator :	������G9Ä .

4.2.2 The Edit menu

Undo undoes the last graph-editing operation (as discussedin Section4.1) which altered the
graphbefore its current display. This includescreating, moving anddeleting nodes or edges.All
of the modifications sincethe last save or load arekept in a stack, andcanbe undone in reverse
order. On a Sunkeyboard,the‘Undo’ key maybeused. This option is only availableduring Edit
mode(animation hasits own undoandredomechanisms).

Redo re-performsthelastoperationwhich wasundone.Until anoperation is undone, this com-
mandis not available. All operations currently undone in the commandstack canbe redone, in
reverseorder. On a Sunkeyboard, the ‘Again’ key may be used. This option is only available
during Edit mode(animation hasits own undo andredomechanisms).

CheckÅ Compile performsavarietyof checksonthestatemachine,bothstructuralandsyntactic,
largely to ensure that it hasbeen designedin conformancewith therulesin Section4.4. Diagnos-
tic messagesareprinted in a dialog box labelled >��6%�+�#�3�����#����ÆG;P$#��������	,��#��� which comes
up whenthis option is selected.A description of thepossible diagnosticmessagesis givenin Ap-
pendix D. It is requiredthat theuserapplies thechecks a� orded by this option before proceeding
to analysethestatemachine.Indeed, the *�(������,( will notcomeup,andtheanimationmodecannot
bechosen,while fatalerrors exist. Notethat if no changeshave beenmadesincethecompilation
wassuccessful then the compilation will not be repeated. Thusthereis no further unnecessary
time burdenin theprocess.

4.2.3 The View menu

The 4�#���5 menucontainsa number of operations thatadjust thedisplay.

32



DSTO–TR–1349

Show Grid allows the canvasgrid to be turned o� , or redisplayed. Graphobjects arestill re-
quired to conform to thelayout requirements of thegrid evenif it is not visible.

Zoom In increasesthegrid sizeby two.

Zoom Out decreasesthegrid sizeby two.

SetZoom Level setsthegrid size. It opens a smalldialog box containing a sliding scalewidget
thattheuser candragto select a new zoomlevel. Clicking the 1�Ç button dismissesthedialog box
andchangesthezoomlevel. Clicking >���������3 dismissesthedialog andretains thepreviouszoom
level.

4.2.4 The Definitionsmenu

An importantpartof thedefinition of astatemachineis thespecificationof thecorresponding
components:thetypes,constants,heap variables,input variablesandtransitions which definethe
formaltheory. In DOVE thisis accomplishedvia thevariousoptionsavailablein the P�����#9�$#���#,���0
menu.Themajority of theseoptions present theuser with a dialog box in which thecurrentdec-
larations for that particular category (i.e. type, datatype, variable or whatever) are listed. For
example, selecting theoption 8�(����'�#���#,�,��P�����#9�$#���#,���0 from the P�����#6�$#���#����' menuwill in-
voke the 8�(����'�#���#,���²P�����#9�$#���#,���' window, which both displaysandenables modifications to
thecurrently definedtransitions for thestatemachine.

Selecting anitem in thelist of declaration namescausesthat item’s definition anddescription
to bedisplayed in otherareas of thewindow. Therearea numberof waysin which list selection
canbemanipulatedby theuser. Clicking on a declaration namewith the left mousebutton is, of
course,themostobviouswayto makeaselection. Theusercanalsoapplythe È�+ 7 P��,5�� arrowkeys
in order to traversethe list, while the K�����,+	� key will clear the current selection. The list also
featuresa case-insensitive search facility, which enables the userto type the first few characters
of a declaration’s name,at which point the first matching namein the list will be located andits
declarationwill bedisplayed.Theuser maythenclick to select it. To begin thesearch,which will
proceed from any position in the list, first clearthe current selection via the K	�����+�� key. When
typing the nameto searchon, the ?������$9+������ and P$��3������ keys will also function asexpected.
Pleasenotethatall of thesekey strokeswill only beavailablewhile themousecursor is within the
region of thelist.

Eachdeclaration window contains four buttonsat its base: K���#�� , P���3������ , I���5 and >�3,���� .
The >�3,���� button simply withdraws thewindow; any declaration storagewill already have been
carried out. The K���#�� and P���3������ buttons areonly available whenan item hasbeenselected.
Neither K���#�� , P$��3������ nor I���5 are available when any declaration is in the process of being
edited; that is, the usercanonly carry out onemodification at a time. All declaration windows
which modify the underlying formal theoryof the statemachinearedisabled during animation
andproving - this is clearly essential to maintain theintegrity of theproofsystem.Thedeclaration
window broughtupby *�(��,+���(���-ÉP�����#9�$#���#,���0 is the *�(���+	��(���#���;:����	������( window, in which
the userstoresproperties defined in the formal statemachinetheory for analysis in the Proof

33



DST
�

O–TR–1349

session. This is the only declaration window which doesnot modify the formal statemachine
theory, andindeed it is available in theProofmodeaswell astheEdit mode.

The K���#�� button will invoke an editor window for the currently selected declaration. The
editor window maydi � er slightly from onedefinition category to another, but in general it allows
theuserto specify:

H a new namefor thedeclaration,

H thedefinition for thedeclaration, and

H a description7 comment.

Editor windows alsofeature threebuttonsat thebase: >�3,���� (which retains thedeclarationasthe
userhasdefined it, regardlessof its validity), >��6%�%0#�� (which attemptsto parse thedefinition, and
warnstheuserif thedefinition is invalid), and >����$����3 , (which discardsany modificationsthatthe
userhasmade,andclosesthewindow).

Thedeclaration’sstatusis a� ectedby whathappensduringediting, andthevalueof thedecla-
ration’s status is displayedin theareamarked .������� ' on thedeclarationwindow. Thestatus can
beoneof thefollowing:

H unchecked: The userhasdefinedor modified the declaration, and hasclosedthe editor
window without attempting to parse7 commit thedeclaration. By default, uncheckeddecla-
rationsareshown in black italics.

H checked: Theuserhassuccessfully parsed7 committedthedeclaration sincethelastmodifi-
cation. By default, checkeddeclarations areshownin blue,plain font.

H invalid: The userhasattempted to parse7 commitethe declaration, but the definition was
found to beinvalid. By default, invalid declarations areshownin red,bold font.

Notethat it is only possible to compilethestate machine(requiredprior to animation or proving)
whenall thedeclarationshave beenchecked. Theprovision of uncheckedor invalid declarations
supportsamorelenient userinterface,in thatastatemachinecanbesavedfor furtherwork without
having to becompletely well-defined, andcertain declarations(such astransitions) caneasily be
written without all their constituent partshaving to bepre-defined.However, theuseris strongly
encouragedto commit most declarations, particularly thosebuilding blocks suchas typesand
variables which may be referred to by other declarations, asthey aredeclared. Otherwise, each
declarationwill needto beparsedseparately prior to carrying outcompilation. Theability to store
uncheckedor invalid definitions– simply by closingtheeditorwindow – hasonly beenprovidedso
thattheuserhasthecapacity to work in amoreflexible manner; if abused,theuserwill ultimately
find thattoo muchflexibilit y maynot payo� .

To definea new declaration, the usermustactivatethe I���5 button, which invokesan empty
editor window, in which the useris required to enterthename,definition anddescription for the
new declaration. Note that declaration namesmustbe free of embedded white space. A further
consideration is that – dueto a bug in the Linux operating system – identifiers with a length of
exactly 12charactersshould beavoidedby theuser. This is arecommendationwhichshould apply
evenwhenLinux is not being used,in theinterestsof maintaining theportability of statemachine

34



DSTO–TR–1349

designs. Oncethe new declaration hasbeen defined,the usermayeither commit it immediately,
or elsestore it for lateruseby closing thewindow, asdiscussedabove.

Thecorrect definition for adeclarationwill dependonits category. For example,constantsand
variables aredefinedsimply by an appropriate type. The transition definition is more involved,
as discussedin Section 4.3. The required syntax for declarations is that the basic“words” are
strings of alphanumericcharacters andunderscores,which must begin with a letter. Namesof
type abbreviations, variables, constants, andall the elemental wordsin their declarations,areof
this form. Theserulesaresummarizedat thebeginning of Section4.4. Thefull syntax for defining
DOVE statemachinesis furtherexplainedin Appendix B.

Initiali sation startsup a dialog box to entertheinitial statefor executionsof thestatemachine,
andtheinitial predicatewhich any initi al configurationmustsatisfy.

Type Declarations starts up a dialog box to defineabbreviations for the types of variablesand
constants. All Isabelle7 HOL typesand type constructors areavailable. Somesimple examples
include:

H O�����3 : theBooleantypeof truth values;

H �	��� : thenatural numbers;

H �	���Ê3�#�,� : finite lists of natural numbers; and,

H �	����T © O	����3 : functionsfrom natural numbers to truth values.

For moredetails seethereferencemanualIsabelle’s Logics: HOL [11] in theIsabelle distribution.

DatatypeDeclarations startsupadialogbox to definethedatatypes. DatatypesaretheIsabelle
version of familiar constructs such asenumerated data typesin programminglanguages, Z free-
types, or standard datatypesin ML. Any Isabelle datatype can be entered. An example is the
simpleenumeratedtype >���3,�, �( introducedin the tutorial in Section4.5 below. A moregeneral
exampleis thedeclaration of Ë��/3�#�,� , finite lists with elements of arbitrary type Ë�� .

Ë��/3�#��� � I�#�3 Ì >����0¡ËÀ� ( Ë��@3�#��� )
Thus,thelist is defined iteratively to beempty(theelement I	#�3 ), or obtainedfrom it by prepending
elementsof type Ë�� . For moredetails seethereferencemanualIsabelle’s Logics: HOL [11] in the
Isabelle distribution.

Constant Declarations starts up a dialog box to definetheconstants.Eachconstant9 mustbe
givena type– oneof theavailable Isabelle7 HOL types, or oneof thedatatypesor type abbrevia-
tions previously declared. Thecorresponding rules definingthe function areentered in the J� $3��
P�����#6�$#���#,���' item of the P�����#9�$#���#,���' menu(asdiscussedbelow).

9Heretheword “constant”is usedin theprogramminglanguage sense– theconstantcanhave any type, it simply
doesn’t change duringtheevolution of thestatemachine.Thatis, it hasno dependenceon theconfiguration.This is as
opposed to a “variable”,whosevaluechangesdependingon theconfiguration.

35



DST
�

O–TR–1349

Other Declarations starts up a dialog box to defineany otherML codethata usermaywish to
be addedto the .thy file. No intermediateparsing will be carried out on this code, soerrors will
notbepicked upuntil thestatemachinetheory is being loaded(whichoccursduring compilation).
This is anoption for theadvanceduser; i.e.,someonewho is familiarwith theuseof bothML and
Isabelle. To “register” asanadvanceduser, thevariable ’advanced’ in �����$��#���6¥������$��#��S�§����3 (or
theuser’s own copy of config.tclin Í C 1�:�K�¥	#�,��O���3�3���¥������ ) should besetto 1.

Rule Definitions startsup a dialog box to enterthenamedruleswhich definetheconstantsde-
clared in the >����0,�������ÃP�����3��,(�����#,�,�' window. It is usualpractice in Isabelle7 HOL that these
rules aresimply definitional rather thanaxiomswhich extend the underlying logic. This is ex-
pected, though not enforced,in DOVE.

Heap Declarations starts up a
C ����+Î4��,(�#���O$3��ÃP�����3���(�����#����' dialog box to definetheheap

variables. Eachvariable mustbe given a type, oneof the available Isabelle types or oneof the
datatypespreviouslydeclared.

Input Declarations startsup an =6��+� ��A4���(	#���O'3��ÃP$����3��,(�����#,���' dialog box to define the
input variables through which the state machine communicateswith external entities; i.e., the
inputs of the environment to the state machine. Each input must be given a type, one of the
availableIsabelle types or oneof thedatatypespreviously declared.

Transition Definitions starts up a dialog box to definethetransitions which areassociatedwith
theedgesof thestatemachine. Thedefinition of a transition consistsof thecondition underwhich
the transition occurs, and what happenswhen the transition occurs. This is explainedin more
detail in Section4.3. Therearea numberof pointsworth noting here.

H Eachedgeon a statemachinegraphmust have a transition associatedwith it; however,
several edgescanhave the sameassociated transition. A given edgelabel is actually the
nameof theassociatedtransition. Thus,it is important to keepthefoll owing in mind when
renaming edges7 transitions:

– If several edges have thesamelabel, thena changein thetransition definition (via the
editing windowof thedialog box) will a� ectall of them.

– Similarly, if an edgeis renamed(as discussedin Section 4.1.3), then the transition
definition of the old label is no longer usedin the state machine. If the new name
coincideswith that of an existing transition thenthis is the transition now associated
with therenamededge. Otherwise,thetransition solabelled is not yet defined.

– Themethod of renaming theactual transition in a givenstatemachineis explainedin
Section4.3.

H Selectingatransitionin thedialogbox’slist of defined transitionscausesall edgesassociated
with thattransition to behighlighted.

H Conversely, double-clicking on an edgeof a state machinegraph will bring up the editing
window of thecorresponding transition, or for anew transition if nonehasbeencreated yet.

36



DSTO–TR–1349

Property Definitions starts up a *�(��,+	�,(���#���Ï:����	�����,( dialog box to define the properties
which are to be proved in the analysis of the statemachine in a later proof modesession. As
mentionedearlier, this is theonly declarationwindow which is availablein amodeother thanEdit
mode– it is available in theproof mode.It is alsospecial in that it hasan 1�+���#����' menu.

The *�(��,+	��(���#���;:�����������( is accessiblein Edit modesimply for inputting the desired state
machine properties– thereis no direct interaction with the *�(������,( available in Edit mode.This
“properties” view of thestatemachinecanbevery convenient for theformal design,whereasub-
set of properties can play the role of formal specification for the machine. Thus,having these
availablebefore any statemachineanalysis is attemptedis useful. Here it is worth just noting
that the functionality asa declaration window interaction is essentially the sameasall the oth-
ersdiscussedabove. However, to utilise properties e� ectively the userneedsmoreinformation.
To this end,Chapter6 givesconsiderably moredetail on the useof the *�(���+	��(���#���;:����	������(
window. Moreover, propertiesper searealsodiscussedelsewhere:a general discussion on state
machine propertiesin Section2.7; there is a discussionof how to go about formulatingproperties
in Chapter7; theexactsyntax for propertiesis presentedin AppendixB.

Include Theories brings up a very simpletext-entry window in which the userrecords the Is-
abelle theory files on which the statemachine theory depends. As statedon the title bar of this
text-entry window, thetheory files areto beentered separatedby (at least one)white space.

Like the 1���<��,(�P$����3���(�����#����' option above,this is a feature includedfor theadvanceduser.
The theories to be included may have beenbuilt earlier by the user, or taken from somepub-
lic7 privateexternal source, or be part of the Isabelle7 HOL source directory of theories. They are
typically theories which include theoremsto allow reasoning about objects in the state machine
theory. An examplewould bea theory of a timing-clock, which could be includedin anelabora-
tion of the Tra! cLights example; or a theory of encryption7 decryption which could be included
in a statemachineanalysingsecurity protocols. A morepedestrian exampleis thetheoriesof real
numbers in theRealsubdirectory of theHOL sourcedirectory of theIsabelle distribution. In this
lastexample, onewould typetheabsolute pathnameof therequired file; eg,

Í�=�.6" C 1�:�K�¥	=�,��O$��3�3���Ð�Ð�¥��(���¥ C 1�B�¥�J	����36¥�J�����39P$���E�§��<�-
where Í�=�.�" C 1�:�K denotestheappropriatedirectory in theuser’s system.

4.2.5 Other displayson the menu bar

Betweenthe P�����#9�'#���#,�,�' menuandthemodebuttons– which have beendiscussedin Sec-
tion 3.3– is thegrid sizedisplay, which shows thecurrentgrid size. Whenclickedon with mouse
button 1 a pull-down menucontaining someof themorecommonlyusedgrid sizesis displayed,
thusallowing theuserto quickly change grid size.

Finally, the
C ��3�+ menucontainsthree options:

H About: displaysaninformational7 welcomewindow for DOVE.

H User Manual: starts up Acrobat – if it isn’t already running – anddisplaysthe PDFform
of this usermanual.

37



DST
�

O–TR–1349

H Logging: displays logging messages, which can be usedas a report to the development
teamif DOVE exhibits any unusualbehaviour.

4.3 Transitions

As mentionedin the lastsection,each edgeon a statemachinegraph corresponds to a transi-
tion of thestatemachine. Thedefinition of a transition in DOVE consistsof threeparts;namely,
in theorder they mustappearif usedin thedefinition, theLet declaration, theGuard (or precon-
dition), andthe Act (or action list). Their useis explained in the following subsections. A Let
declarationis optional, either or bothof theotherscanalsobeomitted, but thechoicecorresponds
to aspecificdeclarationstatement. Theelemental words(variablenames, andthosemakingupthe
expressionsin thedi� erenttransition definitionparts)havethesyntaxsummarizedatthebeginning
of Section 4.4.

4.3.1 The Let declaration

TheLet declaration introduceslocal variables– i.e., variablesonly definedinsidethecurrent
transition – to abbreviateexpressionsin theGuardandAct sectionsof thecurrent transition defi-
nition. This is clearly anoptional partof thetransition definition. An exampleof aLet declaration
is:

B����SR ���)%�+ D U ( ± Ñ - );
���)%�+	Ò U ( ± Ó - );

The B���� keyword identifies thebeginningof theLet declaration. Thekeyword is thenfoll owedby
any numberof local variable declarations. Notethat having eachassignmenton a new line is not
required,however thesemicolon assignmentseparatorsandterminatormustbewritten.

The U is theassignmentoperator. On its left-handsideis thenameof thenew local variable,
andontheright-hand sideis theexpressiondefining thevalueof thelocal variable. Thisexpression
candepend on the namesof local variablesdefinedearlier (i.e., higher in the Let declaration –
thusordering of the assignmentscanbe important. It canalsodependon any of the variablesor
constantsdefinedin thestatemachinetheory. Theonly restriction is that theresulting expression
have thecorrect typefor thelocal variable to beusedasdesired.

4.3.2 The Guard declaration

TheGuard(or precondition) is a Booleanexpression(predicate) over the memory, including
any variablesdefined in the B���� declaration part. It setsthecondition under which the transition
is enabled. An exampleof a precondition is:

M, ��,(���R ( ± T Ô ) ��( ( - Õ D )

38



DSTO–TR–1349

The M� 	�,(�� keyword identifies thestartof theprecondition. DOVE will acceptdefinitionswhere
theprecondition is omitted(i.e., theentire M, 	��(�� statement including thekeyword is omitted), it
simply assumesthatsuchtransitions areenabled,andhenceareequivalentto theprecondition

M, ��,(���R 8�(� $�
Theusuallogical operatorsareavailablefor usein thedefinition of theprecondition. Thenotation
is: T , Ö , �$��× , ����� , ��( , I���� , =&%�+�3�#��� . Temporaloperatorscannot beusedfor transitiondefinitions
in DOVE statemachines.

4.3.3 The action list declaration

An action list is asemicolon-separated andsemicolon-terminatedlist of assignmentstatements
which areapplied in parallel: the order of assignmentsis immaterial, andall occurat the same
time. It is anoptional partof thetransition definition. An exampleof anactionlist definition is:

"	���SR ± U - ;
- U D

;

The "���� keyword identifies the startof the action list declaration. The keyword is followed by
any numberof heapvariable assignments separated and terminated by semicolons, the syntax
beingsimilar to that for the B���� declaration (however, theorderingof theassignmentstatements
is irrelevantasmentionedabove). In particular, theassignedexpressioncandepend on anyof the
variables(including local variablesdefinedin the B���� declaration) or constantsdefinedin thestate
machine theory. Theonly restriction is that the resulting expressionhave thecorrect type for the
assignmentto thegivenheapvariableto make sense.

DOVE will accepta definition wherethe actionlist is omitted (i.e., the entire "	��� statement
including the keyword is omitted), it simply assumesthat no changeof stateis intended. This
would bemadeexplicit as

"	���SR .��	#6+ ;

4.3.4 Editing, deleting and renamingtransitions

A transition whichcorrespondsto aparticularedgecanbeeditedor created by double-clicking
on theedge.

To deletea transition, it is first necessaryto delete all corresponding edgesfrom thestate ma-
chinegraphasdescribedin Section4.1.3. Having donethis,thetransition definition canbedeleted
by bringing up the dialog box of the 8�(����'�#���#,���²P�����#6�$#���#,���' option of the P$����#6�$#���#����'
menu. Selecting theundesiredtransition, it is removed by clicking on the P$��3������ button. If the
edgeis not deleted first, thenDOVE will simply respondby stating that thetransition is in use.

To actually rename a transition in a given state machineone should not simply relabel the
edge. Rather, the renaming should be done in the 8�(����'�#���#,���²P�����#6�$#���#,���' option of the

39



DST
�

O–TR–1349

P�����#6�$#���#,���' menu. Oncea transition hasbeenrenamedin the declation window, it will also
berenamedon thestatemachine graph.

To summarise, rulesconcerning theediting andrenamingof edgesonthegraphareasfoll ows:

H Whentheuser double-clickson anedgeon thegraph, theTransition Editor appears,either
for atransitionof thatname,or for anew transition of thatnameif no transition hasyetbeen
declared. This is the sameTransitions Editor that canbe invoked from the 8�(����'�#���#,�,�
P�����#9�$#���#,���0 Window.

H If the userrenamesthe transition usingthe Transition Editor, all the edgeswhich wereas-
sociatedwith that transition will alsoberenamedautomatically, in addition to thecurrently
selectededge.

H To associate an edgewith an existing transition, the user should edit the namedirectly on
thegraph (i.e. without thehelpof theTransition Editor).

H If the userdouble-clicks on an edgein order to invoke the editor, and renamesit to an
existing transition, this should producean error, sinceif an attemptis madeto do this for
anedge which is not yet associatedwith a transition, the definition anddescription for the
existing transition will belost.

Notethat, dueto abug in theunderlying Tk graphicalmechanisms,it is possible to edit a label
on thegraphwithout it actually being ”in focus”; i.e., theuserwill beableto passthemouseover
theedge(which toggles thecolour to theselectedshade),movethemouseslightly sothattheedge
appearsto be unselected, andmay find that the cursoris still waiting for input within the label.
However, this feature is merelyanoddity andshould notcauseany problemsduring statemachine
input.

4.4 Mandatory elements of statemachinedesign

Therearea numberof requirementsfor specifying a state machinein DOVE so that the ani-
mationandformal verification implementationswill be consistent. The corresponding rulesand
checks areall very simple. However, DOVE doesnot enforce themall automatically, but rather
provideschecking mechanismsfor identifying fatal violations. Many localsyntacticerrorswill be
identified by the various dataentry boxesandglobal syntactic errors areidentified by the menu
item >�<$������¥�>��6%�+�#�3�� . A description of thepossible diagnostic messagesis givenin AppendixD.

The usershould be careful to follow the rules describedin the following subsections during
theconstruction process.

4.4.1 The identifiers

All namesin DOVE arestringsof alphanumeric charactersandunderscores,whichmustbegin
with aletter. Thefull syntaxfor defining DOVE statemachinesis furtherexplainedin AppendixB.

40



DSTO–TR–1349

4.4.2 Rulesfor initialisation of the statemachine

Theremustbe an initial state chosen. The choice is entered via the window invoked by the
option =6�$#���#���3�#�,����#���� in the P�����#6�$#���#,���' menu.

4.4.3 Naming rules

M1 Nodesmusthavedistinct names. This is dueto thefactthatthenamesof nodes representthe
states of themachine.

M2 Eachtype, datatype,constant, andvariable musthave a distinct name.

M3 Thename �,(����0�#���#,��� is reservedandmaynot beusedto namea type,datatype,constant,
or variable.

Violations of M1, M2, andM3 areidentified by the >�<�������¥�>��6%�+�#�3�� operation.

4.4.4 Declaration and type rules

M4 Each(non-standard) type abbreviationappearing in a constant,or variable declaration must
bedeclared.

M5 Eachconstant, or variable appearing in a transition definition mustbe declared (the syntax
for transition definitionsis discussedin Section4.3).

M6 Eachconstant,or variable appearingin a transition definition mustobey thetyperules for its
declaredtype.

4.4.5 Check assignments

M7 No input variablesshould beassignedto in thetransition action.

M8 No local variable, introducedin a transition’s Let declaration, should be assignedto in the
transition action.

M9 No heap variable should beassignedto twice in thesametransition action.

In theactionlist of a giventransition definition in theDOVE statemachine model,heapvari-
ableassignmentsoccurin parallel. DOVE does not enforcethedistinctnessof assignedvariables:
if a heap variable is assigned to more thanonce in an action, then the DOVE tool will choose
one assignmentor the other, but the designer hasno way of predicting which (except through
animation or proof).

41



DST
�

O–TR–1349

4.5 Tutor ial: construction of Tra Ø cLights

In this tutorial theuserwill constructafew of thepossible statesandtheir linkingtransitions in
theTra! cLightsstatemachine, whichmodelstra! c lightsataN7 SandE7 W intersection. To profit
from it, thereadershould have at leastscannedChapter2. If at any stagethereis someconfusion
with the tutorial, or an apparent error, the user should easily be able to rectify the problem by
comparison to a full Tra! cLights session which may be started independently as described in
Section3.1.

It is assumedthatthereader hastheDOVE tool appropriately setupasin Chapter3, andis in a
working directory 8�(�������#���B�#���<��� – which includesthefile 8�(�������#���B�#���<���E�¸&%$� – asdiscussed
in thepreambleto Section3.2. In thefoll owing, thecommand-line promptis denotedby the © at
the beginning of the commandline. Also, in commonwith the restof the manual, grammatical
notation will not beincludedin commandlines.

Opena new DOVE session. As explainedin Section3.1, this is doneby typing
© �������

A blank, grey, grid-patternedcanvaswill appear on the screen. This is the DOVE statemachine
window which is usedfor designing the machine. The userwill notice that the “pencil” icon on
themenubar is blue,whereas theothericons aregreen. This indicatesthat theDOVE session is
in editing mode.

Theuser will now design thefirst threestatesin oneof thecyclesof theTra! cLightsexample,
which requiresjustasubset of theattributesneededin themorerealistic model. First thetopology
of threenodesconnectedin a line, with appropriatelabels, is constructed. Thensomedatatypes
areintroducedto modelthelights– not surprisingly, thesewill bethecoloursof thelights andthe
directionsof theintersection. A constantis required to denotethemaximumnumber of carswhich
canbewaiting in any givendirection afterwhich thelightsmustchange. It hasthetypeof natural
numbers. Also, a heapvariable mustbe introducedfor eachmachineattributeof interest. In this
session, theattributesof interestwill bea variable which encodesthecolour of a given light, and
avariablewhich encodeswhich direction waslastgreen.Input variablesareintroducedto encode
theenvironmente� ect. In thissession thesewill bethenumberof carswaiting ateachof thenorth
andsouth lightswhenthey arered.They havethetypeof natural numbers. Finally, theiniti alizing
transition requiresthatall lights arered,andthenext transition will correspondto theE7 W lights
changing to green.

4.5.1 Topology

Thefirst stepin thedesign is to construct the topology of the machine. This will involve the
creation of two nodesdescending in an evenly-spacedline from nearthe middle of the canvas,
followed by the creation of edgescorresponding to transitions, connecting thosenodes. This is
doneasfollows.

- Click with mousebutton1 near thecentreof thecanvas.A nodewill appear, with thedefault
label I������ . Notice that the node hasa radiusof onegrid unit. At this point, the userhas
already constructedthetopology for a valid (althoughnot very interesting) statemachine.

42



DSTO–TR–1349

- Similarly, create a second node,about eight grid units apart on a direct vertical line down
from thefirst node.

- Now click andhold mousebutton 1 at (just inside) the bottomof the first node, anddrag
thearrow which appears down to (just inside) the top of thesecond node.On releasing the
button, theedgejust createdwill snapto thegrid, with thedefault label K������ .

At this point, the statemachineshould appear asshown in Figure4.2. Note that a node hasfour
“vertices” to which edgescanbeattached,which appear at the“compasspoints” of thecircle. In
this languagethe south vertex of the first node hasbeenjoined to the north vertex of the second
node.

If anothernodeor edgewasaccidentlycreated, then it maybedeletedasfollows.

- Putthemousecursor on theo� ending nodeor edge(create oneif there isn’t alreadyone).

- Holding the Control key down, click with mousebutton 1. Note that, before clicking, the
mousecursor turnedinto a “skull-and-crossbones”. After clicking, theobjectis deleted.

4.5.2 Moving graph objects

If the layout of the graph is not as desired, the nodes and edgescan be moved. Move the
second nodeto thesameheight asthefirst nodeandabout eight grid unitsto its left asfollows.

- Putthemousecursor on thesecondnode.

- Click andhold mousebutton 2. A red shading will appeararound the othernodesandthe
edges. This denotestheregion into which thesecond node cannot bemoved.

- Dragthesecond node to therequiredposition about eightgrid unitsdirectly left of thefirst
node, andrelease the mousebutton. Notice, asshown in Figure4.3, that the joining edge
snaps to thegrid, but its startandfinish areunfortunate in that they do not allow it to take
theshortestpath.

- Click with mousebutton 2 on theheadof thearrowon thenorthvertex of thesecond node,
anddragit to theeastvertex.

- Dragthetail of thesamearrowfrom thesouthvertex to thewestvertex of thefirst node.

4.5.3 Labelling graph objects

Now thestateandtransition labelswill beassigned.Labelthetop central node(thefirst node)
as "�3�36J���� , thenodeto the left of it as K�L�M�(	���6� , andthe joining transition as K,L�>�<	���	��� . This is
doneasfollows.

- Movethemousepointer to beinsidethenodewhosenameis to bemodified.A text-insertion
cursor will now blink at the endof the label. Deletethe default label I������ andreplaceit
with thedesired label,usingthekeyboard.

43



DST
�

O–TR–1349

Figure 4.2: Thestatemachinesegmentinitially.

- Relabel all thenodes to thenamessuggestedabove.

- Now move themousepointer onto any partof theedgeleading from "�3�3�J	��� to K�L�M�(	���6� .
This edgeand its label will turn blue, and the blinking text-insertion cursor will appear.
Change thedefault label K������ to K�L	>�<	������� .

Themachine,which should appear asshown in Figure4.4, is now readyfor definition.

4.5.4 Machine definition

Now the machine attributesmustbe declared andthe transitions defined,for which purpose
theoptionsunderthe P�����#9�$#���#,���0 menubuttonareused. Our theory will usejust thebasetypes
of Isabelle, soignorethe 8�-�+	�AP�����3��,(�����#���� option. Declarationsmustbegivenin several of the
remaining optionsto reproducetheattributesdiscussedabove.

Beforeproceeding, it may be useful to realize that declarations (for any of the declarations

44



DSTO–TR–1349

Figure 4.3: Theeditedstate machinesegment.

windows brought up by theoptionsin the P$����#9�'#���#,�,�' menu)aredisplayeddi � erently, depend-
ing on whether they have been parsedcorrectly, parsed andfound to be invalid, or not parsedat
all:

- If thedeclarationhasnot beenparsed since its lastmodification, its nameandstatus will be
displayedin black italics,andits status will be listed as“UNCHECKED”. In this case, the
userwill beobligedto committhedeclaration prior to compilation, animation or proving.

- If thedeclaration hasbeenparsedandwasfound to becorrect, its nameandstatus will be
displayedin blue,plain font, andits status will belistedas“OK”.

- If the declaration hasbeen parsed but wasfound to be invalid, its nameandstatus will be
displayedin red,bold font, andits statuswill besettherelevanterror message.

45



DST
�

O–TR–1349

Figure 4.4: Thelabelled statemachine segment.

4.5.4.1 Datatypes

Declaretwo datatypes: >���3,�� �( , which canbe J	��� , ",%�O���( or M�(����6� ; P'#�(�������#,�,� , which can
be K�L or I	. . This is doneasfollows.

- Pull down the P�����#9�$#���#,���0 menuand select P	�������,-�+	�;P�����3���(�����#����' (selection will
alwaysbedonewith mousebutton 1), to bring up thedeclarationwindow.

- Click on thebutton labelled I	��5 , causing anemptyeditor window to appear.

- Putthemousecursor in the I��6%'� text-entry field of thedialog box which appears,andtype
>���3,�� �( .

- Since>���3��� �( will beasimpleenumeratedtype,thereis noinput needed in the *���(��9%'������(�
text-entry field.

- Type J	��� Ì "�%�O���( Ì M�(������ in thetext-entry field labelled P�����#9�$#���#,��� .

46



DSTO–TR–1349

- A commentmay(andshould) beinsertedin thebottom text-entryfield.

- Click on the button marked >���%�%0#�� in the editing window. If there is an error in the defi-
nition, theediting window will remainvisible, andtheerrorwill bereported to theuser. If
the declaration hasbeenentered correctly, the new datatypewill be accepted,andwill be
displayedin the P	�������,-�+	�;P$����3���(�����#����' Window bluewith a plain font.

- Similarly, enter thedatatypeP$#�(�������#,��� andits allowedtypesassuggested above.

- Click on the >�3����� button at thebottom right to closethe P	�������,-�+��ÃP�����3��,(�����#,�,�' Win-
dow.

4.5.4.2 Constants

Declaretheconstant :���±�>��,($ of type �	��� . Here �	��� is the Isabelle base typecorresponding
to natural numbers. Do this asfollows.

- Selectthe >����0,�������ÙP$����3���(�����#����' option of the P�����#9�$#���#,�,�' menu,thenselect I���5
andinsert thename:��,±�>��,(� in thedialog box which appears– all asbefore.

- Type �	��� in the text-entry field labelled P�����#9�'#���#,�,� . Again inserta commentif desired,
click on thebutton marked >��6%�%0#�� in theediting window, andthen >�3,���� .

Notethat :��,±�>��,(� , themaximumnumberof carswhich canbewaiting in any givendirection
afterwhich the lights mustchange,could begivena particular numerical valuevia a namedrule.
Let’s set :	�,±�>���(� to be3 asfollows.

- Selectthe J� $3��ÙP�����#9�$#���#,��� optionof the P�����#9�$#���#,�,�' menu,then selectI���5 andinsert
thename:�> ��<�(���� in thedialog box which appears.This is thenameof therule.

- Type :��,±�>��,($ T #3 in thetext-entry field labelled P$����#6�$#���#���� . Again insert a commentif
desired,click on thebutton marked >��6%�%Ú#�� in theediting window, andthen >�3����� .

Another way of dealing with the tra! c lights situation would be to give preferential treat-
ment to the I	. direction. To do this we would introduceinstead a constant 2�:��,±�>��,(� of type
( P$#�(	������#,��� T © �	��� ). Wecould thenhave therule 2,:��,±�>��,(� I	. whichsets( 2�:��,±�>��,(�ÛI	. ) to 1,
andtherule 2,:��,±�>��,($ K�L which sets( 2�:��,±�>��,(��K�L ) to 3. Alternatively we couldhave a single
rule, 2�:��,±�>��,(� ����� , with definition (note that % is the Isabelle syntax for lambda-abstraction,
while theif-t hen-elseis Isabelle HOL syntax)

2,:	�,±�>���(� T (Ü d . ( #�� d � I	. ��<���� ÝÚ³ ��3��� Ý D ))

This is a good example to show that the word “constant” should be taken in the programming
languagesense!

47



DST
�

O–TR–1349

4.5.4.3 Variables

Declaresomeof the heapandinput variablesof the tra! c lights system, in the sameway as
declaring constants:

H select
C ����+P�����3��,(�����#,�,�' to declaretheheapvariables K�B�#���<	� , L�B�#���<	� , I�B�#���<	� , .�B	#���<��

– all of type >���3,�� �( – andthevariable B������M�(����6� of type P$#�(�������#,�,� .
H select =9��+� ��ÙP�����3���(�����#����' to declaretheinput variables I�>���(� and .,>���(� of type �	��� .

4.5.4.4 Initiali sation

An initial statefor the statemachine executions mustbe defined. In this case, it is the state
called "�3�3�J	��� . Select =6�$#���#���3�#������#���� from the P$����#6�$#���#����' menu,enter the nameof the
initial state,andtheinitial condition:

( I�B�#���<�� T J	��� ) "���� ( .�B	#���<	� T J	��� ) "���� ( K�B�#���<	� T J	��� ) "��	� ( L�B�#���<	� T J���� )

4.5.4.5 Transitions

Sincean edgenamedK�L	>�<	���	��� hasalready beendefined, a corresponding transition of the
samenameneeds to becreated. Thedefinition for this transition is:

M, ��,(���R B������M�(����6� T I	.
"	���SR K�B�#���<	� U M�(����6� ;

L�B�#���<	� U M�(	���6� ;
Thedefinition canbeenteredasfollows:

- Pull down the P�����#9�$#���#,���' menuandselect 8�(����0�#���#�����P�����#9�'#���#,�,�' .
- Pressthebuttonmarked I���5 , whichwill result in anemptytransition editorwindow appear-

ing.

- Putthecursor in thetext-entry field of thewindow labelled I��9%'� , andtype K�L	>�<	������� .
- Now typethedefinition – M� 	�,(��¨R etc,precisely asit appearsabove – in thetext-entry field

of theediting window labelled P�����#9�$#���#,�,� .
- A commentshould beinsertedin thebottom text-entry field.

- To checkthat the definition hasbeenentered correctly, click on the >��6%�%Ú#�� button of the
editing window. If there is an error in the definition (note that the semicolons in the Act
statementmustbe written!), the editing window will remainvisible, andthe error will be
reported to the user. If, however, the definition parses correctly, the editing window will
bedismissed. Alternatively, theusermaychoose to parsethedeclaration at a laterdate,in
which casethe >�3����� button should beused to close theeditorwindow.

48



DSTO–TR–1349

The editing window for a specific transition canbe invoked by pressing the button marked
K���#�� onthedeclaration window, or by double-clickingonthenameof thetransition,or by pressing
the J����� �(�� key whenthe transition is selected,or by double-clicking on thecorresponding edge
of thestatemachinegraph.

4.5.5 Renaminga transition

Theuseris now well on theway to designinga statemachinemodelof tra! c lights. Indeed,
thestatemachinecouldbecompiled at this stage,by selecting the >�<����,��¥�>���%�+�#�3�� option of the
K���#�� menu.

However, there is oneobvious problem with themodel– thenameof thetransition. Certainly
a full model would need transitions wherethe E7 W lights turn amber, andred. So, the second
transition should bedistinguishedfrom theseby a namesuchas K,L�>�<	���	���,M�(������ . To make this
change:

H Select 8�(����'�#���#,���²P�����#9�$#���#,���' from the P�����#9�'#���#,�,�' menu,select K,L�>�<����	��� from
thedialog box which appears,andrenamethetransition using theeditor window.

Changethe nameof the transition to K,L�>�<	���	���,M�(������ using this approach. Notice that all in-
stancesof thetransition namehavebeenchangedappropriately, eventhelabelonthestatemachine
graph.

Note: the usermay think that the statemachine graph canbeediteddirectly, asexplainedin
Section4.5.3, by simply relabelling the second edgeto the desired name. This is incorrect. To
seethis, change the edgelabel (which should now read K�L�>�<����	���,M�(����6� ) to K�L�>,<	�������,M�(	���6� D
directly on the graph, andthendouble-click on the newly-relabelled transition to find that there
is nonesuchwhich hasbeendefined! Moreover, select 8�(����'�#���#,�,��P�����#9�$#���#,���0 from the
P�����#6�$#���#,���' menu,andseethat the nameof the definedtransition hasnot been changed. So,
invert this procedureto restorethelabel to K�L�>,<	���	���,M�(	���6� .

Finally, compilethestatemachineby selecting the >�<����,��¥�>��6%�+�#�3�� optionof the K���#�� menu.

4.5.6 Saving and reloadingthe statemachine

Having gone throughthis exercise (hopefully feeling that in factit wasremarkably easy!) it is
nice to save andappreciatetheresult. To save thestate machinewhich hasbeenproduced,select
the .��,���A"$ option from the K���#�� menu.Selectaname1��¸�%$� – where1 doesnotalreadyappear
in theworking directory – suchas(this namewill beassumedbelow) 8�B	.����9%0�6�	�S�¹�%$� .

The file TLSegment.smgnow encodesthe state machinesegmentdefinedabove. Thus, for
example, it canbe loaded directly to begin a new session. Do this by selecting the B������2�#�3��
option in the 2�#�3�� menu,andthenselect8�B�.����9%'�6���S�¸&%$� in thedialog boxwhichpopsup. Notice
that thefile is loaded without askingfor confirmation. Alternatively, theusercould first clear the
current session – andsorestore theblank canvas– by selecting the I���5 option in the 2�#�3�� menu,
andthenreloadthefile asjust described. Userconfirmation will berequiredif thecurrentstateof
thestatemachinegraphis notsaved– to seethis, deletethe“d” in thelabel "�3�36J	��� andrepeat the

49



DST
�

O–TR–1349

above operations(press>����$����3 on thedialogbox). Now, to restore thestate machinegraphto its
previously-savedstate,choosethe J	��,����(�� option in the 2�#�3�� menu(andthis time press1�Ç ).

To savour the results theusershould select the >�(��������ÃP	���6 �%0�6�	������#,�,� option in the 2�#�3��
menu.If themachinecompilation succeedsa pdf documentation file for thestatemachine design
will beproducedautomatically. If thecompilation fails theuserwill bepromptedwith theerrors,
andaskedwhetherthedocumentation should becreated. If so, thedesign to date– including the
errormessages– is recordedin thepdf file.

50



DSTO–TR–1349

Chapter 5

Animation

The "��$#&%'������( displays the change in thevaluesof thestate machine’s variablesalonga chosen
execution path. In DOVE, animations for a given state machine arecarried out directly on the
corresponding statemachinegraph. The user selects a start state for the animation by clicking
with mousebutton 1 on thedesirednode,andproceedsstep-wise throughclicking similarly on a
chosen pathof intermediateedgesto the desired finish. DOVE hasa convenientcolour scheme,
discussedbelow, that visually aidsunderstanding. Thechosenstartnode does not have to be the
initial stateof thestate machineinitialisation!

DOVE alsoallowsthe user to store animations,which may thenbe saved to disk along with
therestof thestatemachineparameters, to beretrievedin laterDOVE sessions. It is alsopossible
to loadananimation from a text file written in a specificformat - this will enable DOVE to pick
up animatedsequencesproducedby other processes.

The“hands-on” reader maywish to move quickly to thetutorial session in Section5.4, refer-
ring to earliersectionswhenrequired.

5.1 DOVE window display in animation mode

The "��'#&%$������( is entered by clicking on the “runner” (animation mode) button (seeFig-
ure3.2(b)) of the DOVE state machinewindow menubar. This brings up two windows, asseen
in Figure5.1andFigure5.2, in addition to a new setof graphical objectsattacheddirectly to the
baseof thestatemachine graph. The latterareknown astheAnimation Controls. Theuseof the
two windows andtheAnimationControls is explainedin thefollowing subsections.

Before the change to animation mode is actually enacted, DOVE automatically calls the
>�<����,��¥�>��6%�+�#�3�� option (from the K���#�� menuof thestate machinegraph window). It is not pos-
sibleto startananimation of astatemachine theory with fatalerrors in theensuing diagnostics. If
no fatal errors arefound, the corresponding diagnostic window will automatically disappearin a
few seconds.

51



DST
�

O–TR–1349

Figure 5.1: TheWatch Variableswindow.

5.1.1 The Watch Variable window

The L	������<Î4	�,(	#���O$3��� window (seeFigure5.1) is usedto select thevariablesto betracked
during theanimation. It containstwo setsof lists - onefor theheapvariablesandonefor theinput
variables.Thelists on theleft containall thevariablesdefinedfor thecurrent statemachine, while
thoseon theright contain those selectedto bewatched during theanimation. Thebuttonslocated
down thecentreof thewindow areusedto addandremovevariablesfrom theright hand “watched”
lists. Note that addition or deletion canalsobe achieved by double-clicking on the namein the
appropriate window. In theexample session from 8�(�������#��,B	#���<	�� shown in Figure5.2, theheap
variables ",%�O���(�8	#&%'�,1� 	� and B���,��M�(����6� havebeen addedto thewatchedlist.

5.1.2 The Þ�ß�àÚá�â¨ãÚä�å window

The "��$#&%'������( window displaysthe information of the current animation. The chosen start
stateis shownaswell asthecurrent statealong thechosenedgepath,colour-codedto thegraphical
display aswill beexplainedbelow. The

C ����+$ box containsthe list of heapvariablesselectedin
the L	�����6<Ê4��,(�#���O'3��� window, andtheir valuein thecurrentstateof theanimation is displayed
opposite in the 4���36 ��� box. Likewise, the =9��+� 	�� box shows the list of currently selected input
variables,andtheirvalues.The *�����<@>����	��#���#���� boxshowstheaccumulatedconditionsfrom the
transition preconditions along the chosenedgepath, asexplained further in the next subsection.
Finally, a P$����,(	#6+���#,��� areais provided at the baseof the window, so that users cankeeptrack
of their various animations by providing commentsto be associated with them, in addition to
descriptive names.A commentis entered in the P������(	#�+���#,�,� framevia thedialog box invoked
by the .�����(�� option underthe 2�#�3�� menuof the "��$#&%$������( window – asexplained in themenu
decription below.

Theuseralsohastheoption of specifying valuesfor variables:

H only initi al valuesmay be specified for heapvariables,whosevalues in later steps of the
animation arederivedfrom thetransition actions;

52



DSTO–TR–1349

Figure 5.2: DOVEdisplay after onestepin an animation.

H insertion of initial valuesfor heapvariablesmustbedonebeforeproceeding to defineanew
animation – in particular, before thechoiceof thestart state;

H input valuescanbespecifiedatany stage– input variablesmodelchangesin entitiesexternal
to thestate machine, andthusmaybemodifiedat any point during theanimation.

To insert the desired valuethe userneed simply double-click on the valueof the corresponding
variable, typetherequiredvalueinto thedialog box which is invoked,andpressthe 1�Ç button. At
this point the new valuewill be subjectedto somesuperficial parsing. Note that numericvalues
mustbe prefixed with the # symbol, asthis is the way they arerecognized by the Isabelle proof
tool.

The“watched” variable list canalsobechangedatany stage, asexplainedfurtherin Section5.3
alongwith theotherfeaturesof the "��$#)%$������( menus.

5.1.3 Path conditions in the Þ¨ß�àÚá�â�ãÚä¨å window

The *�����<@>����	��#���#,��� box shows the accumulatedconditions from the transition precondi-
tionsalong thechosen edgepath.Theseconditionsdeterminewhether thechosenpath is a possi-
ble traceof thestatemachineexecution; i.e., for thestatemachineto beableto executethechosen
sequenceof transitions from thestartstateto thecurrent statein theanimation. If so,thenall the

53



DST
�

O–TR–1349

predicateslistedmustevaluate to truein thestart stateof theanimation. Thepredicatesarelisted
in order - thusthey areaddedto theend(bottom) of thelist in ananimation step.

The "��$#)%$������( appliessomelogical simplification rulesto theaccumulatedpathcondition. In
particular, if theuserattempts to activate a transition whoseprecondition fails, thepathcondition
will evaluate to false,andassuchwill bedisplayedin the *�����</>�������#���#,��� box asFalse.

5.2 Animati on via the statemachine graph

The animation is driven by mouseoperations, directly on the statemachine graph drawn on
thecanvasof theDOVE statemachinewindow. Thestatemachine graph, at any givenmomentin
the animation, will have a greennodesignifying the startnodeof the animation,anda red node
signifying thecurrentstateof theanimation (thatwhich theanimation hasreached),with all nodes
andedgesin-betweencolouredamber. (Note,however, that all of these colours canbe changed
via theparameter file, config.tcl.)

5.2.1 Starting the animations

An animation is initiatedby clicking with mousebutton 1 onachosennode. (Initial valuesfor
heapvariables musthave beenentered prior to this, asdiscussedabove.) That nodeis automat-
ically registered asthe start(andcurrent) stateof the new animation,which DOVE indicatesby
colouring it red. This fact is mirrored in the "��'#&%$������( window, in which both the .�����(��Î.��������
and >, �(�(����	�Î.�������� boxeswill display theselectedstart node. Theability to selectany nodeas
thestart implies that animationscanbepartial, spanning any consecutive sequenceof edgesof the
statemachine. Suppose K�L�",%�O���( is registered10 asthestart nodein the 8�(�������#��,B�#���<	�� example
– thebeginning usermaywish to try thiswhile reading now. Notethat,having donethis, thevalue
of K�B�#���<	� is not registered immediately – although it “must” be ",%�O$��( in thechosen state. This
is a design choice: DOVE shows thevaluesasblank until they arefirst modifiedin thecourse of
theanimation. Indeed,anunusualchoice of initial valuefor K�B�#���<	� in thestartstatewould have
overriddenany intuitive understanding of whatthevaluemustbe.

5.2.2 Animation

Theuserproceeds(forwards) throughthestate machinegraph by clicking on anedge leading
outof thecurrentstatewith mousebutton1. DOVE thenupdatestheinformation in the "��$#)%$������(
window to reflectthechosenanimation step.After this step,thecurrent node– i.e., thatwherethe
chosenedgeends– is colouredred,thestart nodebecomesgreen,while all intermediatenodesand
edges arecolouredamber. Clicking on anedgethatdoes not leave thecurrent nodehasno e� ect.
Thebeginner maynow wish to continuetheanimation begun above: entering values for watched
input variables,andobserving thepredicateswhich build up (addedsuccessively to theendof the
*�����<æ>��,����#���#,��� list).

10DOVE requiresuserconfirmationif a new animationis startedwhile anotheris in progress.

54



DSTO–TR–1349

5.2.3 The Animation Controls

As described above, the Animation Controls aregraphical objects which areattachedto the
baseof thestate machinegraphduring Animation mode.They consist of a setof control buttons,
togetherwith adisplay arealisting thecurrent valuesfor the ����3��,- andthe ,����+Æ�#�ç�� , in addition
to a :�����#���- button which invokesa dialog window allowing theuserto updatethosevalues.

The ,����+è�#�ç�� canbe any integer in excess of 0; this is merely the numberof transitions
thatwill betraversedwhenever theuserstepsforwardsor backwardsin theanimation. The ����3��,-
is concernedwith automatic animation; i.e. when the userchooses to move either forwardsor
backwardscontinuously throughtheanimation for asfar asthecurrent animation will allow. The
����3���- specifies theminimumnumberof milliseconds thateachstepin theanimation should take
in realtime,theobjectivebeing to give theuser su! cient time to examine theresultsof each step.
Theusefulnessof this parameterwill bemoreapparent with a fastcomputer, for which thedelay
would specify the actual time that a single animation stepshould take (rather thana minimum
time).

At thebaseof thecontrols is aseriesof operationalbuttons,whichareusedin orderto traverse
a pre-definedanimation. Theoutermostbuttons,marked F·Õ�Õ and ©�© F , indicatethattheanimation
should proceeddirectly to either thebeginning (i.e. thestart state) or thefinish, respectively. The
innermostbuttons,marked Õ and © , aresynonymouswith theoperations“Undo” and“Redo” - they
causethecurrentpositioning of theanimation to move either backwardsor forwards. In general,
theuserwill wish to move in single steps; however, the ,����+Æ�#�ç�� parametercanbeconfigured
to skip additional steps, asdescribedabove. Theremaining buttons, Õ�Õ and ©�© , arefor automatic
animation; i.e., they allow theanimation to move continuously eitherbackwardsor forwards, for
aslong asthecurrently definedanimation will allow. The ����3���- parameterdictatesthespeed of
theanimation, asdiscussedearlier.

While any of theoperational buttonsarein action, thegraph’s colour schemewill beupdated
to reflecteachchange in theposition of theanimation.

5.2.4 NamedAnimations

Thusfar, theuserhasbeenworkingwith asinglecurrent animation. Animationsmay, however,
be stored within the statemachine, with the constraint that eachstored animation must have a
unique name. The animation can thenbe selected at a later datefor replay. This functionality
is controlled by the 2�#�3�� menu. Note that whenever a namedanimation is current, its nameis
displayedon thetitle barof theAnimatorWindow.

Storedanimations may be adversely a� ectedby changesmadeto the statemachineduring
editing. For example, if an animation proceeds to the statex but, during editing, the statex is
removed, the stored animation will no longer be valid, anderrors would occur if an attemptwas
madeto execute suchananimation. To warntheuseraboutinvalid animations,andto ensure that
thoseanimations do not a� ect the useof DOVE, all storedanimations arechecked as the user
enters Animation mode. Any animations which do not conform to the current configuration of
the statemachinearemarked asinvalid; likewiseany animationswhich werepreviously invalid
but have now beenrevived(dueto acorrection in thestatemachine design) will beavailable once
more. It is, however, possible to correct invalid animations - this will be dealt with in a later
section.

55



DST
�

O–TR–1349

5.3 The menubar of the éëê�ìîíðïòñëóîô window

5.3.1 The File menu

New The I���5 option clears the current animation. This hasthe samee� ect asclicking on the
animation mode(”runner”) button during an animation session (as discussedin Section5.3.3).
Any resulting animation work will be anonymous - i.e., the animation cannot be stored until the
usergivesit a name.This is doneby selecting .�����(�� under the 2�#�3�� menu(seebelow).

Restore This restoresthe current namedanimation to the state in which it waslast stored (see
the .�����(�� option below).

Load File Sometimesit maybeuseful to feedtheresults of someotherapplicationto theDOVE
animator. Allowing theuserto loadananimation from anexternalsourcewill enable datawhichis
output by otherapplicationsto bemodifiedby theuservia a standardeditor, prior to presentation
to theDOVE animator.

Theformatof afile containing ananimation to beloadedis asfollows (key wordsandsymbols
which mustbeincludedwhenappropriate areshown in bold):

Start StatestartState

Transiti on Steps[ trans1,state1,trans2,state2]

Initial Values[ heapVar1: val1, heapVar2: val2 ]

Input Values[ inputVar1: [val3,val4], inputVar2: [val5,val6] ]

White spaceis ignored, but the file should have no other contents. If the file is loaded suc-
cessfully, its contentswill becomethecurrent(anonymous)animation, positioned prior to thefirst
transition.

Notethat it will not bepossible to save ananimation on its own to a separatefile - all anima-
tions that areassociatedwith a particular statemachine aresaved in the statemachine file, and
thereis no reason thatthey should continueto exist externally to thestatemachine.

Store Selecting .�����(	� invokesa dialog box which givestheusertheopportunity of specifying
a nameunder which thecurrentanimation should bestored. If thecurrent animation already has
a name,theentryfield will display thatname,which theuser caneither acceptor elsemayenter
a new name,if it is appropriate to keep a separate copy of the animation as it was last stored.
Thenamegiven to theanimation mustbeunique; if it is not, anerrormessage will bedisplayed.
The dialog alsoallows the userto enter a commentto appear in the P������(�#6+���#���� frameof the
"��$#&%'������( . This canbedone at any stage, theaccumulatedcommentis alwaysshown.

Oncethecurrent animation hasbeennamed,its namewill bedisplayedon thetitle barof the
Animator window. This namewill be associatedwith the current animation, until a new stored
animation is selected,or ananimation is loaded from a file, or thecurrent animation is clearedvia
the I���5 option.

56



DSTO–TR–1349

Note that an animation consistsof the start statetogether with all the edgesthat leadto the
finish, andthe values for the variablesat eachstepof the way. If the user hasbacktracked to a
previousnodein theanimation prior to storing, theanimation in its entiretywill still bestored; that
is, thecurrentposition within theanimation is not consideredto berelevant. If, however, theuser
backtracks, but thenfiresadi � erent transition leading from thatnode, thuschangingthecourseof
theanimation, theold branchof theanimation will bediscarded, andonly thenew branchtogether
with thepaththatprecededit will bestored.

Note also that storing an animation doesnot imply that anything hasbeensaved to disk -
afterstoring ananimation, theuser should selectthe .��,��� optionunderthe 2�#�3�� menuof thestate
machinegraphwindowif thestatemachineandits stored animationsareto besavedin apersistent
manner.

Remove Thisoption providesasubmenupresenting theuserwith alist of all thecurrently stored
animations– including those thatareinvalid for thecurrent statemachine. Theusercanremove a
single namedanimation,or all thestored animations. This option hasno undo- if theuser makes
amistake at this point, theonly optionis to return to Edit mode,andrestorethestatemachinefile,
sincethe removal operation only removesanimationsfrom thenon-persistentstatemachine, and
doesnot becomepermanent until thenext save.

Notethatit is possibleto remove thecurrent animation (if named). This will cause thecurrent
animation to becleared,afterwhich thecurrentanimation will beanonymous.

Select This option also provides a submenu listing all the currently storedanimations; those
which areinvalid for thecurrent statemachine, however, aretagged as =6������3�#,� , so that theuser
cannot replay suchananimation until it hasbeencorrected.This is doneby editing thetext version
of theanimation which appearsin a separatedialog whenan invalid animation is selectedby the
user, along with a description of the first error that wasencountered whenparsing theanimation
(the error may not be apparent from the test of the animation, which refers to the current state
machine).

Animation syntaxis exactly the sameasthat required for animations which areloaded from
file - pleasereferto themenuoption B������Î2�#�3�� above. Onceavalid animationhasbeen selected,
or an invalid animation hasbeencorrected,the current animation is cleared (without waiting for
confirmation from the user). Therequestedanimationis thenloaded,andpositioned at its finish
- i.e. the entire pathof the animationis displayedon the graph. The Animation Control buttons
maythenbeusedto traversetheentireanimation, although theusermayalsoaddto or modify the
animation, if desired.

5.3.2 The Windows menu

Show Path brings up a window that lists, in order, the namesof the transitions that have been
undertakenin thecurrent animation, from thestart to thecurrent state.

Watch Variables brings up the L	�����6<Ê4��,(�#���O$3��� window, which hasbeen explainedin the
preamble to this chapter.

57



DST
�

O–TR–1349

5.3.3 Exiting Animation Mode

To leave theanimation modetheusermustclick on either theedit modeor proof modebutton
of theDOVE statemachinewindow. A dialogbox thenappears,asking if theanimation should be
cleared. If theuseranswers I�� then thecurrent animation session is resumed.If theuseranswersõ �� thenthecurrent animation sessionis clearedandclosed(andthedesired modeopened).

If the userclicks on the animation modebutton during an animation session then a dialog
box appears,asking if the animation should be restarted. If the useranswers I�� thenthe current
animationsessionis resumed.If theuseranswers

õ �� thenthecurrent animationsession is cleared,
but the "��$#&%'������( remains open.

Note that whenthe userleavesthe animation mode,the currently namedanimation (if any)
is remembered (in the non-persistent state). The next time the user enters animation modethis
animation will be loaded automatically as the current animation under the assumption that the
userwill generally wish to continueworking from thelastknown interruption.

5.4 Tutorial: animation of Tra Ø cLights

In this tutorial theuserwill animate a few cycles of theTra! cLightsstatemachine. To profit
from it, the readershould have at least scannedChapter2; in particular, Section2.1, which de-
scribesthevarious attributesandinputs of thetra! c lights system.

It is assumedthatthereader hastheDOVE tool appropriately setupasin Chapter3, andis in a
working directory 8�(�������#���B�#���<��� – which includesthefile 8�(�������#���B�#���<���E�¸&%$� – asdiscussed
in thepreambleto Section3.2. In thefoll owing, thecommand-line promptis denotedby the © at
the beginning of the commandline. Also, in commonwith the restof the manual, grammatical
notation will not beincludedin commandlines.

Opena DOVE sessionwith theTra! cLights state machine. As explainedin Section3.1, this
is done by typing

© �������É8�(�������#��,B�#���<	��
Thegrey, grid-patternedcanvaswith thecompleteTra! cLights statemachine will appear on the
screen. This is theDOVE statemachine window, which wasusedfor designing themachine – as
discussedin Chapter4, andin thetutorial Section4.5. Theuserwill noticethatthe“pencil” iconon
themenubaris blue, whereastheothericonsaregreen. This indicatesthat theDOVE session is in
editing mode.Click on the“runner” icon which will thenbetheonly blueone, indicatingthatthe
session is now in animation mode.The L������6<Î4��,(�#���O'3��� and "��$#)%$������( windows immediately
appear.

If theTra! cLightsversion beingusedalready hasa storedanimation, then theanimator will
comeup referring to it, asdiscussedabove. In this case,select the I���5 option of the 2�#�3�� menu
on the "��$#&%$������( window. This clears theanimation,andtheuser maynow proceedasbelow.

Fromthe
C ����+' list of the L������6<Î4��,(�#���O$3��� window, select the variables ",%�O��,(�8	#&%0��1� �� ,

K�B�#���<	� , B������M�(����6� , I�B�#���<	� , and .�B�#���<	� to bewatched. This is done asfollows.

- Select ",%�O��,(�8	#&%0��1� �� by clicking on it once with mousebutton 1 (selection will always
bedone with mousebutton 1). Now click onceon the "���� button. (Alternatively, the user

58



DSTO–TR–1349

can just double-click on "�%�O���(�8	#&%'�,1� 	� .) This variable will now appear in the L	������<����
4���(	#���O'3��� list. Similarly, selecttheremaining variableslisted above.

- Click on the 1�Ç button, the L	�����6<Ê4��,(	#���O$3��� window will disappearand the selected
variableswill beautomatically insertedin the

C ����+$ list of the "��$#&%'������( window.

Similarly addInputs K�>��,($ and ��#&%0� to the L	�����6<����/=9��+� 	�� list (bring backthe L������6<Î4���(	#�G
��O$3��� windowvia thecorresponding option in the L$#6������5$ menu).

Thewatchedvariablesareautomatically givendefault initi al valuesin the "��$#)%$������( window.
Changetheiniti al valueof B������M�(����6� to be K,L , asnow described.

- Double-click on the value of the variable B���,��M�(������ . The value appears in the 4���39 ���
�,��(Ê>� �(�(����	�Î.�����+ frame,andis initially thedefault value B���,��M�(	���6� Ô .

- Insert thedesired value K�L directly into thetext-entry box which appears,andclick 1�Ç . The
desiredvalue is thenautomatically insertedin the "��$#&%'������( window.

Now begin ananimation from the "�3�36J	��� stateby clicking on thecorresponding node of the
graphwith mousebutton 1. Noticethat the "$3�36J	��� stateis insertedasthe .�����(��Ê.�������� , andalso
asthe >� �(�(��6�	�Ê.�������� , in the "��'#&%$������( window. Thecolour of the nodechangesto red,since
this is thecolour for the current node, which takesprecedenceover thecolour for thestartnode,
green.

To proceedforwardsin theanimation, click onceon theedgelabelled K�L	>�<	���	���,M�(����6� , with
mousebutton1. Thecurrent state(at thisstage, K�L�M�(������ ) will now becolouredred,while "�3�36J	���
becomesgreen. All intermediatestages in the animation (in this case,just the transition’s edge),
become amber. Moreover, notice that the valueof K�B�#���<	� in the current stateis entered in the
4���39 $�� list, sinceits value( M�(����6� ) is determinedby theactionof thetransition.

Thetransition K,L�>�<	���	����M�(������ containsapredicatewhichshould betruebeforethetransition
canfire: ( B���,��M�(	���6� T I�. ); this predicateis addedto theend(bottom) of the *�����<@>�������#���#,�,�
box. By ourchoiceof initial conditions,thepredicateis not true,andindeedevaluatesto 2���3��� in
the *�����<@>�������#���#,�,� box! Notethatno suchchoiceis madein thespecificationof themachine,
andthusthe statemachineis modelling di � erent choicesof tra! c light systems. This could be
refinedif desired.

Consistentwith thechoiceof initi al conditions, then, theusershould choosethecycle starting
with N7 Slightschanging. SelectÕ from thesetof buttonsat thebaseof DOVE’smainwindow; the
animationwill return to thepreviousstate,with "�3�3�J	��� asthecurrentstate. Now proceedforward
in the animation through the I	.,>,<	���	���,M�(	���6� transition. Note that after this stepthe values of
both I�3�#���<�� and .�B�#���<	� are M�(����6� , asexpected,andthe *�����</>�������#���#,�,� is 8�(� �� .

The L���#���K�L transition does not seemto “do” anything, but is required to ensurethemachine
cannot deadlock. Proceedthrough it andseethe *�����<æ>����	��#���#���� which ensuresthis.

Now proceedthrough the remaining transitions in this cycle (including L	��#��,8�1 ), until the
current stateis again "�3�3�J	��� . After thelast transition, I�.,>�<	���	����J���� , thevalue of B���,��M�(����6� is
finally set,to I	. .

Thepathcondition which hasbuilt up is

59



DST
�

O–TR–1349

( I���� ( :��,±�>��,($ Ö ( K�>��,(� D Ñ L�>���(� D )))
( :	�,±�>���(� Ö ( K�>���(� Ò Ñ L�>��,(� Ò ))
( I���� (( ��#)%'� Ò Ñ :��,±�8�#&%'� ) Ö ��#&%0� ³ ))
(( ��#&%'� Ò Ñ :��,±�8	#&%'� ) Ö ��#)%'� ö )

Notethat thesubscripts signify that input valuesarecompletely independent from onestepin the
animation to another. Also, observe that the “wait transition” at a given nodegivesthe comple-
mentarypredicateto the precondition of the otherpossibile transition at that node. In this way,
deadlock is avoided.

No namehasbeenassociatedwith theanimation asyet - it is thereforeknownasan”anony-
mous”animation, or the”current” animation. If theusersavesthestatemachine andexits DOVE
at this point, this animation will belost. However, theuser maychooseto save this animation,by
selecting theoption .�����(	� from the 2�#�3�� menuof the "��'#&%$������( window. Thisproducesadialog
which enables the userto entera namefor the animation, anda descriptive comment;note that
the namemustbe unique for all the animationsof the current statemachine. The .�����(�� option
canalsobe usedto update the animation, should further changesbe madeto it. It is, however,
important to be aware that the .�����(	� option doesnot do anything to the representation of the
statemachinein secondarystorage. As with other state machine changes,the .��,��� option of the
2�#�3�� menuon DOVE’s main window mustbe applied if theanimationis to bestored in a more
permanent fashion. If this hasnot beendone,the userwill be prompted whenexiting animation
mode.

The usershould now select the I���5 option from the "��$#)%$������( ’s 2�#�3�� menu;this clears the
animation, andany further animations which arecreated will again, be anonymous. To retrieve
the animationthat waspreviously stored, the usershould choose .���3������ from the 2�#�3�� menu-
this displaysasubmenuof animation names. By choosing thenameof theanimation thattheuser
stored earlier, thegraphshould againbeclearedof animation paths, andthestored animation, in
its entirety, should bedisplayed.

The buttons at the baseof the graphprovide a convenientmechanism for stepping rapidly
through an existing animation (although the user should be awarethat if the animationstepsare
notpresentwithin thestatemachine theory, DOVE mayhaveto replay theanimation from scratch
thefirst time it is loaded). By choosingtheleftmostbuttonmarked F·Õ�Õ , theanimation jumpsback
to the start, so that only its start stateis coloured. Likewise, the rightmost button marked ©�© F
will causethe animation to jump to the finish. The usercanalsoapply buttons which causethe
animation to proceedforwardsor backwardsfor agivennumberof steps,or which replayeitherto
thefinish or thebeginningof theanimation. For a full discussionof theseoperations,pleaserefer
to Section 5.2.3.

To exit this animation session the usershould click on either the edit modeor proof mode
buttons,andanswer

õ �� to thedialogbox.

60



DSTO–TR–1349

Chapter 6

Managing Proofs

DOVE providespowerful facilities for proposing, organising andtracking thestatusof statema-
chine properties. The actual proof of properties is delegated to the XIsabelle graphical proof
environment [2]. In this chapter the management of propertiesvia the *�(��,+���(���#���Ï:����	������(
window is consideredfirst, andthena tutorial section is providedto reinforcethis material.After
this, the *�(�������( (XIsabelle) and 8�<$����(��9%/?�(��,5$���( windows arediscussed. The next chapter
providesa discussion of DOVE’s specialisedproof strategies.

6.1 Window display on entering proof mode

Proofmodeis enteredby clickingonthe“turnstile” button(seeFigure3.2(c)) on themenubar
of the DOVE statemachine window. Initi ally this bringsup the *�(��,+	��(���#���Ï:�����������( window
shown in Figure6.1, andthe *�(�������( windowshown in Figure6.3.

Before the *�(������,( actually appears,DOVE automatically calls the >,<����,��¥�>���%�+�#�3�� option
(from the K���#�� menuof thestatemachine graph window). It is not possible to starta proof of a
property in a statemachinetheory with fatal errors in the ensuing diagnostics. If no fatal errors
arefound, thecorresponding diagnosticwindowwill automatically disappear in a few seconds.

6.2 The ÷òôðóîø�ùîôðñòìëùòú ûðï�êðïëüòùîô window

The *�(��,+���(���#���Ï:	���	������( is accessible in Edit modevia the *�(��,+���(���-�P�����#9�$#���#,���0 op-
tion of the P�����#9�$#���#,�,�' menu,and is also brought up automatically when a proof session is
initiated. It organisesa databaseof properties,providing facilities for

1. maintaining namedsetsof properties;

2. defining andnamingproposedproperties within thosesets;

3. editing existing properties;

4. entering existing propertiesinto the *�(������,( ;

61



DST
�

O–TR–1349

Figure 6.1: ThePropertiesManager window.

5. tracking theproof statusof properties.

Thisfunctionality is implementedasadialogboxbasedonthedeclarationwindowsof the P�����#9�$#���#,���0
menuof the state machine graph window. Thebasic interaction – covering the second andthird
itemsof the functionality list above – is asdescribed in Section4.2.4, soonly the distinguishing
featureswill be discussedhere. Thereis a general discussionon statemachine properties in2.7
andthereis adiscussion of how to goabout formulatingpropertiesin Chapter7. Theexactsyntax
for propertiesis presentedin Appendix B.

6.2.1 ý�å¨ä¨þ�ÿÚå�ã�� �¨ã�â¨ã���� reporting

A new elementof the declaration window is the additional areamarked *�(��,+	��(��,-@.������� ' .
As opposedto the .������� ' area,which reports successful(or otherwise)parsing upon committal
of a new entry, the *�(��,+���(��,-@.������� ' areareports whetheror not theselectedproperty hasbeen
proved in the current statemachine. Thus it implements the fifth item of the functionality list.
Therearethree possible reports.

Never proved meaningthat theuserhasnot successfully provedtheselectedproperty at any
stageof thedevelopmentof thecurrent statemachine.

Not proved for the curr ent statemachinemeaningthatit hasbeenprovedin thepast,but not
with the currentversion of the statemachine. In particular, this is thestatus if the statemachine
wassavedsincetheselectedproperty wasproved. A time stampindicatingthetime of committal
of themostrecent proof in a previousversion of thestatemachine is given.

62



DSTO–TR–1349

Proved for the curr ent state machinemeaning theuserhasprovedtheproperty in thecurrent
version of thestatemachine. A time stampindicatingthetime of committal of theproof is given.

It should be notedthat, after a property is proved in the *�(�������( , the statemachinemustbe
savedsothat thefact that theproperty wasprovedis recorded.If thetime recordedfor thesaving
of theproperties file is older thanthatof thestate machinegraphthenthe *�(��,+	��(���#���;:�����������(
will display theproperty asnot beingproved for thecurrentmachine. To save thestate machine,
simplyusethe .��,��� optionin the 2�#�3�� menuof thestatemachinegraphwindow, whichis enabled
whenapplicable.

6.2.2 The ��þ�ã¨à´ä¨ß�� menu

The other distinguishing feature of the *�(���+	��(���#���Ï:	���	������( declaration window is the
1�+���#����' menu,whosecontentsimplement thefirst andfourth itemsabove,andarenow described.

Set Manager starts up a dialogue box for selecting existing, or entering new, setsof property
names.It canbeconvenient, sayfor logically ordering thestatemachinedocumentation, to have
related propertiesgathered together. The *�(���+	��(���#���;:����	������( allowsthisvia the .����É:	���	������(
window which is calledup by selecting this option. Thedesired namefor thesetis typeddirectly
into the >� �(�(��6�	�Ê.���� text-entry box. Uponclicking on the 1�Ç button, thenameis automatically
inserted in the "�����#�3���O$3��².����� list and the .����É:	���	������( window is closed. Existing names
canbeselectedin the "�����#�3���O$3��².����� list, andthenrenamedor deletedvia theotherbuttonsat
thebaseof the .�����:����	������( window. Theselectednamethenbecomesthecurrent set.

Theproperty namesappearing in the declarations list of the *�(���+	��(���#���;:����	������( window
arethosein the setwhosenameis printed in the title bar. This namechangesto the current set
asselectedvia the .�����:����	�����,( window, andthepropertiesof that setarethendisplayed. When
first opened, the *�(���+	��(���#���;:����	������( comesup with thecurrentsetautomatically beingcalled
�������� $3�� . This canbemodifiedasdiscussedabove if desired.

Clear Properties removesall propertiesin thecurrent set.

Save does nothing beyond the .��,��� option under the 2�#�3�� menuof the statemachinegraph
window, andso is superfluous. However, its presencemayhelp theuserto rememberto save the
property, particularly after proof sothatthe *�(���+	��(���-/.������� ' is updated.

ProveSelectedProperty bringsthe *�(�������( window to theforeground, initi atingaproofsession
for theselectedproperty. The *�(�������( window is theXIsabelle interface.It is in this window that
proof stepsarecarriedout,andthroughthiswindow theuserinteractswith theproof. A discussion
of the *�(������,( window is deferredto Section6.4.

It is not possible to startup the *�(�������( window if no property is selected. Also, note that
invoking the *�(�������( requiresanup-to-date imagefile. DOVE will createoneautomatically if this
is not thecase.

63



DST
�

O–TR–1349

If the *�(�������( hasalreadybeenstarted,selecting anew propertyandusingthe *�(������.���3����������
*�(��,+���(���- operation will cause thatproperty to beloaded into the *�(����	��( asthe M�����3 . Usercon-
firmation is required for this. Thecurrent proof session beforeloading canbere-accessedvia the
.65���+ menuon the *�(�������( window, asdiscussedbelow.

6.2.3 Exiting the proof mode

To leave theproof modetheusermustclick on eithertheedit modeor animation modebutton
of theDOVE statemachinewindow. A dialog box thenappears,asking if theexit should continue
(sincethechangeof modewill result in anopenproof session being discarded).If theuseranswers
I�� thenthecurrent proof session is resumed.If theuser answers

õ �� thenthecurrent proof session
is cleared– all relatedopen windows – andclosed (andthedesiredmodeopened).

If the user clicks on the proof modebutton whilst currently in proof modethena dialog box
appears, asking if the proof session should be restarted. If the useranswers I�� then the cur-
rent proof session is resumed. If the user answers

õ �� thenthe current proof session is cleared,
but the *�(���+	��(���#���;:����	������( window remainsopen (since it is accessiblevia the *�(��,+���(��,-
P�����#6�$#���#,���' option of the P�����#9�$#���#,���0 menuof thestatemachine graphwindow.

6.3 Tutor ial: examplepropertiesin Tra Ø cLights

In this tutorial theproof management processis illustratedby consideringsomeexampleprop-
erties. To profit from it, the reader should have at leastscanned Chapter 2; in particular, Sec-
tion 2.1, which describesthevarious attributesandinputs of thetra! c lights system.

It is assumedthatthereader hastheDOVE tool appropriately setupasin Chapter3, andis in a
working directory 8�(�������#���B�#���<��� – which includesthefile 8�(�������#���B�#���<���E�¸&%$� – asdiscussed
in thepreambleto Section3.2. In thefoll owing, thecommand-line promptis denotedby the © at
the beginning of the commandline. Also, in commonwith the restof the manual, grammatical
notation will not beincludedin commandlines.

Opena DOVE sessionwith theTra! cLights state machine. As explainedin Section3.1, this
is done by typing

© �������É8�(�������#��,B�#���<	��
Thegrey, grid-patternedcanvaswith the completeTra! cLights statemachinewill quite quickly
appear on thescreen. This is theDOVE statemachine window, which wasusedfor designing the
machine – asdiscussedin Chapter 4, andin thetutorial Section4.5. Theuserwill noticethat the
“pencil” iconon themenubaris blue,whereastheother iconsaregreen. Thismakesmanifest that
the DOVE session is in editing mode. Click on the “turnstile” icon which will thenbe the only
blue one, indicating that thesession is now in proof mode. The *�(��,+���(���#���Ï:	���	������( window
appears,andthe *�(����	��( window foll ows.

Thepropertiesconsideredin thistutorial arethebasicsafety requirementsof the 8�(�������#���B�#���<���
machine;namely, thattheE7 W andN7 Ssetsof lightsareinternally synchronisedandthatit is never
thecasethatbothsetsof lights aregreenat once.

64



DSTO–TR–1349

The synchronisation properties simply require that the variable pairs K�B�#���<�� and L�B	#���<	� ,
I�B�#���<	� and .�B�#���<	� , respectively, arealwaysequal. Recalling the temporal operatorspresented
in Section 2.7, this property maybeexpressedby thestatement

F�G�"�365	�,-� ( K�B	#���<	� T L�B�#���<	� )
in thecaseof theE7 W lights, andby thestatement

F�G�"�365	�,-� ( I�B	#���<	� T .�B�#���<	� )
in thecaseof theN7 Slights.

Theexclusionproperty maybeexpressedby thestatement

F�G�"�365	�,-��I���� (( K�B�#���<	� T M�(����6� ) ����� ( I�B	#���<	� T M�(����6� ))
It is not necessary to consider theothercombinationsof lights, providedthat thesynchronisation
propertieshavebeen proved.

Figure 6.2: Theedit property dialog window.

Thesepropertieswill beentered in two di � erent sets,labelled by thetypeof property asindi-
catedabove: synchronisation propertiesin theset“Synchronisn”, andexclusionproperties in the
set“Exclusn”.

Theuser should now createthesetSynchro, andenterthesynchronisationproperties,asfol-
lows.

65



DST
�

O–TR–1349

- Click on the .�����:����	������( option of the 1�+���#����' menuon the *�(���+	��(���#���;:����	������(
window.

- Enterthe setnameSynchroin the >� �(�(��6���Î.����SR text-entry box of the dialog box which
appears.

- Click 1�Ç on thedialog box. The *�(���+	��(���#���;:����	������( window’s title bar is now labelled
by thenew setname,andall propertiesentered herewill belong to thesetSynchro.

- Click on the I	��5 button on the *�(��,+	��(���#���;:�����������( window.

- EnterthenameK,L�B�#���<	��,K�× in thedialogbox which appears.

- In the P$����#9�'#���#,�,� text entry field typetheE7 W synchronisationstatementdescribedabove
and in the >���%�%'�6��� field type a descriptive sentence about the property. The edit dialog
should now appearaspresentedin Figure6.2.

- Click on the >��6%�%0#�� button to ensure thattheproperty is correctly entered.

- Click >�3,�	�� in thedialog box. Theproperty K,L�B�#���<	��,K�× is thenautomatically insertedin
thedeclarations list of the *�(��,+���(���#���Ï:����	������( window.

- Similarly, enter thesynchronisation property I	.�B	#���<	���K�× asgivenabove.

Similarly, createthesetExclusnandenter theexclusion property K�I�M�(�������K�± . The *�(���+	��(���#���
:����	������( window should now appearaspresentedin Figure6.1.

A proof session for oneof thepropertiescanbeiniti atedby selecting the .�����(��É*�(������ item
from the *�(������ menu.In thenext chapter theproof of theproperty K�L�B�#���<����K�× is considered in
detail.

6.4 The ÷ëôðó��ðùîô window

As stated in Section6.2.2, theDOVE *�(�������( environment is invokedby highlighting a prop-
erty in the *�(������Ã:����	�����,( window andselecting the *�(������Ê.���3����������É*�(��,+	�,(��,- option from
the 1�+	��#,���0 menu. At this point the XIsabelle environment is brought to the foreground, as
depictedin Figure6.3.

The *�(������,( display hasbeenspecialisedin anumber of waysto helpsupport theproof of state
machine properties. In order to be able to discussthese enhancements, a quick overview of the
various featuresof the *�(�������( window is givenin thefoll owing subsections. Thediscussion here
is wordedsothatit is not necessaryto haveadetailedunderstanding of theuser7 prover interaction
inducedfrom theproof modeladoptedby Isabelle (andhenceXIsabelle). An analysisof theproof
model itself appearsin the next chapter. For any unfamiliar termsthe reader should consult the
glossary at the beginning of the User Manual. For more details of XIsabelle, the usershould
consult [2].

66



DSTO–TR–1349

Figure 6.3: Theprover window

6.4.1 Framesand buttons

Isabelle adopts what is termeda goal-directed proof strategy in which an evolving proof is
representedasa stack of proof states. The list of currently unjustified results (called subgoals)
provides the representation of the current proof statewhich the usersees. The user constructs
thenext level of theproof (thenew proof state) by applying a valid proof step(a tactic) from the
DOVE deductive system.

The .9 �O	������3� frameis the top frameof the *�(�������( window, in which the proof state– the
list of currently unprovedsubgoals– is displayed.Theheaderof this frameactually displays the
numberof subgoalsremaining. Initi ally, the subgoal list consistssolely of the overall goal to be
proved, but during the courseof the proof variousintermediate subgoals will be introduced. At
eachstage,thecurrent subgoalto which a proof tactic is to beappliedcanbeselectedby clicking
on it with mousebutton 1, and is thenhighlighted by being displayedin red. The highlighted
subgoal is calledtheactive subgoal.

The 8�������#��� framesandbuttonsaretheframes,buttonsandtactics listsbelowthis top frame
which allow theuserto carryout proof steps. Thebasicprocedureis that theuserselects a proof
tactic with mousebutton 1. The chosen tactic is thendisplayedin the >� �(�(��6�	��8�������#�� frame,
andcanbe applied to the active subgoal by clicking on the "�+�+�3�- button. [The usermay also
simply double-click on the tactic.] Alternatively, it canbe applied to all subgoalsin the current
proof stateby clicking on the "�+�+�3�-²8���"�3�3 button. After the proof tactic hasbeenapplied,

67



DST
�

O–TR–1349

the top frameof the *�(�������( window is updatedto display all current subgoals (with the active
subgoalhighlighted).Thisbasic procedureappliesin particular to thelist of P�1�4�K�8�������#��� , which
contains proof tactics(discussed in detail in thenext chapter) designedspecifically for reasoning
about DOVE state machines.

Theuseof ?����#��A8�������#��� is similar, but requiresslightly moreknowledgeof theXIsabelle
proof tool. The usershould refer at this point to the XIsabelle usermanual[2] andthe Isabelle
documentation [9].

The È0���(Î8�������#��� framelistsspecial tacticsinstalleddirectly by theuser. A brief application
of this functionality will begivenin thetutorial of thenext chapter.

The :	�����6<Ê8�<�����(��)%´ button bringsupthe 8�<�����(��9%/?�(��,5$��,( window, toggledto :�������<$#9���
1�� , which lists the theoremsthat canbe applied to the active subgoal. This facility is typically
usedin conjunction with many of the ?����#��A8�������#��� , or with the =6�	����(�������#���� sublistof P�1�4�K
8�������#��� , asdiscussedin thenext chapter, andis a feature for theadvanceduser.

6.4.2 The menubar

Acrossthe top of the *�(�������( window thereis a menubarwith menusproviding a variety of
facilities: for customisingXIsabelle’s proof environment; for saving andmanagingproofs; for au-
tomating repetitiveproof steps; andfor printing proofs in human-readable format.To find detailed
descriptions of the functions provided by thesemenusthe reader should refer to the XIsabelle
usermanual[2], which canbe obtainedunder the

C ��3�+ menubutton. The present documentis
not self-contained in that thesedetails aretypically not repeatedhere. However, it is worthwhile
emphasising themenuitemswhich areparticularly relevantfor theDOVE tool, andthefollowing
lists someof therelevanthighlights.

6.4.2.1 The 	�
�� menu

is largely self-explanatory, providing thefunctionality for proofmanagement – in particular for
saving proofs into proof scripts. More discussion of this proof management will be given below
in Section 6.5. Theoption K�±�+���(��²��ÉB��,8	��± producesa user-readableaccount of a givenproof.

6.4.2.2 The ������� menu

includes >,<��,+ facilities, which areused to undo proof steps;either the >,<��,+ option which
undoes one proof step, or the >�<��,+æ���B��,����3 option which chops back to the specifiedlevel
(that canbe readfrom the current *�(������ C #�,����(�- ), or the J	��,���,(�� option which chopsback
to thestart. The 2���,�2���(�5��,(�� option canthenbeusedto scroll quickly backthrough all proof
stepsto the final level in the current *�(������ C #������(�- , while the .�����+Ê2���(�5��,(�� option applies
just onestep.Thekeyboardaccelerators for theseoptionsare:

H >��,�	�,(���3�G�3������ for >,<��,+
H >��,�	�,(���3�G9(�#���<	� for .�����+@2���(�5��,(��

68



DSTO–TR–1349

H .9<'#����	G�3������ for J	������,(��
H .9<'#����	G9(	#���<	� for 2���,�²2���(�5	�,(��

6.4.2.3 The ��
��� menu

providesdi � erent modesof proof visualization in the 8�(����ÙP$#�9+$3��,- and *�(������ C #������(�-
options. The *�(������ C #������(�- options bring up a proof script which lists, in order, the proof
stepsapplied before thecurrent proof state (or thecompletelist in a previously-completedproof).
Theseoptionsshould beaccessedduring proofs to provide simplemeansof applying proof steps
– simply double-clicking on therequired step.Anotheroption in this menu,the 4�#���58�<$����(	�)%Ú
option, bringsup the 8�<�����(��)%@?�(���5$���( window (toggledto :������6<'#9�	�A1���� by default, or to the
previousstate in which the 8�<�����(��9%/?�(��,5$��,( wasquit). SeeSection6.6 for moredetails on the
8�<�����(��)%@?�(���5$���( window.

6.4.2.4 The �����
������ menu

providesa .9 �O	������3;P'#�9+�3��,- option that hasasubsetof theoptions in the 1�+���#����' menuof
the 8�<�����(��)%@?�(���5$���( window, which is discussedin Section6.6.

6.4.2.5 The ������� menu

providesthe facility to swapbetweenproof sessions for di � erent propertieswhich have been
loaded concurrently from the *�(��,+	��(���#���;:�����������( , asdiscussedlater in Section6.5.

6.5 Proof management: ending,saving, loading and
restarting proofs

In this section severaluseful hints for managing proofs arecollected.

H The proof of morethanoneproperty canbe attemptedconcurrently – which is useful, for
example, if theuserrealisesthata further lemmais required – aswill now beexplained.At
any stage in a current proof session theusermayentera new property into the *�(�������( via
the *�(���+	��(���#���Ï:	���	������( window, following the steps explained in Section6.2.2. This
starts a new proof session for the new property (user confirmation is required). To change
the *�(������,( window to display the appropriateproof session, the usermay simply choose
thedesired option in the .65	��+ menu.In this way, a total proof session buildsup,consisting
of any numberof concurrent component proof sessions. In particular, a completed proof
will remainasa componentof thetotal proof session.

H Oncethe total proof session is exited – asexplained in Section6.2.3– the proof stepsto
datein all proofs arelost unless the proof script hasbeen saved(up to its current state) by
the user. This is achieved by selecting the .��,��� option of the 2�#�3�� menuon the *�(����	��(

69



DST
�

O–TR–1349

window. Theproof script containing all stepsto thecurrent proof statefor a givenproperty
* , say, is thensaved to a file *��£+�(�� . This proof script canbere-exhibited by choosingthe
*�(������ C #������(�-! ¸1���<$��(#" option of the 4�#���5 menuon the *�(�������( window, which then
bringsupadialog box from which theusermayselectthedesiredscript file. Uponselecting
it, a *�(������ C #�,����(�- windowappears which containsthescript.

H Theproofscriptsaresavedin XIsabelle format,sothatagivenproof stepmaybereplayed–
or eveninsertedinto the *�(����	��( while in acompletelydi� erentproof session – by clicking
on thecorresponding line in thescript andthenpressing the "�+�+$3�- button (or, alternatively,
by simply double-clicking on thecorresponding line in thescript).

H Becauseof thistactic insertion facility, it is convenient alwaysto haveopena *�(������ C #������(�-
window for thecurrent proof, whichis achievedby choosing the *�(������ C #�,����(�-! ¬>, �(�(	�6�	�$"
option of the 4�#���5 menuon the *�(�������( window.

H On the completion of a proof, DOVE will announceto the userthat the proof is complete
and thenwait for the userto click 1�Ç . DOVE thenautomatically addsthe corresponding
theorem to the theorem list of the current theory, and commitsa new ML imageof the
updatedtheory (this may take a littl e time). The theorem will immediately appear in the
8�<$����(��9%/?�(��,5$��,( window (in the 8�<$����(	�)%/I��9%'�� list corresponding to thenameof the
currentstate machinein the 8�<$����(�-I��9%0�� list).

H Theproof script is not savedautomaticallyat thecompletion of a proof. It is good practice
to save theproof script for later consideration. Saving is carried out asdiscussedabove. A
di � erent namefor theproof scriptmaybegivenby insteadusing the .��,���A"$ option of the
2�#�3�� menu.

H Whenquitting the *�(������,( while it contains anunsavedproof, DOVE will display a dialog
box asking theuserif theproof should besavedor not.

H Sinceunfinishedproofs canbesaved, theusermayquit DOVE andresumetheproof session
at a laterdatesimply by:

– entering the proof session andloading the desired property into the *�(����	��( through
the *�(��,+	��(���#���Ï:�����������( asusual;

– bringing up the desired proof script via the *�(������ C #�,����(�-! ¹1���<$��(#" option of the
4�#���5 menuon the *�(����	��( window, asdiscussedabove;

– re-entering theproof stepsknown to dateby doubleclicking on thecorresponding line
in theproof script.

– Whenquitting theDOVE session completely, if any proofs have beencompletedthen
a new ML imageof thecurrent logic statewill automatically bewritten. Thus,when
a laterDOVE session with thesamestatemachineis commenced, these provedprop-
erties will be available as theoremsfor use in proving further properties – without
needing to bereproved.

H As discussedabove, the .��,��� option of the 2�#�3�� menuon the *�(�������( window savesthe
proof scripts in XIsabelle format. To obtaina morehuman-readableform, usethe K�±�+���(��
��ÉB��,8	��± option of the 2�#�3�� menuon the *�(����	��( window. Thiswill replaytheproof, and
generatea LATEX file (in thedirectory wheretheDOVE session is being run) containing the
proof.

70



DSTO–TR–1349

6.6 The %'&�ùëóîô�ùîí (ëô�ó*)�úëùîô window

The 8�<�����(	�)%/?�(��,5$���( is adjunct to the *�(����	��( window. It simply contains a list of the
theoremswhichareavailablefor theuserto reasonwith whilst carrying outtheproof in the *�(������,(
window. This is a featurefor advancedusers.

The 8�<�����(��)%/?�(��,5'���( window can be brought up via the *�(�������( window via the 4�#���5
menu,or via the :������6</8�<�����(��9%Ú button, as discussedabove in Section6.4.1. The 8�<�����(��9%
?�(��,5'���( window will cometo the foreground wheninvoked,andmay be quit independently of
the *�(�������( via its own 2�#�3�� menuoption, >�3����� .

6.6.1 Frames

Thereare threeframeson the 8�<�����(	�)%/?�(��,5'���( window, which all have a very di � erent
functionality.

The 8�<�����(�-²I��9%'�� frame lists thenamesof all Isabelle theoriesupon which thecurrent state
machineis based (including thecurrent statemachine!). Thenameof thecurrentlyselectedtheory
is recordedon theRHSof themenubar.

The 8�<�����(��)%@I��6%'�� frame lists thenamesof theoremswhich arecontainedin theselected
theory. In particular, any theorem provedby theuserin theDOVE session will beincludedin this
list. Theactual classof theoremnameswhichwill bedisplayedheredependson themenuoptions
chosen,asdiscussedbelow. This frameis “cli ckable”, andis used to insert the theoreminto the
*�(����	��( :

H single-clicking on a theorem namewith mousebutton 1 will display the statement of the
theoremin the 8�<$����(��9% frame.

H holding down the Shift key andsingle-clicking on a theorem namewith mousebutton 1
will apply the theorem to the active subgoal in the *�(������,( window (if possible) via an
automatically chosen tactic.

H clicking once on a theoremnamewith mousebutton 2 will insert thatnameinto a waiting
tactic in the >, �(�(����	�É8�������#�� frameof the *�(�������( window. As usual, the tactic canbe
thenbeapplied to theactive subgoal by clicking on the "�+�+$3�- button, or to all subgoalsin
thecurrent proof stateby clicking on the "�+�+�3�-²8���"�3�3 button.

This usage will becomeclearer aftertheuserhasgonethroughthetutorial in Section7.5.

The 8�<�����(��)% frame displays the theorem corresponding to the theorem namechosen by
single-clicking with mousebutton 1 in the 8�<$����(	�)%/I��9%'�� frame.

6.6.2 The menubar

The 2�#�3�� menuprovidesanoption >�3,�	�� for closing the 8�<�����(��)%@?�(��,5'���( window.

The 4�#���5 menu controls which class of theoremsis displayed in the I��9%'�� frame. The
typical userwould simply choose the "�3�3É8�<$����(	�)%Ú option. The advancedusermay want to

71



DST
�

O–TR–1349

restrict the output appropriately. The 8��)%�+���(���3A2������� option is usedin conjunction with the
"����²8��)%�+���(���3A2������ option in the P�1�4�K menuof the *�(������,( window, asdescribedin Subsec-
tion 7.3.3.

The 1�+	��#,���0 menu providesan option P$#�9+$3��,- which allows variousdi � erentdisplaysof
the subgoals. Although the typical user is unlikely to make useof this menu, the toggles for
.9<��,5Ê?�(����������� and .9<	�,5ÎI��9%'�� in the P'#�9+�3��,- option areDOVE additionsto XIsabelle. The
option .6<��,5Î?�(����������� enforcesthedisplay of thebracketswhich make manifest thebindingsof
various operatorsin the subgoal terms. If the :������6<$#6�	�É1�� facility is required thenit is crucial
for this option to betoggledon,sinceDOVE requiresthebracketsto beableto correctly parsethe
terms.Theoption .9<���5ÎI��9%'�� , if toggledon,expandstheabbreviationsin theDOVE syntax for
temporal operators,thusmakingthemmorereadable.

The
C ��36+ menu containsdi� erent options for XIsabelle andIsabelle documentation. These

mayhave moreinformationabout the functionson the *�(�������( and 8�<�����(��)%@?�(���5$���( windows
beyond thatgivenin thepresentDOVE UserManual,if required.

6.6.3 Matching terms facility

Whenthe 8�<$����(��9%/?�(��,5$��,( window is brought upfrom the *�(�������( via the :�������<Î8�<$����(	�)%Ú
button, thetool will matchon theform of theactive subgoal in the *�(������,( window. Thereby, the
8�<�����(��)%@?�(���5$���( displaysonly thosetheoremswhich will have ane� ect whenapplied appro-
priately to theactive subgoal.

6.7 Proof visualization

Oneapproachto building better formalmethods toolsis via theconcept of proof visualisation:
a combination of techniques, built on top of existing automated proof tools, that helps the user
understand, structureandcontrol longandcomplex sequencesof reasoningin anatural way. These
techniquesinvolve theuseof diagramsandpicturesto representaspectsof formal proofs, but also
includetheuseof domain knowledge in proofs andtheconstruction of appropriately-sizedproof
steps.

Onee� ective way of structuring complex information andprocessesis by meansof graphical
representations,or visualisation. Therearetwo waysin which such a representation canbeused:

H passive, which helps theuserunderstand andcommunicate theproof; and

H active, which allows theuserto control construction of theproof.

Passivevisualisation hasbeen implementedin DOVE, whichhighlightsthenodeandedgecor-
respondingto thestate andtransitions occurring in theassumptionsof thecurrent active subgoal.
This allowsoneto seewhich partof thedesign is currently being reasonedabout.

The active subgoal can be changed by clicking on a transition entering a statenode, thus
demonstrating a very basicform of active proof visualisation. This triggersa searchthrough the
subgoal list for thefirst onewhosehypothesesmatchthechosentransition andstate(which are,in

72



DSTO–TR–1349

turn, highlighted). Thematchedsubgoal becomesthe new active subgoal. Selection of subgoals
from thegraph in thiswaycanconveniently allow theproof to bedevelopedin anorder thatappear
natural from thedesign, ratherthanthemorearbitrary order in which thesubgoalsarelisted. The
reader maywish to experimentwith this facility during theproof tutorialsin Chapter7.

73



DST
�

O–TR–1349

74



DSTO–TR–1349

Chapter 7

Proof strategiesand tactics

It hasbeenfound that the formal proof facility is the aspect of the DOVE tool which is hardest
for beginning users to grasp. This is not surprising in itself, sincethe ratherbaroqueintricacies
of syntax, semantics,andlogic in formal methods tendto testtheattention-spanof eventhemost
dedicatedmathematicians. However, somee� ort hasbeenmadein the DOVE tool to eliminate
muchof the arcanenotation, conventions,andartificeswhich arerequired in the construction of
a formal proof – at least, asmuchasis practicable without losing the ability to make nontrivial
applications. In particular, a proof strategy suitable for a wide rangeof DOVE statemachineshas
beendevisedandencodedasa setof stepsto beimplementedin the *�(�������( .

To explain this, andyet to caterfor moreexperienced users, the present Chapteris written
at two di� erent levels. The introductory level is relatively straightforward,with thebasic DOVE
proof strategy presentedasa recipe anddemonstratedon a simpleexample. The advanced level
presentsmoredetailsandhasadiscussionof morecomplicatedtacticsdemonstrated in asomewhat
harder example.Specifically, thesplit is asfollows.

H Theintroductory level, building ontheoutline of good *�(������,( practicegivenin Section6.5,
andtheearlier Sections2.7and2.8, is foundin:

– the glossary on page(xv) of this UserManual,which gently introduces the language
of formal methods;

– Appendix G, which introduces theconceptsof formal theories.

– Section7.1, which givesanexplanation of thenature andworkingsof theproof assis-
tantIsabelle,anda discussionof theDOVE implementation;

– Section7.2, wheretheDOVE prooftacticsareintroduced– particularly Subsection7.2.1,
wherethefundamentaltacticsof theDOVE proof strategy aregiven; and

– Section7.4, a tutorial demonstrating thosefundamentaltacticsonasimpleexampleof
aninvariant property of the 8�(�������#��,B�#���<	�� machine.

H Theadvancedlevel is found, beyond thosesections,in:

– Appendix C, wherea technical presentation of theinferencerulesprovidedby DOVE,
onemoresuitedto theexpertreader, canbefound;

– Section7.5, a tutorial demonstrating moreadvanceduseof DOVE tactics.

75



DST
�

O–TR–1349

– Section7.6, whichhasfurtherdiscussion of theuseof theproof tool, concentrating on
themethods usedin theadvancedtutorial.

In this way it is hopedto provide anintuition for thebasicsof proof in DOVE andto demonstrate
thelevel of power available evento thenaiveuser.

Theverification of statemachine properties in DOVE is carriedout usingthegraphical proof
environment XIsabelle [2]. This manualdoesnot attemptto provide a detailed introduction to the
XIsabelle tool. Instead, the unique aspects of proof in the DOVE environment areemphasised
– in particular, the specialised strategies, tactics, and inference rules provided specifically for
reasoning about statemachineproperties. However, to implement the full power of the *�(�������( it
is necessaryfor theuserto be familiar with the Isabelle proof tool. This is, perhapssurprisingly,
not a particularly onerous task, as the interestedreaderwill find on studying the existing user
documentation for Isabelle [9] andXIsabelle [2].

7.1 Proof in DOVE+ XIsabelle

Beforepresenting the DOVE proof strategy, someof the basics of how Isabelle mechanises
theprocessof logical reasoning areconsidered.

7.1.1 Interacti veproof tools

Isabelle is an interactiveproof tool, meaningthat it implements proof tactics which the user
mustselectat eachstage of the evolving proof. A commonquestion is: since many steps of a
formal proof arequite trivial, why not usean automaticproof tool which simply takesthe goal
and attempts to construct a formal proof? Thereare a number of important reasons why the
interactive tool is better suited to thetaskhere.

H It is not possible to give a general algorithm which will construct a formal proof for any
property. Thusan automatic tool needs to be tightly targetedto a subclassof subgoals. A
specific andfixed logical structure is introduced to carry this out. In an interactive proof
tool suchasIsabelle thelogical structurecanbeextendedalmost indefinitely, which clearly
providesthe user with a lot of power. In DOVE the aim is to harness this power, while
directing it in a moreaccessible manner.

H It is not necessarily a goodideato have tactics which make a large change from oneproof
stateto the next, since the useroften needs to be ableto keeptrack of the logical changes
involved. Automaticproof tools clearly provide anextremeexamplewherethefinal proof
stateis very far from the original goal. The machine-generatedproof is unlikely to be
very intuitive or useful for theuser. Moreover, whentheautomaticproof attemptdoesnot
succeedtherewill beessentially no informationto begainedby looking at thecurrentproof
state. Theuser mustthendeviseclever lemmaswhich thetool canaddresssuccessfully on
its way towardsproving theoverall goal. Theneedto develop this skill is a huge burdenon
theuser.

76



DSTO–TR–1349

C

P1 ,-,., * i ,.,., * n

Figure 7.1: Thestructure of a theorem(or proof state).

H A majoruseof verification is directedtowards thecertification of productsto high levelsof
trust asembodied in, say, theITSEC[3] classification. For suchsituations thelevel of trust
mustbetransferredfrom theverifiersto theevaluators,soa well laid out sequenceof small
andeasily checkedproof steps is optimumin thatsetting.

H An interactive proof still requires that the small steps be structured towardsproving the
goal. However, this structuring in itself providestheuserwith deeper insight into thestate
machine properties. Failure of the proof attempt can then possibly be correlated with a
defect in themachine design.

H At the sametime, someconvenient level of automation canbe implemented in Isabelle by
bundling together individual inferencerulesto make specific tactics. In DOVE suchtactics
areavailablein the *�(������,( , often allowing theoptimum proof strategy to be implemented
in just a few steps.

7.1.2 Theoremsand inference

At thecoreof Isabelle is an abstractdatatype for representingthe termsandlogical proposi-
tions to bereasonedabout. Associatedwith this datatypearea smallnumber of trusted functions
for constructing logical propositionswhichareguaranteedto be“true”. Thesefunctionsarecalled
the inferencerules of Isabelle andthetruepropositions they construct arecalledtheorems.

Theoremsin Isabelle cantake either of two forms:

H A logical implication,

P1... Pn
C

states that a conclusion C is true whenever the premisesP1, ..., Pnare true. Figure 7.1
presentsa useful graphical depiction of a logical implication.

H An equivalencetheorem,

S / T,

states thatthetermShasexactly thesamemeaningasthetermT.

Threeof themostimportant inferencerulesin Isabelle areassumption,resolution, andsubsti-
tution. Theassumptionrule (seeFigure7.2) builds,for any proposition P, thetheorem

77



DST
�

O–TR–1349

P
P

P

Figure 7.2: Theassumptioninferencerule

C

* 1 ,.,-, Pi ,-,., Pn
..

..
..

..
..

..
..
..
..
..PÂ

Pi1 ,.,., Pim

C

P1 ,.,-, Pi1 ,.,., Pim ,.,., Pn

Figure 7.3: Theresolution inferencerule

P
P

Theresolution rule (seeFigure7.3) joins animplication,

Pi1... Pim
Pi

with animplication with premise Pi,

P1... Pi . . .Pn
C

by replacing thepremise Pi in thelatter implicationwith thepremisesPi1... Pimof theformer. The
substitution rule usesan equivalenceS / T anda theorem P(S) in which the term S occurs, to
construct thenew theorem P(T), in which S is replacedby T.

Inferencerules suchas thosedescribed above are called pure rules because they construct
theoremswithout regardto themeaning (or semantics)of the termswhich they manipulate. Ob-
viously, if Isabelle did not allow oneto make useof themeaningsof terms,it would not bea very
useful tool. Themechanism Isabelle usesto make useof themeaningof termsis the theory file.
A theory file introducesa collectionof namedobjects anda collection of theorems about those
objects, calledtheaxiomsof the theory. For example, thefile 8�(�������#��,B�#���<	��E����<�- is thetheory
file generatedby DOVE to tell Isabelle the meaning of the 8�(�������#��,B�#���<	�� state machine. It
introducesall the states, transitions, variables, etc. of the 8�(�������#��,B	#���<	�� state machine anda
collection of axiomsthatcanbeusedto reason about it.

78



DSTO–TR–1349

7.1.3 Proof-state and tactics

In orderto facilitateinteractive proof, Isabelle provideswhat is termeda goal-directedproof
package.Theaim of thepackageis to allow theuser to reason backwards from adesiredproperty
(called thegoal), throughintermediatepremises (calledsubgoals) whicharesu! cient to establish
thegoal, finally to theaxioms(or previously proven theorems)of the theory. TheXIsabelle tool
providesagraphical environmentfor performingsuchgoal-directed proofs. In thefollowing, only
proof in XIsabelle is considered.

Thefirst stepin anXIsabelle proof is to enter a desiredgoal M andthetheory in which it is to
beproved11. XIsabelle thenusestheassumptionrule to construct thetheorem

G
G

which becomesthe initi al proof-state. At eachstagein theproof, theproof-statewill consist of a
theoremof theform

SG1... SGn
G

(together with added bookkeeping information usedto support the mechanics of the XIsabelle
proof activity). Thepremisesof theproof-statearecalledthecurrentsubgoalsandit is these that
aredisplayedin theXIsabelle prover window(seeFigure6.3).

In order to progressthe proof, the userappliesa tactic, which, simply put, is just a program
which changestheproof-state. Most tacticswork by makinguseof inferencerules,axioms,and
known theoremsto replace oneof the subgoalswith zeroor morenew subgoals. Thusthe most
commonform of proof stepin XIsabelle consists of selecting a subgoal (from the main prover
panel), selecting a tactic(from eitherof the ?����#��A8�������#��� or P�1�4�K�8�������#��� panels), andthen
possibly selecting oneor moreaxiomsor theorems(from the 8�<$����(	�)%/?�(��,5$���( window) for use
in the tactic. If a tactic replacesa subgoal by an emptycollection of new subgoals, the subgoal
is saidto have beendischarged. Theaim of theproof activity is to discharge all of thesubgoals,
leaving a proof stateof theform

G

which is just thestatementthattheproperty G is a theorem.

As already stated, XIsabellekeepsacertainamountof book-keeping informationin theproof-
state. An important partof this is theproof-history, which recordsfaithfully all of thetacticsthat
have beenappliedin developing thecurrent proof-state. This canbeusedto backstepto anearlier
stagein the proof or to repeata certain sequenceof stepsfrom earlier in the proof. It is even
possible to openproof-histories from otherproofs entirely andmake useof themin the current
proof.

11 In DOVE this is handledby the 0&½&�.132¬½)�&Â-2)Á549¾À¿�¾7672¹½ .
79



DST8 O–TR–1349

7.1.4 Temporal sequents

Althoughany form of logicalsubgoalmayappear in aDOVE proof, subgoalsgenerally appear
in theform of a temporal sequent. A simpleform of thetemporal sequent hasalready beenseenin
Section2.8. Eachsequent consistsof a list of temporal hypothesisformulaeanda temporal target
formula, separatedby a sequentturnstile.

H1, ...,Hn 9;: T

In order to prove such a sequent subgoal, it is necessaryto demonstrate that the target is true,
providedthat all of thehypotheses arealsotrue.

Appendix C explains in detail how theDOVE temporal logic theory is developedthroughthe
useof sequents.For theremainderof this chapter it is su< cient thatthereader is familiar with the
formatof sequents, andwith thetermshypothesisandtarget introduced above.

TheXIsabelle tool (andtheunderlying Isabelle tool) provide a largenumberof powerful fea-
turesnotdescribedin thissection. Theaimof thissection hasbeenjust to introducethevocabulary
andconceptswhich arevital to anunderstanding of theproof exampleswhich follow. The inter-
estedreader is strongly urgedto consult theXIsabelle [2] andIsabelle [8] manualsin order to gain
a better appreciation of thepower thesetools provide.

7.2 The DOVE proof strategy

As describedin Section 2.8, the proof strategy adoptedin DOVE is that of induction on the
executionsof the state machine, implemented via the processof back-substitution. Briefly, this
worksasfoll ows.

1. Given a property, the question is whether it holds for all executions of the statemachine.
This canbeanswered in thea< rmative,under theprinciple of induction, if:

= all theinitial configurationssatisfy theproperty;and= for every execution of thestatemachinewhich satisfiestheproperty, all enabledtran-
sitionstake thestate machineto anexecution which alsosatisfiestheproperty.

Thelatter item is calledthe inductivestep. In DOVE, theinductive stepis reinterpreted asa
statementin temporal logic.

2. Givena subgoal, a DOVE statemachinewill only have a finite numberof nodesandtran-
sition edges,possibly all, which arerelevant to theproof of thatproperty. Thesubgoal can
thenbesplit into casesuniquely determinedby this topology informationfrom thegraph.

3. Givenatemporal property, onecanclearly describewhatmusthavebeentruein theprevious
configuration (defined uniquely after thedecomposition under graphtopology) in orderfor
the current configuration in the execution history to satisfy it. DOVE back-substitutes to
replaceoccurencesof variablenamesin thecorresponding temporal sequent with thevalues
assignedto them by thelasttransition.

80



DSTO–TR–1349

Oncetheback-substitution of arequiredpropertyhasbeendetermined,theinductionstepbecomes
a ‘simple’ matterof proving that the required property implies its own back-substitution – or,
possibly, thatthis is trueaftera numberof back-substitution steps.

Items1, 2 and3 enumeratedabove form what will be called the basicDOVE proof strategy
– or the “back-substitution proof strategy”. DOVE providescorresponding tacticscorresponding
to each step– respectively, >@?�A@B#C�AED�FHG3I�DKJLHM , NE?�OP?PQ�?ER�S , and TPC$L�U�V3J@WXF�MEY�MKJ�M$Z – in the [E\@]P^NPC$LHMPYHLEF frame on the _$AE?�`#Z�A window. Thesetactics arediscussedin more detail in Subsec-
tion 7.2.1below.

Moregenerally, in the [E\H]#^aN#C$LHMEY@LEF frameDOVE presentstheuserwith asmall,but power-
ful, collection of “tailor-made” tactics thathave been specifically designedto augmentor support
thebasic back-substitutionproofstrategy. Thesetacticsareautomatically installed in theXIsabelle_@AE?�`�ZKA whenanew proof begins. They arediscussedfurther in Subsections7.2.2andSection7.3
below.

XIsabelle furtherprovidesfacility for theuserto install customisedusertactics,asdescribed
in the XIsabelle manual[2], but in this section only the tacticssupplied with the DOVE tool are
considered.

Theessenceof thephilosophy usedin constructing DOVE’sverificationtool is that,whenaug-
mentedby somesimplestructural rules, the“temporal operations” in statemachine propertiesare
mosteb ectively dealt with via theback-substitution strategy. Thus,while maintaining thepower
of theunderlying Isabelle proof tool asmuchaspossible, the _$AE?�`#Z�A is neverthelessstreamlined
towardsspecialiseduse.Theadvancedusercouldsimply take the _@AE?H`#ZKA asanaugmentedfront
endto theIsabelle tool, but for design verification the [P\H]P^aNPC$LHMPYHLEF will largely su< ce.

7.2.1 The primary tacticsof the DOVE proof strategy

To begin the discussion of DOVE’s user-tactics, consider the three tacticswhich implement
theback-substitution strategy.

>@?�AHB�C�AED�FHG3I#D�JLHM The >$?�AHB#C�AED#FHGcI#DKJdLHM tactic is likely to bethefirst tacticused in mostDOVE
proofs. It maybeapplied to any goalof theform

e QfB#C�SF A1, ...,
e QcB#C�SF An,G3IgY�MEY�CPQ@QfS I1, ..., G3IgY�MEY�CPQ@QfS Im,

H1, ...,Hl9;: e QcB�C�SF P

andintroducesthesubgoal

e QfB#C�SF A1, ...,
e QcB#C�SF An,G3IgY�MEY�CPQ@QfS I1, ..., G3IgY�MEY�CPQ@QfS Im,

H1, ...,Hl ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF P
9;: e QcB�C�SF P

81



DST8 O–TR–1349

Thisis simplytheinductivehypothesisdiscussedearlier, asbecomesclearif onewasto decompose
under >#YfAF�M and hP?$M5>PYKAF�M to get the equivalent representation in termsof two subgoals: the
initial case

>PYKAF�M , e QcB�C�SF A1, ...,
e QcB#C�SdF An, I1, ..., Im 9;: P

(sinceany Previously hypothesisis trivial when >#YfAF�M holdsasexplainedin2.7), andtheinductive
step

hE?EM*>PYKAF�M , e QfB#C�SF A1, ...,
e QcB#C�SF An, _@A�ZK`�Y�?�JgFHQKS e QcB�C�SF P 9;: P

Thissplitting is notdoneexplicitly by the >$?�AHB�C�AED#F@G3I#DKJdLHM tactic,sinceit is part of the NP?�OP?PQ�?$R�S
tacticdecomposition.

NE?�OP?#Q�?$R�S The NE?�OP?PQ�?ER�S tactic usesthe structure of the statemachine graphto introducethe
stateandtransition informationnecessaryfor applying the TPC$L�U�V3J@WXF�MEY�MKJ�M$Z tactic describedbe-
low. It analysesthetopology informationalready present in a subgoal’s hypothesesto determine
all the positions in the graph which areconsistentwith that information. For example,consider
thesubgoal

e M e Q@QciZ�D 9j: P

in the caseof the N$APCEk@k$YHL�l#YHRfm�M#F machine. Referring to Figure2.1, it is clear that when in
the

e Q$Qci�Z�D statethe machine is either in the first configuration, or else it has just performedh�V�nKmCfI�REZfi�Z�D from the h�V e�o WZKA state,or else it has just performed ^Kp�nKm�CfIR$ZfiZ�D from the^Kp e�o WZKA state.Thus,the NE?�O#?PQ�?ER�S tactic introducesthefollowing threenew subgoals.

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M ^�p e�o WdZKA ,e M e Q@QciZ�D ,T@S ^Kp#nKmCfI�R$ZKi�Z�D
9;: P

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M hV e�o WdZKA ,e M e Q@QciZ�D ,T@S h�V�nKmCfI�R$ZKi�Z�D
9;: P

>PYKAF�M ,e M e Q@QciZ�D ,e M e Q@QciZ�D
9;: P

Thus,

_@A�ZK`�Y�?�JgFHQfS e M T , T@S N , e M ^
82



DSTO–TR–1349

uniquely identify the edge in the state machine graph with begin statenode T , transition link N ,
and end state node ^ ; i.e., NP?�OP?#Q�?$R�S simply performs an edgedecomposition consistentwith
the hypothesesof the given subgoal. Note in particular that NE?�OP?PQ�?ER�S first decomposesunder>PYfAF�M q hP?$Mr>#YfAF�M . As a result, the _@A�ZK`�Y�?�JgFHQfS operator is alwaysaccompanied by hE?EMs>PYKAF�M
in the decomposedsubgoal, which is formally nicer in that it always is manifestly well-defined
on theconfiguration. This will bea featureof all furthersteps after the NE?�OP?#Q�?$R�S tactic hasbeen
applied.

TPC$LKUV3J@WXF�MEY�MKJ�M$Z The TPC$L�U�V3J@WXF�MEYHMfJ�M$Z tacticmakesuseof thedefinitionsof thevarious tran-
sitionsto determinewhatmusthave beentruein thepreviousconfigurationin orderfor a subgoal
to betruein thecurrent configuration. To useT#C$LKUV3J@WgF�MEY�MfJM$Z it is necessaryto havehypotheses
which precisely determine anexactedgein thestate diagramcorresponding to a particular transi-
tion. This informationis generally introduced through theuseof the NP?�OP?#Q�?$R�S tacticandhastwo
possible forms.

To usethedefinition of theinitial condition, thesubgoal must(in thecaseof the N@A#CEk@k@Y@L�l#YHRfm�MPF
machine) beof theform

>PYKAF�M ,e M e Q@QciZ�D ,
H1, ...,Hl9;: P

To usethedefinition of any giventransition, thesubgoalmustbeof theform

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M B,e M E,T@S T,
H1, ...,Hl9;: P

As discussedin Section2.8, the back-substitution process replacesall occurrences of variables
changedby the transition with their final values. In many cases theresulting subgoal is logically
trivial andthe TPC$L�U�V3J@WXF�MEYHMfJ�M$Z tactic is ableto proveit without thehelpof theuser. For example,
consider applying back-substitution to thesubgoal

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M ^�p e�o WdZKA ,T@S ^Kp#nKmCfI�R$ZKi�Z�D ,e M e Q@QciZ�D
9;: ^Hl#YHRfm�M t pPl#Y�RKm�M

Sincethe ^Kp#n�m�CfI�REZfi�Z�D transition hasaction

e L@Mvu ^@l#Y�RKm�M w i�Z�DpPl#YHRfm�M w i�ZHDlECPF�M�xHA#Z$ZcI w ^Kp
83



DST8 O–TR–1349

back-substitution results in thenew subgoal

e M ^Kp e�o WZKA 9;: i�Z�D t iZ�D
which the TPCELKU�V3J$WgF�MPY�MfJ�MEZ tactic immediately recognisesastrivially true, andthus provesauto-
matically.

7.2.2 Augmenting the basicstrategy

In many cases, the initial property to be proved turns out not to be strong enough to be an
invariant under thestatemachine’s transitions. If this is thecasetheuserwill cometo a situation
in which the available assumptions arenot adequateto prove the property, even with the useof
the T#C$LKU�VcJ@WgF�MPY�MfJM$Z tactic. In this circumstancetherearetwo possibilities. Either theproperty
is not trueof thestate machine or elseit is trueof thestate machine,but is not invariantunder the
transitions.

Thecasethat theproperty is not true maybe recognisedby the presenceof a subgoal which
includes the hypothesis >#YfAF�M and which is false. The other casemay be recognisedby the
presenceof asubgoal includingthehypothesishP?$My>#YfAF�M , suchthatthesubgoalcannotbeproved
eventhough it appears to betrueof thestatemachine. In this second casetheusershould use

e D$DG3IE`PC�A�Y�CKI�M to entera new hypothesiswhich will helpprove therequiredsubgoal.

e D@DzG3IE`#C�A�Y�CKI�M The
e D$D{GcIE`PC�AY�CfIM user tactic is accessedfrom the G3I�M$Z�APC$LHMPYf`#Z submenu

of the [E\@]P^|NPC$LHMPYHLEF list (by double-clicking with mousebutton 1).

For example,thesubgoal

hE?EM*>PYKAF�M ,e M h�V e�o WZKA G o OQ$YHZEF ^Hl#YHRfm�M t iZ�D ,e M h�VKxHA�Z@ZcI
9;: ^Hl#YHRfm�M t i�Z�D

is not immediately provedby simply using back-substitution. However, it is clearthat ^Hl�Y�Rfm�M is
in fact i�ZHD in the h�VKx@A#Z@ZcI state. In order to proceed with the proof, the usermay usethe

e D@DG3IE`PC�A�Y�CKI�M tactic to insert theadditional hypothesis:

e M h�VKxHA�Z@ZcI G o OQ$YHZEF ^Hl#YHRfm�M t iZ�D
This convertstheabove subgoal to:

hE?EM*>PYKAF�M ,e M h�V e�o WZKA G o OQ$YHZEF ^Hl#YHRfm�M t iZ�D ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M hVKxHA�Z@ZcI G o OQ$YHZEF ^Hl#Y�RKm�M t iZ�D ),e M h�VKxHA�Z@ZcI

9;: ^Hl#YHRfm�M t i�Z�D
84



DSTO–TR–1349

whichis straightforwardto prove. Of coursethisbenefit doesnotcomefor free,it is now necessary
to prove thetruth of thenew invariant. DOVE alsogeneratesa new subgoal of theform:

e QfB#C�SF (
e M h�V e�o WZKA G o OdQ@YHZEF ^Hl#YHRfm�M t i�Z�D )

9;: e QcB�C�SF (
e M h�VKx@A#Z@ZcI G o OdQ@YHZEF ^Hl#YHRfm�M t i�Z�D )

which may be addressedusing >@?HAHB#C�APD#FHG3I�DKJL@M and the general back substitution approach.
Precisely suchanexampleis discussedin detail in Section7.5.

7.3 The }�~'��� ���'�'���'��� frame

The primary tactics of the DOVE proof strategy are accessedthrough the [E\H]#^aN#C$LHMEY@LEF
frameon the _@AE?H`#ZKA . Onemoretactic appearsin theprimary list ( �#CPF�MEZKA@T�QHCPF�M ). Theremaining
tactics appear whenthe bold-facesubmenu title is clicked on. Many subgoals which appear in
the course of a proof are of a logical complexity suchthat more specialised tools are required
to discharge them. This is the role of the remaining tactics (someof which are incorporated in�#CPF�MEZKA@TQ�CPF�M ), whosefunctionality is outlined below.

7.3.1 Primary tactics

The first threetactics in the [P\H]P^aNPC$LHMPYHLEF list, NP?�OP?PQ�?$R�S , >@?�A@B#C�APD#FHG3I�DKJLHM , and TPC$L�U :V3J@WgF�MEY�MKJ�M$Z , have beenexplained in detail in Section 7.2.1. The fourth, �#CPF�M$ZKA@TQ�CPF�M , puts
togetherthe NE?�OP?PQ�?ER�S decomposition with repeatedapplicationof TPC$L�U�V3J$WgF�MEYHMfJ�M$Z , TE?@?PQ@ZHCfI :V@Y o OdQ@Y@k$YHLHC@MPY�?KI and V�?PQf`#Z�N#Z o OP?�APCPQ (discussedbelow) to try to discharge the ensuing sub-
goals. Thus, it is applied at the point of the DOVE proof strategy where NE?�OP?#Q�?$R�S would be
applied (after the application of >@?HAHB#C�APD#FHGcI#DKJL@M – actually, it is usually best to first apply[Z@L�? o OP?�F�Z$VHZH�KJZcIM (discussedbelow) to cleanup the subgoal). In general it will thentake the
proof far from thestageat which �#C#F�M$ZKA$T�Q�C#F�M wasapplied, well into theDOVE proof strategy.

Thesubgoalsremaining afterapplicationof ��CPF�M$Z�A@T�QHCPF�M should either besolvedby its fur-
ther application, or will require implementingthe

e D@DzG3IP`PC�A�YHCfI�M tactic asdiscussedabove in
SubSection 7.2.2. In particular, it will directly prove most“simple” propertieswhich largely de-
pendon thegraph topology for their veracity. Thusit is extremely powerful for theuserwhodoes
not want a step-by-step record of the proof, andprefers the bigger jumpsto points in the proof
whereadditional invariantsareneeded.

7.3.2 ����������������������������� tactics

[Z@L�? o OP?�F�Z$VHZH�KJZcIM repeatedly appliessomesimplelogical rules to eliminate disjunctionsand
conjunctionsin thehypothesesandimplicationsin thetarget. It is a good ideato apply this tactic
regularly, soasto keepthesubgoalssmall.

n@?KI�M�APCHD#YHLHMH?HA@S��ESHO#?$MfmdZEF�ZEF solvessubgoalswhich have hypothesesof the form _ , hE?EM _ .
Suchsubgoalsaretrivially true(“Falseimplies anything”).

85



DST8 O–TR–1349

TE?@?PQ@ZHCfIgV@Y o OdQ@Y@k@Y@LHC@MPY�?KI evaluatesthetruth valuesof simplesub-properties,suchas

i�ZHD t xHA�Z@ZcI ,
andthensimplifiescomplex hypotheses andtargetsusingBoolean truth tables. For example, the
hypothesis

xHA�Z@ZcI t x@A#Z@ZfI G o OQ@YHZPF e M h�VKxHA�Z@ZcI
is simplified to

e M h�VKxHA�Z@ZcI
since xHA#Z@ZfI t xHA�Z@ZcI is trivially true.

� I$BYcI#DHl#ZHMPF unwinds local definitions(cf. Section4.3.1).

V�?PQf`�ZKN#Z o OP?�A#CEQ is a moresophisticatedversion of [Z@L�? o OP?�F�Z$VHZH�KJZcIM , which combines un-
winding of the derived temporal operatorsandthe repeatedapplication of the temporal decom-
position rules. Unlike [Z@LH? o OP?�F�Z$VHZH�KJZfI�M , it will fail andleave the proof stateunchangedif it
cannot dischargethesubgoal.

\HO�ZcI e QcB�C�SF��PSHOdF dealswith temporal sequentswith ahypothesisof theform
e QcB#C�SF H, where

thefacts insideH areneededto solve thesubgoal. It “opens” the “Always” hypothesisto expose
H anddischargesthesubgoal if possible via V�?#Qf`#Z�N#Z o O#?�APCEQ -typetactics.

7.3.3  ���¡���������¡���¢�� tactics

Note that to select the G3IM$ZKAPCELHMEYK`#Z tacticsappropriately the usermust double-click (with
mousebutton 1).

e D@DPGcIE`PC�A�Y�CfIM wasdiscussedabove in SubSection7.2.2.

e D@D�N�Z o O#?�APCEQ�>$C$LHM requirestheuserto insertthenameof thedesiredtemporal property into thenKJEA@A�ZcI�M£NPC$L@MEYHL frame. The userthensimply presses
e O$OQfS , the resultof which is to addthe

fact corresponding to the chosen temporalproperty to the hypotheseslist of the current subgoal.
The namecanbe inserted after placing the text insertion cursor in the n�JEA@A#ZfI�M¤N#C$LHMEY@L frame.
Alternatively, asdirected at the bottom of the _@AE?H`#ZKA window, bring up the NHmZ�?HA#Z o T@AE?�BgF�ZKA
by pressing the �#C$M$Lcm¥N�mZH?�A#Z o F button. Ensure thatthecurrent statemachine theory is selected
in the N�mZH?�A@S¦hPC o ZPF list. Selectthe N�Z o OP?HAPCEQ¤>$C$LHM#F option of the ]YHZKB menuon the NHmZ�?�A�Z oT@AE?�BgF�ZKA , andthenselectthe theoremto be includedfrom the N�mZ�?HA#Z o hPC o ZPF list usingmouse
button 2. Thiswill insert thetheoremnameinto the nKJEA$A#ZcI�M£NPC$L@MEYHL window, andtheusermust
thensimply press

e O@OQfS .
86



DSTO–TR–1349

e O@OQKS@N#Z o OP?�A#CEQciHJgQHZ is a tactic for the advanced user. It resolves one of temporal rules –
which typically reside in the MachCortheory – against the active subgoal, and deals with the
technical subgoals which result. Otherwiseit is similar to i�ZPFK?PQf`�Z¨§�GcI�M�AE?P© in the TPCPFHY@LNPC$LHMPYHLEF list. The nameof the rule can be inserted into the tactic in precisely the sameway
asfor

e D$D�N#Z o OP?�A#CEQ�>$CELHM .
e O@OQKS�G3IXF�M�N#Z o OP?�A#CEQci@JdQHZ is another tactic for theadvanceduser. It is anextension of

e O$OQfS :N#Z o O#?�APCPQciHJdQ@Z which allows meta-variables in the rule to be instantiated. Thus,it is similar toi�ZEFK?#Qf`#ZªG3IgF�M@CfI�MPY�C@M$ZHD¨§�G3IM�AE?E© in the T#CPFHY@L�NPCELHMEYHLPF list (Isabelle’s “res-inst-tac”). This
is particularly useful whena givenrule mayunify against theactivesubgoal in a number of ways,
sotheinstantiation is usedto disambiguatetheapplication.

7.3.4 «�����¬����®�����¡������ tactics

xPZHMHn$?KIdk$Y�R extractssimpleconfiguration properties from thehypothesesandthe target to pro-
ducea non-temporalsubgoal. The V�?PQf`�Z�n@?�Idk@Y�R andthe V$Y o OQ$Y@kfSEn$?KIdk$Y�R tacticsmay thenbe
usedto discharge the subgoal. If thesefail it will be necessary to reason using Isabelle’s basic
logical proof rules.

V@Y o OdQ@Y@kKSEn@?KIgk@Y�R appliesIsabelle’ssimplicationpackageto aconfiguration(non-temporal) sub-
goal. Suchsub-goalsarenormally introducedby the xPZHM@n@?KIdk$Y�R tactic. This tactic will often
dischargesimplesubgoalsaltogether.

V�?PQf`�Z�n@?�Idk@Y�R invokesIsabelle’s sophisticatedclassical reasoningpackageto solveaconfigura-
tion (non-temporal) subgoal. Suchsub-goalsarenormally introducedby the xPZHMHn$?KIdk$Y�R tactic. IfV�?PQf`�Z�n@?�Idk@Y�R fails to discharge a subgoal theproof stateis left unchanged.

Note that theseconfiguration tactics take careof the other form of “contradiction” similar ton@?KI�M�APCHD#YHLHMH?HA@S��ESHO#?$MfmdZEF�ZEF , but wherethe hypothesesareof the form ` t ¯ , ` t S where `
is a state variable and ¯ , S aredistinct constants. Simply reduce to a configuration property viaxPZHMHn$?KIdk$Y�R andthenapply V�?PQf`�Z�n@?KIgk@Y�R to solve by contradiction in thehypotheses.

7.4 Intr oductory Tutorial: the DOVE proof strategy

Recall from Section2.8 that DOVE’s recommendedproof strategy makes useof induction
and back-substitution. In this section this strategy is described in detail by applying it to the^KpPl#YHRfm�M#FK^@� property describedin Section6.3. This applicationusesthe mostimportant of the
powerful proof tactics provided by the DOVE system.While applying the proof steps, the user
should also watch the statemachine graph to seethe implementation of proof visualization as
discussedin thelastsection.

It is assumedat this point that the reader will be familiar with theDOVE tool, at least at the
level of the tutorials in Sections4.5, 5.4, and6.3. Hence,therewill not be the sameattention to
pedagogyasin those sections.

87



DST8 O–TR–1349

The first stepin proving the ^Kp#l#Y�RfmMPFK^$� property is to enterproof modeandhighlight the
property by selecting it in the _@AP?�O�Z�APMEYHZPF°�#CfIC@R$Z�A window with mousebutton 1. Thenenterit
into the _$AE?�`#Z�A following thestepsexplainedin Section6.2.2.

7.4.1 Induction

The first step in a DOVE proof is generally performed by applying the >@?�AHB�C�AED#F@G3I#D�JLHM
tactic. This mayonly beapplied to a subgoal of theform

H1, ...,Hl 9j: e QcB#C�SdF P

andit is for this reasonthatit is recommended(seeSection2.7) thatall statemachinerequirements
beformulatedin this way.

In order to applythis tactic, click onthe >@?HAHB#C�AED#FHGcI#DKJL@M itemin the [E\@]P^|NPC$LHMPYHLEF list and
click on the

e O@OQKS button. Theeb ectin this caseis to replacethesubgoal

9;: e QcB�C�SF ^PQ@YHRfm�M t pgQ@Y�RKm�M
with theinductive subgoal

_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF ^PQ@Y�RKm�M t pgQ@Y�RfmM
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

7.4.2 Topology

The next step is to introduce information from the statemachine graph so as to allow the
applicationof back-substitution. Click on the NE?�OP?PQ�?ER�S item in the [E\H]P^|NPCELHMEYHLPF list andthen
on the

e O@OQfS button.

Thedecomposition under >#YfAF�M givestheiniti al case,

>PYKAF�M ,e M e Q@QciZ�D ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF ^PQ@Y�RKm�M t pgQ@Y�RfmM
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

while the projectiononto hE?EM±>#YfAF�M givesthe inductive-case. The NP?�OP?#Q�?$R�S tactic thendeter-
minesall thosebegin-state, transition, final-statetripleswhich appearin the statemachinegraph
andareconsistentwith thesubgoal’s hypothesislist. In this casethere is nothing in thehypothesis
list to restrict theallowedtransitions, so thetactic generatestenmoresubgoals,eachof thesame
form; for example,

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M e Q@Qci�ZHD ,e M h�VKxHA�Z@ZcI ,T@S h�V�nKmCfI�R$Z�xHA#Z$ZcI ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF ^PQ@Y�RKm�M t pgQ@Y�RfmM
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

88



DSTO–TR–1349

7.4.3 Back-substitution

Thefinal stepin theproof is to introduceinformationabouttheactionsperformedby thevari-
oustransitions (including initialisation). To do this, click on the TPC$LKUV3J@WXF�MEY�MKJ�M$Z item from the[E\H]P^|NPCELHMEYHLPF list andthenon the

e O@OQfS{MH? e Q@Q button. The
e O@OdQfSzMH? e Q@Q button applies a

tacticto every remaining subgoal. Whenapplied to theiniti al-casesubgoal,the T#C$LKU�VcJ@WgF�MEY�MfJM$Z
tactic introducestheinitialisation condition asahypothesis.Whenapplied to a transition subgoal,
it replaceseachvariable appearingin thesubgoalwith thevaluecalculatedby thetransition’s ac-
tion andintroduces thetransition’sguardasanassumption. In both casesit thenattemptsto apply
a few simplelogical rulesto eliminate trivial subgoals. In this caseall of thesubgoalsaretrivial
andthetactic is ableto discharge themandtheproperty is proved.

To seewhy this is so,considertheeb ectof back-substitution on acouple of thesubgoals.The
reader will find the discussion in Section 2.8 very useful here. In fact, the examplegiven there
encompassesall thetechnical details of theexamples in this section.

In the initial-casesubgoal,back-substitution simply results in theinitialisation conditionsbe-
ing addedto thehypothesislist, yielding12 thesubgoal:

>PYKAF�M ,h$l�Y�Rfm�M t i�Z�D ,VKl�Y�Rfm�M t i�Z�D ,^Hl�Y�Rfm�M t i�Z�D ,pPl�Y�Rfm�M t i�Z�D ,e M e Q@QciZ�D
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

This subgoal is proved by observing that both ^Hl#YHRfm�M and pPl#YHRfm�M have the value i�Z�D andare
therefore equal. The T#C$LKU�VcJ@WgF�MPY�MfJM$Z is ableto recogniseanddischargesuch a simplesubgoal
automatically.

In thecaseof the T@S h�V�n�m�CfI�REZ�xHA�Z@ZcI subgoalpresentedin theprevioussubsection, theeb ect
of applying back-substitution is:

e M e Q@QciZ�D ,^PQ$Y�Rfm�M t pdQ@YHRfm�M ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF ^PQ@Y�RKm�M t pgQ@Y�RfmM
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

In this case,therequired target property appears asa hypothesisandthe T#C$LKU�VcJ@WgF�MPY�MfJM$Z tactic
is ableto dischargethesubgoal automatically.

A moreinterestingsubgoal centerson the ^�p#nKm�CKI�R$ZfiZ�D transition.

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M ^�p e�o WdZKA ,e M e Q@QciZ�D ,T@S ^Kp#nKmCfI�R$ZKi�Z�D ,
12Recallthata “ ²´³�µ·¶c¸.¹·º�»-¼j½ ” hypothesisis trivial in theinitial configuration,sowehave droppedit here.

89



DST8 O–TR–1349

_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF ^PQ@Y�RKm�M t pgQ@Y�RfmM
9;: ^PQ@YHRfm�M t pdQ@Y�RKm�M

In this case,thesimpleback-substitution processyields thesubgoal

^PQ$Y�Rfm�M t pdQ@YHRfm�Me M ^Kp e�o WZKA ,e�o WZKA@N o \�J�M ¾ MEY o Z , _$A#ZK`�Y�?KJgFHQKS e QfB#C�SF ^PQ@YHRfm�M t pdQ@Y�RKm�M
9;: i�Z�D t i�ZHD

The TPC$L�U�V3J@WXF�MEYHMfJ�M$Z tactic is able to recognisethat i�ZHD t i�ZHD anddischargesthesubgoalauto-
matically.

Thefactthatall thesubgoalsareprovedby the TPCELKU�V3J$WgF�MEYHMfJ�MEZ tactic showsthatthe �#CPF�M$ZKA$T�Q�CPF�M
tactic will prove the property immediately. Theusercanverify this, by applying it directly after
the >@?�A@B#C�AED�FHG3I#D�JLHM step.

7.5 AdvancedTutorial: proof management in practice

Thistutorial session presentsamoreadvancedlook at thesupport for theDOVE proof strategy
via the useof T#CPFHYHL¤NPC$L@MEYHLPF alongsidespecific DOVE tactics. The tactics which weredealt
with in the previous tutorial will not be elaborated. Rather, this tutorial will concentrateon the
new ideas. It is quiteeasyto readaftercompleting theprevious tutorial, since themoretechnical
aspects appear in Section 7.6. Thefirst time reader couldsimply foll ow theproof steps asa way
of seeingwhatis availablewith somemoreeb ort. If thereis confusionwith theinstructionsatany
point in the tutorial it maybeuseful to compare thestepswith those given in theproof scripts in
Subsection 7.6.2below.

The fundamentalpropertiesof the N@APCEk$k@YHL�l#Y�RfmMPF state machinecanbe summarizedasthe
colours of the lights in eachstate. Two suchproperties areproved in this tutorial. Thefirst is the
property ^�p e�o WdZKA h@i�Z�D thatspecifies thecolour of hEl#Y�RfmM in thestatêKp e�o WZKA ,

9;: e QcB�C�SF (
e M ^Kp e�o WZKA G o OdQ@YHZEF h$l#YHRfm�M t i�Z�D )

The usershould now opena property set called N�J�MH?HA�Y�CPQ in the _@AE?�O�ZKA#MEYHZEF¿�#CfI�C$R$ZKA , and
insert the property ^Kp e�o WZKA hHi�ZHD (as explained in Section6.3). The proof of this property is
presentedasanexampleof introducing a “lemma” during theproof process.

That a further lemmais required canbe understood from the statemachinediagram in Fig-
ure2.1, asnow explained.Back-substitution dragstheproof obligation back to thestatêKp#xHA#Z$ZcI ,
whereit decomposesunder the NE?�OP?PQ�?ER�S tactic to two cases.

= T@S ^Kp�nKm�CfIR$Z�xHA�Z@ZcI , which is draggedbackunder the TPC$LKUV3J@WXF�MEY�MKJ�M$Z tactic to thestatee Q$Qci�Z�D . ThattheNorth light is i�Z�D in
e Q@QciZ�D is manifestwhen lEC#F�M�x@A#Z@ZcI t h�V , asis im-

plied by thepreconditionof thetransition ^Kp#n�m�CfI�REZ�xHA#Z$ZcI . For, theback-substitution alongh�V�nKm�CfIR$Zfi�ZHD , andtheinitial predicateapplicablefor the >PYKAF�M case in
e Q$Qci�ZHD , obviously

imposeh$l�Y�RfmM t i�Z�D , while back-substitution along ^�p#nKm�CKI�R$ZfiZ�D requires lECPF�M�xHA�Z@ZcI t^Kp andproducescontradictory hypotheses.

90



DSTO–TR–1349

= T@S p�CEYHM�h�V , for which thecorresponding subgoal hastheform

hE?EM*>PYKAF�M ,_@A�ZK`�Y�?�JgFHQfS e M ^�pPxHA#Z$ZcI ,e M ^KpPxHA�Z@ZcI ,T@S p�CEY�M�h�V ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M ^�p e�o WZKA G o OQ$YHZEF h$l#Y�RKm�M t iZ�D ),e M ^Kp e�o WZKA G o OQ$YHZEF h$l#YHRfm�M t iZ�D

9;: h$l#YHRfm�M t i�Z�D
Underthe TPC$L�U�V3J@WXF�MEY�MKJ�M$Z tactic thestate returns to ^KpPx@A#Z@ZcI . However, thehypotheses
about thestatêKp e�o WZ�A areclearly of nousein proving somethingabout ^�pPxHA�Z@ZcI . Hence,
this subgoalcannot bedirectly provedby back-substitution. However, thefact that hEl#Y�RfmM
is i�ZHD in thestatêKp#xHA#Z@ZfI is manifestly correctfrom thedefinition of the N@APCEk$k@YHL�l#Y�RfmMPF
statemachine!

Thusthis second item bringsup therequiredlemma,theproperty ^KpPxHA�Z@ZcI hHi�ZHD which specifies
that h$l�Y�Rfm�M is also i�ZHD in thestatêKpPxHA�Z@ZcI ,

9;: e QcB�C�SF (
e M ^KpPx@A#Z@ZcI G o OdQ@YHZEF h$l#YHRfm�M t i�Z�D )

The usershould also enter the property ^KpPx@A#Z@ZcI hHiZ�D into the N�J�M@?�A�YHCEQ property set in the_@AE?�OZKAPMPYHZEF°��CfI�C@REZKA , and thensave the statemachine to permanently save the propertiesfor
laterreference.

Therearetwo waysto introducethenew property asa lemmafor proof during acurrentproof
session:

1. by entering the property into the prover via the _@AP?�O�ZKA#MEYHZPF°�#CfIC@R$ZKA (as discussedin
Section6.5) whenits needarises, asan intermediate lemmarequiring independent proof,
andthenswapping backto the original proof session andcutting in the newly proved fact
using the

e D@D|N#Z o OP?�APCPQ�>$C$L@M option under the [E\H]P^ menu;

2. by cutting in the desired fact using
e D@DzG3IE`#C�A�Y�CKI�M andproving it aspart of the original

proof session.

Both of theseapproachesarenow outlined.

7.5.1 Intermediate lemmamethod

Entertheproperty ^�p e�o WdZKA hHi�Z�D (definedabove)into the _@AE?H`#ZKA via the _$AE?�OZKAPMEY@ZEF°�#CKI�C@REZKA
as discussedearlier (userconfirmation is required), and openthe current proof history via the_@AE?@?#k¿�dYEF�MH?HA@S!§7nKJEA@A�ZcI�M$© option of the ]dYHZfB menu.

As theproperty is of the“
e QcB�C�SF ” form, thefirst stepis to apply >@?�AHB�C�AED#F@G3I#D�JLHM . Do this.

Now bring the stateinformationover to thehypothesesof thesequent by selecting [Z@L�? o OP?#FHZ :VHZ��KJdZcI�M from the list of [P\H]P^aNPC$LHMPYHLEF andthenpressing
e O@OQfS . Next, select NE?�O#?PQ�?$R�S and

press
e O$OQfS . Thereason for applying [dZ@L�? o OP?#FHZ$VHZ���JZcI�M first, ratherthanimmediately applying

91



DST8 O–TR–1349

NE?�OP?#Q�?$R�S asin theprevioustutorial, is thatthenthestateinformationin thehypotheseslimits the
numberof casesin the toplogy – only two transitions enterthe state ^Kp e�o WZKA – andthusgreatly
simplifiestheproof.

The >PYKAF�M subgoal(subgoal3) is rathereasy, sinceits hypothesesareclearly in contradiction13

– if >PYKAF�M thenthestatemustbe
e Q@Qfi�Z�D , but by hypothesisthestateis ^Kp e�o WZ�A !

>PYKAF�M ,e M e Q@QciZ�D ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M ^�p e�o WZKA G o OQ$YHZEF h$l#Y�RKm�M t iZ�D ),e M ^Kp e�o WZKA

9;: h$l#YHRfm�M t i�Z�D
Precisely thissituationhasbeendealtwith in SubSection7.3.4. Makesubgoal3 theactivesubgoal
by clicking on it with mousebutton 1. Fromthe n@?�Idk@Y�RKJEAPC$MEY�?KI submenu theusershould applyxPZHMHn$?KIdk$Y�R , followed by V�?PQf`�Z�n@?KIgk@Y�R . Thesubgoal is thendischarged.

Note thatsucha situation couldoccurquite often in suchproofs, so it maybenice to make a
“mastertactic” whichcombinesthesetwo into onestep.Thisis alsoagoodillustrationof installing� F�ZKAªNPCELHMEYHLPF andusingthe tactic treerepresentation of the proof. Thereto,bring up the tactic
treerepresentation at this stage by selecting the N@A#Z@Z�[dYEF3OQ�C�S option of the ]Y@ZfB menu.It will
appear asshownin Figure7.4.

In particular notethat the third branch (from the left) ends in a black dot, indicating that this
third subgoalhasbeendischarged(in two steps). Thesecond branch is “waiting” with a reddot,
indicatingthat it is theactive subgoal. “Cut out” thelast two stepsof theproof (theconfiguration
tactics) by clicking with mousebutton 2 on thenodewherethecut should bemade– i.e., on the
top (second to last) nodeof the third branch. The two nodesof the third branch will then turn
green, andthecombinedtactic will bedisplayedin the nKJEA$A#ZcI�M£NPC$L@MEYHL frame. Now select theG3IgF�M$CEQ@Q�NPC$L@MEYHL option of the N#C$LHMEY@L menu,andwrite, say, the name �#CPF�M$ZKAEn$?KIdk@YHR in the
dialog box which appears,and then press OK. The tactic is then automatically installed in the� F�ZKAªNPCELHMEYHLPF frame.

As an example of its use, go back two steps in the proof – by selecting the nKm#?�O option of
the _@AE?@?#k menu(twice) – to the situation after the application of the NP?�OP?#Q�?$R�S tactic. Observe
the behaviour of the NPCELHMEY@L�N@A�Z@Z and _@AE?@?#k¿�dYEF�MH?HA@S windows. Now apply �#CPF�M$ZKAPn@?KIdk$Y�R ,
noting thatthethird subgoal is dischargedin onestep.

Thesubgoalsarenow readyfor back-substitution,aswill befamiliarfrom theproof of ^KpPl�Y�RfmMPFK^@�
in the previous tutorial. Select TPC$L�U�V3J$WgF�MEYHMfJ�M$Z andpress

e O@OQKS¥MH? e Q$Q . The subgoal cor-
responding to the p�CEYHM�N@\ loop is solved, while the other subgoal is dragged back to the state^KpPxHA�Z@ZcI .

At this point, subgoal 1 reads

1. ��C�¯EnEC�AF ¾ hPn$C�AF À V�n$C�AF ,e M ^KpPxHA�Z@ZcI ,e M ^Kp e�o WZKA G o OQ$YHZEF h$l#YHRfm�M t iZ�D ,
13Althoughit will belabouringthepoint for readerswith amathematicalbackground, it is otherwiseworth recalling

thatthestatementÁ ÂÄÃ3Åc¼7¸-µ�» Æ is true if Á is false.

92



DSTO–TR–1349

Figure 7.4: TreeDisplay after configuration tactics applied

_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M ^�p e�o WZKA G o OQ$YHZEF h$l#Y�RKm�M t iZ�D )

9;: h$l#YHRfm�M t i�Z�D
The hypothesesabout what ^Kp e�o WZKA implies areclearly uselessfor proving the statementabout
the state ^�pPxHA#Z$ZcI . In fact, they cansimply be removed14 by applying the tactic �#CELcm MfmdY3I#l –
androtating thehypothesessince �#C$Lcm MfmgY3IPl removestheleft-most hypothesis.

To carry out the hypotheses pruning, select
e O@OQKS@N#Z o OP?�A#CEQciHJgQHZ in the GcI�M$Z�APC$LHMPYf`#Z sub-

menuof the [E\@]P^£N#C$LHMPYHLEF list (by double-clickingwith mousebutton 1). The _$AE?�`�ZKA inserts
thetactic

e O@OQKS@N#Z o OP?�A#CEQciHJgQHZ M@C$LÈÇ·É into the nKJPA@A#ZcIM¤NPCELHMEY@L window andwaitsfor theap-
propriatetemporal rule to beinsertedinto thesquare brackets.Now put themousecursor into the
square bracketsandtypein ��C$Lcm MfmdYcIPl , andthenpress

e O@OdQfS . Theleft-most hypothesiswill be
removed.

For analternativemeansof application, asdirectedat thebottom of the _$AE?�`#Z�A window, bring
upthe N�mdZ�?�A#Z o T@AP?�BdF�Z�A by pressingthe �#C$M$Lcm¥N�mZ�?HA#Z o F button(afterapplying nKm#?�O from the_@AE?@?#k menuto return to undo the lastproof step). Selectthe

e Q@Q¤N�mZ�?HA#Z o F option of the ]dYHZfB
14This is an optional step,which is appliedherefor two reasons:it canbe goodpracticein long proofs to keep

thehypothesesa manageable size;andtheapplicationdemonstratesoneway to apply Æ3Ê�»-¸-ËÍÌ3Ê7Ë7Î´¸-Ë�» ! However, as
discussedbelow in Subsection7.6.1, deletinginductive hypothesescanin generalbe very dangerous whenusingthe
DOVE back-substitutionstrategy. For, in general by back-substitutionthe proof burdenwill be draggedall the way
backto thestatewheretheinductive hypothesesdo matter.

93



DST8 O–TR–1349

menuonthe N�mdZ�?�A#Z o T@AP?�BdF�Z�A , select�#C$Lfm#n@?HA in the N�mdZ�?�A@S¦hPC o ZEF list usingmousebutton1,
andthenselecttheruleto beapplied( �#CELcm#n@?HA�ÏÐ��C$Lcm MfmgY3IPl ) from the N�mdZ�?�A#Z o hPC o ZEF list using
mousebutton 2. This will insert the theorem nameinto the n�JEA@A#ZfI�M¤N#C$LHMPYHL window, andthe
usermustthensimply press

e O@OQKS . This methodcanbeuseful in that it canallow theadvanced
userto perusethematching theoremsandfind a useful one.

The next hypothesisis the stateinformation we want to keep, so we first rotate it to the end
by applying (in thesameway) the temporal rule �#C$Lfm ZK¯�Lcm�CfIR$Z . (Actually, theuser cansimply
delete the content of the square brackets in the nKJPA@A#ZfI�M¤N#C$LHMEY@L window and replaceit with�#C$Lcm ZK¯�Lcm�CfIR$Z , andthenpress

e O@OdQfS .) Now apply �#C$Lfm MfmgY3IPl twice more,at which point the
subgoal is simply

1.
e M ^Kp#xHA#Z@ZfI 9;: h$l�Y�Rfm�M t i�Z�D

Clearly this is a new result which mustbeproved. In fact, it is a consequenceof theproperty^KpPxHA�Z@ZcI hHi�ZHD (defined above). The strategy now is to first prove the property ^KpPx@A#Z@ZcI hHi�Z�D ,
andthento usethis fact to prove the remaining subgoal. So,enter the property ^�pPxHA#Z$ZcI h@i�Z�D
into the _$AE?�`�ZKA via the _@AE?�OZKAPMEY@ZEF°��CfI�C@REZKA asusual. DOVE asksthe userto confirm that a
new proof is required,andthenloadsin theproperty to beproved.Notethatthe _@AP?@?PkÑ�dY$F�M@?�A@S
window containing thecurrent proof history changesto bethatof ^�pPxHA#Z$ZcI hHi�Z�D .

The proof of this property goesalong the samelines as the above. In fact, the usershould
follow essentially the samestepswithout bothering to thin the hypotheses, until the remaining
subgoal reads

1. lPCPF�MHxHA#Z@ZfI t h�V ,e M e Q@QciZ�D ,e M ^KpPxHA�Z@ZcI G o OQ$YHZEF h$l#YHRfm�M t iZ�D ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M ^�pPxHA�Z@ZcI G o OQ$YHZEF h$l#Y�RKm�M t iZ�D )

9;: h$l#YHRfm�M t i�Z�D
Now that the proof burden hasbeen dragged backto the

e Q@Qci�ZHD state, the now-familiar method
solves it: apply NE?�OP?PQ�?ER�S , and thenselect TPC$LKUV3J@WgF�MEY�MKJ�M$Z andpress

e O$OQfS{MH? e Q@Q . After
completing this stepDOVE greets the userwith themessage that ^KpPx@A#Z@ZcI hHi�ZHD is proved. The
usershould press\HÒ , at which point the ML imageis updatedto contain the new theorem. The
usershould save theproof of ^KpPxHA�Z@ZcI hHi�ZHD into a proof script file using the VHC�`#Z option of the>PY@QHZ menu.

To now return to the proof of ^Kp e�o WZKA hHi�Z�D , select it under the VcB#C�O menu. The fact
which hasjust beenproved can be “cut in” to the hypotheses of subgoal 1 by using the tactice D@D@>EC$LHM M@C$L . To do this, select the

e D@D|N#Z o OP?�APCPQ¤>$CELHM option15 in the G3IM$ZKAPCELHMEYf`�Z sub-
menuof the [E\@]P^£N#C$LHMPYHLEF list (by double-clickingwith mousebutton 1). The _$AE?�`�ZKA inserts
thetactic

e D$D@>$CELHM M$C$LÈÇ·É into the nKJPA@A#ZcIM¤N#C$LHMEY@L window andwaitsfor theappropriate tem-
poralfactto beinsertedinto thesquarebrackets.Now putthemousecursor into thesquarebrackets

15It may strike the userasstrangethat the theoremÓ·Ô�Õ7³�µ7µ·Ö ×-Øcµ-Ù is not appliedto prove the subgoalin the same
way as,say, ÎjÚf¸;Ö�Û wasusedabove. Thepoint is that– while it certainlycontainstheinformationrequiredto prove the
subgoal – it is not of the preciseform to patternmatchon the form of the subgoal.The tactic Á�Ù7ÙÜÌ�µÝÃ3Å3¹-³�Ê´¼ÜÞ´Ê7Ë7Î
takescareof this simpleproblem.

94



DSTO–TR–1349

andtypein N�J�MH?HA�Y�CPQ ^Kp#xHA#Z@ZfI hHiZ�D , andthen press
e O@OQfS . Thealternative application through

the N�mZH?�A#Z o T@AE?�BdF�ZKA , asdiscussedabove,canalsobeused.

Fromtheform of thesubgoal

1.
e M ^KpPxHA�Z@ZcI ,e QfB#C�SF (

e M ^KpPx@A#Z@ZcI G o OdQ@YHZEF h$l#YHRfm�M t i�Z�D )
9;: h$l#YHRfm�M t i�Z�D

it is now clear that the proof is essentially finished. However, it is necessary to first extract
the current stateinformation from the “

e QcB�C�SF ” hypothesis. This is the result of another rule,�#C$Lcm ��C#F e QcB�C�SFKl , in the ��C$Lcm#n$?�A theory. Apply it16 via the tactic
e O@OQfS$N#Z o O#?�APCPQciHJdQ@Z as

describedabove. Theresult is

1.
e M ^KpPxHA�Z@ZcI ,e M ^KpPxHA�Z@ZcI G o OQ$YHZEF h$l#YHRfm�M t iZ�D_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (

e M ^�pPxHA�Z@ZcI G o OQ$YHZEF h$l#Y�RKm�M t iZ�D )
9;: h$l#YHRfm�M t i�Z�D

This final subgoal canbedischargedby applying V�?PQf`�ZKN#Z o OP?�A#CEQ from the [E\H]#^£NPCELHMEY@L list.

Again theuser is told that theproof hasbeen completed,andmustpress \HÒ . At this point the
usershould save theproof into a proof script file using the V�C�`#Z option of the >#Y@QHZ menuon the_@AE?�`�ZKA . It is alsogoodmanagementto save the state machine via the VHC�`#Z option of the >PY$QHZ
menuof theEdit window. This recordsthestatusof theproperties asbeing proved.

7.5.2 ß�à�à  ���¢�����������¡ method

Now re-enter theproperty ^Kp e�o WZKA hHi�ZHD into the _@AP?�`#Z�A via the _$AE?�OZKAPMEY@ZEF°�#CKI�C@REZKA as
usual. The beginning of this proof follows precisely the steps given above, so the usershould
repeat themandstopjust before loading the property ^Kp#xHA#Z@ZfI hHiZ�D into the _$AE?�`#Z�A , at which
point thesubgoalto beprovedis

1.
e M ^Kp#xHA#Z@ZfI 9;: h$l�Y�Rfm�M t i�Z�D

Instead of introducing the desired proof asa new property, it may be introduced asa fact to be
provedin thecurrent proof. To dothis,select

e D@DPG3IP`PC�A�YHCfI�M from theDOVE menu17 (by double-
clicking with mousebutton 1). It will save theusertime if thetext of subgoal 1 is first put into the
clipboardbub er. Thenit may be inserted into the window brought up by

e D$D{G3IP`PC�AY�CfI�M , and
edited18 to theform

16To understand moreaboutwhenthepattern-matchingto thesubgoal will work, theusershouldexamineSubsec-
tion 7.6.3.

17For a moregeneraldiscussionof thefunctionof the Á�Ù7ÙáÂ;Ö´¶cÊ.³3¸-ÊjÖcÎ tactic,seeSubsection7.6.1.
18Theneedfor this editingwill not beimmediatelyobviousto theuser, sinceagainit is simply to ensurethecorrect

syntaxgiventhetemporalsequentstructureof theDOVE deductivesystem.Theinvariantmustbestatedasa temporal
formula,not a sequent.Althoughthetranslationis a “tri viality” for theuser, giventhatpattern-matchingis at thebasis
of proof toolsit mustbedoneexplicitly in DOVE.

95



DST8 O–TR–1349

e M ^KpPxHA�Z@ZcI G o OQ$YHZEF h$l#YHRfm�M t iZ�D .
Onpressing \�Ò , thisstatementis insertedinto thehypothesesof thesubgoal, andafurthersubgoal
is createdwhichenforcesthatthestatement beprovedto betrue.At thispoint then, theproof state
is

1.
e M ^KpPxHA�Z@ZcI ,e M ^KpPxHA�Z@ZcI G o OQ$YHZEF h$l#YHRfm�M t iZ�D ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (

e M ^�pPxHA�Z@ZcI G o OQ$YHZEF h$l#Y�RKm�M t iZ�D )
9;: h$l#YHRfm�M t i�Z�D
2.
e M ^KpPxHA�Z@ZcI 9;:e QfB#C�SF (

e M ^KpPx@A#Z@ZcI G o OdQ@YHZEF h$l#YHRfm�M t i�Z�D )
Apply V�?#Qf`#ZKN�Z o O#?�APCEQ to solve subgoal 1.

The proof should now be completedby following the steps usedto prove ^KpPxHA�Z@ZcI hHi�ZHD in
theprevioussubsection. A convenient way to achieve this is to bring up theproof history for that
proof, via theoption _@AE?@?#k¿�dYEF�MH?HA@S!§.\PMfmZ�A#© of the ]dYHZfB menu.Thendesiredproof stepscan
beapplied simply by double-clicking on theproof history (taking account of theadvice inE.2.3).

Again, on completion the useris told that the proof hasbeen completed andmustpress\�Ò .
At this point the user should save the proof into a proof script file – as the previous proof of^Kp e�o WZKA hHi�ZHD hasbeen saved into the file N�J�M@?�A�Y�CPQ ^�p e�o WdZKA h@i�Z�DâÏãO$A�k , it is bestto usetheV�C�`#Z e F optionof the >PY$QHZ menuto saveunderadib erent name,suchas N�J�M@?�A�YHCEQ ^�p e�o WdZKA h@i�Z�D IZfBäÏãO$A�k .

7.5.3 Using ����å�¡�����æ�����å�¡
The above proofs give quite a good overview of the DOVE proof strategy. Recall that (an

extension of) part of this strategy hasbeenautomatically encodedin the �#C#F�M$ZKA$T�Q�CPF�M tactic:
namely, the NE?�OP?#Q�?$R�S tactic followed by repeatedapplications of TPC$L�U�V3J@WXF�MEY�MKJ�M$Z andvarious
automatic solution tacticals. Not surprisingly, using this tactic givesa muchshorter proof. The
usermaywish to redotheproofs of thesepropertieswhile incorporating the �#CPF�M$ZKA@TQ�CPF�M tactic.
If desired theproof scriptcanbesaved. It is bestto usethe V�C�`#Z e F optionof the >PY$QHZ menuto
save under a new name,suchas N�J�MH?HA�Y�CPQ ^Kp e�o WZKA hHi�ZHD �ET�ÏÐOEA�k .

Sincethe structureof the proof is somewhat similar, it is not necessaryto give detailed ex-
planations of how to do this. The usershould consult the appropriate proof scripts in Subsec-
tion 7.6.2if thereis any uncertainty in how to proceed.It is interesting to seehow theapplication
of �#C#F�M$ZKA$T�Q�C#F�M at the third proof stepin the proof of ^Kp e�o WZ�A hHiZ�D immediately leadsto the
decision point for introducing thenew invariant ^KpPx@A#Z@ZcI hHi�ZHD . Also, notethattheoptional steps
for cleaning up thehypothesesprior to introducing thenew invariant have not beenimplemented
in theproof script N�J�M@?�A�YHCEQ ^Kp e�o WZ�A hHiZ�D �$T�ÏÐOEA�k .

7.6 Methodsusedin the AdvancedTutori al

In this section the methods used in the advancedtutorial areelaborated. This should help in
understanding boththecontext in which they areused, aswell ashow they areused.

96



DSTO–TR–1349

7.6.1 Keepinginvariants using ß�à�à  ���¢�����������¡
In theaboveAdvancedTutorial,

e D@DzG3IE`#C�A�Y�CKI�M simplyprovidedanothermeansof introduc-
ing a required fact andestablishing its proof. More generally, the benefit of

e D$D{GcIE`PC�AY�CfI�M is
that it givesa straightforward way to addnew factswhile at the sametime keeping the known
factswhich maybeusedlateralongtheback-substitution path. In keeping with theoverall DOVE
strategy, its usecanbe explained in the following way. The proof of a given property is estab-
lishing aninvariantof thesystem.As theproof proceedsit maybefoundthatother invariantsare
required,andmustalsobeestablishedaspartof theoverall proof.

e D$D¥G3IP`PC�AY�CfI�M keepsall the
invariantsmanifestin the hypotheseswhile constructing further subgoalscorresponding to their
proof requirement.

A scenario wherethis construction is essential would ariseif the lECPF�M�xHA#Z$ZcI variablewasnot
usedin theTra< cLightsmodel. Thevalueof lECPF�M�xHA#Z$ZcI , asinsertedin back-substitution through
a transition precondition, wascrucial in allowing the proof strategy to terminate in the

e Q@Qfi�Z�D
state. If lEC#F�M�xHA�Z@ZcI wasnot usedthen theproof would not terminateat all!

However, in thiscaseconsidertheproperty
e Q@Qci�ZHD hHiZ�D thatspecifiesthecolour of theNorth

light in thestate
e Q$Qci�Z�D ,

9;: e QcB�C�SF (
e M e Q@Qfi�Z�D G o OdQ@YHZEF h$l#YHRfm�M t iZ�D )

Sincethe lECPF�M�xHA#Z$ZcI variableis not included,back-substitutiongoesthroughbothof the ^�p#nKm�CKI�R$Z�x@A#Z@ZfI
and h�V�n�m�CfI�REZfi�Z�D transitions. Thelatter is clearly trivial. But, asin theAdvancedTutorial, in the^Kp#nKmCfI�REZ�xHA#Z$ZcI pathnew invariantscorresponding to the colour of the North light in ^Kp e�o WZKA
and ^KpPxHA�Z@ZcI mustbe included. Using

e D@DzG3IE`PC�A�Y�CKI�M to include themkeeps the inductive hy-
potheses

e M e Q@QciZ�D G o OQ@Y@ZEF hEl#Y�RKm�M t i�ZHD ,_@A�ZK`�Y�?�JgFHQfS e QcB�C�SF (
e M e Q@QciZ�D G o OQ$YHZEF hEl#Y�RfmM t i�ZHD )

in the hypotheseslist of the corresponding subgoals. This is crucial sinceby back-substitution
alongthis paththeproof obligationreturnsto the

e Q@Qfi�Z�D state.

The userwill notethat this examplealsoties in nicely with the previousdiscussion warning
against carelesspruning of inductive assumptions. For here it is essential to keepthehypotheses
if this proof procedureis to work.

7.6.2 Proof scripts

Theproof scriptsof theaboveproofs weredepositedin files: into ^�p e�o WdZKA h@i�Z�DâÏãO$A�k and ^Kp :xHA#Z@ZfI hHiZ�DâÏãO$A�k for theconcurrentproof; andinto ^Kp e�o WZKA hHi�Z�D IZKBäÏÐO$Ak for theproof usinge D@DzG3IE`#C�A�Y�CKI�M . The usermay like to look at thesefiles. The proof scripts for the concurrent
proof are

WESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§·NE?�OP?PQ�?$R�Sìè3©ëê
97



DST8 O–TR–1349

WESç§.xPZ@MHn@?�Idk@Y�RzíK©ëêWESç§�V�?#Qf`#ZHn@?KIdk$Y�R{íK©vêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZ£î@©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï�ZK¯�Lcm�CfIR$Z$É{èc©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§j�#CELcm$ï e D@D@>EC$LHMKï�M@C$LñÇðNHJ�MH?HA�Y�CEQfïP^KpPx@A#Z@ZfI$ï$hHiZ�DPÉªè3©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEïH��C#F e QcB�C�SFfl�É¥è3©ëêWESç§�V�?#Qf`#Z�N#Z o O#?�APCEQzè3©ëê�EZHDaN�JMH?�AY�CEQcï#^Kp e�o WZKA@ï$hHi�ZHDâê
and

WESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§·NE?�OP?PQ�?$R�Sìè3©ëêWESç§j�#C#F�M$Z�AEn@?KIgk@Y�R{í�©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZ£î@©ëêWESç§·NE?�OP?PQ�?$R�Sìè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëê�EZHDaN�JMH?�AY�CEQcï#^KpPxHA�Z@ZcIEï$hHi�ZHDâê
The “1” in, for example, “ WESç§->$?�AHB#C�AED#F@G3I#DKJdLHMéè3© ” denotes that this step is applied to

subgoal 1. It is automatically inserted into the proof script as determined by which subgoal is
beingworkedon (i.e., by which subgoal hasbeen highlightedredby clicking with mousebutton
1). Also, the lower subgoalsareautomatically renumbered whena given subgoal is discharged.
That explains why, for example, WESç§·TPCELKU�V3J$WgF�MEYHMfJ�MEZzè3© appearsthreetimesin a row at the
endof theproof of ^�pPxHA#Z$ZcI h@i�Z�D .

Theproof history for theproof using
e D$D{G3IP`PC�AY�CfI�M is

WESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§·NE?�OP?PQ�?$R�Sìè3©ëêWESç§j�#C#F�M$Z�AEn@?KIgk@Y�R{í�©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZ£î@©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï�ZK¯�Lcm�CfIR$Z$É{èc©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§ e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Zfï#M@CEL¨Çð�#C$LcmEï#MfmgY3IPl#Ééè3©ëêWESç§@§7C@D@D�ïdY3IE`PC�A�Y�CfIMKï#M$C$L¦ò�ó : ^KpPxHA�Z@ZcIéG o OQ$YHZEFô§·h$l#YHRfm�MataiZ�DE©#ò�©õè3©vêWESç§�V�?#Qf`#Z�N#Z o O#?�APCEQzè3©ëê
98



DSTO–TR–1349

WESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§·NE?�OP?PQ�?$R�Sìè3©ëêWESç§j�#C#F�M$Z�AEn@?KIgk@Y�R{í�©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZ£î@©ëêWESç§·NE?�OP?PQ�?$R�Sìè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëêWESç§·TPCELKU�VcJ@WgF�MPY�MfJ�MEZzè3©ëê�EZHDaN�JMH?�AY�CEQcï#^Kp e�o WZKA@ï$hHi�ZHD�ïHIZKB�ê
Theproof history for the

e D@DzG3IE`#C�A�Y�CKI�M proof using �#CPF�MEZKA@TQ�CPF�M is

WESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§j�#C#F�M$Z�A@T�Q�C#F�Mõè3©vêWESç§@§7C@D@D�ïdY3IE`PC�A�Y�CfIMKï#M$C$L¦ò�ó : ^KpPxHA�Z@ZcIéG o OQ$YHZEFô§·h$l#YHRfm�MataiZ�DE©#ò�©õè3©vêWESç§�V�?#Qf`#Z�N#Z o O#?�APCEQzè3©ëêWESç§->@?HAHB#C�AED#FHGcI#DKJL@Méè3©ëêWESç§;[Z$L�? o OP?#F�ZEVHZ��KJdZcI�Mzè3©vêWESç§j�#C#F�M$Z�A@T�Q�C#F�Mõè3©vêWESç§j�#C#F�M$Z�A@T�Q�C#F�Mõè3©vê�EZHDaN�JMH?�AY�CEQcï#^Kp e�o WZKA@ï$hHi�ZHD�ï@�$Täê

7.6.3 A brief look at the æ���å����ö������¡�����å used

In this lastsubsectionthevarious T#CPFHY@L�NPCELHMEYHLPF whichhave(or could have)been usedin the
Advanced Tutorial arebriefly discussed.Theinformal explanations hereshould beconsideredin
conjunction with theresults obtainedwhenusingtheserulesatintermediatestagesof theproofs. In
theseexplanations we usethe“natural deduction” syntax,asintroducedin Section7.1.2, whereas
the rules arelisted in Appendix C in standard Isabelle syntax. Thus,the discussion hereshould
alsohelpin understanding thatAppendix.

Consider thepassageof stepswhichpruned uselesshypothesesfrom thehypotheseslist, using
thetheorems�#C$Lcm ZK¯#Lfm�CfIR$Z and �#C$Lcm MfmgY3IPl . As givenin Appendix C, these rules19 are

�#C$Lcm ZK¯�Lcm�CfIR$Z : l#Z$k�MH^H¯PM$ZfI#DPY3IR x lPZEk�MH^H¯PM$ZcI�DPY3I�R � ÷ x , ÷ � , ø , _ 9j: i÷ x , _ , ÷ � , ø 9;: i
and

��C$Lcm MfmdYcIPl : lPZ$k�M@^�¯PMEZcI#DPYcI�R H ÷ H, ÷ G 9;: _÷ H, R, ÷ G 9;: P
19Here ù;Õ , e.g.,standsfor anarbitraryhypothesislist of properties,while ² (without the$) is a singleproperty.

99



DST8 O–TR–1349

Recallthatthey areapplied in a goal-directed(“backwards”) proof system. Thus,whenmatching
to agivensubgoal theusershould matchtheRHSof therule(i.e., theRHSof themeta-implicationt@t@ú ) to the subgoal. Correspondingly, in the natural deduction syntax the usershould matchto
“below the line”. Theresult of applying the rule will thenbe given by its LHS (onesubgoal for
eachentry separatedby semicolon) – “above theline” for thenatural deduction syntax – with the
substitutionswhichallowedthematching. Thus,up to the lPZEk�MH^H¯PM$ZcI�DPY3I�R part, �#C$Lcm ZK¯�Lcm�CfIR$Z
simply rotates thefirst hypothesisto belast,and �#CELcm MfmdY3I#l deletesthefirst hypothesisfrom the
hypotheseslist.

The lPZ$k�M@^�¯PMEZcI#DPYcI�R subgoalsnever appear in thesubgoalslisted in the _@AE?H`#ZKA window, as
theuserwill have discoveredearlier in the tutorial. This is becausethe tacticalswhich apply the
rules, suchas

e O$OQfS$N#Z o O#?�APCEQfiHJdQ@Z , have automatically solvedthembefore returning the result.
Indeed, they aresimply technical baggageneededin themodelling of sequentsby hypotheseslists
in a way which is convenientfor unifying with general subgoals. Theadvanceduserwill realise
thatdischarging thesel#Z$k�MH^H¯PM$ZcI�DPY3IR subgoalsis whatdistinguishes,say,

e O$OQfS@N�Z o OP?HAPCEQfiHJdQHZ
from iZEFK?PQK`#Z¨§3G3I�M�AP?E© of the TPCPFHY@L¤N#C$LHMPYHLEF list. Fromnow onwewill ignore lPZ$k�M@^�¯PMEZcI#DPYcI�R
subgoalsin discussionsof therules.

Now considertherule �#CELcm ��CPF e QcB#C�SFfl , which wasused in theconcurrentproof,

�#CELcm �CPF e QfB#C�SFKl : lPZ$kHMH^�¯PMEZcI#D#Y3I�R E ÷ E, P, _@A#Z�`�Y�?KJXFHQfS (e QcB#C�SdF P), ÷ F 9;: R÷ E,
e QfB#C�SdF P, ÷ F 9;: R

Againreading right to left, thissimplybreaksupafactwhich is alwaystrueinto thecorresponding
factfor thecurrent state,andthestatement thatthefact is trueat all previoustimes.

As a moreadvancedobservation, note that the tactic [Z@LH? o OP?�F�Z$VHZH�KJZfI�M hasbeen used to
take, for example,

1. >PYfAF�M 9;: e M ^Kp e�o WZ�A G o OQ@Y@ZEF hEl#Y�RfmM t i�Z�D
to

1. >PYfAF�M , e M ^Kp e�o WZ�A 9;: h$l�Y�Rfm�M t i�Z�D
This is a consequence of the DOVE rule �#C$Lfm Y o O@i which is usedin the [Z@LH? o OP?�F�Z$VHZH�KJZfI�M
tactical,

�#CELcm Y o O@i : lPZ$k�M@^�¯PMEZcI#DPYcI�R H ÷ H, P 9;: Q÷ H 9;: P G o OdQ@YHZEF Q

It maysometimesbedesirable to usethis rule,particularly if theuserwantsto concentrateon one
subgoal wherethe target goal hasseveral conjunctions in the conclusion of an implication. For[Z@L�? o OP?�F�Z$VHZH�KJZcIM alsocontainstherule

�#CELcm LH?KIûfi : ÷ H 9j: P ÷ H 9;: Q÷ H 9;: P
e I#D Q

100



DSTO–TR–1349

which breaksup a setof target conjunctionsinto separatesubgoals. However, given the facilitye O@OQKS¥MH? e Q$Q , this maysimply bea matterof taste.

Also, thetactic V�?#Qf`#Z�N#Z o O#?�APCEQ hasbeenusedto solvesubgoalsof theform

1.
e M ^Kp#xHA#Z@ZfI , e M ^KpPx@A#Z@ZfI G o OQ@YHZPF h$l�Y�Rfm�M t i�Z�D 9;: h$l#YHRfm�M t iZ�D

Theuserwill now observe that this is a consequenceof therule

�#CELcm Y o OEl : lPZ$k�M@^�¯PMEZcI#DPYcI�R H ÷ H, ÷ G 9j: P ÷ H, Q, ÷ G 9;: R÷ H, P G o OQ$YHZEF Q, ÷ G 9;: R

followed by two applicationsof therule

�#CELcm WCPFHYHL : lPZEk�MH^�¯#M$ZcI#D#Y3I�R H÷ H, P, ÷ G 9;: P

Theserulesareincludedin the V�?PQf`�ZKN#Z o OP?�APCPQ tactical. Applying �#C$Lfm Y o OEl producestwo sub-
goalswhichsaythatit is enoughto provetheantecedent of theimplication, andthenits conclusion
canbeused asa hypothesis,

1.
e M ^KpPxHA�Z@ZcI 9;: e M ^Kp#xHA#Z$ZcI

2.
e M ^Kp#xHA#Z@ZfI , hEl#Y�RfmM t i�Z�D 9;: h$l�Y�Rfm�M t i�Z�D

Themanifestly obvious rule, �#C$Lcm W�CPF@YHL , provesbothof thesesubgoals.

It maybethattheseexampleswill helptheuserto exploretheuseof other rulesin AppendixC.

7.6.4 Applying constantdefinitions via æ���å����ü������¡�����å
Via the iHJdQ@Zý[dZ$k@Y3IgY�MEY�?KI option of the [dZ$k@YcIdY�MEY�?KIgF menu,the useris able to insert def-

initions of the constantswhich arebeingdeclared in the design of a given state machine. It is
generally expected that the rules definedreally aredefinitions, in the sense of equalities which
should be applied by rewriting of the constants. Examples of suchhave beendiscussedin Sec-
tion 4.5.4.2. In proving properties in the statemachinetheory, the usermay thenneed to apply
theserewriting rules to unwind the definitions. In this section we explain the mechanism for
applying therewriting rules in XIsabelle, using anexample from theTra< cLights theory.

Assumethat we have defined��C�¯En$C�AF by the rule �Pn MfmEA�Z@Z (seeSection4.5.4.2), andcon-
sidertheproperty

9;: e QcB�C�SF ((( _@A#Z�`�Y�?KJXFHQfS e M ^Kp#xHA#Z@ZfI ) e I#D ( _@A�ZK`�Y�?�JgFHQfS #3 ¾ hPn$C�AdF )) G o OdQ@YHZEFhE?EM ^Hl�Y�RfmM t xHA#Z$ZcI ) .

This is a very trivial exampleof the useof rewriting, but serves to illustrate the point. After
applying >@?�AHB�C�AED�FHG3I#D�JLHM , [Z$L�? o O#?#F�ZEVHZ��KJdZcI�M , and then �#C#F�M$ZKA$T�Q�C#F�M , the only remaining
subgoal is (having prunedaway theirrelevanthypotheses)

101



DST8 O–TR–1349

1. hP?$M ( �#C�¯En$C�AdF ¾ hEnEC�AF À V�n$C�AdF ),
#3 ¾ hEn$C�AdF
9;: >$CEQEF�Z

Herewe would like to applytherule �Pn MfmPA#Z@Z to obtain a contradiction of hypotheses.

To do this, selectthe V@Y o OQ@Y@kKS�Ï@Ï@Ï option in the TPCPFHY@L�NPCELHMEYHLPF frame,andclick onceonV@Y o OdQ@Y@kKS{V3J@WRH?$CEQ with mousebutton1. The _@AE?H`#ZKA inserts thetactic FHY o O M@CELþ§cFHY o OgF�ZHM�§´©CHD@D#F@Y o OgFñÇ·ÉH© into the nKJPA@A#ZcIM¤NPCELHMEY@L window andwaits for the appropriaterewrite rule to
be inserted into the square brackets. Now, as directed at the bottom of the _@AE?H`#ZKA window,
bring up the N�mZH?�A#Z o T@AP?�BdF�Z�A by pressing the �#C@MELcmªNHmZ�?HA#Z o F button. Selectthe

e ¯�Y�? o F
option of the ]YHZKB menuonthe N�mdZ�?�A#Z o T@AP?�BdFHZKA , select N@A#CEk@k@Y@L�l#Y�RKm�MPF in the N�mZH?�A@S¦hPC o ZPF
list using mousebutton 1, and then select the rule to be applied ( N@A#CEk@k@Y@L�l#Y�RKm�MPF�ÏÐ�Pn MfmPA#Z@Z )
from the NHmZ�?�A�Z o h#C o ZPF list usingmousebutton 2. This will insert the theoremnameinto thenKJEA@A�ZcI�M£NPC$L@MEYHL window, andtheusermustthensimply press

e O@OQfS . Theresults is to unwind
thedefinition of ��C�¯EnEC�AF , leaving

1. hP?$M (#3 ¾ hPn$C�AF À V�n$C�AF ),
#3 ¾ hEn$C�AdF
9;: >$CEQEF�Z

The userthenneeds simply apply V�?#Qf`#ZKN�Z o O#?�APCEQ to discharge the subgoal. [Note that this is
a configuration subgoal, so the usual xPZHMHn$?KIdk$Y�R then V�?#Qf`#ZHn@?KIdk$Y�R tactic is what is actually
discharging it.]

102



DSTO–TR–1349

References

1. Australian Departmentof Defence. Def(Aust)Standard 5679: Theprocurementof Computer
BasedSafety Critical Systems, 1998. iii

2. Cambridge University,mM@MKOäuðÿ@ÿHB$B@BäÏ;LEQ�Ï;LHC o ÏÝCELëÏ JEU$ÿ�i�ZEFHZ�C�A#LcmEÿ��$]$xHÿG$FKCfWdZ$QHQHZKÿED@?ELEF ÏÐm�M o Q . TheXIsabelle User
Manual, 1998. 4, 61, 66, 68, 76, 80, 81, 110

3. EuropeanCommunities – Commission. ITSEC:Information Technology Security Evaluation
Criteria, 1991. iii , 77

4. E. Kindler. Safetyandlivenessproperties: A survey. EATCSBulletin, 53,June1994. 19

5. D. Libes. Exploring Expect. O’Rielly andAssociates,1995. 4

6. J.K. Ousterhout. Tcl andtheTk Toolkit. Addison-Wesley, 1994. 4

7. L. C. Paulson. ML for theWorking Programmer. Cambridge UniversityPress,1996. 4

8. L. C. Paulson. TheIsabelle ReferenceManual.mM@MKOäuðÿ@ÿHB$B@BäÏ;LEQ�Ï;LHC o ÏÝCELëÏ JEU$ÿ�i�ZEFHZ�C�A#LcmEÿ��$]$xHÿG$FKCfWdZ$QHQHZKÿED@?ELEF ÏÐm�M o Q , 2000. 80

9. L. C. PaulsonandT. Nipkow. Isabelle: A Generic TheoremProver, volume828of Lecture
Notesin Computer Science. Springer-Verlag, 1994. 4, 9, 68, 76

10. S.M. Rubin. Computeraidsfor VLSI design.mM@MKOäuðÿ@ÿHB$B@BäÏ·F�M@C@MEY@L$kfA�Z@ZEFK?#k�MvÏ;LH? o ÿED@?ELcJ o ZcIMPF3N#Z�¯PMcW#?@?�U�Ï m�M o Q . 4

11. L. C. PaulsonT. Nipkow andM. Wenzel. Isabelle’s Logics: HOL.mM@MKOäuðÿ@ÿHB$B@BäÏ;LEQ�Ï;LHC o ÏÝCELëÏ JEU$ÿ�i�ZEFHZ�C�A#LcmEÿ��$]$xHÿG$FKCfWdZ$QHQHZKÿED@?ELEF ÏÐm�M o Q , 2000. 35, 110

12. S.Berghofer T. Nipkow. TheIsabelle SystemManual. TechnischeUniversiẗat München,mM@MKOäuðÿ@ÿHB$B@BäÏ;LEQ�Ï;LHC o ÏÝCELëÏ JEU$ÿ�i�ZEFHZ�C�A#LcmEÿ��$]$xHÿG$FKCfWdZ$QHQHZKÿED@?ELEF ÏÐm�M o Q , 2000. 133

13. UK Ministry of Defence. DefenceStandard 00-55: Theprocurementof Safety Critical
Software in Defence Equipment, 1995. iii

14. UK Ministry of Defence. DefenceStandard 00-56: Theprocurementof Safety Critical
Software in Defence Equipment, 1995. iii

103

http://www.staticfreesoft.com/documentsTextbook.html


DST8 O–TR–1349

AllRed

NSAmberEWAmber

EWGreen NSGreen

EWChangeAmber

EWChangeGreen

NSChangeAmber

NSChangeGreen

WaitEW
�

WaitNS
�

WaitTO WaitTO

EWChangeRed NSChangeRed

Appendix A The Tra
�

cLightsstatemachine

theory �����	�
�
�
�	
�
�������������	�
���

startmachine

states ���	�����	 "!#�
$��
%�&	���'!#�	$
(����	��)*!,+.-��
%.&
���'!/+�-
(����
��)

datatype 0
1
�	1
2��3�546���	 �47!849�
%�&	���:4;!84<(����	��):4

datatype �����.�
�����
1�)=�>4?�
$�4;!@46+.-�4

consts
46A.��B�0	������47�
�846).����4
46A.��B��	��%���47�
�846).����4

inputs
4<�	0
���.��47�	�846)����.4
46+.0
���.��47�	�846)����.4
4<-	0
���.��47�	�846)����.4
4<$	0
���.��47�	�846)����.4
4�����%��C47�
�849)�����4

heaps
46�	%�&
�����
��%.�
�
2.��4��
�846).����4
4<�	
�
������4D�	�84<0
1	�
1
2��E4
4<	�
����(����
��):4F�
�849�����.�
�����	1�):4

104



DSTO–TR–1349

46+.
�
������4D�	�84<0
1	�
1
2��E4
4<-	
�
������4D�	�84<0
1	�
1
2��E4
4<$	
�
������4D�	�84<0
1	�
1
2��E4

initpr ed
4�G?+�
�	�����H�����
 
I;JKG�-	
�
�����H�L�.�
 
I;JKG��
	�
���C�H�����
 	I;JMG�$

�	�����N�����
 
IC4

transdef 49+�-
0�����)��	�
(��.�
��)E4�4
(
2	���� C�O
�	����(����
��)P�8�
$
���.���,+�
�	�����RQ�S
ST(��.�
��)�U

-

�	�����RQ�S
ST(��.�
��)�U.4

transdef 4?�
$
0�����)��	�����	 �4�4
(
2	���� C�E�
%.&
���.�
��%��	�
2��VQW����%��
���.���X�

�	�����RQ�S
SX���	 �U

$

�	�����RQ�S
SX���	 �U

�
�.��(����	��)YQ.S
ST�
$�U.4

transdef 4?�
$
0�����)��	���
%.&
���E4�4

�.���,+�-�).2�%ZQ�S
S[G<+�0	�����;\8-
0
�����
I.U
(
2	���� C�EA���B�0
�����7Q�+.-�)�2�%
���.���X�

�	�����RQ�S
SX�
%.&
����U

$

�	�����RQ�S
SX�
%.&
����U
�
%�&	�����
��%��
�	2��VQ�S	S;G	����%.�;\�A���B��
��%��
I.U�4

transdef 49+�-
0�����)��	���
%.&
���E4�4

�.���X�
$�).2�%ZQ�S
S[G��
0	�����;\8$
0
�����
I.U
(
2	���� C�EA���B�0
�����7Q8�	$�)�2�%
���.���,+�
�	�����RQ�S
SX�
%.&
����U

-

�	�����RQ�S
SX�
%.&
����U
�
%�&	�����
��%��
�	2��VQ�S	S;G	����%.�;\�A���B��
��%��
I.U�4

transdef 49+�-
0�����)��	�����	 �4�4
(
2	���� C�E�
%.&
���.�
��%��	�
2��VQW����%��
���.���,+�
�	�����RQ�S
SX���	 �U

-

�	�����RQ�S
SX���	 �U

�
�.��(����	��)YQ.S
SX+�-�U.4

transdef 4?�
$
0�����)��	�
(��.�
��)E4�4
(
2	���� C�O
�	����(����
��)P��+�-
���.���X�

�	�����RQ�S
ST(��.�
��)�U

$

�	�����RQ�S
ST(��.�
��)�U.4

transdef 4?$
�
�.���
$�474

�.���X�
$�).2�%ZQ�S
S[G��
0	�����;\8$
0
�����
I3U
(
2	���� C�E+�1.�8G<A���B.0
���.�DQ8�
$�).2�%�I
���.���X-�]���^�U�4

105



DST8 O–TR–1349

transdef 4?$
�
�.�<+�-�474

�.���,+�-�).2�%ZQ�S
S[G<+�0	�����;\8-
0
�����
I3U
(
2	���� C�E+�1.�8G<A���B.0
���.�DQ�+�-�).2�%�I
���.���X-�]���^�U�4

transdef 4?$
�
�.���
��474
(
2	���� C�E+�1.�8G<�
%�&	�����	��%��	�
2��_QW����%��
I
���.���X-�]���^�U�4

graph 46���	�����	 �4D4
�
$
(����
��)`S
S��
$
0��.��)��	���
%.&
����S	Sba��
$��	%�&
���

!c�.�
���.�
 PS	S��
$	0�����).�
�
(����
��)�SdS�aL�
$	(����	��)
!#�	$��
%.&
���`S	S��
$	0�����)��
���.�
 �S	S�ae���
�����
 
!c+.-
(��.�
��)`S	S<+�-	0�����)��
���	%�&
����S
Sba_+.-��
%.&
���
!c�.�
���.�
 PS	S<+�-	0�����).�
�
(����
��)�SdS�ae+�-	(����	��)
!c+.-��
%.&
���`S	S<+�-	0�����)��
���.�
 �S	S�ae���
�����
 
!c+.-
(��.�
��)`S	S�$
�	�����	$�S
S�aH+�-
(��.�
��)
!#�	$
(��.�
��)`S	S�$
�	���<+.-�S
S�aD�
$
(��.�
��)
!#�	$��
%.&
���`S	S�$
�	�����	��S
S�aD�
$��
%.&
���
!c+.-��
%.&
���`S	S�$
�	�����	��S
S�aH+�-��
%.&
���E4

endmachine

end

106



DSTO–TR–1349

Appendix B Syntax of DOVE

In using theDOVE tool, theusermustbeableto write a transition definition in designing the
statemachine,andto write a sequent in specifying temporal properties. Thefollowing grammar
treessummarizes the concretesyntax which the usermustemploy for these purposes. In these
grammars,we have useda number of notational devices:

= id is anidentifier; i.e.,astringof alphanumeric charactersandunderscorewhich mustbegin
with a letter;

= idtsstands for a list of identifiers with optional specification of type;

= typestands for any Isabelle typeavailablein thestatemachinetheory;

= expr stands for any mathematical expression(type-correct Isabelle term) in the variables
andconstantsavailablein thestate machinetheory, andfrom any includedtheories;and

= whereneededto disambiguate,theoperator argumentsarespecified.

B.1 Transition definition

transition definition fhg let expression
guard part
action part

let expression fhg ‘’i
LET assignmentlist

guardpart fhg ‘’i
GUARD expr

action part fhg ‘’i
ACTION assignmentlist

assignmentlist fhg id GETSexpr‘ ;’i
assignmentlist id GETSexpr‘ ;’

ACTION fhg ‘Act:’
GETS fhg ‘ j :@: ’

GUARD f	g ‘Guard:’
LET fhg ‘Let:’

B.2 Sequent

sequent fkg formulalist TURNSTILE formulai
TURNSTILE formula

formulalist fkg formula

107



DST8 O–TR–1349

i
formulalist ‘,’ formula

formula fkg formulaAND formulai
formulaORformulai
formulaIMPLIES formulai
formulaCONGRUENCEformulai
formulaFROMTHENON formulai
formulaFROMTHENONSformulai
MOSTRECENTLY formulaformulai
MOSTRECENTLYS formula formulai
FORALL idts . formulai
EXISTS idts . formulai
ALWAYS formulai
SOMETIME formulai
formulai
NOT formulai
PREVIOUSLY formulai
PREVIOUSLYS formulai
INITIALL Y formulai
AT idi
BY idi
FIRSTi
TRUEi
FALSEi
expr

ALWAYS fkg ‘ Ç : É ’i
‘Always’

AND fkg ‘&’i
‘And’

AT fkg ‘ ó : ’i
‘At’

BY fkg ‘ ú : ’i
‘By’

CONGRUENCE fkg ‘ j :@: ú ’i
‘EquivalentTo’

EXISTS 1 . 2 fkg ‘ lôè-ï Ï�îfï ’i
‘Exists 1 . 2 ’

FALSE fkg ‘False’
FIRST fkg ‘first’i

‘First’
FORALL 1 . 2 fkg ‘ mÑè.ï Ï îKï ’i

‘ForAll 1 . 2 ’
FROMTHENON fkg ‘ non´ú ’i

‘FromThenOn’
FROMTHENONS fkg ‘ non�ú�F ’i

‘FromThenOnS’
IMPLIES fkg ‘ :$: ú ’

108



DSTO–TR–1349

i
‘Implies’

INITIALL Y fkg ‘init’i
‘Initi ally’

MOSTRECENTLY 1 2 fkg ‘ j�§�è.ï©|îfï ’i
‘MostRecently 1 2 ’

MOSTRECENTLYS 1 2 fkg ‘ j#Vg§Hè.ï�©¦îfï ’i
‘MostRecentlyS 1 2 ’

NOT fkg ‘ n ’i
‘Not’

OR fkg ‘ 9 ’i
‘Or’

PREVIOUSLY fkg ‘(-)’i
‘Previously’

PREVIOUSLYS fkg ‘(S)’i
‘PreviouslyS’

SOMETIME fkg ‘ j : ú ’i
‘Sometime’

TRUE fkg ‘True’
TURNSTILE fkg ‘ 9j: ’

109



DST8 O–TR–1349

Appendix C Rulesof temporal logic

TheDOVE proveris aspecialisedversion of theXIsabelle theoremprover interface.A general
introduction to theuseof theDOVE Prover maybefound in Chapter7 anda detailed explanation
of theXIsabelle interfacemaybefound in theXIsabelle usermanual[2]. This appendix presents
a list of thelogical rulesintroduced by theDOVE tool for reasoningabouttemporalproperties in
statemachines.Discussion of general logical rulesspecific to HOL, not DOVE, maybefound in
thereferencemanualIsabelle’s Logics: HOL [11] in theIsabelle distribution.

Therules aredividedinto two categories.

= Thestructural rulesarethoseruleswhich arelikely to appearasmatching rules in the‘Int r
Rules’box. Theserules arepresentedin SectionC.1.

= The rewriting rulesarea collection of equalities between temporallogic formulae. These
rules arepresentedin SectionC.2.

Within thesecategories the rulesaresorted on the nameof the rule according to lexicographical
ASCII ordering, this meansthatall capitalised namescomebeforeany uncapitalisednames.

In comparisonto therepresentation in7.6.3thereaderwill noticethat,aswrittenhere,therules
aresomewhat less“friendly”. Thelisting hereis in thesyntax usedby Isabelle. Thetranslation is
straightforward: e.g.,from

P1P2

C p
to

Ç 9 _ ègê _#î 9 É¤t@t@ú¥n
or vice-versa,asrequired. Moreover, Isabelleputs“?” in front of any freevariablesin thetheorem
– sowehave includedthemin this appendix.

C.1 Structural rules

The structural rules are usedto break up the structure of complex logical formulae. It is
frequently a goodideato eliminate asmany of the temporal operatorsaspossible by application
of thevariousstructural rules.For this reason,a brief explanation is givenof theproof purposeof
eachof the structural rules. Note that the lPZ$k�M@^�¯PMEZcI#DPYcI�R hypothesesaretechnical baggage,as
discussedin Section7.6.3, andcanbeignoredon reading.

Someof the simpler rulesarebundled into the simplification tactics in the ‘DOVE Tactics’
box.

110



DSTO–TR–1349

Rule Explanation

�#CELcm$ï#^�¯�Y$F�MPFfl�uÇ 9 lPZEk�MH^H¯PM$ZcI�DPY3I�RWlc��ègê
momÐ¯äÏ ÷ql3��èsrDlf_�è ¯tr ÷kl�x�è 9;: l�^Xè 9 Ét@t$úõ÷ql3��èur ^�¯Y$F�MPFý¯�Ï7lf_ è ¯tr ÷kl�x�è 9j: l�^Xè

split an existentially
quantified hypothesis

�#CELcm$ï#^�¯�Y$F�MPF3iäu÷klc� 9j: lK_vlK¯t@t$úõ÷ql3� 9;: ^�¯�Y$F�MPFÑ¯äÏFlK_¥¯

split an existentially
quantified goal

�#CELcm$ï#> e l#V�^Hl�ulPZEk�MH^H¯PM$ZcI�DPY3I�RKl3�t@t$úõ÷ql3�Er > e l�V�^wr ÷klKx 9;: lci

a false hypothesis
provesanything

�#CELcm$ï#>@?�A e Q@QKl�uÇ 9 lPZEk�MH^H¯PM$ZcI�DPY3I�RWlc��ègê÷klc�Er7lf_xlf¯tr ÷klKx 9;: l�^ 9 Ét@t$úõ÷ql3�Er >@?�A e Q@Q�¯�ÏDlf_ª¯tr ÷klKx 9;: l�^

split a universally
quantified hypothesis

�#CELcm$ï#>@?�A e Q@Qciäu
momã¯�Ï ÷kl3��è 9;: lf_ è ¯t@t$úõ÷ql3��è 9;: >@?�A e Q@Q�¯�ÏDlf_�è ¯

split aunversallyquan-
tified goal

�#CELcm$ï#>�N@\�YcI#DKJL@MKïk�?�AHB#C�AEDâu§ylf_tr�lf_ª>HAE? o N�mZcIP\�Ivlci$i:z 9;: lci@i�© :@: ú§·hP?$MMlK_tr _@A#Z�`�Y�?KJXFHQfS`lfi@i:r7lf_{>�AE? o N�mdZcIE\�Ixlci@i:z 9;: lci$i�©:@: ú §ylf_{>�AP? o N�mdZcIE\�Ixlci@iEz 9j: lf_{>�AP? o NHmZcIE\HIvlci@i©

reasoning forwards to
prove fromthenon

�#CELcm$ï@�ET�G3I�DKJLHM@>@?�A@B#C�AED�ïHI#?EYcIdY�MëuÇ 9 lPZEk�MH^H¯PM$ZcI�DPY3I�RWl�x e êV3m@WXF�M@C�A §ylKx Ç·É@©þ§{lKx e Ç·ÉH©vê÷klKx e r _@A#ZK`Y�?KJgF@QfSì§ e QcB#C�SF3lci© 9j: lci@i 9 Ét@t$úõ÷qlKx 9;: e QcB#C�SFZlfi

prove always goal by
working forward

111



DST8 O–TR–1349

Rule Explanation

�#CELcm$ï@��CPF e QcB#C�SdFfl�uÇ 9 lPZEk�MH^H¯PM$ZcI�DPY3I�RWl�^âê÷kl�^|rDlK_tr_@A#Z�`�Y�?KJXFHQfS e QcB#C�SFZlK_tr ÷kl�> 9;: lci 9 Ét@t$ú ÷ql�^wr e QcB�C�SFWlf_tr ÷kl�> 9;: lci

split alwayshypothesis

�#CELcm$ï@��CPF e QcB#C�SdF3iäuÇ 9 V3m$WgF�M$C�A!§{l�^ Ç.ÉH©ñ§yl�^�èôÇ·É@©ëê÷kl�^�è 9j: lK_ 9 Ét@t$úõ÷ql�^ 9;: e QcB#C�SFZlK_

use any Always hy-
potheses to prove an
Alwaysgoal, the Ç : ÉKú
operatorselects theAl-
wayshypotheses

�#CELcm$ïdG3IdY�MPY�CEQcïEA#Z o ?�`#Z�l�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWlKx�ê l#Z$k�MH^H¯PM$ZcI�DPY3IRWl3� ê÷qlKx|rDl��wr ÷kl3�}rá>#YfAF�M 9;: lcO 9 Ét@t$úõ÷qlKx|r G3IdYHMEY�CPQ@QfS`l��wr ÷kl3�Erá>PYfAdF�M 9;: lcO

split an initial state hy-
pothesis

�#CELcm$ïdG3IdY�MPY�CEQcïEA#Z o ?�`#Zfi uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWlKx�ê÷qlKx|rá>PYfAdF�M 9j: lfO 9 Ét@t$úõ÷qlKx|r >PYfAdF�M 9j: GcIdY�MPY�CEQ@QKS`lcO

split an initial state
goal

�#CELcm$ïE_@A#Z�D$> e l#V�^âuÇ 9 VcOEA#Z�D�F�M@C�A §yl�^ Ç·ÉH©~lføäê
m�LëÏDlføéLat¥>$CPQ$F�Zf] 9 Ét@t$úõ÷ql�^ 9;: lf_

contradictory config-
uration hypotheses
proveany goal

�#CELcm$ïE_@A#Z�D@l�iäuÇ 9 VcOEA#Z�D�F�M@C�A §yl�^ Ç·ÉH©~lføäê
m�LëÏDlføéL :$: ú`lK_õL 9 Ét@t$úõ÷ql�^ 9;: lf_

prove a configuration
goal by collecting con-
figuration hypotheses

�#CELcm$ïENHi � ^�iäu÷klc� 9j: N$A�JZf]

anything proves a true
goal

112



DSTO–TR–1349

Rule Explanation

�#CELcm$ï@W�C$LKU@ïk�MH?�uÇ 9 lKx 9;: lfi@iäê9j: lci@i e I#Da_@A#Z�`�Y�?KJXFHQfS|hE?$M`lci@iôG o OdQ@YHZPFZlf_ 9 Ét$t@úvlKx 9;: lf_¥>HAE? o N�mZcIP\�Ivlci$i

reasoning backwards
to prove fromthenon

�#CELcm$ï@W�C$LKU@ïk�MH?�F�uÇ 9 lKx 9;: lfi@iäê9j: >PYfAF�MªG o OQ@YHZPFÑhE?EM~lfi@iäê9j: lci@i e I#Da_@A#Z�`�Y�?KJXFHQfS|hE?$M`lci@iôG o OdQ@YHZPFZlf_ 9 Ét$t@úvlKx 9;: lf_¥>HAE? o N�mZcIP\�IdVZlfi@i

reasoning backwards
to prove fromthenons

�#CELcm$ï@W�C$LKU@ïdFK? o ZHMEY o ZëuÇ 9 lKx 9;: lfi@iäê9j: >PYfAF�MªG o OQ@YHZPFÑhE?EM~lfi@iäê9j: lci@i e I#Da_@A#Z�`�Y�?KJXFHQfS|hE?$M`lci@iôG o OdQ@YHZPFZlf_ 9 Ét$t@úvlKx 9;: V�? o Z@MEY o ZMlf_gò

reasoning backwards
to prove sometime

�#CELcm$ï@W�CPFHY@LëulPZ$k�M@^�¯PMEZcI#DPYcI�RKl3�zt@t$ú÷klc�Er7lf_tr ÷klKx 9;: lf_

prove a goal by hy-
pothesis

�#CELcm$ïL�?KIû�l�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�ErDlf_tr7lføtr ÷kl�x 9j: lfi 9 Ét@t$úõ÷ql3�Er7lf_ e I#D"lfø:r ÷qlKx 9;: lfi

split a conjoined hy-
pothesis

�#CELcm$ïL�?KIûKiäuÇ 9 ÷klc� 9j: lK_�ê÷kl3� 9;: lfø 9 Ét@t$úõ÷ql3� 9;: lf_ e I#D"lfø

split a conjoinedgoal

113



DST8 O–TR–1349

Rule Explanation

�#CELcm$ïL�?KI�M�APC$LHMâuÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWlKx�ègêÜl#Z$k�MH^H¯PM$ZfI#DPY3IRKlKxPîvê÷kl�x�èsrDlf_tr ÷kl�xPî�r ÷klKxgí 9;: lci 9 Ét@t$úõ÷qlKx�èurFlf_:r ÷kl�xPî�r7lf_:r ÷kl�xdí 9j: lfi

remove duplicate hy-
potheses

�#CELcm$ïLcJ�MvuÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWlKx�êV�n@?�`#Z�A#Z�Dñ§ylKx Ç·ÉH©ñ§ylc� Ç.ÉH©ëê÷kl3�}rDlK_ 9j: lci ê÷klKx 9;: lf_ 9 Ét@t$úõ÷ql3� 9;: lci

prove goal i via inter-
mediate goal _ .

�#CELcm$ï#DPY$F�û�l�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�ErDlf_tr ÷klKx 9;: lci ê÷kl3�}rDlKøtr ÷klKx 9;: lci 9 Ét@t$úõ÷ql3�Er7lf_ª\@Axlføtr ÷kl�x 9j: lci

split a disjoined hy-
pothesis

�#CELcm$ï#DPY$F�ûKi ègu÷klc� 9j: lK_t@t$úõ÷ql3� 9;: lf_ª\@AvlKø

prove thefirst partof a
disjunctivegoal

�#CELcm$ï#DPY$F�ûKi�îëu÷klc� 9j: lKøt@t$úõ÷ql3� 9;: lf_ª\@AvlKø

prove the second part
of a disjunctive goal

�#CELcm$ïZK¯#LcmCfI�R$ZvuÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWlKx�ê l#Z$k�MH^H¯PM$ZcI�DPY3IRWl3� ê÷qlKx|r ÷kl3�}rDlfø:rDlK_ 9j: lfi 9 Ét@t$úõ÷qlKx|r7lf_tr ÷klc�ErFlKø 9j: lci

changetheorderof hy-
potheses

114



DSTO–TR–1349

Rule Explanation

�#CELcm$ïdk�MH?�ïZK¯PM$ZfI#DâuÇ 9 lKx 9;: lK_¥>�AP? o NHmZcIE\HIvlci@i ê?�OM�>lf_ 9;: lf_tz >�AE? o N�mZfIE\�Ivlfi@i 9 Ét$t@úvlKx 9;: lf_tz >�AE? o N�mZfIE\�Ivlfi@i

fromthenonextends by
implication

�#CELcm$ïdk�MH?�ï o ?KI#?�uÇ 9 lKx 9;: lK_¥>�AP? o NHmZcIE\HIvlci@i ê9j: lci@iôG o OdQ@YHZEFZlci@i:z 9 Ét$t@úvlKx 9;: lf_¥>HAE? o N�mZcIP\�Ivlci$i:z

fromthenon is mono-
tonic

�#CELcm$ïdk�MH?�ï$O$A#Zfï o ?KI�?âuÇ 9$9;: lf_õG o OQ$YHZEFWlf_tzEê
l�x 9j: lK_¥>HAE? o NHmZcIE\HIvlci$i 9 Ét$t@úvlKx 9;: lf_tz >�AE? o N�mZfIE\�Ivlfi@i

fromthenon is mono-
tonic

�#CELcm$ïdk�MH?#Fcï�ZK¯PMEZcI#D�uÇ 9 lKx 9;: lK_¥>�AP? o NHmZcIE\HIdVZlci$iäê?�OM�>lf_ 9;: lf_tz >�AE? o N�mZfIE\�IdVWlci@i 9 Ét$t@úvlKx 9;: lf_tz >�AE? o N�mZfIE\�IdVWlci@i

fromthenons extends
by implication

�#CELcm$ïdk�MH?#Fcï o ?KI�?âuÇ 9 lKx 9;: lK_¥>�AP? o NHmZcIE\HIdVZlci$iäê9j: lci@iôG o OdQ@YHZEFZlci@i:z 9 Ét$t@úvlKx 9;: lf_¥>HAE? o N�mZcIP\�IdVZlfi@i:z

fromthenonsis mono-
tonic

�#CELcm$ïdk�MH?#Fcï@O$A#ZKï o ?�I#?âuÇ 9$9;: lf_õG o OQ$YHZEFWlf_tzEê
l�x 9j: lK_¥>HAE? o NHmZcIE\HIdVZlfi@i 9 Ét$t@úvlKx 9;: lf_tz >�AE? o N�mZfIE\�IdVWlci@i

fromthenonsis mono-
tonic

�#CELcm$ïdY�DEZcIMEY�M�Säu÷kl�x|r7lf_tr ÷kl3� 9;: lcit@t$úõ÷qlKx|r7lf_tr ÷klc� 9;: lfi

this may ariseas a re-
sultof acutapplication

115



DST8 O–TR–1349

Rule Explanation

�#CELcm$ïdY o OEl�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�Er ÷klKx 9;: lf_�ê÷kl3�}rDlKøtr ÷klKx 9;: lci 9 Ét@t$úõ÷ql3�Er7lf_õG o OdQ@YHZEFWlfø:r ÷kl�x 9;: lfi

split a conditional hy-
pothesis

�#CELcm$ïdY o O@i uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�ErDlf_ 9;: lfø 9 Ét@t$úõ÷ql3� 9;: lf_õG o OQ$YHZEFWlfø

split a conditional goal

�#CELcm$ï o O@ïQ$YfU#ZëuÇ 9¥9;: lci@iôG o OdQ@YHZPF3lci@iEz$ê÷qlKx 9j: lci@i 9 Ét@t$úõ÷qlKx 9;: lci@i:z

example of “cutting”

�#CELcm$ï@I#?$M�l�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�Er ÷klKx 9;: lf_ 9 Ét@t$úõ÷ql3�Er hE?$M`lf_:r ÷kl�x 9j: >$CEQ$FHZf]

split a negatedhypoth-
esis

�#CELcm$ï@I#?$MKi uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�ErDlf_tr ÷klKx 9;: >$CPQ$F�Zf] 9 Ét@t$úõ÷ql3�Er ÷klKx 9;: hE?EM~lK_

split a negatedgoal

�#CELcm$ïgF o CEQ$Qcïk�M@?�iäu
9;: lci$i¥t$t@ú9j: lK_¥>HAE? o NHmZcIE\HIvlci$i

split a fromthenongoal

116



DSTO–TR–1349

Rule Explanation

�#CELcm$ïgFK? o Z@MEY o ZKï o ?�I#?âuÇ 9 lKx 9;: lK_éV�? o ZHMPY o ZWlfi@iäê9j: lci@iôG o OdQ@YHZEFZlci@i:z 9 Ét$t@úvlKx 9;: lf_éV�? o Z@MEY o ZMlci@iEz

sometimeis monotonic

�#CELcm$ïgFK? o Z@MEY o ZKï o OdQ@YfU#ZvuÇ 9 lKx 9;: V�? o ZHMPY o ZWlfi@iäê9j: lci@iôG o OdQ@YHZEFõ§�V�? o ZHMEY o ZKlfi@i:zj© 9 Ét$t@úvlKx 9;: V�? o Z@MEY o ZMlci@iEz

structuralrule for argu-
ing with sometime

�#CELcm$ïgF�J@WgF�MvuÇ 9 l�C|txl3W ê
lc�5lcW 9j: lK_vlcW 9 Ét@t@úvl3�>l�C 9;: lf_xl�C

if C and W are equal,
substitute one for the
other

�#CELcm$ï�MfmdY3I#l�uÇ 9 lPZ$kHMH^�¯PMEZcI#DPYcI�RWl3� ê÷ql3�Er ÷klKx 9;: lf_ 9 Ét@t$úõ÷ql3�Er7lci:r ÷kl�x 9;: lK_

drop an unnecessary
hypothesis

�#CELcm$ï�MfmdY3IEiäu÷klc� 9j: >ECEQ$F�ZK]t@t$úõ÷ql3� 9;: lf_

contradictory hypothe-
sescanprove any goal

hE?EMH>PYKAF�MKïE_@A#ZK`Y�?KJXFHQfSHï�C$LKA$?�F@F3ï@hE?EMëu
9;: e QfB#C�SdFõ§@§.hE?$M¦>PYfAdF�M e I#D|_@A#ZK`Y�?KJgF@QfSahP?$M~lK_#©G o OdQ@YHZEFýhE?$Mì§·_$A#ZK`�Y�?KJgF@QfS~lf_#©$©

if not first cantake not
throughpreviously

hE?EMH>PYKAF�MKïE_@A#ZK`Y�?KJXFHQfSHï�C$LKA$?�F@F3ï@hE?EMfï$A#Z�`�u
9;: e QfB#C�SdFõ§·hP?$M|>#YfAF�M e I�DahP?$Mñ§._@A#Z�`�Y�?KJXFHQfS`lK_#©@©G o OQ$YHZEFý_@A#Z�`�Y�?KJXFHQfSahP?$M`lf_

not throughpreviously,
other way

117



DST8 O–TR–1349

Rule Explanation

k�M@?�ï@OZKAFHYEF�MPF3ï�CEQ$F�?âu
9;: e QcB�C�SFô§·_@A#Z�`�Y�?KJXFHQfSñ§{lci@i e I#D"lci$i:zj©@©ªG o OdQ@YHZPFZlci$i:zt$t@ú §ylf_ e I#D"lci$i:zj©a>�AE? o N�mZfIE\�IdVWlci@i 9;:§ylK_ e I#D~lfi@i:z·©a>�AP? o NHmZcIE\HIdVõ§ylfi@i e I#D"lci@iEzj©

propagate verification
throughfromthenon

C.2 Rewriti ng equalities

Therewriti ng rulesareeither used aspartof DOVE’s simplification packageor elserepesent
simplificationswhich it is sometimesuseful to apply.

Rule

e I�D�\@A�u§ylfO e I#D!§yl��|\@AxlfA#©$©¤tç§ylfO e I�D`l��a\$AvlfO e I#D`lKA#©

[����fï e QfB#C�SF�^�¯HO u§ e QcB#C�SFZlfO�©at!§ylfO e I#D|_@A#ZK`Y�?KJXFHQfSì§ e QcB#C�SFZlfO�©@©

[����fïP>�N$\E^�¯HO u§ylfO{>HAE? o N�mZcIP\�Ivl��P©£t §yl�� e I#D§ylfOª\$A¦_$A#ZK`�Y�?KJgF@QfSì§ylfO{>HAE? o NHmZcIE\HIvl��P©@©@©

[����fïG3IgY�MH>$CPQ$F�Zvu§�GcIdY�MPY�CEQ@QKS¦>$CEQEF�Zf]©¤t¥>$CEQEF�Zf]

[����fïG3IgY�M�N@AHJZëu§�GcIdY�MPY�CEQ@QKSaN@A�JdZf]�©£t|N$A�JZK]

[����fï$hE? e I#Dâu§·hP?$Mì§ylcO e I#D"l��E©$©£t §·hP?$M`lcO¥\@A¦hP?$M`l��E©

118



DSTO–TR–1349

Rule

[����fï$hE?$>$CEQ$FHZëu§·hP?$M¦>$CEQEF�Zf]�©¤t¦N$A�JZK]

[����fï$hE?H\@A�u§·hP?$Mì§ylcOª\@A5l��E©$©¤tç§·hP?$MMlfO e I#D£hP?$M`l��E©

[����fï$hE?#V�? o Z@MEY o Zëu§·hP?$Mì§�V�? o ZHMEY o ZWlcO©@©¤tç§ e QcB#C�SFÑhP?$M`lcO�©

[����fï$hE?HN@A�JZvu§·hP?$MaN@A�JdZf]�©£tª>$CPQ$F�ZK]

[����fïV�? o Z�^�¯@Oäu§�V�? o Z@MEY o ZKlcO�©atç§ylcOª\@A¥_@A#Z�`�Y�?�JgFHQfSVé§�V�? o ZHMEY o ZKlfO�©@©

[����fï#CfI�DPV�M@C$M$Zëu§ylK_Z�>lfø�©£tç§ylK_ e I#D~lKø#©

[����fïk�CPQ$F�Z$VHM@C@MEZëu>$CPQ$F�Z£t{>$CEQ$FHZf]

[����fïY o OV�M@C$M$Zëu§ylK_ :$: úvlfø#©at §ylf_õG o OdQ@YHZEFWlfø#©

[����fïHI#?#V�M@C@MEZëu§hnPlf_�©£t §·hP?$M`lf_#©

119



DST8 O–TR–1349

Rule

[����fïHI#?�I#?âu§·hP?$MahE?$M~lf_#©atxlf_

[����fïP?�AV�M@C@MEZëu§ylK_ 9 lfø�©£tç§ylK_¦\$AvlKø#©

[����fï#M�AHJZ$V�M$C@M$ZvuN@AHJZat|N$A�JZf]

>�N$\Hï e I�Dâu§ylK_¥>HAE? o N�mZcIP\�Ivlci$i e I#D"lci@i:z·©¤t§$§ylf_¥>�AE? o N�mZfIE\�Ivlfi@i�© e I#D!§ylK_¥>HAE? o NHmZcIP\�Ivlci$i:zj©@©

_@A�ZK`�Y�?�JgFHQfS@ï#C$L�AE?#F@Fcï e I#D�u§·_$A#ZK`Y�?KJgF@QfSì§yl e¦e I#D~l e zj©$©£t §·_@A�ZK`�Y�?KJgFHQKS`l eªe I#D|_@A�ZK`�Y�?�JgFHQfS"l e z·©

_@A�ZK`�Y�?�JgFHQfS@ï#C$L�AE?#F@FcïP>@?�A e Q@Qëu§·_$A#ZK`Y�?KJgF@QfSì§->$?�A e Q@QÑ¯�Ï7l e ¯#©$©£t §->$?�A e Q$Qý¯�Ï _@A�ZK`�Y�?KJgFHQKS`l e ¯#©

_@A�ZK`�Y�?�JgFHQfS@ï#C$L�AE?#F@FcïG o OdQ@YHZPF�u§·_$A#ZK`Y�?KJgF@QfSì§yl e G o OQ$YHZEF3l e zj©@©at§·_$A#ZK`�Y�?KJgFHQKS`l e G o OdQ@YHZPFÑ_@A�ZK`�Y�?�JgFHQKS`l e z·©

_@A�ZK`�Y�?�JgFHQfS@ï#C$L�AE?#F@Fcï$\@A�u§·_$A#ZK`Y�?KJgF@QfSì§yl e \$Avl e zj©@©£tç§·_@A�ZK`�Y�?�JgFHQKS~l e \@A¥_@A#Z�`�Y�?KJXFHQfS`l e zj©

L�?�IûKNHi � ^Eîëu§ylK_ e I�DaN$A�JZK]�©¤txlf_

120



DSTO–TR–1349

Rule

L�?�IûKNHi � ^Xègu§·N$A�JZf] e I�D~lf_�©£txlf_

DPYEF�ûKNHi � ^Eîëu§ylK_¦\@A¥N$A�JZf]©¤t¦N@A�JdZf]

DPYEF�ûKNHi � ^Xègu§·N$A�JZf]¥\@Axlf_�©£t¦N@A�JdZf]

Y o O$NHi � ^Eîëu§ylK_éG o OQ@Y@ZEFÑN$A�JZf]©¤tªN@AHJZf]

Y o O$NHi � ^Xègu§·N$A�JZf]ôG o OQ@YHZPF3lf_#©atxlf_

L�?�Iû�> e l#V�^Eîvu§ylK_ e I�D¦>ECEQ$FHZf]�©£t¥>ECEQ$FHZf]

L�?�Iû�> e l#V�^XèXu§->ECEQ$F�ZK] e I�D`lK_#©at¥>ECEQ$FHZf]

DPYEF�û�> e l#V�^Eîvu§ylK_¦\@Az>ECEQ$F�ZK]�©�txlf_

DPYEF�û�> e l#V�^XèXu§->ECEQ$F�ZK]¦\@Axlf_�©£txlf_

121



DST8 O–TR–1349

Rule

k�M@?#F3ïPDPZ$k�u§ylfO{>HAE? o N�mZcIP\�IdVZlKA#©¤tç§$§�V�? o ZHMEY o ZWlcO© e I#Dì§{lcOz>�AE? o N�mZfIE\�IvlKA#©@©

Y o OP> e l�V�^Eîëu§ylK_éG o OQ@Y@ZEF�>ECEQ$F�ZK]�©¤t §·hP?$M`lf_#©

Y o OP> e l�V�^Xègu§->ECEQ$F�ZK]éG o OQ@YHZPFZlf_�©£t¦N@AHJZf]

O$A�ZK`F3ï#DEZ$k�u§·_$A#ZK`Y�?KJgF@QfS�V3lfO�©£tç§.hE?$Mñ§·_@A#Z�`�Y�?�JgFHQfS|hE?$M`lcO�©$©

122



DSTO–TR–1349

Appendix D Statemachine diagnostics

DOVE providesreasonably comprehensivediagnosticsfor syntacticerrors in thedefinition of
the statemachineor its associatedproperties. Thesediagnostics may be generatedeither at the
time of input or elseduring theoperation of the nKmZ$LKU@ÿEn$? o OdY@QHZ option of the ^@DPYHM menu.

Sinceall parsingis donedirectly in theIsabelleproofassistant,checksfor theuseof undefined
variables,or themisuseof variablesaccording to their declaredtype,etc,areimmediately carried
outupon input. In particular, simplespelling errorsandconventionclashesareusually verysimply
picked up this way.

D.1 Checkscarried out by «��������t��«������������
The first check that is carried out determineswhether or not all declarations(eg types, vari-

ables, transitions andso on) have beenparsed,or committed. If not, a list of the ob ending dec-
larations is presentedto the user, and the useris responsible for seeingthat eachdeclaration is
parsed correctly (by selecting the n@? o@o Y�M button on thedeclaration’s editor window, asdiscussed
in detail below)before attempting to compilethestatemachineagain.For this reason, it is in the
interestsof the userto ensure that mostdeclarations, particularly basicbuilding blocks suchas
types, variables,andsoforth, areparsedq committed asthey aredeclared.

Thecompilationprocessthenproceedsto thesyntacticstage. Syntactic checks arefor

1. identifiers usedbut not declared,and

2. identifiers usedtwice,or which clashwith thoseof theunderlying DOVE tool.

Thesearefatal errorsfor theconstruction,andarewritten assuch into thedialog box.

Thestructural checks arecarried out to check that

= an initi al state has beendefined(in the G3IdY�MPY�CEQ$Y$F�C@MPY�?KI option of the [Z$k@YcIdY�MPY�?KIgF
menu).

= in thetopology of thediagrameverynodeonthestatemachineis reachablefrom thechosen
initi al state.

= no two nodes have thesamename.

Any failure in these checks is a fatal error, andwill bewritten assuchinto thedialog box.

If therehavebeen no errors sofar, thecompilation processthenproceedsto thenext phase, in
which DOVE proceeds to load the corresponding Isabelle theory file into the Isabelle proof tool
whichchecksfor syntactic errors. In particular, it carriesout all thetype-checking. This is amuch
more stringent test than the preliminary checking described above, andsomewhat slower. The
errormessageswhich maypossibly ensuearethoseof theIsabelle proof tool.

123



DST8 O–TR–1349

D.2 Diagnosticmessagesfr om «��������t��«������������
The error messages listed herearegeneratedspecifically for the DOVE tool. They will be

output to a dialog box labelled n@? o OY@Q�C$MEY�?KI :@: [dY�C@RKI#?#F�MEYHLEF . If thechecksucceeds,thenthe
following message will appear

V3JdL@L@ZEF$F!u hE?õFcS�IM@C$L@MEYHL¤?HAõF�M�A�JL@MfJEA#CEQ£ZKA$AE?�AF|k�?KJ$I#D
If not, a number of thefollowing mayappear.

D.2.1 Initialisa tion checks

If there is a problem with theiniti alisation, under VKS�I�M$C�¯ªn�mZ@LKU will appear themessage

^�A$AE?�Aõk�?KJ$I#D¤B@mZcIôLcmZ$LKU�Y3IR¦Y3IgY�MEY�CPQ@Y$F�C$MEY�?�IaO$A#Z�D#YHLHC$M$Zëu
followed by either:

hE?zY3IdYHMEY�CPQ¦F�M$C@M$Z�m�CPF¿WZ@ZfIzDPZ$k@Y3IdZ�Dñ§cF�Z@Z¥G3IdYHMEY�CPQ@Y$F�C$MEY�?KI£BdY3I#D@?�B�©ëÏ
if theiniti al statehasnot beenenteredin the GcIdY�MEYHCEQ@YEF�C@MEY�?KI window; or,

N�mdZªY3IgY�MEYHCEQ¦F�M@C@M$ZýI�C o Z����·F�M@C$M$ZKh#C o Z�z�záY$FÑI#?$MªC|`PCEQ$Y�D{F�M@C@M$ZýI�C o ZëÏ
if statenameis not oneof thenamesassignedto thestatemachinenodes.

D.2.2 Edgeto transition checks

A fatal erroroccurs if a givenedgenameis not declaredasa transition,

^�A$AE?�A uÜNHmZªZ�D$R$Z��o�jZ�D$REZKhPC o Z�zoz'm�C#F¿I�?¥LH?�A@A#ZPF3OP?�I#DPY3IR£M�APCKIgFHY�MPY�?KI Ï
However, a declaredtransition namenot being assignedto anedgeis not a fatalerror. Still, it

couldbeanoversight on theuser’s part, soDOVE givesa warning,

p�C�A�IdY3IRÈu V�? o Za?#kaMfmdZaDPZ$k@YcIZ�DªM�APCfIXFHY�MEY�?KIgFC�A�ZýI#?EM¦C#F@FK?PL$Y�C@MEZ�D�BYHMfmôZ�D$R$ZPF�u
listing theunassignedtransition names.

124



DSTO–TR–1349

D.2.3 Structure Checks

Problemswith statemachine structurearereportedunder V�M�A�JdLHMfJPA#Z¤nKmdZ@LKU , producing:

^�A$AE?�A uÍ�dY$F@F@Y3I�R¥Y3IdY�MPY�CEQªF�M@C@MEZëÏ
if theiniti al statehasnot beenenteredin the GcIdY�MEYHCEQ@YEF�C@MEY�?KI window;

^�A$AE?�A u i�ZKO�ZHC@MEZ�D¥F�M$C@M$Z�I�C o ZEF u
listing statenameswhich arenot uniquely assignedto nodes; or,

^�A$AE?�A uÜhP?@DEZPF°J@IPA#ZHC$Lfm�CfWdQ@Z|kfAP? o YcIdY�MPY�CEQªF�M@C@MEZçu
listing nodeswhich cannot be reached by foll owing the directed edgesfrom the assigned initial
state.

D.2.4 Uncommitted data

An errorwill bereturnedif theuserattemptsto compile whilst therearedefinitionswhich did
not parse appropriately – so,thedeclaration window hasbeen“Closed” insteadof “Committed”.
For example,if thevariable Var hasfailedto parse, theresult of nKmZ@L�U@ÿEn@? o OY$QHZ is

n@? o OY@QHC@MEY�?�IzLHCKI@I#?$M�WZªLHC�A$A�YHZ�D¦?KJ�Mwr F@Y3IL@Z|MfmZ¥k�?#Q@Q�?�BY3I�RDEZ$L$Q�C�A#C@MEY�?�IgF mC�`#ZýI#?$MaS#ZHM¤WZ$ZcIõLH? o@o Y�M@M$ZHDâu
] e iG e TEl$^PVÑh$\@N{n�\H�@�dGfN@NP^K[ u

]#C�A

D.3 Parsing errors in definitions

Sincetheinput is directly parsedin theunderlying Isabelle tool, any error messagesareoutput
straight from Isabelle and simply redirectedto a diagnostic dialog box. As such,the meaning
of the diagnostic will in general not be particularly clear! However, early alerting of the userto
the fact that the error hasoccurred is expected to typically allow a quick correction, sinceat this
input stageof the processthe possible mistakesarequite limited. In this way, the user should
also gain a feeling for which diagnostic is associated to which kind of error. In any case,we
just restrict ourselvesto giving a smallsubset of examplesbelow of errors andthecorresponding
output diagnostic.

125



DST8 O–TR–1349

D.3.1 Typeerrors in defining type abbreviations and variables

Mis-spelling anIsabelleq HOL type,or previously definedtypeabbreviation, is a fatalerror in
general. Thefoll owing results from declaring thetypeof a variable to be h#C@M , where hPC@M hasnot
beendefinedasa typeabbreviation (theIsabelleq HOL typeof natural numbersis I�C$M ).

G3IP`PCEQ@Y�D£`PC�A�Y�CfWgQHZ£DPZ$k@YcIdY�MEY�?KI u GcIE`PCEQ$Y�D£`#C�A�Y�CKWdQHZaDEZ$k$Y3IdY�MPY�?KI :� I�DEZ@L$QHC�A#Z�D¦M�SHOZ¦L�?�IgF�M�A�JLHM@?�Aõò�h#C@M�ò
which is very easily understood.

Comparethis to the error message which appearswheninstead trying to assign the function
type IC@Mat$ú£IC@M , andaccidentally writing I�C@M|t@t@úaI�C$M .

G3IP`PCEQ@Y�D£`PC�A�Y�CfWgQHZ£DPZ$k@YcIdY�MEY�?KI u GcIE`PCEQ$Y�D£`#C�A�Y�CKWdQHZaDEZ$k$Y3IdY�MPY�?KI :G3I$IZKAôFcS�IM@C�¯zZKA@AE?HA¥C@Mâu òct@t@úaI�C@Mò�o��� ^�¯@O�Z@L@M$Z�DªMH?�U#ZfIgF�u òc^H\E>òªòy��j�QHZHC@D#F�MH?@údò£ò�n´t$údò¦ò{�dòªòy��jPMEY o ZPFfúdòaò � ò�o��� ò{��j�idY�Rfm�M$C�A@AE?�BEúdò¤ò3t$údòªò�Q�?KIREY�Ddòaò�Y�Ddò�o��� N�mdZ¦Z�A@AE?HA�§3F�©|CfW#?H`#Z£?PL@LcJEA$A#Z�D¥Y3IôM�SHOZ{ò7IC@Mat$t@úaI�C@Mò
J@IdLHCfJ�RKm�M¦Z�¯#L@ZfO�MEY�?�I¥^�i@iE\HiAPCPY$F�ZHD¦C@Mâu�Q$Y3WEAPC�A@S�ÏÐ�Pl�u�è$è@è��âÏ7í�� : è$è@è��vÏ����FHYHRfI Ïã�El�u����Hí�Ï-í
��El$ú

Note that the syntax error begins at the ob ending symbol, which is the most useful aspect of
this output. The “Expected tokens” list can typically be ignored, andwill be suppressed in the
following.

D.3.2 Err ors in transition input

If the key wordsof the transition definition ( lPZHMvu , x�JC�AEDâu , and
e LHMvu ) arenot included,or

evenif thecolonis omitted, thentheinput will not parse. Theresulting error is

G3IP`PCEQ@Y�D¦M�A#CfIgFHYHMEY�?�I¥DEZ$k$Y3IdY�MPY�?KI uáG3IE`#CEQ@Y�DªM$ZK¯#M|C$M{F�M$C�APM¦?Pk|M�APCKIgFHYHMEY�?KI Ï
Similarly, anerrorresults if theincorrectassignmentsymbolis used

G3IP`PCEQ@Y�D¦M�A#CfIgFHYHMEY�?�I¥DEZ$k$Y3IdY�MPY�?KI uáG3IE`#CEQ@Y�DªM�APCKIgFHYHMEY�?KI{DEZ$k@YcIdY�MPY�?KI :G3I$IZKAôFcS�IM@C�¯zZKA@AE?HA¥C@Mâu òdj@t`� ê7ò�o��� ^�¯@O�Z@L@M$Z�DªMH?�U#ZfIgF�u ò{j :@: ò�o��� N�mdZ¦Z�A@AE?HA�§3F�©|CfW#?H`#Z£?PL@LcJEA$A#Z�D¥Y3IôC�¯�Y�? o òf^�NHï$NPDEZ$kPò
J@IdLHCfJ�RKm�M¦Z�¯#L@ZfO�MEY�?�I¥^�i@iE\HiAPCPY$F�ZHD¦C@Mâu�Q$Y3WEAPC�A@S�ÏÐ�Pl�u�è$è@è��âÏ7í�� : è$è@è��vÏ����ÿ�m�? o Z�ÿ#ûHR o ÿ�[E\H]#^�ïPn�]Vfÿ�[P\H]P^�ÿdFcA#Lfÿ�YEFKC�ÿHO�CKAF�ZëÏÐ�El�uÝî#íq��Ï.í	��El$ú

126



DSTO–TR–1349

(the “Expected tokens” list is displayedsincethis exampleshows it canbeuseful whenthereare
few alternatives);or thesemicolon omitted,

G3IP`PCEQ@Y�D¦M�A#CfIgFHYHMEY�?�I¥DEZ$k$Y3IdY�MPY�?KI uáG3IE`#CEQ@Y�DªM�APCKIgFHYHMEY�?KI{DEZ$k@YcIdY�MPY�?KI :�o��� G3I$IZKAõFcS�IM@C�¯éZKA@AP?�A�u5J@IZK¯@O�Z@L@M$Z�D¦ZfI#Dª?PkªY3I$OHJM
If theuserassignsto assign to thesamevariable twice in a transition, theresulting error is

G3IE`PCPQ@Y�DªM�APCKIgFHY�MPY�?KI¥DPZ$k@YcIdY�MEY�?KI u GcIE`PCEQ$Y�D¦M�APCfIgF@Y�MEY�?KI¥DEZEk@Y3IdYHMEY�?�I :^�A$AE?�AõY3I¥O#C�AdF�ZaM�APCfIgF@Q�C@MEY�?KIék�?�A¨ò3ó o U@ï#M�APCKIgFEòò�`#C�A@hPC o Z#òÑC#F@FHYHRfIZ�DªMH? o JdQHMEYcOQ@ZaMEY o ZEF
J@IdLHCfJ�RKm�M¦Z�¯#L@ZfO�MEY�?�I¥^�i@iE\HiAPCPY$F�ZHD¦C@MâuÜÿHm#? o Z�ÿ#ûHR o ÿ�[E\@]P^�ïPn�]Vfÿ�[P\H]P^�ÿdFcA#Lfÿ�YEFKC�ÿHO�CKAF�ZvÏ �El�uÝî�ík��Ï��
� : îPík��Ï��#í�El$ú

A moreinteresting error, perhaps,arises whenthe userattempts to assign a valueof wrong
type;here trying to assign N@AHJZ to a variable of type IC@M ,

G3IP`PCEQ@Y�D¦M�A#CfIgFHYHMEY�?�I¥DEZ$k$Y3IdY�MPY�?KI uáG3IE`#CEQ@Y�DªM�APCKIgFHYHMEY�?KI{DEZ$k@YcIdY�MPY�?KI :�o��� N@S@O�Z�J@IdY$k@YHLHC$MEY�?KIék�CEY@Q@Z�Dâu nPQ�CPF3mz?#kaM�SHO�ZEF¥ò7W#?$?PQPò�CfI#Dôò7I�C$M�ò�Ï�o��� N@S@O�ZªZKA@AP?�AzYcIéCKO$OQ@Y@LHC@MEY�?KI uáGcIL�? o O#C@MPY3WdQHZ¤?�O�ZKA#CfI#DªM�SHO�ZvÏ�o���
�o��� \HOZKAPC$MH?�A�u�o��� §.N@APCKIEN@S�Ï o UHï#CELHMEY�?KI�o��� §��P¯�Ï�§-n@?�Idk3[�?�`#ZëÏÐmZHCKO$ïElH`#CEQ _#C�AFHZKA�Ï;û�`@ó�Q�?PLõ§j]#CPQ3JZEF�Ïã`�YcIûý¯#©$©@©@©Èu@u�o��� ÇK§ylol�z;C � lol�zãW© � l�l�zjL � §·_PC�AdF�ZKA�ÏÐmZHC�OH[ENat@ú|]#CPQ3JZEF�ÏÐ] e lP©�t@úaI�C$M�r�o��� §{lol�zjC � lol�zÐWd© � lol�zjL � §._PC�AFHZKA�Ï mdZHCKO@[ENat@ú|]#CEQcJZEF�Ïã] e l#©�r�o��� §{lol�zjC � lol�zÐWd© � lol�zjL � §._PC�AFHZKA�Ï mdZHCKO@[ENat@ú|]#CEQcJZEF�Ïã] e l#©$É�o��� t$ú!§{lol�z;C � lol�zãW© � lol�zjL � §·_#C�AFHZKA�Ï mdZHCKOH[PNat@ú¦]#CPQ3JZEF�ÏÐ] e l#©�o��� \HOZKAPCKI#Dâu §��dLëÏ N@AHJZ@©Èu@u�o��� §{lol�zjC � lol�zÐWd© � lol�zjL � §._PC�AFHZKA�Ï mdZHCKO@[ENat@ú|]#CEQcJZEF�Ïã] e l#©�t@úaW#?@?#Q�o���

Notethat“unification” is thetechnicalnamefor thepattern-matchingdonein theproof tool. Also,
againtheinitial errormessage is useful, theremainder not souseful.

D.3.3 Err ors in property input

The _$AE?�O�Z�APMEYHZPF°�#CKI�C@R$Z�A requiresinput which is a Booleanexpressionbuilt from thevari-
ables, constants,constructors of the statemachinetheory andany Isabelle theory on which it is
based. Moreover, apropertycanbestatedcontaining freevariables– notpreviously definedin the
theory. Isabelle simply assumesthemto befree,andassignsthemtheappropriatetypeto have an
overall Boolean.

Thus,the(silly) expression
e QfB#C�SdF leads to thefollowing error,

127



DST8 O–TR–1349

G3IP`PCEQ@Y�D¤O$AP?�O�ZKA#M�SªDPZ$k@YcIdY�MEY�?KI u GcIE`PCEQ$Y�D£AHJdQHZ|DEZ$k$Y3IdYHMEY�?KI :�o��� G3I$IZKAõFcS�IM@C�¯éZKA@AP?�A�u5J@IZK¯@O�Z@L@M$Z�D¦ZfI#Dª?PkªY3I$OHJM
since Isabelle parses and recognizes the syntax of the unary function

e QcB#C�SF which takes a
Booleanargumentandproducesa Boolean. In contrast,the even moresilly expression CEQfB#C�SdF
is acceptedby the parser, sinceisabelle simply treats it asa free variable andassigns it the typeW#?@?PQ .

In fact, usingthe temporal operators in propertieshasa further subtlety. Even the “Boolean
expression”

e QcB#C�SFõ§Hè¿tñèc© is no good, since there is no constantcorresponding to
e QfB#C�SdF

definedin thetheory– it is representedaspuresyntax. Theerror which this producesis

G3IP`PCEQ@Y�D¤O$AP?�O�ZKA#M�SªDPZ$k@YcIdY�MEY�?KI u GcIE`PCEQ$Y�D£AHJdQHZ|DEZ$k$Y3IdYHMEY�?KI :�o��� hE?éF�JdLcmôL�?KIgF�M@CfIMvu ò�ó#CEQcB#C�SFEò
Indeed,acceptabletemporal propertiesin thestatemachinetheory arestructured, to streamlinethe
userinput. What is needed is the “Turnstile” operator to convert to a valid Boolean expression,
suchas

9;: e QcB�C�SFô§�è¿tìè3©
In contrast,properties definedwhich do not referto temporal quantities, suchas §·`PC�A@hPC o Z�t!è3©
(for somevariable `PC�A@hPC o Z of type IC@M ), do not needtheTurnstile operator.

Errorsfrom type clasheswill give similar output to thecorresponding errors seenearlier.

128



DSTO–TR–1349

Appendix E Dealing with errors

The current version of the DOVE system,being a researchprototype, contains a number of
known flaws,andnodoubtthededicateduser will find afew more.In thischapter aquickoverview
of the “error interaction” with Tclq Tk is given,andthenthe known bugs or design flaws in each
modeof theDOVE tool arelisted.

E.1 General overview of error interaction

At various stagesin the operation of the DOVE tool, the userwill find that thereareperiods
of enforceduser inaction while the DOVE tool is busy performing lengthy computations. These
periodsaretypically short, but maybeup to tensof secondswhenrunning on slower computers.
Often, if the userlooks at the background Isabelle terminal window it will be seenthat the tool
is far from inactive. In any case, it should happen at thesetimesthat a busy notice will appear
indicating to the userthat computations are being carried out in the background. When those
computationsarecompletedthebusynoticeshould disappear.

If DOVE is loading, or is otherwise “busy”, the usershould wait until it hasfinished before
continuing to entercommands via themouseor keyboard. Theplatform is not completely robust
asit stands,andcanbe“confused”by indiscriminant mousebutton clicking while performing its
computations. Whenconfused,or whenabug hasappeared,thetool will typically either freezeor
will bring up a Tclq Tk error dialogbox.

In theformercase,besurethatDOVE has“hung” andis not simply waiting for user input. If
not then there is probably no option but to quit thecurrentsession (using theunderlying process
managementsystem) andstartagain. This is not expected to be a commonoccurrence,but still
theusualgood practice of regular intermediatesaving of ongoing work is recommended.

In thelattercase, aTclq Tk errordialog box will appearover theDOVE statemachinewindow,
oftentogetherwith anexisting busynotice. Bothof theseboxesmustbeclosedbeforetheusermay
continuewith the session. Sometimesthe reported error will be trivial andit will be possible to
continuethesession without trouble,but it is agoodideato immediately savethedesign. However,
theerror maycause thesession to “hang” andtheuserwill thenbeforcedto kill thesession using
theunderlying processmanagementsystem.Lackof responsefrom thevariousDOVE windowsis
oftendueto anoticebox whichhasnotbeen closedrather thanthesystemhanging. Thesenotices
aresomewhat easyto overlook, in particular if theDOVE statemachine window is iconified and
hence thenotice also!

On this point of grabandfocus,it is worth noting thatnoticeboxescanbemoved if they are
inconveniently placedwhile the userworks on another application. However, if the mouseis in
useduring this time it is possible to beunlucky andclashwith thegrabof theTclq Tk interaction
– which will thenget confusedandbring up an error dialog box. This usually simply requires
repeating theDOVE operationwhich wasin progress.

Finally, in thisoverview, it is worthnoting thepossibilit y thatrestarting theDOVE tool will not
eliminate theerror. Themostprobablecauseof suchbehaviour is that theML imagefile hasbe-
comecorrupted. Recallfrom Section3.2thatfor astatemachinegraphfile ��C$LcmgY3IZëÏ.F o R , DOVE
constructsan ML imagefile ��C$LcmgY3IZëÏã�ElPZK¯#MfI with extension determined by the ML compiler
beingused.Thisfile is modifiedincrementallywhen,for example,changesaremadeor properties

129



DST8 O–TR–1349

areproved, andanerrormaymake theensuing modifications inconsistent. In thecaseof strange
behaviouratstartup,it is agood ideato deletethis imagefile from theworking directory andforce
DOVE to constructanew one.It will benecessaryto select the n$? o OY$QHZ option in the ^$DPY�M menu
of thestatemachinegraph window before any further proof or animation activities.

E.2 Known bugsor designflaws in DOVE

E.2.1 Edit mode

Theusershould becareful not to click themousebuttonindiscriminantly whentheDOVE tool
is loading, or whena busy notice is displayed. The resultcan be,apparently randomly, that the
Tclq Tk interaction getsconfusedandthesession freezes.

Somemorespecific problemswith theinterfaceareasfollows.

= The G3IdY�MPY�CEQ$Y$F�C@MPY�?KI window will not comeup againonce quit. Thus,it should beedited
but not closeduntil theDOVE session is concluded.

= The
� I#D@? facility does not work properly: if a node is deleted its attachededgesareauto-

matically alsoremoved.Applying
� I#D@? thenrestoresthenodewithout theassociatededges.

= It appears that a pEA�Y�MEZa^HA@AE?�A canoccurunpredictably whentrying to save the statema-
chine – aftersu< ciently complicatedediting (including deleting nodes andattachededges)
is applied after storing an animation. The previous

o CELcmdYcIZëÏ·F o R file should not be over-
written.

= Property namesshould not includetheword “error”, sincethis will give strange andsubtle
errors!

= Two properties cannot begiventhesamename,evenif they arein dib erent property sets.

E.2.2 Animation mode

Thereare,again, a few problemswith theuserinterface.

= The
e IdY o C$MH?�A comesupwith the“last” animation (stored).This is a “feature”, but theuser

should becareful to check thetitle barto seewhatis actually in there!

= Following from thelastitem,if thereis ananimation loadedinto the
e IgY o C@M@?�A , but theuser

wantsto load an animationusing the lE?$CHDª>PY@Q@Z option of the >#Y@QHZ menu,the animation
should first beclearedvia the h�ZfB option.

= The p�C@M$Lfm¦]#C�A�Y�CKWdQHZEF window doesnot accept input properly, unlessthe useris careful
to addthevariable namesin order. Theproblemis thatthecursor preferentially goesto the
right-handpaneevenwhenclicking on theleft-handpane, if thereexistsanentry parallel to
thepoint of click.

130



DSTO–TR–1349

= Somewhatanti-intuitively, the [dZEF�LKAYcO#MPY�?KI frameof the
e IdY o C$MH?�A canbewritten to only

via thedialogbox which is invokedthrough the V�MH?�A�Z option of the >PY$QHZ menu.It canbe
added to at any stageof the animation, the accumulateddescription is shownat all stages
reachedvia thecontrol buttons.

= Numerical input for variable valuesmustbedirectly precededby a � ; e.g., ��í instead of í .
= To have a permanent recordof thestoredanimation (keptin thestatemachinefile), theuser

mustusethe V�C�`#Z option under the >PY@Q@Z menuof thestate machinegraph window.

= The Vcm#?�BªhPC o ZPF -typeoption of the _@AE?H`#ZKA interaction does not currently exist in thean-
imator, so the full-namesyntaxis not available. Sincethe transition guard syntax is very
simple, this is not a hugeproblem.

E.2.3 Proof mode

Therearea numberof known problemswith theXIsabelle interface,which arenow outlined.

= Thereis a slight operational problemwith theinterfacein the _@AE?H`#ZKA window, dueto sub-
tletiesof the Tclq TK programming: to get the text insertion cursor to properly focus – for
example, in inserting text for a TPC#FHYHL£NPC$L@MEYHLEF choice– it canbenecessaryto first move
themousepointer ob the _@AE?�`�ZKA window andthenreturnit to thedesiredposition.

= The usershould be careful when using the nKm#?�O options under the _@AP?@?Pk menuof the_@AP?�`#ZKA window. During a proof it canhappen that the current subgoalafter the “chop” is
not theexpectedone. Theuserneedssimply click on thedesired subgoal asusual.

= A givenline in theproof script of a _$AE?@?Pký�dYEF�MH?HA@S window givesthetactic andthenumber
of thesubgoal to which it is appliedin theproof. However, thesubgoal number is not used
by the XIsabelle interfacewhenthat line in the proof script is clicked on. XIsabelle will
simply apply the corresponding tactic to the subgoal which is currently highlighted (the
active subgoal). Thusthe usermustfirst click on whichever subgoal the tactic should be
applied to, thusmaking it the active subgoal, before applying the tactic (double-clicking)
from the _@AP?@?Pký�dY$F�MH?�A@S window. For a similar reason, to carry out “Apply to All” the
usershould simply click onceon thedesired line of theproof script, andthenpress

e O@OQKSMH? e Q@Q on the _@AP?�`#Z�A window.

= Whenmultipleproof sessionsarerunsimultaneously in the _$AE?�`#Z�A , theproof scriptsshould
be saved immediately upon completing the proof of each. If this is not done– say by
first saving the proof of property “ O$AP?�O�î ” and then swapping back to save a previously
completed proof of property “ O$AE?�O è ” – Isabelle may get confusedregarding the namesof
proofs. For example, in the O$AP?�O ègÏãO$A�k file thelast line of theproof script will read

�EZHD£O$AP?�O�î
insteadof thecorrect �EZ�DaO$AE?�O è . If theuser forgetsto saveat theappropriatetime,thiscan
easily befixedby editing thefile directly.

131



DST8 O–TR–1349

= Thereis a possible problem with the �#C@MELcmdY3IR¤\�I facility of the N�mdZ�?�A#Z o T@AP?�BdFHZKA win-
dow, called up when �#C$M$Lcm{N�mZH?�A#Z o F is pressedon the _$AE?�`#Z�A . For somesubgoalsthere
may be ambiguities in the matching unification, andan error output will ensue. This may
depend on whetherthe Vcm#?�BªT@APC$L�U#ZHMPF option – in the \@O#MEY�?KIgF menuof the N�mdZ�?�A�Z oT@AP?�BdF�Z�A window – hasbeen toggled on or ob , so someexperimentation may remove the
problem.

= If already opened,the NPC$L@MEYHL¤N@A#Z@Z is not brought to theforegroundwhenselectedvia theN@A�Z@Zý[gY$F3OdQ�C�S option of the ]Y@ZfB menu.

= Whenthere area lot of subgoals,only the first few aredisplayed in full, and the restare
elided. An elidedsubgoal canberedisplayedin full by clicking on it with mousebutton 2.
However, this will not work for thelastsubgoal in theframe.

= The N�ZKA o frameof the N�mZH?�A#Z o T@AE?�BdF�ZKA window should not beeditedby theuser.

= The �dZ$QcO menuof the N�mZH?�A#Z o T@AE?�BdF�ZKA window is malfunctioning.

= The x$?ECEQ=�{_$A#Z o Y$F�ZEF window – obtained via the xE?$CEQaCfI#D|_@A#Z o Y$FHZEF option of the]Y@ZfB menuon the _@AE?H`#ZKA – is not “clickable”. At present, then, if the user haspremises
(unusualat leastfor temporal properties) in thegoalthesecanonly beincluded(asfor usual
interaction with Isabelle for anadvanceduser)by referringto thepremisenameasappearing
in the x$?$CEQ=�z_@A#Z o Y$FHZEF window.

= Selecting the nKm#?�O and i�ZPF�M@C�A#M optionsof the _@AE?$?Pk menuon the _@AE?�`�ZKA will sometimes
leavenocurrent subgoalselected.Theusershould simplyselect thedesiredcurrent subgoal.

= Notethatto selectany of the GcI�M$ZKA#C$LHMEYK`#Z tactics of the [E\H]#^£NPCELHMEYHLPF appropriately the
usermustdouble-click (with mousebutton 1).

= Whenentering a temporal property into the nKJEA$A#ZcI�M£NPC$L@MEYHL window in theapplicationof
an G3IM$ZKA#C$LHMEYK`#Z tactic, theusermustcurrently prependthetheorem namewith thenameof
theproperty setin which it appears. Thatis, aproperty _@AE?�O in property set V@ZHM is currently
storedin theML imageasthetheorem VHZHM _@AE?�O , andit mustbeinvokedby this name.

= The l$?ECHD£N#C$LHMEY@LEF option of the NPC$L@MEYHL menuon the _@AE?�`�ZKA is broken. Thus, user-
definedtacticshave to beredefined in eachDOVE session.

132



DSTO–TR–1349

Appendix F Troubleshooting DOVE

The following providestrouble-shooting information for problemswhich may arisein oper-
ating DOVE. The corresponding information for problems encountered when installing DOVE
appearsin thefile GcIgF�M@CPQ@Q�ÏãOdF found in thedistribution documentation.

Problem Possible Cause Solution

An errormessage

Y3IP`PCEQ$Y�D{FcO#CKBHIôY�D
is displayed.

Isabelledid notstart cor-
rectly as it did not have
theability to usetheML
Compiler. This often
happensif the compiler
only has a licence for
certain work stations.

Connect to or moveyour work to
a work station which is able to
usetheML Compiler

An error message indi-
catesthat

[dG$Vf_$l eo� YEF¦FHZHM¦C#F u
with nothing following.

Your [dG$Vf_$l e�� environ-
ment variable has not
been set to anything at
all.

Setthe [dG@VK_$l e�� variable to your
current work station. In LPF�m , this
is doneusing the F�ZHMEZcIE` com-
mand.

DOVE is frozen. It maybethatDOVE has
put up a modal dialog
boxthathasbecomehid-
den.

Sortthroughthewindowsin your
window manageruntil you find
thedialog thatneeds a response.

An error messageclaims
the Isabelle fonts cannot
befound.

This is only a problem
when attempting to use
XIsabelle98.

This is a problem with the Is-
abelle setupon your system.
Consult The Isabelle System
Manual [12, Chapter 3]. Alter-
natively it is possible to usethe
font setting mechanism for your
system.

DOVE cannot find an
imagefile.

Due to the Isabelle
image selection mecha-
nism, logics not in the
standard isabelle heaps
directories must be
specified with a relative
path or anabsolutepath.

Use:

D@?H`#ZÈÏðÿ�G o C@R$Z
or

D@?H`#Z{÷c_�p@[Pÿ�G o C$R$Z
A prompt appears after
starting the application,
but no DOVE window.

Your ML prompt, which
is specified in your set-
tings file, is incorrect.

Check the contents of
$HOMEq isabelleq etcq settings. to
ensure that it is set up for the
correct version of ML.

133



DST� O–TR–1349

Appendix G Questionsand answersabout the formal
proof model

This “FAQ” appendix is intendedto provide background for theinterestedreader. It mayhelp
to develop somedegreeof confidencein dealing with the _@AP?�`#Z�A .

G.1 What is a formal theory, anyway?

To develop a formal theoryfor reasoningabout agivensystem,thefirst stepis to constructthe
syntax – namely, an alphabetandgrammar. The rules of the grammarmustbe strict enough so
thata statementin thecorresponding formal language is unambiguous. Theformal theory is then
concretelyspecified asa setof axiomsandinferencerules. An axiom is a statement in thechosen
formal language which is truea priori, without any further hypotheses– i.e., by definition of the
theory. An inferencerule is apurely syntacticrule for moving from onetruestatementto another.
Here“truth” is simply definitional, meaningthat the statementcanbe obtainedfrom the axioms
by applicationof inferencerules. Thestatements which canbeso-derivedarecalledthe theorems
of thetheory, andsuchaderivationof agiventheoremis called its proof. Notethattheaxiomsare
theorems.This syntacticconstruction is oftencalleda deductivesystem.

Any “meaning” attachedto thedeductive system is throughsemantics, which (loosely speak-
ing) is an interpretation of the syntactic construction in termsof somefamiliar system. As an
example, the reader will have seenthe interpretation of thestandardlogical connectivesin terms
of Boolean truth tables. Theinterpretation will in general have aninherentnotion of truth, sothe
question of whether a given statement holds for a given interpretation is simply whetherit inter-
pretsto a truefact about thefamiliar system.A statementis semantically satisfiable if thereexists
an interpretation in which it is true. A statement is semantically a consequence of the axioms if
for every interpretation in which theaxiomsaretrue, thestatementis alsotrue.

Thus,a formal languagehasa strict syntaxandanunambiguoussemantics,andthenotionsof
truth canbecompared. Thedeductive system is saidto be:

= sound if all theoremsaresemantically a consequenceof theaxioms.

= consistent if thereis no statementsuch thatbothit andits negation aretheorems.

= complete if every statement which is semantically a consequence of theaxiomsis, in fact,a
theorem.

Of these, the first is easily checked at the level of axioms and inferencerules, and the second
requiresthat theaxiomsaresemantically satisfiable. Thelast is significantly moredi < cult.

134



DSTO–TR–1349

Index
00-55, seeassurancestandards
00-56, seeassurancestandards

5679, seeassurancestandards

action, seetransition, action
animation,seeanimator
animator, iii , 2, 7, 14, 24, 51–60

importing,56
pathcondition, 52, 53, 59
removing, 57
selecting, 57
storing,56, 60
watchvariables,52, 58

setting values,52, 59
assurance,seedesign, assurance
assurancestandards,iii
attributes,seeconfiguration
automatic proof tool, seeproof, tool
axiom,seeproof, axiom

behaviour, xv, 9

canvas,seegraph, canvas
checked,seesyntax checking
checking, seesyntax checking
compiling,32, 34, 40, 49, 51, 61
configuration, xv, 10–11, seealsovariable

control, xvi, 10
memory, xv

constant,33, 35, 41, 47
control state, seeconfiguration, control

deadlock, 20
declarationstatus, 34, 45, 62
definitionsmenu,seemenu,definitions
design

assurance,2–3
formal,xv
modelling, iii, 2, 4

discharging a subgoal,seeproof, subgoal

edge, 36, seegraph, edge
edit menu,seemenu,edit
editor, 6, 24, 27–50
execution,13–14, 51, 80, seealso configura-

tion

Expect,4

file
image,23, 31, 32
noweb,23
PDF, 24, 31
statemachine graph, 23, 31
theory, xvi, 23, 32

file menu,seemenu,file
formal design, seedesign, formal
formal language,seelogic, formal language
formal proof, seeproof, formal

goal,seeproof,goal
graph, 5, 6, 9, 27–31, 36, 42–44, 51, 54, 80

canvas,27, 28, 42
edge,27, 30–31, 42
grid, 27, 28, 33, 37
node, 27–29, 41, 42

grapheditor, iii
grid, seegraph,grid
guard, seetransition, guard
GUI, seeuserinterface

heapvariable,seevariable, heap
helpmenu,seemenu,help
HigherOrderLogic, seeHOL
history, seeexecution
HOL, seeIsabelle, HOL

image,seefile, image
including theories,37
inferencerule,seeproof, rules
initial predicate,seeiniti alisation
initial state,seeinitialisation
initialisation,12, 35, 41, 48
input variable,seevariable, input
installation, 21
interactive proof tool, seeproof, tool
invalid, seesyntax checking
Isabelle, 4, 9, 75

HOL, 9, 10
image,seefile, image

ITSEC, seeassurancestandards

lemma,seeproof, theorem
liveness property, seelogic, property

135



DST� O–TR–1349

logic
formal language,xv
property, xvi, 14–19, 36

liveness,19
safety, 19

proposition, xvi
sequent,xvi, 80
temporal, xvi, 14–17, 80
theory, xvi, 32, 71, 78

file, seefile, theory
logic, higher order, seeHOL
logic, semantics,14

meaning, seelogic, semantics
memory, seeconfiguration, memory
menu

definitions,33–37
edit,32
file, 31–32, 55, 56, 60, 68–71
help, 37, 72
options,63, 69, 72
proof, 68
swap,69
view, 32–33, 69, 71
windows,57

ML, 4
modelling,seedesign, modelling

node, seegraph, node
nowebfile, seefile, noweb

optionsmenu,seemenu,options

PDF, 24, 37
Portable DisplayFormat,seePDF
proof

axiom, xv
formal,xv
goal, xv, 79
rules, xv, xvi, 36, 75, 77
state, xv, xvi, 67, 79
strategy, 75, 80–85, 87–90
subgoal,xvi, 67, 79

discharging,xv
tactic, xvi, 67, 79, 85–87, 90, 91, 99–

102
BackSubstitute, 80, 82, 83, 85, 89–90
ForwardsInduct,80, 81, 85, 88

MasterBlast,85, 96
Topology, 80, 82, 85, 88, 90, 91

tactics,75
theorem,xv, xvi, 70, 71, 77
tool, 76
tools, xv, xvi
verification,3, 17–19

proof menu,seemenu,proof
property, seelogic, property
property manager, 37, 61–66, 91

proving, 63, 66
saving, 63
sets,63, 65, 91
status,62

proposition, seelogic, proposition
prover, iii, 4, 7, 24, 25, 63, 66–73, 75, 76,

79–81
display options,69, 72
matching, 72
proof history, 69, 70, 79, 91
proof tree, 69
saving, 69, 70
swapping proofs,69
theorembrowser, 69–72
visualization,72–73

safetyproperty, seelogic, property
saving, 31, 32, 34, 49

animator, seeanimator, storing
property manager, seepropertymanager,

storing
sequent, seelogic, sequent
startstate, seeinitialisation
state,5, 9, seealso configuration, control
statemachine diagram,seegraph
statemachine graph, seegraph
statemachine graph file, seefile, statema-

chinegraph
status, seedeclaration status
subgoal, seeproof, subgoal
syntax checking,34, 40–41
system attributes, seeconfiguration
systems

critical, iii–i v, 1

tactic, seeproof, tactic
Tclq Tk, 4
temporal logic, seelogic, temporal

136



DSTO–TR–1349

temporal sequent, seelogic, sequent
theorem,seeproof, theorem
theory, seelogic, theory
theory file, seefile, theory
transition, xvi, 5, 9, 11–12, 27, 33, 36, 38–

41, 48
action, xv, xvi, 11, 39, 41
guard, xv, xvi, 11, 38
let, 11, 38
renaming, 36, 49

truth tables,seelogic, semantics
type,10, 33, 35, 41, 44, 46

unchecked, seesyntax checking
userinterface,3

variable, 5, 27, 33, 41, 47, 51, seealso con-
figuration

heap, xv, 10, 12, 36, 41, 48
input, xv, 10, 36, 41, 48
names,40
watch,seeanimator, watchvariables

verification,seeproof, verification
view menu,seemenu,view

watchedvariable, seeanimator, watch vari-
ables

windows menu,seemenu,windows

XIsabelle, seeprover

137



DST� O–TR–1349

138



DISTRIBUTION LIST

DesignOrientedVerification andEvaluation: TheDOVE Project

Tony Cant,BrendanMahony andJim McCarthy

Numberof Copies

DEFENCE ORGANISATION

TaskSponsor

DefenceSignals Directorate,Carolyn Dyke 4

S&T Program

Chief Defence Scientist

FAS Science Policy

AS Science Corporate Management

DirectorGeneral SciencePolicy Development

1

Counsellor, DefenceScience,London Doc DataSht

Counsellor, DefenceScience,Washington Doc DataSht

ScientificAdviser to MRDC, Thailand Doc DataSht

ScientificAdviser Joint 1

Navy ScientificAdviser Doc DataSht

ScientificAdviser, Army Doc DataSht

Air ForceScientific Adviser 1

Director Trials 1

Inf ormation SciencesLaborator y

Chief of InformationNetworksDivision 1

Research Leader Doc DataSht

Head 1

TaskManager 1

Author 1

DSTO Library and Ar chives

Library Edinburgh 2

Australian Archives 1

Capability SystemsSta�
Director GeneralMaritime Development Doc DataSht

Director GeneralLandDevelopment Doc DataSht

Director GeneralAerospaceDevelopment Doc DataSht

KnowledgeSta�
Director General Command,Control, CommunicationsandComput-
ers

Doc DataSht



Army

ABCA NationalStandardisation O< cer, Land Warfare Development
Sector, Puckapunyal

4

SO(Science),DJFHQ(L), EnoggeraQLD Doc DataSht

IntelligenceProgram

DGSTA Defence Intelligence Organisation 1

Manager, InformationCenter, DefenceIntelligenceOrganisation 1

DefenceLibraries

Library Manager, DLS Canberra 1

Library Manager, DLS Sydney West Doc DataSht

UNIVER SITIES AND COLLE GES

Australian Defence ForceAcademyLibrary 1

Headof AerospaceandMechanical Engineering,ADFA 1

SerialsSection(M List), DeakinUniversity Library, GeelongVIC 1

Hargrave Library, Monash University Doc DataSht

Librarian, FlindersUniversity 1

OTHER ORGANISATIONS

National Library of Australia 1

NASA (Canberra) 1

AusInfo 1

StateLibrary of SouthAustralia 1

INTERNATION AL DEFENCE INFORMA TION CENTERS

USDefenseTechnical InformationCenter 2

UK DefenceResearch InformationCenter 2

CanadaDefence ScientificInformationCenter 1

New ZealandDefenceInformationCenter 1

ABSTRACTING AND INFORMA TION ORGANISATIONS

Library, ChemicalAbstractsReferenceService 1

Engineering SocietiesLibrary, US 1

Materials Information,CambridgeScience Abstracts,US 1

Documents Librarian, TheCenterfor Research Libraries,US 1

INFORMA TION EXCHANGE AGREEMENT PARTNERS

AcquisitionsUnit, Science ReferenceandInformationService, UK 1



Library – Exchange Desk,National Institute of Standards andTech-
nology, US

1

SPARES

5

Total number of copies: 47



Pageclassification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT  PRIVACY MARKING

2. TITLE

DesignOriented Verification and Evaluation: The
DOVE Project

3. SECURITYCLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Tony Cant,BrendanMahony andJim McCarthy

5. CORPORATE AUTHOR

InformationSciencesLaboratory
POBox 1500
Edinburgh, SouthAustralia, Australia 5111

6a.DSTO NUMBER

DSTO–TR–1349
6b. AR NUMBER

AR 012–457
6c. TYPEOFREPORT

Technical Report
7. DOCUMENTDATE

October, 2002
8. FILE NUMBER 9. TASK NUMBER

JTW02q 106
10. SPONSOR

QR INFOSEC
Branch, DSD

11. No OFPAGES

138
12. No OFREFS

14

13. DOWNGRADING   DELIMITING INSTRUCTIONS

Not Applicable

14. RELEASEAUTHORITY

Chief, Information NetworksDivision
15. SECONDARY RELEASESTATEMENT OFTHIS DOCUMENT

Approved For Public Release

OVERSEASENQUIRIESOUTSIDESTATED LIMITATIONS SHOULDBE REFERRED THROUGHDOCUMENT EXCHANGE, POBOX 1500,EDINBURGH,SOUTHAUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHERDOCUMENTS

No Limitations
18. DEFTESTDESCRIPTORS

Modelling Critical Systems
SystemDesign Verification
19. ABSTRACT

DOVE is a graphical tool for modelling andreasoning about statemachine designsfor critical systems. This
report summarizesits technical development,andincorporates theuser manual.

Pageclassification: UNCLASSIFIED




	ABSTRACT
	Executive Summary
	Authors
	Contents
	Figures
	Glossary
	1 Introduction
	1.1 Reading this report as a user manual
	1.2 Design assurance
	1.2.1 Modelling
	1.2.2 Animation
	1.2.3 Verification
	1.2.4 Reviews and Checks
	1.2.5 Stakeholders

	1.3 The DOVE approach
	1.3.1 Use of graphical interfaces
	1.3.2 Use of existing design strategies
	1.3.3 Use of generic software components

	1.4 State machine design
	1.4.1 The editor
	1.4.2 The animator
	1.4.3 The prover


	2 DOVE state machines
	2.1 System attributes
	2.2 Transitions
	2.3 Initialisation
	2.4 State machine definitions
	2.5 Executions
	2.6 Animation
	2.7 Properties
	2.8 Verification
	2.9 Scope of DOVE

	3 A first look at DOVE
	3.1 Starting DOVE
	3.2 DOVE files
	3.2.1 State machine graph file
	3.2.2 Noweb files
	3.2.3 Theory files
	3.2.4 Image file
	3.2.5 High-resolution documentation file

	3.3 DOVE tools
	3.3.1 Edit mode
	3.3.2 Animation mode
	3.3.3 Proof mode


	4 Editing the state machine
	4.1 Graph editing on the canvas
	4.1.1 Graph layout
	4.1.2 Nodes
	4.1.3 Edges

	4.2 The menu bar of the DOVE state machine window
	4.2.1 The File menu
	4.2.2 The Edit menu
	4.2.3 The View menu
	4.2.4 The Definitions menu
	4.2.5 Other displays on the menu bar

	4.3 Transitions
	4.3.1 The Let declaration
	4.3.2 The Guard declaration
	4.3.3 The action list declaration
	4.3.4 Editing, deleting and renaming transitions

	4.4 Mandatory elements of state machine design
	4.4.1 The identifiers
	4.4.2 Rules for initialisation of the state machine
	4.4.3 Naming rules
	4.4.4 Declaration and type rules
	4.4.5 Check assignments

	4.5 Tutorial: construction of TrafficLights
	4.5.1 Topology
	4.5.2 Moving graph objects
	4.5.3 Labelling graph objects
	4.5.4 Machine definition
	4.5.4.1 Datatypes
	4.5.4.2 Constants
	4.5.4.3 Variables
	4.5.4.4 Initialisation
	4.5.4.5 Transitions

	4.5.5 Renaming a transition
	4.5.6 Saving and reloading the state machine


	5 Animation
	5.1 DOVE window display in animation mode
	5.1.1 The Watch Variable window
	5.1.2 The [named]BrownAnimator window
	5.1.3 Path conditions in the [named]BrownAnimator window

	5.2 Animation via the state machine graph
	5.2.1 Starting the animations
	5.2.2 Animation
	5.2.3 The Animation Controls
	5.2.4 Named Animations

	5.3 The Animator menu bar
	5.3.1 The File menu
	5.3.2 The Windows menu
	5.3.3 Exiting Animation Mode

	5.4 Tutorial: animation of TrafficLights

	6 Managing Proofs
	6.1 Window display on entering proof mode
	6.2 The Properties Manager window
	6.2.1 [named]BrownProperty Status reporting
	6.2.2 The [named]BrownOptions menu
	6.2.3 Exiting the proof mode

	6.3 Tutorial: example properties in TrafficLights
	6.4 The Prover window
	6.4.1 Frames and buttons
	6.4.2 The menu bar
	6.4.2.1 The [named]BrownFile menu
	6.4.2.2 The [named]BrownProof menu
	6.4.2.3 The [named]BrownView menu
	6.4.2.4 The [named]BrownOptions menu
	6.4.2.5 The [named]BrownSwap menu


	6.5 Proof management: ending, saving, loading and restarting proofs
	6.6 The Theorem Browser window
	6.6.1 Frames
	6.6.2 The menu bar
	6.6.3 Matching terms facility

	6.7 Proof visualization

	7 Proof strategies and tactics
	7.1 Proof in DOVE/XIsabelle
	7.1.1 Interactive proof tools
	7.1.2 Theorems and inference
	7.1.3 Proof-state and tactics
	7.1.4 Temporal sequents

	7.2 The DOVE proof strategy
	7.2.1 The primary tactics of the DOVE proof strategy
	7.2.2 Augmenting the basic strategy

	7.3 The DOVE Tactics frame
	7.3.1 Primary tactics
	7.3.2 [named]BrownTemporal Machine tactics
	7.3.3 [named]BrownInteractive tactics
	7.3.4 [named]BrownConfiguration tactics

	7.4 Introductory Tutorial: the DOVE proof strategy
	7.4.1 Induction
	7.4.2 Topology
	7.4.3 Back-substitution

	7.5 Advanced Tutorial: proof management in practice
	7.5.1 Intermediate lemma method
	7.5.2 [named]BrownAdd Invariant method
	7.5.3 Using [named]BrownMasterBlast

	7.6 Methods used in the Advanced Tutorial
	7.6.1 Keeping invariants using [named]BrownAdd Invariant
	7.6.2 Proof scripts
	7.6.3 A brief look at the [named]BrownBasic Tactics used
	7.6.4 Applying constant definitions via [named]BrownBasic Tactics

	References
	A The TrafficLights state machine
	B Syntax of DOVE
	B.1 Transition definition
	B.2 Sequent

	C Rules of temporal logic
	C.1 Structural rules
	C.2 Rewriting equalities

	D State machine diagnostics
	D.1 Checks in compilation
	D.2 Diagnostic messages in compilation
	D.2.1 Initialisation checks
	D.2.2 Edge to transition checks
	D.2.3 Structure Checks
	D.2.4 Uncommitted data

	D.3 Parsing errors in definitions
	D.3.1 Type errors in defining type abbreviations and variables
	D.3.2 Errors in transition input
	D.3.3 Errors in property input


	E Dealing with errors
	E.1 General overview of error interaction
	E.2 Known bugs or design flaws in DOVE
	E.2.1 Edit mode
	E.2.2 Animation mode
	E.2.3 Proof mode


	F Troubleshooting DOVE
	G Questions and answers about the formal proof model
	G.1 What is a formal theory, anyway?

	Index

	References
	Appendix A The Tra  cLights state machine
	Appendix B Syntax of DOVE
	Appendix C Rules of temporal logic
	Appendix D State machine diagnostics
	Appendix E Dealing with errors
	Appendix F Troubleshooting DOVE
	Appendix G Questions and answers about the formal proof model
	Index
	DISTRIBUTION
	DOCUMENT CONTROL DATA



