PathFinder

A Design Exploration Tool

User's Manual

Version 0.1
September 20, 2001

IBM Research Laboratory
Haifa, Israel

contact: baruch@il.ibm.com

This product or portions thereof is manufactured
under license from Carnegie Mellon University.

IBM Research Laboratory in Haifa, Israel

CHAPTER 1

Introduction

PathFinder is a design exploration tool. It allows you to explore important
paths of your designs. Traditional methodology of path exploration requires a
tedious step by step specification of all inputs to the design, to enable the simu-
lator to produce an execution trace which is an example of the desired hard-
ware path. In contrast, PathFinder allows you to specify only the important
conditions that should hold along the required path, and the events that cause
the hardware to move from one phase to another. PathFinder works to find a
setting of the inputs for which the corresponding execution trace is consistent
with the given path specification.

This document is constructed as follows:

« CHAPTER 2: Tool Overview - brief review on the system components,
and system interface (inputs and outputs).

« CHAPTER 3: Tutorial - introduction to Pathfinder in the form of a tuto-
rial. The tutorial presents a small design and shows how to explore paths in
that design.

6 CHAPTER 1

« CHAPTER 4: Getting Started - description of the initial settings (e.qg.
shell, working directory, design compilation) that should be done before
starting to explore paths of the design.

« CHAPTER 5: Inputs and Environment Specification- settings to the
design signals (mostly inputs) and other restrictions on them to be done
before exploring the path.

« CHAPTER 6: Path Specification- description of a path specification.

« CHAPTER 7: Search and results Analysis description of the search
process and analysis of the results.

IBM Research Laboratory in Haifa

caarerz 100l Overview

PathFinder has three main inputs:

+ Design under tesDUT)
« Path specification
« Environment and input restrictions

The output of Pathfinder is a trace/s of the DUT. The trace is consistent with
the path specification and the environment restrictions (see Figure 1).

2.1Design Under Test

The primary input to PathFinder is the design under test (DUT). Currently, the
only hardware specification language for DUTs that PathFinder supports is
VHDL and verilog.

2.2Path specification

A path is defined by a (ordered) list of phases. A phase is a sequence of cycles
along the path that are specified by:

« Satisfying:

8 CHAPTER 2

A condition that should hold during the phaBke condition is a boolean
expression over the signals names.
« Terminating

A condition to terminate the phase. This condition can be either a boolean
expression over the signal names or a time bound (given in cycles).

2.3nputs and environment restrictions

By default, Pathfinder sets all inputs of the DUT to be random every cycle.
This setting may result in an invalid trace (trace that does not exist in the ‘real
world’). Pathfinder enables you to restrict the behavior of the inputs in the fol-
lowing ways:

« Signal values

Pathfinder displays all signals of the design in the Signals List pane. In par-
ticular it shows the list of inputs to the design. Pathfinder allows you to
attach a constant value to each input (bit or vector).

» Restrictions

Pathfinder allows you to specify a list of boolean conditions that should hold
in the resulting trace. For example the restrictiogad -> write’ means

that at each cycle of the path if read is ‘1’ then write is ‘0’. These restric-
tions are specified seperately for each path

* Environment

Pathfinder allows you to define an abstract behavior for the design inputs (or
internal signals) in a separate file. The behavior is specified either in EDL
(environment description language of Rulebase) or in VHDL. For example
the following lines define a reset of 1 cycle:

assign init(reset) := 1

assign next(reset) := 0

IBM Research Laboratory in Haifa

Tool Overview 9

2.40utput - a trace of the DUT

The output of Pathfinder is a trace of the DUT that is consistent with its phases
specification and its environment restrictions. Pathfinder displays this trace in
the scope pane of the GUI and enables you to bring any other signal to the

scope. If possible, Pathfinder finds more than one trace for the specified path.

Path Specification Design Inputs/Environment
definitions &
| phase]]9| phase|2>| phas|e3 restrictions
\/
Pathfinder

Trace |

< >« >« >
phasel phase2 phase3

FIGURE 1. System overview

IBM Research Laboratory in Haifa

10 CHAPTER 2

IBM Research Laboratory in Haifa

CHAPTER 3

Tutorial

This chapter introduces Pathfinder’s path exploration in the form of a tutorial.
The tutorial presents a small design named BUF and shows how to explore a

path of this design.

3.1Design description

BUF is a design block that buffers a word of data (32 bits) sent by a sender to a
receiver. It has two control inputs, two control outputs, and a data bus on each

side, as shown by the block diagram:

............

: StoB_REEi

' BtoS_ACK
Sender : - BUF

»
' DI(0..31)

............

............

BtoR REQ '

. Receiver

4

DO(0.31)

............

12 CHAPTER 3

Communication (on both sides) takes place by means of a 4-phase handshak-
ing as follows:

When the sender has data to send to the receiver, it initiates a transfer by put-
ting the data on the data bus and asserting StoB_REQ (server to buffer
request). If BUF is free, it reads the data and asserts BtoS_ACK (buffer to
server acknowledge). Otherwise, the sender waits. After seeing BtoS_ACK,
the sender may release the data bus and deassert StoB_REQ. To conclude th
transaction, BUF deasserts BtoS_ACK.

When BUF has data, it initiates a transfer to the receiver by putting the data on
the data bus and asserting BtoR_REQ (buffer to receiver request). If the
receiver is ready, it reads the data and asserts RtoB_ACK (receiver to buffer
acknowledge). Otherwise, BUF waits. After seeing RtoB_ACK, BUF may
release the data bus and deassert BtoR_REQ. To conclude the transaction the
receiver deasserts RtoB_ACK.

In the following sections, we show how to make PathFinder provide a trace
which demonstrates this four phase hand shake.

3.2nitial setup for a working environment

« If you run Pathfinder for the first time add the following setting in
your.cshrc file (or the shell you are working with)
setenv RBROOT location_of rulebase executable
setenv PFROOT location_of_pathfinder_executable
alias pf $PFROOT/bin/pf
« Create a directory pf_example
« Copy $PFROOT/tutorial/* to your pf_example directory
The following files will be copied to your directory:

IBM Research Laboratory in Haifa

Tutorial 13

 buf.vhd- your design
« envs- the inputs to the design written in EDL.
« makefile- points to names of your vhdl files.

and some other files and folders that are generated automaticly by pathfinder.

Invoke Pathfinder by typing: pf
3.3DUT compilation

To compile your design click th&Compilé button at the button menu bar. The
status bar reflects the compilation status as follows:

« ‘Compiling (red) message - the design is being coupled now.

« ‘Compilation OK - the design has been successfully compiled.

« ‘Compilation Errors - compilation process encountered some problems.
To see the compilation log messages click the ‘Compilation’ button at the
log pane (theview log’ button enables you to see the log message in a
larger popup window).

3.4inputs restrictions and behaviors

Once the design is compiled, a list of the design signals is displayed in the
‘Signals$ pane. This list includes four sections:

« inputs - this list shows five signals inputs of the design which are:
CLK, DI(0:31), RST, RTOB_ACK and STOB_REQ.

 outputs- this list shows three single output of the design which are:
BTOR_REQ, BTOS_ACK and DO(0:31).

« internals - this list shows the internal signal of the design which are:
OCCUPIED, R_STATE, and S_STATE.

IBM Research Laboratory in Haifa

14 CHAPTER 3

« User Defined- this list shows the signals that you defined in your environ-
ment file.

The inputs list has an attribute attached to each of its members. This attribute
denotes the type of the input. The type can be random (R), zero (0), one (1) or
defined by the user in the environment file (E).

3.5Path definition

The path to explore is already defined in thath Specificationpane The
path is composed of three phases.

« Phase 1l:satisfying condition i€DI(0:31)=1" and terminating condition is
‘STOB_REQmeaning that the phase will start at cycle ‘0’ when

DI(0:31)=1 and STOB_REQ=0 and will finish when STOB_REQ=1.
during the whole phase DI(0:31)=1 should hold.

« Phase 2terminating condition isSBTOR_REQmeaning that the phase will
start at the end of phase 1 and will finish when BTOR_REQ is ‘1'.
during the whole phase BTOR_REQ=0 should hold.

« Phase 3terminating condition isfel(RTOB_ACK)meaning that the phase
will start at the end of phase 2 and will finish when RTOB_ACK goes from
1'to ‘0.

To view or change the definition of a phase click #dbt‘phasebutton of the
phase.

3.6Find the trace
To instruct Pathfinder to search for the path click the ‘Find Trace’ button. The

status bar reflects the status of the search as follows:

« ‘Searching - Pathfinder is searching for the specified path.
« ‘Search OK- Pathfinder completed searching for the path.
« ‘Search errors- Search failed.

IBM Research Laboratory in Haifa

Tutorial 15

3. View the trace

Pathfinder displays the trace at tiseopépane after it finishes searching for

it. The cycles and mapping to phases are shown at the top area of the scope.
The names of the signals and their values at cycle ‘0’ are shown im#meés
and‘values columns.

As shown, phase 1 is of three cycles, phase 2 is of two cycles and phase 3 is of
three cycle.

To see the signals value at a given point of time, left click at the wave area at
the desired point. A red vertical line will be displayed and the ‘values’ column
will show the signals values at this point of time. If you grab this vertical line
the ‘values’ column will change to reflect the signals value at each given point
of time.

3.8Add a fourth phase to the trace
To add a fourth phase to our trace click at the right most arrow of the path (the
last arrow). To edit this fourth phase click at its ‘edit phase’ button. Set the ter-

minating condition to be ‘fell(BTOR_REQ)’. Click ‘OK’ to exit the phase.

Click the ‘Find trace’ button to search for the new path.

IBM Research Laboratory in Haifa

16 CHAPTER 3

IBM Research Laboratory in Haifa

cnarrers . G€LHING Started

To explore paths of your design you should do the following initial setting:

« Add setting to your shell

« Create a working directory

« Customize Pathfinder to your working directory

« Compile your design

« Define behaviors for the DUT clocks and reset signals

4.1Setting your shell
If you run Pathfinder for the first time make sure that you have the following

settings in your shell files (e.g. .cshrc file)

setenv RBROOT location_of rulebase executable
setenv PFROOT location_of_pathfinder_executable
alias pf $PFROOT/bin/pf

16 CHAPTER 4

4.2Create a working directory

To investigate paths of your design create the following working environment:

« Create a main working directory
« Copy the VHDL files or Verilog file of your design to this directory.

« Create a file with a list of names of your VHDL files (each name in a sepa-
rate line.

« Optional - create a file which includes the abstract definitions of your inputs.
This step is optional and is needed only if you wish to give an abstract defi-
nition (behavior) for the design inputs.

4.3Create a New Workspace

Invoke pathfinder (by typing ‘pf’) open a window, enter a name for your new
workspace and pre&sk’.

You can have several workspace on your pathfinder window, you can move
from one to another, by clicking thde’ button and select tHeorkspace’
option, select the workspace name you want to work with from the list and
push‘ok’,or you can add a new workspace name.

Each workspace open a new pathfinder window. each workspace can have dif
ferent configuration and must be customized separately.

4 .4Customize Pathfinder

Click the ‘Configure button and select th&etup option. Fill the setup
options as follows:

« Compilation Path- the name of the script that compiles your desigrhas
several options for compilerkoala,hiasynth,rb_tex1,rb_partial,vim.
If you wish to use your own specific compilation path then follow the
instructions given in Section 9.1 .

IBM Research Laboratory in Haifa

Getting Started 17

For each compiler some of the following options must be defined.

« DUT “makefile” - a pointer to the file that has the name list of VHDL or
Verilog sources.

« DUT entity name- the name of the main (top level) entity of your design.

e DUT architecture name the architecture of your main entity.

« environment file(optional) - a pointer to the file that gives an abstract
behavior to the design input signals.

Click ‘OK’ to commit your setting.
4 .5Compile your design

To compile your design click the&Compilé button at the button menu bar. The
status bar reflects the compilation status as follows:

« ‘Compiling (red) message - the design is being coupled now.
« ‘Compilation OK - the design successfully compiled.

« ‘Compilation errors - compilation process encountered some problems.
open large popup window with compilation log messages, sebattto
close this widow.
To see the compilation log messages click the ‘Compilation’ button at the
log pane. To view these log messages in a larger popup window click the
‘View log button.

4.6Define behavior for the clocks and reset signals

The last stage in the initial setting is to define a behavior to the clock (clocks)
of your DUT and to the reset signal (if exists).(if you dont have environment
file).

To invoke the Clocks/reset dialog click th@onfiguration button at the menu
bar and select th&Clocks/resétoption. The Clocks/reset dialog is divided into
two sections: Clocks setting and reset setting.

IBM Research Laboratory in Haifa

18 CHAPTER 4

Clock setting

When searching for a trace, PathFinder’s engines have their own ‘ticking’
facility, thus results are given in resolution®fcles (No timing issues within a
cycle can be checked). If only one clock rate exists in the DUT, clocks should
be put to constart (if active high), telling PathFinder to ‘tick’ every cycle.

You can either put a’1’ for each clock in the input values window (see Chapter
5), or enter the clock names into the clocks dialog as described below.

Clocks dialog

The clocks dialog allocates several lines for your DUT clocks. Each clock
should be defined in a separate line. A line includes the following information:
« Clock signal name the name of the clock signal as is appears in the DUT.
« Low active- design is active when clock value is ‘0.

« High active- design in active when clock value is ‘1'.

« Environment- the clock has a special behavior that is defined in the exter-
nal environment file.

Reset setting
The reset dialog defines the following entries for your DUT reset signal:

« Reset signal namethe name of the reset signal as appears in the DUT.

« Reset length the length of the reset: The number of active cycles before
turning inactive.

« Reset type defines if the rest is a falling one (starts as ‘1’ for X cycles and
then falls or a raising reset (starts as ‘0’ and then Daises

Click ‘OK’ to commit your setting.

Note that the signals list column reflects your clocks/reset setting (after com-
mitting them).Low active,High active ancenvironmenwill be reflected as

IBM Research Laboratory in Haifa

Getting Started 19

‘0’, ‘1" and ‘E’ in the value entry associated with the clock. Any reset setting
will be reflected as **' in the value entry associated with the reset signal.

IBM Research Laboratory in Haifa

20

CHAPTER 4

IBM Research Laboratory in Haifa

cnaeters INPULS and Environment
Specification

By default, Pathfinder sets all inputs of the DUT to be random every cycle.
This setting may result in an invalid trace (trace that does not exist in the ‘real
world’). Pathfinder enables you to restrict the behavior of the inputs in the fol-
lowing ways:

« Assign constant values to inputs.

« Giverestrictionsto inputs behaviors.

« Give an abstract behavior in an extere@lironment ile.
« Define Templates for input signals.

5.1Constant values to inputs

Pathfinder displays all signals of your DUT in tis&gnal List pane. In partic-

ular it shows the list of inputs to the design. Pathfinder allows you to attach a
value to each input (signal or vector). This input setting is defined separately
for each path. The column attached to the inputs signal list provides a type
attribute to each input. The following attributes can be assigned to each input:

20 CHAPTER 5

« 1-the (one bit) input signal is constantly ‘1’

« 0 - the (one bit) input signal is constantly ‘0’

* R - the input signal will have a random value every cycle

« | -the input signal will pick a random value, and stick to it
« V -the input is a vector that has some value.

« “* -theinputs is a reset signal and its behaviour is defined in the Clock/
reset dialog (click theConfiguration option at the menu bar)

« E - behaviour for this input is given by the external environment file (see
Section 5.3). This attribute is set to ‘E’ only by Pathfinder and only
when an abstract behaviour for this input is given in the environment file.

« T -the input signal is defined by a template.

To set the value of a one bit input:

 Left click on the signal’s type attribute toggles it over ‘1’, ‘0’ , ‘R’ and ‘I'.

« Right click on a signal (after being selected by a left click) opens a popup
menu with the optionsset, ‘ reset, ‘ randoni and ‘define behaviothat set
the signal value to ‘1’, ‘0’ 'R’ (random) and ,' T’ (template) respectively.

To set the value of a vector:

 Left click on the vector’s type attribute toggles it over ‘0’, ‘R’/'l, and ‘V.

« To set a value to a vector right click on the signal. A popup menu with the
options reset, randomizé, ‘set valueéand ‘define behaviorinvokes.
When ‘set value’ is selected a popup entry is opened in which you may enter
an hexadecimal value. You may replace any hexadecimal character with the
following:

« A string of four binary digits enclosed with parenthesis. For example
5(1010)C is equal to 5AC.

IBM Research Laboratory in Haifa

Inputs and Environment Specification 21

« A string as described above where any binary digits may be replaced by
the character ‘R’, denoting a random value, or ‘I', denoting a random
constant value. For example 5(0RRI)C meaning that bit 4 is set to ‘O’ bits
5 and 6 are random, and bit 7 may pick a random value, and stick to it for
the entire run.

« The character ‘R’ means a random hexa value, and ‘I’ means an initially
random hexa value. For example 5RC will give bits 4 to 7 a random
value every cycle. IDF will give bits 0 to 3 to pick randomly their con-
stant value.

Note, the inputs setting is defined separately for each path. The input values
column reflects the inputs setting of the current (highlighted) path. If you wish
to copy inputs setting from one path to the other usecthgy‘inputs settirig

and paste inputs settingnenu options that are provided for each path (see
Section 6.2).

5.2Restrictions

Pathfinder allows you to specify a list of boolean conditicestrictiong that
should hold in the resulting trace. In particular you may restrict the inputs
behavior of a given path. For example, the following restriction oretgest
inputs says: if reset is high then the next cycle reset should be low.

request -> Inext(request)

This list is specified separately for each path. The syntax for the restriction
statements is described in Section 6.3 .

5.3Environment

Pathfinder allows you to define an abstract behavior for the design inputs (or
internal signals) in a separate file. The behavior is specified either in EDL
(environment description language of Rulebase) or in VHDL. For example the
following lines define a reset of 1 cycle:

assign init(reset) := 1

IBM Research Laboratory in Haifa

22 CHAPTER 5

assign next(reset) := 0

If you give an abstract behavior in a separate environment file you should cus-
tomize Pathfinder to point to this file. To point to the environment file, click the
‘configure’button, select thesetup option and point to this file from theenvi-
ronment fileentry and thencompile’. For more details see Section 4.4 .

Detailed description on the environment language is given in Appendix A .

5.4Templates

PathFinder allows you to define behavior for the design input signals from
several permanent templates.

Right click on the input signal opens a popup menu, selefihe behavior,’
choose one of the templates from the following options:
« Stair up - the signal is raised after a number of cycle. (chosen by the user)

 Stair down - the signal is lowered after number of cycle. (chosen by the
user)

« Random pulse.

« Clock - the signal behave like a clock, one signal up and the next down and
so on. (with inisialization of O or 1, chosen by the user).

« Request -the signal behaves like requesting signal, in a request acknowl-
edge protocol, the following must be defined:
« when can a request be initialed.

« after signaling a request, when can it be released.

« Acknowledge -the signal behave like acknowledge signal, in a request
acknowledge protocol, the following must be defined:
« when can an acknowledge be signalled.

- after signaling an acknowledge, when can it be released.

« Random data -the signal behaves like data signal, with some bits set as 0,
and some random, the following must be defined:

IBM Research Laboratory in Haifa

Inputs and Environment Specification

23

« when can data be changed.

« how many bits are active.

IBM Research Laboratory in Haifa

24

CHAPTER 5

IBM Research Laboratory in Haifa

cnaerers - PAth Specification

A path is defined by its
« Path name
 Path restrictions
« Path phases definitions
« Path inputs setting

6.1Path name

A path is identified by its unique name. TiRath List pane shows the list of
paths that you defined. If you invoke Pathfinder from an empty working direc-
tory (no path was defined by now), an empty patimaméis presented.

Right click at a given path name in the Path List area invokes a popup window
with the following options:

e rename- enables you to rename your path.
 delete- delete the path

24 CHAPTER 6

« create copy creates a copy of the current path with the name
‘current_name 'iwherecurrent_namas the name of the current pointed
path, andi’ is the next available index to make the new name
current_name_unique. The new path will have the same phase-definition,
restrictions list and inputs-setting as the source one (see Section 6.2 ,
Section 6.3 and Section 6.4).

« add new path -adds an empty new path at the end of the path list. This path
has no restrictions and no phase definitions. In addition all inputs of the path
are set to ‘R’ (random value).

« Copy input setting -creates a copy of the inputs setting of your current
paht (to be used later -using tlpaste option - for a new path)

« Paste input setting -Gives the current path the inputs setting that you cop-
led before of this current path.

« copy scope visable signalscreate a copy of the signals shown on the
scope, of this current path

e paste scope visable signalsshow the signals on the scope that you copy
before of this current path.

* help -

6.2Path inputs definition

Pathfinder displays all inputs of your DUT in ti&dnal List pane and it
allows you to define a value for each input (bit or vector) of the design (see
Section 5.1). The input values column reflects the inputs setting of the current
(highlighted) path. By default every new path gets a random setting for each
input and every path that is a result of a ‘copy path’ operation gets the same
inputs setting as the source path. The optioapy input settingand ‘paste

input setting(see above) enable you to use the same settings for several paths

6.3Path restrictions

Pathfinder allows you to attach a list of restrictions to a given path. A restric-
tion is a boolean expression (condition) that should hold along the path. The
condition can be any boolean expression over

IBM Research Laboratory in Haifa

Path Specification 25

« DUT signals names.
« User defined signals names defined in the environment file.
« ‘next(signal_namé} value of a signal in the next cycle

For example
 write -> next(flush} means in our pattvrite is always followed (in the next
cycle) by aflush.

« request -> (!flush & 'busy) means ifrequesis on therflushanbusyshould
be off (at the same cycle).

The ‘Path Restrictionswindow displays the list of restrictions associated with
the current selected path. This window allows you to add/remove restrictions
for the path. Right click at a given restriction opens a popup window with the
following options:

 insert line- insert a new line (after the current pointed one) for a new
restriction
 delete line- delete the current pointed restriction

 cut, copy, pastetext operation on the restriction text, enabling you to copy
(or move) text from one restriction to another.

Detailed description on the syntax of the boolean expressions is given in
Appendix A .

6.4Path phases definitions

A path is defined by a list of phases. A phase is a sequence of cycles along the
path that are specified by:
 Satisfying
A condition that should hold during the phaBke condition is a boolean
expression over the signals names.

« Terminating:

IBM Research Laboratory in Haifa

26

CHAPTER 6

A condition to terminate the phase. This condition can be either a boolean
expression over the signals names or a time bound (given in cycles).

satisfying

phases— | terminating

satlsfylng
—>|terminatind—>

satlsfymg
termlnatlng I

/ N NN

cycles '

4%
satisfying

terminating

terminating

—— PP —— >
satisfying l satisfying

terminating

The ‘Path Descriptionpane enables you to define your path as a list of phases.
The path is illustrated as a list @fagonswhere each wagon represents a
phase. Click at a path name brings its wagon list to the ‘Path description’ area.

The following manipulations on wagons are provided:

« Left click at a given arrow adds a wagon right after this arrow.
« Right click at a given arrow opens a popup menu with the following options:

 insert- insert a wagon right after the pointed arrow.

« delete- delete the wagon right after the pointed arrow.

« paste wagon paste the last wagon that you copied after the current

arrow.

« delete to end delete all the wagons until the pointed arrow.
« Rightclick at a given wagon opens a popup menu with the following option:

 delete- delete the pointed wagon.

IBM Research Laboratory in Haifa

Path Specification 27

« copy- create a copy of the current pointed wagon (to be ‘pasted’ later).

« paste wagon paste the last wagon that you copied after the current
wagon.

To define a phase click thedit phasébutton (of the required wagon). A
popup dialog is opened enabling you to define the satisfying and terminating
condition for the phase.

Satisfying condition

A satisfying condition is a boolean condition that should hold during the phase.
The condition is a boolean expression over the signals names. For example the
satisfying condition‘req & urgent_priority means that a request with an

urgent priority is ‘on’ (true) along the phase.

If no condition is given, Pathfinder sets it to ‘True’, meaning that no special
condition should hold during the phase. The phase will end when the terminat-
ing condition or bounds are satisfied.

Note, the satisfying condition may hold for zero cycles meaning that the phase
is of a single cycle in which the terminating condition is true (see Section and
Section).

Terminating condition

The condition to terminate the phase is either a boolean expression or a time
bound (can not be both). Click at therminating conditiori option turns off
the Terminating time bounaption and vise versa.

A terminating condition is a boolean condition over the signal names. The
phase terminates when this condition comes true (meaning that the terminating
condition is false during the phase). For example the terminating condition
‘rose(ACK) means that the phase should end when the acknowledge (ACK
signal) goes from ‘0’ to ‘1'.1f the ‘terminating condition’ option is selected but

IBM Research Laboratory in Haifa

28 CHAPTER 6

no condition is given, the phase will be of X cycles where X is greater or equal
to zero.

Terminating time bounds

Time bounds limit the length (in cycles) of the phase. Time bounds (lower,
upper) should be integers. To give time bound to a phase clickithe bound
conditiori option (this will turn off the ‘terminating condition’ option).

The following settings are possible:

« If both lower and upper are given the phase will be of X cycles where
lower <= X <= upper

« If only lower is given, the phase will be of X cycles where
lower <= X

« If only upper is given, the phase will be of X cycles where
0 <= X <= upper

« If neither upper nor lower are given, the phase will be of an arbitrary num-
ber of cycles (may be ‘0’).

For example:
« lower=3 and upper=7 - means that the phase will be of at least 3 cycles and
at most 7 cycles.

« lower=3, upper not defined - means that the phase will be of at least 3
cycles.

« upper=7, lower undefined - means that the phase will be of at most 7 cycles
and this could be an empty phase.

Examples
1. Given:

IBM Research Laboratory in Haifa

Path Specification 29

PHASE 1 PHASE 2
Satisfying=req

Terminating = ack

Phase 1 can be of several cycles where all cycles but the last one satisfy: sat
isfy ‘req = 1" and ‘ack=0, and the last cycles satisfiask=1 (req an be
either ‘1’ or ‘'0").

phase 1
-

| cycle7 | cycle8 | cycle9 | cyclel0 | cyclelj
| | | | | |

rec=1 reg=1 rec=1l recrl ack =1
ack=0 ack=0 ack=0 ack=0

On the other hand phase 1 can be of a single cycle that sacfids

This means that the satisfying condition holds for zero cycles and then we
have the terminating condition.

phase 1

| cycle7

ack =1

IBM Research Laboratory in Haifa

30 CHAPTER 6

2. Suppose you wish to find a path in which a requesj 6f 2 cycles is fol-
lowed by an acknowledgad¢k). The phase definition should be the follow-

ing:

Qhase ,0 Qhase 1 Qhase)2
Sat = Sat =req > Sat = ack
Ter' = Ter' = Ter’ =
Bounds= Bounds=2..2 Bounds=1..1

Note, the first phase should be empty in order to get paths where the two
subsequent requests do not necessarily start in cycle 0.

3. Suppose you wish to find a path where in some cycle there are éactly
requests out ofLO possible ones (reqO, reql, req2, ..., req9).

The phase definition should be the following:

Rhase 0 Rhase 1
Sat = Sat = reqO+reql+req2+req3+reqd+
req5+req6+req7+req8+req9 = 3
Ter' = Ter' =
Bounds= Bounds=1..1

IBM Research Laboratory in Haifa

Path Specification 31

The satisfying condition makes sure that exactly 4 of the request are active
(get the value ‘1’) and the rest of the request are inactive (get the value ‘0’).

4. In a similar wayprthgonality of signals can be requested. Suppose you
have a vector VEC(0..7), and you want to see exactly one bit of that vector
active at a time. In the satisfying condition you can write:

VEC(0) + VEC(1) + . .. + VEC(6) + VEC(7) =1

IBM Research Laboratory in Haifa

32

CHAPTER 6

IBM Research Laboratory in Haifa

cneerer . S€ArCh and results Analysis

To search for a given path select this path (click at its name in the pathlist area)
and then choose if you want to use extra engineseractive SMVor ‘beelze-
bub’ or both apart from the SMV engine.

if you want to add extra engines cliatohfigure’and choosegngines’option.

click the ‘Find Trace’ button. This step should be done only after the design is
successfully compiled and all required input setting or path restrictions have
been defined. Currently Pathfinder allows a single search process to run.

The status bar reflects the status of the search process as follows:

« ‘Searching - Pathfinder is searching for the specified path.
e ‘Search OK- Pathfinder completed searching for the path.
« ‘Search errors- search failed.

In case of a search failure a popup window will show, telling you that the
search failed.

34 CHAPTER 7

To kill a search click theKill search’ button.

By default, Pathfinder looks for several paths that follow the path specification.
The number of paths to look for is (currently) hardcoded in Pathfinder. After
the search successfully completed, pathfinder loads the first trace fcihes

pane. In addition Pathfinder marks each signal in the Signals-List with the fol-
lowing signs:

e ‘. The signal is not in the cone of influence of the path.
« ‘+’: The signals is in the cone of influence of the path.

7.1Scope window
The Scope window is divided into three columns:

 Signals values
« Signals names
« Signals wave

The cycles and mapping to phases are shown at top of the wave area. The trace
defines a line for each signal that appears in the path specification (terminating
condition, satisfying condition, or restrictions). Other signals can be brought to
the scope as described in the following sections.

Signal name

This column defines a line for each signal that appears in the scope. Originally
it includes all signals that appear in the path specification. Any click at a signal
marks it (with a green color). Another click at the signal un-mark it.

Right click at a signal name opens a popup menu with the following options:

 insert line-insert an empty line after the signal.
 delete signal delete the signal from the scope.

« delete marked signalsdelete all signals that are marked
« Align names to the left -

IBM Research Laboratory in Haifa

Search and results Analysis 35

 Aligh names to the rigth -

« slice vectofonly to data signal display the wave of a given slice of the
vector. Selection of this option opens a popup menu that enables you to
define the range of the slice. The wave of the slice will show right after the
given vector.

« slice to bitgonly to data signalb slice the vector into bits and display the
wave of each bit separately. The slices will show right after the given vector.

 Create list of Global visible signalscreate a file with the (names) list of all
signals that currently appear in the scope. These signals will appear in eact
trace that will be brought to the scope.

« Remove list of Global visible signalgemove the file with the visible sig-
nals.

« Trace signal backward (sourcesyisplay a list of all signals (of the
design) that are sources of the selected si§adhfinder allows you to
select a signal or a group of signals from this list and move it/them to the
scope. To select a signal click at the signal. To select a group of signals hold
the CTRL key while selecting the other signals. To select a range of signals
click the first item of the group and then hold the SHIFT key while selecting
the last item.

« Trace signal foreword (sinks) display a list of all signals (of the design)
that are driven by the selected sigrighthfinder allows you to select a signal
or a group of signals from this list and move it/them to the scope.

« Show cone signalsdisplay a list of all in-cone signals. Pathfinder allows
you to select a signal or a group of signals from this list and move it/them to
the scope.

« Print Scope- Create a pdf file of the scameprintable file of the scope.
Signal value

The ‘values’column reflects the value of each signal at the cycle pointed by the
red vertical wave pointer. By default this vertical pointer resides in cycle O.
Any left click at some point in the wave area moves the vertical red pointer to
that point. The values given in the values column will change to reflect the sig-

IBM Research Laboratory in Haifa

36 CHAPTER 7

nals values at the new point of time. If you grab this vertical line the ‘values’
column also changes to reflect the signals value at each given point of time.

Signal wave

The wave area shows the behavior of each signal along the phases and cycles
Right click at the wave of a given signal opens a popup menu with the follow-
ing options:

- Add/remove a marker add a vertical line (marker) to the wave if a marker
does not exist at this point. Remove a marker if a marker already exists at
this point

« Remove all markersremove all markers that exist in the wave.

e Zoom in- horizontal zoom in

e Zoom out- horizontal zoom out

« Zoom to fit- adjust the wave’s zooming to fit the scope frame size

« \ertical zoom in-

« \ertical zoom out

« Change base see description for signal names.

« Create list of Global visible signalssee description for signal names.

« Remove list of Global visible signalsee description for signal names.

« Print Scope- see description for signal names.

 set as force restrict the chosen signal to behave the same way as in this
trace, when searching for another trace.

Any ‘cone’ signal found in the ‘Signal List’ column (inputs, outputs, internals
and user defined) can be brought to the scope as follows:

« To bring a signal to the scope select this signal (left click) and then right
click. A popup menu with the optiomove to scopes invoked. The
‘“appendoption brings the signal to the bottom of the scope. Trseft
option brings the signal after the first marked signal in the scope.

IBM Research Laboratory in Haifa

Search and results Analysis 37

« To bring a group of signals to the scope, you should first select the group in
one of the following ways:

« Click the first signal of the group, then press@id&RLkey while select-
ing the other signals.

 Click thefirst signal of the group and then press $tift key while
selecting théast signal of the group. All signals in between will be
selected. This option is applicable only for groups whose members are
consecutive in the list.

Right click to invoke the dialog with thenove to scopeption.

Pathfinder saves the state of each trace (signals in the scope, empty lines, orde
between signals). The state is used for future invocations of the trace.

7.2View multiple traces

If possible, Pathfinder looks for several traces that satisfy the path specifica-
tion. If more than one trace is available, a click at thedd trace button opens

a popup menu that enables you to select the trace to be loaded. The index of the
current loaded trace appears at the title of the scope pane. The Nigtton

tracé, cyclically, loads the next trace to the scope.

Multiple traces are made as different from each other as possible. Nevertheless,
it is sometimes difficult to detect the signals on which traces are different. For
that, PathFinder provides eompare-tracesfeature. To activate it, press on
thepathmenu in the top menu bar, and select @@mnpare tracesption. You

will be provided with a dialog, in which you have to select the traces to com-
pare. Once selected, pr&3K, and PathFinder will show a list of all different
signals. You will then be able to select signals of interest, and move them to the
scope, just as it is done in the Show cone signals option.

IBM Research Laboratory in Haifa

38 CHAPTER 7

7 .3nteractive Mode

Interactive modés our name for a new feature of PathFinder's Search Engine
SMV In this mode of operation, SMV searches for the wanted path as usual.
When a trace is found, SMV does not exit, but saves all information in mem-
ory, and waits for new commands from user, concerning the current path.

In order to operate this mode, cho@mnfigure->Engines->SMV is interac-

tive. The next search will run iimteractive modeWhen reasch is finished and
result trace is displayed on the scope, a pop-up menu will appear on the screen
asking for new requests/command fr&M\ To hide the interactive menu,

press DONE’. You can resume this menu by pressing oniti€ERACTIVE

button on the top baBMVwill stay ininteractive modeready for your new
requests until you deliberately tells it to exit (see below). WBiMVis active,

the red Engine Active sign will appear at the bottom bar.

All requests from SMV in this mode, will relate to the original path. This path
will be signed ‘Active!’ in the path list. The user may switch to another path,
load traces, simulate, and operate any feature of PathFinder, exceptfiodthe
trace feature.

The features currently supported are:

for the current path:

« Add cycles Enter number of cycles you want to add to the current traces,
and pres©K. PathFinder (through t8MVengine) will prolong the traces
by the indicated number of cycles. Note the added cycles have nothing to do
with the specified path, but are complient with the model under test.

« Add Traces. Enter the number of additional traces you want to be produced
for the current path, and preS&. PathFinder will try to produce the addi-
tional traces as different as possible from the 5 existing traces already pro-
duced. You can view all traces through the ‘load trace’ or ‘next trace’
buttons as usual.

IBM Research Laboratory in Haifa

Search and results Analysis 39

« Find alonger Trace: find a different and longer trace from the current one,
on the same path.

for a new path

« Find Trace: When selecting this option, PathFinder will search for a trace
for the current path, using a special algorithm, calledvibiging Algo-
rithm.This algorithm uses the information gathered in the previous run, to
speed up the new search. When the current path has a lot in common with
the original path, there is a big chance that usinghieeging algorithmwill
be much quicker than starting the traditional search from scretch.

Note that the only way to use this new algorithm is by changing the defini-
tion of theActivepath.
There are some limitations when using iinergingalgorithm:

« Both the original path and the refined path must begin with an empty
phase.

 Signals mentioned in the new path must have the same cone-of-influence
(or a subset of) as the cone-of-influence of the original formula.

IBM Research Laboratory in Haifa

40

CHAPTER 7

IBM Research Laboratory in Haifa

CHAPTER 8

Simulation

Pathfinder enables you to modify the inputs of a given trace and to run simula-
tion on these new values of inputs.

To edit inputs of a given trace bring the trace to the scope window (load trace),
and click the Simulatot option (at the right upper corner of your Pathfinder
application). When switching to this mode, Pathfinder marks all signals other
than inputs with a different color denoting that only inputs can be edited.

Middle click at a given bit-input (in the wave area), at a given cycle, toggles its
value (at that specific cycle) from ‘0’ to ‘1" and vise versa.

Middle click at a given vector-input (in the wave area), invokes a popup win-
dow that enables you to give a different value to the vector in a given range of
cycles.

To run simulation on the new input values click t8eriulaté button.

The status bar reflects the status of the simulation as follows:

« ‘Simulating - Pathfinder runs simulation on the new inputs.

40 CHAPTER 8

« ‘Simulation OK - Pathfinder completed simulation.
The resulted trace will appear in the scope area when simulation terminates.

Notel

The resulted trace is no longer connected to the path specification and to its
phases definition.

8.1Save/Load simulation traces

When inSimulatormode, you can save the current simulation trace, or load a
previously saved simulation trace.

Click on the Simulaté menu in the top menu bar, to get a popup menu with
the following options:
« Simulate -The same as pressing ti&rhulation button.

« Save current simulation Saves the trace currently appearing on scope. a
popup window will require you to provide a name for the saved trace.

« Load simulations- Gives a list of all previously saved simulation traces.
After choosing a trace name, you can display it on scope or remove it.

IBM Research Laboratory in Haifa

caarers . Advanced

9.1Setting your own compilation path

By default, PathFinder uses the TexVHDL compiler to compile your design. If
you wish to use your own specific compilation path do the following.
1. Add your script to the compilation configuration file:
Edit the file $PFROOT/etc/comp.pfcnfg
This file should hold information about your new compilation script.
The file includes lines of the format:
<script_identifier> <script_path> <output_format>
For example
rb_texvhdl /afs/haifa/..../PFROOT/TexVHDL vim
Each line should hold the following information:
« script_identifier- a keyword to identify your script. This keyword will

appear as one of the compilation path options in the ‘Setup’ dialog of
Pathfinder (click theConfigure’ option then selectSetup).

 script_path- a pointer (full path) to your compilation script

42

CHAPTER 9

output_format- the format of compilation outputs. Can be eitivan’
or ‘proto’

To use your compilation path just add a line that represents your own path.
2. Adjust your script to the required format

The compilation script (pointed by $PFROOT/etc/comp.pfcnfg) should be
of a special format and should get a very specific list of parameters. If your
own compilation script has a different format, then you may call your own
script from this (top level) script.

The parameters sent by Pathfinder to the script are the following:

make_file_name

A path to the file containing the names of the VHDL files to be compiled
(the contents of thdDUT makefiléoption in the Setupdialog).

entity:

Name of the top level entity (the contents of th&JT entity name
option in the Setupdialog).

architecture

Architecture of your top level entity (the contents of th&)T architec-
ture naméoption in the Setupdialog).

working_directory

A path to your working directory. The compilation output should reside
under this directory.

log_file_name
Name of log file to where Pathfinder should redirect its log messages.

Script outputs:

If your compilation output format ipfroto’, then the output of your
script should be a file:

<entity_name.<architecture_nanreproto
in the directory:

IBM Research Laboratory in Haifa

Advanced 43

<working_directory>/dbout

« If your compilation output format isvim’, then the output of your script
should reside under the vimdbase directory as illustrated in Figure 2 .

vimdbase
DEF HISVHDL
<ENTITY>.<ARCHITECTURE> <ENTITY>.<ARCHITECTURE>

FIGURE 2. Vim format

3. Set Pathfinder to point to your script
Click the ‘Configure’ option at the menu bar and select ti8etug option.
The name of your script should appear as one ofcttrapilation path’
options. Select it to be your compilation path.

IBM Research Laboratory in Haifa

44

CHAPTER 9

IBM Research Laboratory in Haifa

Appendix A

Specification Language

A.1 Expressions

A.1.1 Variables and constants:

The basic expressions are numbers, enumerated constants, or variable refer-
ences.

A number is :

« A decimalif it has only decimal digits and no suffix (e.g. 1276).
« A binary number consists of binary digits and ends with ‘B’ (e.g. 1011B).

» A hexadecimalnumber begins with a decimal digit, has hexadecimal digits
and ends with ‘H’ (e.g. 7FFFH, OFFH).

An enumeratedconstant is one of the symbolic values which a variable can
take on. For instance, if we declare the following:

var state: {idle, stl1, st2, st3, waiting};

46

then each of the 5 symbolic values “idle”, “st1”, “st2”, “st3”, and “waiting” are
enumerated constants.
A variable reference has one of the following formats:

name-- simple variable
name (humber)-- one bit of array
name (number..number)-- a range of bits

A.1.2 Operators

An expression can be a combination of sub-expressions, connected by opera-

tors:

Boolean connectives:

I exprnot

expr & exprand

expr | expror

expr A expr (or: expr Xor expr)xor

expr -> exprimplies

expr <-> expriff (xnor)

(Boolean operations can be applied only to boolean expressions.)

Relational operators:

expr = exprequals

expr != exprnot equals

expr > exprgreater than

expr >= expr greater than or equals

expr < exprless than

expr <= exprless than or equals

(>, >=, < and <= can be applied only to integer or boolean expressions.)

IBM Research Laboratory in Haifa

a7

Arithmetic operators:
expr - exprminus
expr + exprplus
expr * exprmultiplication
expr / expr division
exprmod exprmodulo

(Arithmetic operators can be applied only to integer and boolean expres-
sions.)

A.1.3 Operator precedence and associativity

The following operators are listed in decreasing order of precedence (the first
ones are the strongest):

++ (concatenation)

I (not)

+ -

* | mod

= lI= < <= > >=

Temporal operators (will be introduced in CHAPTER 5)

& (and)

| (on)

xor A

<-> (iff)

-> (implies)

All the operators, except ->, have left to right associativity.
Use parentheses in any case that you don’t know or don’t remember the prece

dence. Even if you know, others may find explicit parenthesizing easier to read
and understand.

IBM Research Laboratory in Haifa

48

A.1.4 Case and If expressions

EDL provides two constructs which express a choice between two or more
expressions. They are thaseandif expressions, described below.

Thecaseexpression has the following format:
case
condition : expy ;
conditiory : expep ;

else: expr, ;
esac

A caseexpression is evaluated as follows: condiisnevaluated first. If it is
true, expy is returned. Otherwise, conditigis evaluated. Ifitis true, expis

returned, and so forth. Although tleésepart is not essential, it is advisable to

use it as the default entry if you are not certain that the other conditions cover
all the cases. Falling through the end of a case statement may have unpredict
able results. Notice that from the description of the case expression above, it
follows that an earlier condition takes precedence over a later one. That is, if
two conditions are true, the first takes precedence.

Theif expression is shorthand for a case with two entries. If has the following
format:
if condition then exprA else exprB endif

In the abovef expressionexprAis returned ittonditionis true, anaxprBis
returned ifconditionis false.

A.1.5 Built-in functions
The built-in functiondell() androse() have the following functionality:

IBM Research Laboratory in Haifa

49

- fell(expr) is true if expr is 0, and was 1 on the previous cycle
« rose(expr) is true if expr is 1, and was 0 on the previous cycle

The usage diell androseresults in additional state variables, one for each
expression to which they refer. However, multiple references to the same vari-
able will add only one extra variable.

A.1.6 The var statement
A var statement declares state variables. It has the following format:

var name, name, ... : type; name, name, ... : type;

The type can be one of the following:

» boolean
« {enuml, enum2, ...}
 numberl .. number2

(Arrays will be described in Section A.2)

For instance, the following are legalr statements:

var request, acknowledgboolean

var state: {idle, reading, writing, hold};
var counter: {0, 1, 2, 3}

var length: 3 .. 15;

The first statement declares two variables, “request” and “acknowledge”, to be
of type boolean. The second statement declares a variable called “state” which
can take on one of four enumerated values: “idle”, “reading”, “writing” or
“hold”. The third statement declares a variable called “counter” which can
take on the values 0, 1, 2 and 3. The fourth statement declares a variable called
“length” which can take on any of the values between 3 and 15, inclusive.

IBM Research Laboratory in Haifa

50

A var statement only declares state variables. d$sgnstatement, described
below, defines the behavior of these variables.

A.1.7 The assign statement

An assignstatement assigns a value to a state variable declared weith a
statement. It has one of the following formats:

assign initthame) := expression;

assign nexfname) := expression;

assignname := expression;

The first statement assigns an initial value to a state variable. The second state
ment defines the next-state function of a state variable. A state variable is sim-
ply a memory element, or register (flip-flop or latch). The third statement
assigns a value to a combinational variable.

The following are examples of legadsignstatements:
assign init(state) := idle;
assign nex(state) :=
case
reset : idle;
state=idle : busy;
state=busy & done : idle ;
else: state;
esac

The keywordassignmay be omitted for the second and following consecutive
assignstatements. Thus, the following:
assignvarl := xyz;
init(var2) := abc;
next(var2) := qrs;

IBM Research Laboratory in Haifa

51

is equivalent to:

assignvarl := xyz;
assign init(var2) := abc;
assign nexfvar2) := qgrs;

A.1.8 The define statement

A define statement is used to give a name to a frequently-used expression,
much like a macro in other programming or hardware description languages.
Thedefine statement has the following format:

definename := expression;

For instance, the following are legidfine statements:
defineadef:=(q|r) & (t| v);
definebb(0) :=q &t; cc:=3;

As with theassignstatement, the keywontkefine may be omitted in second
and following consecutivdefine statements.

A.1.9 %for

The%for construct replicates a piece of text a number of times, with the possi-
bility of each replication receiving a parameter. The syntax of the %for con-
struct is as follows:

%for <var> %in <exprl> .. <expr2> %do
%end
or:

%for <var> in <exprl> .. <expr2> step <expr3> do

IBM Research Laboratory in Haifa

52

%end
-- step can be negative

or:
%for <var> in { <item>, <item>, ... , <item>} do
%end
-- where <item> is either a number, an identifier, or a string in double-
quotes.

-- When the value of an item is substituted into the loop body (see below),
-- the double quotes will stripped.

In the first case, the text inside the %for-%end pairs will be replicated expr2-
exprl+1 times (assuming that expr2>=exprl). Inthe second case, the text will
be replicated (Jexpr2-exprl|+1)/expr3 times (if both |expr2-exprl| and expr3
are positive or both are negative). In the third case, the text will be replicated
according to the number of items in the list.

During each replication of the text, the loop variable value can be substituted
into the text as follows. Suppose the loop variable is called “ii”. Then, the cur-
rent value of the loop variable can be accessed from the loop body using the
following three methods:

« The current value of the loop variable can be accessed using simply “ii” if
“Ii” is a separate token in the text. For instance:

%for ii in 0..3 do
define aa(ii) :=ii > 2;
%end

Is equivalent to:
define aa(0) := 0 > 2;
define aa(l) := 1> 2;

IBM Research Laboratory in Haifa

53

define aa(2) :=2 > 2;
define aa(3) := 3 > 2;

« If “ii” is part of an identifier, it can be accessed using %f{ii} as follows:

%for ii in 0..3 do
define a%fii} :=ii > 2;
%end

IS equivalent to:

define aa0 := 0> 2;
defineaal :=1> 2;
define aa2 :=2 > 2;
define aa3 := 3> 2;

 If "ii” needs to be used as part of an expression, it can be accessed using
%{<expr>} as follows:

%for iiin 1..4 do
define aa%fii-1} := %f{ii-1} > 2;
%end

is equivalent to:

define aa0 :=0 > 2;
defineaal :=1>2;
define aa2 :=2 > 2;
define aa3 :=3 > 2;

The following operators can be used in pre-processor expressions:

= Iz < > <= > -+ * [O

In the current version, operators work only on numeric values, i.e. it's ok to
write

IBM Research Laboratory in Haifa

54

%foriin 0..3 do
i %ifi!=3 %then + %end
%end

But it is not possible to write

%for command in {read, write} do

%if command = read %then-- doesn’t work!

A.1.10 Reserved words

The following words are keywords and should not be used as identifiers:

a abf abg af ag always as_in assign ax before before! before! before
boolean bvtoi case define e ebf ebg ef eg else endif env envs esac ex
fairness false fell forall formula formulas if in init inherit instance itobv
mod mode module next next_event next_event! override rep zeroes ones
nondets rose rule test_pins then true u union until until! until!_ until_ var

w whilenot whilenot! within within! xor

If a keyword is prefixed with the ‘\’ character, it becomes a regular identifier.

A.2 Arrays

It is often convenient to define arrays of state variables and to apply operations
to entire arrays or to ranges of indices. Boolean arrays (buses, bundles) are the
most common, but other types of arrays (integer sub-range, enumerated con-
stants) are also useful. Hence RuleBase is oriented mainly toward boolean
arrays, but supports other types of arrays also.

IBM Research Laboratory in Haifa

55

A.2.1 Defining arrays

An array of state variables is defined as follows:

var name (indexl1 .. index2) : type ;

It actually defines (Jindex2-index1|+1) state variables named name(index1), ...,
name(index2), where index1 can be either greater or less than index2.

Examples:
var
addr(0..7) booleann -- 8 boolean variables, addr(0), addr(1), ..., addr(7)
counter(4..5) : 0..3; -- 2 integer variables, each can have the values
0,1,2,3

status(3..0) : {empty, notempty, full };

-- 4 variables, each can have the values empty,
notempty, full

An array can also be defined withiefine statement:

definename(indexl .. index2) := <expr>;

Example:

definemasked_sig(0..3) := sig(0..3) & mask(0..3);

A.2.2 Operations on arrays

Reference

IBM Research Laboratory in Haifa

56

The simplest operation on an array is a reference to a bit or a bit range. One bit
of an array is referenced asray _name(N)vhereN is a constant. A range of

bits is referenced agray_name(M..N) It is always necessary to specify the

bit range when referencing an array.

It is possible to access an array element using variable index:
array_name(V: index1..index2)whereV is a integer variable, and
index1..indexare constants indicating its range. Example:
var source(0..7)boolean V: 0..7;

define destination := source(V:0..7); -- assuming that the behavior of V is
define elsewhere

Other operations that can be used with any type of arrays are:

= I= if case

Example: aa(0..7) :# bb(0..2)=cc(0..2)hen (dd(0..7)elseee(1..8)endif;

The rest of the operators can be applied to boolean arrays (bit vectors) only.

Boolean connectives (bitwise): & | * ! -> <>

Both operands must be of the same width (unless one of them is constant).
The result will have the same width as the vector operands.

Example: v(0..7) :=x(0..7) & y(0..7) | 1z(0..7);

Relational: < > <= >=

Both operands must be of the same width (unless one of them is constant).
The result will be a scalar boolean value.

Examples: c¢:=v(0..7) >x(0..7); d:=v(0..7) <= 16;

IBM Research Laboratory in Haifa

57

Arithmetic (unsigned): + - *

Both operands must be of the same width (unless one of them is constant).
The result will have the same width as the vector operands.

Examples:
define cc1(0..7) := aa(0..7) + bb(0..7);
cc2(0..7) :=aa(0..7) + 1,
cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands
with zeroes on the left. Examples:

define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);
co++sum(0..7) := 0++a(0..7) + 0++b(0..7);

(++ is the concatenation operator, described below. zeroes(4) is a vector of
four zeroes)

Shift: >> <<

The first operand must be a boolean vector and the second operand must be
an integer constant or variable. The result is a boolean vector of the same
width as the first operand. These operations perform the logical shift, i.e
vacated bit positions are filled with zeroes.

Examples:
definecc(0..7) := aa(0..7) << 2;
var shift_amount: 0..5;
definedd(0..7) := bb(0..7) >> shift_amount;
ee(0..8) := 0++ff(0..7) << 1,

A.2.3 Conversion of bit vectors to integers and vice versa:

Bit vector to integer:

bvtoi(a_vector)

IBM Research Laboratory in Haifa

58

Integer to bit vector:

itobv(an_integer)

Example:
assign next counter(0..7)) :#obv(bvtoi(counter(0..7)) + 1);
Note that constant integers are converted to bit vectors implicitly - there is no

need to apply itobv. Itis recommended to use bit vectors instead of big integer
variables, if possible.

A.2.4 Construction of bit vectors from bits or sub-vectors
The concatenation operator (++) is used to make bit vectors out of bits or
smaller vectors:

expr ++ expr

Example:

definewide(0..5) := narrow(2..3) ++ bitl ++ bit2 ++ another_narrow(0..1);
If expr is a constant, it should be either 0 or 1. Wider constant vectors should
be splitted into separate bits.

definex(0..5) := y(0..2)++1++0++z; -- allowed
definex(0..5) :=y(0..2)++10B++z; -- not allowed

The concatenation operator can also appear on the left-hand-side of an assigr
or define statement. For instance, the following statement:

definea ++ b ++ ¢(0..2) :=d ++ 1 ++ 0 ++ e(0..1);

is equivalent to the following four statements:
definea:=d; b:=1; c(0):=0; c(1..2) :=e(0..1);

IBM Research Laboratory in Haifa

59

The built-in constructep() can help to construct arrays of repeated elements:

rep (expr, N) is equivalent to expr concatenated with itself N times. For
instance, to make each bit of array ‘arr’ non-deterministic, the following
assignment could be used:

assign arr(0..3) :xep({0,1},4); -- {0,1}++{0,1}++{0,1}++{0,1}

Shorthands:
zeroegN) is equivalent taep(0,N)
onegN) is equivalent taep(1,N)

A.2.5 Array Notes

« The exact range must be specified in the operatiorfa = b” is not equiv-
alent to “a(0..3) = b(0..3)". b(0..3) represents variables b(0) through b(3)
while b represents one variable with no index.

« Operands can take any ranges, provided that their widths are compatible.
For example, “a(0..3) & b(1..4)" is legal, but “a(0..3) & b(0..4)” is not.

« If one of the operands is a boolean vector and the other is a numeric con-
stant, the constant is considered an array of bits. For example, “a(0..1) =
10B” is equivalent to “a(0)=1 & a(1)=0" and “a(1..0) = 10B” is equivalent
to “a(1)=1 & a(0)=0".

« “varv(0..3): {5, 7, 13 }" defines 4 state variables, each of them can take the
values 5 or 7 or 13. This is sometimes confused with
“var v(0..3):boolean assignv(0..3) :={5, 7, 13 };” that defines a vector
of 4 bits, and the whole vector can take the values 5 or 7 or 13.

« Arrays can be used as formal parameters of modules and as actual parame
ters of instances. The actual parameter width must match the width of the
formal parameter.

 If you write “#define N 7” and later “a(0..N)”, leave a space around the two
dots: a(0 .. N). Otherwise the standard preprocessor (cpp) used by rulebase
will identify ..N as a token and will not replace N by 7.

IBM Research Laboratory in Haifa

60

A.2.6 More array examples
var a(0..3), b(0..8), ¢(0..2) : boolean;
defined(0..3) := b(5..8);-- different sub-ranges
definee(0..2) := b(2..0) & c(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2,s3 };
definesame_state := x_state(0..2) = y_state(0..2);

assign next a(0..2)) :=
case
reset : 0;
a(0..2) =Db(0..2) : c(1..3);
a(0..1) = 10B : d(0..2);
else: a(0..2);
esag

var counter(0..7) boolean
assign
init (counter(0..7)) := 0;
next(counter(0..7)) := counter(0..7) + 1,

IBM Research Laboratory in Haifa

	PathFinder
	A Design Exploration Tool
	User’s Manual
	Version 0.1 September 20, 2001
	IBM Research Laboratory Haifa, Israel
	contact: baruch@il.ibm.com
	This product or portions thereof is manufactured under license from Carnegie Mellon University.
	CHAPTER 1 Introduction
	CHAPTER 2 Tool Overview
	2.1 Design Under Test
	2.2 Path specification
	2.3 Inputs and environment restrictions
	2.4 Output - a trace of the DUT
	FIGURE 1.� System overview

	CHAPTER 3 Tutorial
	3.1 Design description
	3.2 Initial setup for a working environment
	3.3 DUT compilation
	3.4 Inputs restrictions and behaviors
	3.5 Path definition
	3.6 Find the trace
	3.7 View the trace
	3.8 Add a fourth phase to the trace

	CHAPTER 4 Getting Started
	4.1 Setting your shell
	4.2 Create a working directory
	4.3 Create a New Workspace
	4.4 Customize Pathfinder
	4.5 Compile your design
	4.6 Define behavior for the clocks and reset signals
	Clock setting
	Clocks dialog

	Reset setting

	CHAPTER 5 Inputs and Environment Specification
	5.1 Constant values to inputs
	5.2 Restrictions
	5.3 Environment
	5.4 Templates

	CHAPTER 6 Path Specification
	6.1 Path name
	6.2 Path inputs definition
	6.3 Path restrictions
	6.4 Path phases definitions
	Satisfying condition
	Terminating condition
	Terminating time bounds
	Examples
	1. Given :
	2. Suppose you wish to find a path in which a request (req) of 2 cycles is followed by an acknowl...
	3. Suppose you wish to find a path where in some cycle there are exactly 3 requests out of 10 pos...
	4. In a similar way, orthgonality of signals can be requested. Suppose you have a vector VEC(0..7...

	CHAPTER 7 Search and results Analysis
	7.1 Scope window
	7.2 View multiple traces
	7.3 Interactive Mode

	CHAPTER 8 Simulation
	8.1 Save/Load simulation traces

	CHAPTER 9 Advanced
	9.1 Setting your own compilation path
	1. Add your script to the compilation configuration file:
	2. Adjust your script to the required format
	FIGURE 2.� vim format

	3. Set Pathfinder to point to your script

	Appendix A Specification Language
	A.1 Expressions
	A.1.1 Variables and constants:
	A.1.2 Operators
	A.1.3 Operator precedence and associativity
	A.1.4 Case and If expressions
	A.1.5 Built-in functions
	A.1.6 The var statement
	A.1.7 The assign statement
	A.1.8 The define statement
	A.1.9 %for
	A.1.10 Reserved words

	A.2 Arrays
	A.2.1 Defining arrays
	A.2.2 Operations on arrays
	A.2.3 Conversion of bit vectors to integers and vice versa:
	A.2.4 Construction of bit vectors from bits or sub-vectors
	A.2.5 Array Notes
	A.2.6 More array examples

