UNIVERSITY OF STUTTGART

INSTITUTE FOR PARALLEL AND DISTRIBUTED
HIGH PERFORMANCE SYSTEMS (IPVR)

Applied Computer Science — Image Understanding

SNINS

Stuttgart Neural Network Simulator

Batchman Manual

toe e

UNIVERSITY OF STUTTGART

INSTITUTE FOR PARALLEL AND DISTRIBUTED
HIGH PERFORMANCE SYSTEMS (IPVR)

Applied Computer Science — Image Understanding

Gunter Mamier, Jens Wieland

SNNS

Stuttgart Neural Network Simulator

Batchman User Manual

All Rights reserved

Chapter 15

Batchman

This chapter describes batchman, a language that enables the user to control SNNS in
batch mode.

15.1 Introduction

This newly implemented batch language is to replace the old SNNSBAT. Programs which
are written in the old SNNSBAT language will not be able to run on the newly designed
interpreter. The new language supports all functions which are necessary to train and test
neural nets. All non-graphical features which are offered by the graphical user interface
(XGUI) may be accessed with the help of this language as well.

The new batch language was modeled after languages like AWK, Pascal, Modula2 and C. It
is an advantage to have some knowledge in one of the described languages. The language
will enable the user to get the desired result without investing a lot of time in learning
its syntactical structure. For most operators multiple spellings are possible and variables
don’t have to be declared before they are used. If an error occurs in the written batch
program the user will be informed by a displayed meaningful error message (warning) and
the corresponding line number.

15.1.1 Styling Conventions

Here is a description of the style conventions used:

Input which occurs on a Unix command line or which is part of the batch program will
be displayed in typewriter writing. Such an input should be adopted without any mod-
ification.

For example:

/Unix> batchman -h

4 CHAPTER 15. BATCHMAN

This is an instruction which should be entered in the Unix command line, where /Unix> is
the shell prompt which expects input from the user. Its appearance may change depending
on the Unix-system installed. The instruction batchman -h starts the interpreter with the
-h help option which tells the interpreter to display a help message. Every form of input
has to be confirmed with Enter (Return). Batch programs or part of batch programs will
also be displayed in typewriter writing. Batch programs can be written with a conventional
text editor and saved in a file. Commands can also be entered in the interactive mode
of the interpreter. If a file is used as a source to enter instructions, the name of the file
has to be provided when starting the interpreter. Typewriter writing is also used for wild
cards. Those wild cards have to be replaced by real names.

15.1.2 Calling the Batch Interpreter

The Interpreter can be used in an interactive mode or with the help of a file, containing
the batch program. When using a file no input from the keyboard is necessary. The
interactive mode can be activated by just calling the interpreter:

/Unix> batchman

which produces:

SNNS Batch Interpreter V1.0. Type batchman -h for help.
No input file specified, reading input from stdin.
batchman>

Now the interpreter is ready to accept the user’s instructions, which can be entered with
the help of the keyboard. Once the input is completed the interpreter can be put to work
with Ctrl-D. The interpreter can be aborted with Ctrl-C. The instructions entered are
only invoked after Ctrl-D is pressed.

If the user decides to use a file for input the command line option -f has to be given
together with the name of the interpreter:

/Unix> batchman -f myprog.bat

Once this is completed, the interpreter starts the program contained in the file myprog.bat
and executes its commands.

The standard output is usually the screen but with the command line option -1 the output
can be redirected in a protocol file. The name of the file has to follow the command line
option:

/Unix> batchman -1 logfile

Usually the output is redirected in combination with the reading of the program out of a

file:
/Unix> batchman -f myprog.bat -1 logfile

The order of the command line options is arbitrary.

15.2. DESCRIPTION OF THE BATCH LANGUAGE 5

More command line options are:

-p: Programs should only be parsed but not executed. This option tells the
interpreter to check the correctness of the program without executing the
instructions contained in the program. Run time errors can not be detected.
Such a run time error could be an invalid SNNS function call.

-q: No messages should be displayed except those caused by the print()-
function.

-s: No warnings should be displayed.

-h: A help message should be displayed which describes the available command
line options.

All following input will be printed without the shell-text.

15.2 Description of the Batch Language

This section explains the general structure of a batch program, the usage of variables of
the different data types and usage of the print function. After this an introduction to
control structures follows.

15.2.1 Structure of a Batch Program

The structure of a batch program is not predetermined. There is no declaration section
for variables in the program. All instructions are specified in the program according to
their execution order. Multiple blanks are allowed between instructions. Even no blanks
between instructions are possible if the semantics are clear. Single instructions in a line
don’t have to be completed by a semicolon. In such a case the end of line character
(Ctrl-D) is separating two different instructions in two lines. Also key words which have
the responsibility of determining the end of a block (endwhile, endif, endfor, until
and else) don’t have to be completed by a semicolon. Multiple semicolons are possible
between two instructions. However if there are more than two instructions in a line the
semicolon is necessary. Comments in the source code of the programs start with a ’#’
character. Then the rest of the line will be regarded as a comment.

A comment could have the following appearance:

#This is a comment
a:=4 #This is another comment

The second line begins with an instruction and ends with a comment.

15.2.2 Data Types and Variables

The batch language is able to recognize the following data types:

6 CHAPTER 15. BATCHMAN

o Integer numbers

¢ Floating point numbers

e Boolean type *TRUE’ and ’FALSE’
e Strings

The creation of float numbers is similar to a creation of such numbers in the language C
because they both use the exponential representation. Float numbers would be: 0.42, 3e3,
or 0.7E-12. The value of 0.7E-12 would be 0.7 107!? and the value of 3e3 would be 3*10?

Boolean values are entered as shown above and without any kind of modification.

Strings have to be enclosed by " and can not contain the tabulator character. Strings also
have to contain at least one character and can not be longer than one line. Such strings

could be:

"This is a string"
"This is also a string (0.7E-12)"

The following example would yield an error

"But this
is not a string"

15.2.83 Variables

In order to save values it is possible to use variables in the batch language. A variable is
introduced to the interpreter automatically once it is used for the first time. No previous
declaration is required. Names of variables must start with a letter or an underscore.
Digits, letters or more underscores could follow. Names could be:

a, numl, _test, firstnet, ki17_u, Test_buffer_i

The interpreter distinguishes between lower and upper case letters. The type of a variable
is not known until a value is assigned to it. The variable has the same type as the assigned
value:

a=>5

filename := "first.net"
init flag := TRUE

NET ERR = 4.7e+11

a := init_flag

The assignment of variables is done by using ‘=" or “:=’. The comparison operator is

[4 b

==". The variable ‘a’ belongs to the type integer and changes its type in line 5 to
boolean. Filename belongs to the type string and NET _ERR to the type float.

15.2. DESCRIPTION OF THE BATCH LANGUAGE 7

15.2.4 System Variables

System variables are predefined variables that are set by the program and that are read-
only for the user. The following system variables have the same semantics as the displayed
variables in the graphical user interface:

SSE Sum of the squared differences of each output neuron
MSE SSE divided by the number of training patterns

SSEPU | SSE divided by the number of output neurons of the net
CYCLES | Number of the cycles trained so far.

Additionally there are two more system variables:

PAT The number of patterns in the current pattern set
EXIT_CODE | The exit status of an execute call

15.2.5 Operators and Expressions

An expression is usually a formula which calculates a value. An expression could be a
complex mathematical formula or just a value. Expressions include:

3

TRUE

3+ 3

17 - 4 * a + (2 *x1n 5) / 0.3

The value or the result of an expression can be assigned to a variable. The following
operators exist, ordered by priority from top to bottom:

Operator | Function
+,— Sign for numbers
not, ! Logic negation for boolean numbers
sqrt Square root
In Natural logarithm to the basis e
log Logarithms to the basis 10
*ok, ” Exponential function
* Multiplication
/ Division
div Even number division with an even result
mod, % | Result after an even number division
+ Addition
— Subtraction

8 CHAPTER 15. BATCHMAN

Operator | Function
< smaller than
<=,=< | smaller equal
> greater than
>=,=> | greater equal
== equal
<>,!'= | not equal
and, && | logic AND for boolean values
or, || logic OR for boolean values

If more than one expression occurs in a line the execution of expressions starts at the left
and proceeds towards the right. The order can be changed with parentheses ‘(* ¢)’.

The type of an expression is determined at run time and is set with the operator except
in the case of integer number division, the modulo operation, the boolean operation and
the compare operations.

If two integer values are multilpied, the result will be an integer value. But if an integer
and a float value are multilpied, the result will be a float value. If one operator is of
type string, then all other operators are transformed into strings. Partial expressions are
calculated before the transformation takes place:

a =5+ "plus " +4+ "is "+ (8+1)
is transformed to the string:
5 plus 4 is 9

Please note that if the user decides to use operators such as sqrt, In, log or the exponential
operator, no parentheses are required because the operators are not function calls:

Square root: sqrt 9

natural logarithm: 1n 2

logarithm to the base of 10: log alpha
Exponential function: 10 ** 4 oder a”b

However parentheses are possible and some times even necessary:

sqrt (9 + 16)
1n (2716)
log (alpha * sqrt tau)

15.2.6 The Print Function

So far the user is able to generate expressions and to assign a value to a variable. In order
to display values, the print function is used. The print function is a real function call
of the batch interpreter and displays all values on the standard output if no input file is
declared. Otherwise all output is redirected into a file. The print function can be called

15.2. DESCRIPTION OF THE BATCH LANGUAGE 9

with multiple arguments. If the function is called without any arguments a new line will
be produced. All print commands are automatically terminated with a newline.

Instruction: generates the output:

print(5) 5

print(3%4) 12

print("This is a text") This is a text

print("This is a text and values:",1,2,3) | This is a text and values:123
print("0r: ",1," ",2," ",3) Or: 1 2 3

print(ln (2°16)) 11.0904

print (FALSE) FALSE

print(25e-2) 0.25

If a variable, which has not been assigned a value yet, is tried to be printed, the print
function will display < > undef instead of a value.

15.2.7 Control Structures

Control structures are a characteristic of a programming language. Such structures make
it possible to repeat one or multiple instructions depending on a condition or a value.
BLOCK has to be replaced by a sequence of instructions. ASSIGNMENT has to be replaced by
an assignment operation and EXPRESSION by an expression. It is also possible to branch
within a program with the help of such control structures:

if EXPRESSION then BLOCK endif

if EXPRESSION then BLOCK else BLOCK endif
for ASSIGNMENT to EXPRESSION do BLOCK endfor
while EXPRESSION do BLOCK endwhile

repeat BLOCK until EXPRESSION

The If Instruction

There are two variants to the if instruction. The first variant is:
If EXPRESSION then BLOCK endif
The block is executed only if the expression has the boolean value TRUE.
EXPRESSIONS can be replaced by any complex expression if it delivers a boolean value:
if sqrt (9)-5<0 and TRUE<>FALSE then print("hello world") endif
produces:
hello world

Please note that the logic operator ‘and’ is the operator last executed due to its lowest
priority. If there is confusion about the execution order, it is recommended to use brackets
to make sure the desired result will be achieved.

10 CHAPTER 15. BATCHMAN

The second variant of the if operator uses a second block which will be executed as an
alternative to the first one. The structure of the second if variant looks like this:

if EXPRESSION then BLOCK1 else BLOCK2 endif

The first BLOCK, here described as BLOCKI1, will be executed only if the resulting
value of EXPRESSION is ‘TRUE’. If EXPRESSION delivers ‘FALSE’, BLOCK?2 will be

executed.

The For Instruction

The for instruction is a control structure to repeat a block, a fixed number of times. The
most general appearance is:

for ASSIGNMENT to EXPRESSION do BLOCK endfor

A counter for the for repetitions of the block is needed. This is a variable which counts
the loop iterations. The value is increased by one if an loop iteration is completed. If
the value of the counter is larger then the value of the EXPRESSIONS, the BLOCK won’t
be executed anymore. If the value is already larger at the beginning, the instructions
contained in the block are not executed at all. The counter is a simple variable. A for
instruction could look like this:

fori:=2to 5 do print (” here we are: ”,i) endfor
produces:

here we are:
here we are:
here we are:

g W N

here we are:

It is possible to control the repetitions of a block by assigning a value to the counter
or by using the continue, break instructions. The instruction break leaves the cycle
immediately while continue increases the counter by one and performs another repetition
of the block. One example could be:

for counter := 1 to 200 do

a := a * counter

c:=c+1

if test == TRUE then break endif
endfor

In this example the boolean variable test is used to abort the repetitions of the block early.

While and Repeat Instructions

The while and the repeat instructions differ from a for instruction because they don’t
have a count variable and execute their commands only while a condition is met (while) or

15.3. SNNS FUNCTION CALLS 11

until a condition is met (repeat). The condition is an expression which delivers a boolean
value. The formats of the while and the repeat instructions are:

while EXPRESSION do BLOCK endwhile
repeat BLOCK until EXPRESSION

The user has to make sure that the cycle terminates at one point. This can be achieved
by making sure that the EXPRESSION delivers once the value “TRUE’ in case of the
repeat instruction or ‘FALSE’ in case of the while instruction. The for example from
the previous section is equivalent to:

i=2
while 1 <= 5 do
print ("here we are: ",i)
i := 1 + 1 endwhile
or to:
i=2
repeat
print ("here we are: ",i)
i=1+1

until 1 > 5

The main difference between repeat and while is that repeat guarantees that the BLOCK
is executed at least once. The break and the continue instructions may also be used

within the BLOCK.

15.3 SNNS Function Calls

The SNNS function calls control the SNNS kernel. They are available as function calls in
batchman. The function calls can be divided into four groups:

o Functions which are setting SNNS parameters :
— setInitFunc()
— setLearnFunc()
—setUpdateFunc()
— setPruningFunc()
—setSubPattern()
— setShuffle()
— setSubShuffle()

e Functions which refer to neural nets :
— loadNet()
— saveNet()
— saveResult()
— initNet()
— trainNet()
— testNet()

12 CHAPTER 15. BATCHMAN

e Functions which refer to patterns :
— loadPattern()
— setPattern()
— delPattern()

e Special functions :
— pruneNet()
— execute()
— print()
— exit()
— setseed()

The format of such calls is:
function_name (parameterl, parameter2...)

No parameters, one parameter, or multiple parameters can be placed after the function
name. Unspecified values take on a default value. Note, however, that if the third value
is to be modified, the first two values have to be provided with the function call as well.
The parameters have the same order as in the graphical user interface.

Now a description of the function calls of the first group follows.

15.3.1 Function Calls To Set SNINS Parameters

The following functions calls to set SNNS parameters are available:

setInitFunc() Selects the initialization function and its parameters
setLearnFunc() Selects the learning function and its parameters
setUpdateFunc() | Selects the update function and its parameters
setPruningFunc() | Selects the pruning function and its parameters
setSubPattern() | Defines the subpattern shifting scheme
setShuffle() Change the shuffle modus

setSubShuffle() | Change the subpattern shuffle modus

The format and the usage of the function calls will be discussed now. It is an enormous help
to be familiar with the graphical user interface of the SNNS especially with the chapters
“Parameters of the learning functions”, “Update functions”, “Initialization functions”,
“Handling patterns with SNNS”, and “Pruning algorithms”.

setInitFunc

This function call selects the function with which the net is initialized. The format is:
setInitFunc (function name, parameter...)

where function name is the initialization function and has to be selected out of:

15.3. SNNS FUNCTION CALLS

ART1_Weights
ART2_Weights
ARTMAP _Weights
CC_Weights
ClippHebb
CPN_Weights_v3.2
CPN_Weights_v3.3
CPN_Rand_Pat

DLVQ_Weights

Hebb

Hebb_Fixed_Act
JE_Weights
Kohonen_Rand_Pat
Kohonen_Weights_v3.2
Kohonen_Const
PseudoInv

13

Random_Weights_Perc
Randomize_Weights
RBF_Weights
RBF_Weights_Kohonen
RBF_Weights_Redo
RCC_Weights
RM_Random_Weights

It has to be provided by the user and the name has to be exactly as printed above. The
function name has to be embraced by "".

After the name of the initialization function is provided the user can enter the parameters
which influence the initialization process. If no parameters have been entered default
values will be selected. The selected parameters have to be of type float. Function calls

could look like this:

setInitFunc ("Randomize Weights")
setInitFunc("Randomize Weights", 1.0, -1.0)

where the first call selects the Randomize Weights function with default parameters. The
second call uses the Randomize Weights function and sets two parameters. The batch
interpreter displays:

Init function is now Randomize Weights

Parameters are: 1.0 -1.0

setLearnFunc

The function call setLearnFunc is very similar to the setinitFunc call. setLearnFunc
selects the learning function which will be used in the training process of the neural net.
The format is:

setLearnFunc (function name, parameters....)

where function name is the name of the desired learning algorithm. This name is manda-

tory and has to match one of the following strings:

ART1 Dynamic_LVQ RadialBasisLearning
ART2 Hebbian RBF-DDA

ARTMAP JE_BP RCC

BackPercolation JE_BP_Momentum RM_delta
BackpropBatch JE_Quickprop Rprop
BackpropMomentum JE_Rprop Sim_Ann_SS
BackpropWeightDecay Kohonen Sim_Ann_WTA

BPTT Monte-Carlo Sim_Ann_WWTA

BBPTT PruningFeedForward Std_Backpropagation
cC QPTT TimeDelayBackprop

Counterpropagation

Quickprop

14 CHAPTER 15. BATCHMAN

After the name of the learning algorithm is provided, the user can specify some parameters.
The interpreter is using default values if no parameters are selected. The values have to
be of the type float. A detailed description can be found in the chapter “Parameter of the
learning function”. Function calls could look like this:

setLearn("Std Backpropagation")
setLearn("Std Backpropagation", 0.1)

The first function call selects the learning algorithm and the second one additionally
provides the first learning parameter. The batch interpreter displays:

Learning function is now: Std_backpropagation
Parameters are: 0.1

setUpdateFunc

This function is selecting the order in which the neurons are visited. The format is:
setUpdateFunc (function name, parameters...)

where function name is the name of the update function. The name of the update algorithm
has to be selected as shown below.

Topological_Order BAM_Order JE_Special
ART1_Stable BPTT_Order Kohonen_Order
ART1_Synchronous CC_Order Random_Order
ART2_Stable CounterPropagation Random_Permutation
ART2_Synchronous Dynamic_LVQ RCC_Order
ARTMAP_Stable Hopfield_Fixed_Act Serial_Order
ARTMAP_Synchronous Hopfield_Synchronous Synchonous_0Order
Auto_Synchronous JE_Order TimeDelay_Order

After the name is provided several parameters can follow. If no parameters are selected,
default values are chosen by the interpreter. The parameters have to be of the type float.
The update functions are described in the chapter Update functions. A function call

could look like this:
setUpdateFunc ("Topological Order")
The batch interpreter displays:

Update function is now Topological_Order

setPruningFunc

This function call is used to select the different pruning algorithms for neural networks.
(See chapter Pruning algorithms). A function call may look like this:

setPruningFunc (function namel, function name2, parameters)

15.3. SNNS FUNCTION CALLS 15

where function namel is the name of the pruning function and has to be selected from:

MagPruning OptimalBrainSurgeon OptimalBrainDamage
Noncontributing_Units Skeletonization

Function name2 is the name of the subordinated learning function and has to be selected

out of:
BackpropBatch Quickprop BackpropWeightDecay
BackpropMomentum Rprop Std_Backpropagation

Additionally the parameters described below can be entered. If no parameters are entered
default values are used by the interpreter. Those values appear in the graphical user
interface in the corresponding widget of the pruning window.

1. Maximum error increase in % (float)

2. Accepted error (float)

Recreate last pruned element (boolean)
Learn cycles for first training (integer)
Learn cycles for retraining (integer)
Minimum error to stop (float)

Initial value for matrix (float)

Input pruning (boolean)

Nolle s [= > B &) S S W]

Hidden pruning (boolean)
Function calls could look like this:

setPruningFunc("0OptimalBrainDamage","Std Backpropagation")
setPruningFunc("MagPruning", "Rprop", 15.0, 3.5, FALSE, 500, 90,
1e6, 1.0)

In the first function call the pruning function and the subordinate learning function is
selected. In the second function call almost all parameters are specified. Please note that
a function call has to be specified without a carriage return. Long function calls have to
be specified within one line. The following text is displayed by the batch interpreter:

Pruning function is now MagPruning
Subordinate learning function is now Rprop
Parameters are: 15.0 3.5 FALSE 500 90 1.0 1e-6 TRUE TRUE

The regular learning function PruningFeedForward has to be set with the function call
setLearnFunc(). This is not necessary if PruningFeedForward is already set in the
network file.

16 CHAPTER 15. BATCHMAN

setSubPattern

The function call setSubPattern defines the Subpattern-Shifting-Scheme which is de-
scribed in chapter “Variable size pattern”. The definition of the Subpattern-Shifting-
Scheme has to fit the used pattern file and the architecture of the net. The format of the
function call is:

setSubPattern(InputSize, InputStepl, OutputSizel, OutputStepl)

The first dimension of the subpatterns is described by the first four parameters. The
order of the parameters is identical to the order in the graphical user interface (see
chapter “Sub Pattern Handling”). All four parameters are needed for one dimension. If
a second dimension exists the four parameters of that dimension are given after the four
parameters of the first dimension. This applies to all following dimensions. Function calls

could look like this:

setSubPattern (5, 3, 5, 1)
setSubPattern(5, 3, 5, 1, 5, 3, 5, 1)

A one-dimensional subpattern with the InputSize 5, InputStep 3, OutputSize 5, Output-
Step 1 is defined by the first call. A two-dimensional subpattern as used in the example
network watch net is defined by the second function call. The following text is displayed
by the batch interpreter:

Sub-pattern shifting scheme (re)defined
Parameters are: 53 515 351

The parameters have to be integers.

setShuffle, setSubShuffle

The function calls setShuffle and setSubShuffle enable the user to work with the
shuffle function of the SNNS which selects the next training pattern randomly. The shuffle
function can be switched on or off. The format of the function calls is:

setShuffle (mode)
setSubShuffle (mode)

where the parameter mode is a boolean value. The boolean value TRUE switches the
shuffle function on and the boolean value FALSE switches it off. setShuffe relates to
regular patterns and setSubShuffle relates to subpatterns. The function call:

setSubShuffle (TRUE)
will display:

Subpattern shuffling enabled

15.3. SNNS FUNCTION CALLS 17

15.3.2 Function Calls Related To Networks

This section describes the second group of function calls which are related to network or
network files. The second group of SNNS functions contains the following function calls:

loadlNet () Load a net
saveNet () Save a net
saveResult() | Save a result file
initNet () initialize a net
trainNet () train a net
testNet () test a net

The function calls 1loadNet and saveNet both have the same format:

loadNet (file_name)
saveNet (file_name)

where file_name is a valid Unix file name enclosed by " ". The function loadNet loads
a net in the simulator kernel and savelNet saves a net which is currently located in the
simulator kernel. The function call loadlNet sets the system variable CYCLES to zero.
This variable contains the number of training cycles used by the simulator to train a net.
Examples for such calls could be:

loadNet ("encoder.net")

saveNet ("encoder.net")
The following result can be seen:

Net encoder.net loaded
Network file encoder.net written

The function call saveResult saves a SNNS result file and has the following format:
saveResult (file name, start, end, inclIn, inclOut, file_mode)

The first parameter (filename) is required. The file name has to be a valid Unix file
name enclosed by " '". All other parameters are optional. Please note that if one specific
parameter is to be entered all other parameters before the entered parameter have to be
provided also. The parameter start selects the first pattern which will be handled and
end selects the last one. If the user wants to handle all patterns the system variable
PAT can be entered here. This system variable contains the number of all patterns. The
parameters inclIn and inclOut decide if the input patterns and the output patterns
should be saved in the result file or not. Those parameters contain boolean values. If
inclInis TRUE all input patterns will be saved in the result file. If inc1Inis FALSE the
patterns will not be saved. The parameter incl0ut is identical except for the fact that it
relates to output patterns. The last parameter file mode of the type string, decides if a

18 CHAPTER 15. BATCHMAN

file should be created or if data is just appended to an existing file. The strings ”create”
and "append” are accepted for file mode. A saveResult call could look like this:

saveResult ("encoder.res')
saveResult ("encoder.res', 1, PAT, FALSE, TRUE, 'create'")

both will produce this:
Result file encoder.res written

In the second case the result file encoder.res was written and contains all output patterns.

The function calls initNet, trainNet, testNet are related to each other. All functions
are called without any parameters:

initNet()
trainNet ()
testNet ()

initNet () initializes the neural network. After the net has been reset with the function
call setInitFunc, the system variable CYCLE is set to zero. The function call initNet is
necessary if an untrained net is to be trained for the first time or if the user wants to set
a trained net to its untrained state.

initNet()

produces:
Net initialized

The function call trainNet is training the net exactly one cycle long. After this, the
content of the system variables SSE, MSE, SSEPU and Cycles is updated.

The function call testNet is used to display the user the error of the trained net, without
actually training it. This call changes the system variables SSE , MSE, SSEPU but leaves
the net and all its weights unchanged.

Please note that the function call trainNet is usually used in combination with a repetition
control structure like for, repeat, or while.

15.3.3 Pattern Function Calls

The following function calls relate to patterns:

loadPattern() | Loads the pattern file
setPattern() | Replaces the current pattern file
delPattern() | Deletes the pattern file

The simulator kernel is able to store several pattern files (currently 5). The user can
switch between those pattern files with the help of the setPattern() call. The function
call delPattern deletes a pattern file from the simulator kernel. All three mentioned calls
have file name as an argument:

15.3. SNNS FUNCTION CALLS 19

loadPattern (file_ name)
setPattern (file name)
delPattern (file_name)

All three function calls set the value of the system variable Pat to the number of patterns
of the pattern file used last. The handling of the pattern files is similar to the handling of
such files in the graphical user interface. The last loaded pattern file is the current one.
The function call setPattern (similar to the button of the graphical user interface
of the SNNS.) selects one of the loaded pattern files as the one currently in use. The call
delPattern deletes the pattern file currently in use from the kernel. The function calls:

loadPattern ("encoder.pat')
loadPattern ("encoderl.pat")
setPattern("encoder.pat")
delPattern("encoder.pat")

produce:

Patternset encoder.pat loaded; 1 patternset(s) in memory
Patternset encoderl.pat loaded; 2 patternset(s) in memory
Patternset is now encoder.pat
Patternset encoder.pat deleted; 1 patternset(s) in memory
Patternset is now encoderl.pat

15.3.4 Special Functions

There are four miscelaneous functions for the use in batchman

pruneNet () | Starts network pruning

execute() Executes any unix shell comand or program
exit() Quits batchman

setseed() | Sets a seed for the random number generator

The function call pruneNet() is pruning a net equivalent to the pruning in the graphical
user interface. After all functions and parameters are set with the call setPruningFunc
the pruneNet () function call can be executed. No parameters are necessary:

pruneNet()

An interface to the Unix operation system can be created by using the function execute.
This function call enables the user to start a program at the Unix command line and
redirect its output to the batch program. All Unix help programs can be used to make
this special function a very powerful tool. The format is:

execute (instruction, variablel, variable2.....)

where ‘instruction’ is a Unix instruction or a Unix program. All output, generated by the
Unix command has to be separated by blanks and has to be placed in one line. If this is
not done automatically please use the Unix commands AWK or grep to format the output
as needed. Those commands are able to produce such a format. The output generated

20 CHAPTER 15. BATCHMAN

by the program will be assigned, according to the order of the output sequences, to the
variables variablel, variable2.. The data type of the generated output is automatically
set to one of the four data types of the batch interpreter. Additionally the exit state of
the Unix program is saved in the system variable EXIT_CODE. An example for execute is:

execute ("date", one, two, three, four)
print ("It is ", four, " o’clock")

This function call calls the command date and reads the output "Fri May 19 16:28:29
GMT 1995" in the four above named variables. The variable ‘four’ contains the time. The
batch interpreter produces:

It is 16:28:29 o’clock

The execute call could also be used to determine the available free disk space:

execute ("df .| grep dev'", dmy, dmy, dmy, freeblocks)
print ("There are ", freeblocks, "Blocks free")

In this examples the Unix pipe and the grep command are responsible for reducing the
output and placing it into one line. All lines, that contain dev, are filtered out. The
second line is read by the batch interpreter and all information is assigned to the named
variables. The first three fields are assigned to the variable dmy. The information about
the available blocks will be stored in the variable freeblocks. The following output is
produced:

There are 46102 Blocks free

The examples given above should give the user an idea how to handle the execute com-
mand. It should be pointed out here that execute could as well call another batch
interpreter which could work on partial solutions of the problem. If the user wants to
accomplish such a task the command line option -q of the batch interpreter could be used
to suppress output not caused by the print command. This would ease the reading of the
output.

exit()

The last special function call is exit. This function call leaves the batch program imme-
diately and terminates the batch interpreter. The parameter used in this function is the
exit state, which will be returned to the calling program (usually the Unix shell). If no
parameter is used the batch interpreter returns zero. The format is:

exit (state)

The integer state ranges from -128 to 4+127. If the value is not within this range the
value will be mapped into the valid range and an error message displayed. The following
example will show the user how this function call could be used:

if freeblocks < 1000 then
print ("Not enough disk space")
exit (1)

endif

15.4. BATCHMAN EXAMPLE PROGRAMS 21

The function setseed sets a seed value for the random number generator used by the
initialization functions. If setseed is not called before initializing a network, subsequent
initializiations yield the exact same initial network conditions. Thereby it is possible to
make an exact comparison of two training runs with different learning parameters.

setseed(seed)

Setseed may be called with an integer parameter as a seed value. Without a parameter
it uses the value returned by the shell command ‘date’ as seed value.

15.4 Batchman Example Programs

15.4.1 Example 1

A typical program to train a net may look like this:

loadlNet ("encoder.net")
loadPattern("encoder.pat')
setInitFunc("Randomize_Weights", 1.0, -1.0)
initNet ()

while SSE > 6.9 and CYCLES < 1000 do
if CYCLES mod 10 == 0O then
print ('"cycles = ", CYCLES, " SSE = ", SSE) endif
trainNet ()
endwhile

saveResult("encoder.res', 1, PAT, TRUE, TRUE, "create'")
saveNet("encoder.trained.net")

print ('"Cycles trained: ", CYCLES)
print ("Training stopped at error: ", SSE)

This batch program loads the neural net ‘encoder.net’ and the corresponding pattern file.
Now the net is initialized. A training process continues until the SSE error is smaller or
equal to 6.9. The trained net and the result file are saved once the training is completed.
The following output is generated by this program:

Net encoder.net loaded

Patternset encoder.pat loaded; 1 patternset(s) in memory
Init function is now Randomize_Weights

Net initialised

cycles = 0 SSE = 3.40282e+38
cycles = 10 SSE = 7.68288
cycles = 20 SSE = 7.08139
cycles = 30 SSE = 6.95443

Result file encoder.res written

22 CHAPTER 15. BATCHMAN

Network file encoder.trained.net written
Cycles trained: 40
Training stopped at error: 6.89944

15.4.2 Example 2

The following example program reads the output of the network analyzation program
analyze. The output is transformed into a single line with the help of the program
analyze.gawk. The net is trained until all patterns are classified correctly:

loadNet ('encoder.net')
loadPattern ("encoder.pat')
initNet ()

while(TRUE)
for i := 1 to 500 do
trainNet ()
endfor

resfile := "test.res"
saveResult (resfile, 1, PAT, FALSE, TRUE, ''create')
saveNet("encl.net")

command := "analyze -s -e WTA -i " + resfile + " | analyze.gawk"
execute(command, w, r, u, e)
print("wrong: ",w, " right: “,r, " unknown: ",u, " error: ",e)
if(right == 100) break

endwhile

The following output is generated:

Net encoder.net loaded
Patternset encoder.pat loaded; 1 patternset(s) in memory
-> Batchman warning at line 3:
Init function and params not specified; using defaults
Net initialised
Result file test.res written
Network file encl.net written
wrong: 87.5 right: 12.5 unknown: 0 error: 7
Result file test.res written
Network file encl.net written
wrong: 50 right: 50 wunknown: O error: 3
Result file test.res written
Network file encl.net written
wrong: 0 right: 100 wunknown: O error: O

15.4. BATCHMAN EXAMPLE PROGRAMS 23

15.4.3 Example 3

The last example program shows how the user can validate the training with a second
pattern file. The net is trained with one training pattern file and the error, which is
used to determine when training should be stopped, is measured on a second pattern file.
Thereby it is possible to estimate if the net is able to classify unknown patterns correctly:

loadNet ("test.net")
loadPattern ("validate.pat")
loadPattern ("training.pat")
initNet ()

repeat
for 1 := 1 to 20 do
trainlNet ()
endfor
saveNet ("test." + CYCLES + "cycles.net")
setPattern ("validate.pat')
testlNet ()
valid_error := SSE
setPattern ("training.pat")
until valid_error < 2.5

saveResult ("test.res")

The program trains a net for 20 cycles and saves it under a new name for every iteration
of the repeat instruction. Each time the program tests the net with the validation pattern
set. This process is repeated until the error of the validation set is smaller than 2.5

