
PathFinder

A Design Exploration Tool

User’s Manual

Version 0.1
September 20, 2001

IBM Research Laboratory
Haifa, Israel

contact: baruch@il.ibm.com

2

d
This product or portions thereof is manufacture
under license from Carnegie Mellon University.
IBM Research Laboratory in Haifa, Israel

CHAPTER 1 Introduction
s a
imu-
rd-
t
use

d a
tent

hs in
PathFinder is a design exploration tool. It allows you to explore important
paths of your designs. Traditional methodology of path exploration require
tedious step by step specification of all inputs to the design, to enable the s
lator to produce an execution trace which is an example of the desired ha
ware path. In contrast, PathFinder allows you to specify only the importan
conditions that should hold along the required path, and the events that ca
the hardware to move from one phase to another. PathFinder works to fin
setting of the inputs for which the corresponding execution trace is consis
with the given path specification.

This document is constructed as follows:

• CHAPTER 2: Tool Overview - brief review on the system components,
and system interface (inputs and outputs).

• CHAPTER 3: Tutorial - introduction to Pathfinder in the form of a tuto-
rial. The tutorial presents a small design and shows how to explore pat
that design.

6 CHAPTER 1
• CHAPTER 4: Getting Started - description of the initial settings (e.g.
shell, working directory, design compilation) that should be done before
starting to explore paths of the design.

• CHAPTER 5: Inputs and Environment Specification - settings to the
design signals (mostly inputs) and other restrictions on them to be done
before exploring the path.

• CHAPTER 6: Path Specification - description of a path specification.

• CHAPTER 7: Search and results Analysis -description of the search
process and analysis of the results.
IBM Research Laboratory in Haifa

CHAPTER 2 Tool Overview
ith

the
s

cles
PathFinder has three main inputs:

• Design under test (DUT)

• Path specification

• Environment and input restrictions

The output of Pathfinder is a trace/s of the DUT. The trace is consistent w
the path specification and the environment restrictions (see Figure 1).

2.1Design Under Test

The primary input to PathFinder is the design under test (DUT). Currently,
only hardware specification language for DUTs that PathFinder supports i
VHDL and verilog.

2.2Path specification

A path is defined by a (ordered) list of phases. A phase is a sequence of cy
along the path that are specified by:

• Satisfying:

8 CHAPTER 2

an

.
real
 fol-

 par-

old

-

(or
L

ple
A condition that should hold during the phase. The condition is a boolean
expression over the signals names.

• Terminating:

A condition to terminate the phase. This condition can be either a boole
expression over the signal names or a time bound (given in cycles).

2.3Inputs and environment restrictions

By default, Pathfinder sets all inputs of the DUT to be random every cycle
This setting may result in an invalid trace (trace that does not exist in the ‘
world’). Pathfinder enables you to restrict the behavior of the inputs in the
lowing ways:

• Signal values

Pathfinder displays all signals of the design in the Signals List pane. In
ticular it shows the list of inputs to the design. Pathfinder allows you to
attach a constant value to each input (bit or vector).

• Restrictions

Pathfinder allows you to specify a list of boolean conditions that should h
in the resulting trace. For example the restriction: ‘read -> !write’ means
that at each cycle of the path if read is ‘1’ then write is ‘0’. These restric
tions are specified seperately for each path.

• Environment

Pathfinder allows you to define an abstract behavior for the design inputs
internal signals) in a separate file. The behavior is specified either in ED
(environment description language of Rulebase) or in VHDL. For exam
the following lines define a reset of 1 cycle:

assign init(reset) := 1

assign next(reset) := 0
IBM Research Laboratory in Haifa

Tool Overview 9

ses
e in
e
ath.
2.4Output - a trace of the DUT

The output of Pathfinder is a trace of the DUT that is consistent with its pha
specification and its environment restrictions. Pathfinder displays this trac
the scope pane of the GUI and enables you to bring any other signal to th
scope. If possible, Pathfinder finds more than one trace for the specified p

FIGURE 1. System overview

Trace

DesignPath Specification Inputs/Environment
definitions &

Pathfinder

phase1 phase2 phase3

phase1 phase2 phase3

restrictions
IBM Research Laboratory in Haifa

10 CHAPTER 2
IBM Research Laboratory in Haifa

CHAPTER 3 Tutorial
ial.
re a

to a
each
This chapter introduces Pathfinder’s path exploration in the form of a tutor
The tutorial presents a small design named BUF and shows how to explo
path of this design.

3.1Design description

BUF is a design block that buffers a word of data (32 bits) sent by a sender
receiver. It has two control inputs, two control outputs, and a data bus on
side, as shown by the block diagram:

BUF ReceiverSender

DI(0..31) DO(0..31)

StoB_REQ

BtoS_ACK

BtoR_REQ

RtoB_ACK

12 CHAPTER 3

hak-

 put-

K,
de the

on

fer

n the

e

Communication (on both sides) takes place by means of a 4-phase hands
ing as follows:

When the sender has data to send to the receiver, it initiates a transfer by
ting the data on the data bus and asserting StoB_REQ (server to buffer
request). If BUF is free, it reads the data and asserts BtoS_ACK (buffer to
server acknowledge). Otherwise, the sender waits. After seeing BtoS_AC
the sender may release the data bus and deassert StoB_REQ. To conclu
transaction, BUF deasserts BtoS_ACK.

When BUF has data, it initiates a transfer to the receiver by putting the data
the data bus and asserting BtoR_REQ (buffer to receiver request). If the
receiver is ready, it reads the data and asserts RtoB_ACK (receiver to buf
acknowledge). Otherwise, BUF waits. After seeing RtoB_ACK, BUF may
release the data bus and deassert BtoR_REQ. To conclude the transactio
receiver deasserts RtoB_ACK.

In the following sections, we show how to make PathFinder provide a trac
which demonstrates this four phase hand shake.

3.2Initial setup for a working environment

• If you run Pathfinder for the first time add the following setting in
your.cshrc file (or the shell you are working with)

setenv RBROOT location_of_rulebase_executable

setenv PFROOT location_of_pathfinder_executable

alias pf $PFROOT/bin/pf
• Create a directory pf_example

• Copy $PFROOT/tutorial/* to your pf_example directory

The following files will be copied to your directory:
IBM Research Laboratory in Haifa

Tutorial 13

der.

.
e

• buf.vhd - your design

• envs - the inputs to the design written in EDL.

• makefile - points to names of your vhdl files.

and some other files and folders that are generated automaticly by pathfin

Invoke Pathfinder by typing: pf

3.3DUT compilation

To compile your design click the ‘Compile’ button at the button menu bar. The
status bar reflects the compilation status as follows:

• ‘Compiling’ (red) message - the design is being coupled now.

• ‘Compilation OK’ - the design has been successfully compiled.

• ‘Compilation Errors’ - compilation process encountered some problems
To see the compilation log messages click the ‘Compilation’ button at th
log pane (the ‘view log’ button enables you to see the log message in a
larger popup window).

3.4Inputs restrictions and behaviors

Once the design is compiled, a list of the design signals is displayed in the
‘Signals’ pane. This list includes four sections:

• inputs - this list shows five signals inputs of the design which are:
CLK, DI(0:31), RST, RTOB_ACK and STOB_REQ.

• outputs - this list shows three single output of the design which are:
BTOR_REQ, BTOS_ACK and DO(0:31).

• internals - this list shows the internal signal of the design which are:
OCCUPIED, R_STATE, and S_STATE.
IBM Research Laboratory in Haifa

14 CHAPTER 3

-

ute
1) or

m

he
• User Defined - this list shows the signals that you defined in your environ
ment file.

The inputs list has an attribute attached to each of its members. This attrib
denotes the type of the input. The type can be random (R), zero (0), one (
defined by the user in the environment file (E).

3.5Path definition

The path to explore is already defined in the ‘Path Specification’ pane. The
path is composed of three phases.

• Phase 1: satisfying condition is‘DI(0:31)=1’ and terminating condition is
‘STOB_REQ’:meaning that the phase will start at cycle ‘0’ when
DI(0:31)=1 and STOB_REQ=0 and will finish when STOB_REQ=1.
during the whole phase DI(0:31)=1 should hold.

• Phase 2: terminating condition is ‘BTOR_REQ’ meaning that the phase will
start at the end of phase 1 and will finish when BTOR_REQ is ‘1’.
during the whole phase BTOR_REQ=0 should hold.

• Phase 3: terminating condition is ‘fell(RTOB_ACK)’ meaning that the phase
will start at the end of phase 2 and will finish when RTOB_ACK goes fro
‘1’ to ‘0’.

To view or change the definition of a phase click the ‘edit phase’ button of the
phase.

3.6Find the trace

To instruct Pathfinder to search for the path click the ‘Find Trace’ button. T
status bar reflects the status of the search as follows:

• ‘Searching’ - Pathfinder is searching for the specified path.

• ‘Search OK’ - Pathfinder completed searching for the path.

• ‘Search errors’ - Search failed.
IBM Research Laboratory in Haifa

Tutorial 15

pe.

is of

 at
n
e
int

the
 ter-
3.7View the trace

Pathfinder displays the trace at the ‘Scope’ pane after it finishes searching for
it. The cycles and mapping to phases are shown at the top area of the sco
The names of the signals and their values at cycle ‘0’ are shown in the ‘names’
and‘values’ columns.

As shown, phase 1 is of three cycles, phase 2 is of two cycles and phase 3
three cycle.

To see the signals value at a given point of time, left click at the wave area
the desired point. A red vertical line will be displayed and the ‘values’ colum
will show the signals values at this point of time. If you grab this vertical lin
the ‘values’ column will change to reflect the signals value at each given po
of time.

3.8Add a fourth phase to the trace

To add a fourth phase to our trace click at the right most arrow of the path (
last arrow). To edit this fourth phase click at its ‘edit phase’ button. Set the
minating condition to be ‘fell(BTOR_REQ)’. Click ‘OK’ to exit the phase.

Click the ‘Find trace’ button to search for the new path.
IBM Research Laboratory in Haifa

16 CHAPTER 3
IBM Research Laboratory in Haifa

CHAPTER 4 Getting Started
g

To explore paths of your design you should do the following initial setting:

• Add setting to your shell

• Create a working directory

• Customize Pathfinder to your working directory

• Compile your design

• Define behaviors for the DUT clocks and reset signals

4.1Setting your shell

If you run Pathfinder for the first time make sure that you have the followin
settings in your shell files (e.g. .cshrc file)

setenv RBROOT location_of_rulebase_executable

setenv PFROOT location_of_pathfinder_executable

alias pf $PFROOT/bin/pf

16 CHAPTER 4

nt:

pa-

ts.
defi-

w

e

e dif-
4.2Create a working directory

To investigate paths of your design create the following working environme

• Create a main working directory

• Copy the VHDL files or Verilog file of your design to this directory.

• Create a file with a list of names of your VHDL files (each name in a se
rate line.

• Optional - create a file which includes the abstract definitions of your inpu
This step is optional and is needed only if you wish to give an abstract
nition (behavior) for the design inputs.

4.3Create a New Workspace

Invoke pathfinder (by typing ‘pf’) open a window, enter a name for your ne
workspace and press‘ok’.

You can have several workspace on your pathfinder window, you can mov
from one to another, by clicking the‘file’ button and select the ‘workspace’
option, select the workspace name you want to work with from the list and
push‘ok’,or you can add a new workspace name.

Each workspace open a new pathfinder window. each workspace can hav
ferent configuration and must be customized separately.

4.4Customize Pathfinder

Click the ‘Configure’ button and select the ‘Setup’ option. Fill the setup
options as follows:

• Compilation Path- the name of the script that compiles your design. it has
several options for compilers:koala,hiasynth,rb_tex1,rb_partial,vim.
If you wish to use your own specific compilation path then follow the
instructions given in Section 9.1 .
IBM Research Laboratory in Haifa

Getting Started 17

.

.

e
e

ks)
nt
For each compiler some of the following options must be defined.

• DUT “makefile” - a pointer to the file that has the name list of VHDL or
Verilog sources.

• DUT entity name - the name of the main (top level) entity of your design

• DUT architecture name - the architecture of your main entity.

• environment file (optional) - a pointer to the file that gives an abstract
behavior to the design input signals.

Click ‘OK’ to commit your setting.

4.5Compile your design

To compile your design click the ‘Compile’ button at the button menu bar. The
status bar reflects the compilation status as follows:

• ‘Compiling’ (red) message - the design is being coupled now.

• ‘Compilation OK’ - the design successfully compiled.

• ‘Compilation errors’ - compilation process encountered some problems
open large popup window with compilation log messages, select ‘exit’ to
close this widow.
To see the compilation log messages click the ‘Compilation’ button at th
log pane. To view these log messages in a larger popup window click th
‘View log’ button.

4.6Define behavior for the clocks and reset signals

The last stage in the initial setting is to define a behavior to the clock (cloc
of your DUT and to the reset signal (if exists).(if you dont have environme
file).

To invoke the Clocks/reset dialog click the ‘Configuration’ button at the menu
bar and select the ‘Clocks/reset’ option. The Clocks/reset dialog is divided into
two sections: Clocks setting and reset setting.
IBM Research Laboratory in Haifa

18 CHAPTER 4

uld

ter

ion:

T.

er-

nd

m-
Clock setting

When searching for a trace, PathFinder’s engines have their own ‘ticking’
facility, thus results are given in resolution ofcycles. (No timing issues within a
cycle can be checked). If only one clock rate exists in the DUT, clocks sho
be put to constant 1 (if active high), telling PathFinder to ‘tick’ every cycle.

You can either put a ’1’ for each clock in the input values window (see Chap
5), or enter the clock names into the clocks dialog as described below.

Clocks dialog.

The clocks dialog allocates several lines for your DUT clocks. Each clock
should be defined in a separate line. A line includes the following informat

• Clock signal name - the name of the clock signal as is appears in the DU

• Low active - design is active when clock value is ‘0’.

• High active - design in active when clock value is ‘1’.

• Environment - the clock has a special behavior that is defined in the ext
nal environment file.

Reset setting

The reset dialog defines the following entries for your DUT reset signal:

• Reset signal name - the name of the reset signal as appears in the DUT.

• Reset length - the length of the reset: The number of active cycles before
turning inactive.

• Reset type - defines if the rest is a falling one (starts as ‘1’ for X cycles a
then falls or a raising reset (starts as ‘0’ and then raises).

Click ‘OK’ to commit your setting.

Note that the signals list column reflects your clocks/reset setting (after co
mitting them).Low active,High active andEnvironment will be reflected as
IBM Research Laboratory in Haifa

Getting Started 19

g
‘0’, ‘1’ and ‘E’ in the value entry associated with the clock. Any reset settin
will be reflected as ‘*’ in the value entry associated with the reset signal.
IBM Research Laboratory in Haifa

20 CHAPTER 4
IBM Research Laboratory in Haifa

CHAPTER 5 Inputs and Environment
Specification
.
real
 fol-

h a
ely
e
put:
By default, Pathfinder sets all inputs of the DUT to be random every cycle
This setting may result in an invalid trace (trace that does not exist in the ‘
world’). Pathfinder enables you to restrict the behavior of the inputs in the
lowing ways:

• Assign constant values to inputs.

• Give restrictions to inputs behaviors.

• Give an abstract behavior in an externalenvironment file.

• Define Templates for input signals.

5.1Constant values to inputs

Pathfinder displays all signals of your DUT in the ‘Signal List’ pane. In partic-
ular it shows the list of inputs to the design. Pathfinder allows you to attac
value to each input (signal or vector). This input setting is defined separat
for each path. The column attached to the inputs signal list provides a typ
attribute to each input. The following attributes can be assigned to each in

20 CHAPTER 5

ock/

ee

file.

up

he

nter
the
• 1 - the (one bit) input signal is constantly ‘1’

• 0 - the (one bit) input signal is constantly ‘0’

• R - the input signal will have a random value every cycle

• I - the input signal will pick a random value, and stick to it

• V - the input is a vector that has some value.

• ‘*’ - the inputs is a reset signal and its behaviour is defined in the Cl
reset dialog (click the ‘Configuration’ option at the menu bar)

• E - behaviour for this input is given by the external environment file (s
Section 5.3). This attribute is set to ‘E’ only by Pathfinder and only
when an abstract behaviour for this input is given in the environment

• T - the input signal is defined by a template.

To set the value of a one bit input:

• Left click on the signal’s type attribute toggles it over ‘1’, ‘0’ , ‘R’ and ‘I’.

• Right click on a signal (after being selected by a left click) opens a pop
menu with the options: ‘set’, ‘ reset’, ‘ random’ and ‘define behavior,that set
the signal value to ‘1’, ‘0’ ,‘R’ (random) and ,’T’ (template) respectively.

To set the value of a vector:

• Left click on the vector’s type attribute toggles it over ‘0’, ‘R’,’I, and ‘V.

• To set a value to a vector right click on the signal. A popup menu with t
options ‘reset’, randomize’ , ‘set value’ and ‘define behavior’ invokes.
When ‘set value’ is selected a popup entry is opened in which you may e
an hexadecimal value. You may replace any hexadecimal character with
following:

• A string of four binary digits enclosed with parenthesis. For example
5(1010)C is equal to 5AC.
IBM Research Laboratory in Haifa

Inputs and Environment Specification 21

 by

its
for

ally

es
ish

(or

the
• A string as described above where any binary digits may be replaced
the character ‘R’, denoting a random value, or ‘I’, denoting a random
constant value. For example 5(0RRI)C meaning that bit 4 is set to ‘0’ b
5 and 6 are random, and bit 7 may pick a random value, and stick to it
the entire run.

• The character ‘R’ means a random hexa value, and ‘I’ means an initi
random hexa value. For example 5RC will give bits 4 to 7 a random
value every cycle. IDF will give bits 0 to 3 to pick randomly their con-
stant value.

Note, the inputs setting is defined separately for each path. The input valu
column reflects the inputs setting of the current (highlighted) path. If you w
to copy inputs setting from one path to the other use the ‘copy inputs setting’
and ‘paste inputs setting’ menu options that are provided for each path (see
Section 6.2).

5.2Restrictions

Pathfinder allows you to specify a list of boolean conditions (restrictions) that
should hold in the resulting trace. In particular you may restrict the inputs
behavior of a given path. For example, the following restriction on therequest
inputs says: if reset is high then the next cycle reset should be low.

request -> !next(request)

This list is specified separately for each path. The syntax for the restriction
statements is described in Section 6.3 .

5.3Environment

Pathfinder allows you to define an abstract behavior for the design inputs
internal signals) in a separate file. The behavior is specified either in EDL
(environment description language of Rulebase) or in VHDL. For example
following lines define a reset of 1 cycle:

assign init(reset) := 1
IBM Research Laboratory in Haifa

22 CHAPTER 5

 cus-
e

.

ser)

nd

l-

s 0,
assign next(reset) := 0

If you give an abstract behavior in a separate environment file you should
tomize Pathfinder to point to this file. To point to the environment file, click th
‘configure’button, select the ‘setup’ option and point to this file from the ‘envi-
ronment file’ entry and then ‘compile’. For more details see Section 4.4 .

Detailed description on the environment language is given in Appendix A

5.4Templates

PathFinder allows you to define behavior for the design input signals from
several permanent templates.

Right click on the input signal opens a popup menu, select‘define behavior’,
choose one of the templates from the following options:

• Stair up - the signal is raised after a number of cycle. (chosen by the u

• Stair down - the signal is lowered after number of cycle. (chosen by the
user)

• Random pulse.
• Clock - the signal behave like a clock, one signal up and the next down a

so on. (with inisialization of 0 or 1, chosen by the user).

• Request -the signal behaves like requesting signal, in a request acknow
edge protocol, the following must be defined:

• when can a request be initialed.

• after signaling a request, when can it be released.

• Acknowledge -the signal behave like acknowledge signal, in a request
acknowledge protocol, the following must be defined:

• when can an acknowledge be signalled.

• after signaling an acknowledge, when can it be released.

• Random data -the signal behaves like data signal, with some bits set a
and some random, the following must be defined:
IBM Research Laboratory in Haifa

Inputs and Environment Specification 23
• when can data be changed.

• how many bits are active.
IBM Research Laboratory in Haifa

24 CHAPTER 5
IBM Research Laboratory in Haifa

CHAPTER 6 Path Specification
ec-

ow
A path is defined by its

• Path name

• Path restrictions

• Path phases definitions

• Path inputs setting

6.1Path name

A path is identified by its unique name. The ‘Path List’ pane shows the list of
paths that you defined. If you invoke Pathfinder from an empty working dir
tory (no path was defined by now), an empty path ‘noname’ is presented.

Right click at a given path name in the Path List area invokes a popup wind
with the following options:

• rename - enables you to rename your path.

• delete - delete the path

24 CHAPTER 6

n,

ath
ath

p-

e
rent
ch
e

aths.

ic-
he
• create copy - creates a copy of the current path with the name
‘current_name_i’ wherecurrent_name is the name of the current pointed
path, and‘i’ is the next available index to make the new name
current_name_i unique. The new path will have the same phase-definitio
restrictions list and inputs-setting as the source one (see Section 6.2 ,
Section 6.3 and Section 6.4).

• add new path -adds an empty new path at the end of the path list. This p
has no restrictions and no phase definitions. In addition all inputs of the p
are set to ‘R’ (random value).

• Copy input setting -creates a copy of the inputs setting of your current
paht (to be used later -using the ‘paste’ option - for a new path)

• Paste input setting -Gives the current path the inputs setting that you co
ied before of this current path.

• copy scope visable signals -create a copy of the signals shown on the
scope, of this current path

• paste scope visable signals -show the signals on the scope that you copy
before of this current path.

• help -

6.2Path inputs definition

Pathfinder displays all inputs of your DUT in the ‘Signal List’ pane and it
allows you to define a value for each input (bit or vector) of the design (se
Section 5.1). The input values column reflects the inputs setting of the cur
(highlighted) path. By default every new path gets a random setting for ea
input and every path that is a result of a ‘copy path’ operation gets the sam
inputs setting as the source path. The options ‘copy input setting’ and ‘paste
input setting’ (see above) enable you to use the same settings for several p

6.3Path restrictions

Pathfinder allows you to attach a list of restrictions to a given path. A restr
tion is a boolean expression (condition) that should hold along the path. T
condition can be any boolean expression over
IBM Research Laboratory in Haifa

Path Specification 25

h
ns
he

y

g the
• DUT signals names.

• User defined signals names defined in the environment file.

• ‘next(signal_name)’ - value of a signal in the next cycle

For example

• write -> next(flush)- means in our pathwrite is always followed (in the next
cycle) by aflush.

• request -> (!flush & !busy) -means ifrequestis on thenflushanbusyshould
be off (at the same cycle).

The ‘Path Restrictions’ window displays the list of restrictions associated wit
the current selected path. This window allows you to add/remove restrictio
for the path. Right click at a given restriction opens a popup window with t
following options:

• insert line - insert a new line (after the current pointed one) for a new
restriction.

• delete line - delete the current pointed restriction

• cut, copy, paste- text operation on the restriction text, enabling you to cop
(or move) text from one restriction to another.

Detailed description on the syntax of the boolean expressions is given in
Appendix A .

6.4Path phases definitions

A path is defined by a list of phases. A phase is a sequence of cycles alon
path that are specified by:

• Satisfying:
A condition that should hold during the phase. The condition is a boolean
expression over the signals names.

• Terminating:
IBM Research Laboratory in Haifa

26 CHAPTER 6

an

es.

area.

ns:

on:
A condition to terminate the phase. This condition can be either a boole
expression over the signals names or a time bound (given in cycles).

The ‘Path Description’pane enables you to define your path as a list of phas
The path is illustrated as a list of ‘wagons’ where each wagon represents a
phase. Click at a path name brings its wagon list to the ‘Path description’

The following manipulations on wagons are provided:

• Left click at a given arrow adds a wagon right after this arrow.

• Right click at a given arrow opens a popup menu with the following optio

• insert - insert a wagon right after the pointed arrow.

• delete - delete the wagon right after the pointed arrow.

• paste wagon - paste the last wagon that you copied after the current
arrow.

• delete to end -delete all the wagons until the pointed arrow.

• Right click at a given wagon opens a popup menu with the following opti

• delete - delete the pointed wagon.

satisfying
terminating

satisfying
terminating

satisfying
terminatingphases

satisfying satisfying satisfying

cycles

terminating terminatingterminating
IBM Research Laboratory in Haifa

Path Specification 27

r).

ing

se.
e the

l
inat-

ase
nd

ime

ting

K
t

• copy - create a copy of the current pointed wagon (to be ‘pasted’ late

• paste wagon - paste the last wagon that you copied after the current
wagon.

To define a phase click the ‘edit phase’ button (of the required wagon). A
popup dialog is opened enabling you to define the satisfying and terminat
condition for the phase.

Satisfying condition

A satisfying condition is a boolean condition that should hold during the pha
The condition is a boolean expression over the signals names. For exampl
satisfying condition ‘req & urgent_priority’ means that a request with an
urgent priority is ‘on’ (true) along the phase.

If no condition is given, Pathfinder sets it to ‘True’, meaning that no specia
condition should hold during the phase. The phase will end when the term
ing condition or bounds are satisfied.

Note, the satisfying condition may hold for zero cycles meaning that the ph
is of a single cycle in which the terminating condition is true (see Section a
Section).

Terminating condition

The condition to terminate the phase is either a boolean expression or a t
bound (can not be both). Click at the ‘terminating condition’ option turns off
the ‘Terminating time bound’ option and vise versa.

A terminating condition is a boolean condition over the signal names. The
phase terminates when this condition comes true (meaning that the termina
condition is false during the phase). For example the terminating condition
‘ rose(ACK)’ means that the phase should end when the acknowledge (AC
signal) goes from ‘0’ to ‘1’.If the ‘terminating condition’ option is selected bu
IBM Research Laboratory in Haifa

28 CHAPTER 6

ual

,

m-

 and

cles
no condition is given, the phase will be of X cycles where X is greater or eq
to zero.

Terminating time bounds

Time bounds limit the length (in cycles) of the phase. Time bounds (lower
upper) should be integers. To give time bound to a phase click the ‘time bound
condition’ option (this will turn off the ‘terminating condition’ option).

The following settings are possible:

• If both lower and upper are given the phase will be of X cycles where

lower <= X <= upper

• If only lower is given, the phase will be of X cycles where

lower <= X

• If only upper is given, the phase will be of X cycles where

0 <= X <= upper

• If neither upper nor lower are given, the phase will be of an arbitrary nu
ber of cycles (may be ‘0’).

For example:

• lower=3 and upper=7 - means that the phase will be of at least 3 cycles
at most 7 cycles.

• lower=3, upper not defined - means that the phase will be of at least 3
cycles.

• upper=7, lower undefined - means that the phase will be of at most 7 cy
and this could be an empty phase.

Examples

1. Given :
IBM Research Laboratory in Haifa

Path Specification 29

: sat-

we
Phase 1 can be of several cycles where all cycles but the last one satisfy
isfy ‘req = 1’ and ‘ack=0’, and the last cycles satisfiesack=1 (req an be
either ‘1’ or ‘0’).

On the other hand phase 1 can be of a single cycle that satisfiesack=1.

This means that the satisfying condition holds for zero cycles and then
have the terminating condition.

Satisfying = req

Terminating = ack

PHASE 1 PHASE 2

req=1
ack=0

req=1
ack=0

req=1
ack=0

req=1
ack=0

phase 1

ack =1

cycle7 cycle8 cycle9 cycle10 cycle11

phase 1

ack =1

cycle7
IBM Research Laboratory in Haifa

30 CHAPTER 6

-

o

2. Suppose you wish to find a path in which a request (req) of 2 cycles is fol-
lowed by an acknowledge (ack). The phase definition should be the follow
ing:

Note, the first phase should be empty in order to get paths where the tw
subsequent requests do not necessarily start in cycle 0.

3. Suppose you wish to find a path where in some cycle there are exactly3
requests out of10 possible ones (req0, req1, req2, ..., req9).

The phase definition should be the following:

phase_0 phase_1 phase_2

Sat’ = Sat’ = req

Ter’ =Ter’ =

Bounds = Bounds = 2..2

Sat’ = ack

Ter’ =

Bounds = 1..1

phase_0 phase_1

Sat’ = Sat’ = req0+req1+req2+req3+req4+
 req5+req6+req7+req8+req9 = 3

Ter’ =Ter’ =

Bounds = Bounds = 1..1
IBM Research Laboratory in Haifa

Path Specification 31

tive
 ‘0’).

ctor
The satisfying condition makes sure that exactly 4 of the request are ac
(get the value ‘1’) and the rest of the request are inactive (get the value

4. In a similar way,orthgonality of signals can be requested. Suppose you
have a vector VEC(0..7), and you want to see exactly one bit of that ve
active at a time. In the satisfying condition you can write:

 VEC(0) + VEC(1) + . . . + VEC(6) + VEC(7) = 1
IBM Research Laboratory in Haifa

32 CHAPTER 6
IBM Research Laboratory in Haifa

CHAPTER 7 Search and results Analysis
rea)

is
ve
To search for a given path select this path (click at its name in the pathlist a
and then choose if you want to use extra engines: ‘interactive SMV’or ‘beelze-
bub’ or both, apart from the SMV engine.

if you want to add extra engines click ‘configure’,and choose ‘engines’option.

click the ‘Find Trace’ button. This step should be done only after the design
successfully compiled and all required input setting or path restrictions ha
been defined. Currently Pathfinder allows a single search process to run.

The status bar reflects the status of the search process as follows:

• ‘Searching’ - Pathfinder is searching for the specified path.

• ‘Search OK’ - Pathfinder completed searching for the path.

• ‘Search errors’ - search failed.

In case of a search failure a popup window will show, telling you that the
search failed.

34 CHAPTER 7

on.
er

 fol-

trace
ting
t to

ally
nal

s:
To kill a search click the ‘Kill search’ button.

By default, Pathfinder looks for several paths that follow the path specificati
The number of paths to look for is (currently) hardcoded in Pathfinder. Aft
the search successfully completed, pathfinder loads the first trace to the ‘Scope’
pane. In addition Pathfinder marks each signal in the Signals-List with the
lowing signs:

• ‘-’ : The signal is not in the cone of influence of the path.

• ‘+’ : The signals is in the cone of influence of the path.

7.1Scope window

The Scope window is divided into three columns:

• Signals values

• Signals names

• Signals wave

The cycles and mapping to phases are shown at top of the wave area. The
defines a line for each signal that appears in the path specification (termina
condition, satisfying condition, or restrictions). Other signals can be brough
the scope as described in the following sections.

Signal name

This column defines a line for each signal that appears in the scope. Origin
it includes all signals that appear in the path specification. Any click at a sig
marks it (with a green color). Another click at the signal un-mark it.

Right click at a signal name opens a popup menu with the following option

• insert line - insert an empty line after the signal.

• delete signal - delete the signal from the scope.

• delete marked signals - delete all signals that are marked.

• Align names to the left -
IBM Research Laboratory in Haifa

Search and results Analysis 35

o
the

tor.

each

e
old
als

ng

l

to

the

r to
 sig-
• Aligh names to the rigth -
• slice vector(only to data signal) - display the wave of a given slice of the

vector. Selection of this option opens a popup menu that enables you t
define the range of the slice. The wave of the slice will show right after
given vector.

• slice to bits(only to data signal) - slice the vector into bits and display the
wave of each bit separately. The slices will show right after the given vec

• Create list of Global visible signals- create a file with the (names) list of all
signals that currently appear in the scope. These signals will appear in
trace that will be brought to the scope.

• Remove list of Global visible signals - remove the file with the visible sig-
nals.

• Trace signal backward (sources) - display a list of all signals (of the
design) that are sources of the selected signal. Pathfinder allows you to
select a signal or a group of signals from this list and move it/them to th
scope. To select a signal click at the signal. To select a group of signals h
the CTRL key while selecting the other signals. To select a range of sign
click the first item of the group and then hold the SHIFT key while selecti
the last item.

• Trace signal foreword (sinks) - display a list of all signals (of the design)
that are driven by the selected signal. Pathfinder allows you to select a signa
or a group of signals from this list and move it/them to the scope.

• Show cone signals - display a list of all in-cone signals. Pathfinder allows
you to select a signal or a group of signals from this list and move it/them
the scope.

• Print Scope - Create a pdf file of the scope, a printable file of the scope.

Signal value

The ‘values’column reflects the value of each signal at the cycle pointed by
red vertical wave pointer. By default this vertical pointer resides in cycle 0.
Any left click at some point in the wave area moves the vertical red pointe
that point. The values given in the values column will change to reflect the
IBM Research Laboratory in Haifa

36 CHAPTER 7

s’
e.

ycles.
ow-

r
 at

s

ls

t

nals values at the new point of time. If you grab this vertical line the ‘value
column also changes to reflect the signals value at each given point of tim

Signal wave

The wave area shows the behavior of each signal along the phases and c
Right click at the wave of a given signal opens a popup menu with the foll
ing options:

• Add/remove a marker - add a vertical line (marker) to the wave if a marke
does not exist at this point. Remove a marker if a marker already exists
this point

• Remove all markers - remove all markers that exist in the wave.

• Zoom in - horizontal zoom in

• Zoom out - horizontal zoom out

• Zoom to fit - adjust the wave’s zooming to fit the scope frame size

• Vertical zoom in -
• Vertical zoom out -
• Change base - see description for signal names.

• Create list of Global visible signals - see description for signal names.

• Remove list of Global visible signals - see description for signal names.

• Print Scope - see description for signal names.

• set as force -restrict the chosen signal to behave the same way as in thi
trace, when searching for another trace.

Any ‘cone’ signal found in the ‘Signal List’ column (inputs, outputs, interna
and user defined) can be brought to the scope as follows:

• To bring a signal to the scope select this signal (left click) and then righ
click. A popup menu with the option ‘move to scope’ is invoked. The
‘append’ option brings the signal to the bottom of the scope. The ‘insert’
option brings the signal after the first marked signal in the scope.
IBM Research Laboratory in Haifa

Search and results Analysis 37

p in

re

order

a-

f the

ess,
For

m-

the
• To bring a group of signals to the scope, you should first select the grou
one of the following ways:

• Click the first signal of the group, then press theCTRL key while select-
ing the other signals.

• Click thefirst signal of the group and then press theShift key while
selecting thelast signal of the group. All signals in between will be
selected. This option is applicable only for groups whose members a
consecutive in the list.

Right click to invoke the dialog with the ‘move to scope’ option.

Pathfinder saves the state of each trace (signals in the scope, empty lines,
between signals). The state is used for future invocations of the trace.

7.2View multiple traces

If possible, Pathfinder looks for several traces that satisfy the path specific
tion. If more than one trace is available, a click at the ‘Load trace’ button opens
a popup menu that enables you to select the trace to be loaded. The index o
current loaded trace appears at the title of the scope pane. The button ‘Next
trace’, cyclically, loads the next trace to the scope.

Multiple traces are made as different from each other as possible. Neverthel
it is sometimes difficult to detect the signals on which traces are different.
that, PathFinder provides a ‘compare-traces’ feature. To activate it, press on
thepathmenu in the top menu bar, and select theCompare tracesoption. You
will be provided with a dialog, in which you have to select the traces to co
pare. Once selected, press OK, and PathFinder will show a list of all different
signals. You will then be able to select signals of interest, and move them to
scope, just as it is done in the Show cone signals option.
IBM Research Laboratory in Haifa

38 CHAPTER 7

ine
al.
m-

reen,

th
,

s,

o do

ed

pro-
7.3Interactive Mode

Interactive mode is our name for a new feature of PathFinder’s Search Eng
SMV. In this mode of operation, SMV searches for the wanted path as usu
When a trace is found, SMV does not exit, but saves all information in me
ory, and waits for new commands from user, concerning the current path.

In order to operate this mode, chooseConfigure->Engines->SMV is interac-
tive. The next search will run inInteractive mode. When reasch is finished and
result trace is displayed on the scope, a pop-up menu will appear on the sc
asking for new requests/command fromSMV. To hide the interactive menu,
press ‘DONE’. You can resume this menu by pressing on theINTERACTIVE
button on the top bar.SMV will stay in interactive mode, ready for your new
requests until you deliberately tells it to exit (see below). WhileSMVis active,
the red ‘Engine Active’ sign will appear at the bottom bar.

All requests from SMV in this mode, will relate to the original path. This pa
will be signed ‘Active!’ in the path list. The user may switch to another path
load traces, simulate, and operate any feature of PathFinder, except for thefind
trace feature.

 The features currently supported are:

for the current path:

• Add cycles: Enter number of cycles you want to add to the current trace
and pressOK . PathFinder (through theSMVengine) will prolong the traces
by the indicated number of cycles. Note the added cycles have nothing t
with the specified path, but are complient with the model under test.

• Add Traces: Enter the number of additional traces you want to be produc
for the current path, and pressOK . PathFinder will try to produce the addi-
tional traces as different as possible from the 5 existing traces already
duced. You can view all traces through the ‘load trace’ or ‘next trace’
buttons as usual.
IBM Research Laboratory in Haifa

Search and results Analysis 39

e,

e

to
ith

ni-

nce
• Find a longer Trace: find a different and longer trace from the current on
on the same path.

for a new path:

• Find Trace: When selecting this option, PathFinder will search for a trac
for the current path, using a special algorithm, called theMergingAlgo-
rithm.This algorithm uses the information gathered in the previous run,
speed up the new search. When the current path has a lot in common w
the original path, there is a big chance that using themerging algorithmwill
be much quicker than starting the traditional search from scretch.
Note that the only way to use this new algorithm is by changing the defi
tion of the Active path.
There are some limitations when using themergingalgorithm:

• Both the original path and the refined path must begin with an empty
phase.

• Signals mentioned in the new path must have the same cone-of-influe
(or a subset of) as the cone-of-influence of the original formula.
IBM Research Laboratory in Haifa

40 CHAPTER 7
IBM Research Laboratory in Haifa

CHAPTER 8 Simulation
ula-

ce),

her

its

n-
e of
Pathfinder enables you to modify the inputs of a given trace and to run sim
tion on these new values of inputs.

To edit inputs of a given trace bring the trace to the scope window (load tra
and click the ‘Simulator’ option (at the right upper corner of your Pathfinder
application). When switching to this mode, Pathfinder marks all signals ot
than inputs with a different color denoting that only inputs can be edited.

Middle click at a given bit-input (in the wave area), at a given cycle, toggles
value (at that specific cycle) from ‘0’ to ‘1’ and vise versa.

Middle click at a given vector-input (in the wave area), invokes a popup wi
dow that enables you to give a different value to the vector in a given rang
cycles.

To run simulation on the new input values click the ‘Simulate’ button.

The status bar reflects the status of the simulation as follows:

• ‘Simulating’ - Pathfinder runs simulation on the new inputs.

40 CHAPTER 8

es.

o its

 a

a

• ‘Simulation OK’ - Pathfinder completed simulation.

The resulted trace will appear in the scope area when simulation terminat

Note!

The resulted trace is no longer connected to the path specification and t
phases definition.

8.1Save/Load simulation traces

When inSimulator mode, you can save the current simulation trace, or load
previously saved simulation trace.

Click on the ‘Simulate’ menu in the top menu bar, to get a popup menu with
the following options:

• Simulate -The same as pressing the ‘Simulation’ button.

• Save current simulation -Saves the trace currently appearing on scope.
popup window will require you to provide a name for the saved trace.

• Load simulations - Gives a list of all previously saved simulation traces.
After choosing a trace name, you can display it on scope or remove it.
IBM Research Laboratory in Haifa

CHAPTER 9 Advanced
. If

f

9.1Setting your own compilation path

By default, PathFinder uses the TexVHDL compiler to compile your design
you wish to use your own specific compilation path do the following.

1. Add your script to the compilation configuration file:
Edit the file $PFROOT/etc/comp.pfcnfg

This file should hold information about your new compilation script.

The file includes lines of the format:

<script_identifier> <script_path> <output_format>

For example

rb_texvhdl /afs/haifa/..../PFROOT/TexVHDL vim

Each line should hold the following information:

• script_identifier - a keyword to identify your script. This keyword will
appear as one of the compilation path options in the ‘Setup’ dialog o
Pathfinder (click the ‘Configure’ option then select ‘Setup’).

• script_path - a pointer (full path) to your compilation script

42 CHAPTER 9

ath.

e
our
n

d

e

s.
• output_format - the format of compilation outputs. Can be either ‘vim’
or ‘proto’

To use your compilation path just add a line that represents your own p

2. Adjust your script to the required format
The compilation script (pointed by $PFROOT/etc/comp.pfcnfg) should b
of a special format and should get a very specific list of parameters. If y
own compilation script has a different format, then you may call your ow
script from this (top level) script.

The parameters sent by Pathfinder to the script are the following:

• make_file_name:

A path to the file containing the names of the VHDL files to be compile
(the contents of the ‘DUT makefile’ option in the ‘Setup’ dialog).

• entity:

Name of the top level entity (the contents of the ‘DUT entity name’
option in the ‘Setup’ dialog).

• architecture:

Architecture of your top level entity (the contents of the ‘DUT architec-
ture name’ option in the ‘Setup’ dialog).

• working_directory:

A path to your working directory. The compilation output should resid
under this directory.

• log_file_name:

Name of log file to where Pathfinder should redirect its log message

Script outputs:

• If your compilation output format is ‘proto’, then the output of your
script should be a file:

 <entity_name>.<architecture_name>.proto

in the directory:
IBM Research Laboratory in Haifa

Advanced 43

 .
<working_directory>/dbout

• If your compilation output format is ‘vim’, then the output of your script
should reside under the vimdbase directory as illustrated in Figure 2

FIGURE 2. vim format

3. Set Pathfinder to point to your script
Click the ‘Configure’ option at the menu bar and select the ‘Setup’ option.
The name of your script should appear as one of the ‘compilation path’
options. Select it to be your compilation path.

vimdbase

DEF HISVHDL

<ENTITY>.<ARCHITECTURE> <ENTITY>.<ARCHITECTURE>
IBM Research Laboratory in Haifa

44 CHAPTER 9
IBM Research Laboratory in Haifa

Appendix A Specification Language
fer-

).

its

n

A.1 Expressions

A.1.1 Variables and constants:

The basic expressions are numbers, enumerated constants, or variable re
ences.

A number is :

• A decimal if it has only decimal digits and no suffix (e.g. 1276).

• A binary number consists of binary digits and ends with ‘B’ (e.g. 1011B

• A hexadecimalnumber begins with a decimal digit, has hexadecimal dig
and ends with ‘H’ (e.g. 7FFFH, 0FFH).

An enumerated constant is one of the symbolic values which a variable ca
take on. For instance, if we declare the following:

var state: {idle, st1, st2, st3, waiting};

46

era-

)

then each of the 5 symbolic values “idle”, “st1”, “st2”, “st3”, and “waiting” are
enumerated constants.

A variable reference has one of the following formats:

name-- simple variable

name (number)-- one bit of array

name (number..number)-- a range of bits

A.1.2 Operators

An expression can be a combination of sub-expressions, connected by op
tors:

Boolean connectives:

! exprnot

expr & exprand

expr | expror

expr ^ expr (or: expr xor expr)xor

expr -> exprimplies

expr <-> expriff (xnor)

(Boolean operations can be applied only to boolean expressions.)

Relational operators:

expr = exprequals

expr != exprnot equals

expr > exprgreater than

expr >= expr greater than or equals

expr < exprless than

expr <= exprless than or equals

(>, >=, < and <= can be applied only to integer or boolean expressions.
IBM Research Laboratory in Haifa

 47

s-

first

rece-
ead
Arithmetic operators:

expr - exprminus

expr + exprplus

expr * exprmultiplication

expr / expr division

exprmod exprmodulo

(Arithmetic operators can be applied only to integer and boolean expre
sions.)

A.1.3 Operator precedence and associativity

The following operators are listed in decreasing order of precedence (the
ones are the strongest):

++ (concatenation)

! (not)

+ -

* / mod

= != < <= > >=

Temporal operators (will be introduced in CHAPTER 5)

& (and)

| (or)

xor ^

<-> (iff)

-> (implies)

All the operators, except ->, have left to right associativity.

Use parentheses in any case that you don’t know or don’t remember the p
dence. Even if you know, others may find explicit parenthesizing easier to r
and understand.
IBM Research Laboratory in Haifa

48

e

ver
edict-
, it

s, if

ing
A.1.4 Case and If expressions

EDL provides two constructs which express a choice between two or mor
expressions. They are thecase andif expressions, described below.

Thecase expression has the following format:

case
 condition1 : expr1 ;

 condition2 : expr2 ;

 ...

 else : exprn ;

esac

A case expression is evaluated as follows: condition1 is evaluated first. If it is
true, expr1 is returned. Otherwise, condition2 is evaluated. If it is true, expr2 is
returned, and so forth. Although theelsepart is not essential, it is advisable to
use it as the default entry if you are not certain that the other conditions co
all the cases. Falling through the end of a case statement may have unpr
able results. Notice that from the description of the case expression above
follows that an earlier condition takes precedence over a later one. That i
two conditions are true, the first takes precedence.

The if expression is shorthand for a case with two entries. If has the follow
format:

if condition then exprA else exprB endif

In the aboveif expression,exprA is returned ifcondition is true, andexprB is
returned ifcondition is false.

A.1.5 Built-in functions

The built-in functionsfell() androse() have the following functionality:
IBM Research Laboratory in Haifa

 49

vari-

be
hich

alled
• fell(expr) is true if expr is 0, and was 1 on the previous cycle

• rose(expr) is true if expr is 1, and was 0 on the previous cycle

The usage offell androse results in additional state variables, one for each
expression to which they refer. However, multiple references to the same
able will add only one extra variable.

A.1.6 The var statement

A var statement declares state variables. It has the following format:

var name, name, ... : type; name, name, ... : type; ...

The type can be one of the following:

• boolean

• { enum1, enum2, ... }

• number1 .. number2

(Arrays will be described in Section A.2)

For instance, the following are legalvar statements:

var request, acknowledge:boolean;
var state: {idle, reading, writing, hold};

var counter: {0, 1, 2, 3};

var length: 3 .. 15;

The first statement declares two variables, “request” and “acknowledge”, to
of type boolean. The second statement declares a variable called “state” w
can take on one of four enumerated values: “idle”, “reading”, “writing” or
“hold”. The third statement declares a variable called “counter” which can
take on the values 0, 1, 2 and 3. The fourth statement declares a variable c
“length” which can take on any of the values between 3 and 15, inclusive.
IBM Research Laboratory in Haifa

50

state-
sim-

e

A var statement only declares state variables. Theassignstatement, described
below, defines the behavior of these variables.

A.1.7 The assign statement

An assign statement assigns a value to a state variable declared with avar
statement. It has one of the following formats:

assign init(name) := expression;

assign next(name) := expression;

assign name := expression;

The first statement assigns an initial value to a state variable. The second
ment defines the next-state function of a state variable. A state variable is
ply a memory element, or register (flip-flop or latch). The third statement
assigns a value to a combinational variable.

The following are examples of legalassign statements:

assign init(state) := idle;

assign next(state) :=

case
 reset : idle;

 state=idle : busy;

 state=busy & done : idle ;

else : state;

esac

The keywordassignmay be omitted for the second and following consecutiv
assign statements. Thus, the following:

assign var1 := xyz;

 init(var2) := abc;

 next(var2) := qrs;
IBM Research Laboratory in Haifa

 51

,
es.

ssi-
n-
is equivalent to:

assign var1 := xyz;

assign init(var2) := abc;

assign next(var2) := qrs;

A.1.8 The define statement

A define statement is used to give a name to a frequently-used expression
much like a macro in other programming or hardware description languag
Thedefine statement has the following format:

define name := expression;

For instance, the following are legaldefine statements:

define adef := (q | r) & (t | v);

define bb(0) := q & t; cc := 3;

As with theassign statement, the keyworddefine may be omitted in second
and following consecutivedefine statements.

A.1.9 %for

The%for construct replicates a piece of text a number of times, with the po
bility of each replication receiving a parameter. The syntax of the %for co
struct is as follows:

%for <var> %in <expr1> .. <expr2> %do

...

%end

 or:

%for <var> in <expr1> .. <expr2> step <expr3> do

...
IBM Research Laboratory in Haifa

52

w),

r2-
will

r3
ted

ted
ur-
the

 if
%end
 -- step can be negative

or:

%for <var> in { <item> , <item> , ... , <item> } do

...

%end

 -- where <item> is either a number, an identifier, or a string in double-
quotes.

-- When the value of an item is substituted into the loop body (see belo
 -- the double quotes will stripped.

In the first case, the text inside the %for-%end pairs will be replicated exp
expr1+1 times (assuming that expr2>=expr1). In the second case, the text
be replicated (|expr2-expr1|+1)/expr3 times (if both |expr2-expr1| and exp
are positive or both are negative). In the third case, the text will be replica
according to the number of items in the list.

During each replication of the text, the loop variable value can be substitu
into the text as follows. Suppose the loop variable is called “ii”. Then, the c
rent value of the loop variable can be accessed from the loop body using
following three methods:

• The current value of the loop variable can be accessed using simply “ii”
“ii” is a separate token in the text. For instance:

%for ii in 0..3 do
 define aa(ii) := ii > 2;
%end

is equivalent to:
define aa(0) := 0 > 2;
define aa(1) := 1 > 2;
IBM Research Laboratory in Haifa

 53

ng
define aa(2) := 2 > 2;
define aa(3) := 3 > 2;

• If “ii” is part of an identifier, it can be accessed using %{ii} as follows:

%for ii in 0..3 do
 define a%{ii} := ii > 2;
%end

is equivalent to:
define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

• If “ii” needs to be used as part of an expression, it can be accessed usi
%{<expr>} as follows:

%for ii in 1..4 do
 define aa%{ii-1} := %{ii-1} > 2;
%end

is equivalent to:
define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

The following operators can be used in pre-processor expressions:

= != < > <= >= - + * / %

In the current version, operators work only on numeric values, i.e. it’s ok to
write
IBM Research Laboratory in Haifa

54

re_
c ex

nes
r

r.

ions
e the
on-
n

%for i in 0..3 do

 i %if i != 3 %then + %end

%end

But it is not possible to write

%for command in {read, write} do

...

 %if command = read %then-- doesn’t work!

...

A.1.10 Reserved words

The following words are keywords and should not be used as identifiers:

a abf abg af ag always as_in assign ax before before! before!_ befo
boolean bvtoi case define e ebf ebg ef eg else endif env envs esa
fairness false fell forall formula formulas if in init inherit instance itobv
mod mode module next next_event next_event! override rep zeroes o
nondets rose rule test_pins then true u union until until! until!_ until_ va
w whilenot whilenot! within within! xor

If a keyword is prefixed with the ‘\’ character, it becomes a regular identifie

A.2 Arrays

It is often convenient to define arrays of state variables and to apply operat
to entire arrays or to ranges of indices. Boolean arrays (buses, bundles) ar
most common, but other types of arrays (integer sub-range, enumerated c
stants) are also useful. Hence RuleBase is oriented mainly toward boolea
arrays, but supports other types of arrays also.
IBM Research Laboratory in Haifa

 55

), ...,

7)

s

A.2.1 Defining arrays

An array of state variables is defined as follows:

var name (index1 .. index2) : type ;

It actually defines (|index2-index1|+1) state variables named name(index1
name(index2), where index1 can be either greater or less than index2.

Examples:

var

addr(0..7) :boolean; -- 8 boolean variables, addr(0), addr(1), ... , addr(

 counter(4..5) : 0..3; -- 2 integer variables, each can have the value
0,1,2,3

 status(3..0) : {empty, notempty, full };

 -- 4 variables, each can have the values empty,
notempty, full

An array can also be defined with adefine statement:

define name(index1 .. index2) := <expr>;

Example:

define masked_sig(0..3) := sig(0..3) & mask(0..3);

A.2.2 Operations on arrays

Reference:
IBM Research Laboratory in Haifa

56

e bit

 is

nly.

ant).

ant).
The simplest operation on an array is a reference to a bit or a bit range. On
of an array is referenced asarray_name(N)whereN is a constant. A range of
bits is referenced asarray_name(M..N). It is always necessary to specify the
bit range when referencing an array.

It is possible to access an array element using variable index:
array_name(V: index1..index2) whereV is a integer variable, and

index1..index2 are constants indicating its range. Example:

var source(0..7):boolean; V: 0..7;

define destination := source(V:0..7); -- assuming that the behavior of V
define elsewhere

Other operations that can be used with any type of arrays are:

:= = != if case

Example: aa(0..7) :=if bb(0..2)=cc(0..2)then (dd(0..7)else ee(1..8)endif;

The rest of the operators can be applied to boolean arrays (bit vectors) o

Boolean connectives (bitwise): & | ^ ! -> <->

Both operands must be of the same width (unless one of them is const
The result will have the same width as the vector operands.

Example: v(0..7) := x(0..7) & y(0..7) | !z(0..7);

Relational: < > <= >=

Both operands must be of the same width (unless one of them is const
The result will be a scalar boolean value.

Examples: c := v(0..7) > x(0..7); d := v(0..7) <= 16;
IBM Research Laboratory in Haifa

 57

ant).

nds

r of

st be
me
.e
Arithmetic (unsigned): + - *

Both operands must be of the same width (unless one of them is const
The result will have the same width as the vector operands.

Examples:

 define cc1(0..7) := aa(0..7) + bb(0..7);

 cc2(0..7) := aa(0..7) + 1;

 cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the opera
with zeroes on the left. Examples:

 define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);

 co++sum(0..7) := 0++a(0..7) + 0++b(0..7);

(++ is the concatenation operator, described below. zeroes(4) is a vecto
four zeroes)

Shift: >> <<

The first operand must be a boolean vector and the second operand mu
an integer constant or variable. The result is a boolean vector of the sa
width as the first operand. These operations perform the logical shift, i
vacated bit positions are filled with zeroes.

Examples:

define cc(0..7) := aa(0..7) << 2;

var shift_amount: 0..5;

define dd(0..7) := bb(0..7) >> shift_amount;

 ee(0..8) := 0++ff(0..7) << 1;

A.2.3 Conversion of bit vectors to integers and vice versa:

Bit vector to integer:

bvtoi(a_vector)
IBM Research Laboratory in Haifa

58

 no
ger

);

uld

ssign
Integer to bit vector:

itobv(an_integer)

Example:

assign next(counter(0..7)) :=itobv(bvtoi(counter(0..7)) + 1);

Note that constant integers are converted to bit vectors implicitly - there is
need to apply itobv. It is recommended to use bit vectors instead of big inte
variables, if possible.

A.2.4 Construction of bit vectors from bits or sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or
smaller vectors:

expr ++ expr

Example:

define wide(0..5) := narrow(2..3) ++ bit1 ++ bit2 ++ another_narrow(0..1

If expr is a constant, it should be either 0 or 1. Wider constant vectors sho
be splitted into separate bits.

define x(0..5) := y(0..2)++1++0++z; -- allowed

define x(0..5) := y(0..2)++10B++z; -- not allowed

The concatenation operator can also appear on the left-hand-side of an a
or define statement. For instance, the following statement:

define a ++ b ++ c(0..2) := d ++ 1 ++ 0 ++ e(0..1);

is equivalent to the following four statements:

define a := d; b := 1; c(0) := 0; c(1..2) := e(0..1);
IBM Research Laboratory in Haifa

 59

ts:

)

le.

n-
 =
t

the

rame-
he

o
base
The built-in construct rep() can help to construct arrays of repeated elemen

rep (expr, N) is equivalent to expr concatenated with itself N times. For
instance, to make each bit of array ‘arr’ non-deterministic, the following
assignment could be used:

assign arr(0..3) :=rep({0,1},4); -- {0,1}++{0,1}++{0,1}++{0,1}

Shorthands:

 zeroes(N) is equivalent torep(0,N)

 ones(N) is equivalent torep(1,N)

A.2.5 Array Notes

• The exact range must be specified in the operation. “a = b” is not equiv-
alent to “a(0..3) = b(0..3)”. b(0..3) represents variables b(0) through b(3
while b represents one variable with no index.

• Operands can take any ranges, provided that their widths are compatib
For example, “a(0..3) & b(1..4)” is legal, but “a(0..3) & b(0..4)” is not.

• If one of the operands is a boolean vector and the other is a numeric co
stant, the constant is considered an array of bits. For example, “a(0..1)
10B” is equivalent to “a(0)=1 & a(1)=0” and “a(1..0) = 10B” is equivalen
to “a(1)=1 & a(0)=0”.

• “var v(0..3): { 5, 7, 13 }” defines 4 state variables, each of them can take
values 5 or 7 or 13. This is sometimes confused with
“var v(0..3):boolean; assign v(0..3) := { 5, 7, 13 };” that defines a vector
of 4 bits, and the whole vector can take the values 5 or 7 or 13.

• Arrays can be used as formal parameters of modules and as actual pa
ters of instances. The actual parameter width must match the width of t
formal parameter.

• If you write “#define N 7” and later “a(0..N)”, leave a space around the tw
dots: a(0 .. N). Otherwise the standard preprocessor (cpp) used by rule
will identify ..N as a token and will not replace N by 7.
IBM Research Laboratory in Haifa

60
A.2.6 More array examples

var a(0..3), b(0..8), c(0..2) : boolean;

define d(0..3) := b(5..8);-- different sub-ranges

define e(0..2) := b(2..0) & c(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2, s3 };

define same_state := x_state(0..2) = y_state(0..2);

assign next(a(0..2)) :=

case
 reset : 0;

 a(0..2) = b(0..2) : c(1..3);

 a(0..1) = 10B : d(0..2);

else : a(0..2);

esac;

var counter(0..7) :boolean;
assign

init (counter(0..7)) := 0;

next(counter(0..7)) := counter(0..7) + 1;
IBM Research Laboratory in Haifa

	PathFinder
	A Design Exploration Tool
	User’s Manual
	Version 0.1 September 20, 2001
	IBM Research Laboratory Haifa, Israel
	contact: baruch@il.ibm.com
	This product or portions thereof is manufactured under license from Carnegie Mellon University.
	CHAPTER 1 Introduction
	CHAPTER 2 Tool Overview
	2.1 Design Under Test
	2.2 Path specification
	2.3 Inputs and environment restrictions
	2.4 Output - a trace of the DUT
	FIGURE 1.� System overview

	CHAPTER 3 Tutorial
	3.1 Design description
	3.2 Initial setup for a working environment
	3.3 DUT compilation
	3.4 Inputs restrictions and behaviors
	3.5 Path definition
	3.6 Find the trace
	3.7 View the trace
	3.8 Add a fourth phase to the trace

	CHAPTER 4 Getting Started
	4.1 Setting your shell
	4.2 Create a working directory
	4.3 Create a New Workspace
	4.4 Customize Pathfinder
	4.5 Compile your design
	4.6 Define behavior for the clocks and reset signals
	Clock setting
	Clocks dialog

	Reset setting

	CHAPTER 5 Inputs and Environment Specification
	5.1 Constant values to inputs
	5.2 Restrictions
	5.3 Environment
	5.4 Templates

	CHAPTER 6 Path Specification
	6.1 Path name
	6.2 Path inputs definition
	6.3 Path restrictions
	6.4 Path phases definitions
	Satisfying condition
	Terminating condition
	Terminating time bounds
	Examples
	1. Given :
	2. Suppose you wish to find a path in which a request (req) of 2 cycles is followed by an acknowl...
	3. Suppose you wish to find a path where in some cycle there are exactly 3 requests out of 10 pos...
	4. In a similar way, orthgonality of signals can be requested. Suppose you have a vector VEC(0..7...

	CHAPTER 7 Search and results Analysis
	7.1 Scope window
	7.2 View multiple traces
	7.3 Interactive Mode

	CHAPTER 8 Simulation
	8.1 Save/Load simulation traces

	CHAPTER 9 Advanced
	9.1 Setting your own compilation path
	1. Add your script to the compilation configuration file:
	2. Adjust your script to the required format
	FIGURE 2.� vim format

	3. Set Pathfinder to point to your script

	Appendix A Specification Language
	A.1 Expressions
	A.1.1 Variables and constants:
	A.1.2 Operators
	A.1.3 Operator precedence and associativity
	A.1.4 Case and If expressions
	A.1.5 Built-in functions
	A.1.6 The var statement
	A.1.7 The assign statement
	A.1.8 The define statement
	A.1.9 %for
	A.1.10 Reserved words

	A.2 Arrays
	A.2.1 Defining arrays
	A.2.2 Operations on arrays
	A.2.3 Conversion of bit vectors to integers and vice versa:
	A.2.4 Construction of bit vectors from bits or sub-vectors
	A.2.5 Array Notes
	A.2.6 More array examples

