
United States Patent [191
Chang et a1.

4,897,781
Jan. 30, 1990

Patent Number:

Date of Patent:

[11]

[451

SYSTEM AND METHOD FOR USING
CACI'IED DATA AT A LOCAL NODE AFI'ER
RE-OPENING A FILE AT A REMOTE NODE
IN A DISTRIBUTED NETWORKING
ENVIRONMENT

Inventors: Albert Chang; Grover H. Neuman;
Amal A. Slinheen-Gouda; Todd A.
Smith, all of Austin, Tex.

International Business Machines
Corporation, Armonk, NY.

Appl. No.: 14,899

Filed: Feb. 13, 1987

Int. Cl.‘ G06F 15/16; G06F 11/00
US. Cl. 364/200; 364/222.8l;

364/284.4; 364/285.4; 364/264; 364/300
Field of Search 364/200 MS File, 900 MS File,

364/ 300

[54]

[75]

[73] Assignee:

[21]
[22]
[5 1]
[52]

[531

References Cited

U.S. PATENT DOCUMENTS

4,432,057 2/ 1984 Daniell et a1. 364/200
4,620,276 10/ 1986 .
4,635,189 l/l987
4,686,620 11/1987
4,710,870 12/1987

[56]

Ng

Blacknell et al. ..

4,714,992 12/1987 Gladney et a1. 364/200
4,714,995 12/1987 Matema et a1. 364/200

4,714,996 12/1987 Gladney et a1. 364/300
4,718,002 l/1988 Carr 364/200
4,718,005 1/1988 Feigenbaum et a1. 364/200

OTHER PUBLICATIONS

Baird, “Sharing of Disk Files Without Locking", IBM
TDB vol. 22, No. 7, Dec. 1979, pp. 2887-2889.
Serutchin et al., “Multi-Access Data Sharing Facility
Utilizing Magnetic Bubble Storage”, IBM, TDB, vol.
23, No. 8, Jan., 1981, pp. 3882-3885.
Rifkin et al., “RFS Architectural Overview”, pp. l-12.
Kleiman, S. R., “Vnodes: An Architecture for Multiple
File System Types in Sun UNIX”, pp. 238-247.

APPALAIEIAIIIHIS PROCKSSES l

ll;

APPLIHHDIIS

APPI. ICHIOIS

Sandberg, R. et al., “Design and Implementation of the
Sun Network Filesystem", pp. 119-130.
Walsh, Dan et al., “Overview of the Sun Network File
System”, pp. 117-124.
Chang, JoMei, “Status Monitor Provides Network
Locking Service for NFS”, pp. 1-3.
Chang, .loMei, "SunNet”, pp. 71-75.
Taylor, Bradley, “Secure Networking in the Sun Envi
ronment", pp. 28-36.
Hamilton, Richard et al., “An Administrator’s View of
Remote File Sharing”, pp. 1-9.
Houghton, Tom et al., “File Systems Switch", pp. l-2.
Olander, David J. et al., “A Framework for Network
ing in System V”, pp. 1-8.

Primary Examiner-Thomas C. Lee
Attorney, Agent, or Firm—-Marilyn D. Smith

[57] ABSTRACT
In a distributed environment several data processing
systems are interconnected across a network system. A
distributed services program installed on the systems in
the network allows the processors to access data ?les
distributed across the various nodes of the network
without regard to the location 01‘ the data tile in the
network. The processing system accessing ?le, referred
to as the client processing system, utilizes a client cache
within its operating system to store the data ?le. Utiliz
ing the client cache minimizes the number of reads and
writes that must go over the network to the server
processing system where the ?le physically resides. The
system and method of this invention prevents a process
in the client processing system from accessing data in
the client cache that has been modi?ed at another node
in the network. The blocks of data in the client cache
are tested for validity in the client processing system by
using modi?cation times as measured by the server
processing system. If the cache data blocks are deter
mined to be valid, the data blocks are determined to be
invalid, the data blocks are discarded, and the ?le is
accessed from the server processing system.

16 Claims, 11 Drawing Sheets

FIOCtSSlS

PROCESSES

' US. Patent

APPLICATION

Jan. 30, 1990 Sheet 1 of 11 4,897,781

APPLICATION M
N1

0. s. 1_1_A_ 5“

1% 2A

H
NETWORK

Q A x APPLTCATION Q

C o. s 4_4_c

B L29

PRTOR ART

FIG. 1

4,897,781 Sheet 2 0f 11

READ (F | LE DESCR IPTUR , N4 1

| PROCESSES

Jan. 30, 1990

APPLICATION

USER ADDRESS
SPACE

US. Patent

43 /1/~

LBIH

m

PRIOR AR T

F l G .

VR H

US. Patent Jan. 30, 1990 Sheet 3 of 11

READ
(FILE DESCRIPTOR , BYTE RANGE)

CONVERT TD 1
READ (DEVICE NUMBER, LDG ICAL
BLOCK NUMBERS IN DEVICE) 4

N402

60 T0 CORRESPONDING BLOCK
IN CACHE M403

PRIDR ART

FIG. 3

4,897,781

US. Patent Jan. 30, 1990 Sheet 4 0f 11 4,897,781

APPLICATIONS 4A

PROCESSES 45_,\

0.5. A 5
—- H-l-H- »42A

A

FIG. 4
NETWORK

.3.

APPLICATIONS 4B APPLICATIONS 4i

PROCESSES 4i PROCESSES 43_@

40B lo_c __ B c

0.5. 0.5. “c
448
—— FFFFF; —

420
(

42B

G28 zc/i

US. Patent Jan. 30, 1990 Sheet 5 of 11 4,897,781

seam nova A m | an 1 “one B

APPL 1cm 1 0 us 55 APPLI on | o u s‘ _ Q

PROCESSES P‘ROCESSES _T_ -T_

431T432T453T43N : 2311-232 TzssTzan :
ussn ussn
mnsss mnsss
space SPACE

m ' LLB

moo: mm H‘
Eh“ 1 ‘~’ , #

E e---— Gil:

SERVER cum
CACHE CACHE

ommmc

‘L6 L21 svsma M

“A READ (ms
"'m 54 DESCRIPTOR,

1/" n4)

READDNLY 5° 5°
ns us

A '\ a —\
s2 s2

' m5 # or # or # or
was WRITES - s WRITES

2 0 i 0
54 _/ 1 l \

ASYNCH 54)‘ 53.) 54)
ms 1L

/' a
50 "\

#- or r 52
mos res‘

F l G . 5 5 2 \
54

US, Patent

FILE OPEN
FOR READ
ONLY ACCESS

4,897,781 Jan. 30, 1990 Sheet 6 of 11

FILE om FOR wa ITE '
BY PROCESSES /l/ 4 4
LOCATED IN nus
REMOTE none

44

4;

FILE om m FILE OPEN ron
non: mu ONE H 1 TE l n A
MODE PROCESS IN THE

SERVER

“5 L“
AT LEAST one
NODE ms FILE

4 7 /z/ om FOR WRITE
ACCESS

F l G . 6

US. Patent Jan. 30, 1990 Sheet 7 of 11 4,897,781

xwiim .:
3 £223: :2 h.

- .0_..._.

g
N

TA

32:- g

3:; SEE 5.3 o

no
QQN

So: :23 33 I “2:851 .53 3: 32:0 3;:

32.3

US. Patent Jan. 30, 1990 Sheet 8 of 11 4,897,781

I) L l ENT NUDE B SERVER NUDE A

1..

2

5 :1)

B 4

AL 5 5

A c

F

)1‘ 4l\|/ 0 3
5 ? 5

S

F. A
S s 2_

N S 5

0 F. \J

I 4

.l rv

An 0 s s 5
C on s A B

I P EFL F

IL RRC

nr EDA \ll... (\1
D1 SD01 0 O 3

A “A8 5 5

If!
I

4

s 5

h A

F

l\./

41 VI 5 nm/ 3 A 5 ~ 5

A_ R

4 m P /

E 2

w . 5

N c S I E N

E D M

s o L

S N I... 2

E I A

U N

s C F 2

o f

N R
0

l P Ah \\

T N

A s H
c S H

I. ECL Arr. L Rc RT A

P DA ES I. 1|
P DP PVI 11 N A As 05 B

L

FIG.

US. Patent Jan. 30, 1990 Sheet 9 of 11 4,897,781

READ (FILE DESCR|PT0R.m,1/-4Q4

LOOK IN CL IENT CACHE ,A/ 405

DATA HI
CLIENT CACHE

READ FROM
CLIENT CACHE

i

SEND TO SERVER -/1/- 1 O8

CONVERT TO DEVICE
, LOGICAL BLOCK

d/l/ma

LOOK IN SERVER CACHE .rv‘ HO

FIG. 9

US. Patent Jan. 30, 1990 Sheet 10 of 11 4,897,781

FIG. ‘l0

4 0 6 a

B- B 1| 5 II II
4 N 2_ .1 l1 4 I‘

3 (.1
2 1| I

_ a K

c

_ l0.. 0

E E B 7 L

s 3 M w A H B E 3 N T. "M
S 2 I m I" A

s D D
E E

E T T .II. I l

s ML E A m n 2. n n.
nu M R 9.. H 0 0 TL L | P u m m n 5 5

T C U U u" .H
A S S F F

c‘ \I'

II A. 3 L II E A
P. :J .T.. “a

P 2 HI

A v

a z _ _ ~

5 I1 2 2 4 5 5 5 4 ll 4 n4

/ A
N

A- T
4 “I1 8

L E 0

3
H 3 M

s 4 I

5

S s 2

w o 2

R 3 Po

Tl.

A P ll m" w —.. “CL A

L RT M

P H ES P J] DIVI

A 05 2

9..

HS

US. Patent Jan. 30, 1990 Sheet 11 0f 11 4,897,781

OPEN FILE AT CLIENT A'I2O I

DISCARD FILE ACCESS
STRUCTURE 1, I32

LCREATE SURROCATE moo?MIzI

CLOSE ACK FRON SER
WRITE TIME FROM SER- vER m CLIENT “1,433
VER TO S-INODE "L- I22

UPDATE TIME IN CACHE
UPDATE FILE ACCESS BLQQKS RELEASE 5
STRUCTURE ‘V423 "409E 1'2 11434

ISSUE READ ASSICN -
CACHE om mom RE FILE n @435
CORD TIME IN BLOCK “1/424

CREATE S-IIIOOE IIRITE UPDATE FILE ACCESS _
STRUCTURE ‘V425 TIRE FROM SERVER 15 ‘1/436

2ND OPEN AT CLIENT /1/ 426

2ND READ ASSICN CACHE DISCARD CLIENT
DATA BLOCK RECORD CACHE READ FROIA
TIME IN BLOCK -?/12T SERVER

z43B
UPDATE FILE ACCESS
STRUCTURE ."1/ 428 READ FRON CLIENT

UPDATE FILE ACCESS
STRUCTURE ‘V 430

FIG. 44
LAST CLOSE AT CLIENT "VIM

4,897,781
1

SYSTEM AND METHOD FOR USING CACHED
DATA AT A LOCAL NODE AFTER RE-OPENING A
FILE AT A REMOTE NODE IN A DISTRIBUTED

NETWORKING ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related in subject matter to the
following applications ?led concurrently herewith and
assigned to a common assignee:

ApplicatIon Ser. No. 07/014,884, currently copend
ing and ?led by D. W. Johnson, L. W. Henson, A. A.
Shaheen-Gouda, and T. A. Smith for Negotiating Com
munication Conventions Between Nodes In A Net
work, now abandoned.

Ser. No. 07/014,897, currently copending and ?led
by D. W. Johnson, G. H. Neuman, C. H. Sauer, A. A.
Shaheen-Gouda, and T. A. Smith for A System And
Method For Accessing Remote Files In A Distributed
Networking Environment.

Application Ser. No. 07/014, currently copending
and ?led by D. W. Johnson, A. A. Shaheen-Gouda, T.
A. Smith for Distributed File Access Structure Lock.

Application Ser. No. 07/014,891, curently copending
and ?led by L. W. Henson, A. A. Shaheen-Gouda, and
T. A. Smith for File and Record Locking Between
Nodes in A Distributed Data Processing Environment.

Application Ser. No. 07/014,892, currently copend
ing and ?led by D. W. Johnson, L. K. Loucks, C. H.
Sauer, and T. A. Smith for Single System Image
Uniquely De?ning An Environment For Use In A Data
Processing System.

Application Ser. No. 07/014,888, currently copend
ing and ?led by D. W. Johnson, L. K. Loucks, A. A.
Shaheen-Gouda for Intel-process Communication
Queue Location Transparency.

Application Ser. No. 07/014,889, currently copend
ing and ?led by D. W. Johnson, A. A. Shaheen-Gouda,
and T. A. Smith for Directory Cache Management In a
Distributed Data Processing System.
The disclosures of the foregoing co-pending applica

tions are incorporated herein by reference.

DESCRIPTION
1. Field of the Invention
This invention relates to processing systems con

nected through a network, and more particularly to the
accessing of ?les between local and remote processing
systems in a distributed networking environment.

2. Background Art
As shown in FIG. 1, a distributed networking envi

ronment 1 consists of two or more nodes A, B, C, con
nected through a communication link or a network 3.
The network 3 can be either a local area network
(LAN), or a wide area network (WAN). The latter
consists of switched or leased teleprocessing (TP) con
nections to other nodes, or to a systems network archi
tecture (SNA) network of systems.
At any of the nodes A, B, C, there may be a process

ing system 10A, 10B, 10C, such as a personal computer.
Each of these processing systems 10A, 10B, 10C, may
be a single user system or a multi-user system with the
ability to use the network 3 to access ?les located at a
remote node. For example, the processing system 10A
at local node A, is able to access the ?les 5B, 5C at the
remote nodes B, C.

15

25

30

35

4-5

50

55

65

2
The problems encountered in accessing a ?le at a

remote nodes can be better understood by ?rst examin
ing how a stand-alone system accesses ?les. In a standa
lone system, such as 10 as shown in FIG. 2, a local
buffer 12 in the operating system 11 is used to buffer the
data transferred between the permanent storage 2, such
as a hard ?le or a disk in a personal computer, and the
user address space 14. The local buffer 12 in the operat
ing system 11 is also referred to as a local cache or
kernel buffer.

In the standalone system, the kernel buffer 12 is iden
ti?ed by blocks 15 which are designated as device num~
her, and logical block number within the device. When
a read system call 16 is issued, it is issued with a ?le
descriptor of the ?le 5, and a byte range within the ?le
5, as shown in step 101, FIG. 3. The operating system 11
takes this information and converts it to device number,
and logical block'numbers in the device, step 102, FIG.
3. Then the operating system 11 reads the cache 12
according to the device number and logical block num
bers, step 103.
Any data read from the disk 2 is kept in the cache

block 15 until the cache block 15 is needed. Conse
quently, any successive read requests from an applica
tion 4 that is running on the processing system 10 for the
same data previously read is accessed from the cache l2
and not the disk 2. Reading from the cache is less time
consuming than going out to the fixed disk 2, accessing
the correct disk sectors, and reading from the disk.

Similarly, data written from the application 4 is not
saved immediately on the disk 2, but is written to the
cache 12. This saves disk accesses if another write oper
ation is issued to the same block. Modi?ed data blocks
in the cache 12 are saved on the disk 2 periodically.
Another use of the local cache in a stand-alone sys

tem is to hold valid data for a ?le even after the ?le is
closed. If the tile is re-opened while these blocks still
exist in the cache, then no disk access is required for
reading the blocks.
Use of a cache in a standalone system that utilizes an

AIX1 (Advanced Interactive Executive) operating sys
tem improves the overall performance of the system
since disk accessing is eliminated for successive reads
and writes. Overall performance is enhanced because
accessing permanent storage is slower and more expen
sive than accessin a cache.
lAIX is a trademark 0 IBM Corporation.

In a distributed environment, as shown in FIG. 1,
there are two ways the processing system 10C in local
node C could read the ?le 5A from node A. In one way,
the processing system 10C could copy the whole ?le
5A, and then read it as if it were a local ?le 5C residing
at node C. Reading a ?le in this way creates a problem
if another processing system 103, 10A at another node
A, B modi?es the ?le 5A after the ?le SA has been
copied at node C. The processing system 10C would not
have access to these latest modi?cations to the ?le 5A.
Another way for processing system 10C to access a

?le 5A at node A is to read one block N1 at a time as the
processing system at node C requires it. A problem with
this method is that every read has to go across the net
work communication link 3 to the node A where the ?le
resides. Sending the data for every successive read is
time consuming.

Accessing ?les across a network presents two com
peting problems as illustrated above. One problem in
volves the time required to transmit data across the
network for successive reads and writes. On the other

4,897,781
3

hand, if the ?le data is stored in the node to reduce
network traffic, the ?le integrity may be lost. For exam
ple, if one of the several nodes is also writing to the ?le,
the other nodes accessing the ?le may not be accessing
the latest updated ?le that has just been written. As
such, the ?le integrity is lost since a node may be access
ing incorrect and outdated ?les.
Within this document, the term “server" will be used

to indicate the node where the ?le is permanently
stored, and the term “client” will be used to mean any
other node having processes accessing the ?le. It is to be
understood, however, that the term "server” does not
mean a dedicated server as that term is used in some
local area network systems. The distributed services
system in which the invention is implemented is a truly
distributed system supporting a wide variety of applica
tions running at different nodes in the system which
may access ?les located anywhere in the system.
The invention to be described hereinafter was imple

mented in a version of the UNIX2 operating system but
may be used in other operating systems having charac
teristics similar to the UNIX operating system. The
UNIX operating system was developed by Bell Tele
phone Laboratories, Inc., for use on a Digital Equip
ment Corporation (DEC) minicomputer but has be
come a popular operating system for a wide range of
minicomputers and, more recently, microcomputers.
One reason for this popularity is that the UNIX operat
ing system is written in the C programming language,
also developed at Bell Telephone Laboratories, rather
than in assembly language so that it is not processor
speci?c. Thus, compilers written for various machines
to give them C capability make it possible to transport
the UNIX operating system from one machine to an
other. Therefore, application programs written for the
UNIX operating system environment are also portable
from one machine to another. For more information on
the UNIX operating system, the reader is referred to
UNIX TM System, User’s Manual, System V, published
by Western Electric Co., January 1983. A good over
view of the UNIX operating system is provided by
Brian W. Kernighan and Rob Pike in their book entitled
The Unix Programming Environment, published by
Prentice-Hall (1984). A more detailed description of the
design of the UNIX operating system is to be found in
a book by Maurice J. Bach, Design of the Unix Operating
Sgitem, published b Prentice-Hall (1986). -
2 veloped and licensed y AT&T. UNIX is a registered trademark of
AT&T in the U.S.A. and other countries.

AT&T Bell Labs has licensed a number of parties to
use the UNIX operating system, and there are now
several versions available. The most current version
from AT&T is version 5.2. Another version known as
the Berkeley version of the UNIX operating system was
developed by the University of California at Berkeley.
Microsoft, the publisher of the popular MS-DOS and
PC-DOS operating systems for personal computers, has
a version known under their trademark as XENIX.
With the announcement of the IBM RT PC3 (RISC
(reduced instruction set computer) Technology Per
sonal Computer» in 1985, IBM Corp. released a new
operating system called AIX which is compatible at the
application interface level with AT&T’s UNIX operat
ing system, version 5.2, and includes extensions to the
UNIX operating system, version 5.2. For more descrip
tion of the AIX operating system, the reader is referred
to AIX Operating System Technical Reference, published
by IBM Corp, First Edition (Nov. 1985).

45

65

3RT and RT PC are trademarks of IBM Corporation.
The invention is speci?cally concerned with distrib

uted data processing systems characterized by a plural
ity of processors interconnected in a network. As actu
ally implemented, the invention runs on a plurality of
IBM RT PCs interconnected by IBM’s Systems Net
work Architecture (SNA), and more speci?cally SNA
LU 6.2 Advanced Program to Program Communica
tion (APPC). An Introduction To Advanced Program-To
Program Communication (APPC). Technical Bulletin by
IBM International Systems Centers, July 1983, no.
GG24-l584'0, and IBM RT PC SNA Access Method
Guide and Reference. Aug. 15, 1986, are two documents
that further describe SNA LU 6.2.
SNA uses as its link level Ethernet‘ a local area net‘

work (LAN) developed by Xerox Corp., or SDLC
(Synchronous Data Link Control). A simpli?ed de
scription of local area networks including the Ethernet
local area network may be found in a book by Larry E.
Jordan and Bruce Churchill entitled Communications
and Networking for the IBM PC, published by Robert J.
Brady (a Prentice-Hall company) (1983). A more de?ni
ti ve description of communications systems for comput
ers, particularly of SNA and SDLC, is to be found in a
book by R. J. Cypser entitled Communications Architec
turefbr Distributed Systems, published by Addison-Wes
ley (1978). It will, however, be understood that the
invention may be implemented using other and different
computers than the IBM RT PC interconnected by
other networks than the Ethernet local area network or
IBM’s SNA.
"Ethernet is a trademark of Xerox Corporation.
As mentioned, the invention to be described hereinaf~

ter is directed to a distributed data processing system in
a communication network. In this environment, each
processor at‘a node in the network potentially may
access all the ?les in the network no matter at which
nodes the ?les may reside.
Other approaches to supporting a distributed data

processing system in a UNIX operating system environ
ment are known. For example, Sun Microsystems has
released a Network File System (NFS) and Bell Labo
ratories has developed a Remote File System (RFS).
The Sun Microsystems NFS has been described in a
series of publications including S.R. Kleiman, “Vnodes:
An Architecture for Multiple File System Types in Sun
UNIX", Conference Proceedings, USENIX 1986 Summer
Technical Conference and Exhibition, pp. 238 to 247; the
Sun Network Filesystem”, Conference Proceedings, Use
nix 1985, pp. 119 to 130; Dan Walsh et al., “Overview of
the Sun Network File System”, pp. 117 to 124; JoMei
Chang, “Status Monitor Provides Network Locking
Service for NFS"; JoMei Chang, “SunNet”, pp. 71 to
75; and Bradley Taylor, “Secure Networking in the Sun
Environment”, pp. 28 to 36. The AT&T RFS has also
been described in a series of publications including An
drew P. Rifkin et al., "RFS Architectural Overview”,
USENIX Conference Proceedings, Atlanta, Georgia
(June 1986), pp. 1 to 12; Richard Hamilton et al., “An
Administrator's View of Remote File Sharing”, pp. 1 to
9; Tom Houghton et al., “File Systems Switch", pp. 1 to
2; and David J. Olander et al., "A Framework for Net
working in System V”, pp. 1 to 8.
One feature of the distributed services system in

which the subject invention is implemented which dis
tinguishes it from the Sun Microsystems NFS, for exam
ple, is that Sun’s approach was to design what is essen
tially a stateless machine. More speci?cally, the server

4,897,781
5

in a distributed system may be designed to be stateless.
This means that the server does not store any informa
tion about client nodes, including such information as
which client nodes have a server ?le open, whether
client processes have a ?le open in read-only or read...
write modes, or whether a client has locks placed on
byte ranges of the ?le. Such an implementation simpli
?es the design of the server because the server does not
have to deal with error recovery situations which may
arise when a client fails or goes off-line without prop
erly informing the server that it is releasing its claim on
server resources.

An entirely different approach was taken in the de
sign of the distributed services system in which the
present invention is implemented. More speci?cally, the
distributed services system may be characterized as a
“statefull implementation”. A “statefull” server, such as
that described here, does keep information about who is
using its ?les and how the ?les are being used. This
requires that the server have some way to detect the
loss of contact with a client so that accumulated state
information about that client can be discarded. The
cache management strategies described here, however,
cannot be implemented unless the server keeps such
state information. The management of the cache is af
fected, as described below, by the number of client‘
nodes which have issued requests to open a server ?le
and the read/write modes of those opens.

SUMMARY OF THE INVENTION

It is therefore an object of this invention to improve
the response time in accessing remote ?les.

It is a further object of this invention to maintain the
?le integrity in a distributed networking environment.

It is a further object to use a cache in both the server
and client nodes to hold valid data when a ?le is closed
in the client node.
To reduce the network traf?c overhead when ?les at

other nodes are accessed, and to preserve the ?le integ
rity, the accessing of the various ?les in a distributed
networking environment are managed by ?le synchro
nization modes. A ?le is given a ?rst synchronization
mode if a ?le is open at only one node for either read or
write access. A ?le is given a second synchronization
mode if a ?le is opened for read only access at any node.
A ?le is given a third synchronization mode if the ?le is
open for read access in more than one node, and at least
one node has the ?le open for write access.

If a ?le is in either the ?rst or second synchronization
mode, the client node, which is the node accessing the
?le, uses a cache within its operating system to store the
?le. All read and writes are then sent to this cache.
The system and method of this invention uses a cache

in both the client and server nodes to hold valid data
when a ?le is closed in the client node. Whether or not
the client node reuses the client cache depends on
whether or not the data in the client cache has been
modi?ed at another node during the time that the data
?le was closed at the client node. If the data has not

‘ been modi?ed, the client cache can be accessed by reads
and writes from processes in the client node without
sacri?cing ?le integrity. All data in the client cache is
valid data. By using the client cache for access when a
?le has been opened after it had once been closed, net
work traf?c overhead is reduced, and the read and
write response time is decreased, thereby improving the
response time.

5

30

35

45

55

65

6
To determine whether or not the data in the client

cache has been modi?ed at another node while the ?le
was closed at the client node, the system of this inven
tion comprises a surrogate inode in the client cache.
The surrogate inode contains a ?eld that identi?es the
server node, and also a ?le handle that identi?es the ?le
in that node. A surrogate inode is created in the client
cache whenever the ?le is initially opened at a node, or
is ?rst opened after a last close. The last modi?cation
time of the ?le, as recorded by the server‘s clock, is
written to the surrogate inode whenever a surrogate
inode is created. The system of this invention also com
prises a ?le modi?cation time ?eld in the cache data
blocks that indicate the last modi?cation time of the ?le
at the server. The ?le modi?cation time ?eld in the
cache data blocks are updated during the last close of
the ?le at the client node.
The method of this invention comprises the following

steps during the opening, reading, and closing of a ?le at
a client node.
When an open for a ?le is issued in a client node, the

surrogate inode table in the client processing system is
scanned for an existing surrogate inode. If none exists,
then a new surrogate inode is allocated and an open
remote procedure call is sent to the server. When the
open is complete at the server, the open acknowledge
ment from the server to the client will include the last
modi?cation time for the ?le. This time is recorded in
the newly allocated surrogate inode for the ?le at the
client node.
When new blocks of data of the ?le are read, a new

cache block is allocated in the client cache. Each cache
block contains the server node name, the ?le handle,
and the last modi?cation time from the surrogate inode.
When the ?le is opened for a second or subsequent

time, and the surrogate inode table in the client process
ing system is scanned for an existing surrogate inode, a
surrogate inode will already exist from a previous open.
In this case, there is no change to the modi?cation time,
or to he surrogate inode. The last modi?cation time on
the data blocks are not changed with a second open,
either.
During the last close of a ?le that is in ASYNCH

mode, the following steps occur. First, the client sends
a close to the server. Then, upon receiving the close
request from the client, the server sends an acknowl
edgement of the close to the client. With the close ac
knowledgement, the server sends the last time that the
?le was modi?ed to the client. The server may have to
go to the disk at the server to get this last modi?cation
time. The client then deallocates the surrogate inode,
and scans all of the remote cache buffers for blocks
which have the server node name and ?le handle for the
?le being closed. The client then changes all of the last
modi?cation times in the corresponding cache blocks to
the one received from the server with the close ac‘
knowledgement.
Whenever a block is being read from the client cache,

the time in the surrogate inode is compared with the
time in the cache data block. A time in the surrogate
inode that is greater than the time in the cache data
blocks indicates that the data in the client cache has
been modi?ed while the data ?le has been closed at the
client node. In this case, the client node must go over
the network to the server to get the last modi?ed data.
To maintain ?le integrity, all blocks of data for the ?le
in the client cache must be invalidated.

4,897,781
7

A time in the surrogate inode that is the same time as
recorded in the cache data blocks indicates that the data
in the client cache is still valid. No other node has modi
?ed this data while the ?le was closed at the client node.
In this case, processes within the client node can use the
block of data in the client cache without going across
the network to the server where the ?le actually resides.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows three processing systems connected in
a networking environment as known in the art.
FIG. 2 shows a stand-alone processing system using a

kernel buffer as known in the art.
FIG. 3 shows a ?ow chart of a read to the kernel

buffer in a stand-alone system as known in the art.
FIG. 4 shows three distributed processing systems

connected in a network for accessing ?les across the
network with client and server caches.
FIG. 5 shows a client and server node having client

and server caches, respectively in READONLY or
ASYNC synchronization mode.
FIG. 6 shows the three synchronization modes used

for managing the use of client and server caches in a
distributed networking environment.
FIG. 7 shows the transitions between the three syn

chronization modes. .

FIG. 8 shows a client accessing a ?le at the server in
FULLSYNC s_mode.
FIG. 9 shows the steps during a read when a client

cache is used, and when the client cache is not used.
FIG. 10 shows a distributed networking environment

wherein the client cache has a surrogate inode and time
bits in the cache blocks for determining the validity of
the data in the cache data blocks. ,
FIG. 11 shows the steps of the present invention

during the opening, reading, and closing of the ?le at
the client node.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the present invention as shown in FIG. 4, a local
cache 12A, 12B, 12C, exists at every node A,B,C. If ?le
5 permanently resides at node A on disk 2A, node A is
referred to as the server. At the server A, use of the
cache 12A by local processes 13A executing at the
server node A is as that in a stand-alone system as dis
cussed above in the Background Art.
However, remote processes 13B, 13C executing at

nodes B, C, access the ?le 5 through a two step caching
scheme using a server cache and a client cache as shown
more clearly in FIG. 5. The server node A gets blocks
of ?le 5 from disk 2A and stores it in the server cache
12A. Client node B goes out over the network 3 and
gets blocks of ?le 5 from the server cache 12A. Client
node B stores the blocks of the ?le 5 as it existed in the
server cache 12A into the client cache 1213. When the
user address space 148 of client node B seeks data from
?le 5, in ASYNCH or READONLY sync mode, the
client cache 12B is accessed instead of going across the
network 3 for each access. Using the client cache 12B to
access a remote file 5 can signi?cantly improve the
performance since it can save network traf?c and over
head.
The use of the client cache 12B and server cache 12A

are managed in a distributed environment to achieve
high performance while preserving the ?le access se
mantics at the application program level. This allows

20

35

45

60

8
existing programs which run on a stand-alone system to
run on a distributed system without any modi?cation.
The ?le access semantics preserves a ?le‘s integrity as

it is being opened by different processes that issue read
and write system calls to access and modify the ?le. The
?le access semantics require that only one I/O opera
tion is allowed on any byte range at any time, and once
an I/O operation starts, it cannot be pre-empted by any
other l/O operation to the same byte range of the ?le.
An example of this is given by referring again to FIG.

5. If process 131 issues a write system call to a byte
range Nl-NZ in ?le 5, the write system call can only be
executed when the entire byte range Nl-NZ is available
for access by process 131, and no read operation involv
ing the byte range Nl-N2 is being executed. During the
execution of the write system call, all other operations
involving the byte range Nl-NZ in ?le 5 are suspended
until the write is completed. The write is not completed
until the bytes are written to the local cache 12A. When
a write request is complete, the written data in the cache
12A is visible to any subsequent read operation by any
of the other processes 131-13N.
Another requirement of ?le access semantics is that

when a ?le byte range such as Nl-NZ, which can be a
record or a set of related records accessed by the same
I/O operation, is visible to a reading process, the ?le
byte range Nl-NZ must always have a consistent set of
data re?ecting the last update to this range. This range
is never available for access while a write operation is
being executed. In this way the next read issued by a
process will read the data just written and not the old
outdated data.

In a distributed networking environment of this in
vention as shown in FIG. 5, the execution of read and
write system calls from different application synchro
nized such that the ?le access semantics as discussed
above are preserved. Synchronization is guaranteed by
utilizing various cache synchronization (sync) modes.
For a speci?c ?le 5, the I/O calls are synchronized by
either the client B or the server A depending on the
location of the processes 131-13N, 231-231N which
have the ?le 5 open for access, and the sync mode.
The three synchronization modes are shown in FIG.

<6, and are described with reference to FIG. 4. The
?rst mode 41 is referred to as ASYNCH s_mode, or
asynchronous mode. The ?le 5 operates in this mode 41
if the ?le 5 is open for read/write access by processes
13C executing at only one client remote node C, as
shown in block 44, FIG. 6. In this mode 41, all of the
control is in the client node C. Both the server cache
12A and client cache 12C are used for these read/ write
operations. A read or write operation requires access to
the server cache 12A only if it cannot be satis?ed from
the client cache 12C. Modi?ed blocks at the client 12C
are written to the server 12A by the periodic sync oper
ation, or when the ?le 5 is closed by all processes 13C in
the client node C, or when a block must be written in
order to make room for other data being brought into
the cache. Additionally, modi?ed blocks are written to
the

server when the ?le changes from ASYNCH
s_mode to FULLSYNC s_mode.
A second mode 42 is READONLY s_mode. The

READONLY s_mode 42 is used for ?les 5 that are
open for read only access from processes 13C in only
one node C, or from processes 13B, 13C in more than
one node B, C, as shown in block 45, FIG. 6. In this
mode 42, the server cache 12A and the client caches

4,897,781
128 and/or 12C are used. The read request is issued for
a block or more at a time. Every other read request
from the same client, either B or C, to the speci?c block
does not go to the server 12. Instead, it is read from the
respective client cache, either B or C. In other words, a
read operation does not require access to the server 12A
if it can be satis?ed from the client cache 12C or 123. In
summary, the ?le 5 operates in mode 42 if the ?le 5 is
open for read only access by any of the processes 13A,
13B, 13C, in any of the nodes A,B,C.
A third mode 43 is FULLSYNCH s_mode. The

FULLSYNC s_mode 43 is used for ?les 5 open for
write access by a process 13A in the server node A, as
shown by block 48, FIG. 6. This sync mode 43 is also
used if the ?le 5 is open in the server node A and at least
one other node B, C, and at least one process 13A, 13B,
or 13C has the ?le 5 open for write access, as shown by
blocks 46,47, FIG. 6. In general, if more than one node
has the ?le open, and any one of those nodes has the ?le
open for write access, the ?le is in FULLSYNC
s_mode. In the FULLSYNC s_mode 43, the client
cache 12C or 12B is bypassed, and only the server cache
12A is used. All read and write operations are executed
at the server 12A.

In a distributed environment 1 FIG. 4, most ?les 5
will more frequently be open for read only by processes
13A, 13B, 13C, at several nodes A, B, C in the REA
DONLY s_mode 42, FIG. 6, or open for update at only
one node in the Asynchronous s_mode 41, FIG. 6. It
will be less frequent that there will be an open for read
and write access by processes executing at more than
one node in the Fullsync s_mode 43, FIG. 6. In both
the READONLY s_mode 42, FIG. 6, and the
ASYNCI-I s_mode 41, FIG. 6, the use of a client cache
12B, FIG. 5, signi?cantly reduces the remote read/
write response time of accessing ?le 5, and improves the
overall system performance.
As shown in FIG. 8, in the FULLSYNC s_mode, the

client cache is not used. The client node B accesses the
?le 5 from the server A over the network 3 for each
read and write. Although the read/ write response time
increases in this_mode, the ?le access semantics are
preserved since a client does not retain a ?le 5 in a local
cache that has not been updated along with the corre
sponding ?le residing at the server.

Utilizing the three modes to manage the use of the
client cache optimizes overall system performance by
combining both an overall average increase in read/
write response speed with ?le integrity. Using a client
cache in some situations, decreases the read/write re
sponse time; while not using a client cache in other
situations preserves the ?le system semantics.
A ?le’s sync mode is not only dependent on which

nodes have the ?le open, and whether the tile is open
for read or write, but also on whether the device where
the ?le resides is open in raw access__mode. Raw access
for a device means that a block of data LBNI, FIG. 5,
within a device 2A is accessed. In this way, the reads
and writes of the device 2A read and write to a block
LBNl of device 2A. It is not relevant to which ?le the
block belongs to. The device 2A can be opened for raw
access from a process 131-13N at the server node A. It
can’t be opened for raw access from a remote node B,
C.

In reference to FIG. 5, the cache 12A is managed as
blocks LBNI of a device 2A, similar to a stand-alone
system as described above with reference to FIG. 2.
The server A looks at the server cache 12A as a logical

15

20

25

30

35

45

50

55

65

10
block LBNI within a device 2A. The client B has no
knowledge of where the ?le 5 resides on the device 2A.
All that client B knows is that it accesses a ?le 5 on
block number N1 on device 2A. The client cache 12B
handles the data as logical blocks N1 of ?les 5. In the
server cache 12A, the data is handled as logical blocks
LBNI of devices 2A. In handling the data this way, the
server can guarantee that if data is written to the device
as a raw device, and if there is another read of a block
of the ?le that happens to be the same block that was
written to the device, then the read would see the newly
written data. This preserves the ?le system semantics.

If the ?le is being accessed in a client node B, and the
?le is in ASYNC or READONLY mode, as shown in
FIG. 5, the client operating system 11b does not con
vert the ?le descriptor and byte range within the ?le in
the system call READ (?le descriptor, N1) 16 to the
device number and the logical block number in the
device. The client does convert the ?le descriptor and
byte range to a ?le handle, node identi?er, and logical
block number within the ?le. In the client cache 1213,
there are blocks 17 that are designated by ?le handle,
node identi?er, and logical block number within the
file. When a read 16 is issued from a client application
413, step 104, FIG. 9, the request for the read goes to the
operating system 113 with the ?le descriptor and the
byte range within the ?le. The operating system then
looks in the client cache 1213, step 105, FIG. 9. If the ?le
handle, node identi?er, and logical block number within
the ?le is there, the cache 12B is read, step 106, FIG. 9.
If it isn't there, step 107, FIG. 9, the read is sent to the
server, step 108, FIG. 9. The server then takes the ?le
handle and the logical block number within the ?le and
converts it to a device number and logical block in the
device, step 109, FIG. 9. This conversion is necessary
since the server cache 12A is managed by device num
ber and block number within the device as it is in a
stand-alone system. After the read is sent to the server,
it is handled the same as if the read was coming from its
own application in a stand-alone system as described
above with reference to FIG. 2.
A closed ?le does not have a synchronization mode.

However, once a ?le is ?rst opened by a process, the
?le's sync mode is initialized according to the following
as illustrated in FIG. 7.
The sync mode for a ?le is initialized to ASYNCH 41

if the device (D) where the ?le resides is closed 61, i.e.,
it is not open as a special device, and the ?le is open for
write access at one remote node 62.
The sync mode for a ?le is READONLY 42 if the

device where the ?le resides is closed, and the ?le is
open for read only access in one or more nodes 63, or
both the device and the ?le are open for read only ac
cess 64.
The sync mode for a ?le is initialized to FULL

SYNCI-I 43 if the device where the ?le resides is open as
a block special device for read/write access 65, or the
?le is open in more than one node and at least one of the
opens is for writing. A block special device means that
there is a raw access to the device.
Once a ?le is initialized to a mode, if the conditions

change, the ?le mode may change. Transitions from one
mode to another, as shown by lines 71-76 in FIG. 7,
may occur under the following conditions.

If a ?le is presently in ASYNC mode 41, and the
number of nodes where the ?le is open becomes two or
more, 81, then the sync mode changes to FULLSYNC
43 as shown via line 72, FIG. 6. Also, if there is an open

4,897,781
11

of the block special device D where the ?le resides, 82,
the sync mode will change from ASYNC 41 to FULL
SYNC 43. In a close operation for the ?le, if the close
operation is not the last close of the ?le, and the ?le is
still open for write, there is no mode change. However,
if the close operation is the last close of the ?le for write
access such that all the remaining opens are for read
access, 83, then the new mode becomes READONLY
42 as shown via line 74. If the close operation is the last
close of the ?le, then there is no sync mode.

If a tile is presently in READONLY s__mode 42 and
there is a ?le open operation, there will not be a mode
change if the open is for read. However, if the open is
for write, then the new sync mode is ASYNC 41 if all
the opens are in one client node, 84 as shown via line 73.
Otherwise, the sync mode is FULLSYNC. Further
more, if the device where the ?le resides is open for
read/ write access, 87, the new sync mode for the ?le is
FULLSYNC mode 43. For a close operation, if the
close is the last close of the ?le, there is no sync mode
for the ?le. If the ?le is still open at one or more nodes
after a close operation, there is no change to the sync
mode.

If a ?le is presently in FULLSYNC mode 43 and
there is another open for the ?le, or the device where
the ?le resides is opened, there is no sync mode change.
If after a close operation of the ?le, there remains an
open for read/write access at one remote node, and the
block special device where the ?le resides is not open,
the sync mode is changed to ASYNC s_mode 41, as
shown by block 88 via line 71. The sync mode is
changed from FULLSYNC 43 to READONLY 42 if
the block special device where the ?le resides is not
open, and the file is open for read only access at one or
more nodes as shown by block 89 on line 75, or if the
block special device where the ?le resides is open for
read only access and the ?le is open for read only access
as shown in block 90 on line 75.

All open and close operations for ?les and devices are
resolved at the server node. The server determines the
sync mode of an open ?le when executing any operation
that may change the mode. The server also performs
the change of the synchronization modes. As the server
gets new opens or closes for the ?le, a change in syn
chronization modes for the ?le may be triggered. If the
required sync mode is not the current one, the server
sends a “change sync mode” remote procedure call
(rpc) to all the clients with the ?le open.

After a ?le is opened for the ?rst time, the client that
opened the ?le is informed of the mode of the ?le. If the
mode is either ASYNC or READONLY, the client can
start using the client cache for reads, and also for writes
if the mode is ASYNC, as shown in FIG. 5. The client
does not have to read or write over the communications
link to the server. If the mode is FULLSYNC as shown
in FIG. 8, the client cache is not used, and the client
must send the read or write over the communications
link 3 to the server.
The server A, FIG. 5, always sets the mode 51 of the

?le 5. The server A also knows which nodes have the
?le open, and whether the opens are for reads or writes.
The server A doesn’t have to know which processes
131-13N, 231—23N within a node have a ?le open. The
server keeps all the above information in a ?le access
structure 50, which contains the sync mode 51, a list of
nodes which have the ?le open 52, the number of reads
53, and the number of writes 54 to a ?le 5.

25

40

45

65

12
The ?le access structure 50 is linked to the inode 55.

The inode 55 contains the ?le header 56 which identi?es
a ?le 5. The inode 55 also contains a block 57 containing
information as to which device the ?le resides, and a
block 58 containing information as to where on the
device the ?le resides.
The inode 55 also contains two time bits 111, 112.

Time bits are used in the inode 55 to assist in keeping
track of information about the ?le. The time accessed
bit 111 designates that the ?le or data was read. The
time changed bit 112 indicates that the data or ?le has
been modi?ed by a write access.
When the time changed bit 112 is set, and any of the

following three events occur, the actual time at the
server A and the modi?ed data in the server cache 12A
will be written to the disk 2. The three events include
checking the stats of a ?le, closing a ?le, or a periodic
sync. A periodic sync writes the cache to the disk peri
odically, such as every minute. When the server time
and the data in the server cache 12A are written to the
disk 2, the time changed bit 112 is reset.

If there is a request to check the status of a ?le, the
server A checks to see if the ?le is open, and by check
ing the inode bits, if the time change bit 112 is set, the
new time indicating the time of the status request is
written, and the status is returned. After this, if a request
for status is issued, the requestor will receive the time
indicating the time of the ?le change. The time change
bit 112 will not change for the next status requests.
The ?le modi?cation time as set above is used by the

client B as an indication that the ?le 5 was changed after
the client-B closed the ?le 5. When a client B closes a
?le, the server rids itself of the ?le access structure 50
for that closed ?le 5 if it was the last close. If another
node has the ?le open, while the ?le is closed at node B,
the ?le access structure 50 only has information on the
open node in block 52. In other words, once node B
closes a ?le, the server A does not retain any informa
tion that indicates that node B had the ?le 5 open previ
ously.
As discussed above, a ?le may be open for read only

access by processes executing at several client nodes, B,
C, and server node A (i.e. READONLY synchroniza
tion mode); or the ?le may be open for read and write
by processes in only one client node B (i.e. ASYNC
synchronization mode). In either case, the client cache
in each client node potentially has valid blocks of the
?le. If the ?le is closed by all processes at the client B,
the blocks at client B should not be automatically invali
dated. By keeping the blocks of data available in client
B, if the ?le is to be re-opened by any process in node B,
no remote read needs to be issued to the server A for
this data.
The system and method of this invention gives the

client node B a means for determining whether or not a
?le has been written to at another node during the time
that the client node B had closed the ?le 5. A client B
may use the ?le blocks in the client cache only if no
write operations to the ?le occurred while the ?le was
closed at the client B. If the client node B re-opens the
?le, and the ?le has not been changed while it has been
closed at client node B, then the client node B can ac
cess the ?le 5 directly from the client cache 123. If the
client node B re-opens the ?le 5, and the ?le 5 has been
changed while the ?le has been closed at client node B,
then the client node B must go over the network 3 to
the server to get the changed ?le 5. The changed ?le is
then stored in the client cache 12B for further accessing.

4,897,781
13

The system and method of this invention is best illus
trated with reference to FIG. 10 and FIG. 11 concur
rently. If a ?le 5 is opened for the ?rst time by a process
231 in client node B, step 120, the client node B creates
a surrogate inode 114, step 121. A surrogate inode is
similar to an inode except that it does not contain all of
the information that an inode contains.
When an open for a remote ?le 5 is issued in a client

B, the surrogate inode table in the client processing
system is scanned for an existing surrogate inode for ?le
5. If none exists, then a new surrogate inode is allocated.
An open remote procedure call is sent to the server
from the client. When the open is complete at the
server, an open acknowledgement from the server to
the client will include the last modi?cation time for the
?le 5. The last modi?cation time 22 that was written to
the server disk 2 for the ?le 5 is recorded at the newly
allocated surrogate inode 114 in block 115 at client B,
step 122. The modi?cation time T1 recorded in block 2
and block 115 is the time at the server A and not the
time at the client B. At the server node A, the ?le access
structure 50 is updated in block 52 to show that the ?le
is open at node B, step 123.

If a ?rst read is then issued, a data block 116 in the
client cache 12B is assigned, step 124. The ?rst bit 152 in
data block 116 identi?es the server node A. The second
bit 153 contains a ?le handle to identify the ?le 5. When
a new cache block is allocated for a block in ?le 5, the
modi?cation time T1 from block 115 of the surrogate
inode 114 is copied to the cache block header in bit 117
of data block 116. At the server node A, the ?le access
structure 50 shows the number of reads to be 1 in block
53, step 125.
For a second open, step 126, from client node B, such

as from process 232, no additional surrogate inodes 114
are created. Subsequent opens of ?le 5 at client B will
use the previously allocated surrogate inode 114, and
will not update the ?le modi?cation time as recorded by
the ?rst open.
For a second read from any of the processes 231-23N

in client node B that have ?le 5 open, another data block
118 in the client cache 12B is assigned, and the time T1
in block 115 of surrogate inode 114 is written into block
117 of the new data block 118, step 127. Correspond
ingly, the ?le access structure 50 at the server node A is
updated to re?ect two opens for read in block 53, step
128.

If process 231 in client node B closes the ?le 5, step
129, the close is sent to the server node A. The server A
then decrements the use count indicating the number of
reads in block 53, step 130. In this example, the count
would go from 2 to 1.
For the last close, step 131, of the ?le 5 at the client

node B, in this case the second close, the server A dec
rements the use count in the ?le access structure 50 such
that there are no opens at node B. Block 53 and block 54
in the ?le access structure go to zero. When these
blocks go to zero for a client node, the server knows
that there was a last close, and removes the ?le access
structure 50 for that client B, step 132. The server A
sends a close acknowledge to the client B, step 133.
Along with the acknowledgement, the server returns
the last time when the ?le was modi?ed as recorded at
the server. If the ?le is in ASYNCH mode, the client
cache is scanned, and for every cache block which has
a ?le handle for the ?le 5, the modi?cation time is up
dated using the time in the close acknowledgement. In
essence, all the times in the data blocks 116, 118 are

5

25

30

14
updated with the last time T2 in block 22 that was writ
ten to the device 2 for ?le 5, step 134. Also, with the last
close at a client node B, the client node B releases the
surrogate inode 114 that was created with the ?rst open
in step 121. ‘

After the last close at the client, a process 231-23N at
the client B may re-open the ?le 5, step 135. With this
re-open, the client B creates a new surrogate inode 150
for ?le 5, and writes the last time T3 from the server in
block 22 of device 2 to block 151 in the surrogate inode
150, step 136. If while the ?le was closed at client B, no
other nodes A, C had changed the ?le 5, the time T3 on
disk 2 would not have changed from the time T2 writ
ten from the disk 2 to the data blocks 116, 118 during
the close acknowledge, steps 133, 134. However, if
other nodes A, C had written to the ?le 5 while the ?le
was closed at client B, the time T3 in block 22 on device
2 would be greater than the time T2 that had been writ
ten from the disk 2 to the data blocks 116, 118 during
the close acknowledge of steps 133, 135.
As shown in decision block 137, FIG. 11, when a ?le

is re-opened at a client node B, the time T3 that has just
been written to the new surrogate inode 150 in block
151 is compared to the time T2 in block 117, 119 of the
data blocks 116, 118, respectively. If the time T3 in the
surrogate inode 150 is not equal to the time T2 in the
data blocks 116, 118, then the data in the client cache
data blocks cannot be used. The client B must access the
server A over the network 3 and initiate the two step
caching scheme: from the disk 2 to the server cache 12A
to the client cache 123. If the time T3 in the surrogate
inode 150 is the same as the time T2 in the cache data

. blocks 116, 118, then the processes 231-23N in the cli

35

40

60

ent B can access the data directly from the client cache
12B without going across the network 3, step 139.
For a ?le in the ASYNC or READONLY synchroni

zation mode, the client decides if the data in a speci?c
cache block is valid based on the steps described above.
To allow the client to make this decision, the header for
each cache block contains the last modi?cation time for
the ?le according to the server’s clock. The last modi?
cation time is recorded in the cache block when the
block is read from the server, and updated at the time
when the ?le is last closed at the client node. When an
existing cache block is accessed for a reading (or to
write a partial block), the modi?cation time in its head
ing is compared to that in the surrogate inode. If the
time in the surrogate inode is equal to that in the cache
block, the data in the block is valid, and can be used by
the client while preserving the ?le system semantics. If
the time in the surrogate inode is not equal to the time
in the cache block, then the data in the block is invalid
and cannot be used by the client. The client sends a read
remote procedure call to the server for that block of
data.
The preferred embodiment can be summarized as

follows. First, each surrogate inode has a ?le modi?ca
tion time ?eld. Second, the client cache blocks have a
?le modi?cation time ?eld. Third, a client cache block
is valid only if the cache block ?le modi?cation time is
equal to the surrogate inode ?le modi?cation time.
Fourth, surrogate inodes are created at a client upon an
open of the ?le at the client when the ?le is not already
open at the client.

Fifth, the surrogate inode ?le modi?cation time ?eld
is assigned a value when either (1) a surrogate server,
(2) a change sync mode request is received by the client,
due to a change synch mode request from the server, (3)

4,897,781
15

a close at the client causes the ?le to go from asynch to
read-only synch mode at the client, or (4) a close at the
client causes the ?le to be no longer open at the client.
Note, the surrogate inode ?le modi?cation time is not
changed when opens occur at the client that do not
cause the surrogate inode to be created. This is because
the ?le is already open at the client. Note also that
conditions and 4) stated above could be replaced by the
condition for each close of a ?le corresponding to an
open of the ?le for writing.
The surrogate inode ?le modi?cation time is assigned

the value sent by the server in the open request of (1)
above, or the change sync mode request in (2) above, or
the close acknowledgement returned by the server to
the client in (3) or (4) above. This value is the time the
?le was last modi?ed as measured by the server.

Sixth, the client cache blocks for a ?le have their ?le
modi?cation time ?elds assigned a value when either (1)
it is allocated due to a read of data from the server or a
write by a client process to the ?l , or (2) a close occurs
corresponding to the situations in (3) or (4) above. This
value that is assigned to the cache block ?le modi?ca
tion time ?elds is the value found in the client’s surro
gate inode ?le modi?cation time ?eld. Note, immedi
ately after the conditions mentioned above which cause
the assignment of values to the cache block ?le modi?
cation ?elds, the ?le modi?cation tirne ?elds for the
cache blocks and the surrogate inode will be equal.
The system and method described above utilizes a

client cache in the client processing system for buffering
a ?le at a client node from the server processing system.
The preferred embodiment determines the validity at
the client processing system of the data blocks in the
client cache by utilizing the time recorded at the server
as measured by the server's clock. However, it will be
understood by those skilled in the art that other embodi
ments may determine the validity at the server process
ing system of the data blocks in the client cache. How
ever, other embodiments that use the server to keep
track of the validity of the client's data blocks may use
server resources that are more critical than the client’s
resources. Also, the server may be keeping track of data
blocks in the client cache that may no longer reside in
the client cache.
While the invention has been particularly shown and

described with reference to a preferred embodiment, it
will be understood by those skilled in the art that vari
ous changes in form and detail may be made without
departing from the spirit and scope of the invention.
We claim:
1. A system for determining the validity of data resid

ing in a plurality of blocks in a client cache, of a client
data processing system at a client mode, from a ?le
residing in a server data processing system at a server
node, wherein said server data processing system and
said client data processing system are connected by
means of a communications link, said system compris
mg:
means for determining, at the server node, a latest

modi?cation time of the ?le;
means, in the client data processing system, for sav

ing, corresponding to each of the blocks in the
client cache, the latest determined modi?cation
time of the ?le, received from the server data pro
cessing system, when the ?le is closed at the client;

means for recording, in the client data processing
system, another determined latest modi?cation
time, received from the server data processing

5

10

25

30

35

40

45

50

60

65

16 .

system, when said ?le is subsequently reopened at
said client processing system; and

means coupled to said saving means and said record
ing means for comparing, in the client data process
ing system, the latest determined modi?cation time
corresponding to one of said blocks with the re
corded another determined latest modi?cation time
to determine the validity of said block.

2. The system of claim 1 wherein said one of the
blocks of the ?le in the client cache is accessed if said
another determined latest modi?cation time in the client
processing system is equal to the latest determined mod
i?cation time corresponding to each of said blocks.

3. The system of claim 1 wherein the ?le is accessed
from the server processing system if the another deter
mined latest modi?cation time is not equal to the latest
determined modi?cation time corresponding to each of
said blocks.

4. The system of claim 1 wherein the blocks of the ?le
in the client cache are discarded whenever the blocks
are determined to be invalid.

5. A system for using cached data residing in a plural
ity of blocks in a client cache, of a client data processing
system at a client node, from a ?le residing in a server
data processing system at a server node, wherein said
server data processing system and said client data pro
cessing system are connected by means of a communi
cations link, said system comprising:

?rst means for recording, at the server data process
ing system, a one last modi?cation time for the ?le
whenever the ?le at the server data processing
system is modi?ed;

means for saving, in said client data processing sys
tem, said one last modi?cation time, received from
the server data processing system, for each of the
cached data blocks for the ?le in the client cache
when the ?le is closed at the client data processing
system;

second means for recording, in the client data pro~
cessing system, another last modi?cation time,
received from the server data processing system, of
the ?le at the server processing system, at a time of
a subsequent reopen of the ?le in the client data
processing system; and

means coupled to said saving means and said second
recording means for using at least one of the blocks
of the ?le in the client cache if said using means
determines that said saved one last modi?cation
time for each of said blocks is equal to the recorded
another last modi?cation time in the client data
processing system.

6. A method for using cached data residing in a plu
rality of blocks in a client cache, of a client processing
system at a client mode, from a ?le residing in a server
processing at a server node, wherein said server pro
cessing system and said client processing system are
connected by means of a communications link, said
method comprising the steps of:

recording by the client processing system a one last
modi?cation time, received from the server data
processing system, of the ?le at the server process
ing system, for each of the cached data blocks in
the client cache when the ?le is closed at the client
processing system;

recording by the client processing system another last
modi?cation time, received from the server pro
cessing system, of the ?le at the server processing

