
UNIVERSITY OF STUTTGARTINSTITUTE FOR PARALLEL AND DISTRIBUTEDHIGH PERFORMANCE SYSTEMS (IPVR)Applied Computer Science { Image Understanding
SNNSStuttgart Neural Network SimulatorBatchman Manual

UNIVERSITY OF STUTTGARTINSTITUTE FOR PARALLEL AND DISTRIBUTEDHIGH PERFORMANCE SYSTEMS (IPVR)Applied Computer Science { Image UnderstandingG�unter Mamier, Jens Wieland

SNNSStuttgart Neural Network SimulatorBatchman User ManualAll Rights reserved

Chapter 15BatchmanThis chapter describes batchman, a language that enables the user to control SNNS inbatch mode.15.1 IntroductionThis newly implemented batch language is to replace the old SNNSBAT. Programs whichare written in the old SNNSBAT language will not be able to run on the newly designedinterpreter. The new language supports all functions which are necessary to train and testneural nets. All non-graphical features which are o�ered by the graphical user interface(XGUI) may be accessed with the help of this language as well.The new batch language was modeled after languages like AWK, Pascal, Modula2 and C. Itis an advantage to have some knowledge in one of the described languages. The languagewill enable the user to get the desired result without investing a lot of time in learningits syntactical structure. For most operators multiple spellings are possible and variablesdon't have to be declared before they are used. If an error occurs in the written batchprogram the user will be informed by a displayed meaningful error message (warning) andthe corresponding line number.15.1.1 Styling ConventionsHere is a description of the style conventions used:Input which occurs on a Unix command line or which is part of the batch program willbe displayed in typewriter writing. Such an input should be adopted without any mod-i�cation.For example:/Unix> batchman -h 3

4 CHAPTER 15. BATCHMANThis is an instruction which should be entered in the Unix command line, where /Unix> isthe shell prompt which expects input from the user. Its appearance may change dependingon the Unix-system installed. The instruction batchman -h starts the interpreter with the-h help option which tells the interpreter to display a help message. Every form of inputhas to be con�rmed with Enter (Return). Batch programs or part of batch programs willalso be displayed in typewriter writing. Batch programs can be written with a conventionaltext editor and saved in a �le. Commands can also be entered in the interactive modeof the interpreter. If a �le is used as a source to enter instructions, the name of the �lehas to be provided when starting the interpreter. Typewriter writing is also used for wildcards. Those wild cards have to be replaced by real names.15.1.2 Calling the Batch InterpreterThe Interpreter can be used in an interactive mode or with the help of a �le, containingthe batch program. When using a �le no input from the keyboard is necessary. Theinteractive mode can be activated by just calling the interpreter:/Unix> batchmanwhich produces:SNNS Batch Interpreter V1.0. Type batchman -h for help.No input file specified, reading input from stdin.batchman>Now the interpreter is ready to accept the user's instructions, which can be entered withthe help of the keyboard. Once the input is completed the interpreter can be put to workwith Ctrl-D. The interpreter can be aborted with Ctrl-C. The instructions entered areonly invoked after Ctrl-D is pressed.If the user decides to use a �le for input the command line option -f has to be giventogether with the name of the interpreter:/Unix> batchman -f myprog.batOnce this is completed, the interpreter starts the program contained in the �le myprog.batand executes its commands.The standard output is usually the screen but with the command line option -l the outputcan be redirected in a protocol �le. The name of the �le has to follow the command lineoption:/Unix> batchman -l logfileUsually the output is redirected in combination with the reading of the program out of a�le: /Unix> batchman -f myprog.bat -l logfileThe order of the command line options is arbitrary.

15.2. DESCRIPTION OF THE BATCH LANGUAGE 5More command line options are:-p: Programs should only be parsed but not executed. This option tells theinterpreter to check the correctness of the program without executing theinstructions contained in the program. Run time errors can not be detected.Such a run time error could be an invalid SNNS function call.-q: No messages should be displayed except those caused by the print()-function.-s: No warnings should be displayed.-h: A help message should be displayed which describes the available commandline options.All following input will be printed without the shell-text.15.2 Description of the Batch LanguageThis section explains the general structure of a batch program, the usage of variables ofthe di�erent data types and usage of the print function. After this an introduction tocontrol structures follows.15.2.1 Structure of a Batch ProgramThe structure of a batch program is not predetermined. There is no declaration sectionfor variables in the program. All instructions are speci�ed in the program according totheir execution order. Multiple blanks are allowed between instructions. Even no blanksbetween instructions are possible if the semantics are clear. Single instructions in a linedon't have to be completed by a semicolon. In such a case the end of line character(Ctrl-D) is separating two di�erent instructions in two lines. Also key words which havethe responsibility of determining the end of a block (endwhile, endif, endfor, untiland else) don't have to be completed by a semicolon. Multiple semicolons are possiblebetween two instructions. However if there are more than two instructions in a line thesemicolon is necessary. Comments in the source code of the programs start with a '#'character. Then the rest of the line will be regarded as a comment.A comment could have the following appearance:#This is a commenta:=4 #This is another commentThe second line begins with an instruction and ends with a comment.15.2.2 Data Types and VariablesThe batch language is able to recognize the following data types:

6 CHAPTER 15. BATCHMAN� Integer numbers� Floating point numbers� Boolean type 'TRUE' and 'FALSE'� StringsThe creation of
oat numbers is similar to a creation of such numbers in the language Cbecause they both use the exponential representation. Float numbers would be: 0.42, 3e3,or 0.7E-12. The value of 0.7E-12 would be 0:7�10�12 and the value of 3e3 would be 3�103Boolean values are entered as shown above and without any kind of modi�cation.Strings have to be enclosed by " and can not contain the tabulator character. Strings alsohave to contain at least one character and can not be longer than one line. Such stringscould be:"This is a string""This is also a string (0.7E-12)"The following example would yield an error"But thisis not a string"15.2.3 VariablesIn order to save values it is possible to use variables in the batch language. A variable isintroduced to the interpreter automatically once it is used for the �rst time. No previousdeclaration is required. Names of variables must start with a letter or an underscore.Digits, letters or more underscores could follow. Names could be:a, num1, test, first net, k17 u, Test buffer 1The interpreter distinguishes between lower and upper case letters. The type of a variableis not known until a value is assigned to it. The variable has the same type as the assignedvalue:a = 5filename := "first.net"init flag := TRUENET ERR = 4.7e+11a := init flagThe assignment of variables is done by using `=' or `:='. The comparison operator is`=='. The variable `a' belongs to the type integer and changes its type in line 5 toboolean. Filename belongs to the type string and NET ERR to the type
oat.

15.2. DESCRIPTION OF THE BATCH LANGUAGE 715.2.4 System VariablesSystem variables are prede�ned variables that are set by the program and that are read-only for the user. The following system variables have the same semantics as the displayedvariables in the graphical user interface:SSE Sum of the squared di�erences of each output neuronMSE SSE divided by the number of training patternsSSEPU SSE divided by the number of output neurons of the netCYCLES Number of the cycles trained so far.Additionally there are two more system variables:PAT The number of patterns in the current pattern setEXIT CODE The exit status of an execute call15.2.5 Operators and ExpressionsAn expression is usually a formula which calculates a value. An expression could be acomplex mathematical formula or just a value. Expressions include:3TRUE3 + 317 - 4 * a + (2 * ln 5) / 0.3The value or the result of an expression can be assigned to a variable. The followingoperators exist, ordered by priority from top to bottom:Operator Function+;� Sign for numbersnot, ! Logic negation for boolean numberssqrt Square rootln Natural logarithm to the basis elog Logarithms to the basis 10��, ^ Exponential function� Multiplication= Divisiondiv Even number division with an even resultmod, % Result after an even number division+ Addition� Subtraction

8 CHAPTER 15. BATCHMANOperator Function< smaller than<=;=< smaller equal> greater than>=;=> greater equal== equal<>; ! = not equaland, && logic AND for boolean valuesor, jj logic OR for boolean valuesIf more than one expression occurs in a line the execution of expressions starts at the leftand proceeds towards the right. The order can be changed with parentheses `(' `)'.The type of an expression is determined at run time and is set with the operator exceptin the case of integer number division, the modulo operation, the boolean operation andthe compare operations.If two integer values are multilpied, the result will be an integer value. But if an integerand a
oat value are multilpied, the result will be a
oat value. If one operator is oftype string, then all other operators are transformed into strings. Partial expressions arecalculated before the transformation takes place:a := 5 + " plus " + 4 + " is " + (8 + 1)is transformed to the string:5 plus 4 is 9Please note that if the user decides to use operators such as sqrt, ln, log or the exponentialoperator, no parentheses are required because the operators are not function calls:Square root: sqrt 9natural logarithm: ln 2logarithm to the base of 10: log alphaExponential function: 10 ** 4 oder a^bHowever parentheses are possible and some times even necessary:sqrt (9 + 16)ln (2^16)log (alpha * sqrt tau)15.2.6 The Print FunctionSo far the user is able to generate expressions and to assign a value to a variable. In orderto display values, the print function is used. The print function is a real function callof the batch interpreter and displays all values on the standard output if no input �le isdeclared. Otherwise all output is redirected into a �le. The print function can be called

15.2. DESCRIPTION OF THE BATCH LANGUAGE 9with multiple arguments. If the function is called without any arguments a new line willbe produced. All print commands are automatically terminated with a newline.Instruction: generates the output:print(5) 5print(3*4) 12print("This is a text") This is a textprint("This is a text and values:",1,2,3) This is a text and values:123print("Or: ",1," ",2," ",3) Or: 1 2 3print(ln (2^16)) 11.0904print(FALSE) FALSEprint(25e-2) 0.25If a variable, which has not been assigned a value yet, is tried to be printed, the printfunction will display < > undef instead of a value.15.2.7 Control StructuresControl structures are a characteristic of a programming language. Such structures makeit possible to repeat one or multiple instructions depending on a condition or a value.BLOCK has to be replaced by a sequence of instructions. ASSIGNMENT has to be replaced byan assignment operation and EXPRESSION by an expression. It is also possible to branchwithin a program with the help of such control structures:if EXPRESSION then BLOCK endifif EXPRESSION then BLOCK else BLOCK endiffor ASSIGNMENT to EXPRESSION do BLOCK endforwhile EXPRESSION do BLOCK endwhilerepeat BLOCK until EXPRESSIONThe If InstructionThere are two variants to the if instruction. The first variant is:If EXPRESSION then BLOCK endifThe block is executed only if the expression has the boolean value TRUE.EXPRESSIONS can be replaced by any complex expression if it delivers a boolean value:if sqrt (9)-5<0 and TRUE<>FALSE then print("hello world") endifproduces:hello worldPlease note that the logic operator `and' is the operator last executed due to its lowestpriority. If there is confusion about the execution order, it is recommended to use bracketsto make sure the desired result will be achieved.

10 CHAPTER 15. BATCHMANThe second variant of the if operator uses a second block which will be executed as analternative to the �rst one. The structure of the second if variant looks like this:if EXPRESSION then BLOCK1 else BLOCK2 endifThe �rst BLOCK, here described as BLOCK1, will be executed only if the resultingvalue of EXPRESSION is `TRUE'. If EXPRESSION delivers `FALSE', BLOCK2 will beexecuted.The For InstructionThe for instruction is a control structure to repeat a block, a �xed number of times. Themost general appearance is:for ASSIGNMENT to EXPRESSION do BLOCK endforA counter for the for repetitions of the block is needed. This is a variable which countsthe loop iterations. The value is increased by one if an loop iteration is completed. Ifthe value of the counter is larger then the value of the EXPRESSIONS, the BLOCK won'tbe executed anymore. If the value is already larger at the beginning, the instructionscontained in the block are not executed at all. The counter is a simple variable. A forinstruction could look like this:for i := 2 to 5 do print (" here we are: ",i) endforproduces:here we are: 2here we are: 3here we are: 4here we are: 5It is possible to control the repetitions of a block by assigning a value to the counteror by using the continue, break instructions. The instruction break leaves the cycleimmediately while continue increases the counter by one and performs another repetitionof the block. One example could be:for counter := 1 to 200 doa := a * counterc := c + 1if test == TRUE then break endifendforIn this example the boolean variable test is used to abort the repetitions of the block early.While and Repeat InstructionsThe while and the repeat instructions di�er from a for instruction because they don'thave a count variable and execute their commands only while a condition is met (while) or

15.3. SNNS FUNCTION CALLS 11until a condition is met (repeat). The condition is an expression which delivers a booleanvalue. The formats of the while and the repeat instructions are:while EXPRESSION do BLOCK endwhilerepeat BLOCK until EXPRESSIONThe user has to make sure that the cycle terminates at one point. This can be achievedby making sure that the EXPRESSION delivers once the value `TRUE' in case of therepeat instruction or `FALSE' in case of the while instruction. The for example fromthe previous section is equivalent to:i := 2while i <= 5 doprint ("here we are: ",i)i := i + 1 endwhileor to:i := 2repeatprint ("here we are: ",i)i := i + 1until i > 5The main di�erence between repeat and while is that repeat guarantees that the BLOCKis executed at least once. The break and the continue instructions may also be usedwithin the BLOCK.15.3 SNNS Function CallsThe SNNS function calls control the SNNS kernel. They are available as function calls inbatchman. The function calls can be divided into four groups:� Functions which are setting SNNS parameters :{ setInitFunc(){ setLearnFunc(){ setUpdateFunc(){ setPruningFunc(){ setSubPattern(){ setShu�e(){ setSubShu�e()� Functions which refer to neural nets :{ loadNet(){ saveNet(){ saveResult(){ initNet(){ trainNet(){ testNet()

12 CHAPTER 15. BATCHMAN� Functions which refer to patterns :{ loadPattern(){ setPattern(){ delPattern()� Special functions :{ pruneNet(){ execute(){ print(){ exit(){ setseed()The format of such calls is:function name (parameter1, parameter2...)No parameters, one parameter, or multiple parameters can be placed after the functionname. Unspeci�ed values take on a default value. Note, however, that if the third valueis to be modi�ed, the �rst two values have to be provided with the function call as well.The parameters have the same order as in the graphical user interface.Now a description of the function calls of the �rst group follows.15.3.1 Function Calls To Set SNNS ParametersThe following functions calls to set SNNS parameters are available:setInitFunc() Selects the initialization function and its parameterssetLearnFunc() Selects the learning function and its parameterssetUpdateFunc() Selects the update function and its parameterssetPruningFunc() Selects the pruning function and its parameterssetSubPattern() De�nes the subpattern shifting schemesetShuffle() Change the shu�e modussetSubShuffle() Change the subpattern shu�e modusThe format and the usage of the function calls will be discussed now. It is an enormous helpto be familiar with the graphical user interface of the SNNS especially with the chapters\Parameters of the learning functions", \Update functions", \Initialization functions",\Handling patterns with SNNS", and \Pruning algorithms".setInitFuncThis function call selects the function with which the net is initialized. The format is:setInitFunc (function name, parameter...)where function name is the initialization function and has to be selected out of:

15.3. SNNS FUNCTION CALLS 13ART1_Weights DLVQ_Weights Random_Weights_PercART2_Weights Hebb Randomize_WeightsARTMAP_Weights Hebb_Fixed_Act RBF_WeightsCC_Weights JE_Weights RBF_Weights_KohonenClippHebb Kohonen_Rand_Pat RBF_Weights_RedoCPN_Weights_v3.2 Kohonen_Weights_v3.2 RCC_WeightsCPN_Weights_v3.3 Kohonen_Const RM_Random_WeightsCPN_Rand_Pat PseudoInvIt has to be provided by the user and the name has to be exactly as printed above. Thefunction name has to be embraced by "".After the name of the initialization function is provided the user can enter the parameterswhich in
uence the initialization process. If no parameters have been entered defaultvalues will be selected. The selected parameters have to be of type
oat. Function callscould look like this:setInitFunc ("Randomize Weights")setInitFunc("Randomize Weights", 1.0, -1.0)where the �rst call selects the Randomize Weights function with default parameters. Thesecond call uses the Randomize Weights function and sets two parameters. The batchinterpreter displays:Init function is now Randomize WeightsParameters are: 1.0 -1.0setLearnFuncThe function call setLearnFunc is very similar to the setinitFunc call. setLearnFuncselects the learning function which will be used in the training process of the neural net.The format is:setLearnFunc (function name, parameters....)where function name is the name of the desired learning algorithm. This name is manda-tory and has to match one of the following strings:ART1 Dynamic_LVQ RadialBasisLearningART2 Hebbian RBF-DDAARTMAP JE_BP RCCBackPercolation JE_BP_Momentum RM_deltaBackpropBatch JE_Quickprop RpropBackpropMomentum JE_Rprop Sim_Ann_SSBackpropWeightDecay Kohonen Sim_Ann_WTABPTT Monte-Carlo Sim_Ann_WWTABBPTT PruningFeedForward Std_BackpropagationCC QPTT TimeDelayBackpropCounterpropagation Quickprop

14 CHAPTER 15. BATCHMANAfter the name of the learning algorithm is provided, the user can specify some parameters.The interpreter is using default values if no parameters are selected. The values have tobe of the type
oat. A detailed description can be found in the chapter \Parameter of thelearning function". Function calls could look like this:setLearn("Std Backpropagation")setLearn("Std Backpropagation", 0.1)The �rst function call selects the learning algorithm and the second one additionallyprovides the �rst learning parameter. The batch interpreter displays:Learning function is now: Std backpropagationParameters are: 0.1setUpdateFuncThis function is selecting the order in which the neurons are visited. The format is:setUpdateFunc (function name, parameters...)where function name is the name of the update function. The name of the update algorithmhas to be selected as shown below.Topological_Order BAM_Order JE_SpecialART1_Stable BPTT_Order Kohonen_OrderART1_Synchronous CC_Order Random_OrderART2_Stable CounterPropagation Random_PermutationART2_Synchronous Dynamic_LVQ RCC_OrderARTMAP_Stable Hopfield_Fixed_Act Serial_OrderARTMAP_Synchronous Hopfield_Synchronous Synchonous_OrderAuto_Synchronous JE_Order TimeDelay_OrderAfter the name is provided several parameters can follow. If no parameters are selected,default values are chosen by the interpreter. The parameters have to be of the type
oat.The update functions are described in the chapter Update functions. A function callcould look like this:setUpdateFunc ("Topological Order")The batch interpreter displays:Update function is now Topological OrdersetPruningFuncThis function call is used to select the di�erent pruning algorithms for neural networks.(See chapter Pruning algorithms). A function call may look like this:setPruningFunc (function name1, function name2, parameters)

15.3. SNNS FUNCTION CALLS 15where function name1 is the name of the pruning function and has to be selected from:MagPruning OptimalBrainSurgeon OptimalBrainDamageNoncontributing_Units SkeletonizationFunction name2 is the name of the subordinated learning function and has to be selectedout of:BackpropBatch Quickprop BackpropWeightDecayBackpropMomentum Rprop Std_BackpropagationAdditionally the parameters described below can be entered. If no parameters are entereddefault values are used by the interpreter. Those values appear in the graphical userinterface in the corresponding widget of the pruning window.1. Maximum error increase in % (
oat)2. Accepted error (
oat)3. Recreate last pruned element (boolean)4. Learn cycles for �rst training (integer)5. Learn cycles for retraining (integer)6. Minimum error to stop (
oat)7. Initial value for matrix (
oat)8. Input pruning (boolean)9. Hidden pruning (boolean)Function calls could look like this:setPruningFunc("OptimalBrainDamage","Std Backpropagation")setPruningFunc("MagPruning", "Rprop", 15.0, 3.5, FALSE, 500, 90,1e6, 1.0)In the �rst function call the pruning function and the subordinate learning function isselected. In the second function call almost all parameters are speci�ed. Please note thata function call has to be speci�ed without a carriage return. Long function calls have tobe speci�ed within one line. The following text is displayed by the batch interpreter:Pruning function is now MagPruningSubordinate learning function is now RpropParameters are: 15.0 3.5 FALSE 500 90 1.0 1e-6 TRUE TRUEThe regular learning function PruningFeedForward has to be set with the function callsetLearnFunc(). This is not necessary if PruningFeedForward is already set in thenetwork �le.

16 CHAPTER 15. BATCHMANsetSubPatternThe function call setSubPattern de�nes the Subpattern-Shifting-Scheme which is de-scribed in chapter \Variable size pattern". The de�nition of the Subpattern-Shifting-Scheme has to �t the used pattern �le and the architecture of the net. The format of thefunction call is:setSubPattern(InputSize, InputStep1, OutputSize1, OutputStep1)The �rst dimension of the subpatterns is described by the �rst four parameters. Theorder of the parameters is identical to the order in the graphical user interface (seechapter \Sub Pattern Handling"). All four parameters are needed for one dimension. Ifa second dimension exists the four parameters of that dimension are given after the fourparameters of the �rst dimension. This applies to all following dimensions. Function callscould look like this:setSubPattern (5, 3, 5, 1)setSubPattern(5, 3, 5, 1, 5, 3, 5, 1)A one-dimensional subpattern with the InputSize 5, InputStep 3, OutputSize 5, Output-Step 1 is de�ned by the �rst call. A two-dimensional subpattern as used in the examplenetwork watch net is de�ned by the second function call. The following text is displayedby the batch interpreter:Sub-pattern shifting scheme (re)definedParameters are: 5 3 5 1 5 3 5 1The parameters have to be integers.setShu�e, setSubShu�eThe function calls setShuffle and setSubShuffle enable the user to work with theshu�e function of the SNNS which selects the next training pattern randomly. The shu�efunction can be switched on or o�. The format of the function calls is:setShuffle (mode)setSubShuffle (mode)where the parameter mode is a boolean value. The boolean value TRUE switches theshu�e function on and the boolean value FALSE switches it o�. setShuffe relates toregular patterns and setSubShuffle relates to subpatterns. The function call:setSubShuffle (TRUE)will display:Subpattern shuffling enabled

15.3. SNNS FUNCTION CALLS 1715.3.2 Function Calls Related To NetworksThis section describes the second group of function calls which are related to network ornetwork �les. The second group of SNNS functions contains the following function calls:loadNet() Load a netsaveNet() Save a netsaveResult() Save a result �leinitNet() initialize a nettrainNet() train a nettestNet() test a netThe function calls loadNet and saveNet both have the same format:loadNet (file name)saveNet (file name)where �le name is a valid Unix �le name enclosed by " ". The function loadNet loadsa net in the simulator kernel and saveNet saves a net which is currently located in thesimulator kernel. The function call loadNet sets the system variable CYCLES to zero.This variable contains the number of training cycles used by the simulator to train a net.Examples for such calls could be:loadNet ("encoder.net")...saveNet ("encoder.net")The following result can be seen:Net encoder.net loadedNetwork file encoder.net writtenThe function call saveResult saves a SNNS result �le and has the following format:saveResult (file name, start, end, inclIn, inclOut, file mode)The �rst parameter (�le name) is required. The �le name has to be a valid Unix �lename enclosed by " ". All other parameters are optional. Please note that if one speci�cparameter is to be entered all other parameters before the entered parameter have to beprovided also. The parameter start selects the �rst pattern which will be handled andend selects the last one. If the user wants to handle all patterns the system variablePAT can be entered here. This system variable contains the number of all patterns. Theparameters inclIn and inclOut decide if the input patterns and the output patternsshould be saved in the result �le or not. Those parameters contain boolean values. IfinclIn is TRUE all input patterns will be saved in the result �le. If inclIn is FALSE thepatterns will not be saved. The parameter inclOut is identical except for the fact that itrelates to output patterns. The last parameter file mode of the type string, decides if a

18 CHAPTER 15. BATCHMAN�le should be created or if data is just appended to an existing �le. The strings "create"and "append" are accepted for �le mode. A saveResult call could look like this:saveResult ("encoder.res")saveResult ("encoder.res", 1, PAT, FALSE, TRUE, "create")both will produce this:Result file encoder.res writtenIn the second case the result �le encoder.res was written and contains all output patterns.The function calls initNet, trainNet, testNet are related to each other. All functionsare called without any parameters:initNet()trainNet()testNet()initNet() initializes the neural network. After the net has been reset with the functioncall setInitFunc, the system variable CYCLE is set to zero. The function call initNet isnecessary if an untrained net is to be trained for the �rst time or if the user wants to seta trained net to its untrained state.initNet()produces:Net initializedThe function call trainNet is training the net exactly one cycle long. After this, thecontent of the system variables SSE, MSE, SSEPU and Cycles is updated.The function call testNet is used to display the user the error of the trained net, withoutactually training it. This call changes the system variables SSE , MSE, SSEPU but leavesthe net and all its weights unchanged.Please note that the function call trainNet is usually used in combination with a repetitioncontrol structure like for, repeat, or while.15.3.3 Pattern Function CallsThe following function calls relate to patterns:loadPattern() Loads the pattern �lesetPattern() Replaces the current pattern �ledelPattern() Deletes the pattern �leThe simulator kernel is able to store several pattern �les (currently 5). The user canswitch between those pattern �les with the help of the setPattern() call. The functioncall delPattern deletes a pattern �le from the simulator kernel. All three mentioned callshave file name as an argument:

15.3. SNNS FUNCTION CALLS 19loadPattern (file name)setPattern (file name)delPattern (file name)All three function calls set the value of the system variable Pat to the number of patternsof the pattern �le used last. The handling of the pattern �les is similar to the handling ofsuch �les in the graphical user interface. The last loaded pattern �le is the current one.The function call setPattern (similar to the USE button of the graphical user interfaceof the SNNS.) selects one of the loaded pattern �les as the one currently in use. The calldelPattern deletes the pattern �le currently in use from the kernel. The function calls:loadPattern ("encoder.pat")loadPattern ("encoder1.pat")setPattern("encoder.pat")delPattern("encoder.pat")produce:Patternset encoder.pat loaded; 1 patternset(s) in memoryPatternset encoder1.pat loaded; 2 patternset(s) in memoryPatternset is now encoder.patPatternset encoder.pat deleted; 1 patternset(s) in memoryPatternset is now encoder1.pat15.3.4 Special FunctionsThere are four miscelaneous functions for the use in batchmanpruneNet() Starts network pruningexecute() Executes any unix shell comand or programexit() Quits batchmansetseed() Sets a seed for the random number generatorThe function call pruneNet() is pruning a net equivalent to the pruning in the graphicaluser interface. After all functions and parameters are set with the call setPruningFuncthe pruneNet() function call can be executed. No parameters are necessary:pruneNet()An interface to the Unix operation system can be created by using the function execute.This function call enables the user to start a program at the Unix command line andredirect its output to the batch program. All Unix help programs can be used to makethis special function a very powerful tool. The format is:execute (instruction, variable1, variable2.....)where `instruction' is a Unix instruction or a Unix program. All output, generated by theUnix command has to be separated by blanks and has to be placed in one line. If this isnot done automatically please use the Unix commands AWK or grep to format the outputas needed. Those commands are able to produce such a format. The output generated

20 CHAPTER 15. BATCHMANby the program will be assigned, according to the order of the output sequences, to thevariables variable1, variable2.. The data type of the generated output is automaticallyset to one of the four data types of the batch interpreter. Additionally the exit state ofthe Unix program is saved in the system variable EXIT CODE. An example for execute is:execute ("date", one, two, three, four)print ("It is ", four, " o'clock")This function call calls the command date and reads the output "Fri May 19 16:28:29GMT 1995" in the four above named variables. The variable `four' contains the time. Thebatch interpreter produces:It is 16:28:29 o'clockThe execute call could also be used to determine the available free disk space:execute ("df .| grep dev", dmy, dmy, dmy, freeblocks)print ("There are ", freeblocks, "Blocks free")In this examples the Unix pipe and the grep command are responsible for reducing theoutput and placing it into one line. All lines, that contain dev, are �ltered out. Thesecond line is read by the batch interpreter and all information is assigned to the namedvariables. The �rst three �elds are assigned to the variable dmy. The information aboutthe available blocks will be stored in the variable freeblocks. The following output isproduced:There are 46102 Blocks freeThe examples given above should give the user an idea how to handle the execute com-mand. It should be pointed out here that execute could as well call another batchinterpreter which could work on partial solutions of the problem. If the user wants toaccomplish such a task the command line option -q of the batch interpreter could be usedto suppress output not caused by the print command. This would ease the reading of theoutput.exit()The last special function call is exit. This function call leaves the batch program imme-diately and terminates the batch interpreter. The parameter used in this function is theexit state, which will be returned to the calling program (usually the Unix shell). If noparameter is used the batch interpreter returns zero. The format is:exit (state)The integer state ranges from -128 to +127. If the value is not within this range thevalue will be mapped into the valid range and an error message displayed. The followingexample will show the user how this function call could be used:if freeblocks < 1000 thenprint ("Not enough disk space")exit (1)endif

15.4. BATCHMAN EXAMPLE PROGRAMS 21The function setseed sets a seed value for the random number generator used by theinitialization functions. If setseed is not called before initializing a network, subsequentinitializiations yield the exact same initial network conditions. Thereby it is possible tomake an exact comparison of two training runs with di�erent learning parameters.setseed(seed)Setseed may be called with an integer parameter as a seed value. Without a parameterit uses the value returned by the shell command `date' as seed value.15.4 Batchman Example Programs15.4.1 Example 1A typical program to train a net may look like this:loadNet("encoder.net")loadPattern("encoder.pat")setInitFunc("Randomize_Weights", 1.0, -1.0)initNet()while SSE > 6.9 and CYCLES < 1000 doif CYCLES mod 10 == 0 thenprint ("cycles = ", CYCLES, " SSE = ", SSE) endiftrainNet()endwhilesaveResult("encoder.res", 1, PAT, TRUE, TRUE, "create")saveNet("encoder.trained.net")print ("Cycles trained: ", CYCLES)print ("Training stopped at error: ", SSE)This batch program loads the neural net `encoder.net' and the corresponding pattern �le.Now the net is initialized. A training process continues until the SSE error is smaller orequal to 6.9. The trained net and the result �le are saved once the training is completed.The following output is generated by this program:Net encoder.net loadedPatternset encoder.pat loaded; 1 patternset(s) in memoryInit function is now Randomize_WeightsNet initialisedcycles = 0 SSE = 3.40282e+38cycles = 10 SSE = 7.68288cycles = 20 SSE = 7.08139cycles = 30 SSE = 6.95443Result file encoder.res written

22 CHAPTER 15. BATCHMANNetwork file encoder.trained.net writtenCycles trained: 40Training stopped at error: 6.8994415.4.2 Example 2The following example program reads the output of the network analyzation programanalyze. The output is transformed into a single line with the help of the programanalyze.gawk. The net is trained until all patterns are classi�ed correctly:loadNet ("encoder.net")loadPattern ("encoder.pat")initNet ()while(TRUE)for i := 1 to 500 dotrainNet ()endforresfile := "test.res"saveResult (resfile, 1, PAT, FALSE, TRUE, "create")saveNet("enc1.net")command := "analyze -s -e WTA -i " + resfile + " | analyze.gawk"execute(command, w, r, u, e)print("wrong: ",w, " right: ",r, " unknown: ",u, " error: ",e)if(right == 100) breakendwhileThe following output is generated:Net encoder.net loadedPatternset encoder.pat loaded; 1 patternset(s) in memory-> Batchman warning at line 3:Init function and params not specified; using defaultsNet initialisedResult file test.res writtenNetwork file enc1.net writtenwrong: 87.5 right: 12.5 unknown: 0 error: 7Result file test.res writtenNetwork file enc1.net writtenwrong: 50 right: 50 unknown: 0 error: 3Result file test.res writtenNetwork file enc1.net writtenwrong: 0 right: 100 unknown: 0 error: 0

15.4. BATCHMAN EXAMPLE PROGRAMS 2315.4.3 Example 3The last example program shows how the user can validate the training with a secondpattern �le. The net is trained with one training pattern �le and the error, which isused to determine when training should be stopped, is measured on a second pattern �le.Thereby it is possible to estimate if the net is able to classify unknown patterns correctly:loadNet ("test.net")loadPattern ("validate.pat")loadPattern ("training.pat")initNet ()repeatfor i := 1 to 20 dotrainNet ()endforsaveNet ("test." + CYCLES + "cycles.net")setPattern ("validate.pat")testNet ()valid_error := SSEsetPattern ("training.pat")until valid_error < 2.5saveResult ("test.res")The program trains a net for 20 cycles and saves it under a new name for every iterationof the repeat instruction. Each time the program tests the net with the validation patternset. This process is repeated until the error of the validation set is smaller than 2.5

