
Coherent Noise

User manual

Table of Contents
Introduction...5

Chapter I. ...6

Noise Basics..6

Combining Noise. ..8

CoherentNoise library...9

Chapter II..12

Noise generators..12

Generator base class...12

ValueNoise...13

GradientNoise..14

ValueNoise2D and GradientNoise2D...16

Constant...16

Function..17

Cache...17

Patterns..18

Cylinders..18

Planes..19

Spheres...20

TexturePattern..21

Fractal...22

FractalNoiseBase...22

PinkNoise...24

BillowNoise...25

RidgeNoise...26

Voronoi...28

VoronoiDiagramBase and VoronoiDiagramBase2D.............................28

VoronoiPits and VoronoiPits2D...30

VoronoiValleys and VoronoiValleys2D..31

VoronoiCells and VoronoiCells2D..32

Modification...35

Bias...35

Gain..35

Curve..36

Binarize..37

Modify..37

Displacement...38

Translate..38

Rotate..39

Scale...41

Perturb ..42

Turbulence..42

Combination..44

Max...44

Min..44

Add...45

Multiply..45

Blend...46

Interpolation and S-curves..46

Texture creation...47

Chapter III...48

Example: clouds texture...48

Example: Wood texture...50

Introduction

Procedural generation has a long history with games. Game content might be
too big to fit in memory. It might be too time-consuming to create, or too
repetitive. For any of these reasons, or just for no reason at all, game developers
used generated content. After all, why spend time on something that the
computer can do instead?

Rogue had endless procedurally-generated dungeons. Civilization had a
different map for each play-through. Elite had a whole galaxy of stars and
planets, created on-the-fly.

One of the most powerful tools for procedural generation is coherent noise.
Here's a small list of things that can be made with it:

• Clouds, smoke and fog

• All kinds of natural textures, including wood, tree bark, stone, marble,
sand, dirt etc.

• Cave networks and dungeons

• Fields of grass

• Rolling hills and mountains

• Waves on water

• Realistic gestures and face expressions

• Road networks

• Islands and continents

• Starfields

• Space nebulae

• And entire universes full of different stars and planets

CoherentNoise is a library for Unity3D that allows the use of noise in your
projects. It has methods to generate all kinds of noise, modify it and combine
different noises together; all with a simple and clean object-oriented API. There

are also some helpful methods to create textures and materials directly from
noise functions.

Chapter I of this manual explains the basics of noise generation and the basic
principles of CoherentNoise API. Chapter II lists all the library's classes, detailing
their usage. Chapter III presents a couple of examples, using noise to
procedurally create textures.

Chapter I.

Noise Basics.

Everyone has an intuitive
understanding of what noise is.
Noise is when something sounds like
"khrrshshhh..." This doesn't seem
very useful for all the nice things
mentioned in the introduction,
though.

But let's have a closer look at this
"khrrshshhh..." Figure 1 shows a waveform of audible noise. Note how the graph
"jumps" up and down chaotically. The values on the graph seem to have no
relation to each other. Let's define noise like this:

Noise is a function f x , such as any two values, f x0 and f x1
have no correlation unless x0= x1 .

Here, we have a strict mathematical definition of noise! It still does not seem
terribly useful.

This definition misses an important
property of "natural" noise. Let's look
even closer at the waveform. Figure 2
shows a zoomed-in variant... see how a
close-up doesn't seem that chaotic?
Natural noise is chaotic on large scale,
but smooth on small scale. Armed with
this knowledge, we can make another
definition.

Coherent noise is a function f x , such as any two values f x0 and
f x1 are close together when x0 and x1 are close together, but do

not correlate when x0 and x1 are far apart.

This definition is not very strict, but it will do for now.

With this definition we can actually construct a program to output noise. One
widely-used approach for noise generation is so-called lattice noise; this is the
approach taken by CoherentNoise library. Lattice noise works by calculating
random numbers at lattice points - i.e. points with integer coordinates. An integer
can be turned into a pseudo-random number by "mangling" its bits - the result
will not be a true random number, but it will suffice. With a random number, we
can calculate noise function value, f x , when x is integer. In CoherentNoise
library this is done by simply scaling the value, so that it falls between -1 and 1.

Fig. 1: Noise waveform

Fig. 2: Zoomed-in noise

These values ensure the second part of our definition: f x0 and f x1 are
absolutely unrelated when ∣x0−x1∣1 . To make the noise coherent - that is, satisfy
the first part of the definition - we can interpolate noise values between lattice
points. The resulting variant of lattice noise is called value noise.

Value noise depends greatly on the interpolation method used. Linear
interpolation is simple and fast, but it produces low-quality functions, that look
like an irregular saw. To make noise better, there are other interpolation methods.
Basically, any "S-shaped" curve can serve as an interpolator. CoherentNoise uses
cubic, quintic and cosine curves for interpolation (see figure 3 for comparison),
with cubic as a default.

While value noise function satisfies our definition, it still has a drawback.
Looking closely at the graph, we can see that local minimum and maximum
values are always at integer points. This means that noise will show noticeable
“grid” artifacts. As a way to reduce these artifacts we can use a more clever
function, called gradient noise (another name for this function is Perlin noise,
after Ken Perlin who invented it in 1985).

Gradient noise is a variation of lattice noise. Instead of determining noise
function value at integer points, in gradient noise random generator is used to
find function gradient. The value of noise at integer points is set to 0, and then
interpolated so that gradients match up. Resulting noise is shown in figure 4. This
function still has a “regular” feature, as it is equal to 0 at integer points. However,

Fig. 3: Value noise

in practice this leads to less visual artifacts than value noise.

Other variants of noise exist. One
can use different interpolation
techniques, or a convolution filter over
integer lattice, to achieve better, less
regular functions. These functions tend
to be quite slow, which is why
CoherentNoise uses gradient noise as a
default. One interesting variant that
can be easily achieved with
CoherentNoise is simply an average of
value and gradient noise. This will
break up both extrema pattern of value

noise and zeroes pattern of gradient noise. An example of such noise is shown in
figure 5.

Our definition, and the examples above, apply to one-dimensional noise - a
function of one coordinate. But they can be extended trivially for more
dimensions. By interpolating 4 values in 2D , or 8 values in 3D, we can get 2D
and 3D noise functions. 2D noise is
usually used for texture generation and
heightmaps. 3D noise can represent a
“solid texture”, from which an object is
then “carved”, or an animated 2D
texture with third dimension used as
time, or a volumetric density map for
fog or clouds. 4D noise is sometimes
used as animated version of 3D noise.
In CoherentNoise, all functions are 3D
by default, with some optimized for 2D
use.

Combining Noise.

The noise functions that we made look a bit like badly mangled sinusoid. Every
integer point has a new random value, and the whole noise function tends to
change direction once per integer point. We can say that our noise has a
frequency of 1. Frequency of a noise function is a very important concept. It
determines how fast the function changes, - in other words, how noisy the noise
is. Most usages of noise functions involve combining different frequencies
together to achieve desired effect.

CoherentNoise library allows for literally unlimited possibilities, but first let's
look at some simple ideas. In most basic form, noise function can be used to
distort some pattern - that may be itself generated procedurally or made by
hand. We can add noise directly to the pattern, or we can use noise values to

Fig. 5: Value-gradient noise

Fig. 4: Gradient noise

perturb the pattern. Perturbation of function is achieved by adding noise value to
function inputs, like this: p x = f xnoisex . Figure 6 shows the effect of
addition and perturbation on a 2D pattern.

This effect is nice, but
not very impressive. In
fact, natural phenomena
usually have more varied
frequencies. Most often, a
natural pattern has
irregularities on different
scales. Consider a hilly
terrain, for example. It has
a “random” distribution of large hills, that are themselves irregular, with smaller
pits and ridges. To achieve something similar with noise, we can add together
several noise functions, with different frequencies and different weights:

 f x =noise1 x
1
2
noise2x

1
4
noise4x

Here noise1 function has a frequency of 1, noise2 - frequency of 2, noise4 -
frequency of 4 and so on. This kind of noise is called fractal noise. A sample of
fractal noise is shown in figure 7.

True fractal noise has an infinite number of terms in
its formula. Of course, this is not possible in practice;
actual fractal noise functions in CoherentNoise library
are band-limited. This simply means that they only add
together a small number of noise functions, up to a
certain cutoff frequency.

CoherentNoise library.

CoherentNoise API is built around the concept of Generator. A generator is
simply a function that returns a float number given three float coordinates. It can
represent a non-random function, or a noise function like value or gradient noise.
It can also represent some mix of these. Many generators also work as modifiers
- i.e. they somehow change values of another "source" generator.

With use of operator overloading, generators can be added, subtracted,
multiplied together. Also, any float number can be converted to a generator that
returns this number irrespective of coordinates (a constant generator). This
allows to write natural-looking code, like this:

var vgnoise = 0.5f*(new GradientNoise() + new ValueNoise());

Fig. 6: Effects of addition and perturbation

Fig. 7: Fractal noise

The most basic generators are ValueNoise, GradientNoise and Constant. The
first two implement noise function that were discussed earlier; the last is simply a
constant function. Other generators are divided into categories:

• Patterns. These are generators that create regular patterns. They are not
noisy per se, but are often used as a base function that is then changed
by noise.

• Fractal noise. Fractal generators combine several noise functions with
increasing frequencies. Pink noise, also sometimes called Perlin noise,
falls into this category, as well as a couple of others. Abstract class
FractalNoiseBase can be subclassed to create your own crazy noise
functions.

• Voronoi. Voronoi diagrams are not exactly noise functions, but they're
still “random”. These generators create cell-like patterns. Again, abstract
base class can be subclassed to create your own diagrams.

• Modification. These generators do not generate values of their own, but
rather modify another generator. They can be used to apply a function to
noise value, map it to a curve, etc.

• Displacement. A counterpart to modification, displacement generators
rely on a source too. But they modify not the noise value, but input
coordinates. These generators can be used to rotate of stretch noise
patterns. Or a noise value can be added to input coordinates, producing
turbulent, swirly patterns.

• Combination. These generators combine two or more source functions.
They can be used to add, multiply, select minimum or maximum value of
two functions, or blend two patterns together using third as a weight.

Some generators, most notably value and gradient noise, have a 2D variant. It
is a marginally (or in case of Voronoi, significantly) faster version of a generator
that ignores the third coordinate. These generators can be used if all you care
about is 2D, not 3D patterns.

An important thing to remember is the extent of noise functions. Value and
gradient noise, as well as pattern generators, are guaranteed to produce values
between -1 and 1. Most other generators try to do the same, although they
cannot actually guarantee it - it's hard to be sure of anything when dealing with
random numbers. Thus, when using CoherentNoise it pays to keep your noise'
values roughly within this range - this will ensure all modification and combination
generators work as intended. For example, when adding two generators together,
the resulting function will probably extend form -2 to 2. To prevent that, just
divide it by 2!

Chapter II

Noise generators

Generator base class

The base class for all generators. It has one abstract method:

public abstract float GetValue(float x,float y,float z);

The method returns noise function value at given coordinates. Although it is not
explicitly required, all code treats this method as a function in mathematical
sense. That is, this method should always return the same value given the same
inputs.

Generator class also implements operator overloading:

public static Generator operator+(Generator g1, Generator g2);

public static Generator operator+(Generator g, float f);

public static Generator operator-(Generator g1, Generator g2);

public static Generator operator-(Generator g, float f);

public static Generator operator*(Generator g1, Generator g2);

public static Generator operator*(Generator g, float f);

public static Generator operator/(Generator g1, Generator g2);

public static Generator operator/(Generator g, float f);

And cast operator:

public static implicit operator Generator(float f);

These allow arithmetical operations on generators and numbers. Numbers are
converted to Constant generator, that always returns constant value. Arithmetical
operations return generators that apply the operation to their sources' values.

In addition to these, there's a number of extension methods defined for
Generator class. They are used to create new generators in a more readable way.
These methods are:

public static Generator Scale(this Generator source, float x, float y, float z)

public static Generator Translate(this Generator source, float x, float y, float z)

public static Generator Rotate(this Generator source, float x, float y, float z)

public static Generator Turbulence(this Generator source, float frequency, float power)

public static Generator Blend(this Generator source, Generator other, Generator weight)

public static Generator Modify(this Generator source, Func<float, float> modifier)

public static Generator Curve(this Generator source, AnimationCurve curve)

public static Generator Binarize(this Generator source, float treshold)

public static Generator Bias(this Generator source, float b)

public static Generator Gain(this Generator source, float g)

public static Generator ScaleShift(this Generator source, float a, float b)

All these methods (except ScaleShift) simply create a new generator of the
same name. Read documentation for corresponding classes to understand what
they do.

The ScaleShift method is the only exception. It returns a generator that is a
linear transform of source. That is, noise.ScaleShift(a, b) is equivalent to
a*noise + b. This method is useful to change noise range from [0,1] to [-1,1]
and vice versa.

ValueNoise

This generator creates value noise, as described in Chapter I of this manual.

ValueNoise defines two constructors:

public ValueNoise(int seed);

public ValueNoise(int seed, SCurve sCurve)

seed value is used to seed the underlying random number generator. Two
generators with the same seed will produce same results, which might be useful if
you want to reproduce the generated function.

sCurve defines interpolation algorithm used. See SCurve class documentation for
details. First constructor uses Scurve.Default as an interpolation, which defaults
to cubic.

ValueNoise defines one property:

public int Period {get;set;}

Period is used for repeating noise patterns. Sometimes, especially when
building seamless textures, it is desirable to have “random” noise that repeats
exactly every N units. When Period value is not zero, the generator would behave
just like this: it will repeat generated pattern every Period units. Period is integer,
not float, because it actually sets period of the underlying integer-point lattice.
When Period is set to zero (this is the default), the generator will not repeat
itself. Negative values of Period are invalid and would throw an exception.

GradientNoise

This generator creates gradient noise, as described in Chapter I of this manual.

GradientNoise defines two constructors:

public GradientNoise(int seed);

public GradientNoise(int seed, SCurve sCurve)

seed value is used to seed the underlying random number generator. Two
generators with the same seed will produce same results, which might be useful if
you want to reproduce the generated function.

sCurve defines interpolation algorithm used. See SCurve class documentation for
details. First constructor uses Scurve.Default as an interpolation, which defaults
to cubic.

GradientNoise defines one property:

public int Period {get;set;}

Period is used for repeating noise patterns. Sometimes, especially when
building seamless textures, it is desirable to have “random” noise that repeats
exactly every N units. When Period value is not zero, the generator would behave
just like this: it will repeat generated pattern every Period units. Period is integer,
not float, because it actually sets period of the underlying integer-point lattice.
When Period is set to zero (this is the default), the generator will not repeat
itself. Negative values of Period are invalid and would throw an exception.

ValueNoise2D and GradientNoise2D

These are variants of ValueNoise and
GradientNoise that ignore Z coordinate.
Use these generators if you only need 2D
patterns, as 2D generators are faster.

Constant

This is probably the simplest generator. It ignores the input coordinates and
always returns one value. Constant is almost never used directly, as a float
number can be implicitly cast to it.

Constant has only one constructor:

public Constant(float value);

The value parameter is the value that the generator would return.

Function

The Function generator wraps a delegate that accepts three floats and returns
a float. Usually, it is used with a lambda expression to create some pattern.

The generator has one constructor:

public Function(Func<float,float,float,float> func);

For example, a function that is shown here is created with the following code:

 var f = new Function((x,y,z) => x+y+z-4);

Cache

The Cache generator does not generate anything. It simply wraps another
generator, adding a simple cache: so that when asked for the same value twice, it
does not recalculate it. This is useful when the same generator is used more than
once. Note, however, that Cache only caches one most recent value. This means
that caching will only work when cached generator is evaluated at the same
coordinates. Using it as a source for displacement or fractal noise generators will
usually break the cache.

Cache has one constructor:

public Cache(Generator source);

source is the generator to be cached. It cannot be null.

Patterns

Cylinders

Cylinders generator creates a pattern of concentric cylinders, parallel to Z axis.
Resulting value alternates (linearly) from -1 to 1, starting with -1 at Z axis and
rising to 1 at supplied radius.

The generator has one constructor:

public Cylinders(float radius);

Where radius is the radius of cylinders. The constructor throws an exception if
radius<=0.

Planes

This generator creates a pattern of planes, parallel to YZ plane. Resulting value

goes from -1 on the YZ plane (i.e. when X=0) to 1 at supplied distance from it,
then back to -1 etc.

Planes generator has one constructor:

public Planes(float step);

Where step is the distance between -1 and 1 values. The constructor throws
an exception if step<=0.

Spheres

This generator creates a pattern of concentric spheres, centered at origin.
Resulting value goes from -1 at the origin to 1 at supplied radius, then back to -1
etc.

Spheres generator has one constructor:

public Spheres(float radius);

Where radius is the distance between -1 and 1 values. The constructor throws
an exception if radius<=0.

TexturePattern

The TexturePattern generator is a bridge between a hand-drawn texture and
noise generation. It takes a monochrome texture as input and returns color
intensity as noise value. The generator uses a brain-dead nearest-neighbour
algorithm to find out color at a given point, which can lead to visual artifacts
when texture resolution does not match final resolution. You can actually see
these artifacts in the image above, as 128x128 texture is used for a 32x32 region
in the resulting image.

Supplied texture is mapped to input coordinates from 0 to 1. Coordinates
outside of that range may be either clamped to [0,1], or set to repeat.

Since texture is fundamentally 2D, TexturePattern generator ignores Z
coordinates.

The generator has one constructor:

public TexturePattern(Texture2D texture,TextureWrapMode wrapMode)

Where texture is the texture to use, and wrapMode defines behavior when input
coordinates are outside [0,1] range.

The images above were made with wrapMode=TextureWrapMode.Repeat and the
following texture:

Fractal

FractalNoiseBase

FractalNoiseBase class is the base class for all fractal generators. Fractal
generators take a source noise generator and combine together values sampled
at different frequencies. Exact combination algorithm is not implemented in the
base class. By overriding abstract method

protected abstract float CombineOctave(int curOctave, float signal, float value)

derived classes can implement this algorithm.

The class has two constructors:

protected FractalNoiseBase(Generator source)

protected FractalNoiseBase(int seed)

First constructor, taking the source parameter initializes source noise generator.
Second constructor uses seed value to initialize source with a GradientNoise
generator.

The CombineOctave abstract method is the heart of this class. Internally, it is
called for each sampling of the source generator. These samples are called
octaves. The generation starts with octave 0. Source is sampled at current point,
and current noise value is obtained from a call to CombineOctave. Then, point
coordinates are scaled (the coordinates are multiplied by Lacunarity), thus
increasing noise frequency, then rotated to break up regular patterns. Source is
sampled at this new point, and new value is obtained by calling CombineOctave
again. This step repeats an OctaveCount number of times, and the final value is
returned.

CombineOctave parameters mean:

curOctave: current step number. Starts at 0 and goes to OctaveCount-1.

signal: value of the source generator at this step.

value: resulting value from the previous step.

CombineOctave must return final value for the step. Normally, the returned value
is the same whether it it the final step or not (provided all other parameters are
equal). That is, when OctaveCount is set to 5, CombineOctave shall return the
same value for curOctave==4 as when OctaveCount is 6 or more.

FractalNoiseBase has the following properties:

public float Frequency {get;set;}

public float Lacunarity {get;set;}

public int OctaveCount {get;set;}

Frequency is the initial sampling frequency. It is equivalent to stretching the
source by 1/Frequency. Frequency must be greater than zero.

Lacunarity is the change of frequency between octaves. Each consequent
octave multiplies coordinates by Lacunarity value. The default value, 2.17, is
good for most purposes. Note that it is not set to exactly 2 – small fraction is
added to further break up any regularities. Lacunarity must be more than 1.

OctaveCount is the number of steps, or terms in fractal formula. OctaveCount
must be at least 2. Default value is 6 steps.

The OnParamsChanged virtual method is called whenever any of these properties
change. It does not do anything in the base class, but provides an extension point
for derived classes. They can implement any precalculations here.

protected virtual void OnParamsChanged()

PinkNoise

PinkNoise is a simple variant of fractal noise. It adds together all signals,
weighting them with inverse frequency – so that higher frequencies have less
weight. Another name for this algorithm is Fractional Brownian Motion.

PinkNoise values are meant to fall between -1 and 1, but this is not strictly
guaranteed. Mean value of PinkNoise is 0.

PinkNoise defines two constructors:

public PinkNoise(Generator source)

public PinkNoise(int seed)

These work exactly like in the base class. First constructor, taking the source
parameter initializes source noise generator. Second constructor uses seed value
to initialize source with a GradientNoise generator.

In addition to base class' properties, PinkNoise defines one property:

public float Persistence {get;set;}

Persistence defines weighting of individual frequencies. Each step, the signal is
multiplied by Persistence value. Higher Persistence means more weight is given
to higher frequencies, and vice-versa. Persistence values higher than 1 are
possible, but will probably not produce useful results. Default value is 0.5.

The following pictures show the effect of different settings on resulting noise.
Compare them with picture above, that shows noise with all default values.

OctaveCount = 2Frequency = 4 Frequency = 0.2

Lacunarity = 1.2 Lacunarity = 4.3 Persistence = 0.17 Persistence = 0.71

OctaveCount = 12

BillowNoise

Billow noise is a variant of pink noise, that adds together absolute values of
samples. It produces cloud-like shapes as a result. BillowNoise values generally
fall into [-1,1] range, and mean value is 0.

BillowNoise defines two constructors:

public BillowNoise(Generator source)

public BillowNoise(int seed)

These work exactly like in the base class. First constructor, taking the source
parameter initializes source noise generator. Second constructor uses seed value
to initialize source with a GradientNoise generator.

In addition to base class' properties, BillowNoise defines one property:

public float Persistence {get;set;}

Persistence defines weighting of individual frequencies. Each step, the signal is
multiplied by Persistence value. Higher Persistence means more weight is given
to higher frequencies, and vice-versa. Persistence values higher than 1 are
possible, but will probably not produce useful results. Default value is 0.5.

RidgeNoise

RidgeNoise is a so-called multifractal noise. Compared to simple fractals,
multifractals have different roughness in different places. To achieve this,
RidgeNoise derives weight of a given frequency from values of lower-frequency
samples. Also, an offset is added at each step, and a gain value is multiplied in,
creating a sort of feedback loop. This ensures that rough areas tend to become
rougher, and smooth areas to become smoother. The resulting function is really
great for terrain generation, creating both smooth valleys and rough mountain
ridges.

RidgeNoise defines two constructors:
public RidgeNoise(Generator source)

public RidgeNoise(int seed)

These work exactly like in the base class. First constructor, taking the source
parameter initializes source noise generator. Second constructor uses seed value
to initialize source with a GradientNoise generator.

In addition to base class' properties, RidgeNoise defines the following ones:
public float Exponent {get;set;}

public float Offset {get;set;}

public float Gain {get;set;}

Exponent controls weights given to different frequencies (like Persistence in
PinkNoise). Base weight of a signal is determined by raising frequency to the
power of -Exponent. Thus, higher Exponent makes for less high-frequency
contribution. Default value is 1.

Offset is added to the signal at each step. Higher Offset means more rough
results (more ridges). Default value is 1.

Gain is the “feedback” factor that scales the lower-frequency contribution in
high-frequency samples. Higher Gain values mean noisier ridges. Default value is
2.

The following pictures show the effect of different settings on resulting noise.
Compare them with picture above, that shows noise with all default values.

Exponent=2 Exponent=0.4 Gain=1.2 Gain=4

Offset=0.7 Offset=1.1

Voronoi

VoronoiDiagramBase and VoronoiDiagramBase2D

Voronoi diagrams are used to create cell-like or network-like patterns. A
diagram is based on an (infinite) number of control points, that are randomly
distributed in space. For any point in space, a set of several closest control points
can be determined. Distances to them are used to calculate final “noise” value. As
actually comparing an infinite number of points is impractical, CoherentNoise uses
an optimized version, where control points are obtained by shifting points with
integer coordinates. This means that every unit-sized cube will have exactly one
control point in it. Such distribution is not completely random, but it is enough for
most practical applications.

Base classes for Voronoi diagrams determine distances to three closest control
points, but delegate actual value computation to an abstract method, GetResult.
This allows to make your own diagrams by combining these distances in creative
ways.

All Voronoi diagrams have a 2D variant. These variants are exactly the same as
their 3D counterparts, except they ignore the Z coordinate. This makes them
considerably faster (as less control points must be considered).

VoronoiDiagramBase defines one constructor:

protected VoronoiDiagramBase(int seed)

seed value is used to seed the internal noise generator that computes
distribution of control points.

VoronoiDiagramBase defines two properties:

public int Period {get;set;}

public float Frequency {get;set;}

Period is used for repeating noise patterns. Sometimes, especially when
building seamless textures, it is desirable to have “random” noise that repeats
exactly every N units. When Period value is not zero, the generator would behave
just like this: it will repeat generated pattern every Period units. Period is integer,
not float, because it actually sets period of the underlying integer-point lattice.
When Period is set to zero (this is the default), the generator will not repeat
itself. Negative values of Period are invalid and would throw an exception.

Frequency determines scaling of control points. All coordinates are multiplied by
Frequency, thus higher Frequency means smaller cells. Another way to think of
Frequency is as of average distance between control points. Default value is 1.

An abstract method GetResult

protected abstract float GetResult(float min1,float min2,float min3);

is used to calculate final noise value. Its parameters are distances, respectively,
to the closest control point, second-closest and third-closest. Note that these
distances are already in frequency-adjusted coordinates. This means that no
matter the value of Frequency, distances in GetResult work as if Frequency was
equal to 1.

VoronoiPits and VoronoiPits2D

This is the simplest Voronoi diagram, that simply returns distance to closest
control point as a result. This creates “pits” with value of 0 at control points, and
higher values in between.

VoronoiPits defines one constructor:

public VoronoiPits(int seed)

seed value is used to seed the internal noise generator that computes
distribution of control points.

VoronoiValleys and VoronoiValleys2D

This Voronoi diagram returns difference in distance to two closest control
points. The resulting patter looks like “valleys” with value 0 at the bottom, and
highest values at control points.

VoronoiValleys defines one constructor:

public VoronoiValleys(int seed)

seed value is used to seed the internal noise generator that computes
distribution of control points.

VoronoiCells and VoronoiCells2D

Voronoi cells is a special kind of Voronoi diagram. Instead of using distances to
obtain resulting value, cell diagram uses the closest control point itself (or rather,
its coordinates). This generator uses a user-supplied function, that transforms
integer control point coordinates into final value. As an example, this function can
use the coordinates to obtain a pseudo-random number.

VoronoiCells defines one constructor:

public VoronoiCells(int seed, Func<int,int,int,float> cellValueSource)

seed value is used to seed the internal noise generator that computes
distribution of control points.

cellValueSource is the function that maps cell coordinates to cell value.

Modification

Bias

Bias generator is used to shift noise mean value, while leaving it within [-1,1]
interval. It maps noise value to a power-like curve (the original bias function,
devised by Perlin, uses power curve, but this generator uses a faster
approximation). Bias is symmetric, meaning that applying two Bias generators
one after another with opposite bias values will result in unmodified source noise.

Bias clamps source noise to [-1,1] interval, as values outside of this interval
may cause division by zero errors.

Bias has one constructor:

public Bias(Generator source, float bias)

source is the source generator, bias is the bias value. Resulting noise will be
equal to bias value in point where it was 0. bias can only be between -1 and 1,
non-inclusive; invalid values will cause an ArgumentException.

Gain

Gain generator is used to “sharpen” noise, shifting high values even higher, and
low values even lower. Resulting noise stays in [-1,1] interval, and values of 0
remain unchanged. Gain is symmetric, meaning that applying two gain generators
one after another with opposite gain values will result in unmodified source noise.
Internally, it applies two bias functions – one for positive values and one for
negative.

Gain clamps source noise to [-1,1] interval, as values outside of this interval

Source Bias=0.5 Bias=-0.5

Source Gain=0.5 Gain=-0.5

may cause division by zero errors.

Gain has one constructor:

public Gain(Generator source, float gain)

source is the source generator, gain is the gain value. Resulting noise will be
shifted exactly by gain/2 value in points where it was equal to 0.5, and by
-gain/2 in points where it was equal to -0.5. gain can only be between -1 and 1,
non-inclusive; invalid values will cause an ArgumentException.

Curve

Curve generator maps a source to an AnimationCurve that can be edited inside
Unity3d. This allows for great flexibility and is actually quite fast. Note that by
default, curves in Unity3d only stretch from 0 to 1, and curves for use with
CoherentNoise should probably stretch from -1 to 1.

Curve generator has one constructor:

public Curve(Generator source, AnimationCurve curve)

source is the source generator, and curve is the curve object to use.

Source

Result Curve used

Binarize

Binarize generator is an extreme sharpener, that turns noise into function with
only two values: -1 and 1. All values less than threshold become -1, all greater
become 1.

Binarize has one constructor:

public Binarize(Generator source, float threshold)

source is the source generator, threshold is the threshold value.

Modify

Modify generator is the universal modification: it simply applies a user-supplied
function to source value.

Modify has one constructor:

public Modify(Generator source, Func<float, float> modifier)

source is the source generator, modifier is the modification function.

Source Result

Source Modified with
Sin(10*x)

Displacement

Translate

Translate generator moves its source around. This is useful when working with
patterns (e.g. Spheres pattern is always centered at (0,0,0). With Translate, you
can move the center anywhere you like).

Translate has two constructors:
public Translate(Generator source, Vector3 v)

public Translate(Generator source, float x, float y, float z)

source is the source generator.

v is the translation vector, and x,y,z are its components.

Note that translation is applied to input coordinates, not the noise itself. This
means that the value that was at (0,0,0) will be translated to (-x,-y,-z)!

Rotate

Rotate generator rotates its source around origin. This is useful when working
with patterns (e.g. Planes pattern is always parallel to YZ plane. With Rotate, you
can incline it however you like).

Rotate has two constructors:
public Rotate(Generator source, Quaternion rotation)

public Rotate(Generator source, float angleX, float angleY, float angleZ)

Source Translated by
(-2,-2,0)

Source Rotated by 30°

source is the source generator.

rotation is the desired rotation

angleX, angleY and angleZ are Euler angles that define desired rotation.

Note that rotation is applied to input coordinates, not the noise itself. This
means that noise pattern will rotate in opposite direction!

Scale

Scale generator scales its source, in effect changing its frequency.

Scale has two constructors:
public Scale(Generator source, Vector3 v)

public Scale(Generator source, float x, float y, float z)

source is the source generator.

v is the scale vector, and x,y,z are its components. Negative scale will result in
“mirroring” of source, and scale of 0 will turn it into a constant (effectively
stretching infinitely).

Note that scaling is applied to input coordinates, not the noise itself. This means
that high scale numbers increase frequency, and make the resulting pattern
“smaller”.

Perturb

This generator translates source noise by variable amount, depending on input
coordinates. Translation vector in each point is determined by a user-supplied
function. The pattern in the example picture was perturbed using the following

Source Scaled by
(0.75,0.5,1)

Source Result

function:
 v=>new Vector3(

 v.x*v.x,
 v.y*v.x,
 v.z*v.x)

Perturb has one constructor:
public Perturb(Generator source, Func<Vector3, Vector3> displacementSource)

source is the source generator, and displacementSource is the function that
maps coordinates to displacements.

Turbulence

Turbulence is a special case of Perturb generator. It adds a random
displacement to its source noise, using three different PinkNoise generators as a
source of displacement values.

Turbulence has one constructor:
public Turbulence(Generator source, int seed)

source is the source generator, and seed is used to initialize displacing
generators.

Turbulence defines three properties:
public float Power { get; set; }

public float Frequency { get; set; }

public int OctaveCount { get; set; }

Power controls the amount of turbulence, i.e. how far the points are displaced.
Default value is 1.

Frequency is the frequency of displacement generators, and thus the resulting
“turbulent” pattern. Default value is 1.

OctaveCount is the number of octaves in displacement generators. Default value
is 6.

Source Result

Combination

Max

Max generator takes two source generators and returns maximum of two values.

It has one constructor:
public Max(Generator a, Generator b)

a and b are source generators.

Min

Min generator takes two source generators and returns minimum of two values.

It has one constructor:
public Min(Generator a, Generator b)

a and b are source generators.

Source (a) Source (b) Result

Source (a) Source (b) Result

Add

Add generator takes two source generators and returns sum of their values.

It has one constructor:
public Add(Generator a, Generator b)

a and b are source generators.

Multiply

Multiply generator takes two source generators and returns product of their
values.

It has one constructor:
public Multiply(Generator a, Generator b)

a and b are source generators.

Source (a) Source (b) Result (halved)

Source (a) Source (b) Result

Blend

Blend generator takes three generators as input. Two of them are called source
generators, and the third is called weight. Result of Blend is a value smoothly
blended between first and second source values, as determined by weight. Where
weight is 0 (or less) result is equal to first source value; where weight is 1 (or
more) result is equal to second source value.

Note that weight values are clamped to [0,1] range, and most generators in
CoherentNoise return values from -1 to 1. To change this range, you can divide
the generator by 2 and add 0.5. ScaleShift method is a quick way to do just this.

Blend has one constructor:
public Blend(Generator a, Generator b, Generator weight)

a and b are source generators, and weight is weight generator.

Source (b)Source (a) Weight Result

Interpolation and S-curves
Interpolation is used in gradient and value noise generators, that often form the

basis of most used noises. In CoherentNoise library, interpolation is defined by an
SCurve class, that represents an S-shaped curve. The class has one abstract
method:
public abstract float Interpolate(float t);

This method takes a value between 0 and 1 and maps it to another value in the
same range. Interpolation curves must map 0 to 0 and 1 to 1, and preferably also
map values as smooth as possible (i.e. derivatives at 0 and 1 must be zero)

There are four classes derived from SCurve, defining four different algorithms.
These can be accessed using static properties of SCurve class:

public static readonly SCurve Linear;

public static readonly SCurve Cubic;

public static readonly SCurve Quintic;

public static readonly SCurve Cosine;

The shapes of these curves are shown in the following picture:

Linear interpolation is the fastest, but it is prone to producing grid artifacts.
Cubic is slower, but smoother; Cosine and Quintic are even better, but at the cost
of more performance. Generally, cubic interpolation is a good compromise
between quality and speed.

SCurve class also defines static property
public static SCurve Default { get; set; }

This property defines the interpolation algorithm to use by default (i.e. when
it's not supplied in the noise constructor). It is initialized to SCurve.Cubic, but may
be changed in case you want all your generators use some other method.

SCurve.Linear SCurve.Cubic SCurve.Cosine SCurve.Quintic

Texture creation
The TextureMaker class contains several static methods, useful when creating

textures from noise.
 public static Texture Make(

 int width,
 int height,
 Func<float, float, Color> colorFunc,
 TextureFormat format=TextureFormat.RGB24)

This is a generic texture creation method, that uses a user-supplied function to
map coordinates to color value. The colorFunc function must return color given
coordinates, that both range from 0 to 1. That is, pixel coordinates are mapped to
float coordinates, so that (0,0) becomes (0,0) and (width, height) becomes (1,1).
The format parameter defines desired texture format.

public static Texture MonochromeTexture(int width, int height, Generator noise)

This method creates a monochrome texture from noise. Noise generator is
sampled in the Z=0 plane; and its values are clamped to [-1,1] range: in effect,
values less than -1 become black, and more than 1 become white.

public static Texture AlphaTexture(int width, int height, Generator noise)

This method creates a alpha-only texture from noise. Noise generator is
sampled in the Z=0 plane; and its values are clamped to [-1,1] range: in effect,
values less than -1 become transparent, and more than 1 become opaque.

public static Texture RampTexture(int width, int height, Generator noise, Texture2D ramp)

This method creates a color texture using a ramp to map noise to color. A ramp
is a one-dimensional texture that is sampled using noise value. As Unity3D has no
1D textures, this method actually samples the top line of ramp (i.e. points from
(0,0) to (ramp.width, 0)). Noise value of -1 corresponds to (0,0) on ramp, and
noise value of 1 – to (ramp.width, 0).
public static Texture BumpMap(int width, int height, Generator noise)

This method creates a bump map texture, using noise value as surface “height”.
Noise values are not clamped in this method, and in fact, increasing them (for
example, multiplying noise by a constant) is a way to increase “bumpiness” of the
resulting texture.

Chapter III

Example: clouds texture
As an example, let's generate a cloudy sky texture. Here's the code:

 // Billow noise creates clouds
 var billow = new BillowNoise(367567);
 billow.Frequency = 4f;
 billow.Persistence = 0.4f; // lower persistence: puffier clouds

 var swirly = billow.Turbulence(0.8f, 0.05f); // turbulence to add some swirl

 // Bias to make clouds bigger
 var cloud = new Bias(swirly, 0.25f);

 return TextureMaker.RampTexture(640, 640, cloud, Ramp);

Code starts with a BillowNoise. It tends to generate isolated billowy shapes,
with expanses of low values between them – exactly what we need for clouds.
The seed for noise is just some number I made up. We then set noise
parameters. Frequency determines the number of clouds: with higher frequencies,
noise will be more “crammed”, and more (smaller) shapes will fit into texture.
Persistence affects “puffiness” of the clouds: with high persistence, cloud shapes
will look too sharp, that's why we lower it a bit from the default value of 0.5.

Next, a little turbulence is added. Turbulence has the effect of making cloud
pattern swirly – only a bit, since turbulence has low frequency and power.

Then we use Bias. Bias increases noise values, making cloud shapes bigger, but
leaves lowest values still low – this ensures that we don't have a single “mega-
cloud”.

Finally, the last line simply turns our noise generator into a texture. Note that
up to this point, no noise was generated: we simply created our generator, but
never used it. The TextureMaker uses a Ramp texture to turn low noise values int
blue colors (making “sky”), and high values into whites (making “clouds”).

Here's the result:

Ramp texture used

Example: wood texture
Now let's make a more complex texture: wood. Here's code:

var circles = new Cylinders(1);

 // grain noise
 var grain = new PinkNoise(345623);
 grain.Frequency = 16;
 grain.OctaveCount = 4;

 // stretch grain in Z direction
 var scaledGrain = grain.Scale(1,1,0.25f);

 // add grain to circles
 var wood = 0.25f * scaledGrain + circles + 0.1f;

 // perturb filtration:
 var perturbedWood = wood.Turbulence(0.5f,0.1f);

 // prepare a “slice”:
 var slice = perturbedWood.

Translate(-3f, 1.5f, 1.5f).
Rotate(80, 20, 45).
Scale(16, 16, 16);

 var texture = TextureMaker.RampTexture(640, 640, slice, Ramp);
 var bump = TextureMaker.BumpMap(640, 640, slice);

This example takes advantage of 3D functionality of CoherentNoise generators.
We'll created a tree-like 3D pattern, and then “slice” a texture out of it. We start
not with a noise, but with a cylindrical pattern. This will be growth rings pattern of
our “tree”.

Next we create some PinkNoise that would simulate wood grain. It mainly
serves to add some irregularity into the pattern. We scale this noise along Z axis
(this is the axis parallel to our “tree”).

Grain and circular pattern are added together, with grain given lower weight
(0.25) This way, the pattern stays mainly circular, but with irregularities.

0.1 is also added to increase noise values. This will make “low” rings thinner,
and “high” rings wider.

Next, we add some turbulence. Real growth rings are not perfect circles, and
turbulence will bend our circles randomly to make them more natural.

In the end, we prepare our “slice”. TextureMaker always uses the [0,1]x[0,1]
region in the Z=0 plane. To make our slice more interesting, we translate, rotate
and scale noise pattern: this has the same effect as translating, rotating, and

scaling the sampling region, only in opposite direction.
Finally, we use TextureMaker to create not just one, but two textures: one

actual texture and one bump-map. We can then link these two textures to a
material that supports bump-mapping.

Here's what we've made:

Ramp texture used

	Introduction
	Chapter I.
	Noise Basics.
	Combining Noise.
	CoherentNoise library.

	Chapter II
	Noise generators
	Generator base class
	ValueNoise
	GradientNoise
	ValueNoise2D and GradientNoise2D
	Constant
	Function
	Cache
	Patterns
	Cylinders
	Planes
	Spheres
	TexturePattern

	Fractal
	FractalNoiseBase
	PinkNoise
	BillowNoise
	RidgeNoise

	Voronoi
	VoronoiDiagramBase and VoronoiDiagramBase2D
	VoronoiPits and VoronoiPits2D
	VoronoiValleys and VoronoiValleys2D
	VoronoiCells and VoronoiCells2D

	Modification
	Bias
	Gain
	Curve
	Binarize
	Modify

	Displacement
	Translate
	Rotate
	Scale
	Perturb
	Turbulence

	Combination
	Max
	Min
	Add
	Multiply
	Blend

	Interpolation and S-curves
	Texture creation

	Chapter III
	Example: clouds texture
	Example: wood texture

