

User’s Manual for Asix 7

www.asix.com.pl

Asix.Evo - Techniques of Diagram
Creation

Doc. No ENP7E009
Version: 2012-08-30

http://www.asix.com.pl/�

Asix.Evo

2

ASKOM® and Asix® are registered trademarks of ASKOM Spółka z o.o., Gliwice. Other brand names,
trademarks, and registered trademarks are the property of their respective holders.

All rights reserved including the right of reproduction in whole or in part in any form. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without prior written permission
from the ASKOM.

ASKOM sp. z o. o. shall not be liable for any damages arising out of the use of information included in the
publication content.

Copyright © 2012, ASKOM Sp. z o. o., Gliwice

ASKOM Sp. z o. o., ul. Józefa Sowińskiego 13, 44-121 Gliwice,
tel. +48 32 3018100, fax +48 32 3018101,

http://www.askom.com.pl, e-mail: office@askom.com.pl

http://www.askom.com.pl/�

1 Universal Object Creation Methods .. 6

1.1. Suffix Notation of Variable Names .. 7

1.2. Using Variable Attributes .. 8

1.3. Global Properties ... 9

1.4. Templates and Parameterized Diagrams .. 10

2 Displaying Process Variable Values in Text Form .. 11

2.1. Displaying Formatted Value .. 12

2.2. Making the Text Dependent on the Value .. 14

2.2.1. Use of Conditional Expressions ... 15

2.2.2. Using Multi-State Method ... 16

2.3. Using Warning Limits for the Variable Value .. 17

2.3.1. The Use of Suffix Notation ... 18

2.3.2. Application of Variable Attributes ... 19

2.4. Handling Monitored Variable Status ... 21

3 Formatting Numerical Values .. 22

3.1. Conversion of Numerical Values ... 23

3.2. Conversion of Values of the DateTime Type .. 25

4 Object Appearance Animation .. 27

4.1. Animated Images ... 28

4.2. Animation of Pipes, Conveyors and Lines ... 29

4.2.1. Pipe .. 30

4.2.2. Conveyor .. 31

4.2.3. Line .. 32

4.3. Implementation of Blinking Effect by Changing Object Properties 33

5 Rules for Opening and Closing Synoptic Windows .. 35

5.1. Opening Synoptic Windows .. 36

5.1.1. Opening Window at the Application Start-up. .. 36

5.1.2. Opening Window and Diagram with OpenWindow Action. .. 37

5.1.3. Opening Diagram Without Use of Predefined Synoptic Window 38

5.2. Controlling the Location and Size of Windows .. 39

5.3. Closing Window and Diagram ... 41

5.4. Mutual Overlaying Control of Synoptic Windows ... 43

Asix.Evo

4

6 Organization of Control Operations .. 44

6.1. Immediate Control .. 45

6.2. Delayed Control Operations (with Confirmation) ... 46

6.3. Control by Using SetVariable Operator Action .. 48

6.4. Control Validity Check ... 49

6.5. Controlling Permissions ... 50

6.5.1. Double Confirmation of Control Operations ... 51

7 Parameterization of Interactive Functions of Passive Objects .. 53

7.1. Navigation Through Text Links .. 54

7.2. Connecting Context Menu to Object ... 55

7.3. Diagram Activity Zones .. 56

7.4. Self-Repetitive Operations .. 58

7.5. Keyboard Support .. 59

8 Use of Transparency Effect .. 60

8.1. Window Transparency ... 61

8.2. Object Transparency ... 62

8.3. Hiding Objects ... 63

8.4. Use of the Transparent Colour .. 64

9 Controlling the Behaviour of Objects .. 65

9.1. Using Virtual Variables .. 66

9.2. Modifying Object Properties ... 67

10 Application of Button Class Objects .. 68

10.1. Single-Position Button ... 69

10.1.1. Single-Position Button Executing Operator Actions .. 70

10.1.2. Single-Position Button Executing Control Actions ... 71

10.2. Single-Position Button with Repeat Function ... 72

10.3. Single-Position Button with Hold .. 73

10.4. Two-Position Button .. 74

10.5. Two-Position Button with Delayed Control ... 75

10.6. Switch .. 76

10.7. Bitwise Control .. 77

10.8. Grouping Buttons .. 78

11 Control Operations in Text Class Objects .. 80

11.1. Controlling the Numerical Value Entered by the User .. 81

5

11.2. Controls From The Selection List ... 83

12 Using Sliders in Bar Class Objects .. 85

12.1. Using Slider to Control Set Point Values ... 86

12.2. Using the Slider to Control Set Value With a New Set Point Preview 87

13 Motion Animation and Object Resizing ... 89

13.1. Changing Position .. 90

13.2. Changing Position Within Area Defined by Another Object ... 91

13.3. Positioning Groups and Templates ... 92

14 Alarm State Indication and Handling ... 93

14.1. Single Alarm State Monitoring and Handling .. 94

14.2. Indicating States of Alarm Group .. 96

15 Controlling Chart Class Objects ... 97

15.1. Controlling Time Range of Chart ... 98

15.1.1. Modifying Chart Object Properties ... 99

15.1.2. Controlling Via Virtual Variable .. 101

15.2. Controlling Trend Patterns Displaying ... 102

16 Using Templates .. 104

Asix.Evo

6

1 Universal Object Creation Methods

 Easy copying of the objects created as well as easy and fast modification implementation for the
entire application should be the goal of diagram creation. This chapter describes the available
mechanisms and techniques aiming to achieve this goal. In subsequent chapters, these techniques
will be consequently used in the described examples.

7

1.1. Suffix Notation of Variable Names

A well-designed object for monitoring the process variable status may be copied and switched to
monitoring other variable by changing just a single property. The first of the mechanisms facilitating
such a structure is the Main variable property and suffix notation of variable names.

Case 1

State Properties, primary group
 Text =VarStringValue(V1)
 Color =Variable(V1)>50?Red:Black

Case 2

Basic Properties
 Main Variable V1
State Properties, primary group
 Text #
 Color =Variable()>50?Red:Black

These fragments of Text object parameterization function the same way. In the first example the
variable name is used twice. Making a copy and changing variable would require manual edition of
the two properties. In the second case, the variable name is used only once. Using the main variable

allows using Variable parameterless function and # short notation, indicating on the reference to

the formatted value of the main variable. Copying of the object is very simple, moreover, also the
Group replacement of variables editor function may be used.

Basic Properties
 Main Variable V1
 Control Variable #Control
State Properties, primary group
 Text =VarStringValue(”#Value”)

Another example demonstrates the use of suffix notation based on the main variable name. The #
symbol used in the context of the variable name means that object main variable name will be used
directly. In conjunction with additional text it creates a variable name which is a combination of main
variable name and the specified text. In this example, the controlled variable name is V1Control, and
the text displayed is the V1Value variable value. Because there is no direct reference to the main
variable, it is even not required from V1 to be the existing variable.

Asix.Evo

8

1.2. Using Variable Attributes

Another mechanism enabling creation of universal objects is provided by process variable attributes.

Basic Properties
 Main Variable V1
State Properties, primary group
 Text #
 Color =Variable()>Attribute(LimitHi)?Red:Black

Generally, each variable will have its own critical limit level. Entering its value directly would require

the Color property do be modified each time. The Attribute function takes a LimitHi attribute of

object main variable. After changing main variable name new limit value is retrieved automatically.
The additional benefit of using the attributes of a variable is that a subsequent change in the limits of
the variable definition database will not require modification of diagrams.

Any attributes from a predefined set may be placed in the variable definition database. It is also
possible to add custom attributes of any significance.

9

1.3. Global Properties

The global properties are defined in the separate operating panel which is opened via the Application
Explorer panel. The global properties allow creating a set of parameters that define the behaviour
and appearance of objects on all diagrams. Change of the global property value is immediately visible
in all objects that refer to this property.

State Properties, primary group
 Text #
 Color !NormalColor

In the above example the text is displayed in the colour specified in the NormalColor global property.
The subsequent colour change will not require change in the object.

The global value may be referenced also via the Property function.

The global properties are defined directly as usual. There are also other ways, such as the use of the
expression.

 =Color(Variable(),0,0)

This expression above when used in the global property of a colour type calculates a colour value
based on the main variable value of the object, which refers to the property. The calculating
algorithm may be changed at any time, without changing objects.

If the global property is not defined directly, the reference to it should be done by the ! notation.

Asix.Evo

10

1.4. Templates and Parameterized Diagrams

Templates and parameterized diagrams enable creating complete, predefined object sets for
multiple use. The templates can be embedded on the diagrams, while the diagrams itself make an
independent entity. The parameterized diagrams, by using appropriate opening function can be used
to display various data (box of "control window" type).

In both of these mechanisms, the designer defines certain set of parameters that control the
operation of objects in the embedded template or opened diagram. However, most of the properties
is defined directly in the template. Subsequent modification of the template (diagram) is immediately
reflected in the place of occurrence.

11

2 Displaying Process Variable Values in Text Form

This section describes method of displaying the process variable in a text form. The displayed text
formatting and display attributes changing depending on the different conditions will be discussed. In
particular, multi-state object creation process will be presented.

The Text class object is used in the Asix.Evo applications to display texts of any type, both static and
dynamic.

Note:
If displaying the values of multiple variables in tabular form is required the Variable table class object
may be used.

Asix.Evo

12

2.1. Displaying Formatted Value

Variant A

Basic Properties
 Main Variable VA001
State Properties, primary group
 Text #

Variant B

Basic Properties, primary group
 Text &VA001

Both of these parameterization variants cause the VA001 variable displaying. A variable value will be
converted into text based on Format attribute stored in the variable definition database. For
example, if the format is f2, the value of the variable will be displayed as a number with two decimal
places. If the format is not defined in the variable definition database, the conversion into text is
performed in a standard way, depending on the value type.

The variable name in the variant A is specified in the Main Variable property, and the text was

determined by a short notation #, indicating that the object main variable value is downloaded as a

text.

In the variant B only short notation &variable_name was used. It means that the specified variable

value will be downloaded as a text. For reasons that will be described later, it is recommended to use
the standard procedure of the variant A.

Variant C

The variant B should be used only in the simplest
parameterizations.

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text =VarStringValue()

This variant functioning is identical to the variant A. Instead of the short notation the VarStringValue
function was used that returns the object main variable value as a text.

Variant D

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text =Variable()

13

The difference between the variant D and the previous one is the use of the Variable function. This

function returns the main variable value as a number. Conversion into text will be made
automatically, the Format attribute will be negligible.

Variant E

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text =”Temperature = ” + VarStringValue()

 The text displayed will combine Temperature = text and formatted value of the VA001 variable.

Variant F

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text =Format("Temperatura = {0} \u00b0C", VarStringValue())

Formatted VA001 variable value is inserted into the text Temperatura = °C, replacing the {0} tag. The

Format function enables free creation of text strings based on the formatting text. The formatting

text content shows method of insertion of the sign specified in the Unicode (\u00b0) into the text
string.

Variant G

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text =Format("Temperatura = {0:f3} {1}", Variable(),

Attribute(Unit))

This variant functioning is similar to the previous one, except the two following differences. The
numerical value of the main variable is transferred to the Format function, and the conversion
method is specified by the {0:f3} tag. This allows for formatting other than those specified in the
variable definition database. In addition, the unit description is taken from the variable definition
database, from the Unit attribute by calling the Attribute function. This example shows one of the
benefits of the Main Variable property use. Without this, the analogous expression would look like
this:

=Format("Temperatura = {0:f2} {1}", Variable(VA001),Attribute(VA001,Unit))

The variable name would be used twice. Much more difficult is switching the object to monitor the
values of another variable.

Asix.Evo

14

2.2. Making the Text Dependent on the Value

In many cases, in addition to displaying the variable value, it is necessary to control display attributes.
A typical case is the control of limit overreaching states, measurement errors, etc.

15

2.2.1. Use of Conditional Expressions

Variant A

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color =Variable()>50?Red:Black

The conditional expression has been used in the Color property. If the main variable value exceeds
50, then the variable value is displayed in red.

Variant B

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color =Variable()>50?Red:Black
 Font style =Variable()>50?Bold:””

In the variant B, a text colour and font style is changed when the value of 50 is exceeded. Despite the
use of the main variable mechanism, the solution is still inefficient because of the double use of the
identical logical condition. Changing of this condition requires a lot of efforts and increases the
possibility of errors. This problem may be solved with the object state mechanism.

Asix.Evo

16

2.2.2. Using Multi-State Method

Variant C

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state number 1
 State Condition =Variable()>50
 Color Red
 Font Style Bold

Each additionally created state, in addition to a full set of basic state properties, has an additional
State Condition property. Its value specifies whether the state is taken into account when
determining the property value. In the example, if the value of main variable exceeds 50, state
definitions of the Color and Font Style properties will have priority over definitions of the primary
state. As a result, there will be obtained the effect as in option B, but without unnecessary iteration
of condition and conditional expressions.

17

2.3. Using Warning Limits for the Variable Value

Another common problem is the need to signalling the alarm limit exceeding. The alarm limit values
of measurement are sometimes stored in the other process variables. They can also be stored in the
variable definition database.

Asix.Evo

18

2.3.1. The Use of Suffix Notation

In the following example, it is assumed that the limits are stored in variables. Where, the following
naming convention is maintained: variable names of the limits are created by adding suffixes _lolo,
_lo, _hi, _hihi to the name of the measurement variable.

Variant A

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state number 1
 State Condition =Variable()<Variable(“#_lo”)
 Color Aqua
State Properties, state number 2
 State Condition =Variable()<Variable(“#_lolo”)
 Color Blue
State Properties, state no. 3
 State Condition =Variable()>Variable(“#_hi”)
 Color Red
State Properties, state no. 4
 State Condition =Variable()<Variable(“#_hihi”)
 Color Yellow

There were created 4 states which controls the exceeding of 4 limits. In the state expressions, the
main variable value is compared with the limit variable value. Variable names as #_lolo are the suffix
notation in which the # represents the main variable name.

Object dependency of variable names is minimal, switching the object to monitoring other variable
requires only change of the main variable name.

Each of the states has its own definition of the Color property. The value defined for active state will
be used to display. If there is more than one active state, then the value from the state with higher
number will be taken. Therefore, the sequence of defining the states is essential. The state _lolo
must be defined after the state _lo, and the state _hihi must be defined after the state _hi.

19

2.3.2. Application of Variable Attributes

The following example assumes that the limit values are stored in the attributes of variable definition
database.

Variant B

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state no. 1
 State Condition =Variable()<Attribute(LimitLo)
 Color Aqua
State Properties, state no. 2
 State Condition =Variable()<Attribute(LimitLoLo)
 Color Blue
State Properties, state no. 3
 State Condition =Variable()>Attribute(LimitHi)
 Color Red
State Properties, state no. 4
 State Condition =Variable()<Attribute(LimitHiHi)
 Color Yellow

The state conditions compare the variable value with the value of the specific limit loaded from a
database. The limit values must be stored in a database as a numerical values

Variant C

.

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state number 1
 State Condition =Variable()<Variable(Attribute(LimitLo))
 Color Aqua
State Properties, state number 2
 State Condition =Variable()<Variable(Attribute(LimitLoLo))
 Color Blue
State Properties, state number 3
 State Condition =Variable()>Variable(Attribute(LimitHi))
 Color Red
State Properties, state number 4
 State Condition =Variable()<Variable(Attribute(LimitHiHi))
 Color Yellow

Asix.Evo

20

The state conditions compare the variable value with the value of the specific limit loaded from a
database. However, in this case, the limit values stored in the database are the variable names

Variant D

 (limit
attribute value is passed to the Variable function).

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state number 1
 State Condition =Variable()<Asix6Attribute(LimitLo)
 Color Aqua
State Properties, state number 2
 State Condition =Variable()<Asix6Attribute(LimitLoLo)
 Color Blue
State Properties, state number 3
 State Condition =Variable()>Asix6Attribute(LimitHi)
 Color Red
State Properties, state number 4
 State Condition =Variable()<Asix6Attribute(LimitHiHi)
 Color Yellow

This example is a combination of options B and C. The Asix6Atrribute function accept both numerical
limits (returned directly) and limits in a form of the variable names (returned value of the variable).
In more complex cases, the Asix6Limit function can also be used.

21

2.4. Handling Monitored Variable Status

In addition to limit signalling, the indication of problems with the reading out of process variables is
also often required.

Variant A

Basic Properties
 Main Variable VA001
State Properties, primary state
 Text #
 Color Black
State Properties, state number 1
 State Condition =Variable()<Asix6Attribute(LimitLo)
 Color Aqua
State Properties, state no. 2
 State Condition =Variable()<Asix6Attribute(LimitLoLo)
 Color Blue
State Properties, state number 3
 State Condition =Variable()>Asix6Attribute(LimitHi)
 Color Red
State Properties, state number 4
 State Condition =Variable()<Asix6Attribute(LimitHiHi)
 Color Yellow
State Properties, state number 5
 State Condition =VarIsNotGood()
 Text =VarStringValue() + “ ?”
 Cross out color Violet

State no. 5 controls the status of the main variable. When it is incorrect, a question mark is added to
the value and displayed text is crossed out. Regardless of variable state, the overreaching control is
done in a normal way.

Asix.Evo

22

3 Formatting Numerical Values

Section 2.1. Displaying formatted value is an overview of basic rules for conversion numerical values
into texts. This section describes in detail a form of the formatting strings that control a method of
conversion.

The formatting strings are used in two positions. First of them is the Format attribute of the variable
definition database. It is used in the case of default conversion into text (use of the references #,
&name or the VarStringValue function). The second position is a formatting parameter of the Format
function.

The form of the formatting strings is compatible with the format used in the .NET Framework
libraries. Full description of the format can be found in the .NET Framework documentation available
in the Internet.

The format string used to call the Format function has the following structure:

{index, field_lenght: field_format}

The field_format element is to be used only in the Format attribute of variable definition database.

The index element specifies the parameter number of the Format function call which relates to the
given format string. The first parameter has an index of 0.

The field_length element specifies the minimum length of text being created. If the length of
formatted text will be shorter than declared, then it will be filled up with suitable number of spaces.
Blank spaces are added to the left side, when the field assumes a positive value or otherwise to the
right side.

The field_format element defines the way of converting a number into a text. The method of using it
will be demonstrated on examples.

23

3.1. Conversion of Numerical Values

In a case of the numerical value conversion, the field format consists of the one-character type
specifier and the numerical precision field. An interpretation of the precision field depends on type
used.

Type
specifier

Description Example

D , d Formatting integers. It can be used for
floating point values, but in this case
rounding to integer will be done. The
precision field specifies the minimum
number of digits. Leading zeros will be added
if necessary.

”D” 1234 -> 1234

”D” 1234,56 -> 1235

”D6” 1234 -> 001234

E , e Formatting floating point value in
exponential form. The precision field
specifies the number of fractional digits.

”E” 1234,56 ->
1,234560E+003

”e2” 1234,56 ->
1,23e+003

F , f Formatting floating point value in the total
and fractional parts separated by the system
separator. The precision field specifies the
number of fractional digits.

”F” 1234,567 -
>1234,57

”F4” 1234,567 -
>1234,5670

”F1” 1234,567 -
>1234,6

N , n Formatting floating point value in the total
and fractional parts separated by the system
separator. In addition, a group of digits are
separated by separator. The precision field
specifies the number of fractional digits.

”N” 1234,567 ->1
234,57

”N0” 1234,567 ->1
235

P , p Formatting integers and floating point values
in percentage form with a percent sign (%)
added. The value will be multiplied by 100
before formatting. The precision field

”P” 0,567 ->56,70%

”P1” 0,567 ->56,7%

Asix.Evo

24

specifies the number of fractional digits.

X , x Formatting integers in hexadecimal form.
It can be used for floating point values, but
in this case rounding to integer will be
done. The precision field specifies the
minimum number of digits. Leading zeros
will be added if necessary.

”X” 1234 ->4D3

”x4” 1234 ->04d3

The Custom Numeric Format Strings can be used in addition to the formatting described above. The
detailed description can be found in the .NET Framework documentation.

25

3.2. Conversion of Values of the DateTime Type

The standard predefined formats or freely created custom formats may be used in case of conversion
of the DateTime value.

The following table shows an example of standard formatting.

Type
specifier

Description Example

d Short date 2012-02-16

D Long date February 16, 2012

f Long date + short time February 16, 2012 16:
33

F Long date + short time February 16, 2012
16:33:48

g Full date + short time 2012-02-06 16:33

G Full date + long time 2012-02-06 16:33:48

M,
m

Month + day February 16

t Short time 16:33

T Long time 16:33:48

Y, y Year + month February 2012

If these methods of formatting are insufficient, custom formats may be used. This format is defined
by a sequence of specifiers that describe each field of the text being created. For example „dddd dd
MMMM yyyy HH:mm:ss.fff” format creates a text "Thursday 16 February 2012 16:33:48.240”.

The following table describes the basic component specifiers of custom formats.

Type specifier Description

d Day of the month in one- or two-digit format

dd Day of the month in two-digit format

ddd Abbreviated weekday name

Asix.Evo

26

dddd Full weekday name

f Fractional part of the second, depending on the number of specifiers
f a various time accuracy can be obtained.

H Hour in one- or two-digit format

HH Hour, two-digit (upper-case H - 24-hour format, lower-case h - 12-
hour format)

m Minute in one- or two-digit format

mm Minute, two-digit

M Month number in one- or two-digit format

MM Month number, two-digit

MMM Abbreviated name of month

MMMM Full name of month

s Second in one- or two-digit format

ss Second, two-digit

yy Last two digits of the year

yyyy Number of year

Neutral
characters

Copied directly into the output text

Characters
inside the
apostrophes
‘ ’

Copied directly into the output text

27

4 Object Appearance Animation

In many applications, there is a need to present the impression of movement of selected elements or
dynamic signalling of certain states on the diagrams. The following section describes how to
implement these functionality.

Asix.Evo

28

4.1. Animated Images

The simplest method is to use an animated GIF images. The only thing needed to be done is to use an
animated image in the Picture Name property of the Picture class object.

Basic Properties
 Main Variable VA001
State Properties, primary state
 Image Name NoFire
State Properties, state number 1
 State Condition =Variable()&1
 Picture Name Fire

If the least significant bit of the main variable is set, then the state no. 1 will become active and as a
result the Fire animated image will be displayed.

29

4.2. Animation of Pipes, Conveyors and Lines

Some of the object classes are initially prepared for animation of their movement. Motion
parameterization consist of appropriate setting of properties corresponding to appearance of object
and dynamic change of property modifying the move of the displayed shape. In general, the Counter
internal variable is used for animation, this variable is automatically incremented on the basis of
regular cycle.

Asix.Evo

30

4.2.1. Pipe

Basic Properties
 Main Variable VA001
State Properties, primary state
 Stripes Color Blue
 Fill Offset 0
State Properties, state number 1
 State Condition =Variable()&1
 Fill Offset =Variable(Counter)
State Properties, state number 2
 State Condition =Variable()&2
 Fill Offset =-Variable(Counter)*2
State Properties, state number 3
 State Condition =Variable()&4
 Fill Offset =-Variable(Counter)
State Properties, state number 4
 State Condition =Variable()&8
 Fill Offset =-Variable(Counter)*2

Setting the Stripes Color property causes that the pipe will be displayed in the striped form. Changing
the Fill Offset property causes shift of the stripes which allows to achieve the flow effect in the pipe.
Depending on the bit set for the main variable, the Fill Offset property is changed in different ways:
multiplication (or alternatively division) of the Counter variable value controls the speed of motion,
while the change of the expression sign controls the motion direction.

31

4.2.2. Conveyor

Basic Properties
 Main Variable VA001
 Begin roller style Drive
 End roller style Drive
 Harrow Conveyor True
State Properties, primary state
 Conveyor offset 0
 Begin drive rotation 0
 End drive rotation 0
State Properties, state number 1
 State Condition =Variable()&1
 Conveyor offset =Variable(Counter)
 Begin drive rotation =Variable(Counter)
 End drive rotation =Variable(Counter)

Setting the Roller style … and Harrow conveyor properties causes that the conveyor is displayed in a
way which allows to animate the rotation of end rollers and the conveyor belt movement. If the least
significant bit of the main variable is set, then the state no. 1 in which the motion animation is
executed becomes active. Changing the Conveyor offset property gives a conveyor movement effect.
Changing the drive rotation … property allows for the rotation animation of appropriate end roller.

Asix.Evo

32

4.2.3. Line

Basic Properties
 Main Variable Speed
 Dash style Dash
State Properties, primary state
 Stripes Color Blue
 Fill Offset =Variable()

Setting the Dash style and Stripes Color properties results in displaying the line in the striped form.
Fill Offset is taken from the Speed variable value. Shift speed of strips depends directly on the rate of
change of the variable - the controller programme can smoothly control the speed of motion. The
absence of the Speed variable stops the motion.

33

4.3. Implementation of Blinking Effect by Changing Object Properties

The most universal method of animation is the cyclic change of selected property of object. This
method can be applied to the object of any class and any property responsible for object appearance
may be used. Typically, the change of the property is synchronised by value of the IsBlinkOff function.
This function returns cyclically the true and false value. The standard transition period is 500 ms, but
it can be changed in the application settings. Application of the IsBlinkOff function provides the same
blinking rate for all object.

Some of the blinking function implementation variants are shown below.

Variant A

Basic Properties
 Main Variable VA001
State Properties, primary state
 Visible True
State Properties, state number 1
 State Condition =Variable()==3
 Visible =IsBlinkOff()

This scheme may be applied to the object of any class. If the main variable assumes value of 3, then
the active state no. 1 by changing the Visible property will cyclically display and hide the entire
object.

Variant B

Basic Properties
 Main Variable VA001
State Properties, primary state
 Color Blue
 Text #
State Properties, state number 1
 State Condition =IsAlarm("A_"+Attribute(Name))
 Color =IsBlinkOff()?Red:Green

In the example B, the colour of the text is modified in the Text object. In the normal state, the value
of main variable is displayed in a blue. If the alarm of A_VA001 ID is active (created on the basis of
the name of the main variable), then the variable value is displayed alternately in a red and green.
The conditional expression which uses the IsBlinkOff function, controls the colour choice.

Variant C

Asix.Evo

34

Basic Properties
 Main Variable VA001
State Properties, primary state
 Picture Name wizard
 Brightness 0
State Properties, state number 1
 State Condition =Variable()==3 && IsBlinkOff()
 Brightness -0.5

In the example C, the blinking is performed by changing the brightness of the image in the Picture
class object. In this example the IsBlinkOff function is placed in the state condition expression along
with verification of main variable value. If the value of main variable is equal to 3, then the brightness
of the picture is taken from the primary state or state no. 1, depending on the current value of the
IsBlinkOff function.

35

5 Rules for Opening and Closing Synoptic Windows

One of the key elements of each application is the structure of the navigation system enabling
switching between individual diagrams of the application. The OpenWindow, OpenDiagram and
CloseWindow operator actions are used to open and close windows and diagrams. Selected windows
may also be automatically open during the start-up of the application.

The operator actions can be associated with the events related to mouse handling, e.g. the Button
On event of the Button class object or the Left Button Click events etc. for the other classes. The
window and diagram switching actions may also be used in the definitions of the application menus
and global keys.

Asix.Evo

36

5.1. Opening Synoptic Windows

5.1.1. Opening Window at the Application Start-up.

Windows selected can be launched at the start-up of the application. To do this:

a. Using the Startup options tab of the Stations Settings edit panel, select the windows
which are to be opened at the application start-up. The start-up window setting is
specific for the workstation. The window selection should be performed individually
for each workstation or should be set on the area level.

b. In the settings of all panels constituting the start-up windows, set the Default
Diagram property accordingly.

c. If the default diagrams have parameters, then their initial values should be specified
as the default values. It is not possible to explicitly declare the parameters for the
start-up window.

In a typical case, a single start-up window is opened on each available monitor at the Application
start-up.

37

5.1.2. Opening Window and Diagram with OpenWindow Action.

The OpenWindow action is used to open a new predefined synoptic window or to swap the diagram
in the selected panel of already opened window. It can also be used to activate previously opened
window without changing the diagrams displayed. For detailed algorithm of the action functioning,
see description of the action (Asix.Evo_Operator_Actions.CHM/PDF).

Example 1

OpenWindow(window1,null,null,null)

This action opens the window1 window with default diagrams in the panels. If window1 is
already open, then it is activated without change of the displayed diagrams. The operation of
this action is similar to running the start-up windows.

Example 2

OpenWindow(window1,info,machine,”mid=8”)

This action is supposed to open the window1 window with the machine diagram in the Info
panel and the mid parameter of 8 or to swap the diagram in the previously opened window1
window. If there are several opened window1 windows, first it is checked if there is any
window opened with the machine diagram in the Info panel and if the window have
compatible parameters. If so, then the action will be limited only to activate the already
opened window.

The action is used to swap the diagrams in the main windows of the application or to open
the windows, the so-called stations, when there is a need to open only one station.

Example 3

OpenWindow(window1,info,machine,”mid=8”,true)

The operation of the action is similar as in the previous example. The difference is that the
previously opened window will be used (activated) only if there is a full compliance of the
name of window, diagram and parameters.

The action used to open windows of so-called stations, when there is a need to open any
number of the station (but each with a different diagram or parameters).

Example 4

OpenWindow(null,info,machine,”mid=8”)

This action is supposed to exchange the diagram and parameters in the info panel in the
context window of the operator action. The context window results from the location where
the action being executed has been defined, for example, location of the Button object,
which when pressed, executes the action.

Asix.Evo

38

5.1.3. Opening Diagram Without Use of Predefined Synoptic Window

It is also possible to open directly the synoptic diagram without prior definition of the window. This is
achieved with the OpenDiagram action. As a result of its execution, temporary window displaying
required diagram is internally created.

Example 1

OpenDiagram(machine,”mid=8”,control_window,$Normal, &CursorLocation,
&CursorLocation,”FixedSize”, $None)

The action opens the machine diagram with the mid parameter equals to 8 in the
automatically created window. The window size is consistent with the diagram size, and its
location results from the cursor position. The window title, its appearance and behaviour are
defined directly in the action contents. In this case the window title is the control_window
text, the window is of fixed size and other appearance parameter are set to default. As with
the OpenWindow action, there is a check performed if the diagram with the specified
parameters is already open, before opening a new window.

The action functioning is similar to the OpenWindow(window1,info,machine,”mid=8”,true)
action and allows simultaneously opening of multiple stations.

The main difference between the OpenWindow and OpenDiagram actions depends on location
where the appearance and set of available window system operations are defined. In the first case, it
is specified in the parameters of the predefined window, in the second case, in the action contents.
The definition in the action contents allows dynamically adapting the window appearance - in
particular, the window title.

Example 2

OpenDiagram(machine,”varname=”+Attribute(Name),”Variable “+Attribute(Name),$Normal,
&CursorLocation, &CursorLocation,”FixedSize”, $None)

In this case, the object main variable name (in the context of which the action is executed) is
passed to the parameters of the diagram (”varname=”+Attribute(Name) parameter).
Simulatnously the variable name is added to the station title (”Variable “+Attribute(Name)
parameter).

An additional advantage of the OpenDiagram action is the ability to define the operating mode. As
shown previously in the $Normal mode, the window behaves like any other predefined application
window. In the $Dialog mode, there is created a dialogue station - it is not possible to switch to the
other window until the station is closed. In the $Temp mode, the window is automatically closed
when selecting the other application window.

39

5.2. Controlling the Location and Size of Windows

The location of the new opened window is declared directly in the OpenWindow and OpenDiagram
actions. The position can be declared in four ways:

a. The coordinates given directly

b. The coordinates resulting from the definition of window – $Default constant

c. The coordinates resulting from the current mouse position – $CursorLocation
constant

d. The coordinates resulting from the location of window from which the opening
action was executed – $ActiveLocation constant

In all variants of calling the opening action, if it comes to detection of situation that the appropriate
window is already open, then the correction of the existing window position according to the
specified parameters will follow.

Example 1

OpenDiagram(machine,”mid=8”,control_window,$Normal, $ActiveLocation,
$ActiveLocation,”FixedSize”, $Closable)

The action opens the machine diagram in the location of the window from which the action
was initiated. In addition the $Closable parameter will close the window. Such use of the
action allows achieving the self-switching windows effect - even if the user has changed the
position of the first window, the second window will be opened in the first window position.
A similar effect can be achieved using the diagram switching in the panel of the permanently
open window.

Both $CursorLocation and $ActiveLocation modes in a natural way open the window on the currently
used screen. The $Default mode uses a predetermined monitor. The correct position can be
dynamically calculated in the direct coordinates mode.

Example 2

OpenWindow(window1,info,machine,”mid=8”,false,XOnScreen(0,0),YOnScreen(100,0),$None
)

Using the XOnScreen and YOnScreen functions allows calculating the position according to
selected monitor. The second parameter of both functions specifies the monitor number (0
indicates monitor indicated by the mouse cursor). The presented action opens the window
on the monitor indicated by the mouse cursor at the left edge of the screen, from the line no.
100.

Asix.Evo

40

The size of the windows being opened follows from the size of the window predefined
(OpenWindow) or size of the diagram (OpenDiagram). However, the size can be changed using the
SetWindowSize action after the window opening operation.

41

5.3. Closing Window and Diagram

The windows can be closed in several ways. These are:

a. Closing the window by standard system methods such as the closing button on the
window frame.

b. The automatic closing as a result of diagram opening by the OpenDiagram action in
the $Temp mode.

c. The use of a switching mode different than the $None mode in the OpenDiagram
and OpenWindow actions.

d. Use of CloseWindow action.

Example 1

OpenWindow(window1,info,machine,”mid=8”,false,$CursorLocation,$CursorLocation,$Closable)

The action opens the window1 window and then close all windows without the closing lock,
which are located on the screen, where the window has been opened (in this case the screen
indicated by the mouse cursor). The $ExceptCurrent constant also can be used. Its
functioning is similar, but the window from which the action was performed will not be
closed.

The locked windows are those which have the Closable property set to False.

Example 2

 CloseWindow(null,false)

The action closes the window in the context of which it was executed (the current window).

Example 3

 CloseWindow(”ST*”,true,-1)

Asix.Evo

42

The action closes all windows, which names start with “ST”, on all monitors. The windows
only on the selected monitor or the monitor indicated by the mouse cursor can also be
closed (last parameter equals to 0).

43

5.4. Mutual Overlaying Control of Synoptic Windows

Another important element of window designing process is the control of their mutual overlaying. In
a typical case, the active window is displayed in front of all other application windows. In some cases,
it may be disadvantageous. For example, if there is a need to display a several windows of station
type on a background of large start-up window, the standard operating rules are insufficient.

The mutual overlaying can be explicitly controlled using the Background Window and Top Most
window properties. The TopMost attribute can also be used in the OpenDiagram action. The "on top"
windows are always displayed in front of the normal windows, even if they are inactive. The
"underneath" windows are always below all other windows.

The above remarks apply also to all other windows opened on a computer, which are not necessarily
the Asix.Evo application windows. Therefore, great caution is advised when using the "on top" masks.
They can overlay other important windows. Do not open large windows in this mode. The safer
solution is to open the star-up windows of the application in the "underneath" mode rather than
using the "on top" windows.

Asix.Evo

44

6 Organization of Control Operations

An important element of almost any application is to implement a mechanisms used to perform the
operations that control the monitored object. Some objects have integrated some control
mechanisms, for example Text, Button, Bar. The other objects can be extended with control function
using the events handling and the SetVariable function. Examples of such parameterization are
described in other sections of the documentation.

This section concerns the general organization rules for control operations of the application.

45

6.1. Immediate Control

The immediate control mode is the simplest mode of control operation execution. The appropriate
value is sent to controlled variable immediately after selecting or entering a new setting, without any
additional confirmation.

The parameterization of the immediate mode is restricted to determine the controlled variable name
and selection of mode.

Basic Properties
 Avtive True
 Main Variable Level
 Control Variable LevelSet
 Immediate Control True

The Active property set to True enables the interactive functions of the objects, especially the
controlling ones. The Immediate Control property equals to False forces the operation in the
immediate mode without confirmation.

In the presented example, the controlled variable name is given directly in the Control Variable
property. This is correct parameterization but due to the general recommendation to control the
object parameterization only via the main variable name and its parameters, the following structures
are rather recommended.

Basic Properties
 Active True
 Main Variable Level
 Control Variable #Set
 Immediate Control True

The controlled variable name is created as a result of combining the main variable name with the Set
suffix. In particular, the use of only the # symbol would imply that the name of the controlled
variable is the same as the name of the main variable.

Basic Properties
 Active True
 Main Variable Level
 Control Variable @ControlVariable
 Immediate Control True

The controlled variable name is taken from the ControlSetVariable attribute of the variable database,
from the row describing the definition of the Level variable. The ControlSetVariable attribute is not
included in the standard attribute set - it must be added on the stage of database creation.

Asix.Evo

46

6.2. Delayed Control Operations (with Confirmation)

The delayed control mode is activated by setting the Immediate Control property to the False value.
This mode is used in order to avoid coincidental initiation of operation or when the entire group of
control operations is to be executed simultaneously.

The parameterization of the delayed control operations consists of two elements: indication of
control operation execution pending and initiation of data transfer operation.

The indication of the pending state is based on the HasWaitingControl function. The object which
waits for a send signal should modify its properties determining its appearance.

State Properties, primary state
 Text Unrecognised state
 Color =HasWaitingControl()?Red:Black

In this example, the Text object change a colour in the waiting mode. Here, the conditional
expression was used. This is the simplest form, but it can be only used if the object has no other
states changing the colour property. It is also inconvenient if there is a need to change more than
one property.

State Properties, state x
 State Condition =HasWaitingControl()
 Color Cyan

It is easier to use the additional state with the HasWaitngControl condition. This state must be set as
the last state of the object (or at least after all the states modifying the same properties).

Executing pending control operations is initiated with the SendControls action. Depending on the
action parameter used, the button (or other object) executing the action may cause controls sending
from all diagrams ($All), from current window ($Window), from current diagram ($Diagram) or from
the objects of specified name.

Basic Properties
 Active True
 Cursor Hand
 Button Kind Rectangular 3d Butoon
 Switch Mode False
State Properties, primary state
 On False
 Off Color =HasWaitingControl(”*”)?LightCoral:LightGray
 Off Text Send
Events
 Button Off ^SendControls($Diagram)

47

The presented fragment of the Button object parameterization initiates the sending of controls from
the diagram on which it was located. Additionally, the state indicating on pending controls is
signalled. The call of the HasWaitingControl function with the parameter of the object name
template allows checking if there are objects of compatible name pending for execution of control
operation. The * parameter identifies all objects regardless of their name. This mechanism applies
only to the objects located on the same diagram. It can not be used in case of the global initiation of
the controls from the other diagrams.

The cancellation mechanism for pending controls is also available. The CancelControls action is used
for this purpose, applied in a similar way to the SendControls action.

Asix.Evo

48

6.3. Control by Using SetVariable Operator Action

If the method of sending the settings not based on the built-in object mechanisms is applied, then it
is necessary to use the SetVariable operator action. This function is available in two variants.

 SetVariable(Alfa,1)

This variant sets the Alfa variable directly to the value of 1.

 SetVariable(Alfa,1,0xf)

This variant sets/executes the bit modification of the Alfa variable. The four least significant bits are
set to the value of 0001. Please note that the bit controls are highly inefficient in terms of execution
time and bandwidth usage.

Although the direct entering of the variable name is correct, the context convention should be used
whenever it is possible.

 SetVariable(””,1)

 SetVariable(”#”,1)

 SetVariable(”#Set”,1)

The following examples use: name of object controlled variable, name of object main variable, name
consisting of name of main variable and the Set suffix. It is also worth to define the main variable for
the objects which are used only for control and use it in the SetVariable action.

49

6.4. Control Validity Check

In case of controls with delay, it is important to define how long the entered setting is valid. The
button executing the CancelControls action may be added to the application. This will allow the
operator to withdraw the control operation without closing the diagram. There is also an automatic
method. The validity time for the controls can be specified in the Control Timeout field, in the
Stations Settings panel, in the Settings tab. If it is set, the setting values will be invalid when the time
specified expires.

There also could be a problem when the setting selected on the diagram of the station type remains
valid but the station itself was overlaid by another window (i.e. the user cannot see the control
signalling). The solution is to use the SendControls action with the $AllVisible parameter. This causes
that the send signal applies only to objects on the windows that are not overlaid in any way by other
window.

Asix.Evo

50

6.5. Controlling Permissions

The authority control for currently logged in user is very important in many applications when it goes
to execute the control operations. The security system features the Right to send control commands
privilege. The user must perform a role for which that privilege is active. Otherwise, every control
operation executed by the user will fail.

From the perspective of the security it is enough to adequately parameterize the security system.
However, it is better to take focus on the authority control before it comes to attempt to execute the
control operations. The objects feature two properties that can be used for this purpose: Active and
Visible. Both properties are of boolean type. The built-in object control functions as well as responses
to the mouse click are blocked by setting the Active property to false (NO). The unwanted object may
be completely hidden with the Visible property.

The proper procedure involves defining the role in which the Control send right permission is active
and then adjoining to it all users who should have the ability to execute the controls. Then, that will
be enough to use the expression using the HasRole function in the Active or Visible properties of the
objects associated with the control operation.

Basic Properties
 Active =HasRole(SuperOperator)
 Main Variable AlarmLimit
 Control Variable #
State Properties, primary state
 Text #

The example above shows a part of the Text object parameterization. If the logged user does not
perform the role of the SuperOperator, the object will be displayed the setting value but will not
allow changing it.

The same mechanism may be used as well in a slightly different scheme of operation. Let's assume,
that the standard operator has the control permissions. However, we want to make some control
operations available only for some operators. To do this, the additional role is to be created (it is not
required to feature any active privileges) and assigned to the appropriate users, then, using the
HasRole function the critical objects should be blocked.

51

6.5.1. Double Confirmation of Control Operations

Occasionally, a different operating mode in which the operator controls the process but the
execution of some operations requires additional confirmation of another person, is needed.
However, we don't want to change the logged in user. The ConfirmRole operator action will be used
for this purpose.

Basic Properties
 Active True
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
State Properties, primary state
 On False
 Off Text Send
Events
 Button Off ^Actions(ConfirmRole(Manager,$Always),

SendControls($All))

The example above is the modification of the button which sends the signal of the delayed controls.
In this case, the executed action is a combination of the ConfirmRole and SendControls actions. The
use of the ConfirmRole action results in opening the login window. The check, whether the user
performs the role specified in the call, will follow after the authorisation. If so, the further
combination actions are executed in the context of the new user. After completion of all actions the
user context will be restored to the state it had before the operation. Invalid authorisation or
incorrect role causes an interruption of performing the combination actions. The mechanism of the
action sets initiated by the ActionSet call may also be used instead of the Actions action.

Such method of use of the SendControls action allows the objects to be protected by built-in control
mechanisms, for example Text, or Bar. The objects executing the controls (or other task) by using the
immediate action execution are protected in a similar way.

Basic Properties
 Active True
 Switch Mode False
State Properties, primary state
 On False
 Off Text Enable
 On Text
Events
 Button Off ^Actions(ConfirmRole(Manager,$Always),

SendControls($Diagram))

Asix.Evo

52

In this case the button object requests verification of the user role as the part of the Button Off event
handling.

The ConfirmRole action may also be used in other ways. It can be used if the logged in operator is to
be authorized again before executing the operation. This avoids the situation in which unauthorized
person takes control over the computer when the operator has left position for a while.

53

7 Parameterization of Interactive Functions of Passive Objects

A large part of the available object classes do not feature any built-in mechanisms of interaction with
the user. Their standard functionality is limited to displaying an information. However, it is possible
to add the custom interactive functions to the objects of any type. The interactive functionality of the
objects that are already provided with these kind of functions may also be extended (for example the
Buttons).

Adding interactive functions to an object is mainly based on handling events associated with the
mouse operations (e.g. right-click) and pressing the keys. The supplementation is the set of functions
which returns the state of the mouse and keyboard (for example IsMouseOver and IsShiftPressed),
that when used in the definitions of the object properties allow an object appearance to be linked
with the operator operations.

Asix.Evo

54

7.1. Navigation Through Text Links

The effect that will be achieved in this example is the use of the text links (similar to the links used in
a browser) on diagrams. The object of the Text class displaying a static text will be used as a base
object. Clicking on the text executes the action. At same time we want to visually present the link
activity.

Basic Properties
 Active True
 Cursor Hand
State Properties, primary state
 Text Fan scheme
State Properties, state number 1
 State Condition =IsMouseOver()
 Color Blue
 Font Style Underline
Events
 Left Button Click ^OpenWindow(null,Info,Fan,null)

Setting the Active property to True enables full support of the interactive functions. Otherwise, only
the mouse click event handling would be functional.

The Cursor property specifies the form of mouse cursor when it hovers over the area occupied by the
object.

The state group controlled by the =IsMouseOver() conditional expression is activated when the
cursor hovers over the object area. As a result, the text colour is changed into blue and the text is
displayed as underlined.

The OpenWindow action in the handling of the Left Button Click event will open the Fan diagram in
the Info panel of the current window.

55

7.2. Connecting Context Menu to Object

We want to obtain the commonly used mechanism of so-called context menu. Pressing the right
mouse button when the cursor is in the area of the object should display the context menu.

The object of any class may be used as the base object (excluding the control objects, for example
Web Browser, which take over the mouse handling process). We start with creating and defining the
context menu. Using the menu in the object requires only using the ShowMenu action in the Right
Button Down event handling.

Basic Properties
 Main Variable P1000
Events
 Right Button Down ^ShowMenu(MenuCtx,"v="+Attribute(Name))

The ShowMenu action opens the menu of the MenuCtx name transferring into it the name of the
main variable (as parameter) of the object in the context of which the menu has been opened.

Asix.Evo

56

7.3. Diagram Activity Zones

In another example we want to create a mechanism based on the fact that clicking on a selected area
of the diagram will execute the appropriate operator action. Any set of objects may be located in the
diagram active area. The active area is to be visible only when the mouse cursor hovers over this
area. The following illustration shows the activity area over the large picture.

Fig. The activity area over the large picture.

The object of the Shape class will be used as the object on which the activity zone will be created.

Basic Properties
 Active True
 Cursor Hand
 Shape Kind Rectangle
 Rounding Radius 15
State Properties, primary state
 Color Transparent
State Properties, state number 1
 State Condition =IsMouseOver()
 Color Turquoise
 Opacity 0.4
Events
 Left button Click ^OpenWindow(null,Info,Askom,null)

Setting the Active property to True enables full support of the interactive functions. Otherwise, only
the mouse click event handling would be functional.

The Cursor property specifies the form of mouse cursor when it hovers over the area occupied by the
object.

57

In the basic group, the Color property is set to Transparent. This results in that the object in normal
state remains invisible. The state group controlled by the =IsMouseOver() conditional expression is
activated when the cursor hovers over the object area. As a result, the colour of the object changes
and the shape becomes visible. At the same time the transparency level setting makes visible the
objects located under the shape.

The OpenWindow action in the handling of the Left Button Click event will open the Askom diagram
in the Info panel of the current window when the mouse button is clicked within the object area.

Asix.Evo

58

7.4. Self-Repetitive Operations

Most of the events associated with mouse handling is of one-time type. However, the events set
includes one pair of the Left Button Hold and Right Button Hold events which are called repeatedly
for the time when the appropriate button is pressed and the mouse cursor is in the object area.

The Left Button Hold event will be used to increment the variable value executed when the button is
pressed. The object of the Picture class will be used.

Basic Properties
 Active True
 Curosr UpArrow
 Main Variable P1000
State Properties, primary state
 Picture UpHand
Events
 Left Button Hold ^SetVariable("#",Variable()+1)

Setting the Active property to True enables full support of the interactive functions. The Cursor
property specifies the form of mouse cursor when it hovers over the area occupied by the object.

The action being the part of the event handling changes a main variable value (abbreviated name "#"
was used), by increasing its previous value, read out with the Variable() function, by one.

The period of the holding event is declared in a workstation settings.

An alternative to the method of the action iteration described herein is to use the object of the
Button class which has the iteration mechanism built-in directly in its operation logic.

59

7.5. Keyboard Support

In addition to mouse related events handling, the definition of responses to the keyboard key presses
is also possible. This example shows the object of the Picture class which increments the variable
value every time the 'q' key is pressed, and decrements it every time the 'w' key is pressed.

Basic Properties
 Active True
 Main Variable P1000
State Properties, primary state
 Picture Arrows
State Properties, state number 1
 State Condition =IsSelected()
 Opacity 0.5
Events
 Key Press ^Actions(

Perform(LastKeyPressed()==Q,SetVariable("#",Variable()+1),Nothing()),
Perform(LastKeyPressed()==W,SetVariable("#",Variable()-1),Nothing()))

Setting the Active property to True enables full support of the interactive functions. It allows the user
to select the object.

The state group controlled by the =IsSelected() conditional expression is activated when the cursor
hovers over the object area. As result of this, the appearance of the picture is changed via
modification of the Colour property.

The Actions action being the part of the event handling is a combination of the two Perform
conditional actions. On the other hand, each of the Perform actions checks whether the correct key
has been pressed and, provided that the check is successful, increments or decrements the main
variable value.

An alternative methods of the keyboard handling are so-called global keys declared for the entire
application and the keyboard shortcuts of the Button class objects. The main difference in the
operation of the Button object shortcuts is that these shortcuts function even if the object is not
selected.

Asix.Evo

60

8 Use of Transparency Effect

One of the mechanisms that can be used while developing the application is the transparency of
objects and windows. It allows to achieve an interesting graphic effects and to efficiently use the
screen surface by displaying different information, one on top of the other.

61

8.1. Window Transparency

The window transparency level is declared in the Opacity property. It assumes the value from 0 to 1,
where 0 means a completely transparent window and value of 1 means a window without the
transparency effect. Setting the value lower than 1 makes that the entire window (frame and
displayed diagram with objects on it) is transparent. The method of defining diagram objects is
arbitrary.

Asix.Evo

62

8.2. Object Transparency

Each object may have the individually controlled transparency level. It is set in the Opacity property,
included in the group of the state properties. It assumes the value from 0 to 1, where 0 means a
completely transparent object and value of 1 means an object without the transparency effect. The
transparency effect relates to all graphic elements of the object.

Basic Properties
 Main Variable TranspValue
State Properties, primary state
 Opacity #

The transparency level is controlled by the value of the TranspValue variable. When combined with
the mechanism of variable setting (e.g. Bar object with a slider enabled) allows the user to control
smoothly the object transparency level.

63

8.3. Hiding Objects

Sometimes it is necessary to completely hide an object. This can be done by two methods.

Basic Properties
 Main Variable P1000
State Properties, primary state
 Visible False
 Text Measurement error
State Properties, state number 1
 State Condition =VarIsNotGood()
 Visible True

In this example, a Text object usually remains invisible. Only when the controlled variable has an
incorrect status, the value of the attribute Visible is changed and the object displays a warning
message concerning reading the variable.

Basic Properties
 Main Variable P1000
State Properties, primary state
 Text Measurement error
 Opacity 0
State Properties, state number 1
 State Condition =VarIsNotGood()
 Opacity 1

The visual effect of this example is identical to the previous one. Transparency is used to conceal an
object. The difference is that a transparent object (even completely) remains on the diagram and
can respond to right mouse button clicks. The object with the Visible property set does not have
this possibility.

Asix.Evo

64

8.4. Use of the Transparent Colour

Another element which influences the visibility of the object is the use of the Transparent colour.
Choosing this colour in the property associated with a component of an object usually means that
this element will not be displayed.

State Properties, primary state
 Visible True
 Pointer Color Red
 Background Color Transparent
 Outline Color Transparent
 Calibration Color Transparent
 Font Color Transparent
 Opacity 1

The parameter values of the Gauge object, which is shown above, causes only the pointer of the
meter to be displayed. Putting such an object over another, fully visible meter, enables the two
pointer meter.

65

9 Controlling the Behaviour of Objects

This chapter describes the methods of changing the appearance or behaviour of objects in response
to the interactive activities of the operator. The methods described here enable customizing the
appearance of the diagram when it is displayed in the application execution mode.

Asix.Evo

66

9.1. Using Virtual Variables

A common mechanism that may be used is to control the appearance or behaviour of objects by
additional variables defined in the virtual channel (type None). The condition of controlled objects
depends on such variables and the values of the variables are controlled through other objects. One
of the features of this method is that the settings selected by the user are permanent - they remain
unchanged after closing and returning to the diagram.

An important element of the virtual variables method is to correctly set the initial values. You can use
the action SetVariable performed under the task scheduler which is executed when starting the
application or when handling the event Diagram Opened.

Basic Properties
 Main Variable A1000

State Properties, primary state
 Visible =Variable(ShowNames)
 Text @Name

The visibility state of the fragment of a text object shown above depends on the value of the virtual
variable ShowNames. If the value is other than zero, the name of the variable is displayed on the
diagram.

Basic Properties
 Active True
 Main Variable ShowNames
 Control Variable #
 Cursor Hand
 Button Kind Standard Windows Button
 Switch Mode False
 Immediate Control True

State Properties, primary state
 On False
 Off Value 1
 Off Text Show names

State Properties, state 1
 State Condition =Variable()==0
 Off Value 0
 Off Text Hide names

The above Button class object is used to switch the values of the ShowNames variable from 0 to 1 or
vice versa, which, as a result, allows or blocks the function of showing objects which display variable
names on the diagram.

67

9.2. Modifying Object Properties

Another method of controlling objects in operation is using the operator action SetProperty. This
action allows changing the value of any property in any of the named objects. The change only
applies to property values. After closing and opening the diagram, the property values will be re-
calculated on the basis of their definitions stored in the diagram file.

Basic Properties
 Element Name Chart
 Show legend False

The above fragment of the definition of the Chart class object shows the Chart object, which in the
normal state does not display the legend.

Basic Properties
 Active True
 Cursor Hand
 Button Kind Standard Windows Button
 Switch Mode False
 Immediate Control True

State Properties, primary state
 On False
 Off Text Show Legend

Events
 Button Off ^SetProperty(Chart,ShowLegend,true)

Basic Properties

 Active True
 Cursor Hand
 Buuton Kind Standard Windows Button
 Switch mode False
 Immediate Control True

State Properties, primary state
 On False
 Off Text Hide the legend

Events
 Button Off ^SetProperty(Chart,ShowLegend,false)

The above pair of Button objects changes the value of the property ShowLegend for all objects with
Chart names. As a result the buttons control the display of chart legend by the chart objects placed
on the diagram.

Asix.Evo

68

10 Application of Button Class Objects

One of the most frequently used objects in the application is an object of the Button class. The scope
of its application is very wide, from organizing the application window switching schema up to a
variety of process variable controls.

69

10.1. Single-Position Button

The simplest and probably the most common case is to use the single-position mode. It then works in
a manner similar to standard Windows buttons. The button stays pressed. When the mouse button is
pressed it changes its state to pressed and the moment the mouse button is released it automatically
returns to the depressed state. The action executing the function of the button is executed during
this process.

This mode is used for simple one-off operations such as switching windows or control operations
without additional conditions.

Asix.Evo

70

10.1.1. Single-Position Button Executing Operator Actions

Basic Properties
 Active True
 Cursor Hand
 Button Kind Rectangular 3d Button
 Flat =!IsMouseOver()
 Switch Mode False
 Shortcut Alt+Q
State Properties, primary state
 On False
 Off Color LightGreen
 Off Text Scheme
 On Text
Events
 Button Off ^OpenWindow(null,Info,Schemat,null)

The Cursor property causes the mouse cursor to change when hovering over the button area to
indicate the readiness to perform the operation. The Button Kind property determines the shape of a
button. At the same time the expression used in the Flat property causes the button to be displayed
in flat form until the mouse hovers over an object. Only after the hovering over an object is it
displayed in full three-dimensional form. This effect of course does not have to be used and one may
set the value of the property False to Flat.

Setting the Switch Mode to False causes the button to work in single-position mode. Indicating the
keyboard short cut causes that apart from using the mouse the user can execute the operation with
the keyboard.

The On property determines how to display the button. In the case of the single-position mode it
should be set to False.

Most of the state properties determine the attributes of button display. These usually occur in pairs,
one for pressed and one for depressed buttons. The provided example the Off Text specifies the
description of the button. No such text for the On Text property causes that regardless of the state of
the button the Off Text will always be displayed.

Using the Off Color property causes that when a button is momentarily pressed, its background
colour changes to further indicate the execution of the operation. Setting the colour and any other
attributes for the inclusion is of course not necessary.

The operator action specified in the Off Button event handling replaces the diagram in the Info panel
of the current window. In the case of Button objects it is necessary to use the events dedicated for
this class of objects, i.e. Button On and Button-Off. Although in some cases similar results can be
achieved by using universal mouse events (Left Button Click, etc.), it is better to use dedicated events,
which account for the state of a button.

71

10.1.2. Single-Position Button Executing Control Actions

If it is necessary to perform an operation associated with sending control values to process variables,
parameter values based on the execution of the SetVariable operator action can be used. Generally it
is however easier to use the functionality built into the button object, which is used to perform direct
controls.

Basic Properties
 Active True
 Control Variable Command
 Cursor Hand
 Buton Kind Rectangular 3d Button
 Switch Mode False
State Properties, primary state
 On False
 Off Value 0x8
 Off Text Enable
 On Text

Defining the parameter Off Value means that during the button on/off cycle, a hexadecimal value of
0x8 (16) is sent to the controlled variable Command.

Basic Properties
 Active True
 Main Variable Level
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
State Properties, primary state
 On False
 On Value =Variable()+1
 Off Text Increase
 On Text

In another example the Off Value is created dynamically. It is equal to the current value of the main
variable plus 1. Pressing and releasing the button will increase the value of the main variable by 1.
The name of the controlled variable is defined by # - this means using the name of the main variable.

Asix.Evo

72

10.2. Single-Position Button with Repeat Function

The Button object also enables working in the auto operation repeat mode or operator action repeat
mode.

Basic Properties
 Active True
 Main Variable Level
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
 Repeatable True
State Properties, primary state
 On False
 On Value =Variable()+1
 End repeating Value 0
 Off Text Increase
 On Text

The repeat mode is enabled by setting the Repeatable property. While holding down the button the
value defined in On Value will be repeatedly sent to the controlled variable (which is identical with
the main variable). As a result the value of the variable is incremented continuously. Upon releasing
the button the value defined in the property End Repeating Value will be sent. A similar pattern
applies to actions based on event handling. The Button On event is executed cyclically and the
sequence is finished with the End repeating event.

The time of repetition of the control or action is defined in the positions parameters panel in the in
the Settings tab.

73

10.3. Single-Position Button with Hold

In the case of important controls it may be important to prevent the button from being pressed
accidentally. If the mechanism of delayed controls described further should not be used, pressing the
button may be combined with the requirement of pressing a key on the keyboard simultaneously.

Basic Properties
 Active =IsAltPressed()
 Main Variable Level
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
State Properties, primary state
 On False
 Off Value =Variable()+1
 Off Color =IsAltPressed()?LightGreen:LightGray
 Off Text Increase
 On Text

This is a modification of the earlier example of a single-position simple button which increments the
variable value. The Active property is set to true (YES) only if the user presses the Alt key. Only then
the object enables pressing the button. Additionally Off Color is also modified according to the state
of the Alt key in order to signal an activity of the button.

Asix.Evo

74

10.4. Two-Position Button

In the next example we shall build a two-position in which the pressed condition will be determined
by the value of the process variable. When clicked the button changes to the opposite state, while
performing the appropriate control operation.

Basic Properties
 Active True
 Main Variable Flag1
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode True
 Immediate Control True
State Properties, primary state
 On =Variable()
 Off Value 0
 On Value 1
 Off Text Off
 On Text On

All functionality is defined in a single state. Setting the property Switch Mode to True causes the
button to move in one direction and perform a single control.

If the variable Flag1 is equal to 0, the button is depressed and the description Off is displayed. After
pressing the mouse button, the button remains pressed and the description is changed to On. The
moment the mouse button is released an On Value is sent to the Flag 1 variable. As a result the
button remains pressed (turned on) because the value of the main variable Flag1 changes to a non-
zero value. After the operation is executed the button may temporarily return temporarily to its
original state Off until the new value of the main variable will be read back.

75

10.5. Two-Position Button with Delayed Control

A common case is that a two-position button has to be used, where the control operation is not
performed immediately but requires a separate confirmation. The functional diagram is very similar
to that of an ordinary two-position button.

Basic Properties
 Active True
 Main Variable Flag1
 Control Variable #Control
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode True
 Immediate Control False
State Properties, primary state
 On =Variable()
 Off Value 1
 On Value 2
 On Color =HasWaitingControl()?LightGreen:LightGray
 Off Color =HasWaitingControl()?LightCoral:LightGray
 Off Text Off
 On Text On

Immediate Control is set to False, which causes that clicking on the button only changes its state to
the opposite. The Button is in this state until the control of the SendControls action is approved or
cancelled by the CancelControls action. It is important to visually show that the object awaits
confirmation of the operation. In the example the button changes colour. The conditional expression
uses the function HasWatingControl, which takes the value true if the object is in waiting.

The example shows also that the control (command) is sent to a different variable than the
underlying main variable which determines the state of a button. The name of the controlled variable
is created by suffixation and in this example it is Flag1Control.

As in the previous example, after the operation is executed it may cause the button to momentarily
return to the initial state for the time needed to execute the control, execute the command by the
driver and read back the main variable.

Asix.Evo

76

10.6. Switch

This example will show the configuration of the Button object in a manner in which its function is in
accordance with the function of the object Switch in the classic version of the Axis system. The
button remains depressed and its description defines the operational current mode
(stopped/started). After completing the control the button remains pressed until the operation is
approved. At the same time the description of the button changes and shows which operation will be
executed (start/stop).

Basic Properties
 Active True
 Main Variable MStatus
 Control Variable #Control
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
 Immediate Control False
State Properties, primary state
 On =HasWaitingControl()
 Off Value 1
 On Color LightGreen
 Off Text Started
 On Text Stop
State Properties, state 1
 State Condition =Variable()&1
 Off Value 2
 Off Text Stopped
 On Text Start

The object uses two variables. The main variable is used to determine the status of the device.
Depending on its value the descriptions of the button and the values of the control command
change. The object state was used. The control variable with the name composed of the combined
main variable name and the Control suffix is used to send control commands (2 is the start command
and 1 is the stop command for a device).

In the action diagram above it is important to use a HasWaitingControl expression in the On
property. When the button is pressed an object enters a state where it has a valid control value. It
remain in this state until the execution of the control (with the SendControls action) or its
cancellation. During this time the value of the expression is true and will keep the button pressed.
The condition of an important value is additionally indicated by the colour specified in the On Color
property.

77

10.7. Bitwise Control

Sometimes the controls exercised may only change single bits of the controlled variable. In such
cases it is necessary to use button objects in the bit control mode. The following example
demonstrates a modified two-position button case.

Basic Properties
 Active True
 Main Variable Status
 Bitwise control True
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode True
 Immediate Control True
State Properties, primary state
 On =Variable()&1
 Off Value 1
 On Value 1
 Off Text Off
 On Text On

Setting the Bitwise Control property to True causes a change in the way of an executing the operation
of sending a value to a controlled variable. The operation is performed in two steps. First the current
value of the controlled variable is actively read, then it is calculated and a new variable value is sent.
Keep in mind that this way of working is much less effective (in terms of communication with the
driver) than regular controls.

The button state is controlled by the value of the first bit of the main variable. The expression
Variable ()&1 delivers a logical product of the variable and the number 1. As a result the button is
pressed when the first bit is set. In the transition from the off (depressed) condition to the on
condition these bits, the value of which in the On Value property is equal to 1 (in this case, only the
least significant bit), are set depending on the variable. In the transition from the on (pressed)
condition to the off condition these bits in the controlled variable are set at 0, the value of which in
the Off Value property is equal to 1 (in this case the least significant bit of the variable will be set to
0).

In more complicated cases of bit controls use the operator action SetVariable to handle Button On
and Button Off events. For example the action SetVariable ("", 3, 0xf) will change the four least
significant bits of the controlled variable. The two least significant bits are set to 1 and the remaining
are set to 0.

Asix.Evo

78

10.8. Grouping Buttons

Sometimes it is necessary to use a group of buttons to perform contradictory operations. The
following illustration shows the buttons that switch the device to move forward or backward.

These buttons should work after a confirmation. As a result the user can enter the two buttons into a
state of an important control value. Performing the SendControls action would cause the execution
of two control operations - the final result would depend on the order of defining objects.

However it is also possible to enable pushing only one button at a time. Groups of controls are used
for this purpose.

Button 1

Basic Properties
 Active True
 Main Variable Move
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
 Immediate Control False
 Control Group G1
State Properties, primary state
 On =HasWaitingControl()
 On Value 1
 On Color LightGreen
 Off Text <<<

Button 2

Basic Properties
 Active True
 Main Variable Move
 Control Variable #
 Cursor Hand
 Button Kind Rectangular 3d Button
 Switch Mode False
 Immediate Control False

79

 Control Group G1
State Properties, primary state
 On =HasWaitingControl()
 On Value 2
 On Color LightGreen
 Off Text =”>>>”

In the presented set of parameter values the definition of the property Control Group is important.
Property values are not important, it is only important for these to be identical for both buttons. At a
given moment only one of the two buttons will remain pressed (that is the important control value
checked by the HasWaitingControl function).

Asix.Evo

80

11 Control Operations in Text Class Objects

Text class objects offer two methods to perform the settings. In the first mode, which is used
primarily in objects that show the numerical values of variables, the user enters the new variable
value directly. In the second mode, which is used in objects providing text descriptions of bit states,
the control consists in selecting a new setting from the list of proposed values.

81

11.1. Controlling the Numerical Value Entered by the User

In this mode it is important to clearly distinguish the different states of the object: the state showing
the current value, the state of entering a new value and the state of awaiting the execution of a
control.

Basic Properties
 Active True
 Main Variable Level
 Control Variable #
 Minimum Control Value @SteeringRangeFrom
 Maximum Control Value @SteeringRangeTo
 State Selection Mode False
 Edit On Selection False
 Initial Edit Value Empty
 Immediate Control False
State Properties, primary state
 Text #
 Color Black
 Edit Color Blue
State Properties, state 1
 State Condition =VarIsNotGood()
 Text =Variable() + ”?”
 Color Crimson
State Properties, state 2
 State Condition =HasWaitingControl()
 Color Cyan
 Font Style Italic

The Active property is set to True, which enables the control functions of the object. The name of the
controlled variable and the main variable are identical. The limits for the control variable are also set
- the limits are taken directly from the corresponding attributes of the main variable of the object.
The property State Selection Mode equal to False means that the new value will be entered directly
by the User. The Edit On Selection property defines how to start editing the set point. If False, if an
object is selected, the Enter key needs to be pressed or a double-click of the mouse is necessary. For
the True value editing will begin immediately after selecting an object. The property Initial Edit Value
specifies the text displayed in the object after the start of editing. This may be an empty text, the text
last entered or the current text to be displayed.

The property Immediate Control set to False means that after editing (with the Enter key) the new
value of the set point will only be sent upon execution of the control action SendControls. The value
True would mean sending immediately after editing is complete.

The basic condition properties determine the colour used to display variable values in the normal
condition and the colour used when the user edits a new set point.

Asix.Evo

82

The property group number 1 describes the text display method when the status of the main variable
is incorrect. The colour of the text is changed and the character '?' is added after the value of the
variable. This condition is not necessary here, it only serves to illustrate the parameter values of the
control in the multi-condition object.

Condition number 2 specifies how to display the new set point after the user finished editing and the
operation execution order (action SendControls) have not yet been completed. The colour and font
style are changed. The state controlling the waiting period for sending the value is usually placed at
the end of the list of states, this way the settings take precedence. Reversing the order in our
example would result in a situation, where, despite waiting for the control the text colour defined in
the group controlling the variable status could be used.

83

11.2. Controls From The Selection List

An alternative method of performing controls through the Text object is the use of state selection
mode. This mode is usually used in objects that display textual descriptions of the states. Control
involves selecting the correct item from a list of possible operations.

Fig. Text Object - The Selection List.

The contents of the list of controls result from the definition of the object states.

Basic Properties
 Active True
 Main Variable LineState
 Control Variable #Control
 Cursor Hand
 State Selection Mode True
 Immediate Control True
State Properties, primary state
 Text Unrecognised state
 Color Black
 State Selectable False
State Properties, state 1
 State Condition =Variable()&1
 Text Manual mode
 State Value 8
 State BitMask 8
 State Selectable =!(Variable()&1)
State Properties, state 2
 State Condition =Variable()&2
 Text Emergency mode
 State Value 4
 State BitMask
 State Selectable =!(Variable()&2)
State Properties, state 3
 State Condition =Variable()&4
 Text Automatic mode
 State Value 0
 State BitMask 8
 State Selectable =!(Variable()&4)

Asix.Evo

84

The Active property is set to True, which enables the control functions of the object. Controlled
variable name is created based on the main variable name by adding the Control suffix. The property
State Selection Mode chooses operation in selection mode and Immediate Control set to True causes
the execution of the control to be effected immediately after selecting the state. Delayed control is
of course possible. In this case it would be necessary to add waiting state signalling, e.g. by using the
expression HasWaitingControl()?Red: Black in the definition of the property Colour or adding another
state.

The basic state of an object defines the appearance of the object in case of an abnormal valueof the
monitored variable. The next three states are used to decode the variable value to a text description,
the condition of the state is a test of the settings for the selected bit. The property Selectable State
determines whether the description of the state is to appear in the control operation selection list.
The terms used cause the description to appear in the list if it is not the present state (the
expressions are negations of the conditions of the state).

 It is also possible to define states of the objects used only for control. To this end the State Condition
should be set to False and the State Selectable should be set to True.

The properties State Value and State BitMask determine how are the controls executed. An
undefined mask means the direct control of the state value. A defined mask means bit controls. In
the example shown, the state no. 1 is the change of the fourth bit of the controlled variable to 1, the
state no. 2 means sending the value of 4, and the state no. 3 is a fourth bit change to the value of 0.

An appearance of the state list (colours and font) is parametrised in the Stations Settings panel in the
Settings tab of the States Menu Settings frame.

A similar functionality may be achieved by connecting a context menu to an object.

See also: 7.2. Connecting Context Menu to Object

85

12 Using Sliders in Bar Class Objects

The main task of the Bar class objects is displaying the process variables values in the form of bars
(horizontal or vertical). They may also be used as static objects for displaying a numerical scale on a
diagram.

This section deals with the rules of using sliders built in the Bar class object.

Asix.Evo

86

12.1. Using Slider to Control Set Point Values

In this application, the bar is used to show the current setting value, and simultaneously, it allows
changing the value using a slider.

Basic Properties
 Active True
 Main Variable SliderSet
 Control Variable #
 Minimum Control Value @SteeringRangeFrom
 Maximum Control Value @SteeringRangeTo
 Pointer Style =IsMouseOver()?Holder:None
 Use Limits False
 Bar Value #
 Pointer Value #
 Minimum Value @SteeringRangeFrom
 Maximum Value @SteeringRangeTo
 Immediate Control True
State Properties, primary state
 Pointer Color Transparent

Since the bar size and slider position (pointer) depend on the same variable, the Control Variable is
specified with the # short notation. The range of the slider variation depends on the range specified
in the pair of properties Minimum Control Value and Maximum Control Value. The bar range depends
on the pair of properties Minimum Value and Maximum Value. Since in our application the slider and
bar show an identical value, both the ranges were identically set and are based on the settings of the
SliderSet variable control range specified in the variable definition database. The current bar value is
specified by the Bar Value property - using the # notation means that the main variable value was
loaded. The slider position (pointer) in the Pointer Value property is specified in a similar way.

Using the IsMouseOver()?Holder:None conditional expression in the Pointer Style property causes
that the slider in the normal state is not displayed, whereas when the cursor hovers over the object,
the slider is displayed and allows the set point to be changed.

Using the Transparent colour in the Pointer Color property does not hide the slider, but only displays
it in the semi-transparent form.

87

12.2. Using the Slider to Control Set Value With a New Set Point Preview

The following example shows how to connect on the single Bar class object the presentation of a
measurement current value and measurement set value with a setting change possibility.
Simultaneously, while changing the set value (slider dragging), its value in the form of text will be
shown on the separate Text class object.

Basic Properties
 Active True
 Main Variable Level
 Control Variable #Set
 Preview Variable #View
 Minimum Control Value =Attribute("#Set",SteeringRangeFrom)
 Maximum Control Value =Attribute("#Set",SteeringRangeTo)
 Pointer Style =IsMouseOver()?Holder:Triangles
 Use Limits True
 Bar Value #
 Pointer Value #Set
 Minimum Value @DisplayRangeFrom
 Maximum Value @DisplayRangeTo
 Value LL @LimitLoLo
 Value L @LimitLo
 Value H @LimitHi
 Value HH @LimitHiHi
 Immediate Control True

The bar height will depend on the Level variable value, and the slider (pointer) position will depend
on the Level Set variable specified in the suffix notation. In the Minimum Control Value and Maximum
Control Value properties, the slider value variation range needs to be specified in order to determine
the slider position. The used expressions refer to the LevelSet variable attributes stored in the
variable definition database. The bar height depends on the range specified in the Minimum Value
and Maximum Value properties. In our example, this range is defined by the main variable displaying
range attributes. Both the bar and slider variation ranges must be consistent, e.g. the bar size may
depend on an absolute value and the set value (slider position) may be specified as percentage value.

Settings of the Use Limits, Value LL, Value L, Value H and Value HH properties change the bar colour
when the individual warning limits are exceeded. The limit values are loaded from the Level main
variable attributes.

Using the IsMouseOver()?Holder:Triangles conditional expression in the Pointer Style property causes
that in a normal state the slider position is displayed in the form of two triangles on the background
of the bar strip but when the cursor hovers over the object, the slider changes the shape indicating
readiness to perform a new set point.

Asix.Evo

88

The Preview Variable # View property definition causes that when dragging the slider, the setting
value corresponding to its temporary position will be set in the LevelView variable. Such a variable
should be defined in a virtual channel, and its value may be displayed, e.g. by the Text class object.

Basic Properties
 Main Variable SliderView
State Properties, primary state
 Visible =Variable()>-1e200
 Text #

If the slider is not being dragged, the slider preview variable is set to the Double type minimum
value. It is used in the Visible property definition of the Text object. The object is visible on a diagram,
only when the slider new position is being selected.

13 Motion animation and object resizing

89

13 Motion Animation and Object Resizing

The section presents the dynamic methods of changing an object position and size on a diagram. The
specificity of this problem lies in the fact, that it is impossible to directly change the object properties
responsible for its location and size. The X, Y, Width, Height properties are always entered directly.

To change the object position or size in the application run mode, the Animation event and the
SetPosition, SetSize and SetBounds operator actions may be used. In the Animation event handling,
one of the actions with appropriately calculated parameters of the object location and/or size should
be used, as required.

Asix.Evo

90

13.1. Changing Position

In the following example, the position of the Picture type object will be changed. The position on the
X-axis will be controlled by the CarPosX process variable of value ranging from 0 to 100 specifies the
image shift in pixels measured from the start position.

Basic Properties
 Main Variable CarPosX
State Properties, primary state
 Picture Name Car
Events
 Animation ^SetPosition(RelToAbsX(100+Variable(),null)

The start position is set to 100 The CarPosX variable value is added to the start position value. The
position calculated in pixels in this method, must be then converted into an absolute value using the
RelToAbsX function. All the function parameters of the position and size change are transmitted in
the absolute values independent of the diagram size. The absolute value of 1 000 000 always
corresponds to the right edge of diagram. The null value in the second parameter of the SetPosition
action, indicates that the Y coordinate of an object is not a subject of change.

The object size change can be changed in a similar way, but in this case, the SetSize or SetBounds
action should be used.

The action shown in the example above has one fundamental disadvantage - it only runs properly if
the diagram has a fixed size. In the case of a scaled diagram, the position calculations must be based
on the absolute coordinates.

Basic Properties
 Main Variable CarPosX
State Properties, primary state
 Picture Name Car
Events
 Animation ^SetPosition(500000+100000*(Variable()/100.0), null)

In the example above, the image base position is the diagram centre (absolute value of 500 000).
With the CarPosX variable value of 100, the extreme right position is located at the 60% of diagram
width.

13 Motion animation and object resizing

91

13.2. Changing Position Within Area Defined by Another Object

The above problem of the coordinates conversion can be avoided using the object relative
positioning method. The motion range is determined by a special object (it may be invisible) within
which, a specific object is positioned.

State Properties, primary state
 Picture Name Car
Events
 Animation ^SetPosition(

LocalProperty(area,X) + (LocalProperty(area,Width) *
(Variable(CarPosX)/100.0)),
LocalProperty(area,Y) + (LocalProperty(area,Height) *
(Variable(CarPosY)/100.0)))

This example assumes that the object named area is located on the diagram. It can be e.g. the Shape
class rectangular object. To convert the image position, the coordinates of the area object are used,
read out with the LocalProperty function. The variables controlling the position on both CarPosY and
CarPosX axes are within the range from 0 to 100.

The advantage of this solution is that the change of motion range, only requires the area object
position change; changing the positioning expression in the object image is not required.

Asix.Evo

92

13.3. Positioning Groups and Templates

The methods of handling the object groups and embedded templates are identical as in the case of
single objects. The Animation event for groups and templates allows controlling their position and
size.

93

14 Alarm State Indication and Handling

The Active Alarms Viewer and Historical Alarms Viewer objects are the basic mechanisms for viewing
and handling alarms. They show the state of alarms in a tabular form and are provided with a
toolbar.

See also:

- Asix.Evo_Getting_Started.PDF/CHM, "4. Application with Alarm Handling";

- Asix.Evo_Objects.PDf/CHM, " Active Alarms Viewer Object", " Historical Alarms Viewer Object";

- Asix.Evo_System_of_Alarms.PDF/CHM.

This section, however, deals with the methods of handling and signalling alarms directly on the
synoptic diagrams, using universal objects.

Asix.Evo

94

14.1. Single Alarm State Monitoring and Handling

In the following example, a typical mechanism for alarm signalisation using the Picture class object
will be shown. The object state will be controlled using the IsAlarm, IsAlarmUnaccepted and
IsAlarmExcluded functions. An additional object will be used to acknowledge an alarm with the
AcceptAlarm operator action. The other operator actions related to the alarm handling include:
ExcludeAlarm and IncludeAlarm.

State Properties, primary state
 Visible False
 Picture Name
State Properties, state 1
 State Condition =IsAlarm(A1001)
 Visible =!IsAlarmExcluded(A1001)
 Picture Name AlrRed
State Properties, state 2
 State Condition =IsAlarmUnaccepted(A1001)
 Visible =!IsAlarmExcluded(A1001)
 Picture Name =IsBlinkOff()?AlrYellow:null
Events
 Right Button Click ^AcceptAlarm(null,A1001)

In the basic state, a picture is not visible. The state no. 1 is activated when an alarm of the A1001 ID
changes its state to Active (initiated). The state no. 2 is activated when the alarm is not
acknowledged. Because the state with a higher number takes precedence, in the period in which the
alarm remains unacknowledged (terminated or not), the AlrYellow image is displayed. Additionally,
the use of the conditional expression with the IsBlinkoff function causes the image blinking. If the
alarm is Active but acknowledged, the AlrRed image is displayed. Please note that the terminated
alarms state monitoring depends on the used active alarm log operation mode. If a terminated alarm
is removed from the log (after the terminated alarm storage time elapses), the IsAlarmUnaccepted
function will return the false value, even if the alarm is unacknowledged.

Since the IsAlarm and IsAlarmUnaccepted functions return an alarm actual state, regardless of
whether it was excluded by the Operator from handling or not, it is necessary to use the
IsAlarmExcluded function in the Visible property. If exclusions were not used in the application, using
both the states of the True value in the Visible property would be sufficient.

The AcceptAlarm action used in the Right Button Click event handling, acknowledges the A1001
alarm.

The example assumes that only one alarm domain is defined in the application. Otherwise, the
IsAlarm function variants and similar, should be used along with an explicit specification of the
domain name.

95

The above example, although correct, has one major disadvantage. An attempt to use an object to
control another alarm, requires modification of five properties. The recommended procedure is to
convert an object into a template with the parameter that specify the alarm ID and the Parameter
function call wherever the ID was used. The example below may be also followed.

Basic Properties
 Main Variable A1001
State Properties, primary state
 Visible False
 Picture Name
State Properties, state 1
 State Condition =IsAlarm(LocalProperty(MainVar))
 Visible =!IsAlarmExcluded(LocalProperty(MainVar))
 Picture Name AlrRed
State Properties, state 2
 State Condition =IsAlarmUnaccepted(LocalProperty(MainVar))
 Visible =!IsAlarmExcluded(LocalProperty(MainVar))
 Picture Name =IsBlinkOff()?AlrYellow:null
Events
 Right Button Click ^AcceptAlarm(null, LocalProperty(MainVar))

This variant works exactly the same way as the previous one. The alarm ID, however, was only
specified in the Main Variable property. The fact that such a variable does not exist is of no
significance. The context of use of the property is important. In this case, the property value is
retrieved using the LocalPropert function and it is used as an alarm ID.

Asix.Evo

96

14.2. Indicating States of Alarm Group

When using the AlarmsGroupState function, it is possible to control alarm group state in the selected
group, or even in the entire domain. In this example, the semi-transparent Shape class object will be
used, to indicate alarms in a section of the controlled system.

Basic Properties
 Layer 10
State Properties, primary state
 Visible False
 Opacity 0.1
State Properties, state 1
 State Condition = AlarmsGroupState (Block1, "Zone =

S1")&1
 Visible True
 Color Cyan
 Outline Color Blue
 Opacity 0.5
State Properties, state 2
 State Condition = AlarmsGroupState (Block1, "Zone =

S1")&4
 Visible True
 Color Coral
 Outline Color Red
 Opacity 0.5

Create the Shape class object in such a location, so it overlays the relevant section of a diagram. For
this purpose, changing the Layer property may be necessary. In the basic state, the object is to
remain invisible. Because the Visible property value is ignored when editing the diagram, the Opacity
property should be changed as well - it will facilitate the diagram editing, the objects underneath the
Shape objects will be visible. Then, add the two states used for indicating the alarms. Each of them
has the individually set colour attributes, the Visible property set to True, and the appropriate level of
transparency set. In the state conditions, the AlarmsGroupState function was used. This function
controls the alarm states of the Block1 domain for which the Zone grouping attribute is equal to S1.
The value returned via the function, can be interpreted in different ways. In our case, a bitwise AND
operator with the value of 1 (the least significant bit test) checks whether a group contains an
unacknowledged alarm. Test with the value of 4 (number 2 bit test) checks whether a group contains
at least one unacknowledged Active alarm. Due to the state definitions sequence, if a group contains
the unacknowledged Active alarm, a "glass" in the Coral colour will be displayed. If the group does
not contain such an alarm, but contains at least one terminated and acknowledged alarm, the "glass"
will be in the Cyan colour.

For the alarm group state indication, the AlarmsCount function which returns the number of alarms
in the selected group including the activity and acknowledgement states can be used as well

97

15 Controlling Chart Class Objects

The Chart class objects have their own built-in interfaces for the interoperability with the user. The
alternative is also the Chart controller object which allows controlling the chart functions. In some
operation scenarios, however, adding custom controlling mechanisms may be necessary.

Asix.Evo

98

15.1. Controlling Time Range of Chart

In the standard application, the chart objects upon opening a diagram show a defined period of time
in the object, calculated from the current moment. The user can further select any other time range,
provided that the function was not locked. However, additional mechanisms for selecting the time
range by the user may be added, alternatively, the time range may be forced based on the data
retrieved from various sources.

99

15.1.1. Modifying Chart Object Properties

The time range shown on the object depends on the three properties. The time range length is
specified in the Time range [min] property. The range end (the right section) is defined by the
Manual base time property. However, it is only of significance, if the Refresh mode property is
additionally set to Manual, otherwise the chart end point will be defined by the current moment.

The chart time ranges can be changed using the SetProperty operator action.

Basic Properties

 Element Name Chart

 Manual base time

 Time range [min] 10

 Refresh mode Manual

The above fragment of the Chart class object definition shows the object named Chart which upon a
diagram opening displays a chart for the last 10 minutes. It is important to name the object and
select the refresh manual mode.

The following Button class objects are used for switching the time range.

Basic Properties
 Active True
 Button Kind Standard Windows Button
 Switch Mode False
 Immediate
Control

True

State Properties, primary state
 On False
 Off Text Last hour
Events
 Button Off ^Actions(SetProperty(Chart,ManualBaseTime,OPCTime("HOUR+1H")),

SetProperty(Chart,TimeRange,60))

Basic Properties
 Active True
 Button

Kind
Standard Windows Button

 Switch
Mode

False

 Immediate
Control

True

State Properties, primary state

Asix.Evo

100

 On False
 Off Text Last 15 minutes
Events
 Button Off ^Actions(SetProperty(Chart,ManualBaseTime,OPCTime("Minute15+15M")),

SetProperty(Chart,TimeRange,15))

The both objects use the multiply Actions action with the SetProperty component actions to modify
the Manual base time property value (internal name ManualBaseTime) and the Time range [min]
(internal name TimeRange). The Time range [min] property change is obvious. For the
ManualBaseTime property, a new value must be converted into the DateTime format. It can be
specified in a text form, loaded from the DateTime type variable, calculated using the FromAsix6Date
function. In the examples, the OPCTime function which in an easy way allows specifying the period of
time calculated on the basis of the current moment is used. The OPCTime("HOUR+1H") expression
calculates the end of current hour (e.g. for the 13:20 current moment, returns the 14:00 value), i.e.
the chart will show the period from the beginning of the current hour to its end). The
OPCTime("Minute15+15 M") expression which displays the current, full 15-minute period, function in
a similar way.

101

15.1.2. Controlling Via Virtual Variable

It is also possible to control the time range via the DateTime type variables, as an alternative to
setting the chart property values directly. This allows full operation automation.

Basic Properties
 Manual base time =Variable(TimeMax)

 Time range [min] 10

 Refresh mode Manual

In the above case, the base time (the range end) results form the TimeMax variable value. The
variable should be of the DateTime type value. Alternatively, a relevant conversion should be
performed, e.g. using the ToDateTime function. Each change of the TimeMax variable value
automatically alters the chart range accordingly.

The TimeMax variable value can be set using a script, loaded directly from a controller (with
appropriate conversions) or entered using the Text object.

Basic Properties
 Active True

 Main Variable TimeMax

 Control Variable #

 Initial Edit Value Current

 Immediate Control True

State Properties, primary state
 Text #

If the TimeMax variable type was defined as DateTime, a new value should be specified in
accordance with any system date and time text format. After verifying the correctness of the new
value form, it will be converted into the DateTime type and stored in the TimeMax variable, thus
affecting the time range displayed in the chart.

Asix.Evo

102

15.2. Controlling Trend Patterns Displaying

The Chart objects can also display the so-called trend patterns. Specifying the correct anchor point
of the trend pattern is then critical.

Basic Properties
 Customizable trend

patterns
False

Trend patterns, series # 1
 Pattern Name Trend1

 Pattern Anchor &PatternTime

The Customizable trend patterns property determines, whether the user can change a pattern curve
and its anchor point (using the commands from the object context menu). If controlling the object
operation with custom mechanisms is preferred, it is recommended to disable the User support.

For the pattern curve selection the Pattern Name property is responsible, and for its anchor point the
Anchor Pattern property is responsible. In our example, the anchor point is set based on the
PatternTime variable value which should be of DateTime type.

Basic Properties
 Active True
 Button Kind Standard Windows Button
 Switch Mode False
 Immediate Control True
State Properties, primary state
 On False
 Off Text Anchor pattern
Events
 Button Off ^SetVariable(PatternTime,OPCTime("NOW-5M"))

Basic Properties
 Active True
 Button Kind Standard Windows Button
 Switch Mode False
 Immediate Control True
State Properties, primary state
 On False
 Off Text Hide pattern
Events
 Button Off ^SetVariable(PatternTime,"2000-1-1")

The first of the Button objects sets the PatternTime to the value of 5 minutes before the current
moment. This will display the pattern curve from this moment.

103

The second button hides the pattern trend by moving it outside the time range visible on the Chart
object. An alternative method of removing pattern curve is to change the trend name to an empty
name (the trend name can be also specified via a virtual variable).

Asix.Evo

104

16 Using Templates

The objects templates facilitate the application development. They allow creating "blocks" from
which the application is built. A template can combine object groups, or in simpler cases, can contain
a single object, but with the pre-set properties. Templates can have parameters which are used to
specify the template functioning in its embedment place on a diagram.

In the example, the structure of a single object template based on the Gauge class object will be
dealt with. The template will indicate when two alarm limits are exceeded, and the limit values and
value ranges will be loaded from the variable definition database.

Table: Template parameters.

Template parameters

EndAngle

 Default value 405

StartAngle

 Default value 135

Variable

 Default value

The template will have 3 parameters. StartAngle and EndAngle determine the extreme angles of the
gauge scale. They have specific default values; in the template embedment place, the value of these
parameters will need to be specified, provided that they are different from the default values. The
Variable parameter is used to transmit the process variable name which value will be shown on the
gauge.

When preparing (editing) the pattern, the parameters test values may be specified. This allows
checking whether the template functions, as it was expected.

The partial parameterization of the Gauge object which constitutes the template contents is shown
in the table below.

Table: Gauge object example parameters.

Basic Properties

 Main Variable %Variable

 Background Picture !GaugeBkImage

105

 Show Limits True

 Value #

 Minimum Value @DisplayRangeFrom

 Maximum Value @DisplayRangeTo

 Value LL @DisplayRangeFrom

 Value L @LimitLo

 Value H @LimitHi

 Value HH @DisplayRangeTo

 From Angle %StartAngle

 To Angle %EndAngle

 Proper Value Color !GaugeProperColor

 L Color Yellow

 H Color Yellow

State Properties, primary state

 Pointer Color !GaugePointerColor

 Background Color !GaugeBkColor

 Outline Color =Property(GaugeBkImage) == "" ?
Property(GaugeOutlineColor) : Transparent

 Calibration Color !GaugeScaleColor

 Font Color !GaugeFontColor

The main variable of the object is defined as %Variable. This means a reference to the template
parameter named Variable. The variable name will be forwarded to the template, in its embedment
place on the diagram. The From Angle and To Angle properties are defined in a similar way.

Some of the properties, among others Background Picture, are defined with a reference to a global
property. References of such type are defined by the ! prefix. As a result, the template appearance
may be modified by changing the global property value. This method of parameterization is of special
importance when the global properties are shared by many templates and objects - it allows
changing the entire Application appearance.

The =Property(GaugeBkImage) == "" ? expression Property(GaugeOutlineColor) : The Transparent
value used in the Outline Color property shows the conditional colour setting, depending on the
global variable value (loaded by the Property function). If the GaugeBkImage global property is not
defined (is blank), the outline colour determines the value of the GaugeOutlineColor global property.
Otherwise, the outline is hidden by selecting the transparent colour.

The Value property is specified in a typical way, the # notation means the main variable value. Since a
main variable is determined by a template parameter, the position of gauge pointer will result from a
variable value of the name transmitted in via template parameter. The alarm range and limit
properties definitions refer to the variable attributes (the @ prefix). Here, the indirect reference to a
variable attribute specified by a template parameter, also occurs.

Asix.Evo

106

The L Color and H Color properties are defined directly. If it is necessary to use other colours, two
strategies are available. An identical template, with different colours set for alarm trigger limits, can
be created, or two additional colour parameters can be added and thus a single universal template
created.

	1 Universal Object Creation Methods
	1.1. Suffix Notation of Variable Names
	1.2. Using Variable Attributes
	1.3. Global Properties
	1.4. Templates and Parameterized Diagrams

	2 Displaying Process Variable Values in Text Form
	2.1. Displaying Formatted Value
	2.2. Making the Text Dependent on the Value
	2.2.1. Use of Conditional Expressions
	2.2.2. Using Multi-State Method

	2.3. Using Warning Limits for the Variable Value
	2.3.1. The Use of Suffix Notation
	2.3.2. Application of Variable Attributes

	2.4. Handling Monitored Variable Status

	3 Formatting Numerical Values
	3.1. Conversion of Numerical Values
	3.2. Conversion of Values of the DateTime Type

	4 Object Appearance Animation
	4.1. Animated Images
	4.2. Animation of Pipes, Conveyors and Lines
	4.2.1. Pipe
	4.2.2. Conveyor
	4.2.3. Line

	4.3. Implementation of Blinking Effect by Changing Object Properties

	5 Rules for Opening and Closing Synoptic Windows
	5.1. Opening Synoptic Windows
	5.1.1. Opening Window at the Application Start-up.
	5.1.2. Opening Window and Diagram with OpenWindow Action.
	5.1.3. Opening Diagram Without Use of Predefined Synoptic Window

	5.2. Controlling the Location and Size of Windows
	5.3. Closing Window and Diagram
	5.4. Mutual Overlaying Control of Synoptic Windows

	6 Organization of Control Operations
	6.1. Immediate Control
	6.2. Delayed Control Operations (with Confirmation)
	6.3. Control by Using SetVariable Operator Action
	6.4. Control Validity Check
	6.5. Controlling Permissions
	6.5.1. Double Confirmation of Control Operations

	7 Parameterization of Interactive Functions of Passive Objects
	7.1. Navigation Through Text Links
	7.2. Connecting Context Menu to Object
	7.3. Diagram Activity Zones
	7.4. Self-Repetitive Operations
	7.5. Keyboard Support

	8 Use of Transparency Effect
	8.1. Window Transparency
	8.2. Object Transparency
	8.3. Hiding Objects
	8.4. Use of the Transparent Colour

	9 Controlling the Behaviour of Objects
	9.1. Using Virtual Variables
	9.2. Modifying Object Properties

	10 Application of Button Class Objects
	10.1. Single-Position Button
	10.1.1. Single-Position Button Executing Operator Actions
	10.1.2. Single-Position Button Executing Control Actions

	10.2. Single-Position Button with Repeat Function
	10.3. Single-Position Button with Hold
	10.4. Two-Position Button
	10.5. Two-Position Button with Delayed Control
	10.6. Switch
	10.7. Bitwise Control
	10.8. Grouping Buttons

	11 Control Operations in Text Class Objects
	11.1. Controlling the Numerical Value Entered by the User
	11.2. Controls From The Selection List

	12 Using Sliders in Bar Class Objects
	12.1. Using Slider to Control Set Point Values
	12.2. Using the Slider to Control Set Value With a New Set Point Preview

	13 Motion Animation and Object Resizing
	13.1. Changing Position
	13.2. Changing Position Within Area Defined by Another Object
	13.3. Positioning Groups and Templates

	14 Alarm State Indication and Handling
	14.1. Single Alarm State Monitoring and Handling
	14.2. Indicating States of Alarm Group

	15 Controlling Chart Class Objects
	15.1. Controlling Time Range of Chart
	15.1.1. Modifying Chart Object Properties
	15.1.2. Controlling Via Virtual Variable

	15.2. Controlling Trend Patterns Displaying

	16 Using Templates

