
User’s Guide

Acu4GL®
Version 8.1

Micro Focus (IP) Ltd.
9920 Pacific Heights Blvd, Suite 150

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd, 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus (IP) Ltd. “COBOL Virtual Machine” is a trademark of Micro Focus (IP)
Ltd. Acu4GL is protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent
5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

DB2 Connect is a trademark, and IBM, AIX, DB2, Informix, MQSeries, AS/400, OS/390,
PowerPC, RS/6000, WebSphere, pSeries, and zSeries are registered trademarks of IBM in the
United States.

E-01-UG-080901-Acu4GL-8.1

Contents
Chapter 1: Acu4GL Overview

1.1 Welcome to Acu4GL ... 1-2
1.2 Document Overview .. 1-3
1.3 Accessing Data .. 1-6

1.3.1 Interface Routines.. 1-7
1.3.2 Data Dictionaries and Acu4GL ... 1-8
1.3.3 The ACUCOBOL-GT Web Runtime and Acu4GL .. 1-8

1.4 Database Concepts ... 1-9
1.5 How Acu4GL Works ... 1-10

1.5.1 What Is a Transparent Interface?... 1-11
1.5.2 Data Dictionaries and Mapping ... 1-11
1.5.3 Steps to Follow .. 1-12
1.5.4 Summary.. 1-14

Chapter 2: Getting Started
2.1 Getting Started ... 2-2
2.2 Technical Services ... 2-2
2.3 Installation ... 2-2
2.4 Using the “sql.acu” Program ... 2-3

2.4.1 Running “sql.acu” From the Command Line .. 2-3
2.4.2 To Call “sql.acu” From a Program .. 2-4

2.5 The Demonstration Program.. 2-6

Chapter 3: Data Dictionaries
3.1 Data Dictionaries or XFDs .. 3-2
3.2 XFD Files... 3-2

3.2.1 Understanding How the Database Table Is Formed .. 3-3
3.2.2 Defaults Used in XFD Files... 3-5
3.2.3 Summary of Dictionary Fields... 3-7
3.2.4 Identical Field Names .. 3-8
3.2.5 Long Field Names.. 3-8
3.2.6 Naming the XFD File .. 3-9

Contents-ii
Chapter 4: Using Directives
4.1 What Are Directives?...4-2
4.2 Directive Syntax...4-3
4.3 Directives Supported by the Acu4GL Interfaces ...4-4

4.3.1 ALPHA ..4-5
4.3.2 BINARY ..4-6
4.3.3 COBOL-TRIGGER ...4-7
4.3.4 COMMENT ...4-8
4.3.5 DATE...4-9
4.3.6 FILE ...4-12
4.3.7 NAME..4-13
4.3.8 NUMERIC ..4-16
4.3.9 SECONDARY_TABLE ..4-17
4.3.10 USE GROUP ...4-18
4.3.11 VAR_LENGTH ...4-20
4.3.12 WHEN ...4-20
4.3.13 XSL..4-26

Chapter 5: Invalid Data
5.1 Illegal COBOL Data ..5-2

5.1.1 Invalid Key Data ..5-3
5.1.2 Invalid Data Other Than Keys ...5-3

5.2 Invalid Database Data ..5-3

Chapter 6: Working with COBOL
6.1 Preparing and Compiling Your COBOL Program...6-2

6.1.1 Compiling With No Directives ..6-4
6.1.2 Compiling With the WHEN Directive...6-6
6.1.3 Using Additional Directives ..6-8

6.2 Creating File Descriptors and SELECT Statements ..6-10

Chapter 7: New and Existing Databases
7.1 Databases ...7-2
7.2 Default Acu4GL Behavior ...7-2
7.3 Accessing Existing Database Files ..7-3

7.3.1 How Do I Match Existing Text Fields? ...7-3
7.3.2 How Do I Match Existing Numeric Fields? ..7-3
7.3.3 Field Names ...7-4
7.3.4 Index Names ..7-4

 Contents-iii
Chapter 8: Compiler and Runtime Options
8.1 Compiler Options... 8-2
8.2 Runtime Configuration Variables .. 8-4

4GL_2000_CUTOFF.. 8-5
4GL_8_DIGIT_CUTOFF... 8-5
4GL_COLUMN_CASE ... 8-6
4GL_COMMIT_COUNT ... 8-6
4GL_CONVERT_DATE_ZERO... 8-8
4GL_DB_MAP... 8-8
4GL_EXTRA_DB_COLS_OK .. 8-9
4GL_FULL_DATA_TEST .. 8-10
4GL_IGNORED_SUFFIX_LIST... 8-10
4GL_ILLEGAL_DATA .. 8-11
4GL_JULIAN_BASE_DATE .. 8-11
4GL_USEDIR_LEVEL.. 8-12
4GL_WHERE_CONSTRAINT ... 8-13
DEFAULT_HOST.. 8-13
filename_HOST.. 8-14
FILE_TRACE... 8-16
XFD_DIRECTORY ... 8-17
XFD_MAP ... 8-17
XFD_MAP_RESETS ... 8-18
XFD_PREFIX ... 8-18

Chapter 9: Performance and Troubleshooting
9.1 Performance Issues .. 9-2

9.1.1 Guidelines .. 9-2
9.1.2 The WHERE Constraint .. 9-7

9.2 Troubleshooting ... 9-11
9.2.1 Compiler Errors ... 9-12
9.2.2 Compiler Warnings.. 9-14
9.2.3 Retrieving Runtime Errors... 9-15

9.2.3.1 Retrieving messages using the “-x” runtime option 9-16
9.2.3.2 Retrieving messages using the debugger... 9-17
9.2.3.3 Retrieving messages using C$RERR .. 9-18

Chapter 10: General Questions and Answers
10.1 Introduction.. 10-2
10.2 Questions and Answers.. 10-2

Contents-iv
Appendix A: Acu4GL for Informix Information
A.1 Getting Started with Acu4GL for Informix ...A-2

A.1.1 Installation Preparation ..A-3
A.1.2 Installation Steps ..A-3
A.1.3 Designating a Database..A-8

A.2 Filename Translation..A-8
A.3 Configuration File Variables..A-9

A_INF_DUPLICATE_KEY..A-9
A_INF_NO_TRANSACTION_ERROR...A-10
A_INFORMIX_ERROR_FILE ...A-11
DATABASE ..A-11
 INF_LOGIN...A-12
INF_PASSWD...A-12
MAX_CURSORS..A-13

A.4 Informix Performance ..A-13
A.5 Technical Tips ..A-18
A.6 Supported Features...A-19
A.7 Limits and Ranges..A-21
A.8 Runtime Errors ...A-22
A.9 Common Questions and Answers ..A-25

Appendix B: Acu4GL for Microsoft SQL Server Information
B.1 Microsoft SQL Server Concepts Overview.. B-2
B.2 Installation and Setup ... B-4

B.2.1 Installing on a Client Machine ... B-5
B.2.2 Setting Up a User Account... B-7
B.2.3 Setting Up the User Environment .. B-7
B.2.4 Designating the Host File System .. B-8

B.3 Filename Translation.. B-10
B.4 Configuration File Variables .. B-11

A_MSSQL_ADD_IDENTITY.. B-11
A_MSSQL_ADD_TIMESTAMP ... B-11
A_MSSQL_APPROLE_NAME.. B-12
A_MSSQL_APPROLE_PASSWD ... B-12
 A_MSSQL_CURSOR_OPTION_1, A_MSSQL_CURSOR_OPTION_2,
A_MSSQL_CURSOR_OPTION_3 .. B-13
A_MSSQL_DATABASE.. B-14
A_MSSQL_DEADLOCK_LOOPS... B-14
A_MSSQL_DEFAULT_CONNECTION ... B-15

 Contents-v
A_MSSQL_DEFAULT_OWNER .. B-15
A_MSSQL_FAST_ACCESS .. B-16
A_MSSQL_LOCK_DB... B-17
A_MSSQL_LOGIN... B-18
A_MSSQL_MAX_CHARACTERS ... B-18
A_MSSQL_MAX_COLUMNS .. B-19
A_MSSQL_NATIVE_LOCK_TIMEOUT ... B-19
A_MSSQL_NO_COUNT_CHECK.. B-20
A_MSSQL_NO_DBID.. B-21
A_MSSQL_NO_RECORD_LOCKS.. B-21
A_MSSQL_NO_TABLE_LOCKS ... B-21
A_MSSQL_NO_23_ON_START... B-21
A_MSSQL_NT_AUTHENTICATION .. B-22
A_MSSQL_PACKETSIZE ... B-22
A_MSSQL_PASSWD... B-23
A_MSSQL_ROWCOUNT.. B-24
A_MSSQL_SELECT_KEY_ONLY ... B-24
A_MSSQL_SKIP_ALTERNATE_KEYS .. B-25
A_MSSQL_TRANSLATE_TO_ANSI ... B-25
A_MSSQL_UNLOCK_ON_EXECUTE .. B-25
A_MSSQL_USE_DROPDOWN_QUERIES.. B-26
A_MSSQL_VISION_LOCKS_FILE.. B-27

B.5 Using the Database Table... B-28
B.6 Table Locking .. B-28
B.7 Stored Procedures... B-30

B.7.1 Developer- or Site-supplied Stored Procedures ... B-31
B.7.2 Built-in Stored Procedures ... B-36

B.8 Limits and Ranges.. B-38
B.9 Runtime Errors ... B-39
B.10 Common Questions and Answers .. B-42

Appendix C: Acu4GL for Oracle Information
C.1 Oracle Concepts Overview .. C-2
C.2 Installation and Setup ... C-7

C.2.1 Windows Installation Steps.. C-7
C.2.2 UNIX Installation Steps ... C-9
C.2.3 Completing the Installation.. C-9
C.2.4 Checking System Parameters... C-14
C.2.5 Setting Up a User Account... C-15

Contents-vi
C.2.6 Setting Up the User Environment .. C-16
C.2.7 Designating the Host File System .. C-17
C.2.8 Setting Up the Search Path... C-18
C.2.9 Handling Transactions ... C-19

C.3 Oracle’s Instant Client.. C-20
C.4 Filename Translation.. C-21
C.5 Configuration File Variables .. C-21

A_ORA_DATABASE... C-21
A_ORA_HINTS .. C-22
A_ORA_MAX_FILE_CURSORS .. C-22
A_ORA_NLS_SORT .. C-22
A_ORA_WAIT_LOCK... C-23
A_ORACLE_ERROR_FILE... C-23
COMMIT_COUNT ... C-23
ORA_LOGIN... C-25
ORA_PASSWD... C-25
USER_PATH... C-26

C.6 Using the Database Table... C-28
C.7 Supported Features ... C-28
C.8 Limits and Ranges .. C-29
C.9 Runtime Errors ... C-30
C.10 Common Questions and Answers .. C-31

Appendix D: Acu4GL for ODBC Information
D.1 ODBC Concepts...D-2

D.1.1 What Is ODBC? ...D-2
D.1.2 Origins of ODBC ...D-2
D.1.3 Restrictions ..D-3
D.1.4 ODBC Structure...D-3

D.2 Acu4GL for ODBC Installation and Setup ..D-10
D.2.1 ODBC Installation ...D-10
D.2.2 Installation of Acu4GL for ODBC ..D-12
D.2.3 Setting Up Data Sources ..D-12
D.2.4 Setting Up the User Environment ..D-14
D.2.5 Designating the Host File System..D-14
D.2.6 Designating the Host Data Source ...D-16

D.3 Filename Translation..D-17
D.4 Decimal Points ...D-18

 Contents-vii
D.5 Configuration File Variables.. D-18
4GL_MAX_DATE.. D-18
4GL_MIN_DATE.. D-19
A_ODBC_ALTERNATE_COMMIT_LOGIC ... D-19
A_ODBC_CATALOG .. D-20
A_ODBC_COMMIT_ON_BEGIN... D-21
A_ODBC_DATASOURCE .. D-21
A_ODBC_ERROR_MAP_FILE... D-22
A_ODBC_ISOLATION_LEVEL ... D-24
A_ODBC_LOCK_METHOD ... D-24
A_ODBC_LOGIN... D-26
A_ODBC_NO_NULL_COLUMNS ... D-27
 A_ODBC_PASSWD .. D-27
A_ODBC_PRINT_LOG.. D-28
A_ODBC_QUOTE_IDENTIFIERS.. D-28
A_ODBC_STRICT_EQUAL.. D-28
A_ODBC_TABLE_TYPES .. D-29
A_ODBC_UNSIGNED_TINYINT... D-30
A_ODBC_USE_CATALOG... D-30
A_ODBC_USE_CHAR_FOR_BINARY ... D-31
A_ODBC_USE_SPACE_IN_DATES .. D-31
A_ODBC_USE_SQLCOLUMNS... D-32
A_ODBC_USE_SQLTABLES ... D-33
USER_PATH... D-33

D.6 Mixed-case SQL Identifiers ... D-35
D.7 Record and Table Locking... D-35
D.8 Limits and Ranges.. D-36
D.9 Driver Requirements .. D-36
D.10 Data Type Mapping ... D-38
D.11 Troubleshooting ... D-42

D.11.1 Runtime Errors... D-42
D.11.2 Native SQL Errors ... D-44

D.12 Common Questions and Answers .. D-45

Appendix E: Acu4GL for Sybase Information
E.1 Sybase Concepts Overview ...E-2
E.2 Installation and Setup ..E-3

E.2.1 Sybase RDBMS Installation ...E-4
E.2.2 Acu4GL for Sybase Installation..E-4

Contents-viii
E.2.3 UNIX Client Installations... E-5
E.2.3.1 UNIX Client Installation Steps .. E-5
E.2.3.2 UNIX or Windows NT server Intallations ... E-11

E.2.4 Windows Client and UNIX or Windows NT Server Installations E-14
E.2.4.1 UNIX Server Machine Installations... E-14
E.2.4.2 Windows NT Server and Windows Client Installations E-18
E.2.4.3 Windows client Installations .. E-20

E.2.5 Setting Up a User Account ... E-21
E.2.6 Setting Up the User Environment .. E-21
E.2.7 Designating the Host File System .. E-22

E.3 Filename Translation .. E-24
E.4 Configuration File Variables .. E-25

A_SYB_ADD_IDENTITY ... E-25
A_SYB_ADD_TIMESTAMP ... E-25
A_SYB_CHECK_DELETE_SP.. E-26
A_SYB_CHECK_INSERT_SP... E-26
A_SYB_CHECK_READ_SP.. E-26
A_SYB_CHECK_UPDATE_SP ... E-27
A_SYB_CURSOR_OPTION_1,
A_SYB_CURSOR_OPTION_2,
A_SYB_CURSOR_OPTION_3 .. E-27
A_SYB_DATABASE ... E-28
A_SYB_DEADLOCK_LOOPS .. E-28
A_SYB_DEFAULT_CONNECTION... E-29
A_SYB_EXTRA_PROC ... E-30
A_SYB_FAST_ACCESS.. E-31
A_SYB_FORCED_INDEX... E-32
A_SYB_LOCK_DB .. E-33
A_SYB_LOGIN .. E-33
A_SYB_MAX_CHARACTERS ... E-34
A_SYB_MAX_COLUMNS.. E-34
A_SYB_NATIVE_LOCK_TIMEOUT ... E-35
A_SYB_NO_COUNT_CHECK.. E-36
A_SYB_NO_DBCLOSE... E-36
A_SYB_NO_DBID ... E-36
A_SYB_NO_RECORD_LOCKS.. E-36
A_SYB_NO_TABLE_LOCKS ... E-37
A_SYB_NO_23_ON_START... E-37
A_SYB_PACKETSIZE... E-37
A_SYB_PASSWD... E-38

 Contents-ix
A_SYB_ROWCOUNT...E-39
A_SYB_SELECT_KEY_ONLY..E-39
A_SYB_SKIP_ALTERNATE_KEYS...E-40
A_SYB_TRANSLATE_TO_ANSI..E-40
A_SYB_UNLOCK_ON_EXECUTE...E-41
A_SYB_USE_DROPDOWN_QUERIES ..E-41
A_SYB_VISION_LOCKS_FILE...E-42

E.5 Record and Table Locking ..E-43
E.6 Stored Procedures..E-45

E.6.1 Developer- or Site-supplied Stored Procedures ..E-46
E.6.2 Built-in Stored Procedures ..E-51

E.7 Limits and Ranges ...E-52
E.8 Runtime Errors ..E-53
E.9 Common Questions and Answers ...E-56

Appendix F: Acu4GL for DB2 Information
F.1 DB2 Concepts Overview ...F-2
F.2 Installation and Setup ..F-6

F.2.1 Windows Installation...F-6
F.2.2 UNIX Installation Steps ..F-7
F.2.3 Sample Configuration File ..F-10
F.2.4 Setting Up the User Environment..F-10
F.2.5 Designating the Host File System ...F-11
F.2.6 Designating the Host Data Source...F-13

F.3 Filename Translation ...F-13
F.4 Decimal Points...F-14
F.5 Configuration File Variables ...F-14

A_DB2_ALTERNATE_COMMIT_LOGIC..F-14
A_DB2_CATALOG...F-15
A_DB2_COMMIT_ON_BEGIN ...F-16
A_DB2_DATASOURCE...F-16
A_DB2_ERROR_MAP_FILE ...F-17
A_DB2_ISOLATION_LEVEL..F-19
A_DB2_LOCK_METHOD..F-20
A_DB2_LOGIN ...F-21
A_DB2_PASSWD..F-22
A_DB2_STRICT_EQUAL...F-23
A_DB2_TABLE_TYPES...F-24
A_DB2_USE_CATALOG ...F-24

Contents-x
A_DB2_USE_CHAR_FOR_BINARY ..F-25
A_DB2_USE_SQLCOLUMNS ...F-25
A_DB2_USE_SQLTABLES..F-26
USER_PATH..F-26

F.6 Record and Table Locking...F-28
F.7 Limits and Ranges ...F-28
F.8 Data Type Mapping ...F-29
F.9 Runtime Errors...F-30
F.10 Common Questions and Answers..F-32

Glossary of Terms

Index

1
 Acu4GL Overview
Key Topics

Welcome to Acu4GL ... 1-2
Document Overview .. 1-3
Accessing Data ... 1-6
Database Concepts .. 1-9
How Acu4GL Works .. 1-10

1-2 Acu4GL Overview
1.1 Welcome to Acu4GL

Welcome to the Acu4GL® family of products! This guide describes how the
ACUCOBOL-GT® programming language uses Acu4GL interfaces to
access information stored in Oracle®, Informix®, Sybase®, Microsoft®
SQL Server, DB2®, and ODBC-compliant relational database management
systems (RDBMSs). It explains how to describe data in your COBOL
programs, and how to handle differences in the field names and data types
that are passed between COBOL and the database engine. Acu4GL is part of
the extend® family of solutions.

Note: Unless otherwise indicated, the references to “Windows” in this
manual denote the following 32-bit versions of the Windows operating
systems: Windows Vista, Windows XP, Windows NT 4.0 or later, Windows
2000, Windows 2003, and the following 64-bit versions of the Windows
operating system: Windows Server 2003 and 2008 x64, Vista x64. In those
instances where it is necessary to make a distinction among the individual
versions of those operating systems, we refer to them by their specific version
numbers (“Windows 2000,” “Windows NT 4.0,” etc.).

The Micro Focus extend unit tested the Acu4GL Version 8.1 products with
the following RDBMSs:

• Oracle

• Microsoft SQL Server

• DB2

• Sybase

• Informix

• ODBC

Document Overview 1-3
As a result of our testing and according to general information received from
the makers of the RDBMS regarding upward compatibility of their product,
we believe the following to be accurate. Please check the Micro Focus Web
site for the most recent versions of this table.

The essence of an Acu4GL product is that standard COBOL I/O statements
are used to access databases. Acu4GL handles the translation between
standard COBOL and the language that the RDBMS understands.

There are special instructions and status messages that apply to each
individual RDBMS. These are included in the appendices of this manual:
each RDBMS has an appendix dedicated to its own specific information.

1.2 Document Overview

The Acu4GL User’s Guide is organized in the following manner:

RDBMS Acu4GL Version 8
tested with
RDBMS version

Probable compatibility
with Acu4GL Version 8,
based on vendor
information
(Client/Server may be used for
connecting to other versions)

Informix 9, 10 (32- and
64-bit)

Versions greater than 7.3

Microsoft SQL Server NT, 2000, and 2005 Versions greater than 6.5

ODBC Specification 3.0 Versions greater than 3.0

Oracle 9i for UNIX® (32-
and 64-bit) and
Windows, 10g for
UNIX (32- and
64-bit) and
Windows

Versions greater than 9i

Sybase 11.x, 12.5 Versions greater than 11.x

DB2 8.1, 8.2, and 9 No others

1-4 Acu4GL Overview
Chapter 1: Acu4GL Overview

This chapter offers an overview of this manual, an explanation of accessing
data, an explanation of database concepts, and a lesson on how Acu4GL
works.

Chapter 2: Getting Started

After pointing you in the right direction for installing and setting up Acu4GL,
the “Getting Started” chapter shows you how to use the sql.acu program, as
well as instructs you on using the Acu4GL demo program. Technical support
information is also found in this chapter.

Chapter 3: Data Dictionaries

“Data Dictionaries” details all you should know about XFD files, which map
COBOL records to database fields, and how to work with them.

Chapter 4: Using Directives

This chapter tutors you on the use of directives, the optional comments that
control how things look on the database side.

Chapter 5: Invalid Data

“Invalid Data” tells you about illegal COBOL data items and what happens
when they are stored in the database, as well as an explanation of invalid
database items and how they are translated into COBOL.

Chapter 6: Working with COBOL

This chapter gives you an opportunity to work with COBOL by preparing
and compiling a COBOL program.

Chapter 7: New and Existing Databases

The “New and Existing Database Files” chapter discusses default behavior,
along with matching existing COBOL data to database data.

Document Overview 1-5
Chapter 8: Compiler and Runtime Options

This chapter details compiler options and runtime configuration variables
that can be used with all of the Acu4GL products.

Chapter 9: Performance and Troubleshooting

The “Performance and Troubleshooting” chapter provides guidelines for
improving system performance and an alphabetical listing of compile-time
error messages and recommended recovery procedures for each error.

Chapter 10: General Questions and Answers

This chapter lists some frequently asked questions and answers that pertain
across the Acu4GL family of interfaces. A section in each appendix contains
FAQs specific to that RDBMS.

Appendix A: Acu4GL for Informix Information

The Informix appendix instructs you on installing and setting up the Informix
Acu4GL product, discusses Informix technical specifications, and provides
troubleshooting options.

Appendix B: Acu4GL for Microsoft SQL Server Information

This appendix provides you with an overview of Microsoft SQL Server
concepts, instructs you on installing and setting up the Microsoft SQL Server
Acu4GL product, details the RDBMS’s technical specifications, and also
tells you about troubleshooting options.

Appendix C: Acu4GL for Oracle Information

This appendix provides you with an overview of Oracle concepts, instructs
you on installing and setting up the Oracle Acu4GL product, gives you the
RDBMS’s technical specifications, and also lists troubleshooting options.

1-6 Acu4GL Overview
Appendix D: Acu4GL for ODBC Information

The ODBC appendix provides you with an overview of ODBC concepts,
instructs you on installing and setting up the ODBC Acu4GL product,
informs you of the RDBMS’s technical specifications, and discusses
troubleshooting options.

Appendix E: Acu4GL for Sybase Information

This appendix provides you with an overview of Sybase concepts, instructs
you on installing and setting up the Sybase Acu4GL product, and lists the
RDBMS’s technical specifications, as well as troubleshooting options.

Appendix F: Acu4GL for DB2 Information

This appendix provides you with an overview of DB2 concepts, instructs you
on installing and setting up the DB2 Acu4GL product, and lists the RDBMS’s
technical specifications, as well as troubleshooting options.

1.3 Accessing Data

The standard file system supplied with ACUCOBOL-GT is the Vision
indexed file system. (On VAX VMS systems, RMS is used instead of
Vision.) Vision offers a wide variety of features, including variable-length
records, data compression, and data encryption.

At your option, Vision can be replaced by (or used in conjunction with) other
indexed file systems such as C-ISAM, and Btrieve®; database management
systems such as Oracle, Microsoft SQL Server, Informix, Sybase, and DB2;

Accessing Data 1-7
and data sources accessible through ODBC. This is possible because all of
ACUCOBOL-GT’s I/O passes through a generic file handler that can
accommodate a wide variety of protocols.

1.3.1 Interface Routines

All file systems communicate with the ACUCOBOL-GT generic file handler
via interface routines. The interfaces to external file systems such as
C-ISAM and the various RDBMSs are available from Micro Focus as add-on
modules. The user is free to add any combination of traditional ISAM
interfaces and RDBMS interfaces that will meet a site’s particular needs. The
ACUCOBOL-GT runtime system communicates with relational databases
via a special family of add-on products called Acu4GL.

Vision

SQL Server

ODBC

Informix Oracle

DB2

Sybase

C-ISAM Btrieve

Others

ACUCOBOL-GT
Application program execution

Generic file handler

Acu4GL interfaces

1-8 Acu4GL Overview
1.3.2 Data Dictionaries and Acu4GL

An Acu4GL product uses data dictionaries created by the ACUCOBOL-GT
compiler. These dictionaries map COBOL records into database fields and
map the database fields back into records. Data dictionaries are also known
as XFDs (eXtended File Descriptors).

The following sections describe the Acu4GL products and explain how they
interface to database systems by referencing data dictionaries.

Interfaces to indexed file systems such as Vision and C-ISAM do not require
data dictionaries, because they are record-oriented systems, but they can be
used by the indexed file editor alfred to view records in these alternate file
systems.

1.3.3 The ACUCOBOL-GT Web Runtime and Acu4GL

The ACUCOBOL-GT Web Runtime is enabled for Acu4GL. In essence, if
an Acu4GL “.dll” file is in the path and the Acu4GL license with the same
base name is in the Web runtime directory, and the appropriate configuration
file options are set, the Web runtime can take advantage of the acu4GL
interface.

COBOL

records

Database

fields
Acu4GL

ACUCOBOL-GT

data

dictionaries

Database Concepts 1-9
The particular .dll files for supported 32-bit runtimes are as follows:
a4ora32.dll — Acu4GL for Oracle
a4sql32.dll — Acu4GL for Microsoft SQL Server
a4syb32.dll — Acu4GL for Sybase
a4db232.dll — Acu4GL for DB2
a4odbc32.dll — Acu4GL for ODBC

Note: Microsoft Internet Explorer Version 5.5 Service Pack 2 and above
supports the ACUCOBOL-GT Web Runtime. For more information
regarding the ACUCOBOL-GT Web Runtime, please consult the
Programmer’s Guide to the Internet user manual.

1.4 Database Concepts

Relational databases differ from indexed file systems in several significant
ways. These are the logical associations between database concepts and
COBOL indexed file concepts:

Or, put another way:

• Database operations are performed on columns. Indexed file operations
are performed on records.

• A COBOL indexed file is logically represented in database table format.
Within a table, each column represents one COBOL field; each row
represents one COBOL record.

• Database table columns are strictly associated with a particular data type,
such as date, integer, or character. In COBOL, data can have multiple
type definitions.

Indexed File Concept Database Concept

Directory Database

File Table

Record Row

Field Column

1-10 Acu4GL Overview
For example, for Oracle, a COBOL record that looks like this:
01 terms-record.
 03 terms-code pic 999.
 03 terms-rate pic s9v999.
 03 terms-days pic 9(2).
 03 terms-descript pic x(15).

would be represented in the database as a table with a format similar to this:

1.5 How Acu4GL Works

Acu4GL implements a direct, transparent interface between COBOL and
RDBMSs.

Previously, accessing a relational database from a COBOL program involved
writing SQL code and embedding that code in your program. You had to
know SQL, and you had to write SQL statements appropriate for the specific
database you wanted to access. Because your queries were tailored to suit
one database management system, you had to recode your COBOL
application if you wanted to access a different RDBMS, or an indexed file
system, or even to migrate a file from one system to another.

As an alternative, some interface products now translate COBOL I/O
statements into direct reads and writes on the database files, without going
through the driver, or engine, supplied by the database manufacturer. This
means that the COBOL programmer must provide for enforcement of
database rules that the engine already knows about and is designed to handle.
Bypassing the database engine also means that new constraints or changes in
the database structure will require reprogramming of the COBOL
application.

Name Null Type

TERMS_CODE NOT NULL NUMBER (3)

TERMS_RATE NUMBER (4, 3)

TERMS_DAYS NUMBER (2)

TERMS_DESCRIPT CHAR (15)

How Acu4GL Works 1-11
Acu4GL implements a more suitable approach by dynamically generating
industry standard SQL from COBOL I/O statements. As the
ACUCOBOL-GT runtime module is executing your COBOL application,
Acu4GL is running behind the scenes to match up the requirements and rules
of both COBOL and the RDBMS to accomplish the task set by your
application. This means that Acu4GL uses the full power designed into the
database engine. The engine enforces database rules and constraints; any
violations are returned to the COBOL program as I/O error conditions.

1.5.1 What Is a Transparent Interface?

Acu4GL products provide a transparent, efficient interface between your
program and the relational database. The interface is categorized as
transparent because the communication between your COBOL program and
the database is smooth, with no special query coding on your part and no
interruptions in the execution of your program. You need not change your
COBOL code if you later want to access a different database or to access an
alternate indexed file system.

The information exchange operations between the database and the COBOL
program are invisible to the end user. For example, if your program specifies
a READ, a database query is automatically generated by the interface. Then
the data that is read from the database is translated into a COBOL record.
This exchange occurs in fractions of a second, and the application proceeds
without interruption.

1.5.2 Data Dictionaries and Mapping

Because relational databases handle I/O at the column (field) level, and
COBOL handles I/O at the record level, some mapping is necessary to
associate records with their fields. One function of the Acu4GL product is to
map COBOL records into database fields, and to map the database fields
back into records. Acu4GL does this by consulting data dictionaries
generated by the compiler. The detailed structure of data dictionaries is
discussed in section 3.2, “XFD Files.” The next section describes how and
when these data dictionaries are built.

1-12 Acu4GL Overview
1.5.3 Steps to Follow

The Acu4GL product builds its own database queries dynamically whenever
an input or output request is received. These are the steps that you take to
compile your program and execute it using Acu4GL:

Compiling with “-Fx”

You compile your standard COBOL application with ACUCOBOL-GT. See
the appendix specific to your RDBMS for details to determine which version
of the compiler is required. When you compile, you specify via a
compile-time option that you want the compiler to generate data dictionaries,
in addition to an object code file.

Creating dictionaries

An ACUCOBOL-GT data dictionary is created by the compiler for each
indexed file in your program. These data dictionaries map COBOL records
in an indexed file to rows in a database. Like ACUCOBOL-GT object files,
these data dictionaries are portable across platforms.

Setting the files host

In your configuration file, you may specify which RDBMS or ISAM file
system you are using by setting the DEFAULT_HOST variable (sets a
default for all files), or the filename_HOST variable (sets a file system for
individual files), or both. For example, you might say DEFAULT_HOST
VISION and EMPFILE_HOST ORACLE. This would direct EMPFILE
input and output functions to the Oracle RDBMS via Acu4GL, and direct I/O
for all other indexed files to the Vision system. These are runtime settings
that allow you to change hosts without recompilation, and enable you to tailor
your application for the specific needs of a particular end-user site.

Note: The filename_HOST variable also enables you to do load balancing
and migration of your application. You can move Vision files into the
database in an incremental fashion, allowing you to test scaling and
performance of the new configuration.

How Acu4GL Works 1-13
Setting database-specific variables

At this point, you set variables in the runtime configuration file that apply to
the specific database system you are using. See the appendix specific to your
RDBMS for details.

Passing I/O requests to the interface

You use the Acu4GL-enabled ACUCOBOL-GT runtime system to execute
your application. Whenever the runtime system encounters an input or
output instruction (such as READ or WRITE) on a file that is directed to an
RDBMS, it passes the request to the Acu4GL product.

Automatically building SQL statements

Acu4GL automatically builds SQL instructions that your database
management system can understand. As it builds these SQL instructions, it
looks at the ACUCOBOL-GT data dictionary, which maps the COBOL
record and its fields to the table rows and its columns.

Accessing a database

The database management system uses its own dictionary as a pointer into its
own data files, performs the requested I/O operation, and passes the results
back to the Acu4GL product.

Forming COBOL records

Acu4GL translates the data fields into COBOL records or status codes, which
are then passed back to the runtime system via the generic file handler.

All of this communication is automatic, and all database queries and
translations are performed behind the scenes, so that the end user experiences
no interruption in program execution.

1-14 Acu4GL Overview
1.5.4 Summary

The Acu4GL product ensures that all changes to your database are
immediately available to your COBOL program. Also, it ensures that all data
updates introduced by your COBOL program are immediately reflected in
the database.

After your ACUCOBOL-GT data dictionaries have been generated, you can
switch to a different RDBMS simply by linking in a different Acu4GL
module and setting DEFAULT_HOST to point to the new RDBMS. No
recompiling is necessary.

ACUCOBOL–GT

runtime system

ACUCOBOL–GT

object code

Generic file
handler

Acu4GL

SQL queries and results

Relational databases

RDBMS

engine

The User's World

The Developer's World

ACUCOBOL–GT

data dictionaries

ACUCOBOL-GT

compiler

COBOL source

program

How Acu4GL Works 1-15
Because Acu4GL accesses the database through its native engine, the full
relational integrity of the database is maintained. The COBOL program need
not be concerned about enforcing relationships between keys and foreign
keys on tables, constraints on field relationships and contents, and so forth.

If you have specified that a file is to reside on a RDBMS by setting either
DEFAULT_HOST or filename_HOST, an OPEN OUTPUT filename
statement in your COBOL program will automatically generate a CREATE
TABLE filename function on the specified host database. Appropriate
permissions will be granted based on your login and password and on access
parameters you have set. See the “Contents” page to find the appendix
specific to your RDBMS for details. If a table will eventually be large, you
may wish to have your systems database administrator create the table and
indexes for you. Databases offer many methods of creating tables that may
improve performance for large tables, such as spreading the table across
multiple hard drives or storing the data and the indexes on different drives.

Note: Acu4GL uses a specific naming convention for indexes it creates.
Indexes created with Acu4GL use the i<TABLENAME>_<key value>
convention. If you are using indexes created outside of the Acu4GL
application, you must ensure that the index names match the Acu4GL
naming convention.

Changes to the way a database functions should be carefully considered and
tested before being fully implemented. If a database violation occurs, the
engine detects it, and Acu4GL returns an I/O error condition to the COBOL
program. The program can, if desired, call a standard ACUCOBOL-GT
library routine for an extended error description.

It is possible that there are ACUCOBOL-GT library routines that do not work
with or do not make sense to use with some of the Acu4GL products. To find
out if that is the case with your Acu4GL product, look in the “Common
Questions and Answers” section of the appendix specific to your product.

1-16 Acu4GL Overview

2
 Getting Started
Key Topics

Getting Started... 2-2
Technical Services.. 2-2
Installation ... 2-2
Using the “sql.acu” Program.. 2-3
The Demonstration Program .. 2-6

2-2 Getting Started
2.1 Getting Started

The “Getting Started” chapter points you in the right direction for installing
and setting up the Acu4GL® interface for your particular RDBMS. Once
Acu4GL is installed and ready, you should return to this chapter to find the
information you need for operating the sql.acu utility, preparing and
compiling a COBOL program, and running the demonstration program.

2.2 Technical Services

You can reach extend Technical Services in the United States Monday
through Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays.
You can also raise and manage product issues online and follow the progress
of the issue or post additional information directly through the website.
Following is our contact information:

For worldwide technical support information, please visit
http://supportline.microfocus.com.

2.3 Installation

The installation for your particular RDBMS can be found in the appendices
of this manual:
Appendix A: Acu4GL for Informix Information
Appendix B: Acu4GL for Microsoft SQL Server Information
Appendix C: Acu4GL for Oracle Information
Appendix D: Acu4GL for ODBC Information

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)

Fax: +1 858.795.1965

E-mail: support@microfocus.com

Online: http://supportline.microfocus.com

mailto:support@microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com

Using the “sql.acu” Program 2-3
Appendix E: Acu4GL for Sybase Information
Appendix F: Acu4GL for DB2 Information

Each of the appendices contains an overview of the Acu4GL functions,
installation instructions, setup instructions, technical specifications, and a
troubleshooting guide.

Note: Before going any further in this manual, go to the appendix listed
above that pertains to your RDBMS and begin the Acu4GL installation and
setup processes. Once the installation is complete and you are ready to run,
return to this chapter and begin section 2.4, “Using the “sql.acu”
Program.”

2.4 Using the “sql.acu” Program

Acucorp provides a utility program called sql.acu. This program gives you
access to some of the standard SQL commands. It can be called from a
COBOL program or executed from the command line.

As a general rule, sql.acu may be used to issue all SQL commands except
those that perform data retrieval. The sql.acu program cannot perform
statements that return data, such as the SELECT statement. This category of
statements returns an error when passed to the sql.acu program.

The global variable return-code is 0 when a command has completed
successfully. If a command is not successful, return-code contains an error
code.

2.4.1 Running “sql.acu” From the Command Line

To use the sql.acu utility to create an empty table and grant access privileges
to other users

1. Enter
runcbl sql.acu

The program will pause to accept an SQL command.

2-4 Getting Started
2. Enter the following (italics indicate variable names, non-italics are
SQL reserved words):

CREATE TABLE newtab (col1 CHAR(30), col2 CHAR(11))

The program will pause to accept an SQL command.

3. Now enter the following command:

GRANT ALL PRIVILEGES ON newtab TO PUBLIC

The program will pause to accept an SQL command.

4. Now enter:

CREATE UNIQUE INDEX newtab_index ON newtab (col1)

5. Next, press Enter again to exit the program.

Note: When naming columns and tables, make sure to use underscores
(“_”), not hyphens (“-”), or a syntax error will result.

The above entries will create a new table and grant access permission to
everyone. If you want to delete the table you created, enter the following
command:
DROP TABLE newtab

2.4.2 To Call “sql.acu” From a Program

You can also call sql.acu from within a COBOL program. The syntax is:
call "sql.acu" using mysql-command

The SQL command may be up to 50,000 characters and may be a variable or
a quoted command string in the CALL statement.

Note: The sql.acu utility may be used only with SQL commands that are
data definition statements (those that do not return data). Be sure to end
each SQL command with a semicolon (“;”).

Using the “sql.acu” Program 2-5
Example
IDENTIFICATION DIVISION.
program-id. command.
* the sql.acu command to issue data
* definition commands to the RDBMS.
DATA DIVISION.
working-storage section.
01 sql-command pic x(75).
01 error-status.
 03 primary-error pic x(2).
 03 secondary-error pic x(40).
01 error-text pic x(40).
01 error-window pic x(10).
PROCEDURE DIVISION.
main-logic. display window erase.
 display window line 20, column 2
 size 75, lines 3, boxed,
 top title "SQL COMMAND",
 bottom right title "Return to exit".
 perform do-sql-command, with test after,
 until sql-command = spaces.
stop run.
do-sql-command.
 accept sql-command, line 1, column 1,
 erase to end of line.
if sql-command not = spaces
call "sql.acu" using sql-command
if return-code not zero
perform show-error.
show-error.
 display window line 2, column 2,
 size 75 lines 6, boxed, erase,
 pop-up area is error-window.
 call "C$RERR" using error-status,
 error-text.
 display "DATABASE ERROR:",
 secondary-error.
display error-text.
accept omitted.
close window error-window.
 display window line 20, column 2,
 size 75, lines 3.

2-6 Getting Started
2.5 The Demonstration Program

As soon as your installation and setup are complete, you may run the
demonstration program (“demo.cbl”) included on your distribution medium.
This program illustrates many of the Acu4GL product capabilities, including:

• how to map RDBMS data types to traditional COBOL data types

• how to compile a COBOL program in preparation for interfacing with an
RDBMS

• how to modify records within the RDBMS database

The demo program simulates what might be used in a distributor’s shipping
department. You’ll be creating the acuorders table, which contains
information about the orders placed by the distributor’s customers. The
acuorders table has the following columns of information (the database data
type and COBOL data type are shown for each):

Note: The data type may be slightly different depending on the RDBMS.

Column Name Data Type COBOL PIC

order_num varchar(4) pic 9(4)

order_date int pic 9(6)

customer_num varchar(3) pic 9(3)

ship_instruct varchar(40) pic x(40)

backlog varchar(1) pic x

po_num varchar(10) pic x(10)

ship_date int pic 9(6)

ship_weight decimal(8,2) pic 9(6)v99

ship_charge decimal(6,2) pic 9(4)v99

paid_date int pic 9(6)

The Demonstration Program 2-7
Here is the COBOL FD (file descriptor) that matches the acuorders table.
Note that the FD entries must match the names of the RDBMS fields and
must match their data types:

fd orders.
01 order-record.
 03 order-num pic x(4).
 03 order-fields.
 05 order-date pic 9(6).
 05 customer-num pic 9(3).
 05 ship-instruct pic x(40).
 05 backlog pic x.
 05 po-num pic x(10).
 05 ship-date pic 9(6).
 05 ship-weight pic 9(6)v99.
 05 ship-charge pic 9(4)v99.
 05 paid-date pic 9(6).

First we’ll compile the demo program. Then we’ll prepare the data and run
the demo.

Compiling the demo program

To compile the demo program for use with the RDBMS data source, enter
one of the following commands.

For ACUCOBOL-GT® Version 4.2 or later, 32-bit version:
ccbl32 -Fx -o demo demo.cbl

For ACUCOBOL-GT Version 4.2 or later, UNIX version:
ccbl -Fx -o demo demo.cbl

This compiles the program and generates the ACUCOBOL-GT data
dictionary “acuorders.xfd”. The runtime system will use this data dictionary
to map RDBMS data types to COBOL data types.

Verifying the runtime

Before starting the demo program, you need to verify the runtime. To do this,
enter the following:
runcbl -vv or wrun32 -vv

2-8 Getting Started
Be sure that the version information you receive references your Acu4GL
product.

Starting the demo program

Be sure the RDBMS data source is available and that all the non-Acu4GL
environment variables required for your data source are set. To run the demo
program, you’ll need to notify the ACUCOBOL-GT runtime system that you
will be interfacing to an RDBMS driver. You accomplish this by adding the
following line to your runtime configuration file or to the machine’s
environment:
DEFAULT_HOST RDBMS_NAME

If you’re running “demo.cbl” from the same directory where you placed the
ACUCOBOL-GT data dictionary, you are ready to run.

If the data dictionary (“acuorders.xfd”, created when you compiled the demo
program) is in another directory, you will need to add the following line to the
“cblconfig” configuration file:
XFD_PREFIX dir-containing-dictionary

Set any environment variables required for your specific Acu4GL product.
See the “Designating the Host Data Source” or “Designating the Host File
System” section in the appendix specific to your particular RDBMS.

At this point, you can run the demo program by entering one of the following
commands.

For ACUCOBOL-GT Version 5.0 or later, 32-bit Windows runtime:
wrun32 -c config demo

For ACUCOBOL-GT Version 5.0 or later, UNIX runtime:
runcbl -c config demo

The Demonstration Program 2-9
For UNIX versions, you will see a character version of the following screen.
For Window-based versions, this is what you’ll see:

The demo program enables you to view or change any of the rows (records)
in the orders table. You can also view the source code for the demo program.

Record Menu

The choices under the Record menu item offer the following functionality:

New

Clear all fields.

Delete

Remove the order that is being displayed from the database.

2-10 Getting Started
Save

Write (or rewrite) the displayed record.

Exit

Exit the demo program and return to the operating system prompt.

Position Menu

The choices under the Position menu item offer the following functionality:

First

View (or modify) the first record in the file.

Next

View (or modify) the next record in the sequence.

Previous

View (or modify) the previous record in the sequence.

Last

View (or modify) the last record in the file.

The Demonstration Program 2-11
Search

Enter the order number of the order to be viewed.

Options Menu

The choices under the Options menu item offer the following functionality:

View program

Start the debugger and display the source code. Be sure you compiled the
program with “-Zd” and execute it with “-d”.

Help

Help brings up a window containing a short description of the demo program.

2-12 Getting Started

3
 Data Dictionaries
Key Topics

Data Dictionaries or XFDs ... 3-2
XFD Files.. 3-2
Understanding How the Database Table Is Formed 3-3
Defaults Used in XFD Files... 3-5
Summary of Dictionary Fields ... 3-7
Identical Field Names.. 3-8
Long Field Names.. 3-8
Naming the XFD File ... 3-9

3-2 Data Dictionaries
3.1 Data Dictionaries or XFDs

At the heart of the Acu4GL® database product are the data dictionaries that
map COBOL records to database fields. These dictionaries are also called
eXtended File Descriptors (XFDs), because they’re based on standard
COBOL file descriptors (FDs).

XFDs are used by Acu4GL to interface to database management systems.
They are also used by the alfred record editor, and European character
mapping in AcuConnect and AcuServer™ file server software.

3.2 XFD Files

The compiler creates an XFD for each indexed file in the compiled program
when you specify the “-Fx” compile-time option. XFDs are fully portable, so
no recompilation is necessary if you change hardware. The compiler option
“-Fa” causes the generation of XFDs for indexed, relative, and sequential
files for use with international character mapping only. The compiler option
“-F4” generates version 4 XFD files for backwards compatibility with older
versions of the runtime. See section 8.1, “Compiler Options,” for
additional information.

See Chapter 5 in Book 1, User’s Guide, of the ACUCOBOL-GT® compiler
documentation for details on how the XFD files are generated from the
COBOL program’s FDs.

Creating XFD files at compile time offers two significant advantages:

• Any changes made to the file definitions are automatically included in
the data dictionaries when the program is recompiled.

ACUCOBOL-GT

compiler with

"-Fx" option

XFDsCOBOL FDs

XFD Files 3-3
• The effects of all compile-time options, COPY REPLACING,
source-code control lines, and data layout compiler flags (“-d”...) are
reflected correctly in the XFDs.

3.2.1 Understanding How the Database Table Is Formed

ACUCOBOL-GT data dictionaries (XFDs) enable the Acu4GL product to
create a table (or access an existing one) in the database for each indexed file.
Each column in the table contains the values for one field. The column
names are essentially the field names.

The table that is built is based on the largest record in the COBOL file and
contains the fields from that record plus any key fields (key fields are those
that are named in KEY IS} phrases of SELECT verbs in the FILE
CONTROL section). This ensures that data from all of the COBOL records
will fit within the table and simplifies the storage and retrieval process. If
you were to examine the database columns, only the fields from the largest
record, and the key fields, would appear. See section 3.2.2, “Defaults Used
in XFD Files,” for additional information.

Note: If the field named in the KEY IS phrase is a group item, it will not
become a column in the database table. Instead, each of the elementary
items subordinate to the named group item will become a column.

You can force a group item to be a column by using the USE GROUP
directive, described in Chapter 4.

With multiple record formats (level 01), not all COBOL fields are
represented in the database by name, but all fields are storable and
retrievable. The data dictionary maps fields from all records of a file to the
corresponding locations in the master (largest) record of the file, and thus to
the database table. Since Acu4GL has access to the data dictionary, it knows
where the data from a given COBOL record fits in the database tables. This
activity is invisible to the COBOL application.

For example, if your program has one file with the three records shown
below, the underlined fields will be included in the database table by default
(this example assumes that ar-codes-key is named in a KEY IS phrase).

3-4 Data Dictionaries
Some fields will not appear in the table, but the data dictionary will map them
to the master field names. Acu4GL thus will eliminate redundancies and give
you optimum performance.
01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.

01 ship-code-record.
 03 filler pic x(4).
 03 ship-weight pic s999v9.
 03 ship-instruct pic x(15).

01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

The following diagram shows how Acu4GL creates database columns for
some of the fields in the COBOL record, while the data dictionary maps other
fields to those columns; this means that all the fields are accessible to the
COBOL program.

See section 3.2.2, “Defaults Used in XFD Files,” for a description of the
rules that Acu4GL follows as it builds the database table and an explanation
of how you can override those rules when necessary.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ar
_c

od
e-

ty
pe

ar
_c

od
e_

nu
m

te
rm

s_
ra

te
_1

ship_weight

ship_inst

te
rm

s_
da

ys
_1

te
rm

s_
ra

te
_2

te
rm

s_
de

sc
rip

t

XFD entry only
(mapped to DB)

Character
position

Database
column

XFD Files 3-5
3.2.2 Defaults Used in XFD Files

Several elements of COBOL require special handling when data dictionaries
are built. These include multiple record definitions, REDEFINES, FILLER,
and OCCUR. This section describes how the compiler handles each of these
situations.

Note that in many instances you can override the default behavior described
below by placing special comment lines in the FDs of your COBOL code.
These comments are called directives, and are described in Chapter 4,
“Using Directives.” For example, the WHEN directive allows you to use
multiple definitions for a single set of data by specifying when each
definition should be used.

Databases generally do not support the notion of multiple definitions for the
same column. As the following paragraphs explain, whenever a COBOL
program gives more than one definition for the same data, the compiler
makes a choice about which definition to use in the dictionary. Then it
disregards the rest.

KEY IS phrase

Fields named in KEY IS phrases of SELECT statements are included as
column names. Other fields that occupy the same areas as the key fields (by
either explicit or implicit redefinition) are not included by name, but are
mapped to the key field column names by the data dictionary.

Remember, if the field named in the KEY IS phrase is a group item, it will
not become a column in the database table unless a USE GROUP directive is
used (see section 3.2.1, “Understanding How the Database Table Is
Formed”). Instead, the subordinate fields of the group item will be used.

REDEFINES clause

Fields contained in a redefining item occupy the same positions as the fields
being redefined. The compiler needs to select only one of the field
definitions to use. The default rule that it follows is to use the fields in the
item being redefined as column names; the data dictionary maps fields that
appear subordinate to a REDEFINES clause to column names.

3-6 Data Dictionaries
Multiple record definitions

This same rule extends to multiple record definitions. In COBOL, multiple
record definitions are essentially redefinitions of the entire record area. This
leads to the same complication that is encountered with REDEFINES:
multiple definitions for the same data. So the compiler needs to select one
definition to use.

Because the multiple record types can be different sizes, the compiler needs
to use the largest one, so that it can cover all of the fields adequately. Thus,
the compiler’s rule is to use the fields in the largest record defined for the file.
If more than one record is of the largest size, the compiler uses the first one.

Group items

Note that group items are, by default, never included in a data dictionary for
the same reason that REDEFINES are excluded: they result in multiple
names for the same data items. You can, however, choose to combine
grouped fields into one data item by specifying the USE GROUP directive,
described in Chapter 4.

FILLER data items

In a COBOL FD, FILLER data items are essentially place holders. FILLER
items are not uniquely named and thus cannot be uniquely referenced. For
this reason, they are not placed into the ACUCOBOL-GT data dictionary.
The dictionary maintains the correct mapping of the other fields, and no
COBOL record positional information is lost.

Sometimes you need to include a FILLER data item, such as when it occurs
as part of a key. In such a case, you could include it under a USE GROUP
directive or give it a name of its own with the NAME directive, described in
Chapter 4.

OCCURS clauses

An OCCURS clause always requires special handling, because the Acu4GL
runtime system must assign a unique name to each database column. The
runtime accomplishes this by appending sequential index numbers to the item
named in the OCCURS clause.

XFD Files 3-7
For example, if the following were part of a file’s description:
03 employee-table occurs 20 times.
 05 employee-number pic 9(3)

these column names would be created in the database table:
employee_number_1
employee_number_2
.
.
.
employee_number_10
employee_number_11
.
.
.
employee_number_20

Note that the hyphens in the COBOL code are translated to underscores in
database field names, and the index number is preceded by an underscore.

XFD location

If you are using object libraries, XFD files can be embedded into COBOL
libraries through cblutil, and the runtime will find them. This is particularly
effective when you are using the ACUCOBOL-GT Web Runtime and
Acu4GL. It allows you to send all of the COBOL objects, as well as XFD
files, in one package.

Please note that if an XFD file is located in an object library and is also
located on the disk (in a directory pointed to by the XFD_PREFIX
configuration variable), the XFD file in the object library is loaded first,
unless the XFD_PREFIX configuration variable uses remote name notation.

3.2.3 Summary of Dictionary Fields

Fields defined with an OCCURS clause are assigned unique sequential
names. Fields without names are disregarded.

When multiple fields occupy the same area, the compiler chooses only one of
them unless you have a WHEN directive to distinguish them.

3-8 Data Dictionaries
To choose:

• The compiler preserves fields mentioned in KEY IS phrases.

• It discards group items unless USE GROUP is specified.

• It discards REDEFINES.

• It uses the largest record if there are multiple record definitions.

3.2.4 Identical Field Names

In COBOL, you distinguish fields with identical names by qualification. For
example, there are two fields named RATE in the following code, but they
can be qualified by their group items. Thus, you would reference RATE OF
TERMS-CODE and RATE OF AR-CODE in your program:
01 record-area.
 03 terms-code.
 05 rate pic s9v999.
 05 days pic 9(3).
 05 descript pic x(15).
 03 ar-code.
 05 rate pic s9v999.
 05 days pic 9(3).
 05 descript pic x(15).

However, database systems consider duplicate names an error. Thus, if more
than one field in a particular file has the same name, the data dictionary will
not be generated for that file.

The solution to this situation is to add a NAME directive (see Chapter 4) that
associates an alternate name with one or both of the conflicting fields.

3.2.5 Long Field Names

To meet the SQL requirements of some RDBMSs, the Acu4GL runtime for
those systems truncates long field names to the maximum allowed by the
RDBMS. (In the case of the OCCURS clause described above, the truncation
is to the original name, not the appended index numbers. However, the final

XFD Files 3-9
name, including the index number, is limited to the RDBMS maximum.) It’s
a good idea to make sure that your field names are unique (and meaningful)
within the first 18 characters.

The database you are connecting to may allow longer names, and if so, more
characters will be used. Names longer than 30 characters will generate a
warning. Instead of allowing default truncation, you can use the WHEN
directive to give a shorter alias to a field with a long name. Note that within
the COBOL application you can continue to use the original name. The
NAME directive affects only the data dictionary connection to the RDBMS
table.

3.2.6 Naming the XFD File

The compiler needs to give a name to each XFD file (data dictionary) that is
built. It attempts to build the name from your COBOL code, although there
are some instances where the name in the code is nonspecific, and you must
provide a name.

Each XFD name is built from a starting name that is derived (if possible)
from the SELECT statement in your COBOL code. The following
paragraphs explain how that occurs.

ASSIGN name is a variable

If the SELECT for the file has a variable ASSIGN name (ASSIGN TO
filename), you must specify a starting name for the XFD file via a FILE
directive in your code. This process is described in Chapter 4, “Using
Directives.”

ASSIGN name is a constant

If the SELECT for the file has a constant ASSIGN name (such as ASSIGN
TO “COMPFILE”), that name is used as the starting name for the XFD name.

3-10 Data Dictionaries
ASSIGN name is generic

If the ASSIGN phrase refers to a generic device (such as ASSIGN TO
“DISK”), the compiler uses the SELECT name as the starting name.

Forming the final XFD name

From the starting name, the final name is formed as follows:

• The compiler removes any extensions from the starting name.

• It constructs a “universal” base name by stripping out directory
information that fits any of the formats used by the operating systems
that run the ACUCOBOL-GT compiler.

• It reduces the base name to eight characters and converts it to lower case.

• It appends the letters “.xfd” to the base name.

Examples of XFD names

Mapping other files to an XFD

At run time, it is possible to use a single XFD for files that have different
names. For example, suppose a site has customer files that have identical
structures but different names (such as CUST0001, CUST0002, and
CUST0003). It’s not necessary to have a separate XFD for each file, as long
as their record definitions are the same.

The individual files can all be mapped to the same XFD via a runtime
configuration variable called XFD_MAP. The following paragraphs
describe how it works.

COBOL code File name

ASSIGN TO “usr/ar/customer.dat” customer.xfd

SELECT TESTFILE, ASSIGN TO DISK testfile.xfd

ASSIGN TO “-D SYS$LIB:HELP” help.xfd

ASSIGN TO FILENAME (you specify)

XFD Files 3-11
Suppose your COBOL application has a SELECT with a variable ASSIGN
name, such as customer-file. This variable assumes different values (such as
CUST0001 and CUST0002) during program execution.

Before compiling the application, you would use the FILE directive (see
Chapter 4) to provide a base name for the XFD. Suppose you provide
“CUST” as the base. The compiler would then generate an XFD named
“cust.xfd”. (The compiler always converts XFD names to lower case.)

To ensure that all customer files, each having a unique name, will use this
same XFD, you make this entry in your runtime configuration file:
XFD_MAP CUST* = CUST

The asterisk (“*”) in the example is a wildcard that matches any number of
characters. Note that the extension “.xfd” should not be included in the
map. This statement would cause the XFD “cust.xfd” to be used for all files
whose names begin with “CUST”.

The XFD_MAP variable has this syntax:
XFD_MAP [pattern = base-xfd-name] ...

where pattern consists of any valid filename characters and may include “*”
or “?”. These two characters have special meanings in the pattern:

For example:

The XFD_MAP variable is read during the open file stage of any Acu4GL
products linked into the runtime.

* matches any number of characters

? matches a single occurrence of any character

CUST???? matches CUST0001 and CUSTOMER;
does not match CUST001 or CUST00001

CUST* matches all of the above

CUST*1 matches CUST001 and CUST0001 and CUST00001;
does not match CUSTOMER

*OMER matches CUSTOMER;
does not match CUST001 or CUST0001

3-12 Data Dictionaries
XFD values can be replaced or be added to the end of existing XFD map
values by setting the XFD_MAP_RESETS configuration variable. This
variable determines whether setting the XFD_MAP adds to or replaces the
existing value. When this variable is set to “0” (off, false, no), setting the
XFD_MAP adds new value patterns to the end of the existing value. When
it is set to “1” (on, true, yes), setting the XFD_MAP replaces the existing
value with a new value. The default value is “1” (on, true, yes).

This variable may be useful if you need to include multiple XFD_MAP lines
in a configuration file and want to avoid setting and resetting the variable.
When multiple lines exist, all patterns are used in the order they are listed.

4
 Using Directives
Key Topics

What Are Directives? .. 4-2
Directive Syntax... 4-3
Directives Supported by the Acu4GL Interfaces................................. 4-4

4-2 Using Directives
4.1 What Are Directives?

ACUCOBOL-GT® data dictionaries are based on your COBOL FDs. For
this reason we call them extended FDs or XFDs. Each dictionary describes
all of the fields for one file.

Directives are optional comments that you can use in your FDs to control
how things look on the database side. Many applications won’t use directives
at all. They’re most commonly used when a site intends to do a lot of work
with the database management system outside of the COBOL application,
and wants to control how the database table is built.

Directives are special comments placed into an FD in your COBOL source
code. They guide the building of the data dictionaries, which in turn guide
the building of the database table.

Each directive includes the letters “XFD”. These three letters indicate to the
compiler that the comment is to be used in data dictionary generation.

Directives offer you a great deal of control over how the database table is
built. Among other things, they enable you to

• specify a column name to be used in the database table, in place of a
COBOL field name

• map elementary items of a group item together into a single column

• cause numeric COBOL data to be treated as a text string in the database

• cause the fields from a specific record in a file to appear in the database
table (rather than just the fields from the largest record)

• assign a column the DATE type, so that it will have the built-in
functionality that dates have in the RDBMS

• give a name to the data dictionary file itself

Directive Syntax 4-3
Directives are always placed within a COBOL FD. They do not affect
Procedure Division I/O statements, and they do not change your COBOL
fields in any way. Rather, they guide the building of the data dictionaries,
giving you a measure of control over the way COBOL data is mapped to
database fields.

Data dictionaries may be built directly from your source code with no
directives if the default mapping rules described in Chapter 3, “Data
Dictionaries,” and Chapter 7, “New and Existing Databases,” are
sufficient for your situation. If you would like to override the default
mapping behavior or map a field to a different name, you must add directives
to your COBOL code.

4.2 Directive Syntax

Place each directive syntax on a line by itself, immediately before the
COBOL line to which it pertains.

Introduce each directive with a “$” in the Indicator Area (column 7 in
standard ANSI source format), followed immediately by the letters “XFD”,
and then the directive itself. There should be no space between the $ and the
XFD. Spaces are permitted elsewhere on the line as separators. For example,
the NAME directive looks like this:

$XFD NAME = EMP-NUMBER

An alternate ANSI-compliant way to introduce a directive is with an asterisk
(“*”) in the Indicator Area. In this case, you begin the directive with the
letters “XFD” and enclose the entire comment in double parentheses. For
example:

*((XFD NAME = EMP-NUMBER))

There should be no space between the asterisk and the double left
parentheses. Spaces are permitted elsewhere on the line as separators.

You may use either form of the directive syntax (or both) in your
applications. In addition, note that directives are case-insensitive and that
hyphens and underscores are considered equivalent. Thus, for example,

4-4 Using Directives
$XFD VAR_LENGTH
$XFD VAR-LENGTH
$xfd var_length
$xfd var-length

are all recognized as equivalent by the Acu4GL® products.

Two or more directives that pertain to the same line of COBOL code may be
combined on one comment line. The directives should be separated by a
space or a comma. For example, to specify both USE GROUP and
NUMERIC at the same time, you would add this line:
$XFD USE GROUP, NUMERIC

or
*((XFD USE GROUP, NUMERIC))

The following pages describe each of the directives, in alphabetical order.

4.3 Directives Supported by the Acu4GL Interfaces

The Acu4GL interfaces support the following directives:
ALPHA
BINARY
COMMENT
COBOL-TRIGGER
DATE
FILE
NAME
NUMERIC
SECONDARY_TABLE
USE GROUP
VAR_LENGTH
WHEN
XSL

Directives Supported by the Acu4GL Interfaces 4-5
4.3.1 ALPHA

The ALPHA directive allows you to treat a data item as alphanumeric text in
the database, when it is declared as numeric in the COBOL program.

Syntax
$XFD ALPHA

or
*((XFD ALPHA))

This is especially useful when you have numeric keys in which you
occasionally store non-numeric data, such as LOW-VALUES or special
codes. In this situation, treating the field as alphanumeric allows you to move
any kind of data to it.

Example

Suppose you have specified KEY IS code-key. Then assume the following
record definition:
01 code-record.
 03 code-key.
 05 code-num pic 9(5).

In the database, group items are disregarded, so CODE-NUM is the actual
key field. Suppose you needed to move a non-numeric value to the key:
MOVE “C0531” TO CODE-KEY.
WRITE CODE-RECORD.

In this case the results are not well-defined because a non-numeric value has
been moved into a numeric field. The database might very well reject the
record.

One way to solve this problem is to use the ALPHA directive. This causes
the corresponding database field to accept alphanumeric data:
 01 code-record.
 03 code-key.
$XFD ALPHA
 05 code-num pic 9(5).

4-6 Using Directives
As an alternative, you could specify the USE GROUP directive on the line
before code-key. The USE GROUP directive implies that the field is
alphanumeric.

4.3.2 BINARY

The BINARY directive is used to specify that the data in the field could be
alphanumeric data of any classification. Absolutely any data is allowed.

The BINARY directive may not be used in combination with the
VAR_LENGTH directive.

The method of storing fields declared as binary is database-specific. For
example, with Informix databases, binary data is stored in char fields with an
extra leading character. This character always contains a space. Oracle uses
the data type raw for the field.

Syntax
$XFD BINARY

or
*((XFD BINARY))

Example

You might use this directive when you need to store a key that contains
LOW-VALUES; COBOL allows a numeric field to contain LOW or HIGH
values, but these are invalid for a numeric field in the RDBMS:
 01 code-record.
 03 code-key.
 05 code-indic pic x.
*((XFD BINARY))
 05 code-num pic 9(5).
 05 code-suffix pic x(3).
 .
 .
 .
 move low-values to code-num.

Directives Supported by the Acu4GL Interfaces 4-7
4.3.3 COBOL-TRIGGER

There is an XFD directive that tells Acu4GL that a COBOL trigger is to be
executed.

Note: This directive must come immediately before the FD of the file for
which the trigger is defined. It uses the standard XFD directive syntax
[either $ or *((...))].

Syntax
XFD COBOL-TRIGGER=program-name

The following three parameters are passed to the COBOL program:
01 OPCODE.

88 READ-BEFORE VALUE "r".
88 READ-AFTER VALUE "R".
88 WRITE-BEFORE VALUE "w".
88 WRITE-AFTER VALUE "W".
88 REWRITE-BEFORE VALUE "u".
88 REWRITE-AFTER VALUE "U".
88 DELETE-BEFORE VALUE "d".
88 DELETE-AFTER VALUE "D".

01 FILE-RECORD PIC X(MAX-RECORD-SIZE).

01 ERROR-CODE PIC 99.

You can use C$PARAMSIZE to determine the size of the record passed, in
case you have variable-length records. (See Appendix I, “Library Routines,”
in Book 4 of the ACUCOBOL-GT documentation set for more information
on C$PARAMSIZE.)

• In cases where the record size is known, the actual record is passed
[READ-AFTER (all), WRITE-BEFORE, WRITE-AFTER,
REWRITE-BEFORE, REWRITE-AFTER].

• In cases where the record size is not known, the maximum record size is
passed [READ-BEFORE (all), DELETE-BEFORE, DELETE-AFTER].

4-8 Using Directives
The contents of this field will be identical to the record area given to the file
operation. The BEFORE images will have the value before the file
operation, and the AFTER images will have the value after the file operation.

Use the ERROR-CODE parameter to signal to Acu4GL that an error
occurred:

• If you set this parameter in a BEFORE trigger, the file operation will not
execute.

• If you set this parameter in an AFTER trigger, the runtime will treat the
file operation as an error, though in fact the file operation did execute.
This means that, for sequential access (next or previous), the file position
has changed and a subsequent next or previous will act as if the prior file
operation succeeded.

Also, if you set an error in the REWRITE-AFTER or DELETE-AFTER, the
record will not return to its prior state—the record will be modified or
deleted in the database. We suggest that you use transactions if this behavior
is not acceptable.

Please note that if the COBOL program cannot be called (for any reason), it
is treated as having succeeded.

4.3.4 COMMENT

The COMMENT directive allows you to include comments in an XFD file.
Because the information is embedded in a comment, it does not interfere with
processing by Acu4GL products. Each comment entered with this directive
will appear in the XFD file with the symbol “#” in column one.

Syntax
$XFD COMMENT text

or
*((XFD COMMENT text))

Directives Supported by the Acu4GL Interfaces 4-9
4.3.5 DATE

The DATE directive’s purpose is to store a field in the database as a date.
Because there’s no COBOL syntax that identifies a field as a date, you may
want to add this directive to differentiate dates from other numbers, so that
they enjoy the properties associated with dates in the RDBMS. See the
description of the configuration variable 4GL_2000_CUTOFF in section
8.2, “Runtime Configuration Variables,” to view special options for two-digit
dates.

Syntax
$XFD DATE=date-format-string

or
*((XFD DATE=date-format-string))

This directive implies the NUMERIC directive.

If no date-format-string is specified, six-digit (or six-character) fields are
retrieved as YYMMDD from the database. Eight-digit fields are retrieved as
YYYYMMDD.

The date-format-string is a description of the desired date format, composed
of characters from the following list:

Any other characters cause the date format string to be invalid, and result in
a corrupt XFD error or a compile-time warning.

M Month (01–12)

Y Year (two or four digits)

D Day of month (01–31)

J Julian day (00000000–99999999)

E Day of year (001–366)

H Hour (00–23)

N Minute

S Second

T Hundredths of a second

4-10 Using Directives
Each character in a date format string can be considered a place holder that
represents the type of information stored at that location. The characters also
determine how many digits will be used for each type of data.

For example, although you would typically represent the month with two
digits, if you specify MMM as part of your date format, the resulting date will
use three digits for the month, left-zero-filling the value. If the month is
given as M, the resulting date will use a single digit and will truncate on the
left.

Julian dates

Because the definition of Julian day varies, the DATE directive offers a great
deal of flexibility for representing Julian dates. Many source books define
the Julian day as the day of the year, with January 1st being 001, January 2nd
being 002, and so forth. If you want to use this definition for Julian day,
simply use “EEE” (day of year) in your date formats.

Other reference books define the Julian day as the number of days since some
specific base date in the past. This definition is represented in the DATE
directive with the letter “J” (for example, a six-digit date field would be
preceded with the directive $XFD DATE=JJJJJJ). The default base date for
this form of Julian date is 12/31/4714 BC.

You may define your own base date for Julian date calculations by setting the
runtime configuration variable 4GL_JULIAN_BASE_DATE.

Handling invalid dates

Acu4GL considers dates in the following range to be valid:

01/01/0001 to 12/31/9999

If Acu4GL considers a date valid and passes it to an RDBMS that considers
it invalid, the results depend on the particular RDBMS. Some systems return
an error code. Some store the date as NULL and do not return an error. Some
store the date in an unpredictable fashion and do not return an error. We
recommend that you determine the error handling procedures of the RDBMS
in use.

Directives Supported by the Acu4GL Interfaces 4-11
If a COBOL program attempts to write a record containing a date that
Acu4GL knows is invalid, Acu4GL inserts NULLs into the date field and
writes the record.

If a COBOL program attempts to read into a record from a table with a NULL
date field, zeroes are inserted into that field in the COBOL record.

For date fields having two-digit years, by default years 0 through 19 are
inserted as 2000 through 2019, and years 20 through 99 are inserted as 1920
through 1999. You can change this behavior by changing the value of the
variable 4GL_2000_CUTOFF.

Note: If a field is used as part of a key, the field cannot be a NULL value.
For information about converting date values using the
4GL_CONVERT_DATE_ZERO variable, see section 8.2, “Runtime
Configuration Variables.”

Using group items

You may place the DATE directive in front of a group item, as long as you
also use the USE GROUP directive.

Example 1
 $xfd date
 03 date-hired pic 9(8).
 03 pay-scale pic x(3).

The column date-hired will have eight digits and will be type DATE in the
database, with a format of YYYYMMDD.

Example 2
 *((XFD DATE, USE GROUP))
 03 date-hired.
 05 yyyy pic 9(4).
 05 mm pic 9(2).
 05 dd pic 9(2).

This also will produce a column named date-hired with eight digits and type
DATE in the database, format YYYYMMDD.

4-12 Using Directives
Example 3
 *((XFD DATE=EEEYYYY))
 03 date-sold pic 9(7).
 03 sales-rep pic x(30).

This will produce a column named date-sold with seven digits and type
DATE in the database. The date will contain the day of the year (for example,
February 1st would be 032), followed by the four-digit year, such as 1999).

4.3.6 FILE

The FILE directive supplies a starting name from which the data dictionary
file name is formed. This directive is required only when the file name in the
COBOL code is nonspecific. For example, use this directive when the
SELECT for the file has a variable ASSIGN name (ASSIGN TO
variable_name). In this case, Acu4GL cannot form a file name
automatically, and you must provide a name. The starting name serves as the
basis for the dictionary name.

Syntax
$XFD FILE=name

or
*((XFD FILE=name))

This directive must appear on the line immediately preceding the file’s FD.

Example

Suppose your SELECT statement has a variable ASSIGN name such as the
one shown here:
select my-file
assign to my-variable.

Directives Supported by the Acu4GL Interfaces 4-13
Then you would need to add the FILE directive as shown here:
 select my-file
 assign to my-variable.
 .
 .
 .
$xfd file=payroll
 fd my-file

Note that this directive must appear immediately before the file’s FD.

See also

XFD_MAP configuration variable

4.3.7 NAME

The NAME directive assigns a database field name to the field defined on the
next line.

Syntax
$XFD NAME=fieldname

or
*((XFD NAME=fieldname))

This directive has several uses, as shown in the following examples.

Example 1 – non-unique field names

Within a database file, all field names must be unique. (Multiple database
tables may include the same field name, but duplicates may not exist within
a single table.) Unique field names are not required in COBOL, because
names can be qualified by group items.

For example, this is acceptable in COBOL:

4-14 Using Directives
01 employee-record.
 03 date-hired.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.
 03 date-last-paid.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.

You need not change the field names in your COBOL program to access a
database. Instead, you use the NAME directive to provide unique database
names for the fields. For example:
 01 employee-record.
 03 date-hired.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.
 03 date-last-paid.
 *((xfd name=year-paid))
 05 yy pic 99.
 $xfd name=month-paid
 05 mm pic 99.
 $xfd name=day-paid
 05 dd pic 99.

The dates portion of the resulting database table will look like this:

Example 2 – names not unique within first 18 characters or
longer than 18 characters

Some SQL-based databases require that names be unique within 18
characters, and some require that names be no longer than 18 characters. For
those systems, the Acu4GL runtime will automatically truncate longer
COBOL names after the first 18 characters.

yy mm dd year_paid month_paid day_paid

88 02 15 94 04 30

Directives Supported by the Acu4GL Interfaces 4-15
For names that are identical within the first 18 characters, or are not
meaningful if shortened to the first 18 characters, use the NAME directive to
assign them different database field names.

Suppose you had:
01 acme-employee-record.
 03 acme-employee-record-date-hired pic x(6).
 03 acme-employee-record-date-last-paid pic x(6).

You could add two NAME directives to differentiate the two item names by
making them meaningful within 18 characters:
 01 acme-employee-record.
 $xfd name=date-hired
 03 acme-employee-record-date-hired pic x(6).
 $xfd name=date-last-paid
 03 acme-employee-record-date-last-paid pic x(6).

Note that your COBOL names have not changed. The new names are used
only for the database fields.

Each time you compile your program and specify “–Fx” to create data
dictionaries, any field names longer than 18 characters will be checked for
uniqueness within the first 18. If any field names are identical for the first 18
characters, a compiler warning message will be issued. A warning of this
type does not prevent the program from compiling, and the XFD is generated.

Example 3 – assigning shorter names

You may want to use the NAME directive to assign shorter names than those
used in your COBOL programs. This makes the formation of interactive
SQL queries easier and quicker. For example:
 *((XFD NAME=EMPNO))
 03 employee-number pic x(8).

This directive causes the data dictionary to map EMPLOYEE-NUMBER to
EMPNO in the database.

4-16 Using Directives
Example 4 – matching field names and COBOL FDs

If your database already exists, and a field name in the database does not
match the name used in your COBOL FD, you can use a NAME directive to
associate the two names. For example:
 $xfd name=employee-no
 03 employee-number pic x(8).

This directive causes the data dictionary to map EMPLOYEE-NUMBER in
the COBOL program to EMPLOYEE-NO in the database.

Example 5 – renaming fields that begin with a numeric
character

If your COBOL program uses field names that begin with a numeric
character, use the NAME directive to assign a different name for use with
your database. SQL will typically generate a syntax error when it encounters
a column name that begins with a numeric character. For example:
 03 12-months-sales pic 9(5)V99.

could be renamed this way:
 $xfd name=twelve-months-sales
 03 12-months-sales pic 9(5)V99.

4.3.8 NUMERIC

The NUMERIC directive allows you to treat a data item as an unsigned
integer when it is declared as alphanumeric. You might use this when the
data stored in the item is always numeric.

Syntax
$XFD NUMERIC

or
*((XFD NUMERIC))

Directives Supported by the Acu4GL Interfaces 4-17
Example
$xfd numeric
 01 student-code pic x(7).

4.3.9 SECONDARY_TABLE

Some RDBMSs, such as Sybase, permit subordinate tables. When this is the
case, you can use the SECONDARY_TABLE directive to indicate that the
next data item may be placed into a subordinate table if more than one table
is necessary to accommodate the data.

Up to 26 subordinate tables can be created from a single record description.
Each table name is based on the original table name, with a letter from A to
Z appended. For example, if the original table were named my-table,
subsequent subordinate tables would be given these names:
my-tableA
my-tableB
my-tableC
my-tableD

When the runtime accesses the data dictionary, it makes an initial pass
through the data, taking all eligible data items for which the
SECONDARY_TABLE directive is not specified.

SECONDARY_TABLE is ignored for certain data items. These include:

• any field that is part of a key

• any field that is an indicator for a WHEN directive

If the table size is not exceeded in the first pass, then, in a second pass, the
runtime appends to the original table all items marked
SECONDARY_TABLE that can be accommodated.

When the first table reaches a limit (either in total number of columns or total
number of characters), that table is created, and a new table is begun. Items
that did not fit into the previous table are placed into a subordinate table, in
the order in which they are encountered.

4-18 Using Directives
The process repeats until all items have been accommodated.

It is permissible to place the SECONDARY_TABLE directive just before a
level 01 record definition. In this case, it applies to all fields underneath the
level 01.

Syntax
$XFD SECONDARY_TABLE

or
*((XFD SECONDARY_TABLE))

Example
 $xfd secondary_table
 01 description pic x(80).

4.3.10 USE GROUP

The USE GROUP directive allows you to enter a group item into the database
as a single field, instead of using the elements contained in the group. This is
necessary if the item is stored in an existing database as a group, rather than
as individual fields.

Combining fields of data into meaningful groups for database storage also
improves I/O efficiency.

Syntax
$XFD USE GROUP

or
*((XFD USE GROUP))

By default, the USE GROUP directive implies that the consolidated field is
alphanumeric. If you want a numeric field, simply add the word NUMERIC
at the end of the directive.

Directives Supported by the Acu4GL Interfaces 4-19
Example 1 – combining DATE and USE GROUP directives

For example, the directive in the following code combines the functions of
the USE GROUP and DATE directives, and indicates that the date should be
entered into the database as a single date-formatted data item instead of three
distinct fields:
 *((XFD USE GROUP, DATE))
 03 date-entered.
 05 yy pic 99.
 05 mm pic 99.
 05 dd pic 99.

Either a comma or a space (or both) may separate the word “DATE” from the
words “USE GROUP”.

Example 2 – forming larger units

Other fields with which you might use this directive include multi-part
account numbers or department numbers, or keys that are referenced as a unit
but not by their individual pieces. Here’s an example of an item that might
be grouped:
 $xfd use group
 01 gl-acct-no.
 03 main-acct pic 9(4).
 03 sub-acct pic 9(3).
 03 dept-no pic 9(3).

If you are using an existing database in which certain fields are grouped, they
must also be grouped in your COBOL FD.

If the database does not yet exist, keep in mind that combining fields into
groups can improve execution speed. Whether to group fields or not also
depends on whether they are always stored and used together. Someone who
really knows how the data is being used might help to identify groups of
fields that can be combined to speed processing.

4-20 Using Directives
4.3.11 VAR_LENGTH

By default, the compiler generates fixed-length fields in the XFD. The
VAR_LENGTH directive requests that the data item that immediately
follows the directive be assigned a type that implies variable length, if
possible. This can save considerable space in your database.

The VAR_LENGTH directive cannot be used in combination with the
BINARY directive.

The precise variable type that is assigned to the data item depends on which
RDBMS is in use. Possible variable types that might be assigned are
VARCHAR and VARBINARY.

Syntax
$XFD VAR_LENGTH

or
*((XFD VAR_LENGTH))

Example

For example, the directive in the following code indicates that the
employee-name field should be entered into a SYBASE database as a
VARCHAR data item.
 *((XFD VAR_LENGTH))
 03 employee-notes pic x(300).

4.3.12 WHEN

The WHEN directive is used when you want to include multiple record
definitions or REDEFINES in a database table. It’s typically used when you
want to force certain columns to be built that wouldn’t be built by default
(because you want to use them from the RDBMS side).

Directives Supported by the Acu4GL Interfaces 4-21
Recall that the key fields and the fields from the largest record are
automatically included as explicit columns in the database table. All fields
are stored and retrieved from the database, whether they appear as explicit
columns or not. So you don’t need to use WHEN unless you want to ensure
that some additional fields are explicitly listed by name in the table.

WHEN declares that the field (or subordinate fields, if it is a group item) that
immediately follow the directive must appear as a column (or columns) in the
database table. It also states one condition under which the columns are to be
used. The WHEN directive guarantees that the fields will be explicitly
included in the table, as long as they aren’t FILLER and don’t occupy the
same area as key fields.

The WHEN directive results in a table that unites all fields subordinate to the
WHEN directive. This table might include more columns and could affect
performance and storage requirements.

Syntax
$XFD WHEN field = value (equals)
$XFD WHEN field <= value (is less than or equals)
$XFD WHEN field < value (is less than)
$XFD WHEN field >= value (is greater than or equals)
$XFD WHEN field > value (is greater than)
$XFD WHEN field != value (is not equal to)
$XFD WHEN field = OTHER

or

*((XFD WHEN field = value)) (also <, <=, >, >=, !=)

The value may be an explicit data value (in quotes). The word OTHER can
be used only with “=”. It means use the following field(s) only if the WHEN
condition(s) listed at the level of this field are not met.

Note: WHEN values must be on individual lines as single values in the
code. WHEN values cannot be combined.

4-22 Using Directives
For example:
 03 ar-code-type pic x.
 *((xfd when ar-code-type = "s"))
 03 ship-code-record pic x(4).
 *((xfd when ar-code-type = "b"))
 03 backorder-code-record redefines ship-code-record.
 *((xfd when ar-code-type = other))
 03 obsolete-code-record redefines ship-code-record.

OTHER may be used before one record definition, and may be used once at
each level within each record definition.

Note: A WHEN directive with condition OTHER must be used if there is
a possibility that the data in the field will not meet any of the explicit
conditions specified in the other WHEN directives. If this is not done,
results are undefined.

Example 1

If the following code were compiled without directives, the underlined fields
would appear explicitly in the database table. Note that the key fields would
be included automatically, as would the fields from the largest record.
FILLER would be ignored:
01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
01 ship-code-record.
 03 filler pic x(4).
 03 ship-instruct pic x(15).
01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

If you add the WHEN directive as shown below, it causes the fields from the
SHIP-CODE-RECORD to be included in the database table, and determines
when specific database columns are used. The underlined fields then appear
as columns in the database table:

Directives Supported by the Acu4GL Interfaces 4-23
 01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
$xfd when ar-code-type = "s"
 01 ship-code-record.
 03 filler pic x(4).
 03 ship-instruct pic x(15).
$xfd when ar-code-type = "t"
 01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

FILLER data items don’t have unique names and are thus not used to form
columns in the database table. You could use the NAME directive to give
them a name if you really need to see them in the database table.

Note: In this example, the FILLER data items implicitly redefine key
fields. Thus, they would be disregarded even if you provided a name for
them.

Example 2

In the following code, in which no WHEN directives are used, the underlined
fields will be explicitly named in the database table. (Key fields have the
suffix “key” in their names in this example.)

Note that REDEFINES records simply re-map the same data area and are not
explicitly included in the database table by default:
01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
01 master-record.
 03 animal-id-key.
 05 patient-id pic 9(6).
 05 species-code-type pic 9(5).
 05 species-name pic x(6).

 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
 03 office-info.
 05 date-in-office pic 9(8).
 05 served-by-name pic x(10).
 03 remote-info redefines office-info.
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

If you add the WHEN directives shown below, you add several columns to
the database table. The fields that then appear in the table are underlined:
*((xfd when animal-id-key = "00000000000000000"))
 01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
*((xfd when animal-id-key = other))
 01 master-record.
*((xfd use group))
 03 animal-id-key.
 05 patient-id pic 9(6).
 05 species-code-type pic 9(5).
 05 species-name pic x(6).
 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
*((xfd when billing-code-type = "1440"))
 03 office-info.
 05 date-in-office pic 9(8).
 05 served-by-name pic x(10).
*((xfd when billing-code-type = other))
 03 remote-info redefines office-info.
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

Directives Supported by the Acu4GL Interfaces 4-25
Example 3

If your application has a REDEFINES whose field names are more
meaningful than the fields they redefine, you might consider switching the
order of your code, rather than using a WHEN directive. Use the less
significant field names in the REDEFINES.

For example, you might change this:

 03 code-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).
 03 patient-info redefines code-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).

to this:

 03 patient-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).
 03 code-info redefines patient-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).

The fields that would appear in the database table by default are underlined
above. This shows how the column names might become more meaningful
when the order is reversed. Your application operates the same either way.

Note: When a WHEN directive condition is met, COBOL record
definitions or REDEFINES records that are subordinate to other WHEN
directives are not used. Database columns in rows that correspond to those
records are set to the special database value NULL. This means that there
is no value provided for those columns. NULL is not equivalent to zero,
and it has special properties in the RDBMS. For example, you can select
all rows for which a given column is NULL.

4-26 Using Directives
Example 4

This COBOL code:
 01 col-type pic x.
 $xfd when col-type = "a"
 03 def1 pic x(2).
 $xfd when col-type = "b"
 03 def2 redefines def1 pic 9(2).

results in this database table:

4.3.13 XSL

If you are using the “-Fe” compiler option to generate XML-style XFD files,
the XSL directive allows you to include a stylesheet reference in the XML
header.

Syntax
$XFD XSL=stylesheet

or
*((XFD XSL=“stylesheet”))

where stylesheet is an alphanumeric literal indicating the appropriate
stylesheet. The compiler includes the following line in all generated
XML-style XFD files:

<?xml-stylesheet type="text/xsl" href="stylesheet"?>

For example:
*((XFD XSL="myxsl.xsl"))

generates this line:

<?xml-stylesheet type="text/xsl" href="myxsl.xsl"?>

col_type def1 def2

 a Xx <Null>

 b <Null> 10

5
 Invalid Data
Key Topics

Illegal COBOL Data.. 5-2
Invalid Key Data.. 5-3
Invalid Data Other Than Keys... 5-3
Invalid Database Data.. 5-3

5-2 Invalid Data
5.1 Illegal COBOL Data

This chapter lists which COBOL data items are considered invalid and
explains what happens to them when they are stored in the database.

We also explain which database items are considered invalid and explain how
these are translated to COBOL.

COBOL data (except key data) that is illegal by database standards is stored
in the database as null unless you specifically override this default. (Use the
configuration variable 4GL_ILLEGAL_DATA to override.)

The following COBOL data usages are considered illegal by the database:

• In USAGE DISPLAY numbers, LOW-VALUES , HIGH-VALUES, and
SPACES are all illegal.

• In COMP-2 numbers, HIGH-VALUES and SPACES are illegal.

• In COMP-3 numbers, HIGH-VALUES is illegal.

• All other numeric types fit one of the preceding cases (depending on
their internal storage format).

• In DATE fields, the value “zero” is illegal, as are any other illegal
conditions as defined by the date’s USAGE type (see above).

• In text fields, LOW-VALUES is illegal.

• BINARY numbers are always legal, and all values are legal in BINARY
text fields.

Invalid Database Data 5-3
5.1.1 Invalid Key Data

Any field that is part of a key is never stored as null. (A null key does not
have a well-defined position in relation to other keys.) If a key field has an
illegal value, the field is stored in the database as described here:

5.1.2 Invalid Data Other Than Keys

You have the option to convert illegal data, other than keys, into legal values
by setting the configuration variable 4GL_ILLEGAL_DATA to
“Converted”. When this is set, the Acu4GL® interface converts data the
same way it does for keys.

4GL_ILLEGAL_DATA can also be set to “Null” to indicate that illegal
COBOL data other than keys should be converted to null. This is the default
behavior.

5.2 Invalid Database Data

When Acu4GL receives a null field from the database, it translates it to
COBOL as follows:

Numbers (including dates): zero
Text (including binary): spaces

See the DATE directive in Chapter 4 for additional information about the
handling of invalid dates.

Illegal LOW-VALUES minimum possible value
(0 or -99999...)
minimum possible date value (01/01/01)

Illegal HIGH-VALUES maximum possible value (99999...)
maximum possible date value (database dependent)

Illegal SPACES zero (or 01/01/01 for a date field)

5-4 Invalid Data

6
 Working with COBOL
Key Topics

Preparing and Compiling Your COBOL Program 6-2
Compiling With No Directives ... 6-4
Compiling With the WHEN Directive ... 6-6
Using Additional Directives .. 6-8
Creating File Descriptors and SELECT Statements......................... 6-10

6-2 Working with COBOL
6.1 Preparing and Compiling Your COBOL Program

After the environment has been set up for the Acu4GL® interface, you are
ready to use the system. The following example illustrates how to set up a
COBOL program to use your Acu4GL RDBMS product.

Note: If you are not familiar with the XFD directives described in Chapter
4, “Using Directives,” you may want to read that chapter before continuing
with this section.

The purchase-orders file from a COBOL program at an imaginary company
will be stored in the database. This file contains the records that handle all of
the information from the company’s purchase orders.

Within the purchase-orders file, are two record types:

• the purchase-order header record. (There is one of these for each
purchase-order form.)

• the purchase-order detail record. (There is one detail record for each line
item in a purchase-order.)

The file is keyed off the purchase-order-number. We will build and
examine the database table three times, to illustrate three different
approaches to using the COBOL file description:

• First, no directives will be added to the COBOL code. The code will be
compiled as is. Only the largest record will be included in the database
table.

• Second, the WHEN directive will be added, and the program
recompiled. This will cause all record formats to be included in the
database.

• Finally, several fields will be grouped together and renamed as a matter
of convenience.

Here’s the sample code:
IDENTIFICATION DIVISION.
program-id. purchase.
ENVIRONMENT DIVISION.

Preparing and Compiling Your COBOL Program 6-3
input-output section.
file-control.

select p-o-file
assign to disk "purch1"
organization is indexed
access mode is dynamic
record key is p-o-number
file status is p-o-status.

DATA DIVISION.
file section.
fd p-o-file.
01 p-o-record.
 03 p-o-division-number pic 9(3).
 03 p-o-record-type pic x.
 88 header-record value "h".
 88 detail-record value "d".
 03 p-o-number pic 9(10).
 03 p-o-number-detail redefines
 p-o-number.
 05 picking-ticket-number pic 9(6).
 05 shipping-region pic 9(2).
 05 p-o-customer-type pic 9(2).
 05 p-o-customer-breakdown redefines
 p-o-customer-type.
 07 customer-category pic x.
 88 p-o-customer-retail value "r".
 88 p-o-customer-whlsale value "w".
 07 customer-pay-format pic x.
 88 is-net-30 value “3”.
 88 is-net-10 value “1”.
 03 p-o-date.
 05 p-o-yy pic 9(2).
 05 p-o-mm pic 9(2).
 05 p-o-dd pic 9(2).

01 p-o-detail-record.
 03 p-o-dept-number pic 9(3).
 03 p-o-record-type pic x.
 03 detail-p-o-number pic 9(10).
 03 p-o-shipping-info.
 05 p-o-quantity-to-ship pic s9(4) comp.
 05 p-o-total-quantity pic s9(4) comp.
 03 p-o-notes.

6-4 Working with COBOL
 05 notes-line occurs 3 times pic x(40).
working-storage section.
01 p-o-status pic x(2).

PROCEDURE DIVISION.
level-1 section.
main-logic.

open output p-o-file.
close p-o-file.
stop run.

6.1.1 Compiling With No Directives

You can compile the preceding program as is with the “-Fx” option to
generate the data dictionary. The compiled program will run and will build
the database table shown at the end of this section.

Here’s how the database table is built. First, any fields listed in the KEY IS
clause of the SELECT are included (p-o-number in this example). Then the
compiler takes the largest record (p-o-detail-record) and lists the fields that
make up that record. The next two pages show the specific fields that are
placed into the table.

All of the data from the COBOL program is stored in and retrieved from the
database, even though not all fields are explicitly named in the database table.
See Chapter 3, “Data Dictionaries,” for a description of how this works.

The underlined fields are the only ones that will be entered into the table:
 fd p-o-file.
 01 p-o-record.
 03 p-o-division-number pic 9(3).
 03 p-o-record-type pic x.
 88 header-record value "h".
 88 detail-record value "d".
 03 p-o-number pic 9(10).
 03 p-o-number-detail redefines p-o-number.
 05 picking-ticket-number pic 9(6).
 05 shipping-region pic 9(2).
 05 p-o-customer-type pic 9(2).
 05 p-o-customer-breakdown redefines
 p-o-customer-type.

Preparing and Compiling Your COBOL Program 6-5
 07 customer-category pic x.
 88 p-o-customer-retail value "r".
 88 p-o-customer-whlsale value "w".
 07 customer-pay-format pic x.
 88 is-net-30 value "3".
 88 is-net-10 value "1".
 03 p-o-date.
 05 p-o-yy pic 9(2).
 05 p-o-mm pic 9(2).
 05 p-o-dd pic 9(2).

 01 p-o-detail-record.
 03 p-o-dept-number pic 9(3).
 03 p-o-record-type pic x.
 03 detail-p-o-number pic 9(10).
 03 p-o-shipping-info.
 05 p-o-quantity-to-ship pic s9(4) comp.
 05 p-o-total-quantity pic s9(4) comp.
 03 p-o-notes.
 05 notes-line occurs 3 times pic x(40).

As the table is built:

• Any hyphens in the COBOL field names are converted to underscores.

• Field names longer than 18 characters will cause a warning to be issued
if they are not unique within the first 18 characters. Some databases,
Informix for example, limit you to 18 total characters. We recommend
that for portability and for end-user purposes you use the least number of
characters. You can use the NAME directive for this to avoid changing
your procedure division code.

• Fields in OCCURS clauses get special handling, because the runtime
system must assign a unique name to each data item. So sequential index
numbers are appended to the item named in the OCCURS. Limits vary
between databases, so refer to the documentation that accompanied your
RDBMS. In some instances, the name may be truncated by Acu4GL if
necessary before the index is added.

Note: detail-p-o-number is not part of the table, because the key overlays
this area.

6-6 Working with COBOL
This table is built in the database:

* The actual database datatype may vary.

See the “Limits and Ranges” section found in the appendix of this manual
that is specific to your RDBMS for a list of supported data types and their
COBOL equivalents.

6.1.2 Compiling With the WHEN Directive

Suppose that you wanted both record formats to be placed into the table.
This might be the case if you intended to do any work within your RDBMS.
Add the WHEN directive in front of each record, as shown below (see
Chapter 4, “Using Directives”). The underlined fields are the ones that will
be entered into the table:
 fd p-o-file.
*((xfd when p-o-record-type = "h"))
 01 p-o-record.
 03 p-o-division-number pic 9(3).
 03 p-o-record-type pic x.
 88 header-record value "h".
 88 detail-record value "d".
 03 p-o-number pic 9(10).
 03 p-o-number-detail redefines p-o-number.
 05 picking-ticket-number pic 9(6).
 05 shipping-region pic 9(2).
 05 p-o-customer-type pic 9(2).

Column Name Type

p_o_number number(10) *

p_o_dept_number number(3) *

p_o_record_type char(1)

p_o_quantity_to_ship number(4) *

p_o_total_quantity number(4) *

notes_line_1 char(40)

notes_line_2 char(40)

notes_line_3 char(40)

Preparing and Compiling Your COBOL Program 6-7
 05 p-o-customer-breakdown redefines
 p-o-customer-type.
 07 customer-category pic x.
 88 p-o-customer-retail value "r".
 88 p-o-customer-whlsale value "w".
 07 customer-pay-format pic x.
 88 is-net-30 value "3".
 88 is-net-10 value "1".
 03 p-o-date.
 05 p-o-yy pic 9(2).
 05 p-o-mm pic 9(2).
 05 p-o-dd pic 9(2).
*((xfd when p-o-record-type = "d"))
 01 p-o-detail-record.
 03 p-o-dept-number pic 9(3).
 03 p-o-record-type pic x.
 03 detail-p-o-number pic 9(10).
 03 p-o-shipping-info.
 05 p-o-quantity-to-ship pic s9(4) comp.
 05 p-o-total-quantity pic s9(4) comp.
 03 p-o-notes.
 05 notes-line occurs 3 times pic x(40).

Note: p-o-record-type is entered into the table only once. The
detail-p-o-number field is not part of the table, because the key overlays
this area.

This table is built in the database:

Column Name Type

p_o_division_number number(3) *

p_o_record_type char(1)

p_o_number number(10) *

p_o_yy number(2) *

p_o_mm number(2) *

p_o_dd number(2) *

p_o_dept_number number(3) *

p_o_quantity_to_ship number(4) *

6-8 Working with COBOL
* The actual database datatype may vary.

6.1.3 Using Additional Directives

In this final approach, you decide to streamline the code a bit, so you
introduce the following three changes:

• You apply the USE GROUP directive to the notes, because you don’t
need to access each note line individually from the database side.
Grouping them improves execution speed and clarity.

• You rename the notes field for convenience.

• You apply the USE GROUP and DATE directives to the date, to give it
all the properties of a date on the database side.

 fd p-o-file.
*((xfd when p-o-record-type = "h"))
 01 p-o-record.
 03 p-o-division-number pic 9(3).
 03 p-o-record-type pic x.
 88 header-record value "h".
 88 detail-record value "d".
 03 p-o-number pic 9(10).
 03 p-o-number-detail redefines p-o-number.
 05 picking-ticket-number pic 9(6).
 05 shipping-region pic 9(2).
 05 p-o-customer-type pic 9(2).
 05 p-o-customer-breakdown redefines
 p-o-customer-type.
 07 customer-category pic x.
 88 p-o-customer-retail value "r".
 88 p-o-customer-whlsale value "w".
 07 customer-pay-format pic x.

p_o_total_quantity number(4)

notes_line_1 char(40)

notes_line_2 char(40)

notes_line_3 char(40)

Column Name Type

Preparing and Compiling Your COBOL Program 6-9
 88 is-net-30 value "3".
 88 is-net-10 value "1".
*((xfd use group, date))
 03 p-o-date.
 05 p-o-yy pic 9(2).
 05 p-o-mm pic 9(2).
 05 p-o-dd pic 9(2).
*((xfd when p-o-record-type = "d"))
 01 p-o-detail-record.
 03 p-o-dept-number pic 9(3).
 03 p-o-record-type pic x.
 03 detail-p-o-number pic 9(10).
 03 p-o-shipping-info.
 05 p-o-quantity-to-ship pic s9(4) comp.
 05 p-o-total-quantity pic s9(4) comp.
*((xfd use group, name = notes))
 03 p-o-notes.
 05 notes-line occurs 3 times pic x(40).

Note: p-o-record-type is entered only once into the table. The
detail-p-o-number field is not part of the table, because the key overlays
this area.

This table is built in the database:

Column Name Type

p_o_division_number number(3)

p_o_record_type char(1)

p_o_number number(10)

p_o_date date

p_o_dept_number number(3)

p_o_quantity_to_sh number(4)

p_o_total_quantity number(4)

notes char(120)

6-10 Working with COBOL
6.2 Creating File Descriptors and SELECT Statements

acu4glfd is a Windows-based utility that can help you analyze tables and
create File Descriptors and SELECT statements. This utility uses ODBC
technology to retrieve table information to list the fields in the table. When
possible, the utility also determines a unique index and uses that index as the
primary key.

Upon request, acu4glfd generates two kinds of output:

• a file descriptor (FD), listing the names of the columns in a table and
their associated data types

• a SELECT statement for the file

You can COPY the FD and SELECT statement into your COBOL program,
although you may need to make some changes, as indicated in this section.

The acu4glfd utility is intended to help you jump start preparing your table
for use with a COBOL program. The program determines the names of the
columns, attempts to determine the appropriate ACUCOBOL-GT® data type
for the column, and attempts to determine the primary key. acu4glfd does
not attempt to identify alternate keys.

Remember, though, that database data is flat, and COBOL data can contain
group items and depth. Because table data does not contain information
about GROUP structure the way a COBOL program does, it may be
necessary for you to tweak the code produced by acu4glfd and specify a
picture before the program compiles properly. Any errors produced in this
early compilation will assist in fine-tuning the FD for your COBOL program.
This saves the time and effort of completely analyzing the table and coding
the FD and SELECT statements yourself.

The acu4glfd utility operates only on data types that are understood by
ODBC. Database drivers can define their own data types as well; these
driver-defined data types are not recognized by acu4glfd. Therefore, the
utility may not be able to identify all data types represented in the table.
Refer to your database, driver, and ODBC documentation for additional
information.

Creating File Descriptors and SELECT Statements 6-11
Before starting the acu4glfd utility, you must define your table/data as an
ODBC data source. See your ODBC documentation for information about
drivers and data sources.

Note that the examples are based on the following table in Microsoft Access.

Note that the phone number (PHONE field) is the table’s key.

6-12 Working with COBOL
To generate a list of columns and data types and a SELECT statement

1. Start the utility by clicking on the acu4glfd icon or entering acu4glfd at
the Windows command prompt. By default, “acu4glfd.exe” resides in
your “acugt/bin” directory.

2. Click Data Source in the “Choose a table” dialog. (Click OK to
terminate the application.)

3. Select a data source from the standard Microsoft dialog that appears.

Creating File Descriptors and SELECT Statements 6-13
4. If necessary, enter your user name and password in the Authorization
area of the Login dialog.

5. Select a table from the Choose a table dialog, which now contains a
listing of the tables in the data source you selected in step 3. Note that
you can choose only one table at a time.

The Column and Create FD buttons become active. To see a listing of
columns and data types, proceed to step 6. To create an FD, go to
step 8.

6-14 Working with COBOL
6. Click Columns to display a list of the columns in the table and their
associated COBOL data types.

Note that PHONE appears first, even though it is not the first column in
the table. That is because PHONE was defined as the table’s key, so
acu4glfd treats it as a unique index, moving it to the top of the list of
columns.

7. Click OK to close this window.

8. Click Create FD to display the Save As dialog. Use this standard
Windows dialog to indicate where the FD file should reside. Be sure
to indicate to save as file type “File Descriptors.” For this example, the
FD is as follows:

* animals.fd - Generated by Acu4GLfd from animals on
 2002/11/11
fd animals.
01 animals-record.
 03 animals-key.
 05 PHONE pic x(8).
 03 animals-data.

Creating File Descriptors and SELECT Statements 6-15
 05 PATIENT_ID pic x(5).
 05 ATYPE pic x(1).
 05 OWNER pic x(30).
 05 YEAR pic s9(2)v9(0).
 05 SEQ_NO pic s9(4)v9(0).
 05 MM pic s9(2)v9(0).
 05 DD pic s9(2)v9(0).
 05 YYYY pic s9(4)v9(0).
 05 FEE pic s9(5)v9(2).
 05 DATE_PAID pic s9(8)v9(0).

Note that in the FD, as in the column listing, PHONE, appears as the first
item.

When acu4glfd determines a unique index, it creates a SELECT
statement as well. By default, this SELECT is placed in the same
directory as the FD. The base name is the same; however, the SELECT
has an extension of “.sl”. For this example, the SELECT is as follows:

* animals.sl - Generated by Acu4GLfd from animals on
 2002/11/11
 select animals
 assign to disk "animals"
 organization is indexed
 access is dynamic
 record key is animals-key
 status is animals-status.

Note that the FD generated by acu4glfd uses the name of the table in the
“fd” line. (See the sample code in step 6.) This will be the same name
that appears in the “assign” line in the SELECT statement. (See step 8
for the sample SELECT statement.)

You can now look at the FD and SELECT to determine if there are any
changes you want to make immediately. Make those changes, COPY the
FD and SELECT into your program, and try to compile the program. If
compilation is successful, you can move on to the next step in your
development effort. If compilation is not successful, use the information
contained in the error messages to aid in troubleshooting the program.

6-16 Working with COBOL

7
 New and Existing Databases
Key Topics

Databases.. 7-2
Default Acu4GL Behavior .. 7-2
Accessing Existing Database Files .. 7-3

7-2 New and Existing Databases
7.1 Databases

You’ll probably find yourself in one of two situations as you begin to use this
product. In situation one, the database files don’t exist yet and will be brand
new.

In situation two, the database files already exist, and you want to access that
existing data from a COBOL application. There may or may not already be
existing COBOL programs that access the database.

Each situation brings up its own questions. How do I declare my COBOL
data so that it matches the database data? Are there any special fields in the
database that must be accessed in a special way? How do I choose COBOL
record names, field names, index names, and data types that best conform to
the compiler, the Acu4GL® product, and the database engine? We’ll ask and
answer questions of that type in the next few sections.

7.2 Default Acu4GL Behavior

The following are automatically handled by the Acu4GL product:

• Acu4GL automatically converts upper case field names to lower case (or
vice versa) when necessary, so don’t concern yourself with case
differences.

• Acu4GL automatically performs the data conversions needed to match
the internal storage formats used by the database.

• If the database files don’t already exist, they will be created for you
automatically when you execute an OPEN OUTPUT verb. If this is your
situation, you’ll have no concerns about matching COBOL fields to
database fields. The fields will match perfectly, because the database
fields will be based on your COBOL code.

• You may encounter unexpected sequencing of data returned from a
database. If your COBOL definition does not include alternate keys with
duplicates, the data is returned in key order. If your COBOL definition
does include alternate keys with duplicates, be aware that Acu4GL
cannot control the sequence in which the data is returned. The database

Accessing Existing Database Files 7-3
query optimizer decides how to order the returned records. For a set of
records with the same key value, the records may not be in historical
order.

See also
A_MSSQL_ADD_IDENTITY
A_SYB_ADD_IDENTITY
A_INF_DUPLICATE_KEY

7.3 Accessing Existing Database Files

If you are accessing existing data in a relational database, you need to know
how to declare your data so that it will match the database fields.

If your COBOL code isn’t written yet, you should follow the guidelines given
in the appendix of this manual for your specific RDBMS.

If your COBOL application already exists, you can make necessary
adjustments by adding directives to your code. Directives are comments that
guide the creation of the data dictionaries. The dictionaries in turn help map
the COBOL fields to their equivalent database fields. Directives are
described in Chapter 4, “Using Directives.”

7.3.1 How Do I Match Existing Text Fields?

To access character data, you simply declare the field as PICTURE X, with
as many X’s as appropriate.

7.3.2 How Do I Match Existing Numeric Fields?

Numeric fields are more database-specific. Most relational database systems
accommodate INTEGER, DECIMAL, and DATE types. For information on
the handling of other numeric types, see the appendix containing information
specific to your RDBMS.

7-4 New and Existing Databases
7.3.3 Field Names

If your COBOL application already exists, and if it must access a relational
database that already exists, you may have to work around differences in the
names of the fields, as well as naming conventions imposed by the RDBMS.
For example, your program might use the name EMPLOYEE-NO, while the
database uses the name EMP-NUMBER for the same item of information.

Resolving name conflicts

If naming differences exist, you need not rename your COBOL fields, and
you need not change the database. This is because the ACUCOBOL-GT®
compiler’s “-Fx” option builds data dictionaries that map your COBOL fields
to the correct database fields. The mapping is automatic if the names are the
same. If the COBOL name differs from the database name, you enable the
compiler to make the correct mapping by adding a NAME directive to your
COBOL code.

Directives can also be used to produce other effects when data is mapped
from COBOL to the database. Chapter 4, “Using Directives,” describes
directives in detail.

7.3.4 Index Names

Acu4GL uses a specific naming convention for indexes it creates. Indexes
created with Acu4GL use the i<TABLENAME>_<key value> convention.
If you are using indexes created outside of the Acu4GL application, you need
to make sure the index names match the Acu4GL naming convention.

Performance is affected by the number of indexes you may have. If you use
tables with multiple indexes, keep in mind that when a record is written or
updated, locks are put onto all of the indexes, and they are all basically
rewritten during the course of the write/update. This is a costly process.
There may be multiple columns per index, and multiple indexes per table.
Each rewrite implies a certain amount of wait time. Tables with a large
number of indexes can be slow on writes/updates and possibly other
operations in the database query optimizer become confused.

For more information about indexes and performance issues, see Chapter 9,
“Performance and Troubleshooting.”

8
 Compiler and Runtime
Options
Key Topics

Compiler Options .. 8-2
Runtime Configuration Variables... 8-4

8-2 Compiler and Runtime Options
8.1 Compiler Options

Some file options (-Fa, -Fe, -Fx, and -F4) are used to generate XFD files (data
dictionaries) that are used with Acu4GL. Other file options (-Fl, -Fs, and -Ft)
can simplify the addition of transaction management facilities to existing
programs. This section describes compiler options that are useful when
working with Acu4GL.

-Fa This option tells the compiler to build data dictionaries
(XFD files) for every indexed, relative, and sequential
data file in the FDs of the program. It is the only option
that builds XFDs for relative and sequential files. This
option is also used for international character mapping.
See also the “-Fo” compile-time option, which specifies
the directory in which the data dictionaries are placed.

The “-Fa” option generates the most current format for
the XFD files (Version 6), compatible with Acu4GL
Version 6.0 and later.

-Fc This option causes the field names in generated XFD
files to match exactly the source of the COBOL program
that generated them.

-Fe This option causes XFD files to be generated in XML
format rather than the standard flat text format. Acu4GL,
AcuXDBC, and alfred can all read the XFD files in
XML format. This option must be used in conjunction
with the “-Fx” or “-Fa” options. The C$XML library
routine can be used to parse the XML files if desired. In
addition, by specifying the XSL directive, you can
specify a stylesheet to be used when compiling

This option will not work in combination with “-F4”.
Version 4 XFD files cannot be generated in XML format.

Compiler Options 8-3
-Fl This option enables single-locking rules rather than
multiple-locking rules as the lock mode default.
Normally, “WITH ROLLBACK” causes multiple
locking rules to be in effect for a file. When “-Fl” is used,
the “WITH ROLLBACK” clause does not affect whether
single or multiple record locking rules are followed.
Single locking becomes the default. You may enable
multiple locking either by specifying “WITH LOCK ON
MULTIPLE RECORDS” in a file’s SELECT statement
or by using “APPLY LOCK-HOLDING ON file” in the
I-O CONTROL paragraph.

-Fo This option must be followed (as the next separate
argument) by the directory that will hold the data
dictionary files generated by the compiler when you use
the “-Fx” option.

 Type a space after the option and then give the name of
the chosen directory. If this option is not used, the data
dictionaries are placed into the current directory.

 For example, to cause the dictionaries to be stored in the
directory “/usr/inventory/dictionaries”, you would enter:

 -Fo /usr/inventory/dictionaries

-Fs This option causes an implied START TRANSACTION
verb before the first OPEN, CLOSE, WRITE,
REWRITE, or DELETE and after each COMMIT or
ROLLBACK. In effect, every file operation is part of a
transaction. If this option is enabled and the compiler
encounters a START TRANSACTION verb, it reports a
warning and does not generate any code for the START
TRANSACTION. The “-Fs” option provides an
alternate way to program transactions and is often useful
when you are converting from other COBOL or SQL
implementations.

8-4 Compiler and Runtime Options
See section 8.2 for a description of runtime options.

8.2 Runtime Configuration Variables

There are several variables that can be set in your runtime configuration file
that affect Acu4GL processing. Those listed below are applicable to any
RDBMS with which Acu4GL communicates. Some configuration variables
are database-specific; those variables are discussed in the individual database
product sections found in this User's Guide.

-Ft This option causes implied transactions for every OPEN,
CLOSE, WRITE, REWRITE, or DELETE that is not
part of an explicit transaction. Single file operations that
are not part of a transaction are preceded by an implied
START TRANSACTION and followed by an implied
COMMIT. This option makes converting existing
applications to a transaction system easier. Note that
unlike most COMMITs, which unlock all of the file’s
currently locked records, the implied COMMIT does not
unlock any records.

-Fx This option directs the compiler to build Version 5 data
dictionaries (XFD files) for every indexed data file in the
FDs of the program. If you require the older version of
XFD files, specify the “-F4” option instead of “-Fx”. If
you use relative, sequential, or XML data files, use the
“-Fa” option instead. Use the “-Fo” option to specify the
directory in which the data dictionaries should be placed.

-F4 This option tells the compiler to build Version 4 data
dictionaries (XFD files) for every indexed data file in the
FDs of the program. This older version of the XFD files
is compatible with Acu4GL Version 5.x and earlier. To
build Version 4 XFDs for every indexed, relative, and
sequential data file in your FDs, combine “-F4” with
“-Fa”, as in “ccbl -F4 -Fa”.

Runtime Configuration Variables 8-5
Note: Most configuration variables can be read with the ACCEPT FROM
ENVIRONMENT verb. If the variable to be read is numeric, the receiving
field must be defined either as a numeric field or as an alphanumeric field
of five or more characters. If it is defined as alphanumeric and is longer
than five characters, the value that is read from the environment will
occupy the leftmost five characters of the field and the remainder will be
space-filled.

4GL_2000_CUTOFF

This variable is used to implement “date windowing” for Acu4GL. This
variable determines which two-digit years will be considered to be in the
twentieth century and which two-digit years will be considered to be in the
twenty-first century.

This variable accepts a two-digit value.

• Two-digit years that are smaller than this value are considered part of the
twenty-first century (“2000” is added to these dates).

• Two-digit years that are equal to or larger than this value are considered
to be in the twentieth century (“1900” is added to them).

The default value for this variable is “20”.

4GL_8_DIGIT_CUTOFF

This variable determines whether to use the 4GL_2000_CUTOFF for dates
that don’t use a format string and that are 8 digits. Setting this variable to “1”
causes Acu4GL to apply the 4GL_2000_CUTOFF logic for 8-character-long
dates. The default value is “0” (off, false, no). This configuration variable
can also take values of “1” (on, true, yes).

8-6 Compiler and Runtime Options
4GL_COLUMN_CASE

This variable causes the Acu4GL product to leave the case of the field names
found in the XFD unchanged. Normally all field names are converted to
lower case by Acu4GL (except for Oracle, which converts all values to upper
case), and all hyphens are converted to underscores.

• Valid values for this variable are UNCHANGED and LOWER.

• The default value is LOWER, which means that field names are
converted to lower case and hyphens are converted to underscores.

If this variable is set to “Unchanged”, all field names are used unchanged
when the database table is created. Be aware that hyphens are not converted
to underscores in this situation. Most databases do not accept hyphens in
column names, so the XFD must be modified by hand to replace hyphens
with underscores.

4GL_COMMIT_COUNT

The value of 4GL_COMMIT_COUNT indicates the conditions under which
you want to issue an automatic COMMIT−WORK operation. Valid values
are:

4GL_COMMIT_COUNT = 0 (Default)

When you set this variable to “zero”, the runtime tracks the number of logical
locks that are currently in effect. When the number of logical locks reaches
zero, the runtime assumes that a transaction is complete and issues a
COMMIT statement.

4GL_COMMIT_COUNT = n

When you set this variable to a nonzero value, the runtime tracks the number
of WRITE, REWRITE, and DELETE operations, until the value of
4GL_COMMIT_COUNT is reached, at which time the runtime issues a
COMMIT statement. The READ, START, and READ NEXT operations do
not count toward this total, because the runtime is tracking data-altering

Runtime Configuration Variables 8-7
operations rather than logical record locks. The disadvantage of this method
is that when a COMMIT is issued, any record locks held by the runtime are
released.

4GL_COMMIT_COUNT = –1

No commit is issued by the Acu4GL product. When
4GL_COMMIT_COUNT is set to “-1”, two alternate ways to perform a
commit or rollback are available:

1. Call sql.acu with COMMIT WORK or ROLLBACK WORK.

2. Use the COBOL verbs COMMIT and ROLLBACK, available in
ACUCOBOL-GT.

4GL_COMMIT_COUNT is set to “-1” automatically when you use the
transaction management facilities available in the ACUCOBOL-GT
compiler. A COMMIT WORK is, however, issued on exit from the runtime
(for example, on execution of a STOP RUN).

Examples
4GL_COMMIT_COUNT 0

A commit will be issued when no locks are held, either because all files that
had locked records have been closed, or because a COBOL COMMIT verb
has been issued. This is the default value.

Note that some data sources lose the current row when a COMMIT or
ROLLBACK is executed. For these data sources, a setting of “0” for
4GL_COMMIT_COUNT can adversely affect performance.

4GL_COMMIT_COUNT n

A commit will be issued after n operations. WRITE, REWRITE, and
DELETE count towards n; READ, START, and READ NEXT do not.

4GL_COMMIT_COUNT –1

No commit will be issued by the Acu4GL product. When
4GL_COMMIT_COUNT is set to “-1”, the only way to perform a commit or
rollback is to use the COBOL verbs COMMIT and ROLLBACK.

8-8 Compiler and Runtime Options
4GL_COMMIT_COUNT is set to “-1” internally when you use the
transaction management facilities available in ACUCOBOL-GT.

A COMMIT will, however, be issued on exit from the runtime (for example,
on execution of a STOP RUN).

Note: 4GL_COMMIT_COUNT can be set only in the configuration file.
It cannot be set programmatically.
4GL_COMMIT_COUNT is available only in the Acu4GL for ODBC and
Acu4GL for DB2 interfaces.

4GL_CONVERT_DATE_ZERO

If your data uses dates as part of Oracle or Informix database keys, the dates
cannot be written as NULL or illegal values. To write data that includes
NULL or illegal values, Acu4GL converts the NULL or illegal date values
used in keys to a value of “01/01/01” when writing data to Oracle.
Unfortunately, the code would not make a similar conversion when reading
the same record, and those records written with “01/01/01” were not found.
This could easily result in writing a record that cannot be read or deleted.
When the 4GL_CONVERT_DATE_ZERO variable is set to the default
setting “CONVERTED”, Acu4GL is able to locate and return those records
written using the date “01/01/01”. This functionality can be disabled by
setting the variable to “UNCHANGED.”

4GL_DB_MAP

This variable enables you to set one map at a time, until all of the desired
maps are set, by using FILE-PREFIX as a list of directories, each of which
maps to a different database. Note that in this case “database” refers to
“collection of tables” rather than distinguishing between (say) Oracle and
SQL Server.

The syntax of the value of 4GL_DB_MAP is:

directory = database

Runtime Configuration Variables 8-9
where directory is matched against the file specification, and database is
used when a directory matches. For example, if you have two databases,
data01 and data02, and have COBOL programs written that reference data
files in /home/dataA and /home/dataB, you can set 4GL-DB-MAP as
follows:

4GL-DB-MAP /home/dataA = data01
4GL-DB-MAP /home/dataB = data02

When the runtime attempts to open a file with a directory specification of
/home/dataA, Acu4GL uses the table in database data01.

By setting this variable to blank, all maps will be reset to nothing, so no
mapping will be performed. In this case, the Acu4GL interface behaves as it
has always done in the past.

Currently, this feature is available with the following Acu4GL interfaces:
MSSQL and Sybase. Any special instructions will be included in the section
describing support.

See Also

The 4GL_USEDIR_LEVEL variable, which determines how many levels
of directory information to use as part of a table name. 4GL_DB_MAP
interacts with 4GL_USEDIR_LEVEL, in the following way:

1. 4GL_DB_MAP is tested first, to determine which database to search for
the table.

2. Then 4GL_USEDIR_LEVEL is used to change the final name of the
table.

4GL_EXTRA_DB_COLS_OK

4GL_EXTRA_DB_COLS_OK allows the database table to have more
columns than the COBOL program’s corresponding file descriptor.

If the 4GL_EXTRA_DB_COLS_OK variable is set to “True” (on, yes), its
default value, the number of columns in the database table do not have to
match up with the number of fields in the COBOL program that is accessing

8-10 Compiler and Runtime Options
the table. The database table can have more columns than the COBOL
program references; however, the COBOL program may not have more
fields than the database table.

Ensure that these “extra” columns are set correctly when new rows are added
to the table. This is database-dependent. For example, under Sybase, the
columns should either have a default value or should allow NULL. Ensuring
that the column value is set is important because the SQL generated by the
Acu4GL interface will not reference the extra columns when inserting rows.
This configuration variable can also take values of “False” (off, no).

Note: Only the Acu4GL products for Sybase and Microsoft SQL Server
support this variable. This behavior is the default for Informix and Oracle.

4GL_FULL_DATA_TEST

The configuration variable 4GL_FULL_DATA_TEST allows you to specify
whether an entire field is tested for illegal data or if only the first byte is
tested. The default value is “False” (0, off, no), meaning that only the first
byte of data is tested. However, if you set 4GL_FULL_DATA_TEST to
“True” (1, on, yes), the entire field is tested for illegal data.

4GL_IGNORED_SUFFIX_LIST

This variable is a space-delimited list of case-independent suffixes to ignore
when opening Microsoft SQL Server tables, DB2 tables, or tables in an
ODBC-compliant application.

The standard syntax for Microsoft SQL Server tables is
server.database.owner.table, with a dot (“.”) as the separator. This syntax
causes the filename “idx1.dat” to be interpreted as “the table dat owned by
the user idx1.” By setting this variable (which must be set in the
configuration file, and cannot be set via SET ENVIRONMENT), the
Acu4GL for Microsoft SQL Server product will ignore the listed suffixes.

There can be up to 10 ignored suffixes (more than that are not kept internally,
so will be ignored.) The default value for this variable is “dat”.

Runtime Configuration Variables 8-11
Example
4GL_IGNORED_SUFFIX_LIST dat idx txt

4GL_ILLEGAL_DATA

4GL_ILLEGAL_DATA determines how COBOL data that is considered
illegal by the database will be converted before it is stored in the database.

The default value is NULL. This causes all illegal data (except key fields) to
be converted to null before it is stored.

The value CONVERTED causes the following conversions to occur:

Illegal data in key fields is always converted, regardless of the value of this
configuration variable.

4GL_JULIAN_BASE_DATE

This variable sets the base date to be used for Julian date calculations. It is
used in conjunction with the DATE directive.

To define your own base date for Julian dates, set this variable to a date
having the format YYYYMMDD.

The default value is set internally at 01/01/4713 BC. (Dates other than the
default must be greater than 01/02/4713 BC.)

For example, suppose your COBOL program uses dates in the form of the
number of days since 12/31/1899. If you want to store these dates in a
database accessed by Acu4GL, you can set your DATE directives to be

Illegal LOW-VALUES: minimum possible value
(0 or -99999...)
minimum possible date value (01/01/01)

Illegal HIGH-VALUES: maximum possible value (99999...)
maximum possible date value (database dependent)

Illegal SPACES: zero (or 01/01/01 for a date field)

8-12 Compiler and Runtime Options
$XFD DATE=JJJJJJ (make sure that the number of characters matches your
date field). Then you should set the runtime configuration variable
4GL_JULIAN_BASE_DATE to “18991231”.

If you are using the runtime intrinsic functions that work with Julian dates,
you should set the 4GL_JULIAN_BASE_DATE variable to “December 31,
1600” using the Gregorian calendar.

4GL_USEDIR_LEVEL

This variable provides a method of mapping filenames (with directory
information) to table names. 4GL_USEDIR_LEVEL allows you to use files
of the same name, which would normally go into separate directories, as
separate names in a single database. This variable determines how many
levels of directory information to use as part of the table name.

• If set to the default value of “0”, all directory information is removed
from the filename before it is used as a table name.

• When set to negative values, nothing is done differently.

• When set to a positive value, the number determines how much directory
information to keep.

For example, given the file /home/data1/gl/master.dat, the following values
result in the given table name:

This variable has an upper limit of 127 characters and is currently available
with the following Acu4GL interfaces: MSSQL and Sybase. Any special
instructions will be included in the section describing support.

4GL-USEDIR-LEVEL Final resolved name

0 master.dat

1 glmaster.dat

2 data1glmaster.dat

3 or largerhomedata1glmaster.dat

Runtime Configuration Variables 8-13
See Also

The 4GL_DB_MAP variable, which enables you to set one map at a time.
4GL_USEDIR_LEVEL interacts with 4GL_DB_MAP in the following way:

1. 4GL_DB_MAP is tested first, to determine which database to search for
the table.

2. Then 4GL_USEDIR_LEVEL is used to change the final name of the
table.

4GL_WHERE_CONSTRAINT

4GL_WHERE_CONSTRAINT allows you to override any value given in the
external variable A4GL-WHERE-CONSTRAINT. This configuration
variable can have a value with any length (limited only by machine memory).
If a value is set in 4GL_WHERE_CONSTRAINT, any value in the external
variable is ignored. See section 9.1.2, “The WHERE Constraint,” for
information on the external variable.

DEFAULT_HOST

If you are opening an existing file, most file systems linked into the runtime
will be searched for the named file. If, however, you are creating a new file,
you will need to tell the runtime which file system to use. You accomplish
this with one of two configuration variables; the first is:

DEFAULT_HOST filesystem

This will designate the file system to be used for newly created files that are
not individually assigned. If this variable is not given a value, the Vision file
system is used.

Example
DEFAULT_HOST x

means that all new files will be x files unless individually assigned to another
file system. For example,

8-14 Compiler and Runtime Options
 DEFAULT_HOST INFORMIX

means that all new files will be Informix files, unless they are individually
assigned to another file system.

The possible values for x are the following:

• INFORMIX

• ORACLE

• MSSQL

• ODBC

• DB2

• SYBASE

• EXTFH

See also

The filename_HOST variable, which specifies the file system to be used for
one specific file

filename_HOST

The second variable that can be used to assign a newly-created file to a file
system is filename_HOST. This configuration variable is used to assign an
individual data file to a file system. Any file so assigned will use the
designated file system, and not the one specified by DEFAULT_HOST.

Substitute the base name of the file for filename. The name you substitute
should not include any directory names and should not include a file
extension.

Runtime Configuration Variables 8-15
Example

For example, if the file CUSTFILE were the only file you wanted to assign to
the Vision file system, and all other files were to be Informix files, you could
specify:

DEFAULT_HOST INFORMIX
CUSTFILE_HOST VISION

in the configuration file. Other possible values for filename_HOST include:

• ORACLE

• MSSQL

• ODBC

• DB2

• SYBASE

• EXTFH

See also

The DEFAULT_HOST variable, which specifies the file system to be used
for all files not specified by filename_HOST.

You can use DEFAULT_HOST and filename_HOST in combination to
assign your new files in a default with exceptions manner. For example, the
following directives:

DEFAULT_HOST VISION
afile_HOST ORACLE
bfile_HOST ORACLE

mean that all new files except afile and bfile will be assigned to Vision, and
those two files will be assigned to Oracle.

Now suppose myfile1a and myfile1b both reside in mydb1, and myfile2a and
myfile2b both reside in mydb2. With the following directives:

DEFAULT_HOST VISION
a-mssql-database mydb1

8-16 Compiler and Runtime Options
myfile1a-HOST mssql
myfile1b-HOST mssql
myfile2a mydb2.dbo.myfile2a
myfile2b mydb2.dbo.myfile2b
mydb2-HOST mssql

the runtime will use the SQL Server interface for myfile1a, myfile1b,
myfile2a, and myfile2b and will find all the tables in the correct database.
When the COBOL program opens myfile2a, the runtime translates that name
to mydb2.dbo.myfile2a and looks at the basename to determine the
filesystem to use (mydb2). It then looks for mydb2-HOST to determine
which filesystem to send the file requests to.

You can change the values of the filename-HOST and DEFAULT_HOST
variables during program execution by including the following in your code:

SET ENVIRONMENT “filename_HOST” TO filesystem

or
SET ENVIRONMENT “DEFAULT_HOST” TO filesystem

This enables you to change file systems during the execution of your
program. (This is not the typical way to specify a file system; it is usually
designated in the runtime configuration file and is not changed in the
COBOL program.)

FILE_TRACE

This variable allows you to start file tracing without opening the debugger.
Set this variable to a non-zero value to save information about all file OPENs,
READs, and WRITES in the error file. This is equivalent to specifying “tf n”
from the debugger (where n is an integer). The default is “0.” See section
3.1.4, “File Tracing,”of the ACUCOBOL-GT User’s Guide for more
information about the file trace feature.

Runtime Configuration Variables 8-17
XFD_DIRECTORY

XFD_DIRECTORY tells the runtime system the name of the directory that
contains the data dictionaries built by the ACUCOBOL-GT compiler. The
default value is the current directory.

Example

To tell the runtime that the dictionaries are stored in the directory /usr/
inventory/dictionaries, enter the following:

xfd–directory /usr/inventory/dictionaries

Note: This configuration variable is ignored if you have specified a search
path for XFD files using the XFD_PREFIX configuration variable.

See also

XFD_PREFIX runtime configuration variable, which enables you to specify
a path to search for XFD files. XFD_PREFIX extends the functionality of
XFD_DIRECTORY.

See section 8.1, “Compiler Options,” for information about the “-Fo”
option, which tells the compiler where to put the dictionaries. Unless you
have moved the dictionaries, you should use the same value in XFD_PREFIX
(or for XFD_DIRECTORY) that you used with the “–Fo” option.

XFD_MAP

XFD_MAP tells the runtime system to associate certain filenames with a
particular XFD. This enables you to use one XFD for many different files.
You can use XFD_MAP to add or replace the existing value depending, on
the setting of the XFD_MAP_RESETS variable.

The XFD_MAP variable has this syntax:
XFD_MAP [pattern = base-xfd-name] ...

8-18 Compiler and Runtime Options
where pattern consists of any valid filename characters and may include “*”
or “?”. These two characters have special meanings in the pattern:

For example:

Note that XFD_MAP cannot be read from the ACCEPT FROM
ENVIRONMENT statement.

XFD_MAP_RESETS

This configuration variable determines whether setting the XFD_MAP adds
to or replaces the existing value. When this variable is set to “0” (off, false,
no), setting the XFD_MAP adds new value patterns to the end of the existing
value. When it is set to “1” (on, true, yes), setting the XFD_MAP replaces
the existing value with a new value. The default value is “1” (on, true, yes).
This variable may be useful if you need to include multiple XFD_MAP lines
in a configuration file, and want to avoid setting and resetting the variable.
When multiple lines exist, all patterns are used in the order they are listed.

XFD_PREFIX

When this variable is assigned a value, it is used to locate the XFD file, and
the variable XFD_DIRECTORY is ignored. This variable enables you to
define a specific series of directories to search for XFD files, rather than

* matches any number of characters

? matches a single occurrence of any character

CUST???? matches CUST0001 and CUSTOMER;
does not match CUST001 or CUST00001

CUST* matches all of the above

CUST*1 matches CUST001 and CUST0001 and CUST00001;
does not match CUSTOMER

*OMER matches CUSTOMER;
does not match CUST001 or CUST0001

Runtime Configuration Variables 8-19
indicating only one. The runtime searches each directory in the order
specified until an XFD file matching the name of the desired file is found and
then assumes that is the correct file.

Therefore, when using the XFD_PREFIX variable, be aware that the runtime:

• Searches each named directory and not its subdirectories.

• Stops searching once a matching file name is found, even if other files of
the same name are located in a different directory later in the series.

• Does not validate that the file specifications (such as key or record size
parameters) of the XFD file match those in the COBOL program. Be
sure the correct file you want to use is in the path specified.

You can specify a directory path that contains embedded spaces if you
surround the path with quotation marks. You separate entries using a
semi-colon (;). For example:

XFD_PREFIX C:\"Sales Data";C:\Customers

You can specify up to 4096 characters for this variable.

Note: The default for XFD_PREFIX is empty. If this variable is set to any
other value, the configuration variable XFD_DIRECTORY (in which you
specify only one directory) is ignored.

See also

XFD_DIRECTORY runtime configuration variable

Sections 5.2.1 and 5.2.2 in the ACUCOBOL-GT User’s Guide for more
information about client-enabled runtimes and remote notation.

8-20 Compiler and Runtime Options

9
 Performance and
Troubleshooting
Key Topics

Performance Issues ... 9-2
Troubleshooting ... 9-11
Compiler Errors .. 9-12
Compiler Warnings ... 9-14
Retrieving Runtime Errors.. 9-15

9-2 Performance and Troubleshooting
9.1 Performance Issues

This chapter provides guidelines for improving system performance. Also
included is an alphabetical listing of the error messages that can occur during
the compilation of your program. Each message is followed by an
explanation and a recommended recovery procedure.

Adding a relational database management system brings significant
complexity to any computer system. A few key guidelines may help to
improve the performance of the system and prevent problems as the database
grows.

9.1.1 Guidelines

The following sections describe some areas for you to consider as you
prepare your database and your COBOL program.

Guideline 1 - Database administrator

A site with a database management system needs a Database Administrator
(DBA).

The administrator is critical in any large database installation. The DBA
checks performance statistics and memory usage, performs general
maintenance and backup for the database, initiates traces, executes database
utilities, sets buffer sizes, determines how often buffers are flushing, and, in
general, understands how database settings and events affect overall
performance.

The DBA also performs periodic tuning of the database, including:

• using monitoring tools

• allocating table spaces

• examining output of the query optimizer to ensure that the most efficient
paths are being used

• updating table statistics

• creating indexes

Performance Issues 9-3
If a site experiences a performance problem, this usually means there is a
bottleneck somewhere in the system. The DBA can help to isolate the
bottleneck. Once the bottleneck is identified, the site can determine whether
to apply more resources or correct the situation that is stressing the existing
resources.

Guideline 2 - Understand COBOL operations and database operation

Some COBOL operations are particularly stressful to a database. The more
the application uses these operations, the more likely it will slow the
performance of the RDBMS.

The more you understand about your RDBMS and how it operates, the more
you can help your COBOL applications to work efficiently with it.

File Input and Output

Consider these standard COBOL I/O operations:

• READ

• REWRITE

• WRITE

• DELETE

• OPEN

Each has an associated cost in terms of database performance. Each asks the
database to do something that takes time. So if there are I/O operations that
are optional in your COBOL application, you may want to remove them.

For example, let’s examine file OPENs.

Developers sometimes OPEN and CLOSE files unnecessarily, using the
OPEN–CLOSE pairing as a way to demarcate each new procedure:

OPEN file-A
procedural code
CLOSE file-A

9-4 Performance and Troubleshooting
But it’s important to know that file OPENs are expensive in terms of
performance. If you can eliminate non-essential OPENs from portions of
your application, you can probably make an improvement in processing
speed.

READ operations can also affect performance. All COBOL I/O is based on
key indexes. Examining the output of your query optimizer allows you to
determine if the most efficient execution path is being used for READs. The
execution path for a given query can change as your data changes and as the
size of the tables changes. It is also affected by database initialization
parameters and any statistical information that you may have gathered on
your tables. It might be helpful to know that, typically, the index path is the
most efficient for Acu4GL® applications.

Transactions

Large transactions are also very expensive. The main problem here is that
the database will hold locks on indexes and rows throughout an entire
transaction. Thus, the database is creating additional overhead for an
extended period of time if the transaction is lengthy.

In addition, complex information tracking must take place to ensure that
transactions can be successfully rolled back.

Often application designers decide to err on the side of safety when applying
transaction management to a mature application. Which operations should
be included in a single transaction? The safe approach is to group everything
that is related into one transaction. But this scheme is expensive—even more
so when a database is involved. The lengthier the transaction, the longer the
locks are held and system resources are tied up. The extensive data
verification in COBOL programs only prolongs this.

If performance is an issue, give some thought to dividing each transaction
into smaller and more efficient subgroups.

Tables with multiple indexes

If you use tables with multiple indexes, keep in mind that when a record is
written or updated, locks are put onto all of the indexes, and they are all
basically rewritten during the course of the write/update. This is a costly

Performance Issues 9-5
process. There may be multiple columns per index, and multiple indexes per
table. Each rewrite implies a certain amount of wait time. Tables with a large
number of indexes can be slow on writes/updates and possibly other
operations in the database query optimizer become confused.

There are two things you can do in this circumstance:

• Restructure your data

• Use the Vision file system for some of your data

Restructuring the data

The benefits of data restructuring may be significant.

For example, if you have any situations in which two indexes start out with
the same column or set of columns, you may be able to improve performance
appreciably by changing your data definition.

Suppose two indexes both start with MONTH, DAY, YEAR. These identical
first three columns can cause the RDBMS’s query optimizer to choose the
wrong index, in which case you will generate a significant amount of
unnecessary and unproductive overhead. Restructuring one of the indexes
can make a difference.

Using Vision files

If you cannot restructure your data but are finding certain operations to be too
expensive, you might want to consider moving some data into the Vision
indexed file system.

Guiding the data searches

You can guide the data searches that result from database queries, and thus
improve performance, by making use of an external variable called
A4GL_WHERE_CONSTRAINT. This process is explained in section 9.1.2,
“The WHERE Constraint.”

9-6 Performance and Troubleshooting
Guideline 3 - Program and database interaction

A database can interact with your COBOL program in surprising ways.
When you introduce a database to a mature COBOL application, your
application may experience errors you have not seen before. Being aware of
this possibility helps you to prepare your response.

For example, your existing application without the database may rarely
exceed the limit on the number of data files that can be open simultaneously.
But when you add a database, you increase the likelihood of this
significantly. This is because the query processing may often require
temporary tables. Also, the ORDER BY clause (used in SQL statements to
sequence retrieved data) opens temporary work files. So you may find that
these files cause you to reach the limit sooner. (Note that proper tuning of the
query optimizer can reduce the number of temporary files required.)

When you upgrade to a new version of the RDBMS, be careful. The new
software components may interact with your applications differently than
their predecessors did. This is to be expected. It’s important to rerun your
pre-installation simulations (see Guideline 4 - Plan for growth) to
determine whether your system resources are still adequate. Investigate any
differences in the two simulations. You may have to make adjustments to
compensate for the differences in the RDBMS versions.

Upgrading or switching to a new database may also mean that you need to
modify your makefile to coordinate with the settings of the new database.
You can edit your makefile manually, or use one of the editing tools
distributed with Acu4GL. For more information, see the appendix specific to
the Acu4GL interface you are using.

If you notice a change in performance with a new release of your RDBMS,
keep in mind that certain database settings can have a significant effect on
speed. Fine-tuning your settings can make a difference.

Several other options to help you improve performance are listed below:

• Try one of the many third-party monitoring tools available.

• Break up data onto several connected hard drives to free up space and
resources.

• Limit the number of indexes you have assigned with each database table.

Performance Issues 9-7
Guideline 4 - Plan for growth

We cannot emphasize enough the importance of planning ahead for growth.
You need to be able to predict the system resources that your application will
require when it reaches a full load, both in terms of users and database size.

Before you choose and install hardware, it is best to run a simulation. Your
hardware vendor or RDBMS vendor can help you to simulate a large number
of users on a given platform with a given RDBMS.

Setting up and running a simulation that includes your own application does
cost money. But if you are moving into an installation of any size, the
consequences of not knowing what to expect can be far greater than the cost
of the simulation.

A potentially costly mistake is to test in your office with a small database and
a small number of users. Databases respond differently to small amounts of
data and a small number of users than they do to large amounts of data and a
large number of users. Functionally, the database works differently as the
load increases. You might think of this adjustment as switching into a
different gear. Significant changes in the load on your database can lead to
large increases in overhead. The behaviors and loads you will encounter as
the database expands cannot be determined from a linear projection based on
the smaller scenario.

9.1.2 The WHERE Constraint

The Acu4GL WHERE constraint is an external variable that gives the
developer some control over the data searches that result from database
queries. It can help to improve performance in some situations. This section
describes its purpose and shows how it is implemented.

COBOL data processing is based on keyed READ operations following a
positioning operation. Records are read until the key value being processed
changes. Because traditional COBOL data processing is based on a B+ tree
file system, the overhead for such operations is relatively minor.

9-8 Performance and Troubleshooting
RDBMS data processing introduces a new level of complexity to data
processing. The database’s query optimizer receives the SQL query for the
COBOL operation being performed and then builds a working set of data that
satisfies that query. Because the database optimizer has many different
possible execution methods, this can result in poor performance if the
optimizer chooses a query execution path that is less than optimal.

Performance degradation may also result from the fact that queries generated
by COBOL operations result in unbounded index queries. Unbounded
queries are generated because COBOL positioning operations (Start Not Less
Than and Start Not Greater Than) provide only one of the bounding
conditions for the working set, instead of both an upper and lower boundary.

As an example, consider the case where an application needs to process all
items in a warehouse on aisle 17, shelf 8, and bin 2. If each of these items is
a field in a key, the COBOL program might generate the following query for
a READ operation:

Note: The following example applies to the Acu4GL for Oracle product.
The SQL generated will be different for the different products.

SELECT * FROM warehouse_items WHERE
 aisle = 17 and
 shelf = 8 and
 bin = 2
ORDER BY aisle ASC, shelf ASC, bin ASC;

This query achieves the desired result but has one problem. For the COBOL
program to end its processing, it must read a record that has a new value for
bin. The COBOL application has no way of specifying an upper boundary
for the read operation, so when all rows of data from bin 2 have been read,
Acu4GL will attempt to read the next record by generating the following
query:
SELECT * FROM warehouse_items WHERE
 aisle = 17 and
 shelf = 8 and
 bin > 2
ORDER BY aisle ASC, shelf ASC, bin ASC;

Performance Issues 9-9
This query will cause the database query optimizer to gather all records
pertaining to items on the remainder of shelf 8 to build its working set. This
is excessive from the COBOL application’s point of view, because the
COBOL program needs only the first record of the working set to determine
that it has finished processing.

This problem can be even more serious if the application is processing the
last bin on a shelf. Because there are no more bins on that shelf, the query
would drop down a level and generate the following:
SELECT * FROM warehouse_items WHERE
 aisle = 17 and
 shelf > 8
ORDER BY aisle ASC, shelf ASC, bin ASC;

This would select all items on the remainder of that aisle of the warehouse,
which could be a very large working set if each aisle had 130 shelves!

In reality, most of the time the database query optimizer will not build the
entire working set if it has been properly tuned, but will instead perform
INDEXED READS to process the query. This means that the query
optimizer will traverse an index tree to retrieve the records, much as COBOL
index files do, as opposed to using combinations of indexes and sort and
merge operations.

It can be helpful for the COBOL developer to influence precisely which
information is to be returned. If the application developer knows at compile
time (or before the query is executed) the precise scope of the record
processing that needs to be performed by the read operations, the developer
can more finely tune the information being retrieved.

Acu4GL provides a method by which the COBOL programmer can provide
additional information to the database query optimizer by providing more
specific selection information to the Acu4GL product. This selection
information is added to the WHERE clause of the SQL queries generated by
the Acu4GL product. This can be particularly useful in providing upper
boundaries to queries being generated, with the result that the working set is
smaller.

The developer may provide upper boundaries on the key segments for a
select, or any other selection criteria needed to constrain the working set to
just the desired subset of rows. This additional information is added to

9-10 Performance and Troubleshooting
generated queries with the AND condition. It is not possible for the
application developer to specify a larger working set than would otherwise
have resulted. The developer may only constrain the working set to a smaller
subset.

Using WHERE constraints from COBOL

The following steps are required for using the WHERE constraint.

Step 1: Declare an external variable.

To make use of WHERE constraints from COBOL, the application must
declare an external variable for communication with the Acu4GL product.
This variable is declared as follows:

77 a4gl-where-constraint pic x(300) external

Step 2: Modify your COBOL procedures.

Your COBOL application should move the information that you want added
to the WHERE clause to the new external variable before a COBOL
positioning operation such as START or READ is performed. The additional
constraint will then be applied to any SQL read query performed on that file
until a new positioning operation is performed.

The additional query information is also stored in Acu4GL’s cursor cache,
so that if the same read conditions occur in later processing, the existing
closed cursor can be reused with new bind variables instead of being
regenerated.

Be sure to fill the external variable before a positioning operation (START or
READ). The WHERE constraint affects only READ NEXT operations
preceded by a positioning operation. The WHERE constraint does not affect
a READ NEXT that was not preceded by a positioning operation (such as a
READ NEXT without a START immediately after opening a file).

Example

In your COBOL program you include this statement:

Troubleshooting 9-11
Move "ftest_key > 3 and ftest_key < 6" to
 A4GL_WHERE_CONSTRAINT.
Inspect A4GL_WHERE_CONSTRAINT replacing trailing spaces by
 low-values.
START FTEST-FILE KEY NOT LESS FTEST-KEY.

These results occur:
CURSOR 0:
SELECT *,ROWID FROM ftest WHERE (ftest_key1_seg1 = ? AND
ftest_key1_seg2 >= ?) AND (ftest_key > 3 and ftest_key < 6)
ORDER BY ftest_key1_seg1 ASC, ftest_key1_seg2 ASC;

CURSOR 1:
SELECT *,ROWID FROM ftest WHERE (ftest_key1_seg1 > ?) AND
(ftest_key > 3 and ftest_key < 6) ORDER BY ftest_key1_seg1 ASC,
ftest_key1_seg2 ASC;

Limitations

• WHERE constraints added by the COBOL program may not be portable
between databases.

• The application may specify conditions of such complexity that they
confuse the database query optimizer, resulting in poor performance. Be
sure to examine the results of the optimizer trace facilities to ensure
optimal performance.

• Take care to prevent the COBOL application from sending information
that will result in a syntax error that will not be detected until runtime.

• The WHERE constraint should reference only columns in the primary
table.

9.2 Troubleshooting

The remainder of this chapter lists the possible error messages that can occur
during compilation. Recommended recovery procedures are given for each
situation.

9-12 Performance and Troubleshooting
Note: It is possible that you will experience slower performance simply
because the Acu4GL application is limited because of the rules of COBOL.
If you want to keep track of performance levels, there are many third-party
tools available to help monitor performance.

9.2.1 Compiler Errors

The errors listed below could occur when you compile with the “-Fx” option.
In some cases, the data dictionary cannot be built until you remove the
error condition. (Data dictionary errors do not, however, prevent the object
code from being generated.)
Bad picture for DATE: keyname

The PICTURE must be six or eight bytes in length, either alphanumeric or
numeric with no sign.
Data missing from key segment keyname

This occurs when some part of the named key cannot be placed in the
dictionary; the dictionary cannot be generated in this situation.

This usually occurs because of filler. For example:
01 my-record.
 03 my-key.
 05 filler pic xx.
 05 field-1 pic xx.

If my-key is declared as a record key, you will receive this error because the
area of the key described by filler is not included in the dictionary.

To correct this error, ensure that every character that is part of the key is
included in some field that is part of the dictionary. Use an XFD to give a
field name to each filler, to ensure that fillers are included:
 01 my-record.
 03 my-key.
*((xfd name=myfiller))
 05 filler pic xx.
 05 field-1 pic xx.

Troubleshooting 9-13
Directive word too long: keyname

With one exception the words contained in a directive, including field names,
cannot exceed 30 characters. The value of a WHEN directive may consist of
up to 50 characters.

GROUP expected after USE

The USE GROUP directive must include both words.

Missing ‘=’ in XFD directive

The NAME directive requires an equal (“=”) sign. The WHEN directive
requires a comparison operator.

Missing field name after WHEN

A valid field name, or the word “OTHER”, must be specified with the
WHEN directive.

xxx: unknown XFD directive

The compiler did not recognize the directive you used. The xxx is the
directive found. Check for a typographical error.

Value should be a name: xxx

This error occurs when the item to the right of an “=” should be a name, and
it isn’t. For example, it would be an error to use a quoted string with the
NAME directive: $XFD NAME=some text.

The xxx in the message is the value found.

Value should be numeric: xxx

This error occurs when the item to the right of an “=” should be numeric and
it isn’t. The xxx in the message is the value found.

Value should be a literal: xxx

This error occurs when the item to the right of an “=” should be a literal, and
it isn’t. The xxx in the message is the value found. A literal is either a quoted
string or a numeric integer.

9-14 Performance and Troubleshooting
Variable file name requires File directive

This message occurs when the compiler cannot assign a name to the .xfd file,
because the ASSIGN phrase for the file names a variable file name. In this
case, you must use a FILE directive to name the .xfd file.

WHEN variable xxx not found in record

This happens if you have a WHEN directive that mentions a variable that
doesn’t exist in the record.

9.2.2 Compiler Warnings
xxx not unique in first 30 characters

This message occurs if a field name is not unique within the first 30
characters. The xxx is the name found. You can either change the field name
or apply the NAME directive.

The warning listed below can occur when you compile with the “-Zx” or
“-Fx” option. The data dictionary will be built, and Acu4GL will operate
correctly. The warning informs you of a special database situation that is not
advisable.

Field xxx causes duplicate database data

This warning means that your record definition should be restructured. Your
current definition is set up in such a way that:

• you have overlapping key fields, and

• both keys must be represented in the database as separate items.

Acu4GL will handle this situation correctly. It will keep the overlapping
keys updated simultaneously, so that they always have the same value.
However, the warning alerts you that you have the same data represented
twice in the database. This is dangerous, because someone at the site might
access the database via SQL and accidentally change only one of the keys.

Here’s an example of the problem and a description of how to correct it (the
example assumes that both key-1 and key-2 have been declared as keys):

Troubleshooting 9-15
01 order–record.
 03 key–1.
 05 field–a pic x(5).
 05 field–b pic 9(5).
 05 key–2
 redefines field–b pic x(3).

This example will generate the warning message.

Because key-2 is a key, it must also be represented in the database. It doesn’t
correspond exactly to any other data field, so it must be entered as a separate
column in the database.

In the COBOL view of the file, key-1 and key-2 overlap. But the
requirements of database storage force the same data (known to COBOL as
field-b) to be physically represented twice in the database. Any updates to
the data from any ACUCOBOL-GT® program will correctly update both
columns. Updates from outside of ACUCOBOL-GT carry no such
guarantee.

In this example, you can correct the situation by breaking field-b into two
columns, so that key-2 corresponds exactly to another data field:
01 order–record.
 03 key–1.
 05 field–a pic x(5).
 05 field–b.
 07 field-b1 pic x(3).
 07 field-b2 pic 9(2).
 05 key–2
 redefines field–b pic x(3).

9.2.3 Retrieving Runtime Errors

You can determine the meanings of your database error codes by referring to
the database documentation. Here are methods for storing the complete error
code and some helpful text that describes it.

You can retrieve a secondary error code by using selected runtime options, or
by calling the library routine C$RERR (described in Appendix I in Book 4,
Appendices, of the ACUCOBOL-GT documentation set). Note that you can
pass two parameters to C$RERR for interface errors (rather than just one).

9-16 Performance and Troubleshooting
The first parameter retrieves the code; the second parameter retrieves a
message associated with the error condition.

Note: For Oracle users: Because 9D takes two bytes and Oracle secondary
errors can be four bytes, the first parameter should be PIC x(6).

You can retrieve runtime errors in three ways, as described in the following
sections:

• Retrieving messages using the “-x” runtime option

• Retrieving messages using the debugger

• Retrieving messages using C$RERR

Unless noted otherwise, these methods apply to all RDBMs supported by the
Acu4GL family of interfaces. For a listing of runtime errors, refer to the
“Troubleshooting” section of the appendix that pertains to your product.

9.2.3.1 Retrieving messages using the “-x” runtime option

At run time, if you specify an error file and use the “-x” option, the runtime
puts the extended error code and some text associated with the error into the
error file. (When run against an Informix database, you’ll see three levels of
error codes in the file: ACUCOBOL-GT error, Informix database error, and
ISAM error.) A value of “zero” for any level means no error at that level.

For example:
runcbl -le errfile -x myprog

where:

-l causes the contents of the runtime configuration file to
be included in the error output

e (or -e) causes the error output to be placed in the file named
immediately after the option

errfile is the user-specified name of the error file

-x causes the secondary error numbers to be included

myprog is the name of your object file

Troubleshooting 9-17
The text of the error would then have this format in the file:
*** File system error value = 3 ***
*** Dictionary (.xfd) file not found***
File error 9D,03 on filename
Dictionary (.xfd) file not found

9.2.3.2 Retrieving messages using the debugger

Occasionally you may receive an error message that means syntax error. (In
Informix, for example, this is error code 201.) You can examine the error file
and determine the cause of the problem if you receive this error code. You’ll
need to rerun the program, specifying the options shown below, and turning
on Trace Files (TF) when execution begins:

runcbl -dle errfile -x yourprog

Notice that the only change from Method One is the “-d” option, which turns
on the debugger. The source code does not need to be compiled in debug
mode.

After you press Enter, you will be at the debugger screen. Enter the
following command:

tf n

where n is a number from 1 to 9. The higher the number you enter, the more
debugging information you receive. See Chapter 3 of the ACUCOBOL-GT
User’s Guide for more information on using the debugger.

“FILE TRACE ON” is echoed on the screen. Now enter the following
command:

g

You are now running your program normally. Proceed until you encounter
the error condition, and then exit. Your error file contains the error
information described in Method One, above, and also contains the SQL
queries that the Acu4GL product constructed. Examining these queries can
help to determine the cause of the syntax error. Please contact Technical
Services if you need help.

9-18 Performance and Troubleshooting
9.2.3.3 Retrieving messages using C$RERR

You might want to separate the error codes and their associated text, and
store them in variables. The variables can then be displayed to the screen or
handled in whatever way you deem appropriate.

You saw an example of the usage of C$RERR in the sample program in
Chapter 2, “Getting Started.” The simplified example shown below uses
the library routine C$RERR with two parameters to retrieve the complete
error code (first parameter) and its associated text (second parameter).

Note: See “For Informix,” at the end of this section, for code that is
specific to Informix.

DATA DIVISION.
 .
 .
working-storage section.
01 file-status pic xx.
01 error-status.
 03 primary-error pic x(2).
 03 secondary-error pic x(40).
01 error-text pic x(40).

PROCEDURE DIVISION.
 .
 .
get-file-err.
call “C$RERR” using error-status, error-text, status-type.
display “FILE ERROR:”, primary-error.
display “DATABASE ERROR:”, secondary-error.
display error-text.
accept omitted.
stop run.

Here’s an example of the output you might get from this:
FILE ERROR: 9D
DATABASE ERROR: 1608

A network error was encountered when results were sent to the front end.
Check the error log for more information.

Troubleshooting 9-19
For Informix

Remember that the extended code can consist of two parts (database error and
ISAM error), separated by a comma. In the example shown below, we use
the library routine C$RERR with two parameters to retrieve the complete
error code (first parameter) and its associated text (second parameter). Then
we use the UNSTRING verb to separate the code into its parts:
DATA DIVISION
 .
 .
 .
working-storage section.
01 file-status pic xx.
01 error-status.
 03 primary-error pic x(2).
 03 extended-error pic x(40).
01 secondary-error pic x(10).
01 isam-error pic x(40).
01 error-text pic x(40).

PROCEDURE DIVISION
 .
 .
 .
get-file-err.
 call "C$RERR" using error-status, error-text.
 unstring extended-error delimited by "," into
 secondary-error, isam-error.

 display "FILE ERROR:", primary-error.
 display "DATABASE ERROR:", secondary-error.
 display "ISAM ERROR:", isam-error.

 display error-text.
 accept omitted.
 stop run.

Here’s an example of the output you might get from this:
FILE ERROR: 9D
DATABASE ERROR: 350
ISAM ERROR: 108
Index already exists on column.

9-20 Performance and Troubleshooting
Using the Informix error number and “finderr”

An additional method, also for Informix only, allows you to take the Informix
error number and use the “finderr” syntax to discover error information.
More information on this syntax can be found in your Informix
documentation.

The syntax is:
finderr xxxxx

(where xxxxx is the Informix error number).

10
 General Questions and
Answers
Key Topics

Introduction ... 10-2
Questions and Answers .. 10-2

10-2 General Questions and Answers
10.1 Introduction

This chapter provides answers to some common questions that can apply to
any RDBMS or ODBC-compliant data source supported by the Acu4GL®
family of interfaces. Be sure to check the appendix pertaining to Acu4GL for
ODBC or your RDBMS for additional information:

Appendix A: Acu4GL for Informix Information

Appendix B: Acu4GL for Microsoft SQL Server Information

Appendix C: Acu4GL for Oracle Information

Appendix D: Acu4GL for ODBC Information

Appendix E: Acu4GL for Sybase Information

Appendix F: Acu4GL for DB2 Information

10.2 Questions and Answers

Question: I can’t seem to get Acu4GL to create the files in my database or ODBC data
source. They keep coming up as Vision files.

Answer: Check to see that the DEFAULT_HOST variable is set in the runtime
configuration file or the environment. Setting DEFAULT_HOST in the
environment overrides the setting in the runtime configuration file.

Enter one of the following commands, depending on your operating system.

For UNIX systems:
runcbl -vv

For Windows systems:
wrun32 -vv

to make sure that the version number of the Acu4GL interface for your
RDBMS is reported. This tells you that the Acu4GL product has been
installed successfully.

Questions and Answers 10-3
Note: In Windows environments, if “-vv” does not return the Acu4GL
product information, make sure the runtime has the name you used and is
the first so-named executable on the PATH, and that the “.dll” is in the same
directory.
If you are running Acu4GL for Sybase, and “-vv” does not return the
Sybase Acu4GL product information, make sure the linked runtime has the
name you used and is the first so-named executable on the PATH. If you
cannot locate a runtime that displays a Sybase Acu4GL product version
number using “-vv”, you must create one by re-linking the runtime. If you
must do that, make sure that USE_SYBASE is set to “1” in the file
“filetbl.c” before you relink.

Question: Can I use both an RDBMS or ODBC data source and Vision at the same
time?

Answer: Yes, you can. In the configuration file, set DEFAULT_HOST to the file
system you want the runtime to use automatically. Then, for select files,
assign them to an alternate file system with the variable filename_HOST.
For example, to put CUSTFILE into a specified RDBMS and everything else
into Vision, you would add:
DEFAULT_HOST Vision
CUSTFILE_HOST name_of_file_system

where name_of_file_system is one of the following: Informix, Microsoft
SQL Server, Oracle, ODBC, Sybase, or DB2.

Question: How can I find out what an error message is?

Answer: If you run your application with the “-x” option, you will receive extended
error numbers that include those returned by your RDBMS or ODBC
application.

Note: For Informix, two types of errors are returned: the Informix error
and the ISAM error.
For Oracle, the error code must include five digits. If your error code does
not already include five digits, you must add leading zeros to complete this
requirement. For example, if your error code is code number 150, the
syntax for this option would be OERR ORA 00150.

10-4 General Questions and Answers
If you have sent the errors to an output file with the “-e” option, the runtime
will also attempt to include the text that explains the errors. You can also use
the C$RERR library routine. You can also retrieve error codes from within
your COBOL program. See the example in section 9.2.3, “Retrieving
Runtime Errors.”

Question: Do my XFD files have to be in the same directory as my object files?

Answer: No. You can instruct the compiler to put the XFD files in an alternate
directory with the “-Fo” compiler option. Then at run time, make sure you
have the configuration variable XFD_PREFIX set to include that same
directory. See Chapter 8, “Compiler and Runtime Options,” for
information on the “-Fo” option and the XFD_PREFIX configuration
variable.

Question: Why aren’t my KEYs being retrieved in the correct order?

Answer: If your KEY field is numeric or alphanumeric, you may have illegal data in
the field. For example, if you’ve used LOW-VALUES or HIGH-VALUES to
mark control records, those values are considered invalid and can cause the
records containing them to be retrieved in an unexpected sequence.

To enable special values such as these to be processed, use the BINARY
directive in front of the key field. This allows data of any classification to be
processed. Either designate an individual field as binary, or specify USE
GROUP, BINARY in front of a group of fields.

The method of storing variables declared as binary is database-specific. For
example, for Informix databases, these are stored as char fields with an extra
leading character that always contains a space. For Oracle databases, to use
another example, variables declared as binary are stored as raw fields. Refer
to your database documentation for information specific to your data source
or RDBMS.

Questions and Answers 10-5
Question: Is it possible to use the same XFD file for data files with different names, if
they all have the same structure? This would be useful when I create several
customer files that use the same record definitions.

Answer: At run time, it is possible to use a single XFD for files that have different
names. For example, suppose a site has customer files that have identical
structures but different names (CUST0001, CUST0002, CUST0003, and so
on). It’s not necessary to have a separate XFD for each file, so long as their
record definitions are the same.

The individual files can all be mapped to the same XFD via a runtime
configuration variable called XFD_MAP. Here’s how it works.

Suppose your COBOL application has a SELECT with a variable ASSIGN
name, such as customer-file. This variable assumes different values (such as
CUST0001 and CUST0002) during program execution.

Before compiling the application, you would use the FILE directive to
provide a base name for the XFD. Suppose you provide CUST as the base.
The compiler would then generate an XFD named cust.xfd. (The compiler
always converts XFD names to lower case.)

To ensure that all customer files, each having a unique name, will use this
same XFD, you make this entry in your runtime configuration file:

XFD_MAP CUST* = CUST

The asterisk (*) in the example is a wildcard that matches any number of
characters. Note that the extension .xfd should not be included in the map.
This statement would cause the XFD cust.xfd to be used for all files whose
names begin with CUST.

The XFD_MAP variable has this syntax:
XFD_MAP [pattern = base-xfd-name] ...

where pattern consists of any valid filename characters and may include “*”
or “?”. These two characters have special meanings in the pattern:

* matches any number of characters

? matches a single occurrence of any character

10-6 General Questions and Answers
For example:

The XFD_MAP variable is read during the open file stage of any Acu4GL
products linked into the runtime.

CUST???? matches CUST0001 and CUSTOMER;
does not match CUST001 or CUST00001

CUST* matches all of the above

CUST*1 matches CUST001 and CUST0001 and CUST00001;
does not match CUSTOMER

*OMER matches CUSTOMER;
does not match CUST001 or CUST0001

A
 Acu4GL for Informix
Information
Key Topics

Getting Started with Acu4GL for Informix ... A-2
Filename Translation ... A-8
Configuration File Variables ... A-9
Informix Performance ... A-13
Technical Tips ... A-18
Supported Features .. A-19
Limits and Ranges .. A-21
Runtime Errors... A-22
Common Questions and Answers .. A-25

A-2 Acu4GL for Informix Information
A.1 Getting Started with Acu4GL for Informix

Important: Micro Focus does not provide the Informix libraries along with
the Acu4GL® product. The Informix Libraries are necessary for providing a
proper connection between Informix and extend products. If you do not
already possess them, please consult your database documentation or
database vendor for information on obtaining these libraries.

You need to order Embedded ESQL for C. If you are using the version 5.1
series, you need the version 5.1 0.UC1.client libraries. If you are using the
version 7.2 series or higher, you need the version 7.2x or higher.

To find out whether you can use a client/server environment to communicate
with other database versions, contact IBM.

Follow the directions provided in your Informix documentation for
installation of the Informix libraries, or, depending on what your arrangement
is with Informix, contact Informix Technical Support for any questions you
may have.

Before you begin using Acu4GL for Informix on a new system, you must
install and configure the Informix RDBMS. Your Informix vendor provides
installation instructions.

Several steps that must be performed before you begin using Acu4GL for
Informix on a new system are:

• Install and configure the Informix RDBMS.

• Install Acu4GL for Informix.

• Designate a database.

Note: Acu4GL for Informix does not support ANSI-mode databases.

• Prepare and compile your COBOL program.

Your Informix vendor provides installation instructions for the Informix
RDBMS.

Please refer to the file SERVERS_7.2 in the release directory of your
Informix distribution for more information about version 7.2, 7.3, and above.

Getting Started with Acu4GL for Informix A-3
A.1.1 Installation Preparation

The Informix Acu4GL product is an add-on module that must be linked with
the ACUCOBOL-GT® runtime system. (Note that your versions of Acu4GL
and the runtime must be the same.) For this reason, you’ll need a C compiler
to install Acu4GL. Acu4GL is compatible with Informix versions 5.x1, 7.2,
7.3, 9 and later.

Note: Please make sure that you have obtained the proper Informix
libraries for your version of Informix. See Section A.1, “Getting Started
with Acu4GL for Informix,” for information on these libraries.

Acu4GL is shipped using either TAR or CPIO format, depending on the type
of machine you have. The label on the product medium tells you which
format has been used.

Create a directory on your machine to hold the product and then type one of
the following commands:
tar xfv device

or
cpio -icvBd < device

In either case, device is the appropriate hardware device name (for example,
/dev/rdiskette or /dev/rmt0).

Note: Sites using Texas Instruments System 1500 should add an uppercase
“T” to the cpio options (“-icvBdT”).

A.1.2 Installation Steps

To install the Acu4GL for Informix product, perform the following steps:

A-4 Acu4GL for Informix Information
Step 1: Install Informix.

Install the Informix RDBMS and make sure it is operational. Micro Focus
does not provide this product. Make sure you install the libraries in the
appropriate directories, based on the Informix documentation.

We recommend that you obtain Interactive SQL (ISQL) or dbaccess if
possible. This is not mandatory, but it will give you quite a bit of flexibility.
ISQL allows you to do database work outside of COBOL, including
interactive queries and reports. ACUCOBOL-GT’s standard file utility,
vutil, cannot be used on Informix tables.

One way to test the installation of Informix is to access Interactive SQL and
examine the stores database.

Step 2: Create a new runtime.

Create a new runtime system that includes the Informix Acu4GL product.

Note: In the following directions, the term “runtime system” refers to the
runtime shared object on systems, where the ACUCOBOL-GT runtime is a
shared object, and to runcbl on other systems, where the runtime is static.
The runtime is a shared object on the following systems: AIX 5.1 and later,
HP-UX 11 and later, and Solaris 7 and later. To check, look at the contents
of the “lib” subdirectory of your ACUCOBOL-GT installation. If the files
“libruncbl.so” or “libruncbl.sl” reside in that directory, the runtime is a
shared object on your system.

2a. Backup

Make a backup copy of your newly installed runcbl or libruncbl.so.

2b. Create a “Makefile.inf” file

The “inf_inst” program can be run to create a “Makefile.inf” file.

Note: Please read the reference section at the start of the “inf_inst” script
for the latest information regarding the “Makefile.ini” and database or
platform differences.

Getting Started with Acu4GL for Informix A-5
1. First, create the Makefile.inf file by entering the following command:

sh inf_inst

in the …/install directory.

2. Next, you are asked to enter the directory where ACUCOBOL-GT is
installed. Type the information and press Enter.

3. After that, you are asked which version of Informix you have installed.
You have four choices:

• For version 5.x1, enter “5”.

• For version 7.2 32-bit, enter “7”.

• For version 7.3 or for version 9, enter “3”.

• For version 7.3 64-bit, enter “4”.

4. Once you have entered the version, add the names of your C routines
(“.o”), if any, to the line starting with “SUBS=”.

Note: The “if_inst” script generates a makefile that may require slight
modifications. Make sure that the FSI_LIBS line in your makefile is
correct.

Now you are ready to relink your ACUCOBOL-GT runtime.

2c. Link the runtime system

1. Make sure you are in the directory containing the ACUCOBOL-GT
runtime system. Then, at the UNIX prompt, enter the following
command:

make clean

to ensure that you have a clean directory in which to build your runtime.

2. Now enter the following command:

make -f Makefile.inf

or

makerun

A-6 Acu4GL for Informix Information
This compiles “sub.c” and “filetbl.c” and then links the runtime system.

2d. Verify the link

1. Enter the following command:

runcbl -vv

2. Check to see that the version of the Informix Acu4GL is reported to
your screen. This will verify that the link was successful.

3. If no Acu4GL version number is displayed, this means that something
isn’t set up properly.

a. Check filetbl.c to make sure that USE_INFORMIX is set to “1”
(Step 2b).

b. Then check Makefile for accuracy (see Step 2c), and relink (Step
2d).

Shared libraries

If you have relinked the ACUCOBOL-GT runtime and receive an error
message of this type when you try to execute it:

Could not load library; no such file or directory

Can’t open shared library . . .

this may mean that your operating system is using shared libraries and cannot
find them. This can occur even if the shared libraries reside in the same
directory in which you are currently located.

Different versions of the UNIX operating system resolve this issue in
different ways, so it is important that you consult your UNIX documentation
to resolve this error.

Some versions of UNIX require that you set an environment variable that
points to shared libraries on your system. For example, on an
IBM® RS/6000® running AIX® 4.1, the environment variable LIBPATH
must point to the directory in which the shared libraries are located. On
HP/UX, the environment variable that must be set to point to shared libraries
is SHLIB_PATH. On UNIX SVR4, the environment variable is
LD_LIBRARY_PATH.

Getting Started with Acu4GL for Informix A-7
Be sure to read the system documentation for your operating system to
determine the appropriate way to locate shared libraries.

A second way to resolve this type of error is to link the libraries into the
runtime with a static link. Different versions of the C development system
use different flags to accomplish this link. Please consult the documentation
for your C compiler to determine the correct flag for your environment.

Step 3: Copy runcbl to the correct directory.

If the runtime is a statically linked runcbl, copy the new executable to a
directory mentioned in your execution path. This file needs to have execute
permission for everyone who will be using the compiler or runtime. This step
is not necessary when the runtime system is a shared library.

The ACUCOBOL-GT license file for the runtime (“runcbl.alc”) and the
license file for the Acu4GL product to Informix (“runcbl.ilc”) must be copied
into the same directory as the runtime executable.

If you rename your runtime executable, be sure to rename your license files
to use the same base name, with the extensions unchanged. For example, if
you rename your runtime to be “myprog”, then the license file for the
Acu4GL product for Informix should be renamed “myprog.ilc”, and the
license file for the runtime should be renamed “myprog.alc”.

The remaining files can be left in the directory in which they were unloaded.

Step 4: Compile the sample program.

1. If you are using the C-shell, enter the command rehash.

2. Now try compiling and running the sample program with the following
commands:

ccbl -Zd -Fx demo.cbl
runcbl demo.acu

Note: You can also run the sample program using runtime flags, if
necessary.

A-8 Acu4GL for Informix Information
A.1.3 Designating a Database

Use the configuration variable DEFAULT_HOST to establish Informix as
your file system:

DEFAULT_HOST informix

Next, select the particular Informix database to be accessed by your COBOL
application. Identify this database to the runtime system via the
DATABASE configuration variable:

DATABASE database-name

The database you choose might be one that has been in use at the site for
some time and already contains data, or it might be a new, blank database that
has just been created and named.

Note: The Acu4GL product for Informix allows you to create a file with an
OPEN OUTPUT statement, just as you can create Vision indexed files. The
Informix equivalent of a Vision file is a table, not a database. You need to
have an existing database for your Informix tables, just as you must have an
existing directory for Vision files.

To create a new, blank database, use the tools available from Informix.

A.2 Filename Translation

As you prepare to work with Acu4GL for Informix, you may find it helpful
to understand the rules around filename interpretation and to understand how
the names of tables and XFD files are formed and work together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the file name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file. For additional
information on configuration variables, see Appendix H in Book 4,
Appendices, of the ACUCOBOL-GT documentation set.

Configuration File Variables A-9
At this point, Acu4GL for Informix translates the file name to lowercase
letters and changes hyphens to underscores. This “new” name is the one that
Acu4GL for Informix will use in the future for references to the database
table.

A.3 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Acu4GL for Informix. Configuration file variables that are generally
applicable to any RDBMS with which Acu4GL communicates are discussed
in section 8.2, “Runtime Configuration Variables.” See
DEFAULT_HOST in section 8.2 “Runtime Configuration Variables,” and
DATABASE, later in this chapter, for important information on setting these
variables.

A_INF_DUPLICATE_KEY

This variable determines how Acu4GL for Informix handles the processing
of alternate keys with duplicates. When reading on an alternate key with
duplicates, it is possible that not all records will be returned. The probability
of this scenario increases if the direction of the read changes (for example,
switching from read next to read previous). This generally occurs when:

• The the data set was imported from an external file

• The the database has undergone large amounts of modifications,
resulting in the re-use of row IDs

• The the initial query returned the record set in a way such that the records
are not in row ID order

Three potential values can be set for this variable:

Note: These settings can affect performance. If you need assistance, see
your Database Administrator.

A-10 Acu4GL for Informix Information
Zero (“0”)

If this variable is set to zero (“0”), no ROWID is added to the SELECT
statements for reading in a forward direction, but a ROWID is added to
SELECT statements for reading in a backward direction if the file is
not a VIEW.

Note: We don’t recommend setting this variable to zero (“0”), because
ROWIDs may not be in ascending order. This method can be used if
the direction in which the application reads records does not change,
but it is unknown if this will work for all situations. We provide this
method for backwards compatibility only.

One (“1”)

If this variable is set to one (“1”), a ROWID is added to the ORDER
BY clause of all SELECT statements reading tables on an alternate key
that allow duplicates. A ROWID is not added if the file is a VIEW.
This assures a predictable ordering of keys and is the default setting.

Two (“2”)

If this variable is set to two (“2”), the primary key segments are added
to the ORDER BY clause of all SELECT statements reading tables or
VIEWs on an alternate key that allow duplicates.

A_INF_NO_TRANSACTION_ERROR

This configuration file variable allows you to enable or disable the “9D, 255
- Not in transaction” Informix error. The default setting for this variable is
“1” and does not allow this message to be displayed. If this variable is set to
zero (“0”), the 9D, 255 error is returned if a stop run caused a commit or
rollback to be sent to Acu4GL for Informix.

Configuration File Variables A-11
A_INFORMIX_ERROR_FILE

This configuration file variable allows you to map errors using a text file to
supplement the default method of providing errors. By adding the name of
the file that contains the actual error mapping to
A_INFORMIX_ERROR_FILE, database-specific errors are mapped to
COBOL errors.

Note: Several messages related to COBOL I/O cannot be supplemented.

Example

A sample syntax for this configuration file variable would be:
A_INFORMIX_ERROR_FILE=INFerrs

where:

INFerrs is a file of a specified format containing a mapping of
database-specific errors to COBOL errors. One such entry might be:

1 DUPLICATE_RECORD

DATABASE

DATABASE specifies the name of the specific database to be accessed. You
cannot open any database files until you have set this variable.

Example
DATABASE stores

indicates the stores database is to be accessed.

Note: If you choose, you can set the DATABASE variable in the startup
script for the session.

A-12 Acu4GL for Informix Information
 INF_LOGIN

INF_LOGIN indicates the user name under which you want to connect to the
database system. This is an optional variable. If INF_LOGIN and
INF_PASSWD are not set, a default login is performed. If these variables are
set, there must be a matching UNIX login name and password.

Example

To connect to the database with the user name MYNAME, you would
specify:

INF_LOGIN MYNAME

in the configuration file.

See also

INF_PASSWD configuration variable

INF_PASSWD

The variable INF_PASSWD should be set to the password assigned to the
database account associated with the user name specified by INF_LOGIN. If
INF_LOGIN and INF_PASSWD are not set, a default login is performed. If
these variables are set, there must be a matching UNIX login name and
password.

Example

For example, if the account with the user name has the associated password
“CW021535”, specify

INF_PASSWD CW021535

in the configuration file or the environment.

See also

INF_LOGIN configuration variable

Informix Performance A-13
MAX_CURSORS

MAX_CURSORS is the number of cursors (parameterized queries) in
Acu4GL’s cursor cache. The default value is 100. The range is 1–100. If you
set this variable to a number less than the maximum of 100, you may reduce
the number you specify in the Informix system parameter OPEN_CURSORS
by a like amount. The value of Informix’s OPEN_CURSORS should exceed
MAX_CURSORS by at least 7.

Example

To allow your application to use up to 23 cursors, specify
MAX_CURSORS 23

in the configuration file.

A.4 Informix Performance

Informix databases include many advanced concepts, such as parallel
queries, multi-processor support, and virtual processors.

To increase performance for large sites on powerful multi-processor
machines, Informix has changed some of the database default configurations,
moving to a “cost based” optimization for its default query mode. This
means that the query optimizer for Informix OnLine makes its decisions
about optimization based purely on costs, without considering translation
isolation mode. With this default, OnLine does not give preference to index
scans (nested-loop joins and key base reads) over table scans (other join
methods).

The behavior can be especially problematic in the case of benchmark testing.
When the table is created, a mass insert of the records is performed on the
database table. The indexes are created for the table, but the database has not
yet gathered information about the distribution of data in the underlying
table, or the usefulness of a particular index. The lack of statistical
information within the database regarding the data in the tables results in
possible poor decisions on the part of the query optimizer. The optimizer is

A-14 Acu4GL for Informix Information
unable to determine that an index exists that best matches the requirements of
the query and will choose an alternate execution approach that will cause
drastically poorer performance of the benchmark application.

Example

As an example of this problem, we will examine performance times from
ACUCOBOL-GT’s “iobench” program.

The times between the two machines and databases that the benchmark were
run on are comparable for all times except for the read operation. The read
operation shows a significant performance degradation.

Isolating the problem

To isolate the source of the problem, you can insert into your COBOL
program a call to Acu4GL’s utility program sql.acu. Before the Read
benchmark test, we inserted the call:

CALL "sql.acu" USING SQL-COMMAND.

In the working-storage section, SQL-COMMAND is defined as follows:
77 SQL-COMMAND pic x(75) value "SET EXPLAIN ON".

Test Informix 5.1
SunOS
4.1.3

Informix 7.2
Intel 486
System
5.4

Informix 9

Write
Sequential

1.2 1.8 3.33

Sort Sequential 3.3 3.4 4.30

Load Index 1 13.8 16.1 24.74

Read Index 1 19.5 732.9 1085.90

Update Index 1 4.5 2.8 56.33

Load Index 2 24.2 29.6 28.33

Update Index 2 13.6 10.0 56.83

Total 80.1 796.6 1259.66

Informix Performance A-15
This call instructs the Informix database engine to print out the query
optimizer’s execution plan to a file in the current directory called
“sqexpain.out”. Here is a sample of the optimizer’s output:

QUERY:

SELECT *, rowid FROM idx1 WHERE idx_1_key >= ? ORDER
BY idx_1_key ASC

Estimated Cost: 2
Estimated # of Rows Returned: 3
Temporary Files Required For: Order By

1) informix.idx1: SEQUENTIAL SCAN

 Filters: informix.idx1.idx_1_key >= '0000000900'

This output shows that the Informix query optimizer is performing a
sequential scan on the table for each set of start/read operations. The
optimizer is also making use of a temporary file during processing to sort the
information in key order, as described by the “ORDER BY” clause. This
clause is necessary to ensure that the COBOL application receives the
records in the required sequence.

Problem resolutions

To correct the problems with the query optimizer, you can take one of several
approaches:

1. Override the Informix database parameter in the database
configuration files.

2. Override the new database parameter for a given user session.

3. Provide the query optimizer with more information so that it can
choose a more efficient method of returning data.

A-16 Acu4GL for Informix Information
Method 1: Configuration files

The Informix database engine reads a system configuration file each time it
is started. Two configuration files apply: the file “onconfig.std” is used as a
template for creating database configuration files when new databases are
created; the “onconfig.<database>” file is the configuration file for a given
database.

In the database configuration file, locate the line
OPTCOMPIND 2 # To hint the optimizer

Modify this line to read
OPTCOMPIND 0 # To hint the optimizer

The OPTCOMPIND configuration parameter helps the optimizer choose an
appropriate join method for your application. A setting of “0” indicates that
when appropriate indexes exist, the optimizer chooses index scans
(nested-loop joins), without considering the cost, over table scans
(sort-merge joins or hash joins).

This new setting takes effect the next time you shut down and restart the
ONLINE database engine. The altered setting is then applied to all
operations with the query optimizer. To ensure that this change applies to
newly created databases, you should modify the “onconfig.std” file.

Method 2: Altering a user session

You can modify how the query optimizer executes queries on an individual
basis by setting a UNIX environment variable in the user’s environment.
This environment variable should be set before executing your COBOL
application. It cannot be set with the COBOL “SET CONFIGURATION” or
“SET ENVIRONMENT” verbs. Use the syntax “setenv OPTCOMPIND 0”
or “OPTCOMPIND=0; export OPTCOMPIND”, depending on which shell
is being used.

Informix Performance A-17
Method 1 and method 2 resulted in the following “iobench” times:

We can verify the changes that were made by examining the output of the
query optimizer. The above test resulted in these results:
QUERY:

SELECT *, rowid FROM idx1 WHERE idx_1_key >= ? ORDER BY idx_1_key ASC
Estimated Cost: 4
Estimated # of Rows Returned: 3
1) informix.idx1: INDEX PATH
 (1) Index Keys: idx_1_key
 Lower Index Filter: informix.idx1.idx_1_key >= '0000000900'

Both method 1 and method 2 above are useful if you are processing new data.
They have the drawback, however, that they permanently constrain the
execution paths that the query optimizer has to choose from. To allow the
query optimizer the greatest flexibility in working with data that exists
day-to-day on your system, you will want to choose the next method.

Test Informix 5.1
SunOS4.1.3

Informix 7.2
Intel 486
System
5.4

Informix 9

Write Sequential 1.2 1.8 3.25

Sort Sequential 3.3 3.3 4.33

Load Index 1 13.8 16.6 24.92

Read Index 1 19.5 22.4 47.23

Update Index 1 4.5 4.1 5.57

Load Index 2 24.2 22.9 28.19

Update Index 2 13.6 10.9 6.22

Total 80.1 81.9 119.71

A-18 Acu4GL for Informix Information
Method 3: Provide the query optimizer with information

Database tables that are in use on a frequent basis can benefit from providing
the query optimizer with more information. This allows the optimizer to
work at its best in returning information from the database. You provide the
optimizer with information of the tables by issuing the following SQL
command:

UPDATE STATISTICS HIGH FOR TABLE <tablename>;

Executing this command updates the Informix system database catalog tables
SYSTABLES, SYSCOLUMNS, SYSINDEXES, and SYSDISTRIB. The
optimizer uses this data to determine the best execution path for queries. The
database server does not update this statistical data automatically, however.
Statistics are updated only when you issue an UPDATE STATISTICS
statement.

Informix recommends that you run UPDATE STATISTICS in high mode for
all columns that head an index. For the fastest execution time of the
UPDATE STATISTICS statement, you must execute one UPDATE
STATISTICS statement in the high mode for each such column. For each
multi-column index, run UPDATE STATISTICS in low mode for all of its
columns.

You may want to perform the UPDATE STATISTICS on the entire table
periodically as shown above, instead of just on the indexes.

For more information on optimizing Informix performance and general
maintenance issues, please refer to your Informix-OnLine documentation.

A.5 Technical Tips

Switching file systems

Each time a file is opened, the file system identified by the filename_HOST
configuration variable (if present) or the DEFAULT_HOST variable is used.
You can change the value of these variables in your code by including:
SET ENVIRONMENT "filename_HOST" TO filesystem

or

Supported Features A-19
SET ENVIRONMENT "DEFAULT_HOST" TO filesystem

just before you open the file. SET ENVIRONMENT thus enables you to
change file systems during the execution of your program. The filesystem
value for Informix is “Informix”. The value for Vision is “Vision”.

If you change to the Informix file system in the midst of a program, be sure
to specify the database to be used:
SET ENVIRONMENT "DEFAULT_HOST" TO "INFORMIX"

SET ENVIRONMENT "DATABASE" TO "STORES"

Note that the database cannot be changed if there are tables open in the active
database. Be sure to close all tables before making a change.

Remember that SET ENVIRONMENT is not the typical way to specify a file
system. Normally the file system is designated in the runtime configuration
file and is not changed in the COBOL program.

A.6 Supported Features

OPEN ALLOWING READERS is not supported by Informix. You
determine in your runtime configuration file how this phrase will be
interpreted. Set the variable STRENGTHEN_LOCKS to “1” (one) to cause
this phrase to be treated as OPEN ALLOWING NO OTHERS. Set the
variable to “0” (zero) to cause the phrase to be treated as OPEN ALLOWING
ALL. The default value is “0”.

Only single-record locking is supported, unless the program is within a
transaction.

If you attempt to REWRITE a record that contains a SERIAL data type, you
will receive an Informix error. You might want to change SERIAL fields to
SMALLINT, as we do for the orders table in the demonstration. However,
you may encounter the situation in which the user has a table with a serial
column and cannot change it. There may be a solution to this, and the
solution is determined by whether you need to reference this serial column
when you do your READs.

A-20 Acu4GL for Informix Information
If the user does not need to access these columns directly, you can build your
FDs without this field. Because the current version of Acu4GL for Informix
lists the columns from the XFD, and Acu4GL for Informix allows the table to
have more columns than the FD, it should be possible for you not to include
the serial columns in the FD. This has the effect that, on an INSERT, the
unmentioned serial columns would be populated by the next sequential value.

If it is necessary for the user to access these columns, consider having two
FDs. One FD would list the serial column, included for reading. Then use
another FD, this time without the serial column, for your writes or rewrites.

Informix does not support record encryption, record compression, or
alternate collating sequences. You may include these options in your
program; they will be disregarded if they are specified.

The ACUCOBOL-GT utility program vutil cannot be used with Informix
files. Instead, use utilities supplied by Informix.

Whenever you are using the library routine RENAME, you must specify that
you are using indexed files. This information is passed by the value “I” in the
fourth parameter. If you want to delete an Informix table with the DELETE
FILE verb, make sure the verb references an indexed file.

Acu4GL passes all transaction operations on to the database. Passing all
transaction flags to the database may have the unexpected effect of releasing
a lock because of the COMMIT of a transaction. Acu4GL for Informix
performs REWRITE and DELETE operations on the current record through
the record lock using the syntax “WHERE CURRENT OF”. If this is a
problem, Acu4GL can be told to use an alternate method of explicitly
specifying the primary key in the REWRITE and DELETE operations by
setting the configuration variable:
“4GL_POSITIONED_MODIFICATIONS = 0”. The default is “1”. You
should note that database systems will not perform well with applications
compiled with the “-ft” option. You should consider explicitly coding the
transactions.

Limits and Ranges A-21
A.7 Limits and Ranges

The following limits exist for the Informix-SE file system:

Maximum indexed key size: 120 bytes
Maximum number of fields per key: 8

The following limits exist for the Informix-OnLine file system:

Maximum indexed key size: 256 bytes
Maximum number of fields per key: 16

With the Acu4GL product for Informix, only one database can be open at a
time. Within this one database, a maximum of 100 tables can be open at the
same time. You can set this table maximum to a lower number via the
runtime configuration variable MAX_CURSORS.

The following Informix data types are not currently supported:
INTERVAL
BLOB
FLOAT
SMALLFLOAT

Acu4GL for Informix supports the following data types; conversions
between COBOL and database formats are as shown:

COBOL to INFORMIX

PIC X
PIC XX

CHAR
VARCHAR

PIC 9
PIC 99X
PIC 999
PIC 9999

SMALLINT

PIC 9(5)
PIC 9(6)
PIC 9(7)X
PIC 9(8)
PIC 9(9)

INTEGER

All other PIC 9’s DECIMAL

A-22 Acu4GL for Informix Information

Opening a file I-O exclusive doesn’t hold lock on Informix. This is a
limitation on the way the Informix Acu4GL product works. Since we do not
do any actual operations on the table except to get information about it,
Informix does not tell us the file is locked. Users should get a lock condition
when they do a read with lock.

Performing error handling on the read/write will yield a 99 record locked on
any read operation performed—even if the file is open for input.

Other limits are described in Appendix B in Book 4, Appendices, of the
ACUCOBOL-GT documentation.

A.8 Runtime Errors

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9 provides information on
compile-time errors and also provides several methods for retrieving runtime
errors.

INFORMIX to COBOL

INTERGERX PIC S9(10) or
PIC S9(9)
COMP-4

SMALLINT PIC S9(5) or
PIC S9(4)
COMP-4

DECIMAL (6,2) PIC (4)V99

MONEY(4) PIC (2)V99

SERIAL PIC 9(9)

DATE PIC 9(6) or
PIC 9(8)

DATETIME PIC 9(12) or
PIC 9(14)

VARCHAR (max, min) PIC X(max)

Runtime Errors A-23
An explanation and a recommended recovery procedure follow each
message.

Runtime errors will have this format:

9D,xx

The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary, or extended, error code. You can retrieve an
extended error code by using selected runtime options or by calling the
library routine C$RERR. Note that you can pass two parameters to C$RERR
for interface errors (rather than just one). The first parameter retrieves the
code; the second parameter retrieves a message associated with the error
condition. This process is explained in detail on the following pages.

When the extended error code is greater than 99, the error is explained in the
Informix documentation. Error codes less than 99 are explained here:

01 DATABASE is not defined in the environment

You must specify which database you are using. Use the DATABASE
configuration variable.

02 Attempt to open more than one database at once

This can happen if you specify a database, open a file, then specify a different
database with SET ENVIRONMENT, and try to open another file. Informix
does not allow files to be open from two databases simultaneously.

03 Dictionary (.xfd) file not found

The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX
configuration variable. You may need to recompile with the “-Fx” option to
re-create the dictionary. See section 8.1 for information on compiler options.

04 Corrupt dictionary file

The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with “-Fx” to re-create the dictionary.

A-24 Acu4GL for Informix Information
05 Too many fields in the key
(more than 8 for Informix-SE, more than 16 for Informix-OnLine)

Check your key definitions and redefine the key that is illegal, and then
recompile with the “-Fx” option.

There are additional 9D extended error numbers; these have values of 100 or
more. Often they have two parts that are separated by a comma (such as 9D
350,108). These are Informix error codes. The first part is the database error;
the second part (if any) is the ISAM error.

Informix database error numbers are typically greater than 200. ISAM
errors, when present, fall between 100 and 199.

Note: See your Informix documentation regarding the “finderr” syntax for
more information.

06 Mismatched dictionary file

The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:

01 – mismatch found but exact cause unknown (this status is returned by the
host file system)

02 – mismatch found in file’s maximum record size

03 – mismatch found in file’s minimum record size

04 – mismatch found in the number of keys in the file

05 – mismatch found in primary key description

06 – mismatch found in first alternate key description

07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

Common Questions and Answers A-25
255 Not in transaction

A stop run has caused a commit or rollback to be sent to Acu4GL for
Informix. By default, this message is disabled. If you would like to enable
this message, set the A_INF_NO_TRANSACTION_ERROR variable to
zero (“0”).

A.9 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
Informix. Refer to Chapter 10 in this book for additional questions and
answers that pertain to the Acu4GL family of products.

Question: How do I create new databases?

Answer: You have two choices: (1) you can use an Informix product, such as ISQL,
to create a new database, or (2) you can use the program sql.acu provided
with your Acu4GL product.

To use the sql.acu utility to create an empty database and grant access
privileges to other users, enter the following command:

runcbl sql.acu

The program pauses to accept an SQL command. Enter the following:
CREATE DATABASE database-name

Note: If you want to use the transaction logging facility available in
ACUCOBOL-GT, you must enable it for the database you are creating.
The precise SQL command depends on the Informix engine you are using,
as shown below.

For Informix-OnLine, enter the following command to use transaction
logging:

CREATE DATABASE database-name WITH LOG;

For Informix-SE, enter the following command to use transaction logging:
CREATE DATABASE database-name WITH LOG IN
 '/acct/f1992/acct_log';

A-26 Acu4GL for Informix Information
If you are using an Informix database with transactions enabled, you must
use ACUCOBOL-GT’s transaction management capabilities. (Either use
START TRANSACTION and COMMIT, or compile with “-fs”, or use the
sql.acu program to issue BEGIN WORK and COMMIT.) Using a
transaction-enabled database without ACUCOBOL-GT’s transaction
management capabilities results in the records not being locked and can
generate error messages.

The program pauses to accept an SQL command. Now enter the following:
GRANT DBA TO PUBLIC

Then press Enter again to exit the program.

The database name may be up to ten characters and must contain only letters,
digits, and underscores. The first character must be a letter.

The statement GRANT DBA TO PUBLIC gives the Database Administrator
access privileges to all other users.

Question: Is it possible to use both Informix-OnLine and Informix-SE on the same
machine?

Answer: Yes. You’ll need to tell the runtime which database engine to use. You do
this by setting the environment variable SQLEXEC as shown here:

Informix-OnLine
SQLEXEC = ${INFORMIXDIR}/lib/sqlturbo

Informix-SE
SQLEXEC = ${INFORMIXDIR}/lib/sqlexec

Setting SQLEXEC tells the Informix utility programs and the
ACUCOBOL-GT runtime which engine to access. This variable must be set
before you execute the runtime. Only one engine (either OnLine or SE) can
be used for any given execution of the runtime.

INFORMIXDIR is an environment variable that you must set to the location
of your Informix product.

Common Questions and Answers A-27
Question: What files do I need to link my C routines into Acu4GL?

Answer: From your ACUCOBOL-GT runtime medium you need:

sub.c
sub85.c
filetbl.c
config85.c
sub.h
libruncbl.a
libvision.a
libacuterm.a
clntstub.o

If you are using AcuServer™, instead of linking clntstub.o, see the relinking
instructions in your AcuServer User’s Guide.

From your Acu4GL medium, you need all of the following that are present:

infemb7.o - for version 7.2
infemb73.o - for version 7.3
infemb.oo - for version 5.1
inf.o
cur.o
* libsql.a
* libgen.a
* libos.a
* libasf.a
* netlib.a

* These files are provided by Informix and should be located in the
appropriate Informix directory.

Instructions for linking are given in section A.1.2, “Installation Steps.”

Question: I could not find the secondary error number for a 9D in the documentation.
What does the number mean?

Answer: The errors fall into three categories:

01 – 99 are Acu4GL codes and are described in section A.8 of this manual.

A-28 Acu4GL for Informix Information
100 – 199 are ISAM errors and are explained in Informix manuals.

200 and up are Informix database errors and are explained in Informix
manuals.

Question: Can the Acu4GL for Informix product support a full date/time format?

Answer: The finest time granularity that Informix will support is one hundredths of a
second. To achieve this, you must be sure the code is correct in the DATE
directive and specify a date-format-string in your COBOL application, as
opposed to just a date. See section 4.3.5, “DATE,” for additional
information.

Question: Are there any ACUCOBOL-GT library routines that do not work with, or
would not make sense to use with Acu4GL for Informix?

Answer: Yes. There are two ACUCOBOL-GT library routines that either don’t work
with or do not make sense to use with Acu4GL for Informix: C$COPY and
C$RECOVER.

B
 Acu4GL for Microsoft SQL
Server Information
Key Topics

Microsoft SQL Server Concepts Overview.. B-2
Installation and Setup .. B-4
Filename Translation ... B-10
Configuration File Variables ... B-11
Using the Database Table... B-28
Table Locking ... B-28
Stored Procedures... B-30
Limits and Ranges .. B-38
Runtime Errors... B-39
Common Questions and Answers ... B-42

B-2 Acu4GL for Microsoft SQL Server Information
B.1 Microsoft SQL Server Concepts Overview

A quick overview of some basic design concepts underlying the Microsoft
SQL Server Database Management System will help you interface your
COBOL program to it.

Servers

A Microsoft SQL Server “server” is one copy of the database engine
executing on a computer. A server has a name, and when a program wants to
access the database controlled by a server, the program asks for a connection
to that server by name. Multiple servers can be executing on a single
machine, controlling different databases. The default name that Microsoft
SQL Server gives to a server is DSQUERY. The naming of servers is
discussed in section B.4 “Acu4GL for Microsoft SQL Server Configuration
File Variables” under the configuration variable
A_MSSQL_DEFAULT_CONNECTION.

Table ownership

Table names in Microsoft SQL Server have the form
database.owner.table_name. Within Microsoft SQL Server, if you are the
owner of a given table, you can refer to it as just table_name. If you are not
the owner, you must refer to it with the owner of the table as a prefix.
Different owners can thus have tables of the same name. However, this is not
true when you use the Acu4GL® for Microsoft SQL Server interface.

Acu4GL for SQL Server works a little differently. It automatically
determines the owner name it will use to reference a table. It is therefore
essential that there not be multiple tables with the same name in a single
database, even though the tables have different owners. If there are multiple
tables, the Acu4GL for Microsoft SQL Server product will not necessarily
find the correct one, and no diagnostic will be issued.

Note that table names include dots (.) as separators. Because of this, you
must make sure there are no extensions on COBOL file names that will be
converted to table names. For example, if you were to have a COBOL file
named IDX1.DTA, Acu4GL for Microsoft SQL Server would attempt to
open a table DTA with owner IDX1. You can avoid this problem either by

Microsoft SQL Server Concepts Overview B-3
renaming your COBOL file in your source program, or by using an
ACUCOBOL-GT® runtime configuration file variable to map the file name
to an allowable file name, such as:

IDX1.DTA IDX1

In the above example, IDX1.DTA is the name in the ASSIGN clause of the
file’s SELECT statement.

If you map your file name to a new name, we recommend that you simply
drop the extension to form the new name. Here’s why. The compiler uses the
base file name—without the extension—to create the XFD file name
(IDX1.XFD). The runtime needs to be able to locate this file. But if you’ve
mapped the file name to something completely different (such as MYFILE),
the runtime will look for an XFD file named MYFILE.XFD. So you’d have
to remember to change the name of IDX1.XFD to MYFILE.XFD in the XFD
directory. Save yourself this extra step by simply dropping the extension
when you map the name. Also, see the configuration variable
4GL_IGNORED_SUFFIX_LIST for an alternate method of removing file
extensions.

Security

Security is implemented in the Microsoft SQL Server RDBMS. A user is
required to log in to the RDBMS before any file processing can occur.
Acu4GL for Microsoft SQL Server provides both a default and a
user-configurable method for implementing this.

Generally, it is best for someone with Database Administrator (DBA)
privileges to create and drop the tables, allowing others only the permissions
to add, change, or delete information contained in them.

See the Microsoft SQL Server documentation for more details on DBA
privileges.

B-4 Acu4GL for Microsoft SQL Server Information
B.2 Installation and Setup

You must perform several steps before you begin using Acu4GL for
Microsoft SQL Server on a new system. The following topics provide this
information:

• Installing on a Client Machine

• Setting Up a User Account

• Setting Up the User Environment

• Designating the Host File System

The Microsoft SQL Server RDBMS, version 6.5 or later, must be installed
and configured prior to the installation of Acu4GL for Microsoft SQL
Server.

Microsoft SQL Server’s “Query Analyzer” product, an interactive query tool,
is also necessary for installing the ACUCOBOL-GT stored procedures.

Micro Focus does not provide these products.

Note: The default sort order for Microsoft SQL Server is
case-independent. Make sure that this is what you really want when you
install the server. Acu4GL for Microsoft SQL Server will use the sort order
as installed and cannot change its behavior to do case-dependent ordering if
that is not what the server uses.

First you must install the files from the extend installation media onto the
client machine. Then follow the instructions below for the server machine.
Final setup steps on the client machine complete the installation.

Be sure to use the 64-bit libraries with a 64-bit runtime and 64-bit Acu4GL
for Microsoft SQL Server, and the 32-bit libraries with a 32-bit runtime and
32-bit Acu4GL for SQL Server.

Installation and Setup B-5
B.2.1 Installing on a Client Machine

The Acu4GL interface for Microsoft SQL Server is an add-on module. The
product installation includes a .DLL file that is detected at run time. It is not
necessary for 32-bit users to relink the runtime.

Acu4GL for SQL Server can be executed on a machine that is running any
32-bit Windows platform from Microsoft. The following diagrams show the
supported machine configurations:

Note that the client machine may be the same machine as the server.

Installation instructions for each of these configurations are given in the next
section. The instructions describe the steps you must follow on both the
client machine and the server machine.

CD-ROM installation

Instructions for installing your Acu4GL product from the ACUCOBOL-GT
CD-ROM are contained on the Quick Start card that accompanied the
product. Please refer to it for installing your extend products.

Once the installation is complete, please return to this appendix for setting up
your Acu4GL product.

Installation steps on a Windows NT server

Complete the following steps to install the Acu4GL product on a Windows
NT server machine.

Your application

ACUCOBOL-GT

Acu4GL

Microsoft SQL Server

Windows machine Windows NT machine

B-6 Acu4GL for Microsoft SQL Server Information
Step 1: Install SQL Server

Microsoft SQL Server, version 6.5 or later, must be installed and configured
on the Windows NT server machine before you install Acu4GL for Microsoft
SQL Server on the client machine. Follow the instructions from your
RDBMS vendor.

Step 2: Copy the batch file

MS_INST.CMD is a batch file from ACUCOBOL-GT that creates the
MS_INST.SQL file, which is the collection of stored procedures necessary
for executing the Acu4GL product. Copy MS_INST.CMD to your server
machine into a directory of your choice.

Step 3: Execute the batch file

To execute the batch file, enter
MS_INST LockDatabase

where LockDatabase is the database you want to use for the internal
ACUCOBOL-GT lock tables. If this database does not already exist, it will
be created.

Everyone who will use the Acu4GL for Microsoft SQL Server product must
have write access to this database.

This step creates MS_INST.SQL, the collection of stored procedures
necessary for executing Acu4GL for SQL Server.

Step 4: Install the ACUCOBOL-GT stored procedures

To install the ACUCOBOL-GT stored procedures in your Microsoft SQL
database, execute the generated MS_INST.SQL file with the SQL Query
Analyzer or the SQL Server Management Studio if you are using Microsoft
SQL Server 2005.

By default, the stored procedures are installed into the master database.
However, you may choose another database in which to store them.

This completes the setup on the Windows NT server machine.

Installation and Setup B-7
Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. Micro Focus always upgrades stored
procedures in such a way that they are compatible with older versions of the
product, so installing new stored procedures over old ones does not affect
your ability to run with an older version of the interface software. Your
new version of Acu4GL for Microsoft SQL Server may not run properly
without the corresponding stored procedures.
It can be difficult to maintain multiple copies of stored procedures;
therefore, we recommend that you continue to create the stored procedures
in the master database. If your installation does not permit this, you do
have the flexibility to create the stored procedures elsewhere. However, to
facilitate maintenance of the stored procedures, we recommend that you
create as few databases as possible.

Installation steps for a Windows client

Installation instructions for Microsoft SQL Server are provided by Microsoft
and need to be read and understood to install the Windows client. Be sure to
choose your communication method at the client machine. To do this, follow
the instructions provided with your SQL Server software.

B.2.2 Setting Up a User Account

Acu4GL for Microsoft SQL Server must be able to connect to a user account.
You may either set up one general account for all users, or an account for
each individual user. To set up an account, you must have DBA privileges.

See sp_addlogin and sp_adduser in the Microsoft SQL Server Commands
Reference Manual for additional information on setting up user accounts.

B.2.3 Setting Up the User Environment

The user’s account should have been set up correctly to access the Microsoft
SQL Server RDBMS system. This includes environment variables such as
DSQUERY. See your Microsoft SQL Server documentation for more
details.

B-8 Acu4GL for Microsoft SQL Server Information
In addition to setting the variables required for Microsoft SQL Server, you
must do the following:

• Ensure that your execution path contains the name of the directory in
which you placed your Acu4GL-enabled runtime.

• Set the A_MSSQL_LOGIN and A_MSSQL_PASSWD variables,
either in your environment or in the ACUCOBOL-GT runtime
configuration file. (If you don’t do this, Acu4GL will use the value of
the USER environment variable as your Microsoft SQL Server login
name, with no password). For security reasons, it is best to set the
password variable from your COBOL program by asking the user to
enter a password and then executing

SET ENVIRONMENT “A_MSSQL_PASSWD” TO user-entry

• You may want to make and use a personalized copy of the configuration
file to avoid impacting other users. The ACUCOBOL-GT User’s Guide
describes how to use the A_CONFIG environment variable, or the “-c”
runtime option, to identify a personal configuration file.

For detailed information on A_MSSQL_LOGIN and
A_MSSQL_PASSWD, see section B.4, “Acu4GL for Microsoft SQL Server
Configuration File Variables”, in this appendix.

B.2.4 Designating the Host File System

If you are opening an existing file, all file systems linked into the runtime will
be searched for the named file. If, however, you are creating a new file, you
will need to tell the runtime which file system to use. You accomplish this
with one of two runtime configuration file variables:

DEFAULT_HOST filesystem

or
filename_HOST filesystem

DEFAULT_HOST

Use the DEFAULT_HOST variable to designate the file system to be used
for newly created files that are not individually assigned. For example,

Installation and Setup B-9
DEFAULT_HOST MSSQL

means that all new files will be Microsoft SQL Server tables unless otherwise
specified by the second configuration variable, filename_HOST.

filename_HOST

Use the filename_HOST variable to assign an individual data file to a file
system. Any file so assigned will use the designated file system, and not the
one specified by DEFAULT_HOST. The syntax is:

filename_HOST filesystem

where filename is the file name, without any extension, named in the
ASSIGN TO clause of your SELECT statement. For example,

myfile_HOST VISION

means that myfile will be under the Vision file system.

You can use these runtime configuration file variables in combination to
assign your new files in a default with exceptions manner; for example, this
set of entries:
DEFAULT_HOST VISION
afile_HOST MSSQL
bfile_HOST MSSQL

means that all new files except afile and bfile will be assigned to Vision, and
those two files will be assigned to Microsoft SQL Server.

You can also change the values of these variables during program execution
by including in your code:
SET ENVIRONMENT “filename_HOST” TO filesystem

or
SET ENVIRONMENT “DEFAULT_HOST” TO filesystem

This enables you to change file systems during the execution of your
program. This is not the typical way to specify a file system; normally it is
designated in the runtime configuration file and is not changed in the
COBOL program.

B-10 Acu4GL for Microsoft SQL Server Information
Note: The ACUCOBOL-GT interface to Microsoft SQL Server allows you
to create a Microsoft SQL Server table with an OPEN OUTPUT statement,
just as you can create Vision indexed files. The Microsoft SQL Server
equivalent of a Vision file is a table, not a database. You must create a
database for your Microsoft SQL Server tables before you run the COBOL
program that creates the tables, just as you must create a directory for your
files before you run a COBOL program that creates Vision files.

You are now ready to use the sql.acu program, as defined in Chapter 2.
After you learn about and use this utility, you will next find out about
preparing and compiling your COBOL program, followed by learning to use
the demonstration program, which can also be found in Chapter 2.

B.3 Filename Translation

As you prepare to work with Acu4GL for Microsoft SQL Server, you may
find it helpful to understand the rules around filename interpretation and to
understand how the names of tables and XFD files are formed and work
together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the file name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file.

However, Acu4GL for Microsoft SQL Server needs the name of the file to
find the appropriate XFD file. To do this, Acu4GL for Microsoft SQL Server
changes the name of the file to lowercase letters and changes hyphens to
underscores. Note, however, that this is performed only on a local copy of
the file. Once the XFD file is found, the filename reverts to the name that was
originally passed to the open() function. Characters that are illegal in
identifiers, such as a hyphen (“-”), are trapped by the database, and Acu4GL
for Microsoft SQL Server will neither find the file nor create a new one.

Configuration File Variables B-11
B.4 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Microsoft SQL Server. Configuration file variables that are generally
applicable to any RDBMS with which Acu4GL communicates are discussed
in section 8.2, “Runtime Configuration Variables.”

A_MSSQL_ADD_IDENTITY

When is set to the default of “On” (true, yes), A_MSSQL_ADD_IDENTITY
adds an extra column to any table created by the Acu4GL for Microsoft SQL
Server product. The extra column will have the identity property and will be
included on all indexes that are not unique. Otherwise, when
A_MSSQL_ADD_IDENTITY is set to “False” (false, no), no extra column
is added.

Note: The COBOL FD should not include the identity column.

Example
A_MSSQL_ADD_IDENTITY TRUE

On keys that allow duplicates, this variable has been found to vastly improve
performance. Note that the default value is “True” for a file that allows
duplicates, and is “False” for a file with no duplicate keys.

A_MSSQL_ADD_TIMESTAMP

Using a timestamp column is the only way to absolutely ensure that
modifications made to a row are not overwriting someone else’s changes.
When it’s reading a table that is open for I/O, the Acu4GL for Microsoft SQL
Server product uses BROWSE MODE if a timestamp column exists. When
the Acu4GL product is creating a table, if the value of
A_MSSQL_ADD_TIMESTAMP is TRUE, a timestamp column is included
in the table. (Note that your COBOL FD should not include the timestamp
column.) While the default value is “Off” (false, no), this configuration
variable can also take values of “On” (true, yes).

B-12 Acu4GL for Microsoft SQL Server Information
Note: Microsoft discourages the use of BROWSE MODE on Select
statements because of performance reasons. Therefore, unless it is
absolutely necessary, we discourage setting this variable to “On”.

Example
A_MSSQL_ADD_TIMESTAMP 1

Note: If you do not use this option, be prepared for REWRITE statements
to fail with an error stating that someone else has modified the row.
Because of the AcuLocks tables, this can happen only from
non-ACUCOBOL-GT applications.

A_MSSQL_APPROLE_NAME

This variable, in conjunction with A_MSSQL_APPROLE_PASSWD,
allows Acu4GL to use approles. Before connecting to a database, set
A_MSSQL_APPROLE_NAME to the name of a role. Note that you must
also set A_MSSQL_APPROLE_PASSWD to a password for that role. By
using these two variables, you set the runtime to use this approle.

For more information on approles, please see the SQL Server documentation.

See also

A_MSSQL_APPROLE_PASSWD

A_MSSQL_APPROLE_PASSWD

This variable, in conjunction with A_MSSQL_APPROLE_NAME, allows
Acu4GL to use approles. Before connecting to a database, set
A_MSSQL_APPROLE_NAME to the name of a role. Then set
A_MSSQL_APPROLE_PASSWD to a password for that role. By using
these two variables, you set the runtime to use this approle.

Configuration File Variables B-13
For more information on approles, please see the SQL Server documentation.

See also

A_MSSQL_APPROLE_NAME

 A_MSSQL_CURSOR_OPTION_1,
A_MSSQL_CURSOR_OPTION_2,
A_MSSQL_CURSOR_OPTION_3

These configuration variables allow you to fine-tune the declaration of
cursors in the Acu4GL for Microsoft SQL Server product. In general, cursors
are declared with the following syntax:

DECLARE cursor_name option_1 CURSOR option_2 FOR
 <select....> option_3

In other words, different phrases can go in each of the option_X places. Also,
different versions of SQL Server allow different options in each of those
places. Because of this, the Acu4GL product allows customization of the
cursor declaration via these three variables. The values of these variables are
placed verbatim into the declare phrase when building a cursor. Note that
any errors in the values of these variables may cause your Acu4GL product
to be inoperable. Be sure to read the SQL Server documentation to determine
what phrases are allowed in each case.

The default values are as follows (the limit is 65 characters for each option):
OPTION_1: “SCROLL”
OPTION_2: blank
OPTION_3: “For read only”

This was added because of an issue in SQL Server 6.5 and SQL Server 7.0
that would return incorrect results if this phrase was not used.

B-14 Acu4GL for Microsoft SQL Server Information
A_MSSQL_DATABASE

A_MSSQL_DATABASE specifies the name of the specific database to be
accessed. You cannot open any database files until you have set this variable.

Example
A_MSSQL_DATABASE stores

indicates the stores database is to be accessed.

A_MSSQL_DEADLOCK_LOOPS

Use A_MSSQL_DEADLOCK_LOOPS if you expect that more than one
user will be opening a lot of tables at the same time. This configuration
variable can be used to instruct Acu4GL to re-execute an INSERT statement
that could not execute because a row in the AcuOpenTables table was locked,
or to return an error if the user chooses not to run the query again.

The default for A_MSSQL_DEADLOCK_LOOPS is “0”, which causes the
interface to return an error 9D,1205 indicating that a table is locked.

Set A_MSSQL_DEADLOCK_LOOPS to a positive numeric value to cause
Acu4GL for SQL Server to re-execute by the number specified by the query
that tried to open the table, and thus caused the deadlock. Note that it can be
as long as 10 seconds until SQL Server detects the deadlock, and the
application appears to “hang” while the repeated attempts to re-execute the
query are in progress.

Set A_MSSQL_DEADLOCK_LOOPS to “-1” or “MESSAGE” to cause
Acu4GL for SQL Server to display a message box containing the text of the
SQL Server error message and the option to rerun the query.

SQL Server has returned an error
(text of message from SQL Server)
Do you want to retry the operation?

If the user answers Yes, the interface reruns the query. If the user answers
No, the interface returns an error 9D. Setting
A_MSSQL_DEADLOCK_LOOPS to “-1” or “MESSAGE” is the preferred

Configuration File Variables B-15
action; the time it takes to inform users of the problem allows other
connections to finish opening the tables, giving the AcuOpenTables table
time to remove the deadlock.

A_MSSQL_DEFAULT_CONNECTION

A_MSSQL_DEFAULT_CONNECTION specifies the name of the server to
which the runtime will connect. This variable is checked only if the
DSQUERY environment variable has not been set. If neither DSQUERY nor
A_MSSQL_DEFAULT_CONNECTION is set, the server is named
DSQUERY. To reference tables in another server, open the file
servername.database.owner.table.

Example

Suppose you have two servers, one named TOM and one named HARRY. If
most of the tables you want to access are on the server HARRY, then you
should set:

A_MSSQL_DEFAULT_CONNECTION HARRY

For those occasions when you want to access the TOM server, you could
open the file this way:

TOM.stores.johndoe.purch1

A_MSSQL_DEFAULT_OWNER

In SQL Server, tables are named database.user.tablename. The value of
A_MSSQL_DEFAULT_OWNER specifies the name of the user. If this
variable is set, it must match the owner of a table. Tables are referenced as
owner.table, where owner is the value of A_MSSQL_DEFAULT_OWNER.
If this variable is set to a value for which owner.table does not exist, the
interface fails to access the table. Note that newly created tables are owned
by the users who create them, not the owner named in
A_MSSQL_DEFAULT_OWNER. The default value of this configuration
variable is blank, causing the interface to call an internal stored procedure to
determine the actual owner of the table. Note that we discourage multiple
tables with the same tablename in a single database.

B-16 Acu4GL for Microsoft SQL Server Information
A_MSSQL_FAST_ACCESS

A_MSSQL_FAST_ACCESS is a configuration variable that is set from your
COBOL program. Files opened while this variable is set to a nonzero value
will be optimized for forward sequential access.

We implemented this option to substantially improve the READ NEXT
performance in some cases. For example, testing the extend benchmark
program “iobench.cbl” in three ways, yielded the following results for the
READ AND SKIP operation:

(“10” is the perfect value for ROWCOUNT in this benchmark, because the
program does a START, 10 READ NEXT operations, and then does it again.)

For certain reporting programs, this option can dramatically improve
performance. However, please note the following restrictions.

Files must be open INPUT or open IO with MASS-UPDATE.
FAST_ACCESS gives a performance boost only when no locking is
required. In files that allow locking, a record must be reread after being
locked; this prevents an uninterrupted forward sequential traversal.

Files opened with FAST_ACCESS use a dedicated connection for reading
from the file. Since connections are memory-intensive (both on the client,
and on the server), the number of files opened with FAST_ACCESS should
be kept to a minimum. In the event that opening a connection fails, the file
open will still continue, but FAST_ACCESS mode will be disabled, with the
following message appearing in the trace file:

FAST_ACCESS mode not available.

Also, a new connection technically uses a new concurrent Microsoft SQL
Server license from Microsoft.

No FAST_ACCESS: 72.76 seconds

FAST_ACCESS, ROWCOUNT 0: 148.88 seconds

FAST_ACCESS, ROWCOUNT 10: 8.09 seconds

Configuration File Variables B-17
Files opened with FAST_ACCESS will not participate in transactions and
may even cause the runtime to hang if transactions are used, especially if the
FAST_ACCESS file is updated within the transaction. We suggest that if
you use transactions, you don’t use FAST_ACCESS. At the minimum, if
you use transactions, we suggest that you use FAST_ACCESS only for files
open INPUT.

Files opened with FAST_ACCESS cannot be read backwards. In other
words, READ PREVIOUS will not work with FAST_ACCESS files. In fact,
if you try to READ PREVIOUS on a file opened with FAST_ACCESS, you
will get an error 9D,20.

The ANSI standard states that READ NEXT after a READ will return the
next record. Some applications depend on this, and some applications just
want to read dynamically from a file, and don’t use the positioning facility.
Because of this ambiguity, files that are opened with FAST_ACCESS cannot
be READ dynamically. If you try to READ on a file opened with
FAST_ACCESS, you will get an error 9D,20.

There are no restrictions on WRITE, REWRITE, and DELETE. However,
these operations use the cursor-based connection, not the dedicated
connection. This is the reason transactions may hang.

While the default value is “0” (off, false, no), this configuration variable can
also take values of “On” (true, yes).

A_MSSQL_LOCK_DB

A_MSSQL_LOCK_DB specifies the name of the database that holds the
lock table.

See also

Section B.6, “Table Locking”

B-18 Acu4GL for Microsoft SQL Server Information
A_MSSQL_LOGIN

A_MSSQL_LOGIN indicates the user name under which you want to
connect to the database system.

Example

To connect to the database with the user name MYNAME, you would
specify:

A_MSSQL_LOGIN MYNAME

in the runtime configuration file.

If A_MSSQL_LOGIN is not set, the runtime will use the value of your USER
environment variable as your Microsoft SQL Server login name. For this
automatic login to succeed, you must have set up a user with the same name
as your computer login name.

See also

A_MSSQL_PASSWD runtime configuration file variable

Section B.2.2, “Setting Up a User Account”.

A_MSSQL_MAX_CHARACTERS

A_MSSQL_MAX_CHARACTERS indicates the maximum number of bytes
the Acu4GL product will allow in a table row.

Microsoft SQL Server places a limit on the number of bytes per table row.
The Acu4GL product adheres to this limit, but sometimes it cannot accurately
count how many bytes a particular row contains (because of overhead bytes
that Microsoft SQL Server adds). This variable enables the developer to set
the Acu4GL product’s upper bound.

You might want to try reducing it if you discover that a row cannot be added
to a table. By reducing the upper bound, you may be able to prevent the
problem.

Configuration File Variables B-19
If Microsoft SQL Server increases the maximum number of bytes allowed in
a row (in a future release of the product), you can increase the value of this
variable to take advantage of the new limit.

The A_MSSQL_MAX_CHARACTERS variable has a default value of
“1962”.

A_MSSQL_MAX_COLUMNS

A_MSSQL_MAX_COLUMNS indicates the maximum number of columns
the Acu4GL product will allow in a table. The default value is “250”.

Microsoft SQL Server places a limit on the number of columns per table. The
Acu4GL product will adhere to this limit, but sometimes it cannot accurately
count how many columns a table contains (because a column has been added
to a table without the Acu4GL product’s knowledge). This variable enables
the developer to set the Acu4GL product’s upper bound. You might want to
try reducing the upper bound if you discover that a table cannot be created for
some reason. By reducing the upper bound, you allow for uncountable
columns and thus may be able to prevent the problem.

If SQL Server increases the maximum number of columns allowed per table
(in a future release of the product), you could increase the value of this
variable to take advantage of the new limit. Consult your SQL Server
documentation to decide the new maximum number of columns allowed per
table.

A_MSSQL_NATIVE_LOCK_TIMEOUT

This is one of two locking methods available with Acu4GL for Microsoft
SQL Server. The methods are accessed via two configuration variables:
A_MSSQL_VISION_LOCKS_FILE and
A_MSSQL_NATIVE_LOCK_TIMEOUT. The lock method used is
determined as follows: If A_MSSQL_VISION_LOCKS_FILE is set to the
name of a Vision file that can be open I/O and has the correct structure, the
Vision file is used to hold lock information. If
A_MSSQL_NATIVE_LOCK_TIMEOUT is set to a positive value, native
locking is used. Otherwise, the AcuLocks table is used to hold locks.

B-20 Acu4GL for Microsoft SQL Server Information
This locking method enables you to use Microsoft SQL Server native locks if
you explicitly code transactions in your COBOL program. You can access
this method by setting the configuration variable
A_MSSQL_NATIVE_LOCK_TIMEOUT to a positive value. This value
will be the number of seconds that a connection will wait for a timeout to
occur. When such a timeout occurs (for any reason), the Acu4GL product
assumes that the timeout was caused by a locked record, and will return error
99 (record locked). If you set this variable but do not explicitly code
transactions in your COBOL program, record locking will not occur. Note
that the Acu4GL product will wait the number of seconds specified, and your
application may seem to “hang” if the timeout is too long. On the other hand,
if the timeout is too short, you may get record locked errors when the network
is slow.

Microsoft SQL Server uses a page-locking mechanism, and so this method of
locking records may cause your application to return spurious record locked
errors caused by a record being locked on the same page as the record you are
trying to access. SQL Server 7.0 uses row-level locking, but because of the
timing issue, we discourage the use of this option.

Note: Even with this variable set, the interface still needs the
AcuOpenTables table.

See also

A_MSSQL_VISION_LOCKS_FILE configuration variable

Section B.6, “Table Locking”

A_MSSQL_NO_COUNT_CHECK

When performing a REWRITE, the interface checks to see that a record was
actually updated. If not, it will return an error 23. Setting this variable ON
will cause that check not to happen. This will improve performance on
REWRITE, at the risk of missing an error. While the default value is “Off”
(false, no), this configuration variable can also take the value of “On” (true,
yes).

Configuration File Variables B-21
A_MSSQL_NO_DBID

The interface stores the Database ID in the AcuLocks and AcuOpenTables
tables, to distinguish different tables in different databases. Sometimes this
causes problems. So setting this variable ON will cause the interface to use
a Database ID of “0”, instead of the actual ID of the database. While the
default value is “Off” (false, no), this configuration variable can also take the
value of “On” (true, yes).

A_MSSQL_NO_RECORD_LOCKS

Setting this variable ON will cause all READS to be treated as READ NO
LOCK, which can improve performance (but has the obvious consequences).
While the default value is “Off” (false, no), this configuration variable can
also take the value of “On” (true, yes).

A_MSSQL_NO_TABLE_LOCKS

Setting this variable ON will cause the interface to not use the
AcuOpenTables table, which causes all table locking to be disabled. This can
improve performance on OPEN and CLOSE statements. While the default
value is “Off” (false, no), this configuration variable can also take the value
of “On” (true, yes).

A_MSSQL_NO_23_ON_START

When A_MSSQL_NO_23_ON_START is set to a nonzero value, START
does not detect whether records actually exist. Because it does not detect the
existence of records, it is possible, when using this variable, to do a START
without error, and for the next READ NEXT to return END_OF_FILE,
contrary to the ANSI standard. While the default value is “Off” (false, no),
this configuration variable can also take the value of “On” (true, yes).

Example
A_MSSQL_NO_23_ON_START number

where number can be a zero or nonzero value.

B-22 Acu4GL for Microsoft SQL Server Information
A_MSSQL_NT_AUTHENTICATION

The A_MSSQL_NT_AUTHENTICATION configuration variable indicates
whether Microsoft SQL Server will authenticate users based on their
Windows login.

If this variable is set to “True” (on, yes), the Acu4GL for Microsoft SQL
Server interface attempts to log users on using the SQL Server Windows NT
authentication mode. (See your SQL Server documentation for information
about this authentication mode.) When
A_MSSQL_NT_AUTHENTICATION is enabled, the A_MSSQL_LOGIN
and A_MSSQL_PASSWD configuration variables are no longer needed or
used. (They are still available if you are not using Windows NT
authentication mode.) If you have not set up SQL Server itself to allow this
type of authentication, setting this variable to TRUE causes all login attempts
to fail. See your SQL Server documentation for information on how to set up
this type of authentication.

The default is “False” (off, no), indicating that the Acu4GL for Microsoft
SQL Server interface will not use Windows NT authentication mode when
logging users on and will continue to use login/password authentication.

A_MSSQL_PACKETSIZE

The A_MSSQL_PACKETSIZE variable sets the size of network packets.
Setting this variable can affect performance, since fewer and larger network
calls can improve performance.

This variable must be set in the configuration file, and has no effect if set in
a COBOL program via SET CONFIGURATION or SET ENVIRONMENT.
The value of this variable is the largest size that the transport layer uses for
network packets (although the underlying library may reduce the size
specified; this is out of the control of the interface.) The largest value that can
be specified is “32767”. The default depends on which version of the client
libraries are linked into the runtime, although “512” is the most common
default.

Use this configuration variable to tune your database performance. To set the
packet size to 8192 use:

Configuration File Variables B-23
A_MSSQL_PACKETSIZE 8192

Setting this variable to “0” or to a negative value will cause the Acu4GL
product to use the default value.

A_MSSQL_PASSWD

The variable A_MSSQL_PASSWD should be set to the password assigned to
the database account associated with the user name specified by
A_MSSQL_LOGIN.

Examples

If the account with the user name in A_MSSQL_LOGIN has the associated
password CW021535, you would specify:

A_MSSQL_PASSWD CW021535

in the runtime configuration file.

For better security, you can accept a password from the user during program
execution; set the A_MSSQL_PASSWD variable based on the response:
ACCEPT RESPONSE NO-ECHO.
SET ENVIRONMENT “A_MSSQL_PASSWD” TO RESPONSE.

Note: If the user has been set up without a password, this variable need not
be set.

See also

A_MSSQL_LOGIN runtime configuration file variable

B-24 Acu4GL for Microsoft SQL Server Information
A_MSSQL_ROWCOUNT

This variable has an effect only if you are reading on a key that does not allow
duplicates, or if you have added an Identity column to the table.
A_MSSQL_ROWCOUNT determines how many rows are returned by a
SELECT statement sent to the server.

This variable can be used to speed up the Acu4GL product. For example, if
you know you will be reading only one record at a time, and reading from a
unique key, you can set A_MSSQL_ROWCOUNT to “1”, thus speeding up
the processing.

If you know you are going to be reading records ten rows at a time, set
A_MSSQL_ROWCOUNT to “10”. If you don’t have any information about
how many rows are going to be requested, set this variable to “0”, which is
the default.

Note: Setting this variable to a non-optional value can actually degrade
performance, since the interface may be forced to issue more SELECT
statements once the rowcount has been determined. Use caution when
setting this variable.

See also

A_MSSQL_ADD_IDENTITY runtime configuration file variable

A_MSSQL_SELECT_KEY_ONLY

This variable directs the interface to select key columns only when searching
for records. Its use can improve READ performance on large tables with
many rows.

When set to “True” (on, yes), the default value,
A_MSSQL_SELECT_KEY_ONLY causes the interface to select only key
columns when searching for records and then select the entire row of the
single record that must be returned to the COBOL program. This improves
performance on large tables with many rows.

Configuration File Variables B-25
Setting A_MSSQL_SELECT_KEY_ONLY to “False” (off, no) does not
affect how the select is created for files open I/O (since the record must be
locked and then the rest of the data fetched), but causes the interface to select
all the columns of the table for files open INPUT.

A_MSSQL_SKIP_ALTERNATE_KEYS

A_MSSQL_SKIP_ALTERNATE_KEYS determines whether alternate keys
are used to form indexes during table creation. The default value of this
variable is “0”, which means it’s okay to use alternate keys. This
configuration variable can also take values of “1” (on, true, yes).

If you set the variable to a nonzero value (such as “1”), alternate keys are not
used to form indexes, which speeds up processing if many writes or rewrites
are being performed. (Note that a value of “1” may slow processing if the
application is reading sequentially using an alternate key.)

A_MSSQL_TRANSLATE_TO_ANSI

Setting this variable to “True” (on, yes) causes the Acu4GL interface to call
the same translation function used by the Windows runtime to translate
characters going to the server into the OEM character set, and to translate
characters coming from the server to ANSI.

The default is “False” (off, no), which indicates that the Acu4GL interface
does not call the translation function, but passes the data as is to the library.

A_MSSQL_UNLOCK_ON_EXECUTE

Setting this variable to “True” (on, yes) causes all invocations of I$IO using
the EXECUTE opcode to unlock all records. Normally, records are unlocked
when a transaction finishes. But if users do their own transaction
management using sql.acu (which calls I$IO using the EXECUTE opcode),
the interface never knows to unlock records, because it doesn’t check the text
sent to the database to see if it is associated with a transaction. The default
value is “Off” (false, no).

B-26 Acu4GL for Microsoft SQL Server Information
A_MSSQL_USE_DROPDOWN_QUERIES

Setting A_MSSQL_USE_DROPDOWN_QUERIES to a nonzero value
causes selects sent to the database to be of the drop-down variety, instead of
a single large query.

For example, if you have a file with three fields in the primary key, (keyseg1,
keyseg2, keyseg3), and your COBOL program does a START, the following
query is sent to the database:
select (columns) from (table) where
((keyseg1 = value1 and keyseg2 = value2 and
keyseg3 > value3) or (keyseg1 = value1 and
keyseg2 > value2) or (keyseg1 > value1))
order by keyseg1, keyseg2, keyseg3

If you use drop-down queries, the following collection of queries is sent
instead:
select (columns) from (table) where (keyseg1
= value1 and keyseg2 = value2 and keyseg3 >
value3) order by keyseg1, keyseg2, keyseg3

When that set is finished, we then send:
select (columns) from (table) where (keyseg1
= value1 and keyseg2 > value2) order by
keyseg1, keyseg2, keyseg3

And when that set is finished, we then send:
select (columns) from (table) where (keyseg1
> value1) order by keyseg1, keyseg2, keyseg3

There are advantages and disadvantages to each method. If you use the
A4GL_WHERE_CONSTRAINT variable, you should probably set
A_MSSQL_USE_DROPDOWN_QUERIES to “0”, because the WHERE
constraint will limit the result set sufficiently that the larger query will be
more efficient. See Section 9.1.2, “The WHERE Constraint,” for
additional information.

If you usually START files and read to the end, you should set
A_MSSQL_USE_DROPDOWN_QUERIES to “0”, because a fewer number
of queries need to be sent to the database. On the other hand, if you START

Configuration File Variables B-27
files and stop reading after some condition, but haven’t used the WHERE
constraint, you may get more efficient access by setting this variable to “1”
and using the drop-down style of query. In either case, we recommend that
you run some tests to see which value of this variable makes the most sense
for your application.

This variable is accessed only during a positioning operation, so you can set
it at different times for different tables.

While the default value is “0” (off, false, no), this configuration variable can
also take values of “On” (true, yes).

Example
A_MSSQL_USE_DROPDOWN_QUERIES number

where number can be a zero or nonzero value.

A_MSSQL_VISION_LOCKS_FILE

This locking method causes the lock table (AcuLocks) to be a Vision file
instead of an SQL table. This can be accessed via the configuration variable
A_MSSQL_VISION_LOCKS_FILE, which must be set to the name of the
Vision file that will hold the lock information. Note that you must also set a
configuration variable that specifies this file as a Vision file (using a _host
variable). This file must be accessible to all users accessing the Microsoft
SQL Server, either through a common directory, or through AcuServer.

Also included with the Acu4GL for Microsoft SQL Server product is a small
COBOL program that will manage this Vision file (“lockmgr”). This
program should be run with the same runtime that you normally use to access
Microsoft SQL Server tables, and with the same configuration variables set.
The program detects whether Acu4GL for Microsoft SQL Server is available
and detects the A_MSSQL_VISION_LOCKS_FILE variable to determine
which file to manage. This program displays all the records in the lockfile
and gives options for removing single records (by highlighting the desired
record to remove), or removing all shown records, and also for restricting the
shown records by PID, Table, and Database. This program also creates the

B-28 Acu4GL for Microsoft SQL Server Information
Vision lock file and is the only method of creating the file. You can refresh
the display by selecting the Restrict button and then pressing OK without
restricting the display further.

If everything is working correctly, there should be no records in this table
when there are no users accessing Microsoft SQL Server through Acu4GL.
The source for this program is in the “sample/acu4gl” directory.

See also

A_MSSQL_NATIVE_LOCK_TIMEOUT configuration file variable

Section B.6, “Table Locking””

B.5 Using the Database Table

The database table is built and accessed automatically when the COBOL
application is executed. To the end user, the interaction between the COBOL
and the Microsoft SQL Server database is invisible; queries are generated and
data is exchanged in fractions of a second, and the application proceeds
without interruption.

You can also access the database information directly from Microsoft SQL
Server, at your option.

B.6 Table Locking

By default, Microsoft SQL Server doesn’t support the type of record and
table locking that COBOL expects. For this reason, the Acu4GL for
Microsoft SQL Server product implements its own locking method. This is
accomplished with the addition of two tables to a database. You choose
which database will hold these tables during installation of the Acu4GL for
Microsoft SQL Server product.

Table Locking B-29
Before using the locking tables, you must execute the included ms_inst.sql
script. (See the installation instructions you used from this manual for the
exact procedure. They can be located in the table of contents.) If you don’t
perform this step, the first time you try to execute a COBOL program that
opens a Microsoft SQL Server table, you will receive error 9D,11,
“ACUCOBOL Lock Table Incorrect”.

AcuLocks table

The first locking table is called AcuLocks; it holds the record locks. The
columns in this table are

• the DBID

• the Table ID

• the Process ID of the process holding the lock

• the primary key of the record that is locked

There is a unique index on the DBID, the Table ID, and the Key Value, so
that inserts into this table are automatically rejected if another user holds a
lock on the row in question. This also gives the Database Administrator the
information needed to determine who has locks set, and whether the user in
question still has a connection to the server.

AcuOpenTables table

The second locking table is called AcuOpenTables; it holds information
about open tables.

The columns in this table are

• the DBID

• the Table ID

• the process ID (PID) of the process that has the table open

• the Open Mode (Input, Output, I/O or Extend)

• whether Multiple records can be locked

• whether the file can be open for I/O by any other users

B-30 Acu4GL for Microsoft SQL Server Information
• whether the file can be open at all by any other users

• whether Mass Update was specified in the open

There are no indices on this table, but there is a trigger, which will
automatically reject opens that are not allowed based on other users’ open
modes.

By using these lock tables, the Acu4GL for Microsoft SQL Server product is
able to support all the types of locking ordinarily supported by
ACUCOBOL-GT. No special runtime configuration variables are required.

This method of locking is all that is needed if no applications other than
COBOL programs are going to be using the Acu4GL for Microsoft SQL
Server product. But if your site has other applications that access the
Microsoft SQL Server databases, you must use a method of locking that is
inherent to Microsoft SQL Server.

Another method of locking that Microsoft SQL Server supports internally is
the result of time stamping and the use of BROWSE MODE (see the
discussion of BROWSE MODE in the Microsoft SQL Server Commands
Reference Manual). If a table has a time stamp column, the Acu4GL for
Microsoft SQL Server product will use browse mode. This will allow the
server to detect whether another application has modified a record while an
ACUCOBOL-GT application has had it locked.

For information about alternative locking methods, see the configuration
variables A_MSSQL_NATIVE_LOCK_TIMEOUT and
A_MSSQL_USE_DROPDOWN_QUERIES.

B.7 Stored Procedures

A stored procedure is a collection of SQL statements residing on the server,
stored as text in a table in the database. Stored procedures provide an
efficient environment for Acu4GL because, once they are executed on the
server, they do not need to be parsed and optimized each time they are
executed. (However, if the server goes down, the stored procedure will be
parsed and optimized again the first time the procedure is called after the
database restarts.)

Stored Procedures B-31
If you run a set of stored procedures for the database where data is
manipulated (your production database), this database must be the setting for
A_MSSQL_LOCK_DB. If you run the stored procedures against both the
lock database and the production database, the lock database can be the
setting for A_MSSQL_LOCK_DB. Note that if you run one version of
stored procedures against the lock database and another version against the
production database, the stored procedures in the lock database override
those in the production database. Therefore, we recommend that you always
update your stored procedures with each new installation of Acu4GL, so that
these procedures are consistent when you run them against the tables in your
database.

This section discusses two types of stored procedures:

• Procedures that you may want to add to Acu4GL for SQL Server

• Procedures provided in Acu4GL for SQL Server that you, as the
developer or administrator, may find useful

Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. We always upgrade stored procedures in
such a way that they will be compatible with older versions of the product,
so installing new stored procedures over old ones does not affect your
ability to run with an older version of the interface software.

B.7.1 Developer- or Site-supplied Stored Procedures

This section provides information on stored procedures you may want to
create. It also supplies some example code.

The Acu4GL for Microsoft SQL Server interface checks for these stored
procedures when opening a file and will use them in certain circumstances,
such as when A_MSSQL_NO_23_ON_START is set to “No”.

These stored procedures are

• tablename_insert (where tablename is the name of the table being
accessed)

• tablename_delete

B-32 Acu4GL for Microsoft SQL Server Information
• tablename_read

• tablename_update

• tablename_startnnn (where nnn is the key number to start on)

Note: The Acu4GL for Microsoft SQL Server interface does not create
these stored procedures or check their accuracy. It is possible to create
stored procedures in such a way as to make the Acu4GL for Microsoft SQL
Server product completely inoperable. The Acu4GL product uses these
stored procedures for performance reasons only.

Sample XFD

Sample code for developer-supplied stored procedures is based on the
following example of an XFD:
XFD,03,FTEST2-FILE,FTESTDAT
ftestdat.xfd - generated by ACUCOBOL-GT v4.2 Alpha 1
 (8/22/99)
Generated Sun Aug 22 07:54:28 1999
00031,00031,003
01,0,004,00000
01
FTEST2-KEY
01,1,004,00004
02
FTEST2-KEY1-SEG1
FTEST2-KEY1-SEG2
01,0,004,00008
01
FTEST2-ALTKEY2
000
0006,00006
00000,00004,16,00004,+00,000,000,FTEST2-KEY
00004,00002,16,00002,+00,000,000,FTEST2-KEY1-SEG1
00006,00002,16,00002,+00,000,000,FTEST2-KEY1-SEG2
00008,00004,16,00004,+00,000,000,FTEST2-ALTKEY2
00012,00009,00,00009,+00,000,000,FTEST2-NUMBER
00021,00010,16,00010,+00,000,000,FTEST2-INFO

Stored Procedures B-33
tablename_insert

tablename_insert is used to WRITE a record to the file. The parameters
passed to the stored procedure are the values of all the columns in the row, in
the order of the columns in the database. The timestamp column and identity
column (if present in the table) are not passed to the stored procedure.

Given the XFD above, you might want to create the following stored
procedure for writing records to a file:
create procedure ftestdat_insert
@ft2_key char(4),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2),
@ft2_altkey2 char(4),
@ft2_number char(9),
@ft2_info char(10)
as
insert into ftestdat (ftest2_key, ftest2_key1_seg1,
ftest2_key1_seg2, ftest2_altkey2, ftest2_number,
ftest2_info) values (@ft2_key, @ft2_key1_seg1,
@ft2_key1_seg2, @ft2_altkey2, @ft2_number, @ft2_info)

grant execute on ftestdat_insert to public

tablename_delete

tablename_delete is used to DELETE a record from the file. The parameters
passed to the stored procedure are the values of the primary key, in the order
they are listed in the XFD.

Based on the sample XFD, you might want to create the following stored
procedure for deleting records from a file:
create procedure ftestdat_delete
@ft2_key char(4)
as
delete from ftestdat where ftest2_key = @ft2_key

grant execute on ftestdat_delete to public

B-34 Acu4GL for Microsoft SQL Server Information
tablename_read

tablename_read is used to read a random record (READ, not READ NEXT
or READ PREVIOUS). The parameters passed to the stored procedure are
the values of the primary key, in the order they are listed in the XFD. The
expected rowset is the columns in the first table (if secondary tables are
used), or the columns of the table (if secondary tables are not necessary).

This stored procedure is very similar to tablename_start.

tablename_update

tablename_update is used to REWRITE a record from the file. The
parameters passed to the stored procedure are the values of all the columns in
the row, in the order of the columns in the database. The timestamp column
and identity column (if present in the table) are not passed to the stored
procedure.

For example, based on the sample XFD, you might want to create the
following stored procedure for rewriting a record:
create procedure ftestdat_update
@ft2_key char(4),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2),
@ft2_altkey2 char(4),
@ft2_number char(9),
@ft2_info char(10)
as
update ftestdat set
ftest2_key = @ft2_key,
ftest2_key1_seg1 = @ft2_key1_seg1,
ftest2_key1_seg2 = @ft2_key1_seg2,
ftest2_altkey2 = @ft2_altkey2,
ftest2_number = @ft2_number,
ftest2_info = @ft2_info
where ftest2_key = @ft2_key

grant execute on ftestdat_update to public

Stored Procedures B-35
tablename_startnnn

tablename_startnnn is used to START a file. The nnn value is the key
number to start on, and will be 0 filled. For example, the start procedure for
the primary key for table mytab will be “mytab_start000”.

Note: If A_MSSQL_NO_23_ON_START is set to “Yes”, the start stored
procedure is disabled.

Because there can be up to 119 alternate keys, the Acu4GL product does not
search for a start procedure unless, or until, it is used. The parameters passed
to the stored procedure are a 2-char mode [it is a varchar(2) field], with one
of the following values: “>”, “>=”, “=”, “<=”, or “<”. The rest of the
parameters are the columns of the key used to start. Because the ANSI
specification for START includes information about the size of the key being
used (and in particular allows partial keys), the start procedure is used only if
an entire key is given to the start verb. This procedure is also special in that
it does not return data, but needs to raise an error condition if the start fails.
The way to raise the error condition from within the stored procedure is to
include code similar to the following:

raiserror 22006 “Record not found”

The code “22006” is very important. It is the code searched for in setting the
error condition from within the Acu4GL product. If you use a different
number, your starts may succeed when they should actually fail.

For example, based on the sample XFD, you might want to create the
following stored procedure to start a file:
create procedure ftestdat_start001
@mode varchar(2),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2)
as

if exists (select 1 from ftestdat where

(ftest2_key1_seg1 = @ft2_key1_seg1 and
((@mode = “>=“ and ftest2_key1_seg2 >=@ft2_key1_seg2) or
(@mode = “>“ and ftest2_key1_seg2 > @ft2_key1_seg2) or
(@mode = “=“ and ftest2_key1_seg2 = @ft2_key1_seg2) or

B-36 Acu4GL for Microsoft SQL Server Information
(@mode = “<“ and ftest2_key1_seg2 < @ft2_key1_seg2) or
(@mode = “<=“ and ftest2_key1_seg2 <= @ft2_key1_seg2))))
return
if exists (select 1 from ftestdat where
(((@mode = “>=“ or @mode = “>“) and
ftest2_key1_seg1 > @ft2_key1_seg1) or
((@mode = “<=“ or @mode = “<“) and
ftest2_key1_seg1 < @ft2_key1_seg1)))
return
raiserror 22006 “Record not found”

grant execute on ftestdat_start001 to public

B.7.2 Built-in Stored Procedures

Several stored procedures come with Acu4GL for SQL Server. One,
sp_AcuInit, provides a means for customized initialization. The others
return information based on the AcuOpenTables and AcuLocks tables.

Note: You will see that the names of several stored procedures end in “_1”,
indicating the first version of the stored procedure. Whenever a stored
procedure is updated, the extension is updated by one. This is why you can
install new stored procedures without overwriting older ones. Be sure to
install all stored procedures when you install Acu4GL for SQL Server.

sp_AcuInit

If the stored procedure sp_AcuInit exists in the master database, it is
executed when the connection is made to the server. This is a procedure you
can set up to do customized initialization. This stored procedure does not
take any parameters and does not return any results. This optional stored
procedure is executed for all connections by the Acu4GL interface to the
database, not just the primary connection.

As an example of customized initialization, you can use this stored procedure
to remove stale locks by calling sp_AcuRemoveUnusedLocks_1 (which is
installed when all the other Acu4GL stored procedures are installed) or to
limit access to the database by certain users during certain hours. If
sp_AcuInit returns an error, the connection is denied and the error is reported

Stored Procedures B-37
to the COBOL program. The method for returning an error is to execute the
Transact-SQL statement “raiserror”. See your SQL Server documentation
for information about Transact-SQL and stored procedures.

The sp_AcuInit procedure, if it exists in the master database, is executed
whenever Acu4GL makes a new connection, including FAST_ACCESS
connections, to the database. Therefore, any customization that you’ve
indicated via sp_AcuInit applies to all connections a transaction makes to the
database, not just the primary connection.

sp_AcuRemoveUnusedLocks_1

Use this stored procedure to determine who is logged in and to remove
Process IDs that are no longer active on the system. You can call this from
sp_AcuInit each time a user connects to the database to ensure that the lock
table contains only active locks. This stored procedure must reside in the
same database as the AcuOpenTables and AcuLocks tables; it is placed there
automatically when these tables are created during installation.

sp_AcuTableReport_1

Use this stored procedure to learn who is using the tables in the database at
the time this procedure is run. Run this procedure before running the
sp_AcuZeroUserCount stored procedure, so that you can contact users to
inform them that the database will be closing. This stored procedure must
reside in the same database as the AcuOpenTables and AcuLocks tables; it is
placed there automatically when these tables are created during installation.

sp_AcuUserCount_1

You can run sp_AcuUserCount from the query analyzer to learn how many
users have a particular table open. You can use this to track table and
database activity to ensure that your database is running as efficiently as
possible. This stored procedure must reside in the same database as the
AcuOpenTables and AcuLocks tables; it is placed there automatically when
these tables are created during installation.

B-38 Acu4GL for Microsoft SQL Server Information
sp_AcuZeroUserCount_1

Use sp_AcuZeroUserCount to remove all locks on a table and close it. Be
sure to run this stored procedure on all tables in the database if you will be
shutting down the database for any reason. This stored procedure must reside
in the same database as the AcuOpenTables and AcuLocks tables; it is placed
there automatically when these tables are created during installation.

B.8 Limits and Ranges

The following limits exist for the Microsoft SQL Server file system:

Maximum number of columns per key: 16
Maximum number of columns: 250
Maximum number of bytes in a single row when using Acu4GL for
Microsoft SQL Server: 1962

To achieve the same sort or retrieval sequence under Microsoft SQL Server
as under the Vision file system, key fields that contain signed numeric data
must be preceded by a BINARY directive.

Acu4GL for Microsoft SQL Server supports the data types shown below;
when it’s creating tables, the following conversion rules are used, in the
sequence shown:

COBOL SQL Server

DATE directive DATETIME

BINARY directive VARBINARY(n) (if SIZE < 255)
IMAGE (if SIZE > 255)

VAR_LENGTH
directive

VARCHAR(n) (if SIZE < 255)

Usage FLOAT REAL (if SIZE = 4)

Usage DOUBLE FLOAT (if SIZE = 8)

Runtime Errors B-39
Any other numeric usage:

Any other usage:

Other limits are described in Appendix B in Book 4, Appendices, of the
ACUCOBOL-GT documentation set.

B.9 Runtime Errors

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9 provides information on
compile-time errors and also provides several methods for retrieving runtime
errors.

Each message is followed by an explanation and a recommended recovery
procedure.

Runtime errors will have this format:

9D,xx
The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary error code. These are the secondary errors
reported directly from Acu4GL:

9D,01 Read error on dictionary file
An error occurred while reading the XFD file; this probably means the XFD
is corrupt. Recreate the XFD file.

9D,02 Corrupt dictionary file
The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with the “-Fx” option to re-create the dictionary. See
section 8.1 for information on compiler options.

PIC
9(n)V9(m)

SMALLINT (if m = 0 and n < 5)
INT (if m = 0 and n < 10)
DECIMAL(n + m, m)(otherwise)

PIC X(n) CHAR(n) (if n < 255)
TEXT (if n > 255)

B-40 Acu4GL for Microsoft SQL Server Information
9D,03 Dictionary (.xfd) file not found
The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX runtime
configuration file variable. You may need to recompile with the “-Fx” option
to create the dictionary.

9D,04 Too many fields in the key
There are more than 16 fields in a key. Check your key definitions and
restructure the key that is illegal, then recompile with “-Fx”.

9D,05 (no message associated with this error)
A date given to the Acu4GL interface is invalid and cannot be converted.

9D,06 Mismatched dictionary file
The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:
01 – mismatch found but exact cause unknown (this status is returned by the
host file system)
02 – mismatch found in file’s maximum record size
03 – mismatch found in file’s minimum record size
04 – mismatch found in the number of keys in the file
05 – mismatch found in primary key description
06 – mismatch found in first alternate key description
07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

9D,11 ACUCOBOL-GT stored procedures not found
or
ACUCOBOL-GT lock table missing
The installation of Acu4GL for Microsoft SQL Server creates a number of
stored procedures and tables. At least one of these was not found.

Runtime Errors B-41
9D,12 A column of a key is of data type TEXT or IMAGE, which is illegal
Columns that are part of an index may not be of type TEXT or type IMAGE.
Check your key definition.

9D,13 Internal error
Multiple records were found with the same index (this is a Microsoft SQL
Server error).

9D,14 DB library function returned an unexpected error
dbinit (Microsoft SQL Server) failed. An error message from Microsoft
SQL Server is displayed on the terminal.

9D,16 Trying to rename a table across databases
RENAME works only within the same database.

9D,17 Cache error
(internal error) The internal process cache has been corrupted. Please contact
Technical Services.

9D,18 Primary Key error
An error occurred when creating the primary key for a secondary table.

9D,19 Table Size Error
The table is larger than Microsoft SQL Server will accept, either in the
number of columns or in the number of bytes in the row. Use the
SECONDARY_TABLE directive to get around this.

9D,20 (no message associated with this error)
This error tells you that you are trying to do something with a
FAST_ACCESS table that is not allowed. The description of the
A_MSSQL_FAST_ACCESS configuration variable in section B.4 details
the restrictions for tables opened this way.

9D,21 (no message associated with this error)
There was a problem accessing one or more Vision locks files and processing
of this request cannot continue. The tertiary error is an error code returned
from Vision.

B-42 Acu4GL for Microsoft SQL Server Information
B.10 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
Microsoft SQL Server. Refer to Chapter 10 for additional questions and
answers that pertain to the Acu4GL family of products.

Question: When I try to open a file for output, I get the error 9D,2714. There is already
an object named “*” in the database. Why?

Answer: One of your record’s data items probably has the same name as a Microsoft
SQL Server reserved word. Locate the column by comparing a file trace of
the CREATE TABLE to Microsoft SQL Server’s list of reserved words.
Apply the NAME directive to the field in the FD that is associated with the
invalid column, then recompile the program to create a new XFD file.

Question: Can I open tables in different databases?

Answer: Yes. Use a file name like:
database.owner.tablename

Note that, because Acu4GL for Microsoft SQL Server automatically
determines an owner, you can also specify a file name like
“database..tablename”. The two dots are mandatory in this case.

Question: Can I use multiple servers (on the same machine or on different machines) on
my network?

Answer: Yes. Each server has a unique name.

Question: I’m getting an error 9D,11 ACUCOBOL-GT lock table missing. I know that
I added the lock table during installation.

Answer: This is probably a permissions problem. All users must have READ,
WRITE, UPDATE, and DELETE access to AcuLocks (and therefore to the
database that contains it). Be sure to check your permissions.

Question: I keep receiving an error message saying that my login is invalid. But I’m
sure I’m using the correct username and password.

Answer: All usernames, passwords, and database names are case-sensitive. Be sure
that you are typing the names exactly as they are set up.

Common Questions and Answers B-43
Question: Are there any ACUCOBOL-GT library routines that do not work with or
would not make sense to use with Acu4GL for Microsoft SQL Server?

Answer: Yes. There are two ACUCOBOL-GT library routines that either don’t work
with or do not make sense to use with Acu4GL for Microsoft SQL Server:
C$COPY and C$RECOVER.

B-44 Acu4GL for Microsoft SQL Server Information

C
 Acu4GL for Oracle
Information
Key Topics

Oracle Concepts Overview .. C-2
Installation and Setup .. C-7
Oracle’s Instant Client ... C-20
Filename Translation ... C-21
Configuration File Variables ... C-21
Using the Database Table... C-28
Supported Features .. C-28
Limits and Ranges .. C-29
Runtime Errors... C-30
Common Questions and Answers ... C-31

C-2 Acu4GL for Oracle Information
C.1 Oracle Concepts Overview

Acu4GL for Oracle is based on the Oracle Call Interface (OCI), an API that
makes the ACUCOBOL-GT code more portable to the maximum number of
platforms.

A quick overview of some basic design concepts underlying the Oracle
Database Management System will help you interface your COBOL program
to it.

Transactions

The Oracle RDBMS is a transaction-based system. All of the work that you
perform while using Oracle must occur within a transaction, whether that
work is being done through Acu4GL for Oracle or another 4GL application.
When you use Acu4GL for Oracle, a transaction is implicitly started for you
by the database engine itself with the first file I/O operation performed on a
file associated with Oracle. Because all operations with Acu4GL for Oracle
occur within a transaction, any record locked during processing remains
locked until either a COMMIT WORK or ROLLBACK WORK is issued.
This action results in behavior similar to the LOCK ON MULTIPLE
RECORDS clause in COBOL.

The benefits of a transaction management system are best illustrated by an
example. A COBOL application that handles order entry might perform
these steps to accept an order:

1. Write an invoice record.

2. Update a customer record.

3. Write a payroll record for sales commissions.

4. Update an inventory record.

This series of four file operations is a logical unit. If the program were
interrupted, and completed only some of the four file operations, then the
files would be in an inconsistent state. For example, if the program
terminated unexpectedly after it updated the customer record, but before it
updated the inventory record, then a subsequent run might access
non-existent inventory.

Oracle Concepts Overview C-3
The solution to this problem is to provide a method for the programmer to
define a set of operations that should either all occur or all not occur. Then,
if the program encounters an error or terminates, the files are left in a
consistent state.

All file operations that are part of a transaction are logged. Once logged, they
can either be committed or rolled back (undone) by the program.

If a program dies or the system fails, the log file can be used to reconstruct
complete transactions, returning all files to a consistent state. Transaction
logging thus offers these two facilities:

• It provides the programmer with the ability to define transactions and the
ability to commit them or “undo” them (usually in response to an error
condition). This “undo” facility is called a “rollback.”

• It provides the ability to reconstruct files into a consistent state after a
program dies or system failure occurs. This operation is called
“recovery.”

Record-locking issues in transactions

Applications that are written for transaction management systems, or that
perform work in small “operation-based” logical units, benefit greatly from
Oracle’s transaction management systems. Applications that are not written
for transaction management encounter difficulty with record locking when
operating against a system that enforces transaction management.

The difficulty can occur with an application that is performing more than one
logical task at a time. Any operation that modifies or reads data in an I/O
mode without the WITH NO LOCK phrase causes a lock to be placed in the
database system. As a result, the application may have many more record
locks present than would be expected by the normal rule of COBOL file
locking. The application would act similarly as to when the LOCKS ON
MULTIPLE RECORDS clause in COBOL is used. This can best be
illustrated by an example:

1. The user is entering a customer’s order.

2. As each line item is entered into the order, the inventory file is
modified to reflect that items have been removed from the stock on
hand.

C-4 Acu4GL for Oracle Information
3. The user must switch to a different part of the application to perform a
different task, perhaps as a result of a phone call from a new customer.

4. All of the records that were locked, or modified, by the application
before the switch remain locked because the first order is not complete.
No COMMIT or ROLLBACK has been issued to complete the
transaction. All of the records locked by the transaction remain locked
until the application ends the transaction.

5. Because one order is open and not yet committed, other applications
may be locked out of certain order items if they are still locked by the
processing of the first order. The second order entry may be held up
until the first order is completed.

6. Note that the first application is not locked out. A process can read its
own locked records.

Acu4GL and record locking

Acu4GL provides semi-automated ways to handle transaction logging based
on the setting of the COMMIT_COUNT environment variable. You can
also directly alter your source code to deal with this issue. Individual users
determine how much work they wish to do to conform to the Oracle
transaction management system by choosing the method that best fits their
needs and resources. The following methods are listed in order of increasing
amount of work:

COMMIT_COUNT = 0 (Default)

When you set this variable to zero (“0”), the runtime tracks the number of
logical locks that are currently in effect. When the number of logical locks
reaches zero, the runtime assumes that a transaction is complete and issues a
COMMIT statement.

COMMIT_COUNT = n

When you set this variable to a nonzero value, the runtime tracks the number
of WRITE, REWRITE, and DELETE operations, until the value of
COMMIT_COUNT is reached, at which time the runtime issues a COMMIT
statement. The READ, START, and READ NEXT operations do not count
toward this total, because the runtime is tracking data-altering operations

Oracle Concepts Overview C-5
rather than logical record locks. The disadvantage of this method is that
when a COMMIT is issued, any record locks held by the runtime are
released.

COMMIT_COUNT = –1

No commit is issued by the Acu4GL product. When COMMIT_COUNT is
set to “-1”, two alternate ways to perform a commit or rollback are available:

1. Call sql.acu with COMMIT WORK or ROLLBACK WORK.

2. Use the COBOL verbs COMMIT and ROLLBACK, available in
ACUCOBOL-GT.

COMMIT_COUNT is set to “-1” automatically when you use the transaction
management facilities available in the ACUCOBOL-GT compiler. A
COMMIT WORK is, however, issued on exit from the runtime (for example,
on execution of a STOP RUN).

COMMIT Verb in COBOL

This method forces a COMMIT to be sent to Oracle. It can be used in
conjunction with other modes of COMMIT handling. For non-ORACLE
files, this is equivalent to the UNLOCK ALL verb.

Explicitly Coded Transactions

This method provides the greatest flexibility in that transactions are
specifically tailored for the user’s application. This method also requires the
most work for traditional COBOL programs in which transaction modules
may not be clearly defined.

Acu4GL for Oracle

The Oracle system parameter open_cursors should be set to enhance
communication with Acu4GL. See section C.2.4, “Checking System
Parameters,” for more information.

C-6 Acu4GL for Oracle Information
Table ownership

Table names in Oracle have the form owner.table_name. If you are the
owner of a given table, you can refer to it as just table_name. If you are not
the owner, you must refer to it with the owner of the table as a prefix.
Acu4GL for Oracle provides a user-configurable method (the USER_PATH
configuration variable) for implementing this.

Security

Security is implemented in the Oracle RDBMS. A user is required to log in
to the RDBMS before any file processing can occur. Acu4GL for Oracle
provides both a default and a user-configurable method for implementing
this. Oracle’s security considerations pose several challenges for COBOL
programmers. Because of the various levels of permissions, certain
operations are not allowed unless you have Database Administrator (DBA)
privileges. These restricted operations include:

• creating a table under another user’s name

• dropping a table owned by another user

Oracle versions 9i and later also provide additional security levels; however,
you must consult the Oracle documentation to determine if any of these
permission levels are appropriate for your site.

Generally, it is best for someone with DBA privileges to create and drop the
tables, allowing others only the permissions to process information contained
in them. A table can be referenced either by owner.table_name or by a public
synonym that you have created for the table. See the Oracle documentation
for more details on DBA privileges and public synonyms.

Note: By default, Acu4GL for Oracle always checks to see if a public
synonym is available for a file at open time regardless of what the
USER_PATH is set to. If the name of a table owned by a current user is
the same as a public synonym, the user-owned table is chosen.

Installation and Setup C-7
C.2 Installation and Setup

The following topics list the steps you must perform before you begin using
Acu4GL for Oracle.

The following sections describe the steps you must take before you begin
using Acu4GL for Oracle on a new system:

• Windows Installation Steps

• UNIX Installation Steps

• Completing the Installation

• Checking System Parameters

• Setting Up a User Account

• Setting Up the User Environment

• Designating the Host File System

• Setting Up the Search Path

• Handling Transactions

C.2.1 Windows Installation Steps

Installation of the product

The Oracle RDBMS, version 9i or later, must be installed and configured
prior to the installation of Acu4GL for Oracle. Consult the Oracle
documentation if you have any questions regarding this step.

This section details installation instructions for Acu4GL for Oracle on your
Windows machine. UNIX installation instructions can be found in section
C.2.2, “UNIX Installation Steps,” of this appendix.

C-8 Acu4GL for Oracle Information
CD-ROM installation

Instructions for installing your Acu4GL product from CD-ROM are
contained on the Quick Start card that accompanied the product. Please refer
to it for installing the ACUCOBOL-GT development system and Acu4GL.

Once the installation is complete, please refer to this appendix for setting up
your Acu4GL product.

Regarding relinking for Windows users

Relinking is not required for Windows users (but it is required for UNIX
users and is explained in section C.2.2, “UNIX Installation Steps”).
Windows users access Oracle through a DLL file detected at runtime,
“a4ora32.dll”. For compatibility purposes, this file is a copy of the file
“a4oraoci.dll” and is created during the installation process.

Note: If users are using Oracle client software to connect to a database not
on the current machine, they must set up an alias for the database they are
connecting to using Oracle’s “Net Configuration Assistant” or a similar
tool. For example, you would use such a tool to set up an alias called
“sun10” that has these settings:

Protocol: TCP/IP
Host Name: SUN10
Database Instance: ORCL

You should then test this alias using SQL*Plus with a login of
“username@sun10”. Once this configuration is verified, you can set the
ORA_LOGIN variable in the COBOL configuration file to that value, for
example, “ORA_LOGIN username@sun10”. If you prefer, this setting can
be broken up using the new configuration variable A_ORA_DATABASE
as follows:
ORA_LOGIN username
ORA_PASSWD userpass
A_ORA_DATABASE remotesrv

Information on Oracle’s “Net Configuration Assistant” can be found in your
Oracle documentation.

Installation and Setup C-9
C.2.2 UNIX Installation Steps

The Acu4GL for Oracle product on UNIX is an add-on module that must be
linked with the ACUCOBOL-GT runtime system. For this reason, you’ll
need a C compiler to install the Acu4GL product. To interface, you must use
the ACUCOBOL-GT compiler and runtime; the version of the runtime must
match the version of Acu4GL.

The Acu4GL product is shipped using either TAR or CPIO format,
depending on the type of machine you have. The label on the medium
shipped to you tells you which format has been used.

From your Acucorp directory, choose where you want to install the Acu4GL
product (or create a new directory for it) and then enter one of the following
commands:
tar xfv device

or
cpio -icvBd < device

This will copy the files from the distribution medium to your Acucorp
directory structure. device is the appropriate hardware device name (for
example, /dev/rdiskette or /dev/rmt0). Sites using Texas Instruments System
1500 should add an uppercase “T” to the cpio options (-icvBdT).

Contents of the medium

Note that each Acu4GL product has its own license file that must be located
in the same directory as the ACUCOBOL-GT runtime. For Oracle, the
license file is distributed with the name “runcbl.olc”.

C.2.3 Completing the Installation

With appropriate installation settings and procedures, Acu4GL
communicates with versions 9i or later of Oracle. To install the Acu4GL
product, perform the following steps.

C-10 Acu4GL for Oracle Information
Step 1: Install Oracle

The Oracle RDBMS must be installed and configured prior to the
installation of Acu4GL for Oracle.

We also recommend:

• Oracle’s SQL*Plus® product, which is an interactive query tool. This is
not mandatory, but it will give you quite a bit of flexibility. SQL*Plus
allows you to do database work outside of COBOL, including interactive
queries, table creation, table modification, and creation of views,
constraints, and relationships between tables.

• Oracle’s “scott/tiger” test schema, which can be used for testing.

Micro Focus does not provide these products.

Make sure all environment variables Oracle requires, such as
ORACLE_HOME, ORACLE_SID, and LD_LIBRARY_PATH (or
equivalent, if necessary), are set up in the environment of each user who will
be accessing Acu4GL for Oracle (see your Oracle documentation for the list
of variables required). Verify Oracle’s setup and configuration using an
Oracle tool, such as SQL*Plus. Also verify that the PATH references the
necessary Oracle subdirectories.

Step 2: Create a new runtime system

Note: In the following directions, the term “runtime system” refers to the
runtime shared object on systems where the ACUCOBOL-GT runtime is a
shared object and to runcbl on other systems, where the runtime is static.
The runtime is a shared object on the following systems: AIX 5.1 and later,
HP-UX 11 and later, and Solaris 7 and later. To check, look at the contents
of the “lib” subdirectory of your ACUCOBOL-GT installation. If the files
“libruncbl.so” or “libruncbl.sl” reside in that directory, the runtime is a
shared object on your system.

Complete steps 2a through 2c below to create a new runtime that includes the
Oracle Acu4GL product.

You may also link your own C routines with the runtime system.

Installation and Setup C-11
2a. Execute the script

The ora_inst script is an interactive shell script that determines which
libraries your version of Oracle has, and then creates a makefile suitable for
linking Acu4GL for Oracle. In the instructions below, bold italicized text
within a message indicates that the script inserts what you had previously
typed.

Execute the shell script ora_inst by typing the following command:
sh ora_inst

Note: You may exit the script at any time by pressing the system interrupt
key (usually CTRL+C).

This is the first message that you see:
If this script dies with an error like "VAL=0: command not
found", try executing it with a bourne shell, as in sh ora_inst

If the script does terminate, and if re-entering the command does not work,
call Technical Services.

When the script begins executing, the following message is displayed (no
response is needed):
We first need to determine where you have installed ORACLE.

If the environment variable ORACLE_HOME has been set, the script
continues, and the next message you see is the version inquiry below. If
ORACLE_HOME has not been set to the Oracle directory name, the
installation script displays this message:
Enter the directory where ORACLE is installed:

Type the name of the directory in which you installed Oracle, and then press
Enter. The script then determines whether a directory by that name exists; if
not, the script displays the following message:
entered directory isn’t a directory.

and returns to the “Enter the directory” prompt to give you another chance.
After you have entered a legitimate directory name, the script responds with:

C-12 Acu4GL for Oracle Information
Creating Makefile.ora ...
You should now be able to execute a make
with the command make –f Makefile.ora in
the … <ACUCOBOL-GT directory>/lib

These are just informative messages.

Note: Be sure to review the “makefile.ora” file and make adjustments as
necessary.

2b. Link the runtime system

If you need to link in your own C routines, add them to the SUBS= line of the
file “Makefile.ora”. See Chapter 6 in A Guide to Interoperating with
ACUCOBOL-GT for details on linking C subroutines.

Make sure you are in the directory containing the ACUCOBOL-GT runtime
system. Then, at the UNIX prompt, enter the following command:
make clean

to ensure that you have a clean directory in which to build your runtime.

Now enter the following command:
make -f Makefile.ora

or
makerun

This compiles “sub.c” and “filetbl.c” and then links the runtime system.

Note: Make sure you have correctly set all of the flags specific to your
platform correctly before you relink your library and object files.
If the make fails because of an out-of-date symbol table, execute the
following command:

ranlib *.a

and then execute the make again. If the make fails for any other reason, call
Technical Services.

Installation and Setup C-13
If you are relinking your runtime under SCO UNIX, you must add “-lrpc
-lsocket” to the LIBS section of “Makefile.ora”. If you place them on a line
by themselves, remember to place a backslash at the end of the previous
line. You must also remove these two libraries from the
“ACUSERVER_LIBS” line.

2c. Verify the link

Enter the following command:
./runcbl –vv

to verify the link. This returns version information on all of the products
linked into your runtime system. Make sure it reports the version of Acu4GL
for Oracle.

Shared libraries

If you have relinked the ACUCOBOL-GT runtime and receive an error
message of this type when you try to execute it:
"Could not load library; no such file or directory"
"Can’t open shared library . . . "

this may mean that your operating system is using shared libraries and cannot
find them. This can occur even if the shared libraries reside in the same
directory in which you are currently located.

Different versions of the UNIX operating system resolve this in different
ways, so it is important that you consult your UNIX documentation to resolve
this error.

Some versions of UNIX require that you set an environment variable that
points to shared libraries on your system. For example, on an IBM RS/
6000® running AIX® 4.1, the environment variable LIBPATH must point to
the directory in which the shared libraries are located. On HP/UX, the
environment variable that must be set to point to shared libraries is
SHLIB_PATH. On UNIX SVR4, the environment variable is
LD_LIBRARY_PATH. Note that the correct version of the
ORACLE_HOME/lib should be in your LD_LIBRARY_PATH. This might

C-14 Acu4GL for Oracle Information
be ORACLE_HOME/lib64 or ORACLE_HOME/lib, depending on what the
default is for your system. If a lib32 directory exists, the 64-bit libraries may
be the default. Please refer to your Oracle release notes for more information.

Be sure to read the system documentation for your operating system to
determine the appropriate way to locate shared libraries.

A second way to resolve this type of error is to link the libraries into the
runtime with a static link. Different versions of the C development system
use different flags to accomplish this link. Please consult the documentation
for your C compiler to determine the correct flag for your environment.

Step 3: Copy runcbl to the correct directory

If the runtime system is a statically linked runcbl, copy the new executable
to a directory mentioned in your execution path. This file needs to have
execute permission for everyone who will be using the runtime system. The
copy step is not necessary when the runtime system is a shared library.

The ACUCOBOL-GT license file for the runtime (“runcbl.alc”) and the
license file for the Acu4GL product to Oracle (“runcbl.olc”) must be copied
into the same directory as the runtime executable. If you rename your
runtime executable, be sure to rename your license files to base name, with
the extensions unchanged. For example, if you rename your runtime to be
“myprog.bin”, the license file for the Acu4GL product for Oracle should be
renamed “myprog.olc”, and the license file for the runtime should be
renamed “myprog.alc.”

The remaining files can be left in the directory into which they were installed
from the distribution medium.

C.2.4 Checking System Parameters

Acu4GL makes use of cursor caching to process Oracle RDBMS data
efficiently. A cursor is a prepared query, saved in a parameterized format.
When a like function is to be performed on a different record (such as a GET
NEXT), the task can be performed by executing the saved query with new

Installation and Setup C-15
parameters. This improves performance by eliminating the need to
regenerate the query. The number of cursors available to your COBOL
application may need to be adjusted, as described below.

Setting the parameters

In summary, what you need to do is:

• Set the Oracle system parameter open_cursors to indicate the total
number of cursors you want to have. To do this, look in Oracle’s
“init.ora” and “initSID.ora”, or any other database initialization files
used at your site, and add or modify the line:

open_cursors = nnn

• The number of cursors can be equal to the number of keys times the
number of segments per key for each file.

For example, if you have five files, each of which has three keys, and
each key has three segments, you should set open_cursors to a minimum
of “45”.

Note: Setting OPEN_CURSORS should be performed only by your
System Administrator or Database Administrator, because it affects all
applications using the database.

C.2.5 Setting Up a User Account

Acu4GL for Oracle must be able to connect to a user account. You may
either set up one general account for all users or an account for each
individual user. To set up an account, you must have Database Administrator
(DBA) privileges.

Note: You may opt to use Oracle’s Enterprise Manager on Windows
platforms to simplify the login process. If you decide to use the Enterprise
Manager, please skip this section, and refer to the Enterprise Manager
documentation.

C-16 Acu4GL for Oracle Information
Configured login

If you want to specify a database login name other than the system login
name, you can use configured login. The SQL command syntax to enroll a
new user by configured login is:
GRANT CONNECT, RESOURCE TO db_login_name IDENTIFIED BY
 password

db_login_name is the name you want to use to log in to the database.

For more details on login, see your site’s system administrator and the Oracle
Database Administrator’s Guide.

C.2.6 Setting Up the User Environment

The user’s account should have been set up correctly to access the Oracle
RDBMS system. This includes environment variables such as
ORACLE_HOME and ORACLE_SID. See your Oracle documentation for
more details.

In addition to the variables required for Oracle, you must do the following:

Ensure that your execution path contains the name of the directory where you
placed your newly linked Acu4GL runtime executable.

If you are not using the automatic login procedure, you will need to set the
ORA_LOGIN, ORA_PASSWD, and possibly A_ORA_DATABASE
variables either in your environment or in the ACUCOBOL-GT runtime
configuration file. For security reasons, it is best to set the password variable
from your COBOL program by asking the user to enter a password and then
executing:
SET ENVIRONMENT ORA_PASSWD TO user-entry

You may want to make and use a personalized copy of the configuration file
to avoid impacting other users. The ACUCOBOL-GT User’s Guide
describes how to use the A_CONFIG environment variable, or the “-c”
runtime option, to identify a personal configuration file.

Installation and Setup C-17
If you will be accessing files that you do not personally own and that do not
have public synonyms, you will need to set the configuration variable
USER_PATH.

For detailed information on ORA_LOGIN, ORA_PASSWD, and
USER_PATH, see section C.4, “Acu4GL for Oracle Configuration File
Variables,” in this appendix.

C.2.7 Designating the Host File System

If you are opening an existing file, all file systems linked into the runtime are
searched for the named file. If, however, you are creating a new file, you
must tell the runtime which file system to use. You accomplish this with one
of two configuration file variables; the first is:

DEFAULT_HOST filesystem

This designates the file system to be used for newly created files that are not
individually assigned. For example,

DEFAULT_HOST ORACLE

means that all new files will be Oracle files unless otherwise specified by the
second configuration variable, which is:

filename_HOST filesystem

where filename is the file name, without any extension, named in the
ASSIGN TO clause of your SELECT statement. This configuration variable
is used to assign an individual data file to a file system. Any file so assigned
will use the designated file system, and not the one specified by
DEFAULT_HOST. For example,

myfile_HOST VISION

means that myfile will be under the Vision file system.

You can use these configuration file variables in combination to assign your
new files in a default with exceptions manner; for example, this set of entries:
DEFAULT_HOST ORACLE
afile_HOST VISION
bfile_HOST VISION

C-18 Acu4GL for Oracle Information
means that all new files except afile and bfile will be assigned to Oracle, and
those two files will be assigned to Vision.

You can change the values of these variables during program execution by
including in your code:
SET ENVIRONMENT "filename_HOST" TO filesystem

or
SET ENVIRONMENT "DEFAULT_HOST" TO filesystem

This enables you to change file systems during the execution of your
program. (This is not the typical way to specify a file system; normally it is
designated in the runtime configuration file and is not changed in the
COBOL program.)

Note: Acu4GL for Oracle allows you to create a table with an OPEN
OUTPUT statement, just as you can create Vision indexed files. The
Oracle equivalent of a Vision file is a table, not a database. You must
create a database for your Oracle tables before you run the COBOL
program that creates the tables, just as you must create a directory for your
files before you run a COBOL program that creates Vision files.

C.2.8 Setting Up the Search Path

If you own a file because you created it with OPEN OUTPUT from COBOL,
or because you created it using SQL, you do not need to do anything more to
access the file. However, if you want to access files that are owned by other
users on the system and do not have public synonyms, you must provide the
runtime with information on how to locate these files.

The USER_PATH configuration variable is used by the runtime to locate
files. It functions in much the same way as ACUCOBOL-GT’s
FILE_PREFIX variable (see Chapter 2 in Book 1, User’s Guide, of the
ACUCOBOL-GT compiler documentation). The syntax for this variable is:

USER_PATH user1 [user2]...

Installation and Setup C-19
Where the user argument may either be the name of a user on the system or
a period (.), which indicates the files owned by yourself. For example, if you
have the following settings:

ORA_LOGIN = OPS$ORACLE
ORA_PASSWD = DATA_FERIT
USER_PATH = barbara scott.

and then attempt to open for I/O the file “myfile”, the runtime uses the
following search path:

OPEN I-O barbara.myfile
OPEN I-O scott.myfile
OPEN I-O ops$oracle.myfile

Remember that another option for allowing access to a file to all users on the
system is to create a public synonym for the file.

C.2.9 Handling Transactions

Issuing a COMMIT WORK database command terminates a transaction and
makes all work permanent and accessible to other users. The Acu4GL for
Oracle runtime issues this command automatically when no locks are held,
but you can cause it to happen under other conditions by setting the value of
the COMMIT_COUNT configuration file variable, which is discussed in
detail in section C.4, “Acu4GL for Oracle Configuration File Variables”.

For direct control over the transaction logging facility in Oracle, use the
transaction management features available with ACUCOBOL-GT compiler.
See Chapter 5 in Book 1, User’s Guide, of the ACUCOBOL-GT compiler
documentation.

Note: You are now ready to use the sql.acu program. Go to section 2.4,
“Using the “sql.acu” Program,” to learn about using this Micro
Focus-provided utility.

After you learn about and use this utility, you are ready to find out about
preparing and compiling your COBOL program, followed by learning to use
the demonstration program. All of this information can also be found in
Chapter 2, “Getting Started.”

C-20 Acu4GL for Oracle Information
C.3 Oracle’s Instant Client

Instant Client, a free download from Oracle, allows you to run your
applications without installing the standard Oracle client or having an
ORACLE_HOME.

Note: Setting up Oracle Instant Client can be challenging and should be
performed only by advanced users.

To use Oracle’s Instant Client with Acu4GL for Oracle, download the “Basic
Lite” and “SQL*Plus” packages from Oracle. Follow Oracle’s instructions
to install and configure the products and test their connection using
SQL*Plus before proceeding to work with Acu4GL.

Once you have completed this process, test the installation. We recommend
that you go to a different directory and then type the following command:

sqlplus scott@bigdb/tiger
select user from dual;

On UNIX, if this test is successful, relink the runtime to use the Instant
Client. For instructions on relinking, see section C.2.3, “Completing the
Installation.” The ora_inst script will recognize the Instant Client structure;
just tell it the directory into which you installed the Instant Client when asked
for the ORACLE_HOME setting.

On Windows, if this test is successful, you are ready to use the runtime. The
Windows runtime loads the Oracle Instant Client dynamically from the
specified path. To verify that you have loaded the application successfully,
enter
wrun32 -v

on the command line.

You should see “Acu4GL ORACLE/OCI file system” included on the
ACUCOBOL-GT window that is displayed.

Filename Translation C-21
C.4 Filename Translation

As you prepare to work with Acu4GL for Oracle, you may find it helpful to
understand the rules around filename interpretation and to understand how
the names of tables and XFD files are formed and work together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the file name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file. For additional
information on configuration variables, see Appendix H in Book 4,
Appendices, of the ACUCOBOL-GT documentation set.

At this point, Acu4GL for Oracle translates the file name to uppercase letters
and changes hyphens to underscores. This “new” name is the one that
Acu4GL for Oracle will use in the future for references to the database table.

C.5 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Acu4GL for Oracle. Configuration file variables that are generally
applicable to any RDBMS with which Acu4GL communicates are discussed
in section 8.2, “Runtime Configuration Variables.”

A_ORA_DATABASE

A_ORA_DATABASE specifies the name of a network service that you have
set up to refer to a database using an Oracle tool such as “Net Configuration
Assistant,” or by manually editing “tnsnames.ora”.

See also

ORA_LOGIN configuration variable

ORA_PASSWD configuration variable

C-22 Acu4GL for Oracle Information
A_ORA_HINTS

This variable enables the Oracle Hints feature. The default value is “1” (on,
true, yes). To turn off this feature, set it to “0” (off, false, no).

Oracle Hints can improve database performance considerably in some
situations, by “strongly suggesting” to the oracle query optimizer that it use a
given index to process a query.

Note that keys must use the ACUCOBOL-GT naming convention for naming
indexes in the database to use this function. For example, the primary key on
the file “ftest” would be named “iftest_0”.

A_ORA_MAX_FILE_CURSORS

This configuration variable allows you to set the maximum number of
cursors that the runtime is allowed to have per file. This is similar to the
configuration variable MAX_CURSORS found in Acu4GL for Oracle prior
to Version 6.2.0, except that the number is on a per-file basis as opposed to
the maximum number of cursors available to the runtime in total.

The default value for A_ORA_MAX_FILE_CURSORS is “0”, meaning that
the runtime uses all of the cursors that it can. Because each file must have
access to at least two cursors, set this variable to a value greater than “2” if
you want to specify a particular value. If all the allotted cursors for a file have
been used, the least recently used cursor for that file is freed.

Note that this variable is read only at startup time, and should, therefore, be
set in the configuration file.

A_ORA_NLS_SORT

This configuration variable forces the sort order of returned records to be in
a binary order. Set A_ORA_NLS_SORT to “1” to turn off the default binary
order and use the native language sort instead. The default is “0”, which
means that the sort order will not be the NLS sort order and will, instead, be
binary.

This variable must be set before the first database file is accessed.

Configuration File Variables C-23
A_ORA_WAIT_LOCK

This configuration variable determines the type of Oracle locks used: wait or
nowait locks. The default is “FALSE”, nowait locks. This variable is read at
file open time for each file.

A_ORACLE_ERROR_FILE

This configuration file variable allows you to map errors using a text file to
supplement the default method of providing errors. By adding the name of
the file that contains the actual error mapping to
A_ORACLE_ERROR_FILE, database-specific errors are mapped to
COBOL errors.

Note: Some messages related to COBOL I/O cannot be supplemented.

Example

A sample syntax for this configuration file variable would be:
A_ORACLE_ERROR_FILE=ORCLerrs

where:

ORCLerrs is a file of a specified format containing a mapping of
database-specific errors to COBOL errors. One such entry might be:

1 DUPLICATE_RECORD

COMMIT_COUNT

The value of COMMIT_COUNT indicates the conditions under which you
want to issue an automatic COMMIT_WORK operation.

C-24 Acu4GL for Oracle Information
Examples

COMMIT_COUNT 0

A commit is issued when no locks are held, either because all files that had
locked records have been closed, or because a COBOL COMMIT verb has
been issued. This is the default value.

COMMIT_COUNT n

A commit is issued after n operations. WRITE, REWRITE, and DELETE
count towards n; READ, START, and READ NEXT do not.

COMMIT_COUNT -1

No commit is issued by the Acu4GL product. When COMMIT_COUNT is
set to “-1”, there are two alternate ways to perform a commit or rollback:

• One way is to call sql.acu with COMMIT WORK or ROLLBACK
WORK.

• The second way is to use the COBOL verbs COMMIT and
ROLLBACK, available in ACUCOBOL-GT.

COMMIT_COUNT is set to “-1” internally when you use the transaction
management facilities available in the ACUCOBOL-GT compiler.

A COMMIT WORK, however, is issued on exit from the runtime (for
example, on execution of a STOP RUN).

See also

Section 2.4, “Using the “sql.acu” Program”

Section C.7, “Supported Features”

Configuration File Variables C-25
ORA_LOGIN

ORA_LOGIN indicates the user name under which you want to connect to
the database system.

Example

To connect to the database with the user name MYNAME, you would
specify:

ORA_LOGIN MYNAME

in the configuration file.

See also

ORA_PASSWD configuration variable

A_ORA_DATABASE configuration variable

Section C.2.5, “Setting Up a User Account”

ORA_PASSWD

The variable ORA_PASSWD should be set to the password assigned to the
database account associated with the user name specified by ORA_LOGIN.

Example

For example, if the account with the user name has the associated password
“CW021535”, you would specify:

ORA_PASSWD CW021535

in the configuration file or the environment.

For a full login from a client to a remote server, you could have either of the
following two settings:

ORA_LOGIN username
ORA_PASSWD userpass
A_ORA_DATABASE remotesrv

C-26 Acu4GL for Oracle Information
or
ORA_LOGIN username@remotesrv
ORA_PASSWD userpass

In this example, remotesrv is the net service name you have set up, as defined
above in the section dealing with A_ORA_DATABASE.

See also

ORA_LOGIN configuration variable

A_ORA_DATABASE configuration variable

USER_PATH

USER_PATH indicates the user name or names to be used when Acu4GL
searches for files. The order of the names is significant. The syntax for this
variable is:

USER_PATH user1 [user2]...

where the user argument may be either the name of a user on the system, or
a period (“.”), which indicates the files owned by yourself.

The type of OPEN being issued for the file determines the effects of this
setting.

Examples

If an OPEN INPUT or OPEN I/O is issued, and a USER_PATH variable is
defined in the runtime configuration file, Acu4GL searches for a user of the
named file in the following sequence of places:

1. The list of users in USER_PATH.

2. The public synonyms

The first valid file is opened.

Configuration File Variables C-27
If USER_PATH is defined and the current user is the owner of the file, the
current user must be included as one of the users (as indicated by a “.” in the
USER_PATH). If this is not the case, even though the current user has
created the table, it will not be found and a file error “35” will result. This
circumstance can occur if the file was created with the OPEN OUTPUT
phrase and “.” is not an element in USER_PATH. When the table is created,
the current user will be the owner of that table. When the runtime attempts to
open the table, the runtime will not look for tables owned by the current user
unless USER_PATH is not set, or “.” is part of the USER_PATH setting.

If an OPEN INPUT or OPEN I/O is issued, and no USER_PATH variable is
in the runtime configuration file, Acu4GL searches for a user of the named
file in the following sequence of places:

1. The user named for login (ORA_LOGIN or OPS$username)

2. Public synonyms

Acu4GL opens the first file that has a valid combination of user and file
name.

If an OPEN OUTPUT is issued (whether USER_PATH is present or not), a
new table is created with the owner being:

1. The name specified in ORA_LOGIN

2. The name constructed by automatic login (see section C.2.5, “Setting
Up a User Account.”)

See also

Chapter 2 in the ACUCOBOL-GT User’s Guide contains a discussion of the
FILE_PREFIX configuration variable and general guidelines on the use of
file search paths.

Section C.2.8, “Setting Up the Search Path”

C-28 Acu4GL for Oracle Information
C.6 Using the Database Table
The database table is built and accessed automatically when the COBOL
application is executed. To the end user, the interaction between the COBOL
and the Oracle database is transparent, as though they were part of one
process.

You can also access the database information directly from Oracle, at your
option.

C.7 Supported Features
OPEN ALLOWING READERS is not supported by Oracle. You determine
in your runtime configuration file how this phrase will be interpreted. Set the
variable STRENGTHEN_LOCKS to “1” to cause this phrase to be treated as
OPEN ALLOWING NO OTHERS. Set the variable to “0” to cause the
phrase to be treated as OPEN ALLOWING ALL. The default value is “0”.

Transactions are enforced in Oracle. Within a transaction, records locked by
I/O operations that modify, delete, or otherwise result in a COBOL
record-lock, remain locked until a COMMIT WORK or a ROLLBACK
WORK is issued, or until your COBOL program encounters a COMMIT or
ROLLBACK verb. See the description of the COMMIT_COUNT
configuration variable.

Oracle does not support record encryption, record compression, or alternate
collating sequences. You may include these options in your program; they
will be disregarded if they are specified.

The ACUCOBOL-GT utility program vutil cannot be used with Oracle files.
Instead, use utilities supplied by Oracle.

Whenever you are using the library routine RENAME, you must specify that
you are using indexed files. This information is passed by the value “I” in the
fourth parameter.

Unless you have DBA privileges, or special privileges provided by Oracle
Version 9i, you can’t:
• Delete a table you don’t own
• Create a table under another user’s name

Limits and Ranges C-29
C.8 Limits and Ranges

The following limits exist for the Oracle 9i® file system:

Maximum indexed key size: 250 bytes
Maximum number of fields per key: 16
Maximum number of columns: 254
Maximum length of a char field: 255

Note: The limits and ranges differ between releases of Oracle.

Acu4GL for Oracle supports the following data types.

COBOL to Oracle

PIC X CHAR

PIC X(n) CHAR(n)

PIC X(n) VARCHAR2 *

PIC X(n) RAW(n) **

PIC 9(n) NUMBER(n)

PIC 9(n) RAW(n) **

PIC 9(n)V9(m) NUMBER(n+m, m)

example: PIC999V99 NUMBER(5,2)

Oracle to COBOL

CHAR PIC X

CHAR(n) PIC X(n)

VARCHAR2 PIC X(n) *

DATE PIC 9(6) or PIC 9(8)

NUMBER(n) PIC 9(n)

NUMBER(n, m) PIC 9(n-m)V9(m)

RAW(n) PIC X(n) ** or PIC 9(n) **

example: NUMBER(4,3) PIC9V999

C-30 Acu4GL for Oracle Information
* indicates that the VAR_LENGTH directive is required.

** indicates that the BINARY directive is required.

Internally, Acu4GL for Oracle uses VARCHAR to prevent key fields that are
all spaces from being converted to null.

These Oracle data types are not currently supported:

LONG
LONG RAW

Other limits described in Appendix B of Book 4, Appendices, of the
ACUCOBOL-GT documentation set apply.

C.9 Runtime Errors

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9, “Performance and
Troubleshooting,” provides information on compile-time errors and also
provides several methods for retrieving runtime errors.

Each message is followed by an explanation and a recommended recovery
procedure.

Runtime errors will have this format:

9D,xxxx

The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary, database-specific error code. These are the
secondary errors reported directly from Acu4GL for Oracle:

9D,03 Dictionary (.xfd) file not found
The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX
configuration variable. You may need to recompile with the “-Fx” option to
create the dictionary. See section 8.1 for additional information on compiler
options.

Common Questions and Answers C-31
9D,04 Corrupt dictionary file
The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with “-Fx” to re-create the dictionary. Note that this error
may be caused by inappropriate application of a directive. Check all
directives, and call Technical Services if you have questions.

9D,05 Too many fields in the key (more than 16 for Oracle)
Check your key definitions and redefine the key that is illegal, and then
recompile with “-Fx”.

9D,06 Mismatched dictionary file
The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:
01 – mismatch found but exact cause unknown (this status is returned by the
host file system)
02 – mismatch found in file’s maximum record size
03 – mismatch found in file’s minimum record size
04 – mismatch found in the number of keys in the file
05 – mismatch found in primary key description
06 – mismatch found in first alternate key description
07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

9D,1001 Invalid Cursor
The prepare portion is aged out of cache. Re-enter the code while
invalidating the prepare portion.

C.10 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
Oracle. Refer to Chapter 10 for additional questions and answers that
pertain to the Acu4GL family of products.

Question: What files do I need to link my C routines into Acu4GL?

Answer: You need to modify the file “makefile.ora” to add your C routines to the file
and then relink your runtime with the command “make -f makefile.ora”.

Question: When I try to open a file for output, I get the error 9D,904 Invalid Column
Name. Why?

Answer: One of your record’s data items probably has the same name as an Oracle
reserved word. Locate the column by comparing a file trace of the CREATE
TABLE to Oracle’s list of reserved words and then apply the NAME
directive to the column in question.

Question: I created a table the last time I ran the application, and now I can’t find it.
Why?

Answer: This is probably a file (table) ownership problem. If you were running the
application under a different user name when you created the file, that table
may not be visible unless the creating user’s name is listed in your
USER_PATH configuration variable.

Question: Can the Acu4GL for Oracle product support a full date/time format?

Answer: The finest time granularity that Oracle supports is one second. Fractions of a
second are not supported. In order to achieve this, you must be sure the “xfd
date” code is correct and specify a date-time string in your COBOL
application, as opposed to just a date. See section 4.3.5, “DATE,” for
additional information.

Question: Are there any ACUCOBOL-GT library routines that do not work with or
would not make sense to use with Acu4GL for Oracle?

Answer: Yes. There are two ACUCOBOL-GT library routines that either don’t work
with or do not make sense to use with Acu4GL for Oracle: C$COPY and
C$RECOVER.

D
 Acu4GL for ODBC
Information
Key Topics

ODBC Concepts.. D-2
Acu4GL for ODBC Installation and Setup.. D-10
Filename Translation ... D-17
Decimal Points .. D-18
Configuration File Variables ... D-18
Mixed-case SQL Identifiers... D-35
Record and Table Locking... D-35
Limits and Ranges .. D-36
Driver Requirements.. D-36
Data Type Mapping.. D-38
Troubleshooting .. D-42
Common Questions and Answers .. D-45

D-2 Acu4GL for ODBC Information
D.1 ODBC Concepts

With Acu4GL for ODBC, your Windows-based application can access the
most common database formats found on desktop computer systems, as well
as relational database management systems on UNIX or Windows NT
servers.

This section gives a brief overview of concepts you’ll need to work with
ODBC.

D.1.1 What Is ODBC?

Open Database Connectivity (ODBC) is a library of standardized data access
functions. It’s intended to give programmers a way to access and manipulate
data in a variety of data sources.

ODBC operates in a way that is similar to Informix ESQL/C and Oracle
Pro*COBOL®. The main difference is that ODBC offers the advantage of
being able to access almost any data source.

With traditional call-level interfaces (CLI), you are required to learn the
Application Programming Interface (API) for each data source. If you want
to port an application from one data source to another, you must write a
complete new access module.

ODBC was designed expressly to access almost any data source. It offers a
standard API that can be used to manipulate data in a Microsoft Access
database on your PC, or connect from your PC to an Oracle database on a
UNIX host. It can even access files that are not databases, such as Btrieve
data files and Excel spreadsheets.

D.1.2 Origins of ODBC

ODBC is able to access a wide variety of file systems because it takes
advantage of their common properties and common standards.

ODBC Concepts D-3
For example, most of the popular database systems on the market today bear
a strong resemblance to each other, both in functionality and in the methods
they use to access data. This is because the major vendors’ products are
based in whole or in part on the relational database concepts of E. F. Codd.
ODBC makes use of these commonalties.

Shared standards also lend power to ODBC. Several groups have been
working to set standards in the UNIX environment, where much of the
database technology originated. These groups include the ANSI standards
committee, the X/Open consortium, and the SQL Access Group. Together,
these groups have devised much of the core technology that Microsoft has
organized into ODBC.

D.1.3 Restrictions

ODBC does not make your application instantly portable to any database or
data source that has ODBC support. Many layers of software are involved in
the data retrieval process, and each layer adds its own restrictions.

The major component that makes an ODBC connection work is the ODBC
driver. (See section D.1.4, “ODBC Structure,” for more information.) The
driver processes API function calls, submits SQL requests to a specific data
source or DBMS, and returns results.

ODBC drivers are available from a variety of vendors and offer very different
levels of support and performance. The sources of the data that the drivers
connect to also offer very different capabilities in areas such as record
locking, file operations, and transaction management. These differences in
performance and capability can have a significant impact on your
application.

D.1.4 ODBC Structure

A quick overview of the components of ODBC will help you interface your
COBOL program to ODBC-compliant data sources.

D-4 Acu4GL for ODBC Information
ODBC requires four components: an ODBC-enabled application, the ODBC
driver manager, ODBC database drivers, and data sources. The following
diagram indicates how these components work together in a single-tier
environment.

Single-tier ODBC architecture

ODBC API calls

Data

Data

DataODBC driver calls

Commands

ODBC Driver Manager

ODBC single-tier driver

Local database files

(e.g., DBF + indexes)

Front-end application

ODBC interface

ODBC Concepts D-5
The following diagram indicates how these components work together in a
multiple-tier environment.

Multiple-tier ODBC architecture

ODBC API calls

Data

Data

Data

Data

DataODBC driver calls

Commands

ODBC Driver Manager

ODBC multiple-tier driver

Front-end application

ODBC interface

Proprietary database

communication interface

Networking software

Back-end database engine

Database engine

commands

Database

interface calls

Physical database

D-6 Acu4GL for ODBC Information
Application

The application is your COBOL program, or more precisely, the
ACUCOBOL-GT® runtime system together with Acu4GL for ODBC. The
runtime generates the appropriate SQL queries to accomplish the file I/O task
that your COBOL program is executing. This includes all file positioning
and record locking. When the query results are returned to the
ACUCOBOL-GT runtime, they are mapped either to a COBOL record or to
the appropriate COBOL status code, if one exists.

Driver Manager

The driver manager loads the ODBC driver. The driver manager then passes
requests to the driver and returns results to the ACUCOBOL-GT runtime.
For the Microsoft Windows environment, the driver manager is called
ODBC32.DLL for 32-bit architectures.

The driver manager is typically included with the ODBC driver and is often
installed along with the driver. For some products, such as Microsoft Access
and Excel, the driver manager is installed automatically if you choose the
ODBC support option while installing the product. (The ODBC support
option tends to be part of the custom install process.)

Driver

The driver processes ODBC requests and returns data to the driver manager
and your application. If necessary, the driver translates the runtime’s SQL
request into a form that is understood by the target data source.

Your application is not limited to communicating through just one driver,
however. By setting the ACUCOBOL-GT configuration variable
A_ODBC_DATASOURCE, you can direct the ACUCOBOL-GT runtime
to connect to a different driver for any given file. Simply set this variable
before opening the indexed data file. The Acu4GL interface for ODBC will
then handle connecting to the new data source and performing any operations
necessary to open the file.

ODBC Concepts D-7
The driver is the most important feature of ODBC. ODBC drivers for a given
data source may be available from many different vendors. They vary greatly
in performance and in the options they provide for a given data source. Be
sure to carefully review a data source driver to determine its level of
performance.

Your Acu4GL for ODBC disks include a program that tests your ODBC
driver for the various functions the Acu4GL product requires. This program
is called DRVTST32.EXE. You initiate it by selecting the appropriate icon in
the Acu4GL for ODBC program group. Please refer to section D.9, “Driver
Requirements,” for instructions on using the driver test program. This
section also describes the minimal requirements that your driver must meet to
work with Acu4GL for ODBC.

Data Sources

Data sources are the files or databases accessed by a driver. Each data source
must be identified during setup.

Some data sources are simple to identify. For example, to access a text file,
you would provide the name and location of the file. Some are more
complex, though. For example, to access a UNIX-hosted database such as
Oracle, you would identify the Windows drivers, Windows applications,
network connections, and database information.

In Windows XP, you set up an ODBC data source in the Windows control
panel, Administrative Tools dialog. After you double-click the Data Sources
(ODBC) icon, an ODBC Data Source Administrator dialog is displayed. You
must designate the driver, the data source, and any other information
necessary to access the data. Setup procedures are described in detail in
section D.2, “Acu4GL for ODBC Installation and Setup.”

D-8 Acu4GL for ODBC Information
The following diagram shows how the Acu4GL product fits into a single-tier
environment.

Acu4GL for ODBC in a single-tier environment

ACUCOBOL–GT Domain

Generic file system
interface

ODBC API calls

COBOL �
indexed files

ODBC Domain

Data Source

ODBC driver
manager

ODBC driver

Commands

ODBC driver calls

Local database

files

ACUCOBOL-GT
application program

Acu4GL for ODBC

ODBC Concepts D-9
The following diagram shows how Acu4GL fits into a multiple-tier
environment.

Acu4GL for ODBC in a multi-tier environment

ACUCOBOL–GT Domain

Generic file system
interface

ODBC API calls

COBOL �
indexed files

ODBC Domain

ODBC driver
manager

ODBC driver

ODBC driver calls

ACUCOBOL-GT
application program

Acu4GL for ODBC

Proprietary database communication interface

Networking software

Data Source

Databases

Database interface calls

Database engine commands

Back-end
DBMS
engine

ACUCOBOL–GT Domain

Generic file system
interface

ODBC API calls

COBOL �
indexed files

ODBC Domain

ODBC driver
manager

ODBC driver

ODBC driver calls

ACUCOBOL-GT
application program

Acu4GL for ODBC

Proprietary database communication interface

Networking software

Data Source

Databases

Database interface calls

Database engine commands

Back-end
DBMS
engine

D-10 Acu4GL for ODBC Information
D.2 Acu4GL for ODBC Installation and Setup

The following sections describe the steps you must perform before you begin
using Acu4GL for ODBC on a new system:

• ODBC Installation

• Installation of Acu4GL for ODBC

• Setting Up Data Sources

• Setting Up the User Environment

• Designating the Host File System

• Designating the Host Data Source

D.2.1 ODBC Installation

ODBC must be installed and configured before you install Acu4GL for
ODBC. This product is not provided by Micro Focus, but probably was
installed along with any ODBC drivers or data sources that you have on your
system. For example, if you have installed Microsoft Access on your
computer, the Access drivers and ODBC may have been automatically
installed.

Follow these steps to determine whether you already have ODBC:

1. Open the Windows control panel.

Acu4GL for ODBC Installation and Setup D-11
2. On Windows XP and newer versions of Windows, double-click the
Administrative Tools icon, then select Data Sources (ODBC). On
older versions of Windows, select the 32-bit ODBC icon directly from
the control panel.

3. Double-clicking the ODBC icon brings up the ODBC Data Source
Administrator dialog showing all the data sources currently configured
for your system.

If the ODBC icon is not in your control panel, ODBC is probably not
installed on your system. To install ODBC on your system, you have
two options:

• Buy an ODBC driver from a driver or database vendor and install it.
ODBC is installed automatically.

• Buy and install a Windows-based ODBC data source. The ODBC
driver and ODBC will be one of the install options.

D-12 Acu4GL for ODBC Information
D.2.2 Installation of Acu4GL for ODBC

The Acu4GL product for ODBC is an add-on module. The ODBC Acu4GL
product installation includes a .DLL file that is detected at run time.

The Acu4GL product for ODBC can be executed only on a machine that is
running a 32-bit Windows platform or a 64-bit Windows platform with a
32-bit runtime and 32-bit drivers. Note that 32-bit drivers may be able to
access a 64-bit database. Consult your driver vendor to be sure.

CD-ROM installation

Instructions for installing your Acu4GL product from the ACUCOBOL-GT
Development Suite CD-ROM are contained on the CD booklet that
accompanied the product. Please refer to it for installing the
ACUCOBOL-GT Development Suite, which includes Acu4GL.

Once the installation is complete, please refer to this appendix for setting up
your Acu4GL product.

Be sure to set up your data source in the Windows control panel as instructed
in section D.2.3, “Setting Up Data Sources,” and then enter the data source
name in the configuration variable A_ODBC_DATASOURCE, as
described in section D.4. If your driver requires them, be sure to set
A_ODBC_LOGIN and A_ODBC_PASSWD. Also set
DEFAULT_HOST. Other configuration variables that may make finding
and accessing tables faster and more precise are USER_PATH and
A_ODBC_CATALOG

D.2.3 Setting Up Data Sources

You will need to set up a data source name for any item you want to be able
to access from Acu4GL for ODBC. The exact steps required for this will
vary for each individual driver. The general steps for setting up an ODBC
data source are:

1. Open the Windows control panel and select Administrative Tools.

Acu4GL for ODBC Installation and Setup D-13
2. Double-click the Data Sources (ODBC) icon. The ODBC Data Source
Administrator dialog is displayed. This dialog lists all the data sources
currently configured for your system.

3. Double-click on the data source you plan to use to access a setup
dialog. A subsequent window lets you add a description of the data
source and allows you to supply other information the driver requires.

If the data source you want is not listed, choose Add to indicate which driver
to use for the data source you will create. Remember, the exact steps required
for setting up a driver vary greatly between drivers and driver vendors.
Please refer to the driver’s documentation for precise details on this step. We
recommend that you test the setup of your new data source. Many data
sources come with a testing utility for this purpose.

D-14 Acu4GL for ODBC Information
D.2.4 Setting Up the User Environment

In addition to setting the variables required for ODBC, you will need to do
the following:

1. Ensure that your execution path contains the name of the directory in
which you placed the runtime executable that includes Acu4GL for
ODBC.

2. Set the A_ODBC_LOGIN and A_ODBC_PASSWD variables, either
in your environment or in the ACUCOBOL-GT runtime configuration
file, if they are required for your data source. Also, consider whether
or not setting the USER_PATH variable would be useful in your set
up situation. For security reasons, it is best to set the password
variable from your COBOL program by asking the user to enter a
password and then executing:

SET ENVIRONMENT "A_ODBC_PASSWD" TO user-entry

3. You may want to make and use a personalized copy of the
configuration file to avoid impacting other users. The
ACUCOBOL-GT documentation describes how to use the A_CONFIG
environment variable or the “-c” runtime option to identify a personal
configuration file.

4. Define any other configuration file variables you require for your
unique environment. Possible variables define error map file location,
locking method, commit count, commit timing, and BINARY/CHAR
type conversion.

For detailed information on ACUCOBOL-GT configuration file variables,
see section D.5, “Configuration File Variables.”

D.2.5 Designating the Host File System

Each time the COBOL application creates a new file, it needs to know which
file system to use. The runtime checks the file system to use when the file is
opened. You provide the name of the file system with one of two runtime
configuration file variables. The first is:

DEFAULT_HOST filesystem

Acu4GL for ODBC Installation and Setup D-15
This will designate the file system to be used for newly created files that are
not individually assigned. For example,

DEFAULT_HOST ODBC

means that all new files will be ODBC files unless otherwise specified by the
second configuration variable, which is:

filename_HOST filesystem

where filename is the file name, without any extension, named in the
ASSIGN TO clause of your SELECT statement. This configuration variable
is used to assign an individual data file to a different file system. Any file so
assigned will use the designated file system, and not the one specified by
DEFAULT_HOST. For example,

myfile_HOST VISION

means that myfile will be under the Vision file system. The ability to
designate a different file system for certain files enables you to tailor your
application to a specific customer’s needs or to implement an incremental
conversion for a customer. With relational databases, this is particularly
useful in that it allows you to tune an application for processing speed and
resource requirements.

You can use these runtime configuration file variables in combination to
assign your new files in a default with exceptions manner; for example, this
set of entries:
DEFAULT_HOST VISION
afile_HOST ODBC
bfile_HOST ODBC

means that all new files except afile and bfile will be assigned to Vision, and
those two files will be assigned to ODBC.

You can also change the values of these variables during program execution
by including in your code:
SET ENVIRONMENT "filename_HOST" TO filesystem

or

SET ENVIRONMENT "DEFAULT_HOST" TO filesystem

D-16 Acu4GL for ODBC Information
This enables you to change file systems during the execution of your
program. This is not the typical way to specify a file system; normally it is
designated in the runtime configuration file and is not changed in the
COBOL program.

Note: The Acu4GL for ODBC product allows you to create an ODBC
table with an OPEN OUTPUT statement, just as you can create Vision
indexed files, if the data source driver allows for table creation. The ODBC
equivalent of a Vision file is a table, not a database. You must create a
database for your ODBC tables before you run the COBOL program that
creates the tables, just as you must create a directory for your files before
you run a COBOL program that creates Vision files.

D.2.6 Designating the Host Data Source

You must tell the runtime system which data source to use for your ODBC
file. You accomplish this by setting the configuration variable
A_ODBC_DATASOURCE to the exact name that you set up in the
Windows ODBC driver manager. You can set this variable in your COBOL
configuration file if you will be using only one data source. This variable is
described in section D.4., “Acu4GL for ODBC Configuration File
Variables.”

For example, if the data source you want to select is listed in the control panel
ODBC window as:

MS Access Databases (Access Data (*.mdb))

you should add the following line to your configuration file:
A_ODBC_DATASOURCE MS Access Databases

If you used the Add option to configure a new data source driver, set
A_ODBC_DATASOURCE to the personalized name that you entered in the
Add window.

If you do not know the data source name in advance, or if you intend to use
more than one data source, you may set the data source name dynamically at
run time. In your COBOL program, you would add code similar to this prior
to the statement that opens the file:

Filename Translation D-17
SET ENVIRONMENT "A_ODBC_DATASOURCE" TO "MS Access Databases"

You are now ready to use the sql.acu program, as outlined in Chapter 2,
“Getting Started.”

After you learn about and use this utility, you next find out about preparing
and compiling your COBOL program, followed by learning to use the
demonstration program. See section 6.1, “Preparing and Compiling Your
COBOL Program,” and section 2.5, “The Demonstration Program,” for
additional information.

D.3 Filename Translation

As you prepare to work with Acu4GL for ODBC, you may find it helpful to
understand the rules around filename interpretation and to understand how
the names of tables and XFD files are formed and work together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file.

Acu4GL for ODBC translates the name to lowercase letters and changes
hyphens to underscores unless the configuration variable,
4GL_COLUMN_CASE, is set. (See section D.6 for information on this
variable.) This “new” name is the one that Acu4GL for ODBC will use in the
future for references to database tables.

D-18 Acu4GL for ODBC Information
D.4 Decimal Points

Acu4GL for ODBC reads the decimal point character from the environment
variable DECIMAL_POINT. If DECIMAL_POINT is set, Acu4GL uses
that character. If the variable is not set, Acu4GL uses the decimal character
that is encoded in the XFD file.

The two most common decimal indicators are the period “.”and the comma
“,” characters. The comma is used often in European code and is often
indicated in COBOL programs by the "DECIMAL POINT IS COMMA"
clause.

D.5 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Acu4GL for ODBC. Configuration file variables that are generally
applicable to any RDBMS with which Acu4GL communicates are discussed
in section 8.2, “Runtime Configuration Variables.”
A_ODBC_ALTERNATE_COMMIT_LOGIC
A_ODBC_USE_SQLTABLES

4GL_MAX_DATE

It is possible that invalid dates can be incorrectly written to the database.
Invalid dates are written as NULL, but if the date is in the key, problems can
occur. To avoid invalid date problems in this instance, use the
4GL_MAX_DATE configuration variable to set the high-value date.

The format is:
4GL_MAX_DATE = YYYYMMDD

The maximum date for 4GL_MAX_DATE is “20991231” (December 31,
2099).

See also

4GL_MIN_DATE configuration file variable

Configuration File Variables D-19
4GL_MIN_DATE

As noted with the configuration variable 4GL_MAX_DATE, invalid dates
can be incorrectly written to the database. Invalid dates are written as NULL,
but if the date is in the key, problems can occur. To avoid invalid date
problems in this instance, use the 4GL_MIN_DATE configuration variable
to set the low-value date.

The format is:
4GL_MIN_DATE = YYYYMMDD

The default date for 4GL_MIN_DATE is “19000101” (January 1, 1900).

See also

4GL_MAX_DATE configuration file variable

A_ODBC_ALTERNATE_COMMIT_LOGIC

The primary purpose of the configuration variable 4GL_COMMIT_COUNT
is to provide for applications that must communicate with a
transaction-oriented database but have not explicitly coded transactions into
their COBOL application.

The configuration variable A_ODBC_ALTERNATE_COMMIT_LOGIC
determines how the interface will respond to the setting of
4GL_COMMIT_COUNT. When
A_ODBC_ALTERNATE_COMMIT_LOGIC is set to “0” or “FALSE” (the
default), the value of 4GL_COMMIT_COUNT is checked only at startup.
The interface will issue a commit when the criteria set by
4GL_COMMIT_COUNT is met, regardless of the current transaction state.

When A_ODBC_ALTERNATE_COMMIT_LOGIC is set to “1”, the value
of 4GL_COMMIT_COUNT is checked after each WRITE, REWRITE,
DELETE, or UNLOCK operation. A commit is issued, however, only if the
runtime is not currently in a transaction.

D-20 Acu4GL for ODBC Information
Example
4GL_COMMIT_COUNT=1
A_ODBC_ALTERNATE_COMMIT_LOGIC=0

Each WRITE operation is committed to the database immediately. This
prevents an application from being able to rollback a WRITE.

See Also

4GL_COMMIT_COUNT runtime configuration variable

A_ODBC_ALTERNATE_COMMIT_LOGIC configuration variable

A_ODBC_CATALOG

This variable indicates the catalog name to be used when Acu4GL searches
for objects in the database. Note that not all data sources will support a
catalog. Using A_ODBC_CATALOG with other variables, such as
USER_PATH and A_ODBC_TABLE_TYPES, can speed up the finding of
tables in large databases. It can also prevent an error 9D,14: “More than one
table with the same name,” thereby enabling access to tables with identical
names, but with different catalogs.

For example, If USER_PATH and A_ODBC_CATALOG are used, the form
of the SQL statement will be modified from:
select COL1, ... from TABLENAME ...

to:
SELECT COL1, ... FROM [catalog.][username.]TABLENAME ...

where catalog and username will be filled in if provided.

See Also

USER_PATH configuration variable

A_ODBC_TABLE_TYPES configuration variable

Configuration File Variables D-21
A_ODBC_COMMIT_ON_BEGIN

ODBC has no START TRANSACTION method. Everything since the last
COMMIT or ROLLBACK is considered part of the current transaction.

To ensure that the previous transaction has been ended before a new one
begins, set A_ODBC_COMMIT_ON_BEGIN to a nonzero value. This
causes each COBOL START TRANSACTION to first issue a COMMIT to
all applicable ODBC drivers in use. This ensures that the previous
transaction has been ended before the new one starts.

If this variable is not set, or is set to “0”, a COBOL ROLLBACK may affect
file I/O that occurred before the most recent COBOL START
TRANSACTION. While the default value is “0” (off, false, no), this
configuration variable can also take values of “On” (true, yes).

A_ODBC_DATASOURCE

Set A_ODBC_DATASOURCE to the exact name of the data source that you
established in the Windows ODBC driver manager. You can set this variable
in your COBOL configuration file if you will be using only one data source.

For example, if the data source you want to select is listed in the Windows
ODBC driver manager window as:
MS Access Databases (Access Data (*.mdb))

you should add the following line to your configuration file:
A_ODBC_DATASOURCE MS Access Databases

If you do not know the data source name in advance, or if you intend to use
more than one data source, you may set the data source name dynamically at
run time. In your COBOL program, you would add code similar to this prior
to the statement that opens the file:
SET ENVIRONMENT "A_ODBC_DATASOURCE" TO "data source name"

There is no default value for this variable. If you do not enter a name, ODBC
will use the default ODBC driver.

D-22 Acu4GL for ODBC Information
A_ODBC_ERROR_MAP_FILE

Because there are so many drivers available for ODBC, you may find that
data source error codes don’t necessarily map well to COBOL error codes.
To solve this problem, Acu4GL for ODBC allows you to create an error map
file to map native database errors to COBOL errors. Create this file using the
guidelines described on the following page, and then use the configuration
file variable, A_ODBC_ERROR_MAP_FILE, to indicate the name and
location of the file you created.

Example

If the file used for mapping is called MAP, and this file is located in the
directory C:\ODBC, you would specify:

A_ODBC_ERROR_MAP_FILE c:\ODBC\MAP

in the runtime configuration file. There is no default value for this variable.

Guidelines for creating a map file

Although you can check your data source documentation for error code
information, the easiest way to determine what error codes need to be
mapped to more appropriate COBOL codes is through trial and error. As
users use Acu4GL for ODBC, they may report receiving error messages that
don’t make sense based on their situation. Research these errors and try to
determine a more appropriate COBOL error response.

When you create your error map file, use the following guidelines:

• Begin comment lines with “#”. Blank lines are also considered
comments.

• Break the rest of the file into sections, with each section header
comprising all the information enclosed in brackets from the data source
error function.

For example, if the data source returns this error:

OdbcOneInfo: State: S1000, Native Error: -346
[Visigenic][ODBC Informix 5 Driver][Informix]Could not update
a row in the table.

Configuration File Variables D-23
make your section header:

[Visigenic][ODBC Informix 5 Driver][Informix]

• Include two fields in each line in the section: the internal error number,
and an ACUCOBOL-GT mapping string.

Using the same example, if you wanted to map the Visigenic Informix
driver error, “-346 Could not update a row in the table” to the COBOL
error, “Not found”, you would include this line in the section:

-346 E_NOT_FOUND

Other Visigenic Informix error maps would follow in the same section.
If you use other drivers, you could use multiple sections.

The valid values for the second field are as follows:

E_SYS_ERR
E_PARAM_ERR
E_TOO_MANY_FILES
E_MODE_CLASH
E_REC_LOCKED
E_BROKEN
E_DUPLICATE
E_NOT_FOUND
E_UNDEF_RECORD
E_DISK_FULL
E_FILE_LOCKED
E_REC_CHANGED
E_MISMATCH
E_NO_MEMORY
E_MISSING_FILE
E_PERMISSION
E_NO_SUPPORT
E_NO_LOCKS

Through experience, we have discovered specific ways to better map errors
for some drivers. For a list of these driver error mapping suggestions, look at
the file “odbcerrs” on your installation disks.

D-24 Acu4GL for ODBC Information
A_ODBC_ISOLATION_LEVEL

Use the A_ODBC_ISOLATION_LEVEL configuration variable to set the
isolation level. The default ordering of isolation levels is:
SQL_TXN_READ_COMMITTED
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE

You can change the isolation level by setting the configuration variable
A_ODBC_ISOLATION_LEVEL to an integer in the configuration file. The
settings are:

For example, to set the isolation level to SQL_TXN_READ_COMMITTED,
add the following entry to the configuration file:

A_ODBC_ISOLATION_LEVEL 2

If the user-set isolation level is not supported by the driver, the default
method of selecting a level is used.

A_ODBC_LOCK_METHOD

Use this variable to specify the locking method that the Acu4GL product
should use when accessing your data source. Possible values are:

none
SETPOS
SETSTMTOPTION
UPDATECOLUMN

Isolation level Setting in configuration file

SQL_TXN_READ_UNCOMMITTED 1

SQL_TXN_READ_COMMITTED 2

SQL_TXN_REPEATABLE_READ 3

SQL_TXN_SERIALIZABLE 4

Configuration File Variables D-25
Example:
A_ODBC_LOCK_METHOD UPDATECOLUMN

The default value is none, meaning that the Acu4GL product will do nothing
special to lock your data. This does not necessarily mean that your data
won’t be locked. Locking depends mainly on your data source and driver.
No value simply tells Acu4GL for ODBC not to perform any locking
functions.

Note: Please note that we cannot guarantee that setting this variable will
have any effect for a particular ODBC driver. Locking depends mainly on
the data source and the driver. You can use this variable to attempt to
induce row locking. If none of the settings cause any rows to be locked, or
if the machine hangs, please report this behavior to Technical Services.

SETPOS

Specify SETPOS as your lock method to tell Acu4GL for ODBC to perform
the following locking sequence:

When setting up a statement handle for accessing the ODBC data source, the
Acu4GL product calls a function called SQLSetScrollOptions, with values
(SQL-CONCUR-LOCK, SQL-SCROLL-KEYSET-DRIVER, 1).

When fetching rows from the data source, the Acu4GL product calls
SQLExtendedFetch instead of SQLFetch.

Finally, it calls SQLSetPos, with the values (1, SQL-POSITION,
SQL-LOCK-EXCLUSIVE).

If any of these functions do not exist in the ODBC driver, then
A_ODBC_LOCK_METHOD reverts to none.

Note: Even if these functions do exist, there is no guarantee that any rows
will be locked using this sequence of calls. Contact your driver vendor to
determine whether or not this sequence will be effective for your data
source.

D-26 Acu4GL for ODBC Information
SETSTMTOPTION

Specify SETSTMTOPTION as your lock method for ODBC version 2.0 (and
later) drivers. This option is similar to SETPOS, except ODBC version 2
defines a new function called SQLSetStmtOption, which performs the task of
SQLSetScrollOptions, but has more functionality.

In particular, when using this method of locking, the Acu4GL product will
call SQLSetStmtOption a number of times, with values
(SQL-CONCURRENCY, SQL-CONCUR-LOCK),
(SQL-CURSOR-TYPES, SQL-CURSOR-KEYSET-DRIVEN), and
(SQL_KEYSET-SIZE, 1). Again, if the function does not exist,
A_ODBC_LOCK_METHOD reverts to none.

UPDATECOLUMN

Specifying UPDATECOLUMN as your lock method performs an entirely
different type of locking. Instead of trying to lock a row while reading it, this
method creates a new statement handle for the data source. Then, after
fetching the data from the data source, it resubmits an SQL query to select the
same row (based on the primary key) and adds an UPDATE clause. Last, it
fetches the data from the data source. Because this method has the most
overhead, we don’t recommend it for slow drivers, such as Microsoft Access,
although it is much more likely to succeed in locking records.

A_ODBC_LOGIN

A_ODBC_LOGIN indicates the user name under which you want to connect
to the database system. Not all data sources require a user login name. Those
that do may have case requirements. Check your data source documentation
to determine if login is case-sensitive.

Example

To connect to the database with the user name MYNAME, you could specify:
A_ODBC_LOGIN MYNAME

or

A_ODBC_LOGIN myname

Configuration File Variables D-27
in the runtime configuration file. There is no default value for this variable.
If no login is specified, none will be used.

See also

A_ODBC_PASSWD runtime configuration file variable

A_ODBC_NO_NULL_COLUMNS

The interface will never insert NULL into the database if this is set to TRUE
or ON or YES. While the default value is “Off” (false, no), this configuration
variable can also take values of “On” (true, yes).

 A_ODBC_PASSWD

The variable A_ODBC_PASSWD should be set to the password assigned to
the database account associated with the user name specified by
A_ODBC_LOGIN. Not all data sources require a password. Those that do
may have case requirements. Check your data source documentation to
determine if password is case-sensitive.

Examples

If the account with the user name in A_ODBC_LOGIN has the associated
password “CW021535”, you would specify:

A_ODBC_PASSWD CW021535

in the runtime configuration file.

For better security, you can accept a password from the user during program
execution; set the A_ODBC_PASSWD variable based on the response:

ACCEPT RESPONSE NO-ECHO.
SET ENVIRONMENT "A_ODBC_PASSWD" TO RESPONSE.

Note: If the user has been set up without a password, this variable need not
be set. There is no default value for this variable. If no password is
specified, none will be used.

D-28 Acu4GL for ODBC Information
A_ODBC_PRINT_LOG

This variable is used for debugging only, and is best used under the direction
of an extend Technical Services representative.

A_ODBC_QUOTE_IDENTIFIERS

A_ODBC_QUOTE_IDENTIFIERS tells the Acu4GL product whether to
test for the IDENTIFIER-QUOTE-CHAR, and to use it if it is found. If this
variable is nonzero, and if the driver returns information about the
IDENTIFIER-QUOTE-CHAR, all identifiers sent in SQL to the driver will
be quoted. This is useful for using Microsoft Excel, for example, if the
spreadsheet has column names with quotes or other strange characters.
Notice that some drivers mistakenly report that they can handle quoted
identifiers, which is why this variable is needed.

If you set this variable to a nonzero value, and start getting errors about “table
not found” or “column not found,” this variable should not be used when
communicating with that driver.

While the default value is “0” (off, false, no), this configuration variable can
also take values of “On” (true, yes).

Note: We have found that with Excel, this variable is useful. With Oracle,
this variable is not recommended.

Refer to section D.6 for information on using mixed-cased identifiers.

A_ODBC_STRICT_EQUAL

When Acu4GL for ODBC executes a START … KEY EQUAL keyval, the
interface generates a SELECT statement to select all rows with a key equal to
the key columns in keyval. When fetching the data, Acu4GL eventually
detects that there is no more data. If A_ODBC_STRICT_EQUAL is set to
“True” at the time the START is executed, the interface returns the error
END OF FILE (error 10) at this point. If A_ODBC_STRICT_EQUAL is set
to “False” (the default), Acu4GL for ODBC then generates a new SELECT

Configuration File Variables D-29
statement to continue reading records until the end of the file rather than the
subset of records represented by keyval, and these records may be discarded
by the program. (Note that this is program-dependent behavior.) Setting
A_ODBC_STRICT_EQUAL to “True” causes the interface to stop reading
records earlier, which can make SELECT statements generated by Acu4GL
for ODBC more efficient.

Note the following conditions:

• A_ODBC_STRICT_EQUAL must be set to “True” when the START is
executed.

• The START must be a KEY EQUAL start.

• There must be no COMMITs between the START and the end of the file.
Because most ODBC drivers close all cursors on COMMIT and
ROLLBACK (according to the ANSI 92 SQL standard), the interface
must regenerate a SELECT the first time it attempts to execute a READ
NEXT after a COMMIT or ROLLBACK. For most drivers, this means
that the 4GL_COMMIT_COUNT configuration variable should be set
to “-1”, so that no COMMITs are issued by Acu4GL for ODBC. See
4GL_COMMIT_COUNT in Chapter 8 for additional information.

• A_ODBC_STRICT_EQUAL is most useful with alternate keys that
allow duplicates.

Note: This same behavior can be accomplished with the
4GL_WHERE_CONSTRAINT, but using A_ODBC_STRICT_EQUAL
requires less programming.

While the default value is “False” (off, no, 0), this configuration variable can
also take the value “True” (on, yes, 1).

A_ODBC_TABLE_TYPES

This variable is used to specify a table type (TABLE, VIEW, and so forth)
that should be looked for when selecting a database table. Using
A_ODBC_TABLE_TYPES with other variables, such as USER_PATH and
A_ODBC_CATALOG, can speed up the finding of tables in large databases.

D-30 Acu4GL for ODBC Information
This information will be passed to the API function call SQLTables() as the
TableType parameter. Please refer to your driver’s documentation for
supported types.

Example
A_ODBC_TABLE_TYPES TABLE,VIEW

See also

USER_PATH configuration variable

A_ODBC_CATALOG configuration variable

A_ODBC_UNSIGNED_TINYINT

Some ODBC drivers may assign the TINYINT data type, a signed 1-byte
variable that can store values from -128 to 127, to an internal unsigned type
that can store values from 0 to 255. To determine if your ODBC driver does
this, set a PIC s99 variable to a negative value and then write a record. If a
“value out of range” message is returned, you must set
A_ODBC_UNSIGNED_TINYINT to a nonzero value. As a result, PIC s99
variables are stored in a larger type (usually INT) that allows negative values.
While the default value is “0” (off, false, no), this configuration variable can
also take values of “On” (true, yes).

A_ODBC_USE_CATALOG

Not all data sources will support a catalog, or the data sources may return a
catalog name that is not useful. For example, Microsoft Access returns the
full path to the database, which is not needed since this information is
detailed in the datasource. The default behavior of the runtime is to not use
the catalog in the actual SQL queries. This configuration variable enables
you to modify this behavior.

Configuration File Variables D-31
The default value is “FALSE”, which will cause the catalog portion of the
table name to be treated as blank in SQL queries. Setting this variable to
“TRUE” will cause the value of the catalog returned by SQLTables ODBC
function to be used in subsequent SQL queries.

See also

USER_PATH configuration variable

A_ODBC_CATALOG configuration variable

A_ODBC_USE_CHAR_FOR_BINARY

Some data sources have restrictions on the number of binary large objects
(BLOBs) that can be placed into a single table. If your data source has such
restrictions, specify A_ODBC_USE_CHAR_FOR_BINARY in the
configuration file. The possible values for this variable are:

0 = use BINARY type
1 = use CHAR type

If A_ODBC_USE_CHAR_FOR_BINARY is set to a nonzero value, you can
store data that uses the BINARY directive as hexadecimal encoded CHAR
types. This allows you to work around your data source restriction. While
the default value is “0” (off, false, no), this configuration variable can also
take values of “On” (true, yes).

Example
A_ODBC_USE_CHAR_FOR_BINARY 1

A_ODBC_USE_SPACE_IN_DATES

Some ODBC drivers require spaces when sending dates or timestamps to the
data source. For data sources that require spaces between the “d” and the
quote (‘), set the configuration variable
A_ODBC_USE_SPACE_IN_DATES.

D-32 Acu4GL for ODBC Information
For example:
Set MYDATE={d '1999-3-20'}

(note that there is a space between d and ')

Setting the A_ODBC_USE_SPACE_IN_DATES configuration variable to
“1” causes the Acu4GL for ODBC product to use syntax as above, instead of:

Set MYDATE={d'1999-3-20'}

(note that there is not a space between d and ')

Keep in mind that it is possible that all data sources may allow a space
between the d and the ', and that it is always safe to set this variable.

While the default value is “0” (off, false, no), this configuration variable can
also take values of “1” (on, true, yes).

Example
A_ODBC_USE_SPACE_IN_DATES 1

A_ODBC_USE_SQLCOLUMNS

For some large databases, the API function SQLColumns(), which is called
to get a description of the columns in a table, sometimes takes a long time to
execute. If you are experiencing such problems, you can use the API
function call SQLDescribeCol() instead, which can improve performance for
large databases.

To turn on this new functionality, set the A_ODBC_USE_SQLCOLUMNS
configuration variable to FALSE.

The default value of this variable is TRUE, which means the interface will
use the SQLColumns() API function.

Configuration File Variables D-33
A_ODBC_USE_SQLTABLES

For some large databases, the API function SQLTables(), which is called to
get a list of the tables and information about them, sometimes takes a long
time to execute. If you are experiencing such problems, you can instruct the
interface to build a test SQL query and use the API function call
SQLNumResultCols() to determine if the table exists. This may improve
performance for large databases.

To turn on this new functionality, set the A_ODBC_USE_SQLTABLES
configuration variable to FALSE.

The default value of this variable is TRUE, which means the interface will
use the SQLTables() API function.

USER_PATH

USER_PATH indicates the user name or names (schemas) to be used when
Acu4GL searches for files. The order of the names is significant. The syntax
for this variable is:

USER_PATH user1 [user2]...

where the user argument may be either the name of a user (schema) on the
system, or a period (“.”), which indicates the files owned by yourself.

The type of OPEN being issued for the file determines the effects of this
setting.

Examples

If an OPEN INPUT or OPEN I/O is issued, and a USER_PATH variable is
defined in the runtime configuration file, Acu4GL searches for a user of the
named file in the list of users in USER_PATH. The first valid file is opened.

If USER_PATH is defined and the current user is the owner of the file, the
current user must be included as one of the users, as indicated by a “.” or the
setting of your login schema (A_ODBC_LOGIN) in the USER_PATH. If
this is not the case, even though the current user has created the table, it will

D-34 Acu4GL for ODBC Information
not be found and a file error “35” will result. This circumstance can occur if
the file was created with the OPEN OUTPUT phrase, and “.” is not an
element in USER_PATH. When the table is created, the current user will be
the owner of that table. When the runtime attempts to open the table, the
runtime will not look for tables owned by the current user unless
USER_PATH is not set, or unless “.” or the user’s current schema is part of
the USER_PATH setting.

If an OPEN INPUT or OPEN I/O is issued, and no USER_PATH variable is
in the runtime configuration file, Acu4GL searches for a user of the named
file in the user named for login (A_ODBC_LOGIN). Acu4GL opens the first
file that has a valid combination of user and file name.

If an OPEN OUTPUT is issued (whether USER_PATH is present or not), a
new table is created with the owner being the name specified in
A_ODBC_LOGIN.

Using USER_PATH with other variables such as A_ODBC_CATALOG
can speed up the finding of tables in large databases. It can also prevent an
error 9D,14: “More than one table with the same name,” thereby enabling
access to tables with identical names, but with different schemas.

For example, If the USER_PATH and A_ODBC_CATALOG are used, the
form of the SQL statement will be modified from:
select COL1, ... from TABLENAME ...

to:
SELECT COL1, ... FROM [catalog.][username.]TABLENAME ...

where catalog and username will be filled in if provided.

See Also

A_ODBC_LOGIN configuration variable

A_ODBC_CATALOG configuration variable

Mixed-case SQL Identifiers D-35
D.6 Mixed-case SQL Identifiers

Identifiers in SQL-92 are not case-sensitive. However, drivers that do not
conform strictly to SQL-92 may require mixed-case identifiers.

If your driver enforces a mixed case, do the following:

1. Compile your source COBOL program with the “-Fc” option to generate
mixed-case identifiers in your XFD files.

2. Modify the filename in your COBOL program to match the target
identifier’s case.

3. In your configuration file, set the configuration variable
4GL_COLUMN_CASE to “UNCHANGED”. Possible values are
UPPER, LOWER, UNCHANGED.

D.7 Record and Table Locking

Acu4GL for ODBC supports record locking for multi-user systems, as long
as your ODBC driver supports record locking. To complement your driver’s
locking method, Acu4GL for ODBC can initiate three locking sequences:

SETPOS
SETSTMTOPTION
UPDATECOLUMN

As described in section D.4, you specify which type of locking you want to
use with the configuration file variable, A_ODBC_LOCK_METHOD.
However, if your driver doesn’t support locking, Acu4GL for ODBC by itself
cannot provide locking.

Record locking with ODBC drivers is a semi-random activity. Different
ODBC drivers have different capabilities and even implement the same
capabilities in different ways. For this reason, you will have to do some
experimentation to determine which locking method to specify for
A_ODBC_LOCK_METHOD. Only through trial and error will you be able
to determine which method will lock records in the most efficient way for
your particular ODBC driver.

D-36 Acu4GL for ODBC Information
D.8 Limits and Ranges

The following limits exist for the ODBC protocol:
Maximum number of columns per key: depends on driver/database
Maximum number of columns: depends on driver/database

Acu4GL allows an unlimited number of columns, but the database may have
a limit, and the driver may have a smaller limit than the database. If you have
too many columns, you will receive a database error on the table create (for
example, open output).

To achieve the same sort or retrieval sequence under ODBC as under the
Vision file system, place a BINARY directive immediately before each key
field that contains signed numeric data. High values and low values can
cause problems in key fields. If you want data that uses the BINARY
directive to be stored as hexadecimal encoded CHAR types, you can specify
A_ODBC_USE_CHAR_FOR_BINARY in the configuration file. Please
note that this could potentially increase the size of your key beyond the driver
maximum.

Other limits are described in Appendix B in Book 4, Appendices, of the
ACUCOBOL-GT documentation.

D.9 Driver Requirements

Your ODBC driver must include the following functions:

• all Core ODBC driver functions

• the Level 1 function SQLColumns

• the Level 1 function SQLTables

Depending on the method of record locking you choose, your driver may also
need to support some of the following function calls. See the description for
A_ODBC_LOCK_METHOD in section D.4, “Acu4GL for ODBC
Configuration File Variables.”

Driver Requirements D-37
• SQLSetStmtOption

• SQLSetScrollOptions

• SQLExtendedFetch

• SQLSetPos

To test the capabilities of your ODBC driver, we have included a driver test
program on your Acu4GL for ODBC installation disks. You can also consult
your driver documentation to ensure that it meets these requirements.

ODBC driver test

Acu4GL for ODBC includes a driver test program designed to test your
ODBC driver for compatibility with Acu4GL for ODBC. The driver test also
lists all the tables/columns for the driver selected. This can help design
COBOL FD statements for existing tables. To start the program, select the
DRVTST32.EXE icon in the program group where Acu4GL for ODBC has
been installed.

User interaction for this program is minimal. The only time you need to
interact with the program is when it first starts and you are asked for the name
of the ODBC driver to connect to. You will see a dialog very similar to the
ODBC setup dialog, prompting you to select a data source.

Once you have selected a data source, you may be asked to log on to the data
source (this depends on the data source you select). Enter your login and
password, if necessary.

After that, the program queries the ODBC driver, and creates a file called
“ACUCOBOL.RPT” in the current directory. This file is filled with
information about the driver you chose, but is in a format that is most useful
to extend Technical Services. When you are finished running the driver test
program, send the “ACUCOBOL.RPT” file to extend Technical Services,
and they can help you determine the compatibility level of your driver.

If you execute this program multiple times, information will be appended to
the original “ACUCOBOL.RPT” file.

D-38 Acu4GL for ODBC Information
D.10 Data Type Mapping

Overview of ODBC data types

ODBC defines certain generic data types, which every data source driver
maps to its own internal types. Each driver needs to be queried about which
types it supports, because different drivers support different types.

The types that Acu4GL for ODBC uses, if they exist in the driver, are:
SQL_CHAR
SQL_VARCHAR
SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_TINYINT
SQL_BIGINT
SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_DATE
SQL_TIMESTAMP

For example, Informix maps these types like this:
SQL_CHAR CHAR
SQL_VARCHAR VARCHAR
SQL_DECIMAL DECIMAL or MONEY
SQL_NUMERIC no such type
SQL_SMALLINT SMALLINT
SQL_INTEGER INTEGER or SERIAL
SQL_REAL REAL
SQL_FLOAT no such type
SQL_DOUBLE FLOAT
SQL_TINYINT no such type
SQL_BIGINT no such type
SQL_BINARY no such type
SQL_VARBINARY no such type
SQL_LONGVARBINARY BYTE
SQL_DATE DATE
SQL_TIMESTAMP DATETIME YEAR TO FRACTION(5)

Data Type Mapping D-39
Informix also defines a type that ODBC calls SQL_LONGVARCHAR, and
Informix calls TEXT, which the Acu4GL for ODBC product doesn’t use.

Notice that Informix has two types that match the ODBC SQL_DECIMAL
type, and two that match the SQL_INTEGER type. The Acu4GL product
will usually use the first type that it finds that matches an ODBC type, unless
there are restrictions on that type. For example, the SERIAL type is limited
in that a table can have only one such column, while a typical table may have
more than one column of integer data.

So the Acu4GL for ODBC product will use the Informix INTEGER type,
instead of the SERIAL type for integer data.

For another example, MS Access maps these types like this:
SQL_CHAR CHAR
SQL_VARCHAR TEXT
SQL_DECIMAL no such type
SQL_NUMERIC CURRENCY
SQL_SMALLINT SHORT
SQL_INTEGER LONG or COUNTER
SQL_REAL SINGLE
SQL_FLOAT no such type
SQL_DOUBLE DOUBLE
SQL_TINYINT BYTE
SQL_BIGINT no such type
SQL_BINARY BINARY
SQL_VARBINARY VARBINARY
SQL_LONGVARBINARY LONGBINARY
SQL_DATE no such type
SQL_TIMESTAMP DATETIME

Access also defines types, SQL_BIT = BIT and SQL_LONGVARCHAR =
LONGTEXT which the Acu4GL for ODBC product doesn’t use.

Mapping COBOL data types to ODBC data types

When the Acu4GL for ODBC product creates a table, it uses what it
determines to be the best match of a data type for any particular column.

This means that the database column will be able to hold any data that the
COBOL data type can hold, and is as close as possible to the type of data that
the COBOL program is using. This determination is based in part on what
data types the data source has available. Obviously, if a data source doesn’t

D-40 Acu4GL for ODBC Information
support some data type, the Acu4GL for ODBC product can’t use it with that
data source. The actual algorithm used is rather complicated, but the general
rules are as follows:

User preferences take precedence. This means that the XFD directives
specified are checked first. Therefore, when data should be of type DATE or
BINARY, a DATE or BINARY type is located and used, if the data source
supports it.

If the COBOL data type is usage float or usage double, a data source type of
FLOAT, REAL, or DOUBLE is used, depending on what is available. If
none of these is available, the Acu4GL product abides by the next rule.

If the COBOL data type is numeric, a numeric type is used in the data source.
The numeric type chosen depends on how large the COBOL data type is, and
how many digits to the right of the decimal point (if any) there are.

• For example, if the COBOL data type is PIC 99, the data source types
checked for are TINYINT, SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, CHAR. The first of these that exists is the type
that will be used for that column.

• For another example, if the COBOL data type is PIC 9(6)v99, the data
source types checked for are DECIMAL, NUMERIC, DOUBLE,
FLOAT, REAL, CHAR. Again, the first of these types that exists is the
type that will be used for that column.

• Anything else will use CHAR.

Occasionally, you may encounter a data source type that supports only type
CHAR (which is the only data type that is guaranteed to exist, according to
the ODBC specification). Under these data sources, all the COBOL data
types will be mapped to CHAR types.

Mapping ODBC data types to COBOL data types

Sometimes developers are in a situation where they need to create a COBOL
File Description based on an existing data source table. The most important
thing to understand in this situation is that there is almost nothing that you
can do wrong! When the Acu4GL product opens a data source table, the only
thing it checks is that the column names match the COBOL data names.

Data Type Mapping D-41
When the Acu4GL product reads data from the data source, it essentially
does a COBOL-style MOVE from the native data type to the COBOL data
type, whatever it is. And since most types have a CHAR representation (in
other words, you can actually display most data types, using a standard
ODBC-capable tool), using PIC X(nn) for each column will work perfectly
well.

A better general rule is to use a COBOL type that closely matches the data
source data type, but don’t worry about getting an exact fit. So you can use
PIC 9(9) whenever the data source has an INTEGER type.

If you have more information about the data source type, you might be able
to use a different COBOL representation. For example, if you know that a
particular column in an ODBC data source has values only in the range
0–999, you could use PIC 999 for your COBOL data. The COMP-type you
use is really determined by your own preferences, and should have little
bearing on the COBOL data type you choose.

If you want to somehow choose your COBOL data types so that there is a best
fit, you can use the following mapping:
SQL_CHAR PIC X(nn) nn =size of item
SQL_VARCHAR PIC X(nn) nn = maximum size of item
SQL_DECIMAL PIC 9(n)v9(m)
SQL_NUMERIC PIC 9(n)v9(m)
SQL_SMALLINT PIC 9(5) COMP-5
SQL_INTEGER PIC 9(9) COMP-5
SQL_REAL USAGE FLOAT
SQL_FLOAT USAGE FLOAT
SQL_DOUBLE USAGE DOUBLE
SQL_TINYINT PIC 9(3) COMP-5
SQL_BIGINT PIC 9(9) COMP-5
SQL_BINARY PIC X(nn)
SQL_VARBINARY PIC X(nn)
SQL_LONGVARBINARY PIC X(nn)
SQL_DATE PIC 9(6) or PIC 9(8)
SQL_TIMESTAMP USAGE DISPLAY

Note: The BINARY data types are usually of a form that COBOL can’t
understand anyway. You will usually just read these columns, and rewrite
them unchanged. If you have more information about the data in the
columns, you might be able to do something else, but this requires more
knowledge about the columns.

D-42 Acu4GL for ODBC Information
The DECIMAL, NUMERIC, DATE, and TIMESTAMP types usually have
special representations in a data source, which really doesn’t match any
COBOL data type exactly. When the Acu4GL product binds the data (a
technical term), it asks the data source to return it in character form, so the
most efficient COBOL data type would probably be USAGE DISPLAY.

D.11 Troubleshooting

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9 provides information on
compile-time errors and also provides several methods for retrieving runtime
errors.

An explanation and a recommended recovery procedure follow each
message.

Note: Often, errors are generated for the simple reason that the ODBC
driver version you are using is incompatible with Acu4GL for ODBC. If
you encounter errors when using Acu4GL for ODBC, run the driver test
program found on your installation disks to determine if you are using a
compatible driver version. Refer to section D.9, “Driver Requirements,”
for more details on the driver test program.

D.11.1 Runtime Errors

Runtime errors will have this format:

9D,xx

The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary error code. These are the secondary errors
reported directly from Acu4GL:

9D,01Read error on dictionary file
An error occurred while reading the XFD file; this probably means the XFD
is corrupt. Recompile with “-Fx” to re-create the dictionary. See section 8.1
for additional information on compiler options.

Troubleshooting D-43
9D,02 Corrupt dictionary file
The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with “-Fx” to re-create the dictionary.

9D,03 Dictionary (.xfd) file not found
The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX runtime
configuration file variable. You may need to recompile with “-Fx” to create
the dictionary.

9D,04 Too many fields in the key
There are more than 16 fields in a key. Check your key definitions and
restructure the key that is illegal, and then recompile with the “-Fx” option.

9D,06Mismatched dictionary file
The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:
01 – mismatch found but exact cause unknown (this status is returned by the
host file system)
02 – mismatch found in file’s maximum record size
03 – mismatch found in file’s minimum record size
04 – mismatch found in the number of keys in the file
05 – mismatch found in primary key description
06 – mismatch found in first alternate key description
07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

9D,11ODBC connection missing needed functionality
Because ODBC has so many implementations, we require certain minimal
functionality. This includes the ability to list columns, list primary keys, list
existing tables, and support Level 1 SQL. Your ODBC driver lacks one or
more of these capabilities.

D-44 Acu4GL for ODBC Information
9D,12ODBC library function returned an unexpected
error
One of the ODBC library functions returned an error that was not expected.

9D,13Illegal size or type of data for variable xxx
An elementary data item in your FD was larger than 255 bytes, or there is no
ODBC type that matches the current data type.

9D,14More than one table with the same name
When tables were listed, more than one table was found with the same name.
Consider whether or not setting the USER_PATH configuration variable will
resolve the issue. This variable will enable tables with identical names, but
with different ownership (located in a different schema) to be found and
accessed.

9D,15ODBC driver missing needed types
The driver doesn’t support the data types needed for Acu4GL for ODBC.

D.11.2 Native SQL Errors

You may encounter the following native SQL errors when using Acu4GL for
ODBC. These errors are generated by your data source, so the exact wording
and error number will vary.

9D,???? Too many BLOBs (binary large objects)
Some databases have restrictions on how many BLOBs can be placed into a
single table. To work around this restriction, specify the configuration
variable A_ODBC_USE_CHAR_FOR_BINARY. This allows you to
encode binary data in hexadecimal and write it out as CHAR data instead of
BINARY.

9D,???? Invalid Column Name OR Reserved Word
You probably specified a column name using a word that has been reserved
for your data source. Locate the column by comparing a file trace of the
CREATE TABLE to your data source’s list of reserved words. Apply the
NAME directive to the field in the FD that is associated with the invalid
column, then recompile the program to create a new XFD file.

Common Questions and Answers D-45
9D,16 Maximum Length for Literal Characters Exceeded
The interface queries the data source about the maximum size of a character
literal in an SQL statement, and if there are any fields in the COBOL data
record that exceed that limit, the interface fails to open the file, with an error
9D,16.

Error 9D,16 means that there is at least one COBOL field that exceeds the
reported maximum length for character literals, and that you may not be able
to insert or update at least one column in the database.

D.12 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
ODBC. Refer to Chapter 10 for additional questions and answers that
pertain to the Acu4GL family of products.

Question: Can I open tables in different databases and share the data?

Answer: Yes. But you must set up the data sources one at a time, as described in this
section. For example, you could first set your data source to be Oracle and
open Oracle tables, and then you could change the data source to Access and
open Access tables.

Remember, you can set up data sources dynamically at run time by adding a
line like this before the statement that opens the file:
SET ENVIRONMENT "A_ODBC_DATASOURCE" TO "data source name"

Question: I keep receiving an error message saying that my login is invalid. But I’m
sure I’m using the correct username and password.

Answer: All usernames, passwords, and database names are case-sensitive. Be sure
that you are typing the names exactly as they are set up.

Question: I’m using Microsoft Access version 2.0, and I’m having trouble accessing/
writing tables from my ACUCOBOL-GT program.

D-46 Acu4GL for ODBC Information
Answer: Check the version of the Access driver you are using. Microsoft Access
version 2.0 requires version 2.0 of the driver. If you are using a previous
version of the driver, the runtime will generate errors. To determine the
version number of your driver, you can run the Acu4GL for ODBC driver test
program DRVTST32.EXE (32-bit version).

Question: I’m noticing some performance degradation when accessing my ODBC data
source. What is the cause of this?

Answer: You may notice some performance impact if you were previously accessing
Vision indexed files directly. This is because ODBC adds a software layer
between your applications and your data sources. In return for minor
performance impact, you can reap the benefits of database independence and
enhanced portability. Overall performance depends on several factors,
including your network configuration and your specific data source.

Question: I wrote data with my Acu4GL for Oracle (or Informix) product. When I try
to read it with Acu4GL for ODBC, the data is not the same.

Answer: By necessity, the BINARY data type is implemented differently in Acu4GL
for ODBC than it is in Acu4GL for Oracle or Informix. For this reason,
writing data with one Acu4GL product and then reading it with another will
probably produce different results. Future releases of Acu4GL for Oracle
and Informix will address this problem.

Question: When I create a table, I get an error saying I have placed too many BLOBs
(binary large objects) in my table.

Answer: Some databases have restrictions about the number of BLOBS that can be
placed into a single table. To work around this restriction, you can specify
the configuration variable A_ODBC_USE_CHAR_FOR_BINARY. This
allows you to encode binary data in hexadecimal and write it out as CHAR
data instead of BINARY. Refer to section D.4, “Acu4GL for ODBC
Configuration File Variables,” for more information on this variable.

Question: Are there any ACUCOBOL-GT library routines that do not work with or
would not make sense to use with Acu4GL for ODBC?

Answer: Yes. The C$COPY and C$RENAME ACUCOBOL-GT library routines do
not work with Acu4GL for ODBC.

E
 Acu4GL for Sybase
Information
Key Topics

Sybase Concepts Overview .. E-2
Installation and Setup .. E-3
Filename Translation ... E-24
Configuration File Variables ... E-25
Record and Table Locking... E-43
Stored Procedures... E-45
Limits and Ranges .. E-52
Runtime Errors... E-53
Common Questions and Answers ... E-56

E-2 Acu4GL for Sybase Information
E.1 Sybase Concepts Overview

A quick overview of some basic design concepts underlying the Sybase
Database Management System will help you interface your COBOL program
to it.

Servers

A Sybase server is one copy of the database engine executing on a computer.
A server has a name, and when a program wants to access the database
controlled by a server, the program asks for a connection to that server by
name. Multiple servers can be executing on a single machine, controlling
different databases. The default name that Sybase gives to a server is
SYBASE. Naming of servers is discussed in section E.6, “Acu4GL for
Sybase Configuration File Variables,” under the configuration variable
A_SYB_DEFAULT_CONNECTION.

Table ownership

Table names in Sybase have the form database.owner.table_name. Within
Sybase, if you are the owner of a given table, you can refer to it as just
table_name. If you are not the owner, you must refer to it with the owner of
the table as a prefix. Different owners can thus have tables of the same name.
However, this is not true when you use Acu4GL for Sybase.

Acu4GL for Sybase works a little differently. It automatically determines the
owner name it will use to reference a table. It is therefore essential that there
not be multiple tables with the same name in a single database, even though
the tables have different owners. If there are, the Acu4GL for Sybase product
will not necessarily find the correct one, and no diagnostic will be issued.

Note that table names include dots (“.”) as separators. Because of this, you
must make sure there are no extensions on COBOL file names that will be
converted to table names. If you were to have a COBOL file named
“IDX1.DAT”, Acu4GL for Sybase would attempt to open a table DAT with
owner IDX1. You can avoid this problem either by renaming your COBOL
file in your source program, or by using an ACUCOBOL-GT® runtime
configuration file entry to map the file name to an allowable file name, such
as:

IDX1.DAT IDX1

Installation and Setup E-3
If you map your file name to a new name, we recommend that you simply
drop the extension to form the new name. Here’s why. The compiler uses the
base file name—without the extension—to create the XFD file name
(“IDX1.XFD”). The runtime needs to be able to locate this file. But if
you’ve mapped the file name to something completely different (such as
“MYFILE”), the runtime will look for an XFD file named “MYFILE.XFD”.
So you’d have to remember to change the name of “IDX1.XFD” to
“MYFILE.XFD” in the XFD directory. Save yourself this extra step by
simply dropping the extension when you map the name.

Security

Security is implemented in the Sybase RDBMS. A user is required to log in
to the RDBMS before any file processing can occur. Acu4GL for Sybase
provides both a default and a user-configurable method for implementing
this.

Generally, it is best for someone with Database Administrator (DBA)
privileges to create and drop the tables, allowing others only the permissions
to add, change, or delete information contained in them.

See the Sybase documentation for more details on DBA privileges.

Alternate REWRITE method

If the above stored procedure is not available, then the update query passed to
the database has been optimized to update only dirty columns. This should
improve performance.

E.2 Installation and Setup
The following sections describe several steps that must be performed before
you begin using Acu4GL for Sybase on a new system:

• Acu4GL for Sybase Installation

• Setting Up a User Account

• Setting Up the User Environment

• Designating the Host File System

E-4 Acu4GL for Sybase Information
E.2.1 Sybase RDBMS Installation

The Sybase RDBMS must be installed and configured prior to the installation
of Acu4GL for Sybase. Acu4GL can interface to Sybase version 11.0 and
later.

Sybase’s isql product, which is an interactive query tool, is also necessary for
installing the ACUCOBOL-GT stored procedures.

The Acu4GL product does not need isql after installation, but it is a tool that
can give you quite a bit of flexibility. It allows you to do database work
outside of COBOL, including interactive queries, table creation, table
modification, and creation of views, constraints, and relationships between
tables.

Micro Focus does not provide these products.

E.2.2 Acu4GL for Sybase Installation

The Acu4GL product for Sybase is an add-on module. The Sybase Acu4GL
product installation includes a .DLL file that is detected at run time. If you
are working in a 32-bit environment, it is not necessary to relink the runtime.

However, the relinking process is necessary for UNIX users, and is explained
below in this section.

The Acu4GL product can be executed on a machine that is running UNIX or
Windows.

Installation instructions for each of these configurations are given in the
following sections. The instructions in the sections that follow describe the
steps you must follow on both the client machine and the server machine.

Be sure to use the 64-bit libraries with a 64-bit runtime and 64-bit Acu4GL
for Sybase, and the 32-bit libraries with a 64-bit runtime and 32-bit Acu4GL
for Sybase.

Installation and Setup E-5
E.2.3 UNIX Client Installations

The Acu4GL product is shipped using either TAR or CPIO format,
depending on the type of machine you have. The media label tells you which
format has been used. You can start by copying all of the files onto your
client machine. If you are using a second machine as your server (this is
optional), move the server files (identified below) to that second machine.

You will be installing Acu4GL into the same directory where your
ACUCOBOL-GT runtime is located. Change to that directory and type one
of the following commands:
tar xfv device

or
cpio -icvBd < device

This will copy the files from the distribution medium to your directory.
device is the appropriate hardware device name (for example, /dev/rmt0).
Sites using Texas Instruments System 1500 should add an uppercase “T” to
the cpio options (-icvBdT).

E.2.3.1 UNIX Client Installation Steps

Acu4GL communicates with Sybase version 11.0 or later. The client (your
application) and the server (the RDBMS) may be located on the same UNIX
machine, or on different UNIX machines. The server may also be located on
a Windows NT machine.

To install the Acu4GL product, first perform the following steps on the UNIX
client machine:

Step 1: Install Sybase client library

The Open Client DB-Library/C from Sybase (version 11.0 or later) must be
installed on the client machine before you install Acu4GL for Sybase.
Follow the installation instructions in your Sybase documentation.

E-6 Acu4GL for Sybase Information
Step 2: Create a makefile

The script syb_inst is an interactive shell script that determines which
libraries your version of Sybase has, and then creates a makefile suitable for
linking Acu4GL with an ACUCOBOL-GT runtime for UNIX. It also
generates the SQL script used to install ACUCOBOL-GT stored procedures.

Execute the shell script syb_inst by entering the following command on your
client machine:

sh syb_inst

Note: You may exit the script at any time by pressing the system interrupt
key (usually CTRL+C).

If you entered only syb_inst instead of the full command, this message may
appear:
VAL=0: command not found
VAL: Undefined variable

This can be fixed by entering sh syb_inst.

When the script begins executing, you see the following message:
During the execution of this script, we will create an SQL
script which you will need to execute from isql, using a
command like:

"isql -Usa -Ppassword < syb_inst.sql"

This script will add some stored procedures, and create some
tables in a database that you specify during the execution of
this script.

In order to implement locking from ACUCOBOL-GT, we need to create a
lock table. This should be a pretty small table, but we need to decide which
database to create this table in. You should now enter the name of the
database you want the lock tables created in. If the database does not exist, it
is created.

The following question is asked until you enter a valid database name:
Which database would you like to create this table in?

Installation and Setup E-7
This database will eventually be located on your server machine. Enter a
valid database name. (Invalid names are master, model, temp, or
sybsystemprocs.) Names must start with a letter or underscore, must contain
only letters, digits, and underscores, and may be up to 30 characters long.
Any other entry will be modified.

Next you will see the following message:
Saving any old version of syb_inst.sql...

Old versions of “syb_inst.sql” are saved to “syb_instnnn.sql” where nnn
starts at 001 and goes to 999. If a file “syb_inst.sql” exists, you see:

Saving syb_inst.sql as syb_instnnn.sql

for some value of nnn. Then you see:
Creating syb_inst.sql...

This uses the file “syb_inst.in” as a template, and creates “syb_inst.sql”,
using the database name you entered above.

You also see:
Creating cblconfig.syb...

This is a sample file of configuration variables you may want to add to your
“cblconfig” file.

You then see the following message:
In order to use the Acu4GL for Sybase interface, you need to
relink the runtime system. We are assuming that the Makefile
that came with your runtime system still has the "FSI_SUBS="
and "FSI_LIBS=" lines in it, and will base our changes on that
Makefile. However, we will create a new file called
Makefile.syb, that has these changes in it.

Do you want to set up the Makefile for this system?

Type y or Y to continue.

You then see the following message:
We next need to determine where you have installed the SYBASE
client libraries.

E-8 Acu4GL for Sybase Information
The following prompt is repeated until you enter the directory that contains
the Sybase files:

Enter the directory where the SYBASE client libraries are
installed

Type the full pathname of the directory containing the Sybase client libraries,
and press Enter. Note that this is the directory that contains the Sybase “lib”
directory. For example, if the full path for the file “libsybdb.a” is “/usr/
sybase/lib/libsybdb.a”, you would type “/usr/sybase”.

The script checks for a file “lib/libsybdb.a” in the directory you entered. You
then see one of the following messages:

We seem to have the ACUCOBOL-GT library files in this
directory.

We need to find the ACUCOBOL-GT library files...Enter the
directory where ACUCOBOL-GT is installed:

If you are asked to enter the directory name, type the full pathname of the
directory containing ACUCOBOL-GT, then press Enter.

Before the Makefile is created, we need to check for some alternate optional
libraries. You see the message:

Checking for -lnsl or -lnsl_s

If one of the libraries exists, you see:

using -lnsl
 -or-
using -lnsl_s

If you instead see a message like this one:

syb_inst: cc: not found

it’s likely that your PATH environment variable does not include the location
of your compiler. In this case, exit from the script, fix the PATH variable,
and start the script again.

Installation and Setup E-9
Finally, you see the message:
Creating Makefile.syb ...
Makefile.syb created. You should be able to execute
 "make –f Makefile.syb"

and the script exits.

Step 3: Move the makefile

Copy “Makefile.syb” to the ACUCOBOL-GT library subdirectory if it is not
already there.

Now you are ready to relink your ACUCOBOL-GT runtime.

Step 4: Link the runtime system

Note: In the following directions, the term “runtime system” refers to the
runtime shared object on systems where the ACUCOBOL-GT runtime is a
shared object and to runcbl on other systems, where the runtime is static.
The runtime is a shared object on the following systems: AIX 5.1 and later,
HP-UX 11 and later, and Solaris 7 and later. To check, look at the contents
of the “lib” subdirectory of your ACUCOBOL-GT installation. If the files
“libruncbl.so” or “libruncbl.sl” reside in that directory, the runtime is a
shared object on your system.

Make sure you are in the directory containing the ACUCOBOL-GT runtime
system. Then, at the UNIX prompt, enter the following command:
make clean

to ensure that you have a clean directory in which to build your runtime.

Now enter the following command:
make -f Makefile.syb

This compiles “sub.c” and “filetbl.c” and then links the runtime system.

E-10 Acu4GL for Sybase Information
Step 5: Verify the link

Enter the following command:
./runcbl -vv

to verify the link. This returns version information on all of the products
linked into your runtime system. Make sure it reports the version of Acu4GL
for Sybase.

Shared libraries

If you have relinked the ACUCOBOL-GT runtime and receive an error
message of this type when you try to execute it:

"Could not load library; no such file or directory"

"Can’t open shared library . . . "

this may mean that your operating system is using shared libraries and cannot
find them. This can occur even if the shared libraries reside in the same
directory where you are currently located.

Different versions of the UNIX operating system resolve this in different
ways, so it is important that you consult your UNIX documentation to resolve
this error.

Some versions of UNIX require that you set an environment variable that
points to shared libraries on your system.

For example, on an IBM RS/6000 running AIX 4.1, the environment variable
LIBPATH must point to the directory where the shared libraries are located.

On HP/UX, the environment variable that must be set to point to shared
libraries is SHLIB_PATH. On UNIX SVR4, the environment variable is
LD_LIBRARY_PATH.

Be sure to read the system documentation for your operating system to
determine the appropriate way to locate shared libraries.

Installation and Setup E-11
A second way to resolve this type of error is to link the libraries into the
runtime with a static link. Different versions of the C development system
use different flags to accomplish this link. Please consult the documentation
for your C compiler to determine the correct flag for your environment.

Step 6: Copy runcbl to the correct directory

If the runtime is a system is a statically linked executable, copy the new
executable to a directory listed in your execution path. This file needs to have
execute permission for everyone who will be using the compiler or runtime
system. The copy step is not necessary when the runtime system is a shared
library.

The ACUCOBOL-GT license file for the runtime (“runcbl.alc”) and the
license file for the Acu4GL product to Sybase (“runcbl.ylc”) must be copied
into the same directory as the runtime executable.

If you rename your runtime executable, be sure to rename your license files
to use the same base name, with the extensions unchanged.

For example, if you rename your runtime to be “myprog”, the license file for
the Acu4GL product for Sybase should be renamed “myprog.ylc”, and the
license file for the runtime should be renamed “myprog.alc”.

The remaining files can be left in the directory to which they were unloaded
from the distribution medium.

Step 7: Use rehash

If you are using the C shell, enter the command rehash. This tells the C shell
that there is a new executable in the path.

This completes the installation process on the client machine.

E.2.3.2 UNIX or Windows NT server Intallations

Perform the following steps on the server machine (the client and server may
be located on the same machine):

E-12 Acu4GL for Sybase Information
Step 1: Install Sybase

The Sybase server, version 11.0 or later, must be installed and configured on
your server machine. Follow the Sybase installation instructions in your
Sybase documentation.

Step 2: Move the ACUCOBOL-GT stored procedures

Move “syb_inst.sql” to your server machine (the one hosting the Sybase
RDBMS). This file was created in step 2 of the client installation.

Step 3: Install the ACUCOBOL-GT stored procedures

You must have Database Administrator privileges to install the
ACUCOBOL-GT stored procedures on the server. (You need to enter the
password for the Database Administrator.) Enter the following command:

isql -Usa -Ppassword < syb_inst.sql

(“syb_inst.sql” is created during the installation of the client)

By default, the stored procedures are installed into the master or
sybsystemprocs databases. However, you may choose another database in
which to store them. Follow these steps if you want to install the stored
procedures in a database other than the default:

1. Before you execute the “syb_inst.sql” query, modify the query file to use
the desired database instead of the master or sybsystemprocs database.
After you have modified the query file, execute it as described above.

2. Create in each database that contains tables accessed by Acu4GL the
stored procedures that were previously in the master or sybsystemprocs
database. Note that the stored procedures are executed without being
prefixed by a database name, and Sybase requires that such stored
procedures must be in the master or sybsystemprocs database.

The interface also searches for and executes the sp_AcuInit stored procedure
from this location. This stored procedure is executed when a connection is
made to the database; therefore, sp_AcuInit should reside in the default

Installation and Setup E-13
database for each user if it is not created in the master database. See section
E.6.2, “Built-in Stored Procedures,” for information on the sp_AcuInit
stored procedure.

This completes the setup on the UNIX or Windows NT server machine.

Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. We always upgrade stored procedures in
such a way that they are compatible with older versions of the product, so
installing new stored procedures over old ones does not affect your ability
to run with an older version of the interface software. Your new version of
Acu4GL for Sybase may not run properly without the corresponding stored
procedures.
It can be difficult to maintain multiple copies of stored procedures;
therefore, we recommend that you continue to create the stored procedures
in the master or sybsystemprocs database. If your installation does not
permit this, you do have the flexibility to create the stored procedures
elsewhere. However, to facilitate maintenance of the stored procedures, we
recommend that you create as few databases as possible.

The following sections describe the next steps you must take before using
Acu4GL for Sybase for the first time:

• Setting Up a User Account

• Setting Up the User Environment

• Designating the Host File System

• Using the “sql.acu” Program

• Preparing and Compiling Your COBOL Program

• The Demonstration Program

E-14 Acu4GL for Sybase Information
E.2.4 Windows Client and UNIX or Windows NT Server
Installations

First you must install the files from the installation media onto the client
machine. Then follow the instructions below for the appropriate server
machine. Finally, some setup steps on the client machine complete the
installation.

Instructions for installing your Acu4GL product from the ACUCOBOL-GT
CD-ROM are contained on the Quick Start CD booklet that accompanied the
product. Please refer to it for installing your products.

Once the installation is complete, please refer to this appendix for setting up
your Acu4GL product.

E.2.4.1 UNIX Server Machine Installations

To install the Acu4GL for Sybase on a UNIX server machine:

Step 1: Install Sybase

The Sybase RDBMS, version 11.0 or later, must be installed and configured
before you install Acu4GL for Sybase. Follow the Sybase installation
instructions in your Sybase documentation.

Sybase’s isql product, which is an interactive query tool, is also necessary for
installing the ACUCOBOL-GT stored procedures.

The Acu4GL product does not need isql after installation, but it’s a tool that
can give you quite a bit of flexibility. It allows you to do database work
outside of COBOL, including interactive queries, table creation, table
modification, and creation of views, constraints, and relationships between
tables.

Micro Focus does not provide these products.

Installation and Setup E-15
Step 2: Copy files

Copy “syb_inst”, “syb_cfg.in”, and “syb_inst.in” to your UNIX server
machine.

Step 3: Create stored procedures

The file “syb_inst” is an interactive shell script that generates the SQL script
used to install ACUCOBOL-GT stored procedures.

Execute the shell script “syb_inst” by entering the following command on
your server machine:

sh syb_inst

Note: You may exit the script at any time by pressing the system interrupt
key (usually CTRL+C).

If you entered only syb_inst instead of the full command, this message may
appear:
VAL=0: command not found
VAL: Undefined variable

This can be fixed by entering sh syb_inst.

When the script begins executing, you will see the following message:
During the execution of this script, we will create an SQL
script which you will need to execute from isql, using a
command like:

"isql -Usa -Ppassword < syb_inst.sql"

This script will add some stored procedures, and create some
tables in a database that you specify during the execution of
this script.

In order to implement locking from ACUCOBOL-GT, we need to create a
lock table. This should be a pretty small table, but we need to decide which
database to create this table in. You should now enter the name of the
database you want the lock tables created in. If the database does not exist, it
is created.

E-16 Acu4GL for Sybase Information
The following question is asked until you enter a valid database name:
Which database would you like to create this table in?

This database will eventually be located on your server machine. Enter a
valid database name. (Invalid names are master, model, temp, or
sybsystemprocs.) Names must start with a letter or underscore, must contain
only letters, digits, and underscores, and may be up to 30 characters long.
Any other entry will be modified.

Next you see the following message:
Saving any old version of syb_inst.sql...

Old versions of “syb_inst.sql” are saved to “syb_instnnn.sql” where nnn
starts at 001 and goes to 999. If a file “syb_inst.sql” exists, you see:

Saving syb_inst.sql as syb_instnnn.sql

for some value of nnn. Then you see:
Creating syb_inst.sql...

This uses the file “syb_inst.in” as a template, and creates “syb_inst.sql”,
using the database name you entered above.

You also see:
Creating cblconfig.syb...

This is a sample file of configuration variables you may want to add to your
cblconfig file.

You then see the following message:
Do you want to set up the Makefile for this system?

Type n or N to quit the script.

Step 4: Install the ACUCOBOL-GT stored procedures

You must have Database Administrator privileges to install the
ACUCOBOL-GT shared procedures on the server. (You need to enter the
password for the Database Administrator.) Enter the following command:

isql -Usa -Ppassword < syb_inst.sql

Installation and Setup E-17
By default, the stored procedures are installed into the master or
sybsystemprocs databases. However, you may choose another database in
which to store them. Follow these steps if you want to install the stored
procedures in a database other than the default:

1. Before you execute the “syb_inst.sql” query, modify the query file to use
the desired database instead of the master or sybsystemprocs database.
After you have modified the query file, execute it as described above.

2. Create in each database that contains tables accessed by Acu4GL the
stored procedures that were previously in the master or sybsystemprocs
database. Note that the stored procedures are executed without being
prefixed by a database name, and Sybase requires that such stored
procedures must be in the master or sybsystemprocs database.

The interface also searches for and executes the sp_AcuInit stored procedure
from this location. This stored procedure is executed when a connection is
made to the database; therefore, sp_AcuInit should reside in the default
database for each user if it is not created in the master database. See section
E.6.2, “Built-in Stored Procedures,” for information on the sp_AcuInit
stored procedure.

This completes the setup on the UNIX or Windows NT server machine.

Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. We always upgrade stored procedures in
such a way that they are compatible with older versions of the product, so
installing new stored procedures over old ones does not affect your ability
to run with an older version of the interface software. Your new version of
Acu4GL for Sybase may not run properly without the corresponding stored
procedures.
It can be difficult to maintain multiple copies of stored procedures;
therefore, We recommend that you continue to create the stored procedures
in the master or sybsystemprocs database. If your installation does not
permit this, you do have the flexibility to create the stored procedures
elsewhere. However, to facilitate maintenance of the stored procedures,
We recommend that you create as few databases as possible.

E-18 Acu4GL for Sybase Information
E.2.4.2 Windows NT Server and Windows Client Installations

Complete the following steps to install the Acu4GL product on a Windows
NT server machine.

Step 1: Install SQL Server

Sybase, version 11.0 or later, must be installed and configured on the
Windows NT server machine before you install Acu4GL for Sybase on the
client machine. Follow the instructions from your RDBMS vendor.

The isql product, which is an interactive query tool, is also necessary for
installing the ACUCOBOL-GT stored procedures. The Acu4GL product
does not need isql after installation, but it is a tool that can give you quite a
bit of flexibility. It allows you to do database work outside of COBOL,
including interactive queries, table creation, table modification, and creation
of views, constraints, and relationships between tables.

Micro Focus does not provide these products.

Step 2: Copy the batch file

The file “syb_inst.cmd” is a batch file from Micro Focus that will create the
“syb_inst.sql” file, which is the collection of stored procedures necessary for
executing the Acu4GL product. Copy “syb_inst.cmd” to your server
machine into a directory of your choice.

Step 3: Execute the batch file

To execute the batch file, enter
SYB_INST LockDatabase

where LockDatabase is the database you want to use for the internal
ACUCOBOL GT lock tables. If this database does not already exist, it will
be created.

Everyone who will use the Acu4GL for Sybase product must have write
access to this database.

Installation and Setup E-19
This step creates “syb_inst.sql”, which is the collection of stored procedures
necessary for executing the Acu4GL product.

Step 4: Install the ACUCOBOL-GT stored procedures

You must have Database Administrator privileges to do this step. You need
to enter the password for the Database Administrator.

Type:
ISQL -USA -Ppassword < SYB_INST.SQL

Another way to accomplish the same result is to use ISQL/W to execute
syb_inst.sql as a query. See your Sybase documentation for how to do this.

By default, the stored procedures are installed into the master or
sybsystemprocs databases. However, you may choose another database in
which to store them. Follow these steps if you want to install the stored
procedures in a database other than the default:

1. Before you execute the “syb_inst.sql” query, modify the query file to use
the desired database instead of the master or sybsystemprocs database.
After you have modified the query file, execute it as described above.

2. Create in each database that contains tables accessed by Acu4GL the
stored procedures that were previously in the master or sybsystemprocs
database. Note that the stored procedures are executed without being
prefixed by a database name, and Sybase requires that such stored
procedures must be in the master or sybsystemprocs database.

The interface also searches for and executes the sp_AcuInit stored procedure
from this location. This stored procedure is executed when a connection is
made to the database; therefore, sp_AcuInit should reside in the default
database for each user if it is not created in the master database. See section
E.6.2, “Built-in Stored Procedures,” for information on the sp_AcuInit
stored procedure.

This completes the setup on the UNIX or Windows NT server machine.

E-20 Acu4GL for Sybase Information
Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. We always upgrade stored procedures in
such a way that they are compatible with older versions of the product, so
installing new stored procedures over old ones does not affect your ability
to run with an older version of the interface software. Your new version of
Acu4GL for Sybase may not run properly without the corresponding stored
procedures.
It can be difficult to maintain multiple copies of stored procedures;
therefore, we recommend that you continue to create the stored procedures
in the master or sybsystemprocs database. If your installation does not
permit this, you do have the flexibility to create the stored procedures
elsewhere. However, to facilitate maintenance of the stored procedures, we
recommend that you create as few databases as possible.

E.2.4.3 Windows client Installations

Complete the following steps to install the Acu4GL product on a Windows
client machine.

Step 1: Choose your communication method

Be sure to choose your communication method at the client machine. To do
this, follow the Sybase instructions for selecting a Net-Library.

After you make your selection, you will be prompted for directory names and
for the server internet address or host name. The installation utility will then
make an entry in the SQL.INI file, which points to the server. The SQL.INI
file is located in the INI subdirectory under the directory where your
Net-Library is stored.

The name of the server that is placed into SQL.INI is the name you must use
in your COBOL configuration file with the variable
A_SYB_DEFAULT_CONNECTION. Any name listed in brackets in that
file can be used as a server name.

Installation and Setup E-21
Step 2: Verify that your client is communicating with your server

To verify that you are connected, use the Sybase client utility SYBPING to
ping the server. Make sure you receive a response to the ping.

The following sections describe the next steps to take before using Acu4GL
for Sybase for the first time:

Setting Up a User Account

Setting Up the User Environment

Designating the Host File System

Using the “sql.acu” Program

Preparing and Compiling Your COBOL Program

The Demonstration Program

E.2.5 Setting Up a User Account

Acu4GL for Sybase must be able to connect to a user account. You may
either set up one general account for all users or an account for each
individual user. To set up an account, you must have DBA privileges.

See sp_addlogin and Sybase sp_adduser in the Sybase Commands
Reference Manual.

E.2.6 Setting Up the User Environment

The user’s account should have been set up correctly to access the Sybase
RDBMS system. This includes environment variables such as SYBASE and
DSQUERY. See your Sybase documentation for more details.

In addition to setting the variables required for Sybase, you will need to do
the following:

E-22 Acu4GL for Sybase Information
• Ensure that your execution path contains the name of the directory in
which you placed your newly linked Acu4GL runtime executable.

• Set the A_SYB_LOGIN and A_SYB_PASSWD variables, either in
your environment or in the ACUCOBOL-GT runtime configuration file
(if you don’t do this, Acu4GL will use your UNIX login name as your
Sybase login name, and no password). For security reasons, it is best to
set the password variable from your COBOL program by asking the user
to enter a password and then executing:

SET ENVIRONMENT "A_SYB_PASSWD" TO user-entry

You may want to make and use a personalized copy of the configuration file
to avoid impacting other users. The ACUCOBOL-GT User’s Guide
describes how to use the A_CONFIG environment variable, or the “-c”
runtime option, to identify a personal configuration file.

For detailed information on A_SYB_LOGIN and A_SYB_PASSWD, see
section E.6, “Acu4GL for Sybase Configuration File Variables.”

E.2.7 Designating the Host File System

If you are opening an existing file, most, but not all, file systems linked into
the runtime will be searched for the named file. If, however, you are creating
a new file, you must tell the runtime which file system to use. You
accomplish this with one of two runtime configuration file variables; the first
is:

DEFAULT_HOST filesystem

This designates the file system to be used for newly created files that are not
individually assigned. For example,

DEFAULT_HOST SYBASE

means that all new files will be Sybase files unless otherwise specified by the
second configuration variable, which is:

filename_HOST filesystem

Installation and Setup E-23
where filename is the file name, without any extension, named in the
ASSIGN TO clause of your SELECT statement. This configuration variable
is used to assign an individual data file to a file system. Any file so assigned
uses the designated file system, and not the one specified by
DEFAULT_HOST. For example:

myfile_HOST VISION

means that myfile will be under the Vision file system.

You can use these runtime configuration file variables in combination to
assign your new files in a default with exceptions manner; for example, this
set of entries:
DEFAULT_HOST VISION
afile_HOST SYBASE
bfile_HOST SYBASE

means that all new files except afile and bfile will be assigned to Vision, and
those two files will be assigned to Sybase.

You can also change the values of these variables during program execution
by including in your code:
SET ENVIRONMENT "filename_HOST" TO filesystem

or
SET ENVIRONMENT "DEFAULT_HOST" TO filesystem

This enables you to change file systems during the execution of your
program. This is not the typical way to specify a file system; normally it is
designated in the runtime configuration file and is not changed in the
COBOL program.

Note: The interface to Sybase allows you to create a Sybase table with an
OPEN OUTPUT statement, just as you can create Vision indexed files. The
Sybase equivalent of a Vision file is a table, not a database. You need to
create a database for your Sybase tables before you run the COBOL
program that creates the tables, just as you need to create a directory for
your files before you run a COBOL program that creates Vision files.

E-24 Acu4GL for Sybase Information
You are now ready to use the sql.acu program. You can find information on
this program in section 2.4, “Using the “sql.acu” Program.”.

After you learn about and use this utility, you will next find out about
preparing and compiling your COBOL program, followed by learning to use
the demonstration program. See section 6.1, “Preparing and Compiling
Your COBOL Program,” and section 2.5, “The Demonstration
Program,” for additional information.

E.3 Filename Translation

As you prepare to work with Acu4GL for Sybase, you may find it helpful to
understand the rules around filename interpretation and to understand how
the names of tables and XFD files are formed and work together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the file name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file.

However, Acu4GL for Sybase needs the name of the file to find the
appropriate XFD file. To do this, Acu4GL for Sybase changes the name of
the file to lowercase letters and changes hyphens to underscores. Note,
however, that this is performed only on a local copy of the file. Once the
XFD file is found, the filename reverts to the name that was originally passed
to the open() function. Characters that are illegal in identifiers, such as a
hyphen (“-”), are trapped by the database, and Acu4GL for Sybase will
neither find the file nor create a new one.

Configuration File Variables E-25
E.4 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Acu4GL for Sybase. Configuration file variables that are generally
applicable to any RDBMS with which Acu4GL communicates are discussed
in section 8.2, “Runtime Configuration Variables.”

A_SYB_ADD_IDENTITY

When it is set at the default of “True”, A_SYB_ADD_IDENTITY adds an
extra column to any table created by the Acu4GL for Sybase product. The
extra column will have the identity property and will be included on all
indexes that are not unique. Otherwise, when A_SYB_ADD_IDENTITY is
set at “False”, an extra column is not added. While the default value is “Off”
(false, no), this configuration variable can also take values of “On” (true,
yes).

Note: The COBOL FD should not include the identity column.

Example
A_SYB_ADD_IDENTITY TRUE

On keys that allow duplicates, this variable has been found to vastly improve
performance. Note that the default value is “True” for a file that allows
duplicates, and is “False” for a file with no duplicate keys.

A_SYB_ADD_TIMESTAMP

Using a timestamp column is the only way to absolutely ensure that
modifications made to a row are not overwriting someone else’s changes.
(See the discussion of BROWSE MODE in the Sybase Commands
Reference Manual.) When reading a table that is open for I/O, the Acu4GL
for Sybase product uses BROWSE MODE if a timestamp column exists.
When the Acu4GL product is creating a table, if the value of
A_SYB_ADD_TIMESTAMP is “1”, a timestamp column is included in the

E-26 Acu4GL for Sybase Information
table. (Note that your COBOL FD should not include the timestamp
column.) While the default value is “Off” (false, no), this configuration
variable can also take values of “On” (true, yes).

Example
A_SYB_ADD_TIMESTAMP 1

See also

BROWSE MODE in the Sybase Commands Reference Manual

A_SYB_CHECK_DELETE_SP

This configuration variable controls whether the Acu4GL for Sybase
interface checks for the tablename_delete stored procedure when opening a
table. If A_SYB_CHECK_DELETE_SP is set to “False” (no, off, 0), the
Acu4GL interface does not check for the stored procedure. Therefore, even
if tablename_delete exists, it is not used if A_SYB_CHECK_DELETE_SP
is set to “False”. The default is “True” (yes, on, 1) to check for the stored
procedure.

A_SYB_CHECK_INSERT_SP

This configuration variable controls whether the Acu4GL for Sybase
interface checks for the tablename_insert stored procedure when opening a
table. If A_SYB_CHECK_INSERT_SP is set to “False” (no, off, 0), the
Acu4GL interface does not check for the stored procedure. Therefore, even
if tablename_insert exists, it is not used if A_SYB_CHECK_INSERT_SP is
set to “False.” The default is “True” (yes, on, 1) to check for the stored
procedure.

A_SYB_CHECK_READ_SP

This configuration variable controls whether the Acu4GL for Sybase
interface checks for the tablename_read stored procedure when opening a
table. If A_SYB_CHECK_READ_SP is set to “False” (no, off, 0), the

Configuration File Variables E-27
Acu4GL interface does not check for the stored procedure. Therefore, even
if tablename_read exists, it is not used if A_SYB_CHECK_READ_SP is set
to “False.” The default is “True” (yes, on, 1) to check for the stored
procedure.

A_SYB_CHECK_UPDATE_SP

This configuration variable controls whether the Acu4GL for Sybase
interface checks for the tablename_update stored procedure when opening a
table. If A_SYB_CHECK_UPDATE_SP is set to “False” (no, off, 0), the
Acu4GL interface does not check for the stored procedure. Therefore, even
if tablename_update exists, it is not used if A_SYB_CHECK_UPDATE_SP
is set to “False.” The default is “True” (yes, on, 1) to check for the stored
procedure.

A_SYB_CURSOR_OPTION_1,
A_SYB_CURSOR_OPTION_2,
A_SYB_CURSOR_OPTION_3

These configuration variables allow you to fine-tune the declaration of
cursors in the Acu4GL for Sybase product. In general, cursors are declared
with the following syntax:
DECLARE cursor_name option_1 CURSOR option_2 FOR
 <select....> option_3

In other words, different phrases can go in each of the option_X places. Also,
different versions of Sybase allow different options in each of those places.
Because of this, the Acu4GL product allows customization of the cursor
declaration via these three variables. The values of these variables are placed
verbatim into the declare phrase when building a cursor. Note that any errors
in the values of these variables may make your Acu4GL product inoperable.
You should refer to the Sybase documentation to determine what phrases are
allowed in each case.

The default values are as follows (limit is 65 characters for each option):

E-28 Acu4GL for Sybase Information
OPTION_1: “SCROLL”
OPTION_2: blank
OPTION_3: “For read only”

Users of Sybase version 11 should set the value of OPTION_3 to “at isolation
read uncommitted” to prevent page locks.

A_SYB_DATABASE

A_SYB_DATABASE specifies the name of the specific database to be
accessed. You cannot open any database files until you have set this variable.

Example
A_SYB_DATABASE stores

indicates the stores database is to be accessed.

A_SYB_DEADLOCK_LOOPS

Use A_SYB_DEADLOCK_LOOPS if you expect that more than one user
will be opening a lot of tables at the same time. This configuration variable
can be used to instruct Acu4GL to re-execute an INSERT statement that
could not execute because a row in the AcuOpenTables table was locked, or
to return an error if the user chooses not to run the query again.

The default for A_SYB_DEADLOCK_LOOPS is “0”, which causes the
interface to return an error 9D,1205 indicating that a table is locked.

Set A_SYB_DEADLOCK_LOOPS to a positive numeric value to cause
Acu4GL for Sybase to re-execute by the number specified the query that tried
to open the table, and, thus, caused the deadlock. Note that it can be as long
as 10 seconds until Sybase detects the deadlock, and the application appears
to “hang” while the repeated attempts to re-execute the query are in progress.

Set A_SYB_DEADLOCK_LOOPS to “-1” or “MESSAGE” to cause
Acu4GL for Sybase to display a message box containing the text of the
Sybase error message and the option to rerun the query.

Configuration File Variables E-29
Sybase has returned an error
(text of message from Sybase)
Do you want to retry the operation?

If the user answers “yes,” the interface reruns the query. If the user answers
“no,” the interface returns an error 9D. Setting
A_SYB_DEADLOCK_LOOPS to “-1” or “MESSAGE” is the preferred
action; the time it takes to inform users of the problem allows other
connections to finish opening the tables, giving the AcuOpenTables table
time to remove the deadlock.

A_SYB_DEFAULT_CONNECTION

A_SYB_DEFAULT_CONNECTION specifies the name of the server to
which the runtime will connect. Acu4GL for Sybase checks this variable
only if the DSQUERY environment variable has not been set. (Note that
Sybase recommends assigning a value to the DSQUERY environment
variable.) If neither DSQUERY nor A_SYB_DEFAULT_CONNECTION is
set, the default server is named SYBASE, just as for isql. To reference tables
in another server, open the file servername.database.owner.table.

Example

Suppose you have two servers, one named TOM and one named HARRY. If
most of the tables you want to access are on the server HARRY, you should
set:

A_SYB_DEFAULT_CONNECTION HARRY

For those occasions when you want to access the TOM server, you could
open the file this way:

TOM.stores.johndoe.purch1

See also

The Sybase documentation on isql

E-30 Acu4GL for Sybase Information
A_SYB_EXTRA_PROC

A_SYB_EXTRA_PROC can be used to keep modifications to the AcuLocks
table out of transactions. If these modifications are kept out of transactions,
users can read a record, even if they cannot REWRITE it. Otherwise, they
are locked out. A_SYB_EXTRA_PROC works by creating a separate
connection for these modifications.

When this variable is set to a nonzero value, an extra connection is used for
the following three procedures:

• Modifying the AcuLocks table

• Modifying the AcuOpenTables table

• Modifying the IMAGE data. Note that two connections are required
when updating IMAGE or TEXT data. This is a major reason for setting
A_SYB_EXTRA_PROC.

The default value is “0” (off, false, no). A nonzero value can also be
represented by “On” (true, yes).

If this variable is set to “On”, the extra connection is used to send TEXT or
IMAGE data to the server. The first connection is used to deliver non-TEXT
and non-IMAGE data to the server. When a WRITE or REWRITE is
executed, the interface program INSERTS or UPDATES the non-TEXT and
non-IMAGE data by using placeholder data in the TEXT or IMAGE
columns.

The TEXT or IMAGE data is then sent using the extra connection established
with the A_SYB_EXTRA_PROC variable. If the first connection is inside a
transaction, the second connection is locked out of the row that is added or
updated. The result is that it is not possible to WRITE or REWRITE records
containing TEXT or IMAGE data while inside a transaction.

Note: Large columns cannot be used in conjunction with transaction
management, because any column larger than 255 bytes (254 characters) is
automatically converted to a TEXT or IMAGE column when the table is
created. If you have TEXT or IMAGE columns in your table, WRITEs and
REWRITEs fail unless this variable is set to “On”.

Configuration File Variables E-31
See also

Section E.5, “Record and Table Locking”

A_SYB_FAST_ACCESS

A_SYB_FAST_ACCESS is a configuration variable that is set from your
COBOL program. Files opened while this variable is set to a nonzero value
are optimized for forward sequential access. While the default value is “0”
(off, false, no), this configuration variable can also take values of “On” (true,
yes).

We implemented this option to substantially improve the READ NEXT
performance in some cases. For example, testing the benchmark program
iobench.cbl in three different ways, yielded the following results for the
READ AND SKIP operation:

(“10” is the perfect value for ROWCOUNT in this benchmark, because the
program does a START, 10 READ NEXT operations, and then does it again.)

For certain reporting programs, this option can dramatically improve
performance. However, please note the following restrictions.

Files must be open INPUT or open IO with MASS-UPDATE.
FAST_ACCESS gives a performance boost only when no locking is
required. In files that allow locking, a record must be reread after being
locked; this prevents an uninterrupted forward sequential traversal.

Files opened with FAST_ACCESS use a dedicated connection for reading
from the file. Since connections are memory-intensive (both on the client
and on the server), the number of files opened with FAST_ACCESS should
be kept to a minimum. In the event that opening a connection fails, the file
open still continues, but FAST_ACCESS mode is disabled, with the
following message appearing in the trace file:

FAST_ACCESS mode not available.

No FAST_ACCESS: 72.76 seconds

FAST_ACCESS, ROWCOUNT 0: 148.88 seconds

FAST_ACCESS, ROWCOUNT 10: 8.09 seconds

E-32 Acu4GL for Sybase Information
Also, a new connection technically uses a new concurrent Sybase license
from Sybase.

Files open with FAST_ACCESS will not participate in transactions, and may
even cause the runtime to hang if transactions are used, especially if the
FAST_ACCESS file is updated within the transaction. We suggest that if
you use transactions, you don’t use FAST_ACCESS. At the minimum, if
you use transactions, we suggest that you use FAST_ACCESS only for files
open INPUT.

Files open with FAST_ACCESS cannot be read backwards. In other words,
READ PREVIOUS does not work with FAST_ACCESS files. In fact, if you
try to READ PREVIOUS on a file opened with FAST_ACCESS, you get an
error 9D,20.

The ANSI standard states that READ NEXT after a READ will return the
next record. Some applications depend on this, and some applications just
want to read dynamically from a file, and don’t use the positioning facility.
Because of this ambiguity, files that are open with FAST_ACCESS cannot be
READ dynamically. If you try to READ on a file open with
FAST_ACCESS, you get an error 9D,20.

There are no restrictions on WRITE, REWRITE, and DELETE. However,
these operations use the cursor-based connection, not the dedicated
connection. This is the reason transactions may hang.

A_SYB_FORCED_INDEX

A_SYB_FORCED_INDEX causes the Acu4GL product to attempt to use an
actual index that matches the key used with the table. For this variable to
have any effect, the index matching the key must be a unique index.

While the default value is “0” (off, false, no), this configuration variable can
also take the value of “Yes” (on, true). If you don’t use the forced-index
feature, the Acu4GL product adds an ORDER BY clause to the SELECT,
which can add to processing time.

Configuration File Variables E-33
We have discovered that Sybase does not guarantee that an index will be used
if this variable is set to “1”, and so the order of records returned to the
COBOL program is not guaranteed to be correct in that case. Because of this,
we highly discourages setting this variable to “On”.

A_SYB_LOCK_DB

A_SYB_LOCK_DB specifies the name of the database that holds the lock
table.

See also

Section E.5, “Record and Table Locking”

A_SYB_LOGIN

A_SYB_LOGIN indicates the user name under which you want to connect to
the database system.

Example

To connect to the database with the user name MYNAME, specify:
A_SYB_LOGIN MYNAME

in the runtime configuration file.

If A_SYB_LOGIN is not set, on Windows the runtime uses the value of your
USER environment variable as your Sybase login name. On UNIX systems,
the runtime uses your UNIX login name as your Sybase login name. For this
automatic login to succeed, you must have set up a user with the same name
as your computer login name.

See also

A_SYB_PASSWD runtime configuration file variable

Section E.2.5, “Setting Up a User Account”

E-34 Acu4GL for Sybase Information
A_SYB_MAX_CHARACTERS

A_SYB_MAX_CHARACTERS indicates the maximum number of bytes the
Acu4GL product will allow in a table row.

Sybase places a limit on the number of bytes per table row. The Acu4GL
product adheres to this limit, but sometimes it cannot accurately count how
many bytes a particular row contains (because of overhead bytes that Sybase
adds). This variable enables the developer to set the Acu4GL product’s
upper bound.

You might want to try reducing it if you discover that a row cannot be added
to a table. By reducing the upper bound, you may be able to prevent this
problem.

If Sybase increases the maximum number of bytes allowed in a row (in a
future release of the Sybase product), you can increase the value of this
variable to take advantage of the new limit.

The A_SYB_MAX_CHARACTERS variable has a default value of “1962”.

A_SYB_MAX_COLUMNS

A_SYB_MAX_COLUMNS indicates the maximum number of columns the
Acu4GL product will allow in a table.

Sybase places a limit on the number of columns per table. The Acu4GL
product adheres to this limit, but sometimes it cannot accurately count how
many columns a table contains (because a column has been added to a table
without the Acu4GL product’s knowledge). This variable enables the
developer to set the Acu4GL product’s upper bound. You might want to try
reducing the upper bound if you discover that a table cannot be created for
some reason. By reducing the upper bound, you allow for uncountable
columns and thus may be able to prevent this problem.

If Sybase increases the maximum number of columns allowed per table (in a
future release of the Sybase product), you can increase the value of this
variable to take advantage of the new limit.

The A_SYB_MAX_COLUMNS variable has a default value of “250”.

Configuration File Variables E-35
A_SYB_NATIVE_LOCK_TIMEOUT

This is one of two locking methods available with Acu4GL for Sybase. The
methods are accessed via two configuration variables:
A_SYB_VISION_LOCKS_FILE and
A_SYB_NATIVE_LOCK_TIMEOUT. The lock method used is determined
as follows: If A_SYB_VISION_LOCKS_FILE is set to the name of a Vision
file that can be open I/O and has the correct structure, the Vision file is used
to hold lock information. If A_SYB_NATIVE_LOCK_TIMEOUT is set to
a positive value, native locking is used. Otherwise, the AcuLocks table is
used to hold locks.

This locking method enables you to use Sybase native locks if you explicitly
code transactions in your COBOL program. You can access this method by
setting the configuration variable A_SYB_NATIVE_LOCK_TIMEOUT to a
positive value. This value will be the number of seconds that a connection
will wait for a timeout to occur. When such a timeout occurs (for any
reason), the Acu4GL product assumes that the timeout was caused by a
locked record and will return error 99 (record locked). If you set this variable
but do not explicitly code transactions in your COBOL program, record
locking does not occur. Note that the Acu4GL product will wait the number
of seconds specified, and your application may seem to hang if the timeout is
too long. On the other hand, if the timeout is too short, you may get record
locked errors when the network is slow.

Sybase uses a page locking mechanism, and so this method of locking
records may cause your application to return spurious record locked errors
because of a record being locked on the same page as the record you are
trying to access. If a future version of Sybase implements row-level locking,
this locking method may be the preferred method.

See also

A_SYB_VISION_LOCKS_FILE configuration variable

Section E.5, “Record and Table Locking”

E-36 Acu4GL for Sybase Information
A_SYB_NO_COUNT_CHECK

When doing a REWRITE, the interface checks to see that a record was
actually updated. If the record was not updated, the interface returns an
error 23. Setting this variable “On” causes that check not to happen. This
improves performance on REWRITE, at the risk of missing an error. While
the default value is “Off” (false, no), this configuration variable can also take
the value of “On” (true, yes).

A_SYB_NO_DBCLOSE

When the runtime is shutting down, the interface closes all the open
connections, as per the Microsoft documentation. Sometimes, with some
network drivers, this takes a significant amount of time. Setting this variable
“On” causes the interface not to close the connections. Though this can
speed up the runtime (during shutdown), we don’t recommended it, because
the Microsoft documentation is not being followed. While the default value
is “Off” (false, no), this configuration variable can also take the value of
“On” (true, yes).

A_SYB_NO_DBID

The interface stores the Database ID in the AcuLocks and AcuOpenTables
tables, to distinguish different tables in different databases. Sometimes this
causes problems. Setting this variable “ON” causes the interface to use a
Database ID of “0”, instead of the actual ID of the database. While the
default value is “Off” (false, no), this configuration variable can also take the
value of “On” (true, yes).

A_SYB_NO_RECORD_LOCKS

Setting this variable “ON” causes all READS to be treated as READ NO
LOCK, which can improve performance (but has the obvious consequences).
While the default value is “Off” (false, no), this configuration variable can
also take the value of “On” (true, yes).

Configuration File Variables E-37
A_SYB_NO_TABLE_LOCKS

Setting this variable “ON” causes the interface not to use the AcuOpenTables
table, which causes all table locking to be disabled. This can improve
performance on OPEN and CLOSE statements. While the default value is
“Off” (false, no), this configuration variable can also take the value of “On”
(true, yes).

A_SYB_NO_23_ON_START

When A_SYB_NO_23_ON_START is set to a nonzero value, START does
not detect whether records actually exist. Because it does not detect the
existence of records, it is possible, when using this variable, to do a START
without error, and for the next READ NEXT to return END_OF_FILE,
contrary to the ANSI standard.

Example
A_SYB_NO_23_ON_START number

where number can be a zero or nonzero value.

While the default value is “0”, (off, false, no) this configuration variable can
also take values of the value of “On” (yes, true).

A_SYB_PACKETSIZE

A_SYB_PACKETSIZE sets the size of network packets. Setting this
variable can affect performance, since fewer and larger network calls can
improve performance.

This variable must be set in the configuration file. It has no effect if it is set
in a COBOL program via SET CONFIGURATION or SET
ENVIRONMENT. The value of this variable is the largest size that the
transport layer uses for network packets (although the underlying library may
reduce the size specified; this is out of the control of the interface.) The

E-38 Acu4GL for Sybase Information
largest value that can be specified is “32767”. The default depends on which
version of the client libraries is linked into the runtime, although “512” is the
most common default.

Use this configuration variable to tune your database performance. To set the
packet size to “8192” use:

A_SYB_PACKETSIZE 8192

Setting this variable to “0” or to a negative value causes the Acu4GL product
to use the default value.

A_SYB_PASSWD

The variable A_SYB_PASSWD should be set to the password assigned to
the database account associated with the user name specified by
A_SYB_LOGIN.

Examples

If the account with the user name in A_SYB_LOGIN has the associated
password “CW021535”, you would specify:

A_SYB_PASSWD CW021535

in the runtime configuration file.

For better security, you can accept a password from the user during program
execution; set the A_SYB_PASSWD variable based on the response:
ACCEPT RESPONSE NO-ECHO.
SET ENVIRONMENT "A_SYB_PASSWD" TO RESPONSE.

Note: If the user has been set up without a password, this variable need not
be set.

Configuration File Variables E-39
A_SYB_ROWCOUNT

This variable has an effect only if you are reading on a key that does not allow
duplicates, or if you have added an Identity column to the table.
A_SYB_ROWCOUNT determines how many rows are returned by a
SELECT statement sent to the server.

This variable can be used to speed up the Acu4GL product. For example, if
you know you will be reading only one record at a time and reading from a
unique key, you can set A_SYB_ROWCOUNT to “1”, thus speeding up the
processing.

If you know you are going to be reading records ten rows at a time, set
A_SYB_ROWCOUNT to “10”. If you don’t have any information about
how many rows are going to be requested, set this variable to “0”, which is
the default.

Note: Setting this variable to a non-optional value can actually degrade
performance, since the interface may be forced to issue more SELECT
statements once the rowcount has been determined. Use caution when
setting this variable.

See also

A_SYB_ADD_IDENTITY runtime configuration file variable

A_SYB_SELECT_KEY_ONLY

This variable directs the interface to select key columns only when searching
for records. Its use can improve READ performance on large tables with
many rows.

When set to “True”, the default value, A_SYB_SELECT_KEY_ONLY
causes the interface to select only key columns when searching for records,
and then select the entire row of the single record that must be returned to the
COBOL program.

E-40 Acu4GL for Sybase Information
Setting A_SYB_SELECT_KEY_ONLY to “False” does not affect how the
select is created for files open I/O (since the record must be locked, and then
the rest of the data fetched), but it causes the interface to select all the
columns of the table for files open INPUT. While the default value is “On”
(true, yes), this configuration variable can also take values of “Off” (false,
no).

A_SYB_SKIP_ALTERNATE_KEYS

A_SYB_SKIP_ALTERNATE_KEYS determines whether alternate keys are
used to form indexes during table creation. The default value of this variable
is “0”, which means it’s okay to use alternate keys.

If you set the variable to a nonzero value (such as “1”), alternate keys are not
used to form indexes, which speeds up processing if many writes or rewrites
are being performed. (Note that a value of “1” may slow processing if the
application is reading sequentially using an alternate key.) While the default
value is “0” (off, false, no), this configuration variable can also take the value
of “On” (true, yes).

You can load a great deal of data into a table rapidly with this variable set to
“1”, and then create the missing indexes using isql.

See also

The Sybase documentation on isql

A_SYB_TRANSLATE_TO_ANSI

Setting this variable to “On” (true, yes), causes the Acu4GL interface to call
the same translation function used by the Windows runtime to translate
characters going to the server into the OEM character set, and to translate
characters coming from the server to ANSI.

The default is “Off” (false, no), which indicates that the Acu4GL interface
does not call the translation function, but passes the data as is to the library.

This variable applies only to the Windows version of the Acu4GL for Sybase
interface.

Configuration File Variables E-41
A_SYB_UNLOCK_ON_EXECUTE

Setting this variable “ON” causes all invocations of I$IO using the
EXECUTE opcode to unlock all records. Normally records are unlocked
when a transaction finishes. But if users perform their own transaction
management using sql.acu (which calls I$IO using the EXECUTE opcode),
the interface never knows to unlock records, because it doesn’t check the text
sent to the database to see if it associated with a transaction. While the
default value is “Off” (false, no), this configuration variable can also take the
value of “On” (true, yes).

A_SYB_USE_DROPDOWN_QUERIES

Setting A_SYB_USE_DROPDOWN_QUERIES to a nonzero value causes
select queries sent to the database to be of the drop-down variety, instead of
a single large query. This variable is accessed only during a positioning
operation, so you can set it at different times for different tables. For
example, if you have a file with three fields in the primary key (keyseg1,
keyseg2, keyseg3), and your COBOL program performs a START, the
following query is sent to the database:
select (columns) from (table) where
((keyseg1 = value1 and keyseg2 = value2 and
keyseg3 > value3) or (keyseg1 = value1 and
keyseg2 > value2) or (keyseg1 > value1))
order by keyseg1, keyseg2, keyseg3

If you use drop-down queries, the following collection of queries is sent
instead:
select (columns) from (table) where (keyseg1
= value1 and keyseg2 = value2 and keyseg3 >
value3) order by keyseg1, keyseg2, keyseg3

When that set is finished, the interface sends:
select (columns) from (table) where (keyseg1
= value1 and keyseg2 > value2) order by
keyseg1, keyseg2, keyseg3

And when that set is finished, the interface sends:
select (columns) from (table) where (keyseg1
> value1) order by keyseg1, keyseg2, keyseg3

E-42 Acu4GL for Sybase Information
There are advantages and disadvantages to each method. If you use the
A4GL_WHERE_CONSTRAINT variable, you should probably set
A_SYB_USE_DROPDOWN_QUERIES to “0”, because the WHERE
constraint limits the result set sufficiently that the larger query will be more
efficient. See Section 9.1.2, “The WHERE Constraint,” for additional
information.

If you usually START files and read to the end, you should set
A_SYB_USE_DROPDOWN_QUERIES to “0”, because a fewer number of
queries need to be sent to the database. On the other hand, if you START
files and stop reading after some condition, but haven’t used the WHERE
constraint, then you may get more efficient access by setting this variable to
“1” and using the drop-down style of query. In either case, we recommend
that you run some tests to see which value of this variable makes the most
sense for your application. While the default value is “0” (off, false, no), this
configuration variable can also take the value of “On” (true, yes).

Example
A_SYB_USE_DROPDOWN_QUERIES number

where number is a zero or nonzero value.

A_SYB_VISION_LOCKS_FILE

This is one of two locking methods available with Acu4GL. The methods are
accessed via two configuration variables (A_SYB_VISION_LOCKS_FILE
and A_SYB_NATIVE_LOCK_TIMEOUT). The lock method used is
determined as follows: if A_SYB_VISION_LOCKS_FILE is set to the name
of a Vision file that can be open I/O and has the correct structure, this method
is used; if A_SYB_NATIVE_LOCK_TIMEOUT is set to a positive value,
then this method is used. Otherwise, the AcuLocks table is used to hold
locks.

A_SYB_VISION_LOCKS_FILE causes the lock table (AcuLocks) to be a
Vision file instead of an SQL table. This can be accessed via the
configuration variable A_SYB_VISION_LOCKS_FILE, which must be set
to the name of the Vision file that will hold the lock information. Note that
you must also set a configuration variable that specifies this file as a Vision

Record and Table Locking E-43
file (using a _host variable). This file must be accessible to all users
accessing the Sybase SQL server, either through a common directory or
through AcuServer.

Also included with the Acu4GL for Sybase product is a small COBOL
program that will manage this Vision file (“lockmgr”). This program should
be run with the same runtime that you normally use to access Sybase tables,
and with the same configuration variables set. The program detects whether
Acu4GL for Sybase is available, and detects the
A_SYB_VISION_LOCKS_FILE variable to determine which file to
manage. This program displays all the records in the lockfile, and provides
options for removing single records (by highlighting the desired record to
remove) or removing all shown records, and also for restricting the shown
records by PID, Table, and Database. You can refresh the display by clicking
the Restrict button and then clicking OK without restricting the display
further.

If everything is working correctly, there should be no records in this table
when there are no users accessing the Sybase SQL server through Acu4GL.
The source for this program is in the sample/acu4gl directory.

See also

Section E.5, “Record and Table Locking”

E.5 Record and Table Locking

By default, Sybase doesn’t support the type of record and table locking that
COBOL expects. For this reason, the Acu4GL for Sybase product
implements its own locking method. This is accomplished with the addition
of two tables to a database. You choose which database will hold these tables
during installation of the Acu4GL for Sybase product.

Before using the locking tables, you need to execute the included
“syb_inst.sql” script. See the installation instructions you used from this
manual for the exact procedure. If you don’t perform this step, the first time
you try to execute a COBOL program that opens a Sybase table, you receive
error 9D,11, “ACUCOBOL Lock Table Incorrect”.

E-44 Acu4GL for Sybase Information
The first locking table is called AcuLocks; it holds the record locks. The
columns in this table are the DBID, the Table ID, the Process ID of the
process holding the lock, and the primary key of the record that is locked.
There is a unique index on the DBID, the Table ID, and the Key Value, so
that inserts into this table are automatically rejected if another user holds a
lock on the row in question. This also provides the Database Administrator
the information needed to determine who has locks set, and whether the user
in question still has a connection to the server.

The second locking table is called AcuOpenTables; it holds information
about open tables. The columns in this table are:

• the DBID

• the Table ID

• the process ID (PID) of the process that has the table open

• the open mode (input, output, I/O, or extend)

• whether multiple records can be locked

• whether the file can be open for I/O by any other users

• whether the file can be open at all by any other users

• whether Mass Update was specified in the open

There are no indices on this table, but there is a trigger, which automatically
rejects opens that are not allowed based on other users’ open modes.

By using these lock tables, the Acu4GL for Sybase product is able to support
all the types of locking ordinarily supported by ACUCOBOL-GT. No
special runtime configuration variables are required.

This method of locking is all that is needed if no applications other than
COBOL programs are going to be using the Acu4GL for Sybase product.
But if your site has other applications that access the Sybase databases, you
must use a method of locking that is inherent to Sybase.

Stored Procedures E-45
The only method of locking that Sybase supports internally is the result of
time stamping and the use of BROWSE MODE (see the discussion of
BROWSE MODE in the Sybase Commands Reference Manual). If a table
has a time stamp column, the Acu4GL for Sybase product uses browse mode.
This allows the server to detect whether another application has modified a
record while an ACUCOBOL-GT application has had it locked.

E.6 Stored Procedures

A stored procedure is a collection of SQL statements residing on the server,
stored as text in a table in the database. Stored procedures provide an
efficient environment for Acu4GL because, once they are executed on the
server, they do not need to be parsed and optimized each time they are
executed. (If the server goes down, however, the stored procedure is parsed
and optimized again the first time the procedure is called after the database
restarts.)

If you run a set of stored procedures for the database in which data is
manipulated (your production database), this database must be the setting for
A_SYB_LOCK_DB. If you run the stored procedures against both the lock
database and the production database, the lock database can be the setting for
A_SYB_LOCK_DB. Note that if you run one version of stored procedures
against the lock database and another version against the production
database, the stored procedures in the lock database override those in the
production database. Therefore, we recommend that you always update your
stored procedures with each new installation of Acu4GL, so that these
procedures are consistent when you run them against the tables in your
database.

This section discusses two types of stored procedures:

• Procedures that you may want to add to Acu4GL for Sybase

• Procedures provided in Acu4GL for Sybase that you, as the developer or
administrator, may find useful

E-46 Acu4GL for Sybase Information
Note: If you are upgrading from an earlier version of Acu4GL, be sure to
install the new stored procedures. We always upgrade stored procedures in
such a way that they will be compatible with older versions of the product,
so installing new stored procedures over old ones does not affect your
ability to run with an older version of the interface software.

E.6.1 Developer- or Site-supplied Stored Procedures

This section provides information on stored procedures you may want to
create. It also supplies some example code.

The Acu4GL for Sybase interface checks for these stored procedures when
opening a file and will use them in certain circumstances, such as when
A_SYB_NO_23_ON_START is set to “ No.”

These stored procedures are

• tablename_insert (where tablename is the name of the table being
accessed)

• tablename_delete

• tablename_read

• tablename_update

• tablename_startnnn (where nnn is the key number to start on)

Note: The Acu4GL for Sybase product does not create these stored
procedures or check their accuracy. Thus, it is possible to create stored
procedures in such a way as to make the Acu4GL for Sybase product
completely inoperable.
The Acu4GL product uses these stored procedures for performance reasons
only.

Stored Procedures E-47
Sample XFD

Sample code for developer-supplied stored procedures is based on the
following example of an XFD:
XFD,03,FTEST2-FILE,FTESTDAT
ftestdat.xfd - generated by ACUCOBOL-GT v4.2 Alpha 1
 (8/22/99)
Generated Sun Aug 22 07:54:28 1999
00031,00031,003
01,0,004,00000
01
FTEST2-KEY
01,1,004,00004
02
FTEST2-KEY1-SEG1
FTEST2-KEY1-SEG2
01,0,004,00008
01
FTEST2-ALTKEY2
000
0006,00006
00000,00004,16,00004,+00,000,000,FTEST2-KEY
00004,00002,16,00002,+00,000,000,FTEST2-KEY1-SEG1
00006,00002,16,00002,+00,000,000,FTEST2-KEY1-SEG2
00008,00004,16,00004,+00,000,000,FTEST2-ALTKEY2
00012,00009,00,00009,+00,000,000,FTEST2-NUMBER
00021,00010,16,00010,+00,000,000,FTEST2-INFO

tablename_insert

tablename_insert is used to WRITE a record to the file. The parameters
passed to the stored procedure are the values of all the columns in the row, in
the order of the columns in the database. The timestamp column and identity
column (if present in the table) are not passed to the stored procedure.

Given the XFD above, you might want to create the following stored
procedure for writing records to a file:
create procedure ftestdat_insert
@ft2_key char(4),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2),
@ft2_altkey2 char(4),

E-48 Acu4GL for Sybase Information
@ft2_number char(9),
@ft2_info char(10)
as
insert into ftestdat (ftest2_key, ftest2_key1_seg1,
ftest2_key1_seg2, ftest2_altkey2, ftest2_number,
ftest2_info) values (@ft2_key, @ft2_key1_seg1,
@ft2_key1_seg2, @ft2_altkey2, @ft2_number, @ft2_info)

grant execute on ftestdat_insert to public

tablename_delete

tablename_delete is used to DELETE a record from the file. The parameters
passed to the stored procedure are the values of the primary key, in the order
they are listed in the XFD.

Based on the sample XFD, you might want to create the following stored
procedure for deleting records from a file:
create procedure ftestdat_delete
@ft2_key char(4)
as
delete from ftestdat where ftest2_key = @ft2_key

grant execute on ftestdat_delete to public

tablename_read

tablename_read is used to read a random record (READ, not READ NEXT
or READ PREVIOUS). The parameters passed to the stored procedure are
the values of the primary key, in the order they are listed in the XFD. The
expected rowset is the columns in the first table (if secondary tables are used)
or the columns of the table (if secondary tables are not necessary).

This stored procedure is very similar to tablename_start.

Stored Procedures E-49
tablename_update

tablename_update is used to REWRITE a record from the file. The
parameters passed to the stored procedure are the values of all the columns in
the row, in the order of the columns in the database. The timestamp column
and identity column (if present in the table) are not passed to the stored
procedure.

For example, based on the sample XFD, you might want to create the
following stored procedure for rewriting a record:
create procedure ftestdat_update
@ft2_key char(4),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2),
@ft2_altkey2 char(4),
@ft2_number char(9),
@ft2_info char(10)
as
update ftestdat set
ftest2_key = @ft2_key,
ftest2_key1_seg1 = @ft2_key1_seg1,
ftest2_key1_seg2 = @ft2_key1_seg2,
ftest2_altkey2 = @ft2_altkey2,
ftest2_number = @ft2_number,
ftest2_info = @ft2_info
where ftest2_key = @ft2_key

grant execute on ftestdat_update to public

tablename_startnnn

tablename_startnnn is used to START a file. The nnn value is the key
number to start on, and will be 0 filled. For example, the start procedure for
the primary key for table mytab will be “mytab_start000”.

Note: If A_SYB_NO_23_ON_START is set to “Yes,” the start stored
procedure is disabled.

Because there can be up to 119 alternate keys, the Acu4GL product does not
search for a start procedure unless, or until, it is used. The parameters passed
to the stored procedure are a 2-char mode [it is a varchar(2) field], with one

E-50 Acu4GL for Sybase Information
of the following values: >, >=, =, <=, or <. The rest of the parameters are the
columns of the key used to start. Because the ANSI specification for START
includes information about the size of the key being used (and in particular
allows partial keys), the start procedure is used only if an entire key is given
to the start verb. This procedure is also special in that it does not return data,
but needs to raise an error condition if the start fails. The way to raise the
error condition from within the stored procedure is to include code similar to
the following:

raiserror 22006 “Record not found”

The code 22006 is very important. It is the code searched for in setting the
error condition from within the Acu4GL product. If you use a different
number, your starts may succeed when they should actually fail.

For example, based on the sample XFD, you might want to create the
following stored procedure to start a file:
create procedure ftestdat_start001
@mode varchar(2),
@ft2_key1_seg1 char(2),
@ft2_key1_seg2 char(2)
as

if exists (select 1 from ftestdat where

(ftest2_key1_seg1 = @ft2_key1_seg1 and
((@mode = “>=“ and ftest2_key1_seg2 >=@ft2_key1_seg2) or
(@mode = “>“ and ftest2_key1_seg2 > @ft2_key1_seg2) or
(@mode = “=“ and ftest2_key1_seg2 = @ft2_key1_seg2) or
(@mode = “<“ and ftest2_key1_seg2 < @ft2_key1_seg2) or
(@mode = “<=“ and ftest2_key1_seg2 <= @ft2_key1_seg2))))
return
if exists (select 1 from ftestdat where
(((@mode = “>=“ or @mode = “>“) and
ftest2_key1_seg1 > @ft2_key1_seg1) or
((@mode = “<=“ or @mode = “<“) and
ftest2_key1_seg1 < @ft2_key1_seg1)))
return
raiserror 22006 “Record not found”

grant execute on ftestdat_start001 to public

Stored Procedures E-51
E.6.2 Built-in Stored Procedures

Several stored procedures come with Acu4GL for Sybase. One, sp_AcuInit,
provides a means for customized initialization. The others return information
based on the AcuOpenTables and AcuLocks tables.

Note: You will see that the names of several stored procedures end in “_1”,
indicating the first version of the stored procedure. Whenever a stored
procedure is updated, the extension is updated by one. This is why you can
install new stored procedures without overwriting older ones. Be sure to
install all stored procedures when you install Acu4GL for Sybase.

sp_AcuInit

If the stored procedure sp_AcuInit exists in the master database, it is
executed when the connection is made to the server. This is a procedure you
can set up to perform customized initialization. This stored procedure does
not take any parameters and does not return any results. This optional stored
procedure is executed for all connections by the Acu4GL interface to the
database, not just the primary connection.

As an example of customized initialization, you can use this stored procedure
to remove stale locks by calling sp_AcuRemoveUnusedLocks_1 (which is
installed when all the other Acu4GL stored procedures are installed) or to
limit access to the database by certain users during certain hours. If
sp_AcuInit returns an error, the connection is denied and the error is reported
to the COBOL program. The method for returning an error is to execute the
Transact-SQL statement “raiserror”. See your database documentation for
information about Transact-SQL and stored procedures.

sp_AcuRemoveUnusedLocks_1

Use this stored procedure to determine who is logged in and to remove
Process IDs that are no longer active on the system. You can call this from
sp_AcuInit each time a user connects to the database to ensure that the lock
table contains only active locks. This stored procedure must reside in the
same database as the AcuOpenTables and AcuLocks tables; it is placed there
automatically when these tables are created during installation.

E-52 Acu4GL for Sybase Information
sp_AcuTableReport_1

Use this stored procedure to learn who is using the tables in the database at
the time this procedure is run. Run this procedure before running the
sp_AcuZeroUserCount stored procedure, so that you can contact users to
inform them that the database will be closing. This stored procedure must
reside in the same database as the AcuOpenTables and AcuLocks tables; it is
placed there automatically when these tables are created during installation.

sp_AcuUserCount_1

You can run sp_AcuUserCount from the query analyzer or ISQL to learn
how many users have a particular table open. You can use this to track table
and database activity to ensure that your database is running as efficiently as
possible. This stored procedure must reside in the same database as the
AcuOpenTables and AcuLocks tables; it is placed there automatically when
these tables are created during installation.

sp_AcuZeroUserCount_1

Use sp_AcuZeroUserCount to remove all locks on a table and close it. Be
sure to run this stored procedure on all tables in the database if you will be
shutting down the database for any reason. This stored procedure must reside
in the same database as the AcuOpenTables and AcuLocks tables; it is placed
there automatically when these tables are created during installation.

E.7 Limits and Ranges

The following limits exist for the Sybase file system:

Maximum number of columns per key: 16
Maximum number of columns: 250
Maximum number of bytes in a single row when using Acu4GL for
Sybase: 1962

To achieve the same sort or retrieval sequence under Sybase as under the
Vision file system, key fields that contain signed numeric data must be
preceded by a BINARY directive.

Runtime Errors E-53
Acu4GL for Sybase supports the data types shown below. When it’s creating
tables, the following conversion rules are used, in the sequence shown:

Any other numeric usage:

Any other usage:

Other limits are described in Appendix B in Book 4, Appendices, of the
ACUCOBOL-GT compiler manual.

E.8 Runtime Errors

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9 provides information on
compile-time errors and also provides several methods for retrieving runtime
errors.

An explanation and a recommended recovery procedure follow each
message.

COBOL Sybase

DATE directive DATETIME

BINARY directive VARBINARY(n) (if SIZE < 255)
IMAGE (if SIZE > 255)

VAR_LENGTH
directive

VARCHAR(n) (if SIZE < 255)

Usage FLOAT REAL (if SIZE = 4)
FLOAT (if SIZE = 8)

PIC
9(n)V9(m)

SMALLINT (if m = 0 and n < 5)
INT (if m = 0 and n < 10)
DECIMAL(n + m, m)(otherwise)

PIC
X(n)

CHAR(n) (if n < 255)
TEXT (if n > 255)

E-54 Acu4GL for Sybase Information
Runtime errors have this format:

9D,xx
The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary error code. These are the secondary errors
reported directly from Acu4GL:

9D,01 Read error on dictionary file
An error occurred while reading the XFD file; this probably means the XFD
is corrupt. Recreate the XFD file.

9D,02 Corrupt dictionary file
The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with “-Fx” to re-create the dictionary. See section 8.1 for
additional information on compiler options.

9D,03 Dictionary (.xfd) file not found
The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX runtime
configuration file variable. You may need to recompile with “-Fx” to create
the dictionary.

9D,04 Too many fields in the key
There are more than 16 fields in a key. Check your key definitions and
restructure the key that is illegal, and then recompile with “-Fx”.

9D,05 (no message associated with this error)
A date given to the Acu4GL interface is invalid and cannot be converted.

9D,06 Mismatched dictionary file
The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:
01 – mismatch found but exact cause unknown (this status is returned by the
host file system)
02 – mismatch found in file’s maximum record size

Runtime Errors E-55
03 – mismatch found in file’s minimum record size
04 – mismatch found in the number of keys in the file
05 – mismatch found in primary key description
06 – mismatch found in first alternate key description
07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

9D,11 ACUCOBOL-GT stored procedures not found
or
ACUCOBOL-GT lock table missing
The installation of Acu4GL for Sybase creates a number of stored procedures
and tables. At least one of these was not found.

9D,12 A column of a key is of data type TEXT or IMAGE, which is illegal
Columns that are part of an index may not be of type TEXT or type IMAGE.
Check your key definition.

9D,13 Internal error
Multiple records were found with the same index (this is a Sybase error).

9D,14 DB library function returned an unexpected errordbinit
(Sybase) failed. An error message from Sybase is displayed on the terminal.

9D,16 Trying to rename a table across databases
RENAME works only within the same database.

9D,17 Cache error (internal error)
The internal process cache has been corrupted. Please contact Technical
Services.

9D,18 Primary Key error
This means there was an error when creating the primary key for a secondary
table.

9D,19 Table Size Error
The table is larger than Sybase will accept, either in the number of columns
or in the number of bytes in the row. Use the SECONDARY_TABLE
directive to get around this.

E-56 Acu4GL for Sybase Information
9D,20 (no message associated with this error)
This error tells you that you are trying to do something with a
FAST_ACCESS table that is not allowed. See A_SYB_FAST_ACCESS to
learn the restrictions for tables opened this way.

9D,21 (no message associated with this error)
There was a problem accessing one or more Vision locks files and processing
of this request cannot continue. The tertiary error is an error code returned
from Vision.

E.9 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
Sybase. Refer to Chapter 10 for additional questions and answers that
pertain to the Acu4GL family of products.

Question: What files do I need to link my C routines into Acu4GL?

Answer: Relinking is not necessary on Windows platforms. To add your own C
routines to the runtime, relink the runtime as discussed in the runtime
manual. You do not need to add anything special to use Acu4GL for Sybase.

(UNIX only)
All files in the lib subdirectory of your ACUCOBOL-GT distribution.

sub.c
sub85.c
filetbl.c
config85.c
sub.h

From your Acu4GL media you need:

sybase.o

From Sybase you need the platform-specific Open Client DB-Library/C
product.

Instructions for linking are given in the installation portion of this appendix.

Common Questions and Answers E-57
Question: When I try to open a file for output, I get the error 9D,2714. There is already
an object named * in the database. Why?

Answer: One of your record’s data items probably has the same name as a Sybase
reserved word. Locate the column by comparing a file trace of the CREATE
TABLE to Sybase’s list of reserved words. Apply the NAME directive to the
field in the FD that is associated with the invalid column, then recompile the
program to create a new XFD file.

Question: Can I open tables in different databases?

Answer: Yes. Use a file name like:
database.owner.tablename

Note that, because Acu4GL for Sybase automatically determines an owner,
you can also specify a file name like “database..tablename”. The two dots are
mandatory in this case.

Question: Can I use multiple servers (on the same machine or on different machines) on
my network?

Answer: Yes. Each server has a unique name. To see if the necessary setup has been
performed, enter:

isql -S servername

If this connects you to the server you want, you can open tables on that server
by giving them a name like servername.database.owner.tablename. Note
that this naming can be done in your runtime configuration file.

Question: I’m getting an error 9D,11 ACUCOBOL-GT lock table missing. I know that
I added the lock table during installation.

Answer: This is probably a permissions problem. All users must have READ,
WRITE, UPDATE, and DELETE access to AcuLocks (and therefore to the
database that contains it). Be sure to check your permissions.

Question: I keep receiving an error message saying that my login is invalid. But I’m
sure I’m using the correct username and password.

Answer: All usernames, passwords, and database names are case-sensitive. Be sure
that you are typing the names exactly as they are set up.

E-58 Acu4GL for Sybase Information
Question: The runtime system can’t seem to locate my XFD file, but when I check the
XFD directory, the file is definitely there.

Answer: Check the case of the XFD filename. The Acu4GL product may be looking
for uppercase on the base name.

Question: Are there any ACUCOBOL-GT library routines that do not work with or
would not make sense to use with Acu4GL for Sybase?

Answer: Yes. There are two ACUCOBOL-GT library routines that either don’t work
with or do not make sense to use with Acu4GL for Sybase: C$COPY and
C$RECOVER.

F
 Acu4GL for DB2 Information
Key Topics

DB2 Concepts Overview .. F-2
Installation and Setup .. F-6
Filename Translation ... F-13
Decimal Points .. F-14
Configuration File Variables ... F-14
Record and Table Locking... F-28
Limits and Ranges .. F-28
Data Type Mapping.. F-29
Runtime Errors... F-30
Common Questions and Answers ... F-32

F-2 Acu4GL for DB2 Information
F.1 DB2 Concepts Overview

A quick overview of some basic design concepts underlying the DB2
Database Management System will help you interface your COBOL program
to it.

Transactions

The DB2 RDBMS is a transaction-based system. All of the work that you
perform while using DB2 must occur within a transaction, whether that work
is being done through Acu4GL for DB2 or another 4GL application. When
you use Acu4GL® for DB2, a transaction is implicitly started for you by the
database engine itself with the first file I/O operation performed on a file
associated with DB2. Because all operations with Acu4GL for DB2 occur
within a transaction, any record locked during processing remains locked
until either a COMMIT WORK or ROLLBACK WORK is issued. This
action results in behavior similar to the LOCK ON MULTIPLE RECORDS
clause in COBOL.

The benefits of a transaction management system are best illustrated by an
example. A COBOL application that handles order entry might perform
these steps to accept an order:

1. Write an invoice record.

2. Update a customer record.

3. Write a payroll record for sales commissions.

4. Update an inventory record.

This series of four file operations is a logical unit. If the program were
interrupted, and completed only some of the four file operations, then the
files would be in an inconsistent state. For example, if the program
terminated unexpectedly after it updated the customer record, but before it
updated the inventory record, then a subsequent run might access
non-existent inventory.

The solution to this problem is to provide a method for the programmer to
define a set of operations that should either all occur or all not occur. Then,
if the program encounters an error or terminates, the files are left in a
consistent state.

DB2 Concepts Overview F-3
All file operations that are part of a transaction are logged. Once logged, they
can be either committed or rolled back (undone) by the program.

If a program dies, or the system fails, the log file can be used to reconstruct
complete transactions, returning all files to a consistent state. Transaction
logging thus offers these two facilities:

• It provides the programmer with the ability to define transactions and the
ability to commit them or “undo” them (usually in response to an error
condition). This “undo” facility is called a “rollback.”

• It provides the ability to reconstruct files into a consistent state after a
program dies or system failure occurs. This operation is called
“recovery.”

Note that transaction management facilities are available in
ACUCOBOL-GT® Version 2.4.0 and later.

Record-locking issues in transactions

Applications that are written for transaction management systems, or that
perform work in small “operation-based” logical units, benefit greatly from
DB2’s transaction management systems. Applications that are not written for
transaction management encounter difficulty with record locking when
operating against a system that enforces transaction management.

The difficulty can occur with an application that is performing more than one
logical task at a time. Any operation that modifies or reads data in an I/O
mode without the WITH NO LOCK phrase causes a lock to be placed in the
database system. As a result, the application may have many more record
locks present than would be expected by the normal rule of COBOL file
locking. The application would act in a manner similar to when the LOCKS
ON MULTIPLE RECORDS clause in COBOL is used. This can best be
illustrated by an example:

1. The user is entering a customer’s order.

2. As each line item is entered into the order, the inventory file is
modified to reflect that items have been removed from the stock on
hand.

F-4 Acu4GL for DB2 Information
3. The user must switch to a different part of the application to perform a
different task, perhaps as a result of a phone call from a new customer.

4. All of the records that were locked, or modified, by the application
before the switch remain locked because the first order is not complete.
No COMMIT or ROLLBACK has been issued to complete the
transaction. All of the records locked by the transaction remain locked
until the application ends the transaction.

5. Because one order is open and not yet committed, other applications
may be locked out of certain order items if they are still locked by the
processing of the first order. The second order entry may be held up
until the first order is completed.

6. Note that the first application is not locked out. A process can read its
own locked records.

Acu4GL and record locking

Your DB2 database may be set up for wait-level locks. The DB2 universal
database products have the ability to time-out a lock and send an error return
code to the waiting application. See your database administrator for details.
(This SQL code would be placed in ERROR_MAP_FILE.)

Acu4GL provides semi-automated ways to handle transaction logging based
on the setting of the 4GL_COMMIT_COUNT variable. You can also
directly alter your source code to deal with this issue. Individual users
determine how much work they wish to do to conform to DB2’s transaction
management system by choosing the method that best fits their needs and
resources. The following methods are listed in order of increasing amount of
work:

4GL_COMMIT_COUNT = 0 (Default)

When you set this variable to zero, the runtime tracks the number of logical
locks that are currently in effect. When the number of logical locks reaches
zero, the runtime assumes that a transaction is complete and issues a
COMMIT statement.

DB2 Concepts Overview F-5
4GL_COMMIT_COUNT = n

When you set this variable to a nonzero value, the runtime tracks the number
of WRITE, REWRITE, and DELETE operations, until the value of
4GL_COMMIT_COUNT is reached, at which time the runtime issues a
COMMIT statement. The READ, START, and READ NEXT operations do
not count toward this total because the runtime is tracking data-altering
operations rather than logical record locks. The disadvantage of this method
is that when a COMMIT is issued, any record locks held by the runtime are
released.

4GL_COMMIT_COUNT = –1

No commit is issued by the Acu4GL product. When
4GL_COMMIT_COUNT is set to “-1”, two alternate ways to perform a
commit or rollback are available:

1. Call sql.acu with COMMIT WORK or ROLLBACK WORK.

2. Use the COBOL verbs COMMIT and ROLLBACK, available in
ACUCOBOL-GT.

4GL_COMMIT_COUNT is set to “–1” automatically when you use the
transaction management facilities available in the ACUCOBOL-GT
compiler. A COMMIT WORK is, however, issued on exit from the runtime
(for example, on execution of a STOP RUN).

COMMIT VERB IN COBOL

This method forces a COMMIT to be sent to DB2. It can be used in
conjunction with other modes of COMMIT handling. For non-DB2 files, this
is equivalent to the UNLOCK ALL verb.

EXPLICITLY CODED TRANSACTIONS

This method provides the greatest flexibility in that transactions are
specifically tailored for the user’s application. This method also requires the
most work for traditional COBOL programs in which transaction modules
may not be clearly defined.

See section F.6, “Record and Table Locking,” for additional information.

F-6 Acu4GL for DB2 Information
F.2 Installation and Setup

The following topics list the steps you must perform before you begin using
Acu4GL for DB2 on a new system.

• Windows Installation

• UNIX Installation Steps

• Sample Configuration File

• Setting Up the User Environment

• Designating the Host File System

• Designating the Host Data Source

F.2.1 Windows Installation

The DB2 RDBMS, version 6.01 or higher, must be installed and configured
prior to the installation of Acu4GL for DB2. Consult your DB2
documentation if you have any questions regarding this step.

You should have the client software installed and configured, along with any
Database Aliases, before installing Acu4GL for DB2.

Note: Acu4GL for DB2 requires DB2 client software version 6.01 or
higher on the client machine. The “bin” directory of your DB2 client
software must be in your PATH.

CD-ROM installation

Instructions for installing your Acu4GL product from the ACUCOBOL-GT
Development Suite CD-ROM are contained on the Quick Start card that
accompanied the product. Please refer to it for installing the
ACUCOBOL-GT Development Suite, which includes Acu4GL.

Once the installation is complete, please refer to this appendix for setting up
your Acu4GL product.

Installation and Setup F-7
Relinking for Windows users

Relinking is not required for Windows users (but it is required for UNIX
users and is explained in the next section). Acu4GL for DB2 is a windows
“.DLL” (“a4db232.dll”) that is loaded at run time from the “bin” directory of
your ACUCOBOL-GT product distribution.

F.2.2 UNIX Installation Steps

The Acu4GL for DB2 product on UNIX is an add-on module that must be
linked with the ACUCOBOL-GT runtime system. For this reason, you’ll
need a C compiler to install the Acu4GL product. To interface, you must use
the ACUCOBOL-GT compiler and runtime, and the version of the runtime
must match the version of Acu4GL.

The Acu4GL product is shipped using either TAR or CPIO format,
depending on the type of machine you have. The label on the medium
shipped to you tells you which format has been used.

From your Acucorp directory, choose where you want to install the Acu4GL
product (or create a new directory for it) and then enter one of the following
commands:
tar xfv device

or
cpio -icvBd < device

This will copy the files from the distribution medium to your
ACUCOBOL-GT directory structure. device is the appropriate hardware
device name (for example, /dev/rdiskette or /dev/rmt0). Sites using Texas
Instruments System 1500 should add an uppercase “T” to the cpio options
(-icvBdT).

Contents of the medium

Note that each Acu4GL product has its own license file, which must be
located in the same directory as the ACUCOBOL-GT runtime. For DB2, the
license file is distributed with the name “runcbl.klc”.

F-8 Acu4GL for DB2 Information
Step 1: Install DB2

The DB2 RDBMS, version 6.01 must be installed and configured prior to the
installation of Acu4GL for DB2.

Step 2: Create a new runtime system

Complete steps 2a and 2b to create a new runtime that includes the Acu4GL
for DB2 product.

Note: In the following directions, the term “runtime system” refers to the
runtime shared object on systems where the ACUCOBOL-GT runtime is a
shared object and to runcbl on other systems, where the runtime is static.
The runtime is a shared object on the following systems: AIX 5.1 and later,
HP-UX 11 and later, and Solaris 7 and later. To check, look at the contents
of the “lib” subdirectory of your ACUCOBOL-GT installation. If the files
“libruncbl.so” or “libruncbl.sl” reside in that directory, the runtime is a
shared object on your system.

2a. Link the runtime system.

Edit the Makefile in the “lib” subdirectory. Change the CFLAGS file to read
as follows:
CFLAGS = $(ACUSERVER_FLAGS) $(ACUCONNECT_FLAGS)
 $(ACUSQL_FLAGS) –DACU4GL –DUSE_DB2

Note: Be sure to include the first word: “CFLAGS”.

Edit the FSI_SUBS line to read as follows:
FSI_SUBS = a4db2.o

Edit the FSI_LIBS line to read as follows:
FSI_LIBS = $(ACU_LIBDIR)/libexpat.a <ibm DB2
 directory>/lib/libdb2.so

Make sure you are in the directory containing the ACUCOBOL-GT runtime
system. Then, at the UNIX prompt, enter the following command:

make

Installation and Setup F-9
This compiles “sub.c” and “filetbl.c”, and then links the runtime system.

Note: Make sure you have set all of the flags specific to your platform
correctly before you relink your library and object files.
If the make fails because of an out-of-date symbol table, execute the
following command:
ranlib *.a

and then execute the make again. If the make fails for any other reason, call
Technical Services.

2b. Verify the link.

Enter the following command:
./runcbl –vv

to verify the link. This returns version information on all of the products
linked into your runtime system. Make sure it reports the version of Acu4GL
for DB2.

Shared libraries

If you have relinked the ACUCOBOL-GT runtime and receive an error
message of this type when you try to execute it:

"Could not load library; no such file or directory"

"Can’t open shared library . . . "

this may mean that your operating system is using shared libraries and cannot
find them. This can occur even if the shared libraries reside in the same
directory in which you are currently located.

Set the environment variable LD_LIBRARY_PATH to find these shared
libraries.

F-10 Acu4GL for DB2 Information
F.2.3 Sample Configuration File

The “cblconfi.db2” file is a sample configuration file. This file demonstrates
setting the DEFAULT_HOST to DB2, designating an ERROR_MAP_FILE
used to map DB2’s errors into COBOL errors, and setting the configuration
variables required for the Acu4GL for DB2 interface.

Modify “cblconfi.db2” to configure your individual login, password, and
database (or database alias). These configuration variables are:

A_DB2_LOGIN
A_DB2_PASSWD
A_DB2_DATASOURCE

The sample error mapping file is placed in the /etc subdirectory of your
Acu4GL for DB2 distribution. See section F.5, “Configuration File
Variables,” for additional information.

Note: Be sure to set the PATH to find ERROR_MAP_FILE.

F.2.4 Setting Up the User Environment

You must use the sample configuration file, described in section F.2.3, and
error map file as your template. These files contain important settings for
DB2:

• A_DB2_USE_CHAR_FOR_BINARY

• error mappings

In addition to setting the variables required for DB2, you will need to do the
following:

1. Ensure that your execution path contains the name of the directory in
which you placed the runtime executable that includes Acu4GL for DB2.

2. Set the A_DB2_LOGIN and A_DB2_PASSWD variables, either in
your environment or in the ACUCOBOL-GT runtime configuration
file. Also, consider whether or not setting the USER_PATH variable

Installation and Setup F-11
would be useful in your set up situation. For security reasons, it is best
to set the password variable from your COBOL program by asking the
user to enter a password and then executing:

SET ENVIRONMENT "A_DB2_PASSWD" TO user-entry

3. You may want to make and use a personalized copy of the
configuration file to avoid impacting other users. The
ACUCOBOL-GT documentation describes how to use the A_CONFIG
environment variable or the “-c” runtime option to identify a personal
configuration file.

4. Define any other configuration file variables you require for your
unique environment. Possible variables define error map file location,
locking method, commit count, commit timing, and BINARY/CHAR
type conversion.

For detailed information on ACUCOBOL-GT configuration file variables,
see section F.5, “Configuration File Variables.”

F.2.5 Designating the Host File System

When your COBOL application opens an existing file, most file systems
linked into the runtime will be searched for the named file. However, each
time the COBOL application creates a new file, it needs to know which file
system to use. You provide the name of the file system with one of two
runtime configuration file variables. The first is:

DEFAULT_HOST filesystem

This will designate the file system to be used for newly created files that are
not individually assigned. For example,

DEFAULT_HOST DB2

means that all new files will be DB2 files unless otherwise specified by the
second configuration variable, which is:

filename_HOST filesystem

where filename is the file name, without any extension, named in the
ASSIGN TO clause of your SELECT statement. This configuration variable
is used to assign an individual data file to a different file system. Any file so

F-12 Acu4GL for DB2 Information
assigned will use the designated file system, and not the one specified by
DEFAULT_HOST. For example,

myfile_HOST VISION

means that myfile will be under the Vision file system. The ability to
designate a different file system for certain files enables you to tailor your
application to a specific customer’s needs or to implement an incremental
conversion for a customer. With relational databases, this is particularly
useful in that it allows you to tune an application for processing speed and
resource requirements.

You can use these runtime configuration file variables in combination to
assign your new files in a default with exceptions manner; for example, this
set of entries:
DEFAULT_HOST VISION
afile_HOST DB2
bfile_HOST DB2

means that all new files except afile and bfile will be assigned to Vision, and
those two files will be assigned to DB2.

You can also change the values of these variables during program execution
by including in your code:
SET ENVIRONMENT "filename_HOST" TO filesystem

or
SET ENVIRONMENT "DEFAULT_HOST" TO filesystem

This enables you to change file systems during the execution of your
program. This is not the typical way to specify a file system; normally it is
designated in the runtime configuration file and is not changed in the
COBOL program.

Note: The Acu4GL for DB2 product allows you to create a DB2 table with
an OPEN OUTPUT statement, just as you can create Vision indexed files.
The DB2 equivalent of a Vision file is a table, not a database. You must
create a database for your DB2 tables before you run the COBOL program
that creates the tables, just as you must create a directory for your files
before you run a COBOL program that creates Vision files.

Filename Translation F-13
F.2.6 Designating the Host Data Source

You must tell the runtime system which data source to use for your DB2 file.
You accomplish this by setting the configuration variable
A_DB2_DATASOURCE. You can set this variable in your COBOL
configuration file if you will be using only one data source. This variable is
described in section F.4. “Acu4GL for DB2 Configuration File Variables.”

If you do not know the data source name in advance, or if you intend to use
more than one data source, you may set the data source name dynamically at
run time. In your COBOL program, you would add code similar to this prior
to the statement that opens the file:

SET ENVIRONMENT "A_DB2_DATASOURCE" TO "DB2 Database"

You are now ready to use the sql.acu program, as outlined in section 2.4,
“Using the “sql.acu” Program.”

After you learn about and use this utility, you next find out about preparing
and compiling your COBOL program, followed by learning to use the
demonstration program. See section 6.1, “Preparing and Compiling Your
COBOL Program,” and section 2.5, “The Demonstration Program,” for
additional information.

F.3 Filename Translation

As you prepare to work with Acu4GL for DB2, you may find it helpful to
understand the rules around filename interpretation and to understand how
the names of tables and XFD files are formed and work together.

When the ACUCOBOL-GT compiler generates XFD files, it uses lowercase
letters to name the XFD file. In addition, the compiler changes hyphens to
underscores when naming the XFD file.

Through configuration variables, the runtime translates the name in the
COBOL program into the filename that is passed to the open() function in the
runtime. The open() function determines which file system to pass the
request to, but does not change the name of the file.

F-14 Acu4GL for DB2 Information
Acu4GL for DB2 translates the name to uppercase letters and changes
hyphens to underscores. File extensions will be stripped, based on the setting
of 4GL_IGNORED_SUFFIX_LIST. This “new” name is the one that
Acu4GL for DB2 will use in the future for references to database tables.

F.4 Decimal Points

Acu4GL for DB2 reads the decimal point character from the environment
variable DECIMAL_POINT. If DECIMAL_POINT is set, Acu4GL uses that
character. If the variable is not set, Acu4GL uses the decimal character that
is encoded in the XFD file.

The two most common decimal indicators are the period “.”and the comma
“,” characters. The comma is used often in European code and is often
indicated in COBOL programs by the "DECIMAL POINT IS COMMA"
clause.

F.5 Configuration File Variables

This section lists the runtime configuration file variables that are specific to
Acu4GL for DB2. Configuration file variables that are generally applicable
to any RDBMS with which Acu4GL communicates are discussed in section
8.2, “Runtime Configuration Variables.”
A_DB2_CATALOG
A_DB2_TABLE_TYPES
A_DB2_USE_CATALOG
USER_PATH

A_DB2_ALTERNATE_COMMIT_LOGIC

The primary purpose of the configuration variable 4GL_COMMIT_COUNT
is to provide for applications that must communicate with a
transaction-oriented database but have not explicitly coded transactions into
their COBOL application.

Configuration File Variables F-15
The configuration variable A_DB2_ALTERNATE_COMMIT_LOGIC
determines how the interface will respond to the setting of
4GL_COMMIT_COUNT. When
A_DB2_ALTERNATE_COMMIT_LOGIC is set to “0” or “FALSE” (the
default), the value of 4GL_COMMIT_COUNT is checked only at startup.
The interface will issue a commit when the criteria set by
4GL_COMMIT_COUNT is met, regardless of the current transaction state.

When A_DB2_ALTERNATE_COMMIT_LOGIC is set to “1”, the value of
4GL_COMMIT_COUNT is checked after each WRITE, REWRITE,
DELETE, or UNLOCK operation. A commit is issued, however, only if the
runtime is not currently in a transaction.

Example
4GL_COMMIT_COUNT=1
A_DB2_ALTERNATE_COMMIT_LOGIC=0

Each WRITE operation is committed to the database immediately. This
prevents an application from being able to rollback a WRITE.

See Also

4GL_COMMIT_COUNT runtime configuration variable

A_ODBC_ALTERNATE_COMMIT_LOGIC configuration variable

A_DB2_CATALOG

This variable indicates the catalog name to be used when Acu4GL searches
for objects in the database. Note that not all data sources will support a
catalog. Using A_DB2_CATALOG with other variables, such as
USER_PATH and A_DB2_TABLE_TYPES, can speed up the finding of
tables in large databases. It can also prevent an error 9D,14: “More than one
table with the same name,” thereby enabling access to tables with identical
names, but with different catalogs.

For example, If the USER_PATH and A_DB2_CATALOG are used, the
form of the SQL statement will be modified from:

F-16 Acu4GL for DB2 Information
select COL1, ... from TABLENAME ...

to:

SELECT COL1, ... FROM [catalog.][username.]TABLENAME ...

where catalog and username will be filled in if provided.

See Also

USER_PATH configuration variable

A_DB2_TABLE_TYPES configuration variable

A_DB2_COMMIT_ON_BEGIN

DB2 has no START TRANSACTION method. Everything since the last
COMMIT or ROLLBACK is considered part of the current transaction.

To ensure that the previous transaction has been ended before a new one
begins, set A_DB2_COMMIT_ON_BEGIN to a nonzero value. This causes
each COBOL START TRANSACTION to first issue a COMMIT. This
ensures that the previous transaction has been ended before the new one
starts.

If this variable is not set, or is set to “0”, a COBOL ROLLBACK may affect
file I/O that occurred before the most recent COBOL START
TRANSACTION. While the default value is “0” (off, false, no), this
configuration variable can also take values of “On” (true, yes).

A_DB2_DATASOURCE

Set A_DB2_DATASOURCE to the exact name of the host data source. You
can set this variable in your COBOL configuration file if you will be using
only one data source.

Example
A_DB2_DATASOURCE stores

Configuration File Variables F-17
If you do not know the data source name in advance, or if you intend to use
more than one data source, you may set the data source name dynamically at
run time. In your COBOL program, you would add code similar to this prior
to the statement that opens the file:
SET ENVIRONMENT "A_DB2_DATASOURCE" TO "data source name"

There is no default value for this variable.

A_DB2_ERROR_MAP_FILE

Set A_DB2_ERROR_MAP_FILE to the name of the file that maps
database-specific errors to COBOL errors. This configuration file variable
allows you to map errors using a text file to supplement the default method of
providing errors. Create the file using the guidelines described on the
following page, and then use the configuration file variable,
A_DB2_ERROR_MAP_FILE, to indicate the name and location of the file
you created.

Example

If the file used for mapping is called MAP, and this file is located in the
directory C:\DB2, you would specify:

A_DB2_ERROR_MAP_FILE c:\DB2\MAP

in the runtime configuration file. There is no default value for this variable.

Guidelines for creating a map file

Although you can check your data source documentation for error code
information, the easiest way to determine what error codes need to be
mapped to more appropriate COBOL codes is through trial and error. As
users use Acu4GL for DB2, they may report receiving error messages that
don’t make sense based on their situation. Research these errors and try to
determine a more appropriate COBOL error response.

When you create your error map file, use the following guidelines:

F-18 Acu4GL for DB2 Information
• Begin comment lines with “#”. Blank lines are also considered
comments.

• Break the rest of the file into sections, with each section header
comprising all the information enclosed in brackets from the data source
error function.

The following example leads to the entry in the sample DB2 error file:

 OdbcOneInfo: State: 23505, Native Error: -803
 ‘[IBM][CLI Driver][DB2/NT]SQL0803N One or more values
in the INSERT statement, UPDATE statement, or foreign
key update caused by a DELETE statement are not valid
because they would produce duplicate rows for a table
with a primary key, unique constraint, or unique index.
SQLSTATE=23505’
 Setting f_errno = 19
Leaving, error
***File system error value = -803 ***
>>>file status = 9D,-803

• Include two fields in each line in the section: the internal error number,
and an ACUCOBOL-GT mapping string.

Using the same example, you would include this line in the error_map
file:

-803 E_DUPLICATE

The valid values for the second field are as follows:

E_SYS_ERR
E_PARAM_ERR
E_TOO_MANY_FILES
E_MODE_CLASH
E_REC_LOCKED
E_BROKEN
E_DUPLICATE
E_NOT_FOUND
E_UNDEF_RECORD
E_DISK_FULL
E_FILE_LOCKED
E_REC_CHANGED
E_MISMATCH
E_NO_MEMORY

Configuration File Variables F-19
E_MISSING_FILE
E_PERMISSION
E_NO_SUPPORT
E_NO_LOCKS

The file “DB2.err” contains some initial file error mappings.

A_DB2_ISOLATION_LEVEL

Use the A_DB2_ISOLATION_LEVEL configuration variable to set the
isolation level. The default ordering of isolation levels is:
SQL_TXN_READ_COMMITTED
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE

You can change the isolation level by setting the configuration variable
A_DB2_ISOLATION_LEVEL to an integer in the configuration file. The
settings are:

For example, to set the isolation level to SQL_TXN_READ_COMMITTED,
add the following entry to the configuration file:

A_DB2_ISOLATION_LEVEL 2

If the user-set isolation level is not supported by the driver, the default
method of selecting a level is used.

Isolation level Setting in configuration file

SQL_TXN_READ_UNCOMMITTED 1

SQL_TXN_READ_COMMITTED 2

SQL_TXN_REPEATABLE_READ 3

SQL_TXN_SERIALIZABLE 4

F-20 Acu4GL for DB2 Information
A_DB2_LOCK_METHOD

Use this variable to specify the locking method that Acu4GL for DB2 should
use when accessing your data source. Possible values are:

none
SETPOS
SETSTMTOPTION
UPDATECOLUMN

The default is “UPDATECOLUMN”.

Example:
A_DB2_LOCK_METHOD UPDATECOLUMN

SETPOS

Specify SETPOS as your lock method to tell Acu4GL for DB2 to perform the
following locking sequence:

When setting up a statement handle for accessing the DB2 data source, the
Acu4GL product calls a function called SQLSetScrollOptions, with values
(SQL-CONCUR-LOCK, SQL-SCROLL-KEYSET-DRIVEN, 1).

When fetching rows from the data source, the Acu4GL product calls
SQLExtendedFetch instead of SQLFetch.

Finally, it calls SQLSetPos, with the values (1, SQL-POSITION,
SQL-LOCK-EXCLUSIVE).

If any of these functions do not exist, A_DB2_LOCK_METHOD reverts to
none.

Note: Even if these functions do exist, there is no guarantee that any rows
will be locked using this sequence of calls. Contact your database vendor
to determine whether or not this sequence will be effective for your data
source.

Configuration File Variables F-21
SETSTMTOPTION

This option is similar to SETPOS, except a function called
SQLSetStmtOption performs the task of SQLSetScrollOptions and has more
functionality.

In particular, when using this method of locking, the Acu4GL product will
call SQLSetStmtOption a number of times, with values
(SQL-CONCURRENCY, SQL-CONCUR-LOCK),
(SQL-CURSOR-TYPES, SQL-CURSOR-KEYSET-DRIVEN), and
(SQL_KEYSET-SIZE, 1). Again, if the function does not exist,
A_DB2_LOCK_METHOD reverts to none.

UPDATECOLUMN

Specifying UPDATECOLUMN as your lock method performs an entirely
different type of locking. Instead of trying to lock a row while reading it, this
method creates a new statement handle for the data source. Then, after
fetching the data from the data source, it resubmits an SQL query to select the
same row (based on the primary key) and adds an UPDATE clause. Last, it
fetches the data from the data source. This method has the most overhead,
but it is much more likely to succeed in locking records.

A_DB2_LOGIN

A_DB2_LOGIN indicates the user name under which you want to connect to
the database system. Not all data sources require a user login name. Those
that do may have case requirements. Check your data source documentation
to determine if login is case-sensitive.

Example

To connect to the database with the user name MYNAME, you could specify:
A_DB2_LOGIN MYNAME

or
A_DB2_LOGIN myname

F-22 Acu4GL for DB2 Information
in the runtime configuration file. There is no default value for this variable.
If no login is specified, none will be used.

See also

A_DB2_PASSWD runtime configuration file variable

A_DB2_PASSWD

The variable A_DB2_PASSWD should be set to the password assigned to the
database account associated with the user name specified by
A_DB2_LOGIN. Not all data sources require a password. Those that do
may have case requirements. Check your data source documentation to
determine if password is case-sensitive.

Examples

If the account with the user name in A_DB2_LOGIN has the associated
password CW021535, you would specify:

A_DB2_PASSWD CW021535

in the runtime configuration file.

For better security, you can accept a password from the user during program
execution; set the A_DB2_PASSWD variable based on the response:
ACCEPT RESPONSE NO-ECHO.
SET ENVIRONMENT "A_DB2_PASSWD" TO RESPONSE.

Note: If the user has been set up without a password, this variable need not
be set. There is no default value for this variable. If no password is
specified, none will be used.

Configuration File Variables F-23
A_DB2_STRICT_EQUAL

When Acu4GL for DB2 executes a START … KEY EQUAL keyval, the
interface generates a SELECT statement to select all rows with a key equal to
the key columns in keyval. When fetching the data, Acu4GL eventually
detects that there is no more data. If A_DB2_STRICT_EQUAL is set to
“True” at the time the START is executed, the interface returns the error
END OF FILE (error 10) at this point. If A_DB2_STRICT_EQUAL is set to
“False” (the default), Acu4GL for DB2 then generates a new SELECT
statement to continue reading records until the end of the file rather than the
subset of records represented by keyval, and these records may be discarded
by the program. (Note that this is program-dependent behavior.) Setting
A_DB2_STRICT_EQUAL to “True” causes the interface to stop reading
records earlier, which can make SELECT statements generated by Acu4GL
for DB2 more efficient.

Note the following conditions:

• A_DB2_STRICT_EQUAL must be set to “True” when the START is
executed.

• The START must be a KEY EQUAL start.

• There must be no COMMITs between the START and the end of the file.
Because DB2 closes all cursors on COMMIT and ROLLBACK
(according to the ANSI 92 SQL standard), the interface must regenerate
a SELECT the first time it attempts to execute a READ NEXT after a
COMMIT or ROLLBACK. This means that the
4GL_COMMIT_COUNT configuration variable should be set to “-1”,
so that no COMMITs are issued by Acu4GL for DB2. See
“4GL_COMMIT_COUNT” in Chapter 8 for additional information.

• A_DB2_STRICT_EQUAL is most useful with alternate keys that allow
duplicates.

Note: This same behavior can be accomplished with the
4GL_WHERE_CONSTRAINT, but using A_DB2_STRICT_EQUAL
requires less programming.

While the default value is “False” (off, no, 0), this configuration variable can
also take the value “True” (on, yes, 1).

F-24 Acu4GL for DB2 Information
A_DB2_TABLE_TYPES

This variable is used to specify a table type (TABLE, VIEW, and so forth)
that should be looked for when selecting a database table. Using
A_DB2_TABLE_TYPES with other variables, such as USER_PATH and
A_DB2_CATALOG, can speed up the finding of tables in large databases.

This information will be passed to the API function call SQLTables() as the
TableType parameter. Please refer to your driver’s documentation for
supported types.

Example
A_DB2_TABLE_TYPES TABLE,VIEW

See also

USER_PATH configuration variable

A_DB2_ALTERNATE_COMMIT_LOGIC configuration variable

A_DB2_USE_CATALOG

Not all data sources will support a catalog, or the data sources may return a
catalog name that is not useful. The default behavior of the runtime is to not
use the catalog in the actual SQL queries. This configuration variable
enables you to modify this behavior.

The default value is “FALSE”, which will cause the catalog portion of the
table name to be treated as blank in SQL queries. Setting this variable to
“TRUE” will cause the value of the catalog returned by SQLTables ODBC
function to be used in subsequent SQL queries.

See also

USER_PATH configuration variable

A_DB2_CATALOG configuration variable

Configuration File Variables F-25
A_DB2_USE_CHAR_FOR_BINARY

Some data sources have restrictions on the number of binary large objects
(BLOBs) that can be placed into a single table. If your data source has such
restrictions, specify A_DB2_USE_CHAR_FOR_BINARY in the
configuration file. The possible values for this variable are:

0 = use BINARY type
1 = use CHAR type

A nonzero value for A_DB2_USE_CHAR_FOR_BINARY lets you store
data that uses the BINARY directive as hexadecimal encoded CHAR types.
This allows you to work around your data source restriction. While the
default value is “0” (off, false, no), this configuration variable can also take
values of “On” (true, yes).

Because of current limitations of the interface, you must set this variable to
“1”, or the database returns an error on file creation. This has been set for you
in the sample configuration file “cblconfig.db2”. Do not change this setting.

Example
A_DB2_USE_CHAR_FOR_BINARY 1

A_DB2_USE_SQLCOLUMNS

For some large databases, the API function SQLColumns(), which is called
to get a description of the columns in a table, sometimes takes a long time to
execute. If you are experiencing such problems, you can use the API
function call SQLDescribeCol() instead, which can improve performance for
large databases.

To turn on this new functionality, set the A_DB2_USE_SQLCOLUMNS
configuration variable to FALSE.

The default value of this variable is TRUE.

F-26 Acu4GL for DB2 Information
A_DB2_USE_SQLTABLES

For some large databases, the API function SQLTables(), which is called to
get a list of the tables and information about them, sometimes takes a long
time to execute. If you are experiencing such problems, you can instruct the
interface to build a test SQL query and use the API function call
SQLNumResultTables() to determine if the table exists. This may improve
performance for large databases.

To turn on this new functionality, set the A_DB2_USE_SQLTABLES
configuration variable to FALSE.

The default value of this variable is TRUE, which means the interface will
use the SQLTables() API function.

USER_PATH

USER_PATH indicates the user name or names (schemas) to be used when
Acu4GL searches for files. The order of the names is significant. The syntax
for this variable is:

USER_PATH user1 [user2]...

where the user argument may be either the name of a user (schema) on the
system, or a period (“.”), which indicates the files owned by yourself.

The type of OPEN being issued for the file determines the effects of this
setting.

Examples

If an OPEN INPUT or OPEN I/O is issued, and a USER_PATH variable is
defined in the runtime configuration file, Acu4GL searches for a user of the
named file in the list of users in USER_PATH. The first valid file is opened.

If USER_PATH is defined and the current user is the owner of the file, the
current user must be included as one of the users, as indicated by a “.” or the
setting of your login schema (A_DB2_LOGIN) in the USER_PATH. If this
is not the case, even though the current user has created the table, it will not

Configuration File Variables F-27
be found and a file error “35” will result. This circumstance can occur if the
file was created with the OPEN OUTPUT phrase, and “.” is not an element in
USER_PATH. When the table is created, the current user will be the owner
of that table. When the runtime attempts to open the table, the runtime will
not look for tables owned by the current user unless USER_PATH is not set,
or unless “.” or the user’s current schema is part of the USER_PATH setting.

If an OPEN INPUT or OPEN I/O is issued, and no USER_PATH variable is
in the runtime configuration file, Acu4GL searches for a user of the named
file in the user named for login (A_DB2_LOGIN). Acu4GL opens the first
file that has a valid combination of user and file name.

If an OPEN OUTPUT is issued (whether USER_PATH is present or not), a
new table is created with the owner being the name specified in
A_DB2_LOGIN.

Using USER_PATH with other variables such as A_DB2_CATALOG can
speed up the finding of tables in large databases. It can also prevent an error
9D,14: “More than one table with the same name” thereby enabling access to
tables with identical names, but with different schemes.

For example, If the USER_PATH and A_DB2_CATALOG are used, the
form of the SQL statement will be modified from:
select COL1, ... from TABLENAME ...

to:
SELECT COL1, ... FROM [catalog.][username.]TABLENAME ...

where catalog and username will be filled in if provided.

See Also

A_DB2_LOGIN configuration variable

A_DB2_ALTERNATE_COMMIT_LOGIC configuration variable

F-28 Acu4GL for DB2 Information
F.6 Record and Table Locking
With Acu4GL for DB2, records are locked in a Wait mode. An application
trying to read a locked record will hang until the record becomes available.

DB2 Universal Database products have the ability to time-out a lock and send
an error return code to waiting applications. See your database administrator
for additional information.

F.7 Limits and Ranges
The following limits exist for the DB2 protocol:

Maximum number of columns per key: 16
Maximum number of columns: 500
Maximum index size: 255
Maximum record size: 4005

Note that these limits may be further constrained by your database
configuration. For example, the size of your page affects the maximum row
size. Some limits are given here, but please refer to your database
documentation for additional information.

To achieve the same sort or retrieval sequence under DB2 as under the Vision
file system, place a BINARY directive immediately before each key field
that contains signed numeric data. High values and low values can cause
problems in key fields. If you want data that uses the BINARY directive to
be stored as hexadecimal encoded CHAR types, you can specify
A_DB2_USE_CHAR_FOR_BINARY in the configuration file.

Other limits are described in Appendix B in Book 4, Appendices, of the
ACUCOBOL-GT documentation.

Page Size Maximum
Row Size

Maximum
Column Count

Maximum Index
Size

4K 4,005 500 255

8K 8,101 1,012

16K 16,293 1,012

32K 32,677 1,012

Data Type Mapping F-29
F.8 Data Type Mapping

DB2 data types must be mapped to COBOL data types. In the table below,
please note that directives have been applied to the COBOL data types. See
Chapter 4 for additional information on directives.

Mapping DB2 data types to COBOL data types

Sometimes developers are in a situation where they need to create a COBOL
File Description based on an existing data source table. The most important
thing to understand in this situation is that there is almost nothing that you
can do wrong! When the Acu4GL product opens a data source table, the only
thing it checks is that the column names match the COBOL data names.

When the Acu4GL product reads data from the data source, it essentially
does a COBOL-style MOVE from the native data type to the COBOL data
type, whatever it is. And since most types have a CHAR representation (in
other words, you can actually display most data types, using a standard
DB2-capable tool), using PIC X(nn) for each column will work perfectly
well.

COBOL Data Type Acu4GL for DB2

Date (DATE directive applied) date

binary (BINARY directive
applied)

char (2 * x)

varchar (VAR_LENGTH
directive applied)

varchar

float float

pic 9(4) smallint

pic 9(9) integer

pic 9(10) decimal(10,0)

pic 9(x)v9(y) decimal (x + y, y)

pic x(254) char

pic x(255) or greater must apply VAR_LENGTH
directive

F-30 Acu4GL for DB2 Information
A better general rule is to use a COBOL type that closely matches the data
source data type, but don’t worry about getting an exact fit. So you can use
PIC 9(9) whenever the data source has an INTEGER type.

If you have more information about the data source type, you might be able
to use a different COBOL representation. For example, if you know that a
particular column in an DB2 data source has values only in the range 0–999,
you could use PIC 999 for your COBOL data. The COMP-type you use is
really determined by your own preferences and should have little bearing on
the COBOL data type you choose.

If you want to somehow choose your COBOL data types so that there is a best
fit, you can use the following mapping:

F.9 Runtime Errors

This section lists the Acu4GL error messages that could occur during
execution of your program. Chapter 9 provides information on
compile-time errors and also provides several methods for retrieving runtime
errors.

Acu4GL for DB2 COBOL Data Type

date Date (DATE directive applied)

varchar varchar (VAR_LENGTH
directive applied)

float float

smallint pic 9(4)

integer pic 9(9)

decimal(10,0) pic 9(10)

decimal (x + y, y) pic 9(x)v9(y)

char pic x(254)

pic x(255) or greater must apply
VAR_LENGTH directive

pic x(255)

Runtime Errors F-31
An explanation and a recommended recovery procedure follow each
message.

Runtime errors will have this format:

9D,xx
The 9D indicates a file system error and is reported in your FILE STATUS
variable. The xx is a secondary error code. These are the secondary errors
reported directly from Acu4GL:

9D,01 Read error on dictionary file
An error occurred while reading the XFD file; this probably means the XFD
is corrupt. Recompile with “-Fx” to re-create the dictionary. See section 8.1
for information on compiler options.

9D,02 Corrupt dictionary file
The dictionary file for one of your COBOL files is corrupt and cannot be
read. Recompile with “-Fx” to re-create the dictionary.

9D,03 Dictionary (.xfd) file not found
The dictionary file for one of your COBOL files cannot be located. Be sure
you have specified the correct directory via your XFD_PREFIX runtime
configuration file variable. You may need to recompile with “-Fx” to create
the dictionary.

9D,04 Too many fields in the key
There are more than 16 fields in a key. Check your key definitions and
restructure the key that is illegal, and then recompile with “-Fx”.

9D,06 Mismatched dictionary file
The dictionary file (.xfd) for one of your files conflicts with the COBOL
description of the file FD. The xx indicates a tertiary error code that is
defined by the host file system. You can determine the exact nature of the
mismatch by referring to the host system’s error values.

The tertiary error code may have any of these values:
01 – mismatch found but exact cause unknown (this status is returned by the
host file system)
02 – mismatch found in file’s maximum record size

F-32 Acu4GL for DB2 Information
03 – mismatch found in file’s minimum record size
04 – mismatch found in the number of keys in the file
05 – mismatch found in primary key description
06 – mismatch found in first alternate key description
07 – mismatch found in second alternate key description

The list continues in this manner for each alternate key.

9D,12 DB2 library function returned an unexpected error
One of the DB2 library functions returned an error that was not expected.

9D,13 Illegal size or type of data for variable xxx
An elementary data item in your FD was larger than 255 bytes, or there is no
DB2 type that matches the current data type.

9D,14 More than one table with the same name
When tables were listed, more than one table was found with the same name.
Consider whether or not setting the USER_PATH configuration variable will
resolve the issue. This variable will enable tables with identical names, but
with different ownership (located in a different schema) to be found and
accessed.

F.10 Common Questions and Answers

This section contains some questions and answers specific to Acu4GL for
DB2. Refer to Chapter 10 for additional questions and answers that pertain
to the Acu4GL family of products.

Question: I’m noticing some performance degradation when accessing my DB2 data
source. What is the cause of this?

Answer: You may notice some performance impact if you were previously accessing
Vision indexed files directly. This is because DB2 adds a software layer
between your applications and your data sources. In return for minor
performance impact, you can reap the benefits of database independence and
enhanced portability. Overall performance depends on several factors,
including your network configuration and your specific data source.

Common Questions and Answers F-33
Question: Are there any ACUCOBOL-GT library routines that do not work with or
would not make sense to use with Acu4GL for DB2?

Answer: Yes. The C$COPY and C$RENAME ACUCOBOL-GT library routines do
not work with DB2.

F-34 Acu4GL for DB2 Information

Glossary of Terms
ANSI (American National Standards Institute)

American National Standards Institute. ANSI, along with the International
Organization for Standards (ISO), standardized the C programming
language, and continues to promote many other important software
standards.

API (Application Programming Interface)

Application Programming Interface. The interface by which an application
program accesses operating system and other services. An API is defined at
source code level and provides a level of abstraction between the
application and the kernel (or other privileged utilities) to ensure the
portability of the code. An API can also provide an interface between a
high level language and lower level utilities and services which were
written without consideration for the calling conventions supported by
compiled languages.

batch file

A text file containing operating system commands which are executed
automatically by the command line interpreter. A batch file is called a “shell
script” in UNIX, since it is the UNIX shell which includes the command
line interpreter. Batch files can be used as a simple way to combine existing
commands into new commands.

Binary Large Object (BLOB)

A large block of data stored in a database, such as an image or sound file. A
BLOB has a structure that cannot be interpreted by a database management
system but is known only by its size and location.

Glossary-2
buffer

An internal memory area used for temporary storage of data records during
input or output operations. Most programs keep track of changes in the
buffer and then copy the buffer to a disk. Buffers are also used for printing.

client

A computer or program that can download files for manipulation from a
server. Contrast server. See also network.

CPIO format (Copy In and Out format)

Copy In and Out format. A UNIX utility.

cursor

A prepared query, saved in a parameterized format.

data dictionaries

Extended file descriptors that map your application's SQL commands to
COBOL records and vice versa. Based on the standard COBOL file
descriptors (FDs). See also file descriptor and XFD file.

directives

Optional comments that you can place into a file descriptor in your COBOL
source code to control how the data dictionary is built. See also file
descriptor.

DSN (Data Source Name)

Data Source Name. An arbitrary name for every group of indexed or
relative data files that your Windows application needs to access.

Extended File Descriptor

See file descriptor and XFD file.

field

An element of a database record in which one piece of information is
stored. Contrast record.

 Glossary-3
file descriptor

An integer that identifies an open file within a process. This number is
obtained as a result of opening a file. Operations that read, write, or close a
file would take the file descriptor as an input parameter.

In many operating system implementations, file descriptors are small
integers that index a table of open files. In UNIX, file descriptors “0”, “1”,
and “2” correspond to the standard input, standard output, and standard
error files respectively. See also data dictionaries and XFD file.

Gregorian calendar

The calendar as reformed by Pope Gregory XIII in 1582. This calendar
adjusts the leap years to harmonize the civil year with the solar, as well as
synchronize the time of Easter with the movable feasts by means of epochs.
Every year divisible by 4, except those divisible by 100 and not by 400, has
366 days; all other years have 365 days. Contrast Julian calendar.

indexed file

In database design, a list of keys (or keywords), each of which identifies a
unique record. Indexed files make it faster to find specific records and to
sort records by the index field (the field used to identify each record). See
also key.

I/O (Input/Output)

Input/Output. Communication between a computer and its users, its
storage devices, other computers using a network or the outside world. The
devices the computer uses to do this are called “peripherals.”

Julian base date

The earliest Julian date to be used in defining Julian date formats. See also
Julian calendar.

Julian calendar

The solar calendar introduced by Julius Caesar in Rome in 46 B.C., having
a year of 12 months and 365 days and a leap year of 366 days every fourth
year. It was eventually replaced by the Gregorian calendar. Contrast
Gregorian calendar.

Glossary-4
key

A value used to identify a record in a database, derived by applying some
fixed function to the record. The key is often one of the fields (a column if
the database is considered as a table with records being rows). Alternatively
the key may be obtained by applying some function, for example, a hash
function, to one or more of the fields. The set of keys for all records forms
an index. Multiple indexes may be built for one database depending on
how it is to be searched. See also indexed file.

network

Hardware and software data communication systems. Networks are often
also classified according to their geographical extent: local area network
(LAN), metropolitan area network (MAN), wide area network (WAN), and
also according to the protocols used.

ODBC (Open Database Connectivity)

Open Database Connectivity. Released in 1992, a library of standardized
data access functions that gives programmers a way to access and
manipulate data in a variety of data sources. Interfaces include Visual
Basic, Visual C++, SQL, and the ODBC driver pack contains drivers for the
Access, Paradox, dBase, Text, Excel, and Btrieve databases. An
application can submit statements to ODBC using the ODBC flavor of
SQL, and ODBC then translates these to whatever flavor the database
understands. ODBC is based on Call-Level Interface and was defined by
the SQL Access Group.

query

A user's (or agent's) request for information, generally as a formal request
to a database or search engine. SQL is the most common database query
language. See also SQL (Structured Query Language).

record

A group of related fields, or a single field, treated as a unit and comprising
part of a file or data set, for purposes of input, processing, output, or storage
by a computer. Contrast field.

 Glossary-5
relational database

A database system in which any database file can be a component of more
than one of the database’s tables. Relational database management systems
may be referred to as RDBMSs.

server

A computer that makes services, as access to data files, programs, and
peripheral devices, available to workstations on a network. Contrast client.
See also network.

SQL (Structured Query Language)

Structured Query Language. According to specification, the language by
which ODBC programs retrieve data. See also query.

TAR format (Tape Archive format)

A general purpose archive utility and file format used in UNIX
environments. TAR was originally intended for use with magnetic tape but,
though it has several command line options related to tape, it is now used
more often for packaging files together on other media, for example, for
distribution on the Internet. The resulting archive, a “tar file” is often
compressed, using gzip or some other form of compression.

TCP/IP (Transfer Control Protocol/Internet Protocol)

A protocol for communication between computers, used as a standard for
transmitting data over networks and as the basis for standard Internet
protocols.

XFD file

Extended File Descriptors. Data dictionaries are also called extended file
descriptors (XFDs) because they’re based on the standard COBOL file
descriptors (FDs). See also data dictionaries and file descriptor.

Glossary-6

Index

Symbols
$, directive syntax 4-3

Numerics
4GL_2000_CUTOFF configuration variable 8-5
4GL_8_DIGIT_CUTOFF configuration variable 8-5
4GL_COLUMN_CASE configuration variable 8-6
4GL_COMMIT_COUNT configuration variable 8-6
4GL_CONVERT_DATE_ZERO configuration variable 8-8
4GL_DB_MAP configuration variable 8-8, 8-13
4GL_EXTRA_DB_COLS_OK configuration variable 8-9
4GL_FULL_DATA_TEST configuration variable 8-10
4GL_IGNORED_SUFFIX_LIST configuration variable 8-10
4GL_ILLEGAL_DATA configuration variable 5-3, 8-11
4GL_JULIAN_BASE_DATE configuration variable 4-10, 8-11
4GL_MAX_DATE configuration variable D-18
4GL_MIN_DATE configuration variable D-19
4GL_USEDIR_LEVEL configuration variable 8-9, 8-12
4GL_WHERE_CONSTRAINT configuration variable 8-13

A
A_DB2_ALTERNATE_COMMIT_LOGIC configuration variable D-19, F-15
A_DB2_CATALOG configuration variable F-15
A_DB2_COMMIT_ON_BEGIN configuration variable F-16
A_DB2_DATASOURCE configuration variable F-16
A_DB2_ERROR_MAP_FILE configuration variable F-17
A_DB2_ISOLATION_LEVEL configuration variable F-19

Index-2
A_DB2_LOCK_METHOD configuration variable F-20
A_DB2_LOGIN configuration variable F-21
A_DB2_PASSWD configuration variable F-22
A_DB2_STRICT_EQUAL configuration variable F-23
A_DB2_TABLE_TYPES configuration variable F-24
A_DB2_USE_CATALOG configuration variable F-24
A_DB2_USE_CHAR_FOR_BINARY configuration variable F-25
A_DB2_USE_SQLCOLUMNS configuration variable F-25
A_DB2_USE_SQLTABLES configuration variables F-26
A_INF_DUPLICATE_KEY configuration variable A-9
A_INF_NO_FINAL_TRANSACTION_ERROR configuration variable A-10
A_INFORMIX_ERROR_FILE configuration variable A-11
A_MSSQL_ADD_IDENTITY configuration variable B-11
A_MSSQL_ADD_TIMESTAMP configuration variable B-11
A_MSSQL_APPROLE_NAME configuration variable B-12
A_MSSQL_APPROLE_PASSWD configuration variable B-12
A_MSSQL_CURSOR_OPTION configuration variable B-13
A_MSSQL_DATABASE configuration variable B-14
A_MSSQL_DEADLOCK_LOOPS configuration variable B-14
A_MSSQL_DEFAULT_CONNECTION configuration variable B-15
A_MSSQL_DEFAULT_OWNER configuration variable B-15
A_MSSQL_FAST_ACCESS configuration variable B-16
A_MSSQL_LOCK_DB configuration variable B-17
A_MSSQL_LOGIN configuration variable B-18
A_MSSQL_MAX_CHARACTERS configuration variable B-18
A_MSSQL_MAX_COLUMNS configuration variable B-19
A_MSSQL_NATIVE_LOCK_TIMEOUT configuration variable B-19
A_MSSQL_NO_23_ON_START configuration variable B-21
A_MSSQL_NO_COUNT_CHECK configuration variable B-20
A_MSSQL_NO_DBID configuration variable B-21
A_MSSQL_NO_RECORD_LOCKS configuration variable B-21
A_MSSQL_NO_TABLE_LOCKS configuration variable B-21
A_MSSQL_NT_AUTHENTICATION configuration variable B-22
A_MSSQL_PACKETSIZE configuration variable B-22
A_MSSQL_PASSWD configuration variable B-23

 Index-3
A_MSSQL_ROWCOUNT configuration variable B-24
A_MSSQL_SELECT_KEY_ONLY configuration variable B-24
A_MSSQL_SKIP_ALTERNATE_KEYS configuration variable B-25
A_MSSQL_TRANSLATE_TO_ANSI configuration variable B-25
A_MSSQL_UNLOCK_ON_EXECUTE configuration variable B-25
A_MSSQL_USE_DROPDOWN_QUERIES configuration variable B-26
A_MSSQL_VISION_LOCKS_FILE configuration variable B-27
A_ODBC_ALTERNATE_COMMIT_LOGIC configuration variable D-19
A_ODBC_CATALOG configuration variable D-20
A_ODBC_COMMIT_ON_BEGIN configuration variable D-21
A_ODBC_DATASOURCE configuration variable D-21
A_ODBC_ERROR_MAP_FILE configuration variable D-22
A_ODBC_ISOLATION_LEVEL configuration variable D-24
A_ODBC_LOCK_METHOD configuration variable D-24
A_ODBC_LOGIN configuration variable D-26, D-34, F-27
A_ODBC_NO_NULL_COLUMNS configuration variable D-27
A_ODBC_PASSWD configuration variable D-27
A_ODBC_PRINT_LOG configuration variable D-28
A_ODBC_QUOTE_IDENTIFIERS configuration variable D-28
A_ODBC_STRICT_EQUAL configuration variable D-28
A_ODBC_TABLE_TYPES configuration variable D-29
A_ODBC_UNSIGNED_TINYINT configuration variable D-30
A_ODBC_USE_CHAR_FOR_BINARY configuration variable D-31
A_ODBC_USE_SPACE_IN_DATES configuration variable D-31
A_ODBC_USE_SQLCOLUMNS configuration variable D-32
A_ODBC_USE_SQLTABLES configuration variable D-33
A_ORA_DATABASE configuration variable C-8, C-21
A_ORA_HINTS configuration variable C-22
A_ORA_MAX_FILE_CURSORS configuration variable C-22
A_ORA_WAIT_LOCK configuration variable C-23
A_ORACLE_ERROR_FILE configuration variable C-23
A_SYB_ADD_IDENTITY configuration variable E-25
A_SYB_ADD_TIMESTAMP configuration variable E-25
A_SYB_CHECK_DELETE_SP configuration variable E-26
A_SYB_CHECK_INSERT_SP configuration variable E-26

Index-4
A_SYB_CHECK_UPDATE_SP configuration variable E-27
A_SYB_CURSOR_OPTION configuration variables E-27
A_SYB_DATABASE configuration variable E-28
A_SYB_DEFAULT_CONNECTION configuration variable E-29
A_SYB_EXTRA_PROC configuration variable E-30
A_SYB_FAST_ACCESS configuration variable E-31
A_SYB_FORCED_INDEX configuration variable E-32
A_SYB_LOCK_DB configuration variable E-33
A_SYB_LOGIN configuration variable E-33
A_SYB_MAX_CHARACTERS configuration variable E-34
A_SYB_MAX_COLUMNS configuration variable E-34
A_SYB_NATIVE_LOCK_TIMEOUT configuration variable E-35
A_SYB_NO_23_ON_START configuration variable E-37
A_SYB_NO_COUNT_CHECK configuration variable E-36
A_SYB_NO_DBCLOSE configuration variable E-36
A_SYB_NO_DBID configuration variable E-36
A_SYB_NO_RECORD_LOCKS configuration variable E-36
A_SYB_NO_TABLE_LOCKS configuration variable E-37
A_SYB_PACKETSIZE configuration variable E-37
A_SYB_PASSWD configuration variable E-38
A_SYB_ROWCOUNT configuration variable E-39
A_SYB_SELECT_KEY_ONLY configuration variable E-39
A_SYB_SKIP_ALTERNATE_KEYS configuration variable E-40
A_SYB_TRANSLATE_TO_ANSI configuration variable E-40
A_SYB_UNLOCK_ON_EXECUTE configuration variable E-41
A_SYB_USE_DROPDOWN_QUERIES configuration variable E-41
A_SYB_VISION_LOCKS_FILE configuration variable E-42
access privileges, granting with sql.acu 2-3
accessing a database 1-13
accessing data 1-6
accounts, setting up user

for Oracle C-15
for SQL Server B-7
for Sybase E-21

Acu4GL

 Index-5
case conversion in data 7-2
data dictionaries (XFDs) 1-8, 1-11, 3-1
data format conversions 7-2
data sequencing 7-2
database concepts 1-9
default behavior 7-2
field names 7-4
getting started 2-2
how it works 1-10
matching COBOL fields to database fields 7-2
matching numeric fields to database fields 7-3
matching text fields to database fields 7-3
overview 1-2
record locking C-4, F-4
summary 1-14

Acu4GL and ACUCOBOL-GT library routines 1-15
Acu4GL index naming conventions 1-15
Acu4GL, DB2

configuration variables F-14
creating map files F-17
data types F-29
decimal points, and F-14
designating the host data source F-13
designating the host file system F-11
filename interpretation F-13
installation and setup F-6
installation for UNIX F-7
libraries, shared F-9
limits and ranges F-28
linking the runtime F-7, F-8
mapping DB2 data to COBOL data F-29
record locking F-3, F-28
runtime errors F-31
table locking F-28
transactions F-2

Index-6
troubleshooting F-30
Acu4GL, Informix

7.2 and 7.3 performance A-13
and ANSI-mode databases A-2
compiling the sample program A-7
configuration variables A-9
creating a makefile A-4
creating a new runtime A-4
designating a database A-8
features A-19
filename interpretation A-8
getting started A-2
installation A-3
libraries, shared A-6
limits A-21
linking the runtime A-5
runtime errors A-23
switching file systems A-18
technical specifications A-18
troubleshooting A-22
unsupported data types A-21

Acu4GL, ODBC
application D-6
configuration variables D-18
creating map files D-22
data sources D-7
data types D-38
designating the host data source D-16
driver manager D-6
driver requirements D-36
driver test D-37
drivers D-6
filename interpretation D-17, D-18
getting started D-10
installation and setup D-10

 Index-7
limits and ranges D-36
mapping COBOL data to ODBC data D-39
mapping ODBC data to COBOL data D-40
origins of ODBC D-2
overview D-2
record and table locking D-35
restrictions D-3
runtime errors D-42
SQL errors D-44
structure D-3
troubleshooting D-42

Acu4GL, Oracle
checking system parameters C-14
configuration variables C-21
configured login C-16
creating a new runtime C-10
cursors per file C-22
database table C-28
designating host file system C-17
features C-28
filename interpretation C-21
getting started C-7
installation for UNIX C-9
installation for Windows C-7
Instant Client C-20
libraries, shared C-13
linking the runtime C-12
open_cursors parameter C-5
Oracle file system limits C-29
record locking C-3
relinking C-8
runtime errors C-30
security C-6
setting up the search path C-18
setting up the user environment C-16

Index-8
setting up user accounts C-15
table ownership C-6
transactions C-2, C-19, C-28
troubleshooting C-30

Acu4GL, SQL Server
configuration variables B-11
database table B-28
designating the host file system B-8
filename interpretation B-10
getting started B-4
installation B-4
installation on client B-5
installation on NT server B-5
overview B-2
runtime errors B-39
security B-3
servers B-2
setting up a user account B-7
setting up the user environment B-7
SQL Server limits and ranges B-38
table locking B-28
table ownership B-2
troubleshooting B-39

Acu4GL, Sybase
configuration variables E-25
creating a new runtime E-6
creating stored procedures E-15
designating the host file system E-22
filename interpretation E-24
installation and setup E-4
installing stored procedures E-16, E-19
libraries, shared E-10
linking the runtime E-9
makefiles E-6
overview E-2

 Index-9
ranges E-52
REWRITE method E-3
runtime errors E-54
security E-3
servers E-2
setting up a user account E-21
setting up the user environment E-21
Sybase limits and ranges E-52
table locking E-43
table ownership E-2
troubleshooting E-53

acu4glfd utility 6-10
ACUCOBOL-GT

runtime module 1-11
Web runtime and Acu4GL 1-8

ACUCOBOL-GT library routines and Acu4GL 1-15
alfred, indexed file editor 1-8, 3-2
ALPHA directive 4-5
alternate REWRITE method

Sybase E-3
ANSI-compliant directive 4-3
ANSI-mode databases and Acu4GL for Informix A-2
application, ODBC D-6
architecture, Acu4GL for ODBC

multiple-tier D-9
single-tier D-8

architecture, ODBC
multiple-tier D-5
single-tier D-4

ASSIGN name, XFD file 3-9

B
backwards compatibility, XFD files 3-2

Index-10
BINARY directive 4-6
BINARY numbers, illegal COBOL data 5-2
Btrieve file systems 1-6
building SQL statements 1-13

C
case conversions 7-2
cblutil utility 3-7
changing database functions 1-15
checking for stored procedures E-26

Acu4GL for Sybase E-27
C-ISAM file systems 1-6
COBOL

COMMIT verb C-5, F-5
database interaction 9-6
mapping data to ODBC D-39
mapping DB2 data to F-29
mapping ODBC data to D-40
matching COBOL fields to database fields 7-2
modifying procedures 9-10
preparing and compiling programs 6-2

COBOL code and hyphens 3-7
COBOL data, invalid 5-2
COBOL I/O translation 1-10
COBOL programs and sql.acu 2-4
COBOL records

forming 1-13
mapping to databases 1-12

COBOL-TRIGGER directive 4-7
columns

forcing group items to become 3-3
mapping 1-11, 3-3

command line and sql.acu 2-3

 Index-11
COMMENT directive 4-8
COMMIT verb C-5, F-5
COMMIT_COUNT configuration variable C-23
COMMIT_COUNT environment variable C-4
COMMIT_COUNT, methods F-4
COMP-2 numbers, illegal COBOL data 5-2
COMP-3 numbers, illegal COBOL data 5-2
compiler errors 9-12
compiler options 8-2

creating XFD files 8-2
data dictionaries (XFD files)

building 8-4
directory for data dictionary (XFD) files 8-3
matching field names, XFD files 8-2
single locking 8-3
START TRANSACTION, implied 8-3
transaction, implied 8-4
XFD files, creating 8-2

compiler warnings 9-14
compiling

demonstration program 2-7
preparing a COBOL program 6-2
sample program, Informix A-7

conditions, OTHER 4-21
configuration variables

Acu4GL for DB2 F-14
Acu4GL for Informix A-9
Acu4GL for ODBC D-18
Acu4GL for Oracle C-21
Acu4GL for SQL Server B-11
overview 8-4
setting in runtime files 1-13
WHERE constraint 9-7

configuration variables, list of
4GL_2000_CUTOFF 8-5

Index-12
4GL_8_DIGIT_CUTOFF 8-5
4GL_COLUMN_CASE 8-6
4GL_COMMIT_COUNT 8-6
4GL_CONVERT_DATE_ZERO 8-8
4GL_DB_MAP 8-8, 8-13
4GL_EXTRA_DB_COLS_OK 8-9
4GL_FULL_DATA_TEST 8-10
4GL_IGNORED_SUFFIX_LIST 8-10
4GL_ILLEGAL_DATA 5-3, 8-11
4GL_JULIAN_BASE_DATE 4-10, 8-11
4GL_USEDIR_LEVEL 8-9, 8-12
4GL_WHERE_CONSTRAINT 8-13
A_DB2_CATALOG F-15
A_DB2_TABLE_TYPES F-24
A_DB2_USE_SQLCOLUMNS F-25
A_DB2_USE_SQLTABLES F-26
A_ODBC_CATALOG D-20
A_ODBC_TABLE_TYPES D-29
A_ODBC_USE_SQLCOLUMNS D-32
A_ODBC_USE_SQLTABLES D-33
A_ORA_DATABASE C-21
A_ORA_HINTS C-22
A_ORA_MAX_FILE_CURSORS C-22
A_ORA_WAIT_LOCK C-23
A_ORACLE_ERROR_FILE C-23
COMMIT_COUNT C-23
DECIMAL_POINT D-18
DEFAULT_HOST 1-12, 1-15, 8-13
FILE_TRACE 8-16
filename_HOST 1-12, 1-15, 8-14
ORA_LOGIN C-25
ORA_PASSWD C-25
USER_PATH C-26, D-33, F-26
XFD_DIRECTORY 8-17
XFD_MAP 3-10, 8-17

 Index-13
XFD_MAP_RESETS 3-12, 8-18
XFD_PREFIX 3-7, 8-18

configured login, Oracle C-16
conflicts between field names 7-4
conversions

data 7-2
upper and lower case 7-2

creating an empty table with sql.acu 2-3
creating COBOL records 1-13
creating dictionaries 1-12
creating FDs (file descriptors) 6-10
creating large tables 1-15
creating makefile, Informix A-4
creating map files

Acu4GL for DB2 F-17
Acu4GL for ODBC D-22

creating runtimes
Acu4GL for Informix A-4
Acu4GL for Oracle C-10
Acu4GL for Sybase E-6

creating SELECTs 6-10
creating SQL statements 1-13
creating stored procedures

SQL Server B-6
Sybase E-15

creating XFD files at compile time 3-2
creating XFD files, compiler option 8-2
cursor caching, Oracle C-14
cursors, maximum per file C-22

D
data

accessing 1-6

Index-14
DB2 types F-29
existing 7-2, 7-3
format conversion 7-2
invalid database 5-3
invalid key 5-3
new 7-2
ODBC types D-38
restructuring 9-5
searches 9-5
sequencing 7-2
types not supported, Informix A-21

data dictionaries (XFDs) 3-2
Acu4GL 1-8
creating 1-12
overview 1-11
source code 4-3

data mapping
COBOL to ODBC D-39
DB2 types to COBOL types F-29
ODBC types to COBOL types D-40

data sources
DB2, designating the host F-13
ODBC

designating the host D-16
overview D-7
setting up D-12

DATABASE configuration variable A-11
database data, invalid 5-3
database functions, changing 1-15
database table

Oracle C-28
SQL Server B-28

database violations 1-15
databases

accessing 1-13

 Index-15
ANSI-mode and Acu4GL for Informix support A-2
concepts 1-9
data sequencing 7-2
designating for Acu4GL for Informix A-8
existing files 7-2, 7-3
field names 7-4
how the table is formed 3-3
installing stored procedures

SQL Server B-6
Sybase E-12, E-17, E-19

interacting with COBOL 9-6
matching fields to COBOL 7-2
matching fields to numeric 7-3
matching fields to text 7-3
new files 7-2
relational 1-9
upgrading 9-6

DATE directive 4-9
DATE fields, illegal COBOL data in 5-2
dates

invalid 4-10
Julian 4-10

DB2 configuration variables
A_DB2_ALTERNATE_COMMIT_LOGIC D-19, F-15
A_DB2_COMMIT_ON_BEGIN F-16
A_DB2_DATASOURCE F-16
A_DB2_ERROR_MAP_FILE F-17
A_DB2_ISOLATION_LEVEL F-19
A_DB2_LOCK_METHOD F-20
A_DB2_LOGIN F-21
A_DB2_PASSWD F-22
A_DB2_STRICT_EQUAL F-23
A_DB2_USE_CHAR_FOR_BINARY F-25
overview F-14

DB2 configuration variables, list of

Index-16
A_DB2_USE_CATALOG F-24
DB2, Acu4GL

configuration variables F-14
creating map files F-17
data type mapping F-29
designating host data source F-13
designating host file system F-11
installation for UNIX F-7
limits and ranges F-28
linking F-7
linking runtime F-8
mapping DB2 data types to COBOL data types F-29
record locking F-3
runtime errors F-31
setting up the user environment F-10
shared libraries F-9
transactions F-2
troubleshooting F-30

decimal points and Acu4GL for ODBC D-18
decimal points in Acu4GL for DB2 F-14
DECIMAL_POINT environmental variable D-18
declaring external variables 9-10
default behavior, Acu4GL 7-2
DEFAULT_HOST configuration variable 1-12, 1-15, 8-13
defaults, XFDs 3-5
definitions, record 3-5
demo.cbl (demonstration program) 2-6
demonstration program

compiling 2-7
Help menu 2-11
Options menu 2-11
overview 2-6
Position menu 2-10
Record menu 2-9
running 2-8

 Index-17
runtime verification 2-7
starting 2-8

designating databases, Acu4GL for Informix A-8
designating host data source

DB2 F-13
ODBC D-16

designating host file system
DB2 F-11
Oracle C-17
SQL Server B-8
Sybase E-22

dictionaries, data
Acu4GL 1-8
creating 1-12
overview 1-11
source code 4-3
XFDs 3-1

dictionary fields, summary 3-7
directives

and existing data 7-3
ANSI-compliant 4-3
introduction 4-2
syntax 4-3

directives, list of
ALPHA 4-5
BINARY 4-6
COBOL-TRIGGER 4-7
COMMENT 4-8
DATE 4-9
FILE 3-11, 4-12
NAME 3-8, 4-13
NUMERIC 4-16
SECONDARY_TABLE 4-17
USE GROUP 4-6, 4-18
VAR_LENGTH 4-6, 4-20

Index-18
WHEN 3-5, 4-20
document overview 1-3
drivers, ODBC

general information D-6
managing D-6
requirements D-36
testing D-37

duplicate field names 3-8

E
environment, setting up user

Acu4GL for DB2 F-10
Acu4GL for ODBC D-14
Acu4GL for Oracle C-16
Acu4GL for SQL Server B-7
Acu4GL for Sybase E-21

error descriptions, extended 1-15
ERROR-CODE parameter 4-8
errors

compile 9-12
extended descriptions for 1-15

errors, runtime
DB2 F-31
Informix 9-15, 9-19, A-23
ODBC D-42
Oracle C-30
SQL Server B-39
Sybase E-54

existing database files
guidelines 7-3
overview 7-2

extended error descriptions 1-15
extended file descriptors. See XFDs

 Index-19
external variables, declaring 9-10

F
-F4 option 3-2
-Fa option 3-2
features

Informix supported A-19
Oracle supported C-28

field name aliases 3-9
field names

identical 3-8
long 3-8

fields
key 3-5
mapping 1-11, 3-3
names 7-4

fields, matching
COBOL to database 7-2
numeric to database 7-3
text to database 7-3

FILE directive 3-11, 4-12
file input and output 9-3
file options, compiler 8-2

directory for data dictionary files 8-3
single locking 8-3
START TRANSACTION, implied 8-3
transaction, implied 8-4
XFD files

building data dictionaries 8-4
creating files 8-2
matching field names 8-2

file systems
host, designating

Index-20
for DB2 F-11
for Oracle C-17
for SQL Server B-8
for Sybase E-22

indexed 1-6
Informix A-18

file tracing 8-16
FILE_TRACE configuration variable 8-16
filename translation

Acu4GL for DB2 F-13
Acu4GL for Informix A-8
Acu4GL for ODBC D-17, D-18
Acu4GL for Oracle C-21
Acu4GL for SQL Server B-10
Acu4GL for Sybase E-24

filename_HOST configuration variable 1-12, 1-15, 8-14
filenames

hyphens in A-8, B-10, C-21, D-17, E-24, F-13
lowercase letters in A-8, B-10, D-17, E-24, F-13
underscores in A-8, B-10, C-21, D-17, E-24, F-13
uppercase letters in C-21

files
database

existing 7-2, 7-3
new 7-2

map
creating for DB2 F-17
creating for ODBC D-22

Vision 9-5
XFD 3-2

FILLER definition 3-5, 3-6, 4-21
final name, XFDs 3-10
format, data conversion 7-2
forming COBOL records 1-13
forming the final XFD name 3-10

 Index-21
-Fx option 3-2

G
generic file handler 1-6
getting started

Acu4GL for DB2 F-6
Acu4GL for Informix A-2
Acu4GL for ODBC D-10
Acu4GL for Oracle C-7
Acu4GL for SQL Server B-4
Acu4GL for Sybase E-3
overview 2-2

group items 3-6
and database table columns 3-3
and DATE directive 4-11

growth, planning ahead 9-7
guidelines

existing database files 7-3
performance 9-2

H
handling invalid dates 4-10
Help menu, demonstration program 2-11
HIGH-VALUES, illegal COBOL data 5-2
Hints, Oracle feature C-22
host data source, designating

for Acu4GL for DB2 F-13
for Acu4GL for ODBC D-16

host file systems, designating
for Acu4GL for DB2 F-11
for Acu4GL for Oracle C-17
for Acu4GL for SQL Server B-8

Index-22
for Acu4GL for Sybase E-22
how Acu4GL works

COBOL I/O translation 1-10
runtime, ACUCOBOL-GT 1-10
SQL generation 1-10
transparent interface 1-11

hyphens
in COBOL code 3-7
in filenames A-8, B-10, C-21, D-17, E-24, F-13

I
I/O requests, passing to the interface 1-13
identical field names 3-8
illegal COBOL data

BINARY numbers 5-2
COMP-2 numbers 5-2
COMP-3 numbers 5-2
DATE fields 5-2
HIGH-VALUES 5-2
LOW-VALUES 5-2
other 5-3
SPACES 5-2
TEXT fields 5-2
USAGE DISPLAY numbers 5-2

illegal data, testing for 8-10
improving database performance C-22
indexed file systems 1-6

alfred, editor 1-8, 3-2
indexes

Acu4GL naming conventions for 1-15
and tables 9-4

Indicator area 4-3
inf_inst program A-4

 Index-23
INF_LOGIN configuration variable A-12
INF_PASSWD configuration variable A-12
Informix and Acu4GL

7.2 and 7.3 performance A-13
compile sample program A-7
configuration variables A-9
creating a new runtime A-4
data types not supported A-21
database, designating A-8
getting started A-2
installation A-3
limits and ranges A-21
linking runtime A-5
makefile A-4
questions and answers A-25
retrieving errors 9-15
runtime errors A-23
shared libraries A-6
supported features A-19
switching file systems A-18
technical tips A-18
troubleshooting A-22

Informix configuration variables
and Open_CURSORS A-13
overview A-9

Informix configuration variables, list of
A_INF_DUPLICATE_KEY A-9
A_INF_NO_FINAL_TRANSACTION_ERROR A-10
A_INFORMIX_ERROR_FILE A-11
DATABASE A-11
INF_LOGIN A-12
INF_PASSWD A-12
MAX_CURSORS A-13

input, file 9-3
installation

Index-24
Acu4GL for DB2 F-6
Acu4GL for DB2 on UNIX F-7
Acu4GL for Informix A-3
Acu4GL for ODBC D-10
Acu4GL for Oracle C-7
Acu4GL for Oracle on UNIX C-9
Acu4GL for Oracle on Windows C-7
Acu4GL for SQL Server B-4
Acu4GL for SQL Server on client B-5
Acu4GL for SQL Server on NT server B-5
Acu4GL for Sybase E-3, E-4, E-14
overview 2-2
SQL Server B-4

installing stored procedures B-6, E-12, E-16, E-17, E-19
Instant Client, Oracle C-20
interaction, databases and COBOL 9-6
interactive SQL B-4
interface

passing I/O requests to 1-13
routines 1-7

interpretation of filenames B-10
invalid

COBOL data 5-2
database data 5-3
dates, handling 4-10
key data 5-3
other data 5-3

isolation levels, setting D-24, F-19
ISQL A-4, E-4
issues, performance 9-2

J
Julian dates 4-10

 Index-25
K
key data, invalid 5-3
key fields 3-5
KEY IS phrase 3-5

L
large tables, creating 1-15
libraries, shared

Acu4GL for DB2 F-9
Acu4GL for Informix A-6
Acu4GL for Oracle C-13
Acu4GL for Sybase E-10

limitations, WHERE constraint 9-11
limits and ranges

DB2 F-28
Informix A-21
ODBC D-36
Oracle C-29
SQL Server B-38

linking Acu4GL for DB2 F-7
linking Acu4GL for Oracle C-8
linking runtime

Acu4GL for DB2 F-8
Acu4GL for Informix A-5
Acu4GL for Oracle C-12
Acu4GL for Sybase E-9

locating XFD files 8-18
location of XFDs 3-7
locking, record C-4, F-4

DB2 F-3
ODBC D-35
Oracle C-3

locking, table

Index-26
ODBC D-35
SQL Server B-28
Sybase E-43

login
configured Oracle C-16

long field names 3-8
lowercase letters in filenames A-8, B-10, D-17, E-24, F-13
LOW-VALUES, illegal COBOL data 5-2

M
makefiles

Informix A-4
Oracle C-11
Sybase E-6

managing drivers, ODBC D-6
map files, creating

Acu4GL for DB2 F-17
Acu4GL for ODBC D-22

mapping
COBOL data to ODBC data D-39
COBOL records to a database 1-12
columns and records 1-11, 3-3
DB2 data to COBOL F-29
DB2 data types F-29
ODBC data to COBOL D-40
ODBC data types D-38
other files to an XFD file 3-10
XFD files 3-9

matching
COBOL fields to database fields 7-2
numeric fields to database fields 7-3
text fields to database fields 7-3

MAX_CURSORS configuration variable C-22

 Index-27
Acu4GL for Informix A-13
menus, demonstration program

Help 2-11
Options 2-11
Position 2-10
Record 2-9

Microsoft SQL Server - Query Analyzer B-4
modifying COBOL procedures 9-10
multiple indexes and tables 9-4
multiple record definitions

FILLER 3-5, 3-6, 4-21
OCCURS 3-5, 3-6
overview 3-6
REDEFINES 3-5, 4-20, 4-23

multiple-tier architecture, ODBC D-5

N
NAME directive 3-8, 4-13
names, fields

conflicts 7-4
identical 3-8
long 3-8
overview 7-4

names, XFDs
ASSIGN 3-9
final 3-10
overview 3-9

naming indexes 1-15
network service C-21
new database files, overview 7-2
NUMERIC directive 4-16
numeric fields, matching to database 7-3

Index-28
O
OCCURS definition 3-6
ODBC configuration variables, list of

4GL_MAX_DATE D-18
4GL_MIN_DATE D-19
A_ODBC_ALTERNATE_COMMIT_LOGIC D-19
A_ODBC_COMMIT_ON_BEGIN D-21
A_ODBC_DATASOURCE D-21
A_ODBC_ERROR_MAP_FILE D-22
A_ODBC_LOCK_METHOD D-24
A_ODBC_LOGIN D-26, D-34, F-27
A_ODBC_NO_NULL_COLUMNS D-27
A_ODBC_PASSWD D-27
A_ODBC_PRINT_LOG D-28
A_ODBC_QUOTE_IDENTIFIERS D-28
A_ODBC_STRICT_EQUAL D-28
A_ODBC_UNSIGNED_TINYINT D-30
A_ODBC_USE_CHAR_FOR_BINARY D-31
A_ODBC_USE_SPACE_IN_DATES D-31

ODBC configuration variables, overview D-18
ODBC, Acu4GL

application D-6
concepts D-2
configuration variables D-18
creating map files D-22
data sources D-7, D-12
data type mapping D-38
description D-2
designating host data source D-16
Driver Manager D-6
driver requirements D-36
driver test D-37
drivers D-6
getting started D-10

 Index-29
information D-2
installation and setup D-10
limits and ranges D-36
mapping COBOL data to ODBC data D-39
mapping ODBC data types to COBOL data types D-40
origins of D-2
record and table locking D-35
restrictions D-3
runtime errors D-42
setting up the user environment D-14
SQL errors D-44
structure

multiple-tier architecture D-5
overview D-3
single-tier architecture D-4

troubleshooting D-42
Open Database Connectivity. See ODBC
open_cursors parameter, Oracle C-5
options

-F4 3-2
-Fa 3-2
-Fx 3-2

Options menu, demonstration program 2-11
ORA_LOGIN configuration variable C-25
ORA_PASSWD configuration variable C-25
Oracle configuration variables, list of

A_ORA_DATABASE C-21
A_ORA_HINTS C-22
A_ORA_MAX_FILE_CURSORS C-22
A_ORA_WAIT_LOCK C-23
A_ORACLE_ERROR_FILE C-23
COMMIT_COUNT C-23
ORA_LOGIN C-25
ORA_PASSWD C-25
USER_PATH C-26

Index-30
Oracle configuration variables, overview C-21
Oracle Hints feature, turning on C-22
Oracle Instant Client C-20
Oracle, Acu4GL

checking system parameters C-14
configured login C-16
creating a new runtime C-10
database table C-28
designating host file system C-17
getting started C-7
installation for UNIX C-9
installation for Windows C-7
Instant Client C-20
limits and ranges C-29
linking C-8
linking runtime C-12
makefiles C-11
open_cursors C-5
record locking C-3
runtime errors C-30
SCO UNIX C-13
security C-6
setting up the search path C-18
setting up the user environment C-16
setting up user accounts C-15
shared libraries C-13
supported features C-28
table ownership C-6
transactions C-2, C-19, C-28
troubleshooting C-30

origins of ODBC D-2
OTHER condition 4-21
output, file 9-3
overriding the WHERE constraint 8-13
overview

 Index-31
Acu4GL 1-2
configuration variables 8-4
data dictionaries 3-1
demonstration program 2-6
document 1-3
getting started 2-2
installation 2-2
multiple record definitions 3-6
ODBC D-2
Sybase E-2
XFDs 3-9

ownership, tables
Oracle, Acu4GL C-6
SQL Server, Acu4GL B-2
Sybase, Acu4GL E-2

P
parameters

ERROR-CODE 4-8
Oracle system C-14

performance
compile errors 9-12
compile warnings 9-14
data searches 9-5
database interaction with COBOL 9-6
file input and output 9-3
guidelines 9-2
improving database C-22
Informix 7.2 and 7.3 A-13
overview 9-2
planning ahead 9-7
restructuring data 9-5
runtime errors

Index-32
DB2 F-31
Informix A-23
ODBC D-42
Oracle C-30
SQL Server B-39
Sybase E-54

SQL errors, ODBC D-44
tables and multiple indexes 9-4
transactions 9-4
Vision files 9-5

planning ahead, growth 9-7
Position menu, demonstration program 2-10
preparing a COBOL program 6-2
procedures

COBOL 9-10
SQL Server B-31
stored B-30
Sybase E-46

programs
and sql.acu 2-4
COBOL, preparing and compiling 6-2
demonstration 2-6
inf_inst A-4
sample Informix A-7

Q
Query Analyzer B-4

R
RDBMS (relational database management system) 1-2
record definitions 3-5
record locking

 Index-33
Acu4GL C-4, F-4
Acu4GL for DB2 F-3, F-28
Acu4GL for ODBC D-35
Acu4GL for Oracle C-3
Acu4GL for Sybase E-43
COMMIT_COUNT=0 8-6, C-4, F-4
COMMIT_COUNT=-1 8-7, C-5, F-5
COMMIT_COUNT=n 8-6, C-4, F-5

Record menu, demonstration program 2-9
records

forming COBOL 1-13
mapping 1-11, 3-3

REDEFINES definition 3-5, 4-20, 4-23
relational database management system (RDBMS) 1-2
requests, passing I/O to interface 1-13
requirements, ODBC driver D-36
restrictions, ODBC D-3
restructuring data 9-5
retrieving errors for Informix 9-19
REWRITE method

Sybase E-3
routines, interface 1-7
running sql.acu

from a program 2-4
from the command line 2-3

running the demonstration program 2-8
runtime

Acu4GL for Informix A-4
Acu4GL for Oracle C-10
Acu4GL for Sybase E-6
linking Acu4GL for DB2 F-8
linking Acu4GL for Informix A-5
linking Acu4GL for Oracle C-12
linking Acu4GL for Sybase E-9

runtime configuration variables 8-4

Index-34
runtime errors
Acu4GL for DB2 F-31
Acu4GL for Informix A-23
Acu4GL for ODBC D-42
Acu4GL for Oracle C-30
Acu4GL for SQL Server B-39
Acu4GL for Sybase E-54
retrieving 9-16

runtime module, ACUCOBOL-GT 1-11
runtime verification, demonstration program 2-7

S
sample program, Acu4GL for Informix A-7
SCO UNIX, relinking Oracle C-13
search path, setting up for Acu4GL for Oracle C-18
searching for XFD files 8-18
SECONDARY_TABLE directive 4-17
security

Oracle, Acu4GL C-6
SQL Server B-3
Sybase, Acu4GL E-3

sequencing, data 7-2
servers

SQL Server B-2
Sybase E-2

SETPOS
DB2 F-20
ODBC D-25

SETSTMTOPTION
DB2 F-21
ODBC D-26

setting database-specific variables 1-13
setting the files host 1-12

 Index-35
setting up a search path for Oracle C-18
setting up Acu4GL for ODBC D-10
setting up Acu4GL for Sybase E-4
setting up data sources, Acu4GL for ODBC D-12
setting up user accounts

Acu4GL for Oracle C-15
Acu4GL for SQL Server B-7
Acu4GL for Sybase E-21

setting up user environment
Acu4GL for DB2 F-10
Acu4GL for ODBC D-14
Acu4GL for Oracle C-16
Acu4GL for SQL Server B-7
Acu4GL for Sybase E-21

settling isolation levels D-24, F-19
shared libraries

Acu4GL for DB2 F-9
Acu4GL for Informix A-6
Acu4GL for Oracle C-13
Acu4GL for Sybase E-10

single locking, file options, compiler 8-3
single-tier architecture

Acu4GL for ODBC D-8
ODBC D-4

sources, data
designating host for DB2 F-13
designating host for ODBC D-16
ODBC D-7
setting up for ODBC D-12

sp_AcuInit procedure
SQL Server B-36
Sybase E-51

sp_AcuInit stored procedure E-12, E-17, E-19
sp_AcuRemovrUnusedLocks_1 procedure

SQL Server B-37

Index-36
Sybase E-51
sp_AcuTableReport_1 procedure

SQL Server B-37
Sybase E-52

sp_AcuUserCount_1 procedure
SQL Server B-37
Sybase E-52

sp_AcuZeroUserCount procedure
SQL Server B-38
Sybase E-52

SPACES, illegal COBOL data 5-2
SQL errors, ODBC D-44
SQL generation 1-10
SQL Server configuration variables, list of

4GL_IGNORED_SUFFIX_LIST 8-10
A_MSSQL_ADD_IDENTITY B-11
A_MSSQL_ADD_TIMESTAMP B-11
A_MSSQL_APPROLE_NAME B-12
A_MSSQL_APPROLE_PASSWD B-12
A_MSSQL_AUTHENTICATION B-22
A_MSSQL_CURSOR_OPTION B-13
A_MSSQL_DATABASE B-14
A_MSSQL_DEADLOCK_LOOPS B-14
A_MSSQL_DEFAULT_CONNECTION B-15
A_MSSQL_FAST_ACCESS B-16
A_MSSQL_LOCK_DB B-17
A_MSSQL_LOGIN B-18
A_MSSQL_MAX_CHARACTERS B-18
A_MSSQL_MAX_COLUMNS B-19
A_MSSQL_NATIVE_LOCK_TIMEOUT B-19
A_MSSQL_NO_23_ON_START B-21
A_MSSQL_NO_COUNT_CHECK B-20
A_MSSQL_NO_DBID B-21
A_MSSQL_NO_RECORD_LOCKS B-21
A_MSSQL_NO_TABLE_LOCKS B-21

 Index-37
A_MSSQL_PACKETSIZE B-22
A_MSSQL_PASSWD B-23
A_MSSQL_ROWCOUNT B-24
A_MSSQL_SELECT_KEY_ONLY B-24
A_MSSQL_SKIP_ALTERNATE_KEYS B-25
A_MSSQL_TRANSLATE_TO_ANSI B-25
A_MSSQL_UNLOCK_ON_EXECUTE B-25
A_MSSQL_USE_DROPDOWN_QUERIES B-26
A_MSSQL_VISION_LOCKS_FILE B-27

SQL Server configuration variables, overview B-11
SQL Server, Acu4GL

configuration variables B-11
database table B-28
designating host file system B-8
getting started B-4
installation B-4

client B-7
on client B-5
Windows NT server B-5

limits and ranges B-38
overview B-2
runtime errors B-39
security B-3
servers B-2
setting up a user environment B-7
setting up user accounts B-7
stored procedures B-31
table locking B-28
table ownership B-2
troubleshooting B-39

SQL statements, building 1-13
sql.acu utility

introduction 2-3
running from a program 2-4
running from the command line 2-3

Index-38
START TRANSACTION implied 8-3
starting the demonstration program 2-8
statements, building SQL 1-13
steps to follow

accessing a database 1-13
building SQL statements 1-13
compiling with -Fx 1-12
creating dictionaries 1-12
forming COBOL records 1-13
passing I/O requests 1-13
setting database-specific variables 1-13
setting the files host 1-12

stored procedures B-30
sp_AcuInit E-12, E-17, E-19
storing in alternate database B-6, E-12, E-17, E-19

stored procedures, SQL Server
creating B-31
sp_AcuInit B-36
sp_AcuRemoveUnusedLocks-1 B-37
sp_AcuTableReport_1 B-37
sp_AcuUserCount_1 B-37
sp_AcuZeroUserCount B-38
tablename_delete B-33
tablename_insert B-33
tablename_read B-34
tablename_startnnn B-35
tablename_update B-34
upgrading B-7, B-31

stored procedures, Sybase
creating E-15
installing E-16, E-19
sp_AcuInit E-51
sp_AcuRemoveUnusedLocks-1 E-51
sp_AcuTableReport_1 E-52
sp_AcuUserCount_1 E-52

 Index-39
sp_AcuZeroUserCount E-52
tablename_delete E-48
tablename_insert E-47
tablename_read E-48
tablename_startnnn E-49
tablename_update E-49
upgrading Acu4GL for E-13, E-17, E-20

structure, ODBC D-3
support, technical 2-2
supported features

Informix A-19
Oracle C-28

switching file systems, Informix A-18
Sybase configuration variables, list of

A_SYB_ADD_IDENTITY E-25
A_SYB_ADD_TIMESTAMP E-25
A_SYB_CHECK_DELETE_SP E-26
A_SYB_CHECK_INSERT_SP E-26
A_SYB_CHECK_UPDATE_SP E-27
A_SYB_CURSOR_OPTION E-27
A_SYB_DATABASE E-28
A_SYB_DEFAULT_CONNECTION E-29
A_SYB_EXTRA_PROC E-30
A_SYB_FAST_ACCESS E-31
A_SYB_FORCED_INDEX E-32
A_SYB_LOCK_DB E-33
A_SYB_LOGIN E-33
A_SYB_MAX_CHARACTERS E-34
A_SYB_MAX_COLUMNS E-34
A_SYB_NATIVE_LOCK_TIMEOUT E-35
A_SYB_NO_23_ON_START E-37
A_SYB_NO_COUNT_CHECK E-36
A_SYB_NO_DBCLOSE E-36
A_SYB_NO_DBID E-36
A_SYB_NO_RECORD_LOCKS E-36

Index-40
A_SYB_NO_TABLE_LOCKS E-37
A_SYB_PACKETSIZE E-37
A_SYB_PASSWD E-38
A_SYB_ROWCOUNT E-39
A_SYB_SELECT_KEY_ONLY E-39
A_SYB_SKIP_ALTERNATE_KEYS E-40
A_SYB_TRANSLATE_TO_ANSI E-40
A_SYB_UNLOCK_ON_EXECUTE E-41
A_SYB_USE_DROPDOWN_QUERIES E-41
A_SYB_VISION_LOCKS_FILE E-42

Sybase configuration variables, overview E-25
Sybase, Acu4GL

concepts E-2
configuration variables E-25
creating a new runtime E-6
creating stored procedures E-15
designating host file system E-22
getting started E-3
information E-2
installation and setup E-4
installing stored procedures E-16, E-19
limits and ranges E-52
linking runtime E-9
makefiles E-6
record and table locking E-43
REWRITE method E-3
runtime errors E-54
security E-3
servers E-2
setting up the user environment E-21
setting up user accounts E-21
shared libraries E-10
stored procedures E-46
table ownership E-2
troubleshooting E-53

 Index-41
syntax
directives 4-3
Indicator area 4-3
using the $ symbol 4-3

system parameters, Oracle C-14
systems, designating host file

DB2 F-11
Oracle C-17
SQL Server B-8
Sybase E-22

systems, Informix file A-18

T
table locking

ODBC D-35
SQL Server B-28
Sybase E-43

table ownership
Oracle, Acu4GL C-6
SQL Server B-2
Sybase, Acu4GL E-2

tablename_delete procedure
SQL Server B-33
Sybase E-48

tablename_insert procedure
SQL Server B-33
Sybase E-47

tablename_read procedure
SQL Server B-34
Sybase E-48

tablename_startnnn procedure
SQL Server B-35
Sybase E-49

Index-42
tablename_update procedure
SQL Server B-34
Sybase E-49

tables
and multiple indexes 9-4
creating with sql.acu 2-3
database formation of 3-3
Oracle database C-28
owners B-15
SQL Server database B-28

technical tips, Informix A-18
test, ODBC driver D-37
testing for illegal data 8-10
TEXT fields

illegal COBOL data 5-2
matching to database 7-3

tracing files 8-16
transactions

DB2 F-2
file options, compiler 8-2
guidelines 9-4
implied, file options, compiler 8-4
Oracle C-2, C-19, C-28

translation
COBOL I/O 1-10
filenames

Acu4GL for DB2 F-13
Acu4GL for Informix A-8
Acu4GL for ODBC D-17, D-18
Acu4GL for Oracle C-21
Acu4GL for SQL Server B-10
Acu4GL for Sybase E-24

troubleshooting
Acu4GL DB2 F-30
Acu4GL for Informix A-22

 Index-43
Acu4GL for Oracle C-30
Acu4GL for SQL Server B-39
Acu4GL for Sybase E-53
compile errors 9-12
compile warnings 9-14
data searches 9-5
database interaction with COBOL 9-6
file input and output 9-3
guidelines 9-2
Informix A-18
ODBC D-42
overview 9-2
planning ahead 9-7
restructuring data 9-5
runtime errors

Acu4GL for DB2 F-31
Acu4GL for Informix A-23
Acu4GL for ODBC D-42
Acu4GL for Oracle C-30
Acu4GL for SQL Server B-39
Acu4GL for Sybase E-54

SQL errors, ODBC D-44
tables and multiple indexes 9-4
transactions 9-4
Vision files 9-5

truncated field names 3-8
types, data

DB2 F-29
ODBC D-38

U
underscores in filenames A-8, B-10, C-21, D-17, E-24, F-13
unsupported data types, Informix A-21

Index-44
UPDATECOLUMN
DB2 F-21
ODBC D-26

upgrading databases 9-6
upgrading stored procedures

Acu4GL for Sybase E-13, E-17, E-20
SQL Server B-7, B-31

uppercase letters in filenames C-21
USAGE DISPLAY numbers, illegal COBOL data 5-2
USE GROUP directive 3-3, 4-6, 4-18
user accounts, setting up

Acu4GL for Oracle C-15
Acu4GL for SQL Server B-7
Acu4GL for Sybase E-21

user environment, setting up
Acu4GL for DB2 F-10
Acu4GL for ODBC D-14
Acu4GL for Oracle C-16
Acu4GL for SQL Server B-7
Acu4GL for Sybase E-21

USER_PATH configuration variable C-26, D-33, F-26
using Oracle database table C-28
using SQL Server database table B-28
using sql.acu 2-3
utilities

acu4glfd 6-10
cblutil 3-7
sql.acu 2-3

V
VAR_LENGTH directive 4-6, 4-20
variables

configuration 8-4

 Index-45
external 9-10
VAX and RMS file systems 1-6
verifying the runtime, demonstration program 2-7
Vision file systems 1-6
Vision files 9-5

W
warnings

compiler 9-14
database upgrades 9-6

Web runtime, ACUCOBOL-GT 1-8
WHEN directive 3-5, 4-20

and field names 3-9
WHERE constraint 9-7

overriding 8-13
working with COBOL 6-2

X
XFD (extended file descriptor) files 3-2

creating 8-2
locating 8-18
XML format 8-2

XFD data dictionaries, file options, compiler 8-4
XFD_DIRECTORY configuration variable 8-17
XFD_MAP configuration variable 3-10, 8-17
XFD_MAP_RESETS configuration variable 3-12, 8-18
XFD_PREFIX configuration variable 3-7, 8-18
XFDs (data dictionaries)

defaults 3-5
defined 1-8, 3-2
directives, introduction 4-2
file options, compiler 8-2

Index-46
location 3-7
mapping to other files 3-10
names 3-9
naming 3-9
XML stylesheet directive 4-26

XML format for XFD files 8-2
XSL directive 4-26

	Acu4GL Overview
	1.1 Welcome to Acu4GL
	1.2 Document Overview
	1.3 Accessing Data
	1.3.1 Interface Routines
	1.3.2 Data Dictionaries and Acu4GL
	1.3.3 The ACUCOBOL-GT Web Runtime and Acu4GL

	1.4 Database Concepts
	1.5 How Acu4GL Works
	1.5.1 What Is a Transparent Interface?
	1.5.2 Data Dictionaries and Mapping
	1.5.3 Steps to Follow
	1.5.4 Summary

	Getting Started
	2.1 Getting Started
	2.2 Technical Services
	2.3 Installation
	2.4 Using the “sql.acu” Program
	2.4.1 Running “sql.acu” From the Command Line
	2.4.2 To Call “sql.acu” From a Program

	2.5 The Demonstration Program

	Data Dictionaries
	3.1 Data Dictionaries or XFDs
	3.2 XFD Files
	3.2.1 Understanding How the Database Table Is Formed
	3.2.2 Defaults Used in XFD Files
	3.2.3 Summary of Dictionary Fields
	3.2.4 Identical Field Names
	3.2.5 Long Field Names
	3.2.6 Naming the XFD File

	Using Directives
	4.1 What Are Directives?
	4.2 Directive Syntax
	4.3 Directives Supported by the Acu4GL Interfaces
	4.3.1 ALPHA
	4.3.2 BINARY
	4.3.3 COBOL-TRIGGER
	4.3.4 COMMENT
	4.3.5 DATE
	4.3.6 FILE
	4.3.7 NAME
	4.3.8 NUMERIC
	4.3.9 SECONDARY_TABLE
	4.3.10 USE GROUP
	4.3.11 VAR_LENGTH
	4.3.12 WHEN
	4.3.13 XSL

	Invalid Data
	5.1 Illegal COBOL Data
	5.1.1 Invalid Key Data
	5.1.2 Invalid Data Other Than Keys

	5.2 Invalid Database Data

	Working with COBOL
	6.1 Preparing and Compiling Your COBOL Program
	6.1.1 Compiling With No Directives
	6.1.2 Compiling With the WHEN Directive
	6.1.3 Using Additional Directives

	6.2 Creating File Descriptors and SELECT Statements

	New and Existing Databases
	7.1 Databases
	7.2 Default Acu4GL Behavior
	7.3 Accessing Existing Database Files
	7.3.1 How Do I Match Existing Text Fields?
	7.3.2 How Do I Match Existing Numeric Fields?
	7.3.3 Field Names
	7.3.4 Index Names

	Compiler and Runtime Options
	8.1 Compiler Options
	8.2 Runtime Configuration Variables
	4GL_2000_CUTOFF
	4GL_8_DIGIT_CUTOFF
	4GL_COLUMN_CASE
	4GL_COMMIT_COUNT
	4GL_CONVERT_DATE_ZERO
	4GL_DB_MAP
	4GL_EXTRA_DB_COLS_OK
	4GL_FULL_DATA_TEST
	4GL_IGNORED_SUFFIX_LIST
	4GL_ILLEGAL_DATA
	4GL_JULIAN_BASE_DATE
	4GL_USEDIR_LEVEL
	4GL_WHERE_CONSTRAINT
	DEFAULT_HOST
	filename_HOST
	FILE_TRACE
	XFD_DIRECTORY
	XFD_MAP
	XFD_MAP_RESETS
	XFD_PREFIX

	Performance and Troubleshooting
	9.1 Performance Issues
	9.1.1 Guidelines
	Guideline 1 - Database administrator
	Guideline 2 - Understand COBOL operations and database operation
	Guideline 3 - Program and database interaction
	Guideline 4 - Plan for growth

	9.1.2 The WHERE Constraint

	9.2 Troubleshooting
	9.2.1 Compiler Errors
	9.2.2 Compiler Warnings
	9.2.3 Retrieving Runtime Errors
	9.2.3.1 Retrieving messages using the “-x” runtime option
	9.2.3.2 Retrieving messages using the debugger
	9.2.3.3 Retrieving messages using C$RERR

	General Questions and Answers
	10.1 Introduction
	10.2 Questions and Answers

	Acu4GL for Informix Information
	A.1 Getting Started with Acu4GL for Informix
	A.1.1 Installation Preparation
	A.1.2 Installation Steps
	A.1.3 Designating a Database

	A.2 Filename Translation
	A.3 Configuration File Variables
	A_INF_DUPLICATE_KEY
	A_INF_NO_TRANSACTION_ERROR
	A_INFORMIX_ERROR_FILE
	DATABASE
	INF_LOGIN
	INF_PASSWD
	MAX_CURSORS

	A.4 Informix Performance
	A.5 Technical Tips
	A.6 Supported Features
	A.7 Limits and Ranges
	A.8 Runtime Errors
	A.9 Common Questions and Answers

	Acu4GL for Microsoft SQL Server Information
	B.1 Microsoft SQL Server Concepts Overview
	B.2 Installation and Setup
	B.2.1 Installing on a Client Machine
	B.2.2 Setting Up a User Account
	B.2.3 Setting Up the User Environment
	B.2.4 Designating the Host File System

	B.3 Filename Translation
	B.4 Configuration File Variables
	A_MSSQL_ADD_IDENTITY
	A_MSSQL_ADD_TIMESTAMP
	A_MSSQL_APPROLE_NAME
	A_MSSQL_APPROLE_PASSWD
	A_MSSQL_CURSOR_OPTION_1, A_MSSQL_CURSOR_OPTION_2, A_MSSQL_CURSOR_OPTION_3
	A_MSSQL_DATABASE
	A_MSSQL_DEADLOCK_LOOPS
	A_MSSQL_DEFAULT_CONNECTION
	A_MSSQL_DEFAULT_OWNER
	A_MSSQL_FAST_ACCESS
	A_MSSQL_LOCK_DB
	A_MSSQL_LOGIN
	A_MSSQL_MAX_CHARACTERS
	A_MSSQL_MAX_COLUMNS
	A_MSSQL_NATIVE_LOCK_TIMEOUT
	A_MSSQL_NO_COUNT_CHECK
	A_MSSQL_NO_DBID
	A_MSSQL_NO_RECORD_LOCKS
	A_MSSQL_NO_TABLE_LOCKS
	A_MSSQL_NO_23_ON_START
	A_MSSQL_NT_AUTHENTICATION
	A_MSSQL_PACKETSIZE
	A_MSSQL_PASSWD
	A_MSSQL_ROWCOUNT
	A_MSSQL_SELECT_KEY_ONLY
	A_MSSQL_SKIP_ALTERNATE_KEYS
	A_MSSQL_TRANSLATE_TO_ANSI
	A_MSSQL_UNLOCK_ON_EXECUTE
	A_MSSQL_USE_DROPDOWN_QUERIES
	A_MSSQL_VISION_LOCKS_FILE

	B.5 Using the Database Table
	B.6 Table Locking
	B.7 Stored Procedures
	B.7.1 Developer- or Site-supplied Stored Procedures
	tablename_insert
	tablename_delete
	tablename_read
	tablename_update
	tablename_startnnn

	B.7.2 Built-in Stored Procedures

	B.8 Limits and Ranges
	B.9 Runtime Errors
	B.10 Common Questions and Answers

	Acu4GL for Oracle Information
	C.1 Oracle Concepts Overview
	C.2 Installation and Setup
	C.2.1 Windows Installation Steps
	C.2.2 UNIX Installation Steps
	C.2.3 Completing the Installation
	C.2.4 Checking System Parameters
	C.2.5 Setting Up a User Account
	C.2.6 Setting Up the User Environment
	C.2.7 Designating the Host File System
	C.2.8 Setting Up the Search Path
	C.2.9 Handling Transactions

	C.3 Oracle’s Instant Client
	C.4 Filename Translation
	C.5 Configuration File Variables
	A_ORA_DATABASE
	A_ORA_HINTS
	A_ORA_MAX_FILE_CURSORS
	A_ORA_NLS_SORT
	A_ORA_WAIT_LOCK
	A_ORACLE_ERROR_FILE
	COMMIT_COUNT
	ORA_LOGIN
	ORA_PASSWD
	USER_PATH

	C.6 Using the Database Table
	C.7 Supported Features
	C.8 Limits and Ranges
	C.9 Runtime Errors
	C.10 Common Questions and Answers

	Acu4GL for ODBC Information
	D.1 ODBC Concepts
	D.1.1 What Is ODBC?
	D.1.2 Origins of ODBC
	D.1.3 Restrictions
	D.1.4 ODBC Structure

	D.2 Acu4GL for ODBC Installation and Setup
	D.2.1 ODBC Installation
	D.2.2 Installation of Acu4GL for ODBC
	D.2.3 Setting Up Data Sources
	D.2.4 Setting Up the User Environment
	D.2.5 Designating the Host File System
	D.2.6 Designating the Host Data Source

	D.3 Filename Translation
	D.4 Decimal Points
	D.5 Configuration File Variables
	4GL_MAX_DATE
	4GL_MIN_DATE
	A_ODBC_ALTERNATE_COMMIT_LOGIC
	A_ODBC_CATALOG
	A_ODBC_COMMIT_ON_BEGIN
	A_ODBC_DATASOURCE
	A_ODBC_ERROR_MAP_FILE
	A_ODBC_ISOLATION_LEVEL
	A_ODBC_LOCK_METHOD
	A_ODBC_LOGIN
	A_ODBC_NO_NULL_COLUMNS
	A_ODBC_PASSWD
	A_ODBC_PRINT_LOG
	A_ODBC_QUOTE_IDENTIFIERS
	A_ODBC_STRICT_EQUAL
	A_ODBC_TABLE_TYPES
	A_ODBC_UNSIGNED_TINYINT
	A_ODBC_USE_CATALOG
	A_ODBC_USE_CHAR_FOR_BINARY
	A_ODBC_USE_SPACE_IN_DATES
	A_ODBC_USE_SQLCOLUMNS
	A_ODBC_USE_SQLTABLES
	USER_PATH

	D.6 Mixed-case SQL Identifiers
	D.7 Record and Table Locking
	D.8 Limits and Ranges
	D.9 Driver Requirements
	D.10 Data Type Mapping
	D.11 Troubleshooting
	D.11.1 Runtime Errors
	D.11.2 Native SQL Errors

	D.12 Common Questions and Answers

	Acu4GL for Sybase Information
	E.1 Sybase Concepts Overview
	E.2 Installation and Setup
	E.2.1 Sybase RDBMS Installation
	E.2.2 Acu4GL for Sybase Installation
	E.2.3 UNIX Client Installations
	E.2.3.1 UNIX Client Installation Steps
	E.2.3.2 UNIX or Windows NT server Intallations

	E.2.4 Windows Client and UNIX or Windows NT Server Installations
	E.2.4.1 UNIX Server Machine Installations
	E.2.4.2 Windows NT Server and Windows Client Installations
	E.2.4.3 Windows client Installations

	E.2.5 Setting Up a User Account
	E.2.6 Setting Up the User Environment
	E.2.7 Designating the Host File System

	E.3 Filename Translation
	E.4 Configuration File Variables
	A_SYB_ADD_IDENTITY
	A_SYB_ADD_TIMESTAMP
	A_SYB_CHECK_DELETE_SP
	A_SYB_CHECK_INSERT_SP
	A_SYB_CHECK_READ_SP
	A_SYB_CHECK_UPDATE_SP
	A_SYB_CURSOR_OPTION_1, A_SYB_CURSOR_OPTION_2, A_SYB_CURSOR_OPTION_3
	A_SYB_DATABASE
	A_SYB_DEADLOCK_LOOPS
	A_SYB_DEFAULT_CONNECTION
	A_SYB_EXTRA_PROC
	A_SYB_FAST_ACCESS
	A_SYB_FORCED_INDEX
	A_SYB_LOCK_DB
	A_SYB_LOGIN
	A_SYB_MAX_CHARACTERS
	A_SYB_MAX_COLUMNS
	A_SYB_NATIVE_LOCK_TIMEOUT
	A_SYB_NO_COUNT_CHECK
	A_SYB_NO_DBCLOSE
	A_SYB_NO_DBID
	A_SYB_NO_RECORD_LOCKS
	A_SYB_NO_TABLE_LOCKS
	A_SYB_NO_23_ON_START
	A_SYB_PACKETSIZE
	A_SYB_PASSWD
	A_SYB_ROWCOUNT
	A_SYB_SELECT_KEY_ONLY
	A_SYB_SKIP_ALTERNATE_KEYS
	A_SYB_TRANSLATE_TO_ANSI
	A_SYB_UNLOCK_ON_EXECUTE
	A_SYB_USE_DROPDOWN_QUERIES
	A_SYB_VISION_LOCKS_FILE

	E.5 Record and Table Locking
	E.6 Stored Procedures
	E.6.1 Developer- or Site-supplied Stored Procedures
	tablename_insert
	tablename_delete
	tablename_read
	tablename_update
	tablename_startnnn

	E.6.2 Built-in Stored Procedures

	E.7 Limits and Ranges
	E.8 Runtime Errors
	E.9 Common Questions and Answers

	Acu4GL for DB2 Information
	F.1 DB2 Concepts Overview
	F.2 Installation and Setup
	F.2.1 Windows Installation
	F.2.2 UNIX Installation Steps
	F.2.3 Sample Configuration File
	F.2.4 Setting Up the User Environment
	F.2.5 Designating the Host File System
	F.2.6 Designating the Host Data Source

	F.3 Filename Translation
	F.4 Decimal Points
	F.5 Configuration File Variables
	A_DB2_ALTERNATE_COMMIT_LOGIC
	A_DB2_CATALOG
	A_DB2_COMMIT_ON_BEGIN
	A_DB2_DATASOURCE
	A_DB2_ERROR_MAP_FILE
	A_DB2_ISOLATION_LEVEL
	A_DB2_LOCK_METHOD
	A_DB2_LOGIN
	A_DB2_PASSWD
	A_DB2_STRICT_EQUAL
	A_DB2_TABLE_TYPES
	A_DB2_USE_CATALOG
	A_DB2_USE_CHAR_FOR_BINARY
	A_DB2_USE_SQLCOLUMNS
	A_DB2_USE_SQLTABLES
	USER_PATH

	F.6 Record and Table Locking
	F.7 Limits and Ranges
	F.8 Data Type Mapping
	F.9 Runtime Errors
	F.10 Common Questions and Answers

	Glossary of Terms
	Index

