|
_\'\iwurfdup

Programmer’s Guide

Release 5

E A
O~

Sense8products

Copyright
© 1997-2000 by Engineering Animation, Inc. All rights reserved.

The information contained in this document is subject to change without notice. Engineering Animation, Inc. MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL. Engineering Animation, Inc. shall not be
liable for errors contained herein or for any incidental or consequential damages in connection with the use of this
material. The information contained herein is the exclusive property of Engineering Animation, Inc. and/or its licensors
and should not be distributed, reproduced, or disclosed in whole or in part without the prior written consent of
Engineering Animation, Inc.

The document is for informational and instructional purposes. Engineering Animation, Inc. reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the reader
should, in all cases, consult Engineering Animation, Inc. to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Engineering Animation, Inc. products are set forth in the
written contracts between Engineering Animation, Inc. No representation or other affirmation of fact contained in this
publication shall be deemed to be a warranty or give rise to any liability of Engineering Animation, Inc. whatsoever.

Restricted rights legend: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Trademarks

World Up, WorldToolKit, SENSE8, World2World and OpenVR are trademarks or registered trademarks of Engineering
Animation Inc.

BasicScript is a registered trademark of Summit Software Company.

All other trademarks are the property of their respective owners.

Engineering Animation, Inc.
100 Shoreline, Suite 282
Mill Valley, CA 94941-3645

(415) 339-3200
(415) 339-3201 (fax)

Chapter 1 Introductionto SCripting i 1
OV IV W e 1
Chapter 2 ScriptInterface i e 5
Working with Task SCHptsS 5
The Script EAItOr oo 11
The Debugger e 13
The Dialog Editor 15
Chapter 3 WorldUp Scripting Languagecciiiiiririennn.y 17
BasiCSCrpt OVeIVIEW . .. 17
BasicScript Data TYPES . . . oot 18
Variables 19
ROULINES .. 21
Undefined TOKENS e e 23
Branching And Looping Statements i, 24
The WorldUp Scripting EXtENSIONS oo e 26
Calling C Libraries From BasiCSCriptt 31
Chapter 4 Global Methods i i 35
Global Commands and FUNCLIONS e 36
Miscellaneous Commands and Functions 43
Math Commands and FUNCLIONS e e 69
Chapter 5 Methods On Objects i 125
Getand Set Methods 126
VBase Commands and FUNCtions 127

Node Commands and FUNCLIONS o o e 131

Movable Commands and FUNCLIONSot e e e 137

Geometry Commands and Functions 161
Imported Commands and Functions 196
Path Commands and Functions 198
Script Commands and Functions 216
Sound Commands and FUNCLions i 218
Viewpoint Commands and Functions 220
W2WSharedProperty Commands and Functions 223
Window Commands and Functions 224
List Commands and FUNCLIONS i e 253

AppendiX A Error MESSAgESot 267

Introduction to Scripting

Welcome to the WorldUp Scripting system. The WorldUp Scripting system is comprised of a Script
Language, a Script Interpreter, and an interface for editing, running, and debugging scripts. The Script system
is the middle tier in the three-tiered R5 programming paradigm, and assumes you've become familiar with the
basic logical concepts expressed by the Behavior System (for example, If-Then).

Using the script language allows you complete control over all programmatic aspects of your simulation. In
addition, you can use the Scripting system to author your own Triggers and Actions as discussed in the
"Behavior System" chapter of the WorldUp User's Manual.

This Programmer's manual covers everything you need to know to get up and running as quickly as possible
with the WorldUp Scripting system. For detailed reference on specific Script functions and methods, you
should refer either to the WorldUp BasicScript Reference Manual or the Online Help.

Overview

A script is a body of text stored in an .EBS file. The text contained within a script describes the behavior or
action that you want to add to your simulation, such as moving objects in the scene, reacting to user input, or
creating new objects.

Each script in your simulation has an associated Script object that appears in the Type Browser. Script objects
use a <Fi lename>Script naming convention. Thus, a script called STARTUP.EBS would have a
corresponding Script object called StartupScript. You can double-click a Script object to view and edit the
script.

The content of your scripts is composed of a combination of the BasicScript language and the routines
provided by WorldUp. Every script in WorldUp is either a Stand-Alone script or a Task script.

2

Overview Chapter 1 Introduction to Scripting

The BasicScript Language

WorldUp uses BasicScript, a language syntactically identical to Microsoft’s Visual Basic. BasicScript has a
rich array of programming options, including file 1/O, launching User Interface elements, and an SQL
(database) interface.

"BasicScript Overview" on page 17 discusses the fundamental nature of this scripting language. For
information about the language’s advanced features, and a complete reference of all BasicScript commands,
on the Help menu of the Simulation Editor, click Script Reference.

WorldUp Methods

To manipulate your 3D simulation, WorldUp supplies a set of methods and objects to BasicScript, giving you
access to and control over every aspect of your simulation. "The WorldUp Scripting Extensions" on page 26
describes how you can use BasicScript to interact with WorldUp objects and the 3D environment they inhabit.
For a complete reference of all WorldUp routines, on the Help menu, click WorldUp Commands and
Functions.

Stand-Alone Scripts vs. Task Scripts
In WorldUp, there are two kinds of scripts: Stand-Alone and Task.

Stand-Alone Scripts
A Stand-Alone script contains a Main subroutine, for example:

Sub Main()
MsgBox "'You have run a stand alone script”
End Sub

Scripts can contain any number of routines, but only scripts that contain a Main subroutine are Stand-Alone
scripts. A script can only have one Main subroutine (In fact, a script cannot contain more than one routine
with the same name).

You can run any Stand-Alone script independent of the simulation (that is, the script does not have to be
attached to an object). Additionally, in WorldUp, you can designate particular Stand-Alone scripts to be your
Startup, Shutdown, and User scripts.

« Startup script — the script that is run each time you load a .UP file.
» Shutdown script — the script that is run each time you close a .UP file.
 User script — the script that is run each time you click the User-Defined Action button.

For instructions on creating and running Stand-Alone scripts, see "Working with Stand-Alone Scripts" on
page 9.

Chapter 1 Introduction to Scripting Overview

Note Stand-Alone scripts are also used to define the action for Navigation Bar buttons. For more information,
search on “Navigation Control Panel (Bar)” in the online help.

Task Scripts

A Task script contains a Task subroutine. The task subroutine must take one parameter of the appropriate
type:

Sub Task(obj as Sphere)
message obj.Name “ Print name of object
End Sub

Similar to Stand-Alone scripts, a Task script can contain any number of other routines, but must have one and
only one Task subroutine.

Each object in your simulation has a task list. You implement the behavior in a Task script by adding that
script to the task list of one or more objects, and then running the simulation. When you run the simulation,
task scripts are executed every frame for every object to which the Task script is attached.

For instructions on creating, attaching, and running Task scripts, see "Working with Task Scripts" on page 5.

Order of Task Execution

Every object has a list of tasks. These scripts will be executed every frame just before rendering. The
following rules apply:

* The tasks on the Universe will be executed first.
* Tasks on nodes will be executed next (see "Order of Tasks Within Nodes" below for further details).

 Tasks on the non-node, non-universe objects (Windows, Viewpoints, etc.) will be executed last.

Order of Tasks Within Nodes

Within nodes, children’s tasks will always be executed before their parent’s, and siblings to the right will be
executed before siblings to the left.

In short, the order in which objects appear in the scene graph is the reverse order in which their tasks will be
executed (execution will occur from the bottom-up in the scene graph). Thus the Root’s tasks will always be
the last tasks executed of all the nodes’ tasks.

Overview Chapter 1 Introduction to Scripting

In the scene graph below, tasks for Tractor will be executed first, and then Grain, Silo, Pitch-Fork, etc., with
Root-1’s tasks being executed last.

Scene Graph
= :

Note If a node is disabled (its Enabled property if set to False), its tasks and the tasks of all of its children
will not run. For children under a Switcher node, only those children indicated by the Active Child property
will execute. The tasks for all children of LevelOfDetail nodes will be executed.

Script Interface

In WorldUp, scripts are text files ((EBS) written in BasicScript that describe behaviors. There are two kinds
of scripts: Stand-Alone and Task. Stand-Alone scripts are independent of the simulation, while Task scripts
must be attached to at least one object in the simulation.

You reference script files through Script objects. To implement the behavior described in the script, you run
the script directly if it is a Stand-Alone script, or else you attach the associated Script object to the object that
you want to adopt that behavior. Additionally, you can trigger the execution of a specific entry point in a script
(either Stand-Alone or Task) as a response to a property change event.

This section describes how to work with Script objects and script files. It does not address the content of
scripts.

Working with Task Scripts

When a script is attached to an object, it is known as a task of that object. Each object can have multiple tasks.
When you run the simulation, Task scripts are executed repeatedly with each frame that the simulation is run.

For information on the order in which tasks are run, see "Order of Task Execution" on page 3 in Chapter 1,
Introduction to Scripting.

There are three ways that you can create a Task script.

« create and attach a script at the same time

* create a new, unattached script and attach it to an object later

* attach a pre-existing script to an object

To create a new script and attach it at the same time

1 Select the object(s) to which you want to attach the new script.

2 Right-click and select Edit Tasks, or on the Object menu, select Edit Tasks.

Working with Task Scripts Chapter 2 Script Interface

The Edit Tasks List dialog box displays.

Edit Tasks List E
Tasks List Script Objects ¥ See available scripts in search path

{ 2DDR&W EBS } - Mew Script |
{ 2-planet.ebs }
{67.ebs} Bt St |
{B7aebs}
{ Block-2 ehs }
{ Bounce.ebs } = =
{ comet.ebs } Add

{ CUBISM.ebs }

{ FLIPFLOPTASK EBS }
up_| Down ||{ FLY.chs } o e |

Click New Script.

In the New Task Script dialog box, navigate to the directory in which you want to save the script.

Type a filename for the script file and click Save.

S g0~ W

If you selected a directory that is not on WorldUp’s list of search paths, the File Path Not In Search Path
dialog box displays.

File Path not in Search Path E

The file: Block-1.ebs
iz in the directony: D:htestsimb
which iz not onthe Script zearch path,

Add this new path to the search path |

Load the file anpway |

| Cancel i

From this dialog box, you can add the selected directory to the search paths, or you can load the file
anyway. If you choose the latter, you must add the directory to the search paths manually at a later time, or
WorldUp will not be able to locate the script the next time you load the universe.

Three things happen at this point:

» An object is created in the Type Workview under the Script object type and is named <filename>Script.
» The new Script object is automatically attached to the object(s) that you selected in Step 1.

For information on how to edit text in scripts, see "The Script Editor" on page 11.

Chapter 2 Script Interface Working with Task Scripts

A new Script Editor displays similar to the following:

PR L RSEFD & HBRIT

sub task(obj as Block)

' Add code here
' Commands in this routine will be
' executed every frame

end sub

WorldUp automatically inserts a template to start with, inserting the appropriate subtype name (Block, in this
case) in the first line.

To create a new, unattached script

1

Click the New Script 42 button on the Script Editor toolbar, or from the File menu, click New Script.
A new Script Editor displays.
Click inside the Script Editor and type the code for your script.

Task scripts begin with Sub Task and end with End Sub. For information on how to edit text in
scripts, see "The Dialog Editor" on page 15.

To compile and save the script, click the Compile And Save Script 18 button on the Script Editor toolbar.

Note Any time you modify a script, you must recompile and save the script for the changes to take effect.

The first time you save the script, a corresponding Script object is created in the Type Browser. Before
you can run the script, you must attach it to the appropriate object, as described in the next section.

To attach an existing script

1

Select the object to which you want to attach the script.

Note You can select multiple objects, but be aware that if you do, the existing Tasks List for each selected
object will be replaced, not appended, with the Script objects that you add in these steps.

Right-click and select Edit Tasks, or on the Object menu, select Edit Tasks.
The Edit Tasks List dialog box displays.

If the script that you want to attach to the object(s) does not already exist as a Script object in the
simulation, check the option called See Available Scripts In Search Path (if it is not already checked).

7

Working with Task Scripts Chapter 2 Script Interface

If the script that you want to attach already has a corresponding Script object, you may want to uncheck
this option. This filters the Script Objects box so that it displays only existing Script objects, making it
easier to find the script you’re looking for.

4 In the Script Objects box, double-click each script that you want to attach to the object, or single-click
them and click Add.

Scripts that do not yet exist as objects in the universe appear at the top of the list with the syntax
{Tilename.ebs}. Scripts that already exist as objects in the universe appear at the end of the list with
the syntax <fi lename>Script.

5 Click Done.

A new Script object is created in the Type Workview for each Task script that did not already have a
corresponding object.

To detach scripts

1 Select the object from which you want to detach the script(s).
Note You cannot detach scripts from multiple objects at once.

2 Right-click and select Edit Tasks, or on the Object menu, select Edit Tasks.

3 Inthe Tasks List box, click a script you want to detach.

4 Click Remove.

5 Repeat this procedure to remove as many scripts from the object’s Tasks List as you want.

6 Click Done.

Note Detaching a script from an object does not delete the corresponding Script object. You can delete Script
objects manually. When you delete Script objects, they are also removed from the Tasks Lists of any objects
that may have still been attached to them. Be aware, however, that deleting a Script object does not delete the
corresponding .EBS file that the object was referencing.

To rearrange the order of an object’s tasks

The order in which tasks appear in an object’s Tasks List is the order in which those scripts will be executed
when you run the simulation. You can control the order in which scripts are executed for individual objects
only. You cannot control whether the Task scripts for one object will be executed before or after the Task
scripts for another object. This is controlled by WorldUp.

1 Select the object whose tasks you want to rearrange.
Note You cannot rearrange the Tasks List for multiple objects at once.
2 Right-click and select Edit Tasks, or on the Object menu, select Edit Tasks.

3 Inthe Tasks List box, click a script that you want to move in the list.

Chapter 2 Script Interface Working with Task Scripts

4 Click the Up or Down buttons to move the Script object within the list.
5 Click Done.

To determine which objects are attached to a script

1 Open the script as described on page 11.

2 In the Script Editor, click the View List Of Associations & button.

A dialog box displays a list of all objects that are currently associated with (attached to) the selected Task
script.

3 To remove any of these associations, click the name of the object that you no longer want the script to be
attached to and click Remove Association. Or, click Remove All Associations to detach the script from all
objects.

To run all Task scripts
> Click the Run in DevWindow or Run in AppWindow button to run the simulation.
To run a single Task script
1 Open the script as described on page 11.
2 On the Script Editor, click the Run Script button.
The Select Object dialog box displays, listing all objects to which the script is currently attached.
3 Click the object for which you want to run the script and click OK.

If the Task script is currently not attached to any objects, you cannot run the script.

Working with Stand-Alone Scripts

Stand-Alone scripts are not attached to any objects. You can run Stand-Alone scripts manually from the Script
Editor, or you can create specific cases in which WorldUp will run the scripts by creating them as Startup,
Shutdown, or User scripts.

« Startup script — the script that is run each time you load a .UP file.

 Shutdown script — the script that is run each time you close a .UP file.

» User script — the script that is run each time you click the User-Defined Action button.

You can specify only one Startup script, one Shutdown script and one User script per universe.

To create a new Stand-Alone script

1 Click the New Script ¥# button on the Script Editor toolbar, or on the File menu, click New Script.
A new Script Editor displays.

10

Working with Task Scripts Chapter 2 Script Interface

2 Click inside the Script Editor and type the code for your script.

Stand-Alone scripts begin with Sub Main and end with End Sub. For information on how to edit text
in scripts, see "The Dialog Editor" on page 15.

3 To compile and save the script, click the Compile And Save Script g button on the Script Editor toolbar.
Note Any time you modify a script, you must recompile and save the script for the changes to take effect.
The first time that you save the script, a corresponding Script object is created in the Type Browser.

To create Startup, Shutdown, and User scripts

1 On the Universe menu, click Universe Events.

2 From the cascading menu, click one of the following options:

« Edit Startup Script

* Edit User Script

« Edit Shutdown Script

The New Standalone Script dialog box displays.

3 Accept the default filename (startup.ebs, user.ebs, or shutdown.ebs), or type a new name
and click Save.

A new Script Editor displays with a Sub Main and End Sub already inserted.

4 Click inside the Script Editor and type the code for your script. For information on how to edit text in
scripts, see "The Dialog Editor" on page 15.

5 Click the Compile And Save Script \§& button on the Script Editor toolbar.
A corresponding Script object is created in the Type Browser.
To run any Stand-Alone script
1 Open the script as described on page 11.
2 On the Script Editor, click the Run Script button.
To run a User script
> Do one of the following:
* On the Simulation Editor toolbar, click the User-Defined Action button.
* On the Simulation menu, click User-Defined Action.
« On the Universe menu, click Universe Events, then click Run User Script.

Chapter 2 Script Interface The Script Editor

The Script Editor
This section describes how to open existing scripts, work with the text in a script, and save your changes.

Note For information on debugging scripts, see page 13.

Opening Scripts
To open a script from the Open dialog box
1 Click the Open button, or on the File menu, click Open.
The Open dialog box displays.
2 Inthe Files Of Type drop-down box at the bottom, click Script File (*.ebs).
3 Navigate to the appropriate drive and directory and double-click the .EBS file you want to open.

) If the script that you want to open was one of the last eight files opened in WorldUp, its name will appear
in the list at the bottom of the File menu. Click the filename to open it.

To open a script from the Type Workview
1 Inthe Type Workview, expand the Script object type.

2 Right-click on the appropriate Script object and select Edit Script, or on the Object menu, click Edit
Script.

To open a Task script from the Edit Tasks List dialog box
1 Select the object to which the script you want to open is attached.
2 Right-click and select Edit Tasks, or on the Object menu, select Edit Tasks.
3 Inthe Tasks List box, click the desired Script object and click Edit Script.
A Script Editor displays and opens the corresponding .EBS file.
4 In the Edit Tasks List dialog box, click Done.
To open a script from a file browser
1 Inafile browser, locate the .EBS file that you want to open.
2 Resize the Simulation Editor window and the file browser’s window so that you can see both at once.

3 Drag the .EBS file from the browser into the Simulation Editor window.

11

12 The Script Editor

Editing Text in the Script Editor

Use the following commands as you work in the Script Editor to help you quickly make changes to the script.

Chapter 2 Script Interface

Command Button Menu Shortcut Description

Cut ﬂ Edit CTRL+X Removes the selected text and places it on the clipboard.

Copy o Edit CTRL+C Copies the selected text to the clipboard.

Paste -ﬂ Edit CTRL+V Pastes the contents of the clipboard.

Undo n/a Edit CTRL+Z Undoes the most recent edit that you made in the Script Editor.

Find 35 n/a n/a Displays the Find dialog box in which you type the text you want
WorldUp to locate. You can also use this dialog box to replace
the found text with another text string.

Find In All w Script n/a Displays the Find In All Scripts dialog box in which you type the

Scripts text you want WorldUp to locate in all scripts used by your
application.
The filename, line number, and line text for each script in which
the text string is found will display in this dialog box. Double-
click any line to go to that script and line number.

Go To n/a n/a Displays the Go To dialog box in which you type the line number

&

of the script where you want to position the cursor.

Saving and Compiling Scripts

Anytime you modify a script, you must recompile and save the script for the changes to take effect.

To save and compile a script

> On the Script Editor, click the Compile and Save Script \&& button, or on the File menu, click Save Script.

To save and compile a script to a new file

1 On the File menu, click Save Script As.

2 Type a new filename and click Save.

Chapter 2 Script Interface The Debugger

The Debugger

WorldUp’s Debugger helps you locate logic errors in your scripts by tracking your field values as you traverse
each line in your script.

Setting and Removing Breakpoints

Break points tell WorldUp at which lines to stop running a script. This can help you target which line is
causing the script to fail. For example, if you set break points on lines 4 and 7 of the script and the script runs
correctly up to the first break point, but fails before the second break point, the failure is somewhere between
lines 5 and 7.

To set a break point
1 In the Script Editor, place your cursor in the line on which you want to set the break point.
2 Click the Breakpoint On/Off button on the Script Editor toolbar.

The text for that line turns red to inidicate that a break point currently exists on that line.

Note You can only set a breakpoint on a line of code that contains a command or operation. You cannot
set break points on lines that only contain comments, declare or close routines, declare variables, or contain
no text at all. Attempting to do so will cause an error message to display in the status window.

To remove a break point
1 In the Script Editor, place your cursor in the line on which you want to remove the break point.

2 Click the Breakpoint On/Off button or click the Remove All Breakpoints button to remove all breakpoints
in that script at once.

Stepping and Tracing Through Your Script
To step or trace through your script
1 Run the script using any of the methods described in "Working with Task Scripts" on page 5.

The script stops running when the first break point is reached. The text of the line at which the script has
stopped turns blue.

2 To continue running the script until the next break point (also known as tracing), repeat the run method
that you used in step 1.

3 To step through the script, one line at a time, click the Step In button on the Script Editor.

The script stops at the next line in which a command is executed. If you step into a line that calls a routine
defined in this or another script, execution will stop at the first line of that routine.

13

14

The Debugger Chapter 2 Script Interface

4 To step through the script, one line at a time, without jumping to any user-defined routines, click the Step
Over button on the Script Editor.

The script stops at the next line in which a command is executed, regardless of whether the previous line
called a routine defined in this or another script.

Watching Variables

As you run your scripts, you can view and modify the values of your variables through the Variable Watch
dialog box. From this dialog box, you can also add variables to a persistent list of variables to watch during
the current WorldUp session. When you close WorldUp, the Variable Watch list is cleared.

Note You can view global variables at any time, while variables local to a routine can be viewed only when
stopped in the routine containing the variable (that is, when execution has hit a breakpoint in or is being
stepped through the routine).

To view variables and add them to the Variable Watch list:

1 Set your break points as described on page 13 and run the script.

2 Inthe Script Editor, click anywhere in the name of the variable whose value you want to view.
3 Click the Examine/Modify Variable button on the Script Editor.

The Variable Watch dialog box displays with the selected variable in the Name box and its current value
in the Value box.

Note If you have not yet run the script with break points set, you will not be able to view variables in the
Variable Watch list.

4 To add the variable to the watch list, click the Add To Watch List button.
To modify a variable’s value from the Variable Watch list
1 Click the Examine/Modify Variable button on the Script Editor to display the Variable Watch dialog box.

2 In the section at the bottom of the dialog box, click the name of the variable whose value you want to
modify.

3 The name and value of the variable appear in the boxes at the top of the dialog box.

4 Type a new value in the Value box and press ENTER.

To remove variables from the Variable Watch list:

1 Click the Examine/Modify Variable button on the Script Editor to display the Variable Watch dialog box.

2 In the section at the bottom of the dialog box, click the name of the variable you want to remove, then
click the Delete Watch button.

Chapter 2 Script Interface The Dialog Editor 15

The Dialog Editor

Through scripts, you can display and interact with modal dialog boxes as a part of your simulation. When a
modal dialog box displays, the simulation becomes inactive until the dialog box is closed. (You cannot create
modeless dialog boxes from scripts.)

To use dialog boxes in your simulation, your script needs to include a dialog template, which defines the
appearance of the dialog box, and a call to BasicScript’s Dialog function.

WorldUp provides easy access to BasicScript’s Dialog Editor from which you can design your dialog box,
and then automatically convert your design into a template and insert it into your script.

To design a new dialog box and insert the template into your script:

1 Open the script in which you want insert the template for the dialog box you are about to design.

2 On the Script menu, click Edit Dialog.

3 The Dialog Editor displays.

4 Use the Dialog Editor to create your dialog box.

5 When you have finished creating your dialog box, on the File menu of the Dialog Editor, click Update.

6 Your script is updated with the new dialog template.

To edit an existing dialog template and update the script:

1 Open the script that contains the template for the dialog box you want to edit.

2 Inthe Script Editor, highlight the entire section of the script that contains dialog template information.

3 On the Script menu, click Edit Dialog.

4 The Dialog Editor opens and displays your dialog box.

5 Use the Dialog Editor to edit your dialog box.

6 When you have finished editing your dialog box, on the File menu of the Dialog Editor, click Update.
Your script is updated with the new template information.

To display the dialog box from your script:

» The template that you inserted into your script merely defines the appearance of the dialog box. To cause
the dialog box to display, you need make a call to BasicScript’s Dialog function. For information on this
function, search on “Dialog (function)” in WorldUp’s online help.

16 The Dialog Editor Chapter 2 Script Interface

WorldUp Scripting Language

This chapter describes how to write scripts to achieve the behavior that you want to add to your simulation.

Note If you are comfortable with Visual Basic, you can skip the "BasicScript Overview" section below. If
you are a programmer and are comfortable with a language like C/C++, Java, or COBOL, but do not have
recent experience with BasicScript, it may be sufficient to skim the "BasicScript Overview" section, gaining
from the sample code much of what you need to know. However, be sure to read the sections with
exclamation points in the left margin. These are issues that are particular to BasicScript that could cause you
problems if you are not aware of them.

BasicScript Overview

This section provides a brief overview of the BasicScript language. It covers enough material to get you
started, describing the most common usages of the language.

For information about the language’s advanced features, and a complete reference of all BasicScript
commands, on the Help menu of the Simulation Editor, click Script Reference.

Note If you are comfortable with Visual Basic, you can skip this section. If you are a programmer and are
comfortable with a language like C/C++, Java, or COBOL, but do not have recent experience with
BasicScript, it may be sufficient to skim this section, gaining from the sample code much of what you need
to know. However, be sure to read the sections with exclamation points in the left margin. These are issues
that are particular to BasicScript that could cause you problems if you are not aware of them.

No Case Sensitivity
BasicScript is not a case sensitive language. That is, REM, rem, and ReM are all considered the same.

Commands and Lines
In general, each line in a script corresponds to a single command. This means the new line ends a command.

17

18

BasicScript Data Types Chapter 3 WorldUp Scripting Language

Line Wrapping

For neatness, you should not allow a line to be longer than 75 characters, or the width of your scripting
window. However, if the command you are writing is too long for one line, you can use an underscore (_)
at the end of a line to indicate that the text that appears on the next line belongs to the current command, for
example:

quadratic = -valueB + sqr((valueB » 2) _
- 4 * valueA * valueC) /7 2 * a

Commenting Scripts

Comments are text strings that the compiler does not consider to be a part of the script’s code. Use comments
to make special notes, such as describing the function of a particular line in your script. Comments can be
extremely useful to both you and other developers who work with your scripts.

To create a comment, use the Rem statement, or an apostrophe (“). Any text within the line after the comment
indicator is ignored.

Sub Main()
“This iIs a comment and does not
“affect the code
Rem This is also a comment

End Sub

BasicScript Data Types

BasicScript has a number of primary data types, among them are:

Primary Data Type Description
Integer An integer (a number with no fractional component, such as 0,1,2,3).
Single A real number (a number that can have a fractional component, such as 4.3) with up to

seven digits of precision.

Double A real number with twice the precision and range of a Single.
String A piece of text. A string can be any length.
Variant A generic data type that can be any type.

It is best to use the type you need and avoid using variants. Providing explicit types is a
safer, more disciplined way to program, and may also save memory.

Note For a complete list of BasicScript data types, search on “Data Types (BasicScript)” in the online help.

Chapter 3 WorldUp Scripting Language Variables 19

Variables

This section describes how to declare, set and compare variables.

Declaring Variables
You declare variables with the Dim statement, which takes the form of:

Dim <Variable Name> as <Type>

You can declare multiple variables with one Dim statement by separating the variable and type pairing with
commas (,).

Dim <Variable Name 1> as <Type 1>, <Variable Name 2> _
as <Type 2>,...

If variables are defined inside a routine, they can only be used within that routine, in the code below where
they are defined. If they are defined outside a routine, they can be used anywhere in the code below where it
was declared:

dim GlobalNumber as Single
Sub Main()
dim LocalNumber as Single
LocalNumber = GlobalNumber
Can use Global Number here
End Sub

Sub ARoutine
dim LocalNumberB as Single
LocalNumberB = GlobalNumber
“Can use GlobalNumber here, but can’t
“use LocalNumber defined in Main

End Sub

Public Variables

If you declare variables as public, by using the Public statement instead of Dim, you can share those variables
between multiple scripts.

20 Variables Chapter 3 WorldUp Scripting Language

In the following example, GlobalSingle is declared as a public variable and is modified by both scripts A and
B.

Script A

Public GlobalSingle as Single
Sub Main
GlobalSingle = GlobalSingle + 1
Message “Value is now ” _
+str$(GlobalSingle)
end sub

Script B

Public GlobalSingle as Single
Sub Main
GlobalSingle = GlobalSingle - 1
Message “Value is now ” _
+str$(GlobalSingle)
end sub

Note Be sure to be consistent when declaring a public variable in different scripts. If you declare a public
variable with the same name but different types in scripts, you will receive a compile error.

For instance, if the public variable in Script A was declared as:
Public GlobalSingle as Single

and in Script B was declared as:
Public GlobalSingle as Integer

you would receive a compile error when the second script is compiled.

Setting and Comparing Variables

For the purpose of setting and comparing variables, there are two classes of variables: object variables and
non-object variables. Object variables are variables that point to a World Up object, or an object list. Non-
object variables include everything else, from integers, to strings, to vectors.

Non-object variables are assigned and compared with the = (Equals) comparison operator:

i as Integer

= 4“Assign the value 4 to the
integer "i"

if i = 4 then“Comparing "i" to 4

MsgBox "1 = 4111*

dim
i

Chapter 3 WorldUp Scripting Language Routines 21

end if

dim astring as String

astring = "Hello!™

if astring = "Hello!" then

MsgBox "'String has the value: " + astring
end if

Note You can also compare two non-object variables with the > (Greater Than), < (Lesser Than), or <> (Not
Equal To) comparison operators.

Obiject variables are also assigned with the = (Equals) operator, but the assignment statement must be
preceded with the Set directive:

dim geoml as Geometry
dim geom2 as Geometry
set geoml = geom2

Object variables are compared with the s operator. The not operator can be used to check if two objects
are not the same.

if geoml is geom2 then

if not(geoml is geom2) then

Routines

This section describes how to define and call routines.

Defining Routines

There are two types of routines in BasicScript: subroutines and functions. Their only difference is that
subroutines do not return a value, while functions do.

Note With the routines supplied by World Up, subroutines are referred to as commands.
Declaration of a subroutine takes the form:

Sub <Name> (<Parameter 1> as <Typel>, _
<Parameter 2>.. as <TypeZ>, ..)

Declaration of a function takes the form:

Function <Name> (<Parameter 1> as <Typel>, _
<Parameter 2> .. as <Type2>, ..) _
as <Return Type>

22

Routines Chapter 3 WorldUp Scripting Language

The code of the routine is placed below the declaration and the routine is concluded by the end statement (End
Sub for subroutines, and End Function for functions).

A function returns a value by treating the function name as a variable and setting it equal to the value that is
to be returned. For example:

Function AverageOfThree(a as Single, _
b as Single, _
c as Single) _
as Single
AverageOfThree = (a+b +c) / 3
end Function

If you wish to use a routine in a script other than the script in which it was written, take the declaration of the
routine and put it in the script in which you wish to use it, with the Declare operator preceding it. This tells
BasicScript that you are only declaring the function, not defining it.

Suppose your simulation contains the sample script above. You could then call the AverageOfThree function
from any other script in the simulation without defining it by inserting the following line at the top of the
desired scripts:

Declare Function AverageOfThree(a as _
Single, b as Single, c as Single)_
as Single
In the following example, the DisplayMessage subroutine is defined in Script A, and called in Script B:

Script A
Sub DisplayMessage(mess as String)

Message mess
end sub

Script B

declare Sub DisplayMessage(mess as String)
Sub Main

DisplayMessage "‘Hey!"
end sub

Calling Routines
To execute the code of a routine, just insert its name followed by its parameters.

Chapter 3 WorldUp Scripting Language Undefined Tokens 23

To call a function, its parameters must be surrounded by parentheses. To call a subroutine, its parameters must
not be surrounded by parentheses. If the wrong form is used, BasicScript will not recognize the routine.

Sub RoutineA (b as String)
MsgBox b
end sub

Function RoutineB(a as Integer, b as _
Single) as Single
RoutineB = a + b

end function

Sub Main ()
dim num as Single
RoutineA "Hi"
num = RoutineB(4, 5.3)
end sub

You cannot ignore the return value of a function. If you don’t do something with a return value (either
assigning it to a variable, using it in an expression, or using it as a conditional clause), you will get an error.
For example, the following line would result in a cryptic error message that reads “Encountered: End of
Line”.

RoutineB(2, 1.0) “ Incorrect way to call

“ function.

Undefined Tokens

Any words that BasicScript does not recognize are considered to be either new variables or new routines. This
makes BasicScript syntactically loose. In strict languages, typos will result in straight forward compile errors.
In BasicScript, typos may either create compile errors, run-time errors, incorrect behavior, or run perfectly,
depending on how the variable is used.

If the unknown token can possibly be a variable, BasicScript will create a variable of type "Variant" (a
variable which can be of any type). If you misspell the name of a variable you’ve declared, BasicScript will
assume you are using a new variable. This is an easy way to introduce subtle bugs. If you forget to declare a
variable, you may have no problems, since a variant can be any type, but you will not be able to use some of
the features of advanced objects, like World Up objects, and may result in confusing compiler errors.

When BasicScript encounters a routine it has not encountered before, it will assume that it will find a
definition for the routine before running, so it will not report an error at compile time. Instead, it will wait
until the line of code is run, at which time, if a function of that name has not been defined, the run-time error:
"Sub or function not defined" will result.

24 Branching And Looping Statements Chapter 3 WorldUp Scripting Language

Branching And Looping Statements

Branching and looping statements isolate a piece of code to be executed conditionally or repeatedly
depending on the nature of the branching or looping statement.

Branching and looping statements surround the targeted code with instructions as to when and how the code
should be executed.

If x = 5 then

Message "'x was equal to 5, x is being _
set to 3"
X =3

end if

The middle two lines will only be executed if the if...then clause is satisfied. The code inside the if...then,
end if block is indented. This is not required to run properly, but is vital to keeping code understandable and
maintainable.

For x =1 to 4
Message "‘Counting up: " + str$(x)
Next X

The middle line will be executed four times, with x equalling 1, 2, 3, and 4 consecutively.

There are several different types of branching and looping statements:

If...Then

1T <Conditional Clause> then
<Code>
End If

If <Conditional Clause> then
<Code>

Else
<Code>

End If

If <Conditional Clause> then
<Code>

Elself <Conditional Clause> then
<Code>

Else
<Code>

End If

Chapter 3 WorldUp Scripting Language Branching And Looping Statements 25

The If...Then statement is the primary method for making decisions in the code. The Conditional Clause will
test some proposition (x = 5, {x equals 5}, or x > 4, {x is greater than 4}, or x <> 3, {x does not equal 3}).
If the proposition is true, the code after the Then will be executed. If there is an Else command and the
proposition was found not to be true, the code after the Else command will be executed. You can have an
Elself command, if, when one proposition has been shown to be false, you want another proposition to be
tested. For example:

If name = "Rock" then
Message "Found a Rock™
Elself name = "Ground" then

Message "Found a Ground'
Elself name = "Sky' then

Message "Found a Sky"
Else

Message "'Don’t recognize object."
End IF

While

While <Conditional Clause>
<Code>
WEnd

The While loop will continue to execute the Code block while the conditional clause is true.

Do...While

Do
<Code>
While <Conditional Clause>

The Do...While loop will execute the Code block once and then will continue to execute the Code block while
the conditional clause is true.

For...Next

For <variable> = <starting value> to _
<ending value>
<Code>
Next <variable>
For <variable> = <starting value> to _
<ending value> Step _
<Increment>
<Code>
Next <variable>

26

The WorldUp Scripting Extensions Chapter 3 WorldUp Scripting Language

The For loop is an easy way to loop through a series of values. A number variable (Single, Integer, Double)
is specified and then a range of values through which the variable will count. Normally the For loop will
advance the variable by 1. Optionally, a step clause can be added to the For statement specifying the amount
by which to advance the variable. The code will be executed once for each value through which the variable
is advanced.

The WorldUp Scripting Extensions

This section describes how to use BasicScript to interact with World Up objects and the 3D environment they
inhabit.

World Up Data Types

World Up adds a set of data types necessary for manipulating a three-dimensional simulation. Each data type
has a set of routines that act upon them. For a description of all World Up routines, on the Help menu, click
World Up Commands and Functions.

To access the components of a data type, follow the variable name by the label of the component separated
by a dot (.). This component can be used as part of an expression or to assign a value to the component. For
example:

dim vect as Vect2d
vect.x 4.5
vect.y = vect.x + 3.2

The following table describes the data types provided by World Up:

Data Type Description
Vect2d A two-dimensional vector (a collection of two Singles). Its components are X and Y.
Vect3d A three-dimensional vector (a collection of three Singles). Its components are X, Y, and Z.
Orientation Represents a rotation. It has four Single components (X,Y,Z,W), but it is not recommended

that you access these components directly. Instead, you should use the rich set of Orientation
manipulators that are provided.

RGB A collection of three integers, Red, Green, Blue, which together, describe a color. A value of
zero for a component means no presence of that color. A value of 255 means a full value for
that color.

Matrix3d A 3x3 matrix (nine Singles labeled E0O, EO1, ... E22). Although this type is rarely used in

World Up (since rotations for Movable objects are stored in Orientations), it can provide a
useful mathematical representation of an orientation.

Chapter 3 WorldUp Scripting Language The WorldUp Scripting Extensions 27

Data Type Description

Matrix4d A 4x4 matrix (sixteen Singles labeled EQO, EO1, ... E33). Although this type is rarely used in
World Up (since positions for movable objects are stored in Vect3d's and Orientations), it can
provide a useful mathematical representation of an orientation/position.

List A list of World Up objects. Lists are distinct from the rest of the data types listed here in the
way they operate, and are discussed in greater detail on page 33.

World Up object Any World Up object type, either pre-defined or user-defined can be used as a data type in
types scripts. "Retrieving Objects" below describes how to use this data type.

Note There are three additional data types that are used by World Up object properties, but have no
corresponding BasicScript data type. These are: Filename, Material, and Resource Entry. In scripts, you
would use the String data type in place of these three property data types.

Retrieving Objects

You can create variables that point to objects in your simulation. To do so, you define a variable of one of the
types in your simulation. For example:

dim geom as Geometry

dim obj as VBase

dim sw as Switcher

dim rock as Rock “ Where Rock is a user
“ defined type

These variables are now pointers, but they don’t initially point to any object (In fact, they point to "nothing",
a token in BasicScript).

To get a specific object, you can use the Get<type> functions. For each type (including user-defined types),
a Get<type> function is created (such as GetGeometry and GetGroup). These functions take the name of an
object and return the object, if it exists.

Dim imp as Imported
set imp = Getlmported(""Rock')

Since Imported is a subtype of Geometry (note the hierarchy in the Type Browser), you could get the same
object as a Geometry, or any other object type under which the object is nested (Movable, Node, or VVBase,
in the case of an Imported object):

Dim geom as Geometry
set geom = GetGeometry("Rock™)

28

The WorldUp Scripting Extensions Chapter 3 WorldUp Scripting Language

You can also iterate through objects of a specific type using the GetFirst<type> and GetNext<type>
functions. They use an "lterator" object to move through all of the objects of a type, as well as any subtypes
nested within it. When the functions return "nothing"”, all of the objects of a type have been iterated through.

Dim geom as Geometry
dim pos as lterator
set geom = GetFirstGeometry(pos)
geom.Optimized = True
set geom = GetNextGeometry(pos)
wend

The above code will iterate through all of the objects of the Geometry type (which includes any objects of the
Imported, Block, Sphere, Cylinder, and Text3d types, and any user-defined types nested within them) and
optimizes them.

Casting

Suppose you want to set an object variable equal to the value of another object variable. The method that you
use depends on whether the value that you want to assign to the variable has been declared as an object type
that matches, is a descendent of, or is an ancestor of the object type of the variable whose value you are
setting.

Downcasting

When you downcast, the object type of the variable to which you are casting is the same as or a descendant
of the object type of the variable you are setting. For example, you can use downcasting to set a variable of
type Node to a value of type Geometry because Geometry is a descendant of Node in the Type Browser
hierarchy.

To downcast, you set the desired variable equal to any existing variable that has been declared with a
descending object type.

dim geom as Geometry

dim node as Node

set geom = GetGeometry("Rock-1")
set node = geom

Upcasting

When you upcast, the object type of the variable to which you are casting is an ancestor of the object type of
the variable you are setting. For example, you can use upcasting to set a variable of type Geometry to a value
of type Node because Node is an ancestor of Geometry in the Type Browser hierarchy.

To upcast, you must use the CastTo<type> function.

dim node as Node

Chapter 3 WorldUp Scripting Language The WorldUp Scripting Extensions 29

dim geom as Geometry
set node = GetNode(""Rock-1")
set geom = CastToGeometry (node)

If the CastTo<type> function is asked to cast an object to a type from which it is not derived (for example, if
you had a Group object and tried to cast it to SpotLight) the CastTo<type> function will return nothing. This
is actually a convenient way to check whether an object is derived from a specific type.

Suppose you want to find out whether your Vehicle object has collided with an object of type Wall (a user-
defined type). You could try to cast a variable to a Wall type and see if it works.

Dim WallObj as Wall
set WallObj = CastToWall(CollidedObject)
if not(WallObj is nothing) then
Message "Collided with a wall!"
end if

Object Properties

World Up objects have a set of properties visible from the Property Browser. You can access these properties
in your scripts. The method that you use depends on whether they are simple or complex properties.

Accessing Simple Properties

Simple properties are properties that contain a single value. This includes Singles, Integers, Booleans, Lists,
Obijects, Strings, Filenames, and Materials. You can refer to simple properties with the dot (.) notation. By
putting a dot after the variable and following it with the property name (<variable>_<property>), the
value of the property can be accessed or changed. For example:

Dim mainlight as Light

Set mainlight = GetLight("Light-1")

if mainlight.Intensity < 1.0 then

mainlight.Intensity = _
mainlight.Intensity + .01

end sub

The example above illustrates both retrieving and setting the light’s Intensity property. If run every frame,
this script would slowly increase the intensity of "Light-1" to full intensity.

Note For properties whose names contain spaces and colons in the Property Browser, do not include the
spaces and colons when using the properties in scripts. For example, the Audio: Listener property on
the Universe object type would become AudioListener.

30

The WorldUp Scripting Extensions Chapter 3 WorldUp Scripting Language

Note that you can only access the properties that belong to the variable’s object type. In the example above,
notice that the Mainlight variable is declared as type Light. You can access the Intensity property, regardless
of which subtype the Light-1 object was created from, because Intensity is a property of all lights. Suppose
"Light-1" is an object of type SpotLight and you want to access its Angle property. You would first have to
declare the Mainlight variable as type SpotLight, since Angle is a property that is specific to that type.

Note The Filename, Material, and Resource Entry property types are treated as Strings in BasicScript.

Accessing Complex Properties

Complex properties are properties that contain multiple values. This includes Vect2ds, Vect3ds, Orientations,
Colors, and LODRanges. You can retrieve and modify complex properties by passing in a variable of the
appropriate type and using the Get<property> and Set<property> methods. For example:

Dim obj as Imported

Dim Trans as Vect3d

obj .GetTranslation Trans
Trans.x = Trans.x + 1
obj.SetTranslation Trans

The script above modifies only the X component of the Trans variable, causing the object pointed to by the
Obj variable to move one unit in the X direction. You could modify the other components of the Trans
variable using Trans.y and Trans.z.

Object Routines and Global Routines

In addition to accessing objects and properties, there are a wealth of built-in routines that will help you
implement the behaviors your simulation requires. The online help contains detailed reference information
on all of these routines.

To access help on routines:
* On the Help menu, click World Up Commands and Functions.
 Or, in the Script window, highlight the name of the routine and press F1.

Obiject routines (or methods) are routines executed on a particular object, using the dot notation to call a
routine on an object:

dim child as Node
set child = obj.GetChild(0)

Each object type has a collection of routines to perform specialized operations on that type of object or to
supply handy, time-saving shortcuts. Whenever you need to manipulate an object, you should review the
online help for the selection of routines available for that object.

Chapter 3 WorldUp Scripting Language Calling C Libraries From BasicScript 31

Global routines do not require the specification of a particular object to be executed. There are hundreds of
global routines available for a variety of purposes. We have already seen the object accessors and iterators in
"Retrieving Objects" on page 27. Other groups of global routines include:

» Math functions, which supply the ability to easily manipulate vectors, orientations, and matrices.

» Collision functions, which give a spectrum of options determining whether objects are intersecting one
another.

* Picking functions, which allow you to get a variety of information allowing the user to operate with a 2D
mouse in a 3D scene.

This is just a small sampling. See the online help for a list of all routines.

Calling C Libraries From BasicScript

You can declare a function which is exported from a DLL (on Windows) or a DSO (on SGI) by adding the
Lib directive after the function name, followed by the name of the library in quotes. The CDecl keyword will
be necessary if the library was compiled from C or C++. For example:

Declare Function DoCalculate CDecl Lib_
“"utility.dll" (ByRef i as Integer)_
as Single

Now the function DoCalculate can be used just like any other function declared in BasicScript.

When writing a library in C, it is important to export your functions. For example, in your DLL code, the
definition of your function may look like the following:

extern ""C" __declspec(dllexport) float DoCalculation(short i)
{

}

Matching up BasicScript data types to C data types is critical. Mismatches will cause an unrecoverable
internal error. In this version of BasicScript, the following is true:

return i * 1.5F ;

Data Type Description
Integer 2 byte integer
Long 4 byte integer
Single 4 byte floating point number
Double 8 byte floating point number
Vect2d Array of 3 Singles

32 Calling C Libraries From BasicScript Chapter 3 WorldUp Scripting Language

Data Type Description
Vect3d Array of 3 Singles
Orientation Array of 4 Singles

Creating Objects

Creating new objects in a simulation via scripts is a two-step process. First you must create a new,
unconstructed object, using BasicScript’s New keyword:

Dim obj as new Sphere
or

Dim obj as Sphere
set obj = new Sphere

You can set properties of the object, but the object does not yet appear in the simulation, and has no affect on
any other object. At this point, set the initial properties for the object and call the Construct function with the
name of the new object in quotes. If the Construct function returns "True" then the object has been
successfully created.

Dim obj as new Imported
obj.Filename = "shuttle._nff"
iT not obj.Construct ("shuttle™)then
Message "Failed to construct Shuttle _
object™

end if

Note In the example above, the SHUTTLE.NFF file must exist in one of your Models search paths in order
for the object to be created.

At this point, the object you created is now in the simulation and will appear in the Type Browser. However,
if the object you are creating is a Node object, you must make the object a child of some other node before
the object will appear in the scene graph and the Simulation window.

Dim root as Root
set root = GetRoot(""Root-1")
root_AddChild obj

Note You can also create an object by duplicating an existing object, using the DuplicateObject function.

Chapter 3 WorldUp Scripting Language Calling C Libraries From BasicScript 33

Lists

A list is a data type that can store a series of objects. For example, the List data type is used for storing a list
of scripts for an object’s task list, as well as a list of nodes for an object’s children list. Lists can also be used
for a variety of reasons in a simulation, such as for collision detection. There is a full set of object routines
(such as AddChild, RemoveChild, GetChild, AddTask, RemoveTask) that allow you to manipulate lists
without ever seeing the List property, which will save you a lot of time.

You can iterate through lists, just like types, with the GetFirstObject and GetNextObject list routines. For
example:

Dim obj as VBase

dim pos as lterator

set obj = list.GetFirstObject(pos)

while obj is not nothing

message obj.Name

set obj = list.GetNextObject(pos)
wend

This code will print out all of the members of a list.

Lists are different from other data types, and more like World Up objects, in that, when a list variable is
created there is no actual list created. The list variable is merely a reference to a list. Similarly, if you were to
assign one list variable to another, both variables are pointing to the same list. Therefore, if you get a list
property from an object, and then perform operations on the list variable, it affects the object’s property
whether or not you call Set on the property. You still need to call the Set function so that World Up knows
when you are finished editing the list.

If you wish to create a new list, distinct from an existing list, you can use BasicScript’s New keyword, just
like you can for objects (see page 32). This will create a new empty list.

Dim collisionlist as new List

Dim objectsChildren as List

obj .GetChildren objectsChildren
collisionList.Copy objectsChildren
collisionList_AddToList GetRock(""Rock-1")

The code above creates a new list, and puts into this list the children of Obj as well as "Rock-1". Now this list
could be used for some other purpose. If the code had just retrieved objectsChildren without making a copy
and added "Rock-1" to the list, it could still use the list for that purpose, but it would have actually added
"Rock-1" to Obj’s Children list. For example:

Dim collisionlist as List
Dim objectsChildren as List
obj .GetChildren objectsChildren

34 Calling C Libraries From BasicScript Chapter 3 WorldUp Scripting Language

collisionList = objectsChildren
collisionList_AddToList GetRock(""Rock-1")

In this code, collisionList has the same list of objects in it, but it is actually Obj’s Children list, and has been
modified. This code actually altered the scene graph, while, in the original code, the Children list was
unmodified.

Lists have a full suite of routines to help you manipulate them, including Union and Intersection routines for
use with other lists. Refer to the online help for information on all of the List routines.

Globa Methods

Besides the standard BasicScript commands and functions, WorldUp has special scripting commands and

functions that you can use in your scripts. These methods provide access to WorldUp-specific functionality.

The Commands and Functions discussed in this chapter are called global functions. This means you don't
need to use aparticul ar object to call them. They supply generic functionality that you are likely to find useful
in the course of developing your simulation. They help find objects, iterated through lists of objects of a
chosen type, load worlds, and give you information about your simulation. The Math Commands and
Functions help you conveniently manipulate all the WorldUp types.

The differences between commands and functions are:
» Commands do not return a value whereas functions do.
* You must use parentheses around the arguments of a function.
A command is specified as:
command argl, arg2, ..., argn
A function is specified as:

val = function(argl, arg2, ..., argn)

35

36

Global Commands and Functions

Global Commands and Functions

DeleteObject

Description
This command deletes the specified object.

Syntax
DeleteObject Object

where,
Objectisthe WorldUp object to be deleted.

Arguments Data Type
Object WorldUp Object Type
Example
sub main

dim FirstLight as Light
set FirstLight = GetLight('Light-1")
DeleteObject FirstLight

end sub

See Also
Construct()

Chapter 4 Global Methods

Chapter 4 Global Methods Global Commands and Functions

Duplicate

Description

This function duplicates the specified object and returns areference to the new object. The new object hasa
unique name, however it isnot added to the scene graph. Y ou can use the command AddChild to add it to the
scene graph at the desired location. To use this function, append the type of the specified object to the word
“Duplicate” followed by the object name.
Syntax

Duplicate<TypeName>(Object)
where,

TypeName is the name of the type that contains the object to be duplicated, and

Objectisthe object to be duplicated.

Arguments Data Type

Object WorldUp Object Type

Return Data Type
WorldUp Object Type.

Remarks

If the specified abject has children, this function does not duplicate them. To do so you must use the function
DuplicateObject().

Example

sub main
dim b as block, b2 as block
set b = Getblock(*'block-1")
set b2 = DuplicateBlock(b)
* 1F successfully duplicated add to scene graph
if b2 is not nothing then
getfirstcylinder() .addchild b2
end if
end sub

See Also
DuplicateObject.

37

38

Global Commands and Functions Chapter 4 Global Methods

DuplicateObject

Description

This function duplicates the specified object and (optionally) its children and returns a reference to the new
object. Since thisfunction can be used to duplicate any WorldUp object type, you must use the corresponding
CastTo<Type>() function to cast the object returned to the type of variable you assign it to. If the objectisa
node, the new node will automatically be added to the same parent as the duplicated from.

Syntax

DuplicateObject(FirstObject, NewName, Children)
DuplicateObject(FirstObject, NewName, Children, Options)

where,
FirstObject isthe object to be duplicated,
NewName is the name of the new object created, and

Chi Idren specifies whether FirstObject is to be duplicated with its children or not. If TRUE, FirstObject
is duplicated with its children (if any). (This parameter is meanless of the object is not a Node)

Options isan optional parameter allowing (see optional parameters below)

Arguments Data Type
FirstObject WorldUp Object Type
NewName String

Children Boolean
Options(optional) Integer

Return Data Type
WorldUp Object Type.

Optional Parameters
The any combination of the following flags can be added together:

DUP_COPYSOUNDS will make a copy of any sounds attached to the original object(s) and attach them to the
new object(s).

DUP_COPYROUTES will make a copy of all event responses and all W2W shared properties associated with
the original object(s) and apply them to the new object(s)

Chapter 4 Global Methods Global Commands and Functions

DUP_COPYPATHS will make a copy of any paths attached to the original object(s) and attach them to the
new object(s).

DUP_ INSTANCEPATHS will attach any path attached to the original object(s) to the new object(s).
It is meaningless to include both DUP_COPYPATHS and DUP_ INSTANCEPATHS.

Remarks
If an object exists with the same name as NewName then WorldUp creates an object with a unique name.

Examples

sub main
dim FirstLight as Light
set FirstLight = GetLight('Light-1'")
dim newLight as Light
" cast to type Light
set newLight = CastToLight(DuplicateObject(FirstLight, _
"newlight',FALSE))
end sub

sub main
dim Avatar as Node, NewAvatar as Node
set Avatar = GetNode("Avatar-1")
set NewAvatar = CastToNode(_
DuplicateObject(Avatar, "NewAvatar', TRUE, _
DUP_COPYSOUNDS+ DUP_INSTANCEPATHS))
end sub

See Also
Duplicate

39

40

Global Commands and Functions Chapter 4 Global Methods

GetFirst

Description

Thisfunction returns areference to the first object of the given type. There are two waysto call thisfunction.
Thefirst syntax takes no arguments and is commonly used when only the first object of the particular typeis
of interest. The second syntax takes an iterator data type as an argument and is used with the GetNext()
function to iterate through the objects of agiven type. To use this function, append the type of the particular
object to the word “ GetFirst”.

Syntax1
object = GetFirst <Typename>()

where,

Typename is the name of the type that contains the first object you want to get.

Syntax2
set object = GetFirst <Typename>(lter)

where,
Typename is the name of the type that contains the first object you want to get, and

Iteristhe Iterator variable.

Arguments Data Type

Iter Iterator

Return DataType
WorldUp Object Type.

Remarks

If no objects have been created for the specified type, it returns the following runtime error message: “object
variable or With block variable not set.”

Example

" Illustrates usage of GetFirst() with no arguments. The example
" in GetNext() shows how GetFirst() is used with an iterator

" argument.

sub main

Chapter 4 Global Methods Global Commands and Functions 41

dim myobject as sphere

set myobject=GetFirstSphere()

MsgBox "Object name is: " + myobject.name
end sub

See Also

GetNext(); DoKeys (statement); QueKeys (statement); QueKeyDn (statement); QueKeyUp (statement);
SendK eys (statement)

42 Global Commands and Functions Chapter 4 Global Methods

GetNext

Description
This function returns a reference to the next object of the given type. Thisfunction is used with the GetFirst

function to iterate through the objects of a given type.
Syntax
object = GetNext <Typename>(lter)
where,
Typename is the name of the type that contains the object you want to get, and

I'ter istheiterator variable.

Arguments Data Type

Iter Iterator

Return DataType
WorldUp Object Type.

Remarks
Returns nothing if no more objects exist for the specified type.

Example

sub main()
Dim MyObject as MyType
Dim iter as lterator
Set MyObject = GetFirstMyType(iter)

while MyObject is not nothing
MsgBox "Object name is: " + MyObject.Name
Set MyObject= GetNextMyType(iter)
wend
end sub

See Also
GetFirst()

Chapter 4 Global Methods Miscellaneous Commands and Functions 43

Miscellaneous Commands and Functions

BrowserSetLocation

Description

This command is specific to WorldUp Netscape plug-ins only. It is used to change the location currently
being browsed.

Syntax
BrowserSetLocation Path, WindowName

where,
Path specifies the URL the target browser window should change to, and

WindowName is the existing browser window.

Arguments Data Type

Path String

WindowName String
Remarks

If aWindowNameis given which is not an existing browser window, anew window will be created with that
name.

Example

Sub Main()
Dim key as String

key = GetKey()
If key <> " Then
Select Case key
Case "1"
BrowserSetLocation "http://www.sense8.com/worldup/ _

worlds/myworld1l.wup*” , "WorldUp*

Case "'2"
BrowserSetLocation "http://www.sense8.com/worldup/ _

wor lds/mywor1d2.wup" , "WorldUp"
End Select

44 Miscellaneous Commands and Functions

End If
End Sub

See Also
The WorldUp Players & Plug-Ins

Chapter 4 Global Methods

Chapter 4 Global Methods Miscellaneous Commands and Functions 45

FrameDuration

Description

This function length, in seconds, of each frame. This number is averaged over the previous 10 frames for
accuracy.

Syntax

time = FrameDuration

Example

sub Main
message "'Frames are taking:" + _
str$(FrameDuration) + " seconds"
end sub

See Also
SimulationTime; TimeTrans ate; TimeRotate

46

Miscellaneous Commands and Functions Chapter 4 Global Methods

GetKey()

Description

This function returns a string which represents the first key in the buffer. It is primarily used to read the
keyboard. One character in the buffer is processed per frame, so it ispossible for afast typist to fill the buffer
with several key strokesin one frame.
Syntax

key = GetKey()

Return DataType
String.

Remarks

For ordinary keys, the resulting string represents the key pressed (for example, pressing the key y will result
inthe string “y” being returned). For keys with no direct representation in a string (such as PageDown and
Delete), the following strings are returned:

Key String
Arrow Up “up”

Arrow Down “down”
Arrow Left “left”

Arrow Right “right”

End “end”
Escape “esc”

Home “home”
PageUp “pageup”
PageDown “pagedown”

These keys can only be used when you run your simulation as an application and not when run in the
development environment.

Example

Sub Task(win as Window)

Chapter 4 Global Methods

Dim key as string

Select Case GetKey()

Case "'gq"
SimulationStop
Message ''q pressed stopping simulation
Case "'up™
Message "Up Arrow key pressed"
End Select

End Sub

Miscellaneous Commands and Functions

47

48 Miscellaneous Commands and Functions Chapter 4 Global Methods

GetSharedProperty

Description
Thisfunction gets the W2WsharedProperty object associated with a property whichis shared. If the specified
property is not shared, this function will return nothing.
Syntax
SharedPropObject = GetSharedProperty(Object, PropertyName)
where,
Objectwho ownsthe property inin question,
PropertyName refersto the property interest in, and
SharedPropObject isthe returned W2W SharedProperty object, if thereis one.

Arguments Data Type
Object WorldUp Object Type
PropertyName String

Return Data Type
W2W SharedProperty.

Example

Sub Main()
" Check if a property is shared
iT GetSharedProperty(GetBlock("Block-1"), "Translation™)_
is not nothing then
Message "‘Property is shared"
end if
End Sub

Sub Main
dim n as Node
set n = GetNode("Tree-1")
dim sp as W2WSharedProperty
set sp = GetSharedProperty(n, ""Rotation™)
Message ''‘Shared Property Status: " + sp.Status

sp.UpdateFrequency = .5
sp.SendUpdate

Chapter 4 Global Methods Miscellaneous Commands and Functions 49

End Sub

See Also
ShareProperty; UnshareProperty; SendUpdate

50

Miscellaneous Commands and Functions Chapter 4 Global Methods

LoadWorld

Description

This command is specific to WorldUp Standalone Players only. It loads in anew UP or WUP file. Either file
can be on the local file system. WUP files can also be referenced from a URL. There are two forms of this
function. The first form takes just one argument which is the name of the UP/WUP file or the URL address
and deletes the old type hierarchy and Scene Graph before |oading the new one. The second form takes an
additional parameter which specifies whether the old type hierarchy and Scene Graph should be deleted or
not before loading the new world. The first form and the second form (with the second parameter as TRUE)
isidentical to selecting File-Open in the WorldUp environment.

Syntax1
LoadWorld FileName

where,

Fi leName isthe name of the UP/WUP file or the address of a URL.

Argument Data Type
FileName String
Syntax2

LoadWorld FileName, DeleteOldWorld
where,
FileName is the name of the UP/WUP file or the address of a URL, and

DeleteOldWor Id specifies whether the old type hierarchy and scene graph should be deleted or not
before loading the new world.

Arguments Data Type
FileName String
DeleteOldWorld Boolean
Example
Sub MainQ)

LoadWorld '"SecondRoom.up
End Sub

Chapter 4 Global Methods Miscellaneous Commands and Functions

Sub Main()
" don"t delete existing world
LoadWorld "'http://www.sense8.com/worldup/worlds/ _
mywor ld .wup™, FALSE

End Sub

Remarks

This command might completeimmediately, or it might take many frames. Until theloading is complete, the
current simulation will continue to run (this time will only be significant if downloading content from the
Internet). If you find this undesirable, you might try disabling the motion-links before you call LoadWorld.
One consequence of the loading happening immediately isthat the script running the loadworld could be

aborted immediately. Thustheloadworld should be thelast command in the script to ensure consistent results.

Using LoadWorld with the second parameter FALSE, will load the new content off the root, while leaving
the current content intact. See "Component/Progressive Loading" below.

Component/Progressive Loading

The LoadWorld function exposes the opportunity to load pieces of worldsin sections rather than all at once.
Thisisuseful when you want to implement progressive downloading of files, or when you don’t want all of
asceneto be stored in memory at onetime.

If you call LoadWorld with the second parameter as FALSE, that is;:
LoadWorld("http://www.sense8.com/wor ldup/worlds/roomthree.wup', FALSE)

it isimportant that the name of the root node be the same in both UP files. (The one currently loaded and the
onebeing added.) If they are not, unpredictable resultswill occur. If an object in the new content has the same
name as an object in the existing content, the existing will stay with its property values over written with the
new values. If objects with the same name in the existing and new content are of different types, the results
are unpredictable.

Normally, you will want to delete Window and Viewpoint objects from worlds you add using the
LoadWorld(..., False) statement. If the windows and viewpoints in the new content have the same name as
those in the existing world, the viewpoint will be moved to a new location and the window will be
aggressively resized to the new size. If the window has a different name, a new window will be launched.

To implement a progressive downloading scheme, divide up aworld file into several UP/WUP files. Then,
decide the order of the files to be loaded. In the startup scripts of each world file, you can put a
LoadWorld(..., FALSE) statement to load the next section.

Note LoadWorld isaways|loaded directly under the root. If you want the world to be loaded under an
existing node, you need to have identical copies of the parent nodes in the new UP file. If the properties of
these parent nodes change, the properties are reset when the new content is loaded. If you manualy edit the

51

52

Miscellaneous Commands and Functions Chapter 4 Global Methods

UPfilewith atext editor, you can remove the property entries under the appropriate node object. If the object
does not have an entry for the property, it does not reset it. Anytime you re-save the UP file, new property
entries are saved and the UP file must be re-edited.

There is no general way to remove aworld once you load it. If you want to “unload” worlds, you must nest
all of the nodes of the world under a single node in the scene graph, and then delete that node.

See Also

LoadWorld; The WorldUp Players & Plug-Ins.

Chapter 4 Global Methods Miscellaneous Commands and Functions 53

Message

Description
This command displays the specified message in the Status window.

Syntax
Message String
where,

Stringisthe text that will appear in the Status window.

Arguments Data Type
str String
Example

sub main()
for x =1 to 4
message ""the value of x is " + str$(x)
next x

end sub

54

Miscellaneous Commands and Functions Chapter 4 Global Methods

PickGeometry()

Description

This function returns a reference to the first geometry detected under the specified screen point. When you
use amouse to pick geometries (by clicking the left mouse button), its Position property is set to the current
screen coordinates, making it convenient for you to pick with amouse. There are two waysto call this
function. Thefirst syntax takes just one argument which isthe 2D screen point. The second syntax takes an
additional 3D vector argument which getsfilled with the global coordinates of the point in space on the
geometry that was picked.

Syntax1
set geom = PickGeometry(ScreenCoordinates)
where,

ScreenCoordinates represents specific X,Y coordinates on your monitor's screen, not window coordi-
nates.

Arguments Data Type
ScreenCoordinates Vect2d
Syntax2

set geom = PickGeometry(ScreenCoordinates, PickedPosition)

where,

ScreenCoordinates represents specific X,Y coordinates on your monitor's screen, not window coordi-
nates, and

PickedPosition isthe global coordinates of the point in space on the geometry that was picked.

Arguments Data Type
ScreenCoordinates Vect2d
PickedPosition Vect3d

Return Data Type
Geometry.

Chapter 4 Global Methods Miscellaneous Commands and Functions 55

Remarks

When using the second syntax of PickGeometry, the PickedPosition vector getsfilled only if the geometry
returned is something other than a“null value’.

Example

sub task(m as mouse)
dim g as geometry
dim p as vect2d
dim p3 as vect3d

"if mouse button was clicked
if m_miscdata then
m.getposition p
set g = PickGeometry(p, p3)
"if a geometry was picked
if g is not nothing then
message '‘Mouse is over object ' + g.name
message "'Global coordinates of point " +
str$(p3-X) + str$(p3.Y) + str$(p3.2)
end if
end if
end sub

56

Miscellaneous Commands and Functions Chapter 4 Global Methods

PickPlane

Description

This command projects a point (in screen coordinates) to a plane described by a point on the plane and the
orientation of the plane. The arguments I ntersectPoint and DistanceToPlane get filled with the location where
the 2D point was projected on the plane and the distance to the projected point from the viewpoint position,
respectively.

Syntax

PickPlane PickPoint, PlanePoint, PlaneOrientation, IntersectPoint,
DistanceToPlane

where,
PickPointisthe 2D point to be projected,
PlanePoint isapoint on the plane on to which the ray isto projected,
PlaneOrientation isthe orientation of the plane on to which the ray is to projected,
IntersectPoint isthe location where the ray intersects the plane, and

DistanceToPlane isthe distance to the intersect point from the RayOrigin point.

Arguments Data Type

PickPoint Vect2d

PlanePoint Vect3d

PlaneCrientation Orientation

IntersectPoint Vect3d

DistanceToPlane Single
Example

This example lets you drag an object along the view plane:

global DraggedObject as Movable
global DraggedInitalPoint as Vect3d
On down click:
set DraggedObject = PickGeometry(screenpt)
if DraggedObject is not nothing then
dim ThrowAwayOri as Orientation
DraggedObject.GetGlobalLocation DraggedInitalPoint, ThrowAwayOri

Chapter 4 Global Methods Miscellaneous Commands and Functions 57

end if
Each frame mouse is down:

if DraggedObject is not nothing then
REM Get the orientation of viewpoint. This will be the
REM normal of the projection plane
dim viewpt as Viewpoint
set viewpt = GetViewpoint("Viewpoint-1")
dim normal as Orientation
viewpt.GetOrientation normal

dim newpos as Vect3d
dim dist as Integer
PickPlane screenpt, DraggedInitalPoint, normal, newpos, dist

REM Set the new global position (must first get the current
REM location to keep the same global orientation)
dim rot as Orientation
dim ThrowAwayVect as Vect3d
DraggedObject.GetGlobalLocation ThrowAwayVect, rot
DraggedObject.SetGlobalLocation newpos, rot

end if

See Also
ProjectToPlane

58

Miscellaneous Commands and Functions Chapter 4 Global Methods

ProjectToPlane

Description

This command projects aray described by the ray origin and ray direction to a plane described by a point on
the plane and the orientation of the plane. The arguments I ntersectPoint and DistanceToPlane get filled with
thelocation where theray intersects the plane and the distance to the intersect point from the ray origin point,
respectively.

Syntax

ProjectToPlane RayOrigin, RayDirection, PlanePoint, PlaneOrientation,
IntersectPoint, DistanceToPlane

where,
RayOriginistheorigin of the ray to be projected,
RayDirection isthe direction of the ray to be projected (must be a normalized vector),
PlanePoint isapoint on the plane on to which the ray isto projected,
PlaneOrientation isthe orientation of the plane on to which the ray is to projected,
IntersectPoint isthe location where the ray intersects the plane, and

DistanceToPlane isthe distance to the intersect point from the ray origin point.

Arguments Data Type
RayOrigin Vect3d
RayDirection Vect3d
PlanePoint Vect3d
PlaneCQrientation Orientation
IntersectPoint Vect3d
DistanceToPlane Single
See Also

PickPlane

Chapter 4 Global Methods Miscellaneous Commands and Functions 59

RaylIntersect()

Description
This function returns the ID number of the first polygon that isintersected along the ray that is cast.

If nothing was intersected, this function returns 0. If a geometry node was intersected, areference to the
geometry isplaced in the Geom variable. If something wasintersected, the distance from theray originto the
intersection point is placed in the Distance variable.
Syntax

poly = Raylntersect (Node,Ray Origin,Ray Dir,Geom,Distance)
where,

Node isthe node from which to start looking for intersections (if you are looking to intersect with any
geometry, passin the root node),

Ray_Originiswheretheray starts (in globa coordintes),
Ray_Dir isthedirection the ray points,
Geom is the geometry object intersected, and

Distance isthe distance from the ray origin to the intersection point.

Arguments Data Type

Node Node

Ray_Orgin Vect3d

Ray_Dir Vect3d

Geom Geometry

Distance Single
Remarks

Note that the Ray_Dir argument should be a normalized (unit length) vector. Y ou can use the Vect3dNorm
command to normalize your vector, if needed.

Example

sub main()
dim nd as node
dim origin as vect3d

60 Miscellaneous Commands and Functions Chapter 4 Global Methods

dim dir as vect3d

dim distance as single

dim geom as Geometry

dim poly as long

origin.x = 0

origin.y = 4

origin.z = 0

" shoot ray upwards

dir.x =0

dir.y = -1

dir.z=0

set nd = getnode('root-1")

poly = rayintersect(nd, origin, dir, geom, distance)

message "'distance” + str$(distance)
end sub

Chapter 4 Global Methods Miscellaneous Commands and Functions 61

SendToContainer

Description

Thiscommand is specific to the WorldUp Active X plug-in only. In the OLE control, this sends a message of
two arbitrary parameters to the container, which will generate an OLE event: “ ScriptEvent.” Y ou can send
any parameters of a standard Basic type (such as strings, integers, singles, arrays), but not WorldUp specific
types (such as Geometry, Vect3d). (For objects, send object names as strings. For vect3ds, send arrays of
singles.) Basic automatically casts any standard type to a variant.

Syntax

SendToContainer Paraml, Param2
where,

Paramlisthefirst parameter, and

Param?2 is the second parameter

Arguments Data Type
Param1l Variant
Param2 Variant
Example
Sub Main ()
SendToContainer *‘DisplayMessage™, 5
End Sub
See Also

The WorldUp Players & Plug-Ins

62

Miscellaneous Commands and Functions Chapter 4 Global Methods

SetCursor

Description
This command changes the current application cursor to your choice of WorldUp's predefined cursors.

Valid idStrings for SetCursor are as follows:
System Cursors
ARROW, WAIT, CROSS

Custom Cursors:

HAND

GRAB
BACK_LEFT
BACK_RIGHT
BACKWARD

FORWARD
FORWARD_LEFT
FORWARD_RIGHT

TURN_LEFT

TURN_RIGHT

YAW_LEFT

YAW_RIGHT

Chapter 4 Global Methods Miscellaneous Commands and Functions 63

WAND

BLANK

FIRE_ARROW

Syntax
SetCursor idString
where,

idString isastring representing one of the available cursors.

Example

Sub Main ()
SetCursor "Hand"

End Sub

Remarks

Although WorldUp has no direct support for defining your own custom cursors, advanced users could do so
by calling in an external DLL using scripts. A DLL isnecessary because you need aplace to store the cursor
resourceyou intendto load. Seethe Chapter 3, WorldUp Scripting Language for moreinformation on calling
aDLL from BasicScript.

64 Miscellaneous Commands and Functions Chapter 4 Global Methods

ShareProperty

Description

This subroutine shares a property of an object in the World2World networking infrastructure.

Syntax
ShareProperty ShareGroup, Object, PropertyName
where,
ShareGroup is the group under which the property will be shared,
Objectisthe object whose property will be shared, and
PropertyName refersto the property which will be shared.

Arguments Data Type
ShareGroup W2WsharedGroup
Object WorldUp Object Type
PropertyName String
Example
Sub Main(Q)

dim sg as W2WSharedGroup

set sg = GetW2WSharedGroup("Floor2"™)

" This will share the translation property of

" Block-1 under the Floor2 sharegroup

ShareProperty sg, GetBlock("Block-1"), "Translation"
End Sub

See Also
UnshareProperty; GetSharedProperty

Chapter 4 Global Methods Miscellaneous Commands and Functions 65

SimulationStop

Description
This command exits the simulation loop (stops executing all scripts, rendering does not stop).

Syntax
SimulationStop

Remarks

When SimulationStop is called, the simulation continues to the end of the simulation frame before exiting. It
does not exit mid-way through the frame.

Example

sub task(win as DevWindow)
dim key as string

key = GetKey()
if key = ""q" then
SimulationStop
Message ''q pressed stopping simulation
end if
end sub

66

Miscellaneous Commands and Functions

SimulationTime

Description
This function returns the time in seconds since the simulation started running.

Syntax

time = SimulationTime

Example

sub Main
message "'Simulation has been running for:" + _
str$(SimulationTime) + " seconds"
end sub

See Also
FrameDuration; TimeTrand ate; TimeRotate

Chapter 4 Global Methods

Chapter 4 Global Methods Miscellaneous Commands and Functions 67

ThisScript

Description
This function returns the currently running script.

Syntax
script = ThisScript

Example

sub Main
Message "'This script is named: " + ThisScript.Name
end sub

68 Miscellaneous Commands and Functions Chapter 4 Global Methods

UnshareProperty

Description

This subroutine unshares a property of an object in the World2World networking infrastructure.

Syntax
UnshareProperty Object, PropertyName

where,
Objectisthe object whose property will be unshared, and
PropertyName refers to the property which will be unshared.

Arguments Data Type
Object WorldUp Object Type
PropertyName String
Example
Sub Main(Q)

dim n as Node
set n = GetNode("Block-1")
" This will unshare the translation property of
" Block-1 under the Floor2 sharegroup
UnshareProperty n, "Translation"

End Sub

See Also
ShareProperty; GetSharedProperty.

Chapter 4 Global Methods Math Commands and Functions 69

Math Commands and Functions

Matrix3d

Matrix3dCopy

Description
This command copies Matrix3d, min to Matrix3d, mout.

Syntax
Matrix3dCopy min, mout
Arguments Data Type
min Matrix3d
mout Matrix3d
Example
Sub Main()

dim min as Matrix3d
dim mout as Matrix3d
Matrix3dInit min
Matrix3dinit mout
min.E02 = 2.0
min.E20 = 4.0
message "Printing min"
Matrix3dPrint min
Matrix3dCopy min, mout
message "Printing mout™
Matrix3dPrint mout

End Sub

See Also

Matrix3dGetElement(); Matrix3dinit; Matrix3dM ultMatrix3d; Matrix3dCopy; Matrix3dSetElement;
Matrix3dTranspose

70 Math Commands and Functions Chapter 4 Global Methods

Matrix3dGetElement()

Description
This function returns the element stored in row i and column j of the Matrix3d, m3.

Syntax
element = Matrix3dGetElement(m3, i, j)
Arguments Data Type
m3 Matrix3d
i Integer
j Integer

Return Data Type
Single.

Example

Sub Main()

dim m3 as Matrix3d

Matrix3dInit m3

m3.E02 = 3.0

m3.E20 = 9.0

Matrix3dPrint m3

dim element as single

element = Matrix3dGetelement(m3, 0, 2)

message "Element (0,2) = " + str$(element)
End Sub

See Also

Matrix3dCopy; Matrix3dInit; Matrix3dMultM atrix3d; Matrix3dCopy; Matrix3dSetElement;
Matrix3dTranspose

Chapter 4 Global Methods Math Commands and Functions 71

Matrix3dInit

Description
This command initializes the Matrix3d, m3 to the identity matrix.

Syntax
Matrix3dInit m3

Arguments Data Type

m3 Matrix3d

Example

Sub Main(Q)
dim m3 as Matrix3d
message "Initializing m3 to identity matrix"
Matrix3dInit m3
Matrix3dPrint m3
End Sub

See Also

Matrix3dCopy; Matrix3dGetElement(); Matrix3dMultMatrix3d; Matrix3dCopy; Matrix3dSetElement;
Matrix3dTranspose

72

Math Commands and Functions

Matrix3dMultMatrix3d

Description

Syntax
Matrix3dMultMatrix3d m31, m32m mout
Arguments Data Type
m31 Matrix3d
m32 Matrix3d
mout Matrix3d
Example
Sub Main(Q)

dim m31 as Matrix3d
dim m32 as Matrix3d
dim mout as Matrix3d
Matrix3dinit m31
Matrix3dinit m32
m31.E02 = 2.0

m31.E21 = 4.0

message "Printing m31"
Matrix3dPrint m31
m32.E01 = 3.0

m32.E20 = 9.0

message "‘printing m32"
Matrix3dPrint m32
Matrix3dMultMatrix3d m31, m32, mout

message "'printing mout = m31 * m32 "

Matrix3dPrint mout

End Sub

See Also

Matrix3dCopy; Matrix3dGetElement(); Matrix3dinit; Matrix3dCopy; Matrix3dSetElement;
Matrix3dTranspose

Chapter 4 Global Methods

This command multiplies a Matrix3d, m31, by a Matrix3d, m32, and places the result in Matrix3d, mout.

Chapter 4 Global Methods Math Commands and Functions 73

Matrix3dPrint

Description
This command prints to the WorldUp Status Window the value of the Matrix3d, m3.

Syntax
Matrix3dPrint m3

Arguments Data Type

m3 Matrix3d

Example

Sub Main()
dim m3 as Matrix3d
Matrix3dInit m3
message "'Printing m3"
Matrix3dPrint m3

End Sub

See Also

Matrix3dCopy; Matrix3dGetElement(); Matrix3dinit; Matrix3dMultMatrix3d; Matrix3dSetElement;
Matrix3dTranspose

74 Math Commands and Functions Chapter 4 Global Methods

Matrix3dSetElement

Description

This command sets the value of row i and column j of the Matrix3d, m3 to element.

Syntax
Matrix3dSetElement m3, i1, j, element
Arguments Data Type
m3 Matrix3d
i Integer
j Integer
element Single
Example
Sub Main()

dim m3 as Matrix3d

Matrix3dInit m3

Matrix3dSetelement m3, 2, 2, 5.0
element = Matrix3dGetelement(m3, 2, 2)

message "Element (0,2) = " + str$(element)
End Sub

See Also

Matrix3dCopy; Matrix3dGetElement(); Matrix3dinit; Matrix3dMultMatrix3d; Matrix3dCopy;
Matrix3dTranspose

Chapter 4 Global Methods Math Commands and Functions 75

Matrix3dTranspose

Description
This command puts the transpose of Matrix3d, min into Matrix3d, mout.

Syntax
Matrix3dTranspose min, mout
Arguments Data Type
min Matrix3d
mout Matrix3d
Example
Sub Main()

dim min as matrix3d
Matrix3dInit min
min.EO02 = 3.0
min.E20 = 9.0
Matrix3dPrint min
message "‘Transposed:*’
dim mout as Matrix3d
Matrix3dTranspose min, mout
Matrix3dPrint mout

End Sub

See Also

Matrix3dCopy; Matrix3dGetElement(); Matrix3dInit; Matrix3dMultMatrix3d; Matrix3dCopy;
Matrix3dSetElement

76 Math Commands and Functions Chapter 4 Global Methods

Matrix4d

Matrix4dCopy

Description
This command copies Matrix4d, min to Matrix4d, mout.

Syntax
Matrix4dCopy min, mout
Arguments Data Type
min Matrix4d
mout Matrix4d
Example
Sub Main

dim min as Matrix4d
dim mout as Matrix4d
Matrix4dInit min
Matrix4dInit mout
min.E02 = 2.0
min.E20 = 4.0
message "Printing min"
Matrix4dPrint min
Matrix4dCopy min, mout
message "Printing mout"
Matrix4dPrint mout

End Sub

See Also

Matrix4dGetElement(); Matrix4dinit; Matrix4dinvert; Matrix4dMultM atrix4d; Matrix4dPrint;
M atrix4dSetElement; Matrix4dTranspose

Chapter 4 Global Methods Math Commands and Functions 77

Matrix4dGetElement()

Description
This function returns the element stored in row i and column j of the Matrix4d, m4.

Syntax
element = Matrix4dGetElement(m4, i, j)
Arguments Data Type
m4 Matrix4d
i Integer
j Integer

Return Data Type
Single.

Example

Sub Main O

dim m4 as Matrix4d

Matrix4adInit m4

m4.E02 = 3.0

m4.E20 = 9.0

Matrix4dPrint m4

dim element as single

element = Matrix4dGetelement(m4, 0, 2)

message "Element (0,2) = " + str$(element)
End Sub

See Also

Matrix4dCopy; Matrix4dinit; Matrix4dlnvert; Matrix4dM ultM atrix4d; Matrix4dPrint; M atrix4dSetElement;
Matrix4dTranspose

78 Math Commands and Functions Chapter 4 Global Methods

Matrix4dlInit

Description
This command initializes the Matrix4d, m4 to the identity matrix.

Syntax
Matrix4dInit m4

Arguments Data Type

m4 Matrix4d

Example

Sub Main O
dim m4 as Matrix4d
message "Initializing m4 to identity matrix"
Matrix4adInit m4
Matrix4dPrint m4
End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinvert; Matrix4dMultM atrix4d; Matrix4dPrint;
M atrix4dSetElement; Matrix4dTranspose

Chapter 4 Global Methods Math Commands and Functions 79

Matrix4dlnvert

Description

This command inverts the Matrix4d, min and places the resultant in Matrix4d, mout. If min has a zero
determinant value, awarning is given to that effect.

Syntax
Matrix4adInvert min mout
Arguments Data Type
min Matrix4d
mout Matrix4d
Example
Sub Main O

dim min as Matrix4d
Matrix4dInit min
min.EO02 = 2.0
min.E20 = 4.0
Matrix4dPrint min
message "After Inverse"
dim mout as Matrix4d
Matrix4dinvert min, mout
Matrix4dPrint mout

End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinit; Matrix4dMultMatrix4d; Matrix4dPrint;
Matrix4dSetElement; Matrix4dTranspose

80

Math Commands and Functions

Matrix4dMultMatrix4d

Description

Chapter 4 Global Methods

This command multiplies a Matrix4d, m41, by a Matrix4d, m42, and places the result in Matrix4d, mout.

Syntax
Matrix4dMultMatrix4ad m41l, m42 mout
Arguments Data Type
m41l Matrix4d
m42 Matix4d
mout Matrix4d
Example
Sub Main O

dim m41 as Matrix4d
dim m42 as Matrix4d
dim mout as Matrix4d

Matrix4dInit m41l

Matrix4dInit m42

m41_E02 = 2.0

m4l1_E21 = 4.0

message "Printing m41"
Matrix4dPrint m4l

m42_E01 = 3.0

m42_E20 = 9.0

message "‘printing m42"
Matrix4dPrint m42
Matrix4dMultMatrix4ad m41, m42, mout
message "'printing mout = m41l * m42 "
Matrix4dPrint mout

End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinit; Matrix4dinvert; Matrix4dPrint; Matrix4dSetElement;

Matrix4dTranspose

Chapter 4 Global Methods Math Commands and Functions 81

Matrix4dPrint

Description
This command prints to the WorldUp Status Window the value of the Matrix4d, m4.

Syntax
Matrix4dPrint m4

Arguments Data Type

m4 Matrix4d

Example

Sub Main()
dim m4 as Matrix4d
Matrix4dInit m4
message "'Printing m4"
Matrix4dPrint m4

End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinit; Matrix4dinvert; Matrix4dMultM atrix4d;
M atrix4dSetElement; Matrix4dTranspose

82 Math Commands and Functions Chapter 4 Global Methods

Matrix4dSetElement

Description

This command sets the value of row i and column j of the Matrix4d, m4 to element.

Syntax
Matrix4dSetElement m4, i1, j, element
Arguments Data Type
m4 Matrix4d
i Integer
j Integer
element Single
Example
Sub Main()

dim m4 as Matrix4d

Matrix4dInit m4

Matrix4dSetelement m4, 2, 2, 5.0
element = Matrix4dGetelement(m4, 2, 2)

message "Element (0,2) = " + str$(element)
End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinit; Matrix4dinvert; Matrix4dMultM atrix4d;
Matrix4dPrint; Matrix4dTranspose

Chapter 4 Global Methods Math Commands and Functions 83

Matrix4dTranspose

Description
This command puts the transpose of Matrix4d, min into Matrix4d, mout.

Syntax
Matrix4dTranspose min, mout
Arguments Data Type
min Matrix4d
mout Matrix4d
Example
Sub Main O

dim min as matrix4d
Matrix4dInit min
min.EO02 = 3.0
min.E20 = 9.0
Matrix4dPrint min
message "‘Transposed:*’
dim mout as Matrix4d
Matrix4dTranspose min, mout
Matrix4dPrint mout

End Sub

See Also

Matrix4dCopy; Matrix4dGetElement(); Matrix4dinit; Matrix4dInvert; Matrix4dMultM atrix4d;
Matrix4dPrint; Matrix4dSetElement

84

Math Commands and Functions Chapter 4 Global Methods

Vect3d

NormalToSlope()

Description

Thisfunction takes anormal, such asthe normal to a polygon, and returnsthe corresponding slopein radians.
Thereturned value is between 0.0 and PI/2, with 0.0 returned for a polygon parallel to the X-Z plane, and PI/
2 returned for avertically oriented polygon. The Vect3d, normal, argument must have unit magnitude for the
function to work.

Syntax
slope = NormalToSlope(normal)
Arguments Data Type
normal Vect3d

Return Data Type
Single.

Example

sub main()
dim geom as Geometry
dim poly as long
dim center as Vect3d, normal as Vect3d
dim slope as Single

set geom = GetGeometry(“'block-1")

poly = geom.GetFirstPoly()

slope = 0

while poly <> 0
geom.GetPolyNormal poly, normal
Message '‘Polygon normal is " + str$(normal.X) + _
str$(normal .Y)+ str$(normal.z)
slope = NormalToSlope(normal)
Message ‘‘Slope is " + str$(slope)

wend

end sub

Chapter 4 Global Methods Math Commands and Functions 85

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
OrientInvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEuler; OrientToEulerNear; Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual;
Vect3dlInit; Vect3dinvert; Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm,;
Vect3dPrint; Vect3dRotate; Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

86 Math Commands and Functions Chapter 4 Global Methods

Vect3dAdd

Description
This command adds v1 and v2 and stores the result in vout.

Syntax
Vect3dAdd v1, v2, vout

Example

Sub Main
Dim vl as Vect3d
Dim v2 as Vect3d
Dim vout as Vect3d

vi.x =1.0
vily = 2.0
vi.z = 3.0
v2.x = 4.0
v2.y = 5.0
v2.z = 6.0

Vect3dAdd vi1, v2, vout
Vect3dPrint vout
end sub

See Also

Normal ToSlope(); Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions 87

Vect3dCross

Description
This command cal cul ates the cross product of vectors vl and v2 and stores the result in vourt.

Syntax

Vect3dCross v1,v2,vout

Example

Sub Main(Q)
Dim vl as Vect3d
Dim v2 as Vect3d
Dim vout as Vect3d

vi.x =1.0
vily = 2.0
vi.z = 3.0
v2.x = 4.0
v2.y = 5.0
v2.z = 6.0

Vect3dCross v1, v2, vout
Vect3dPrint vout
End Sub

See Also

Normal ToSlope(); Vect3dAdd; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

88 Math Commands and Functions Chapter 4 Global Methods

Vect3dDistance()

Description
This function returns the distance between vectors vl and v2.

Syntax
distance = Vect3dDistance (v1,v2)
Arguments Data Type
vl Vect3d
v2 Vect3d

Return Data Type
Single.

Example

Sub Main()
Dim vl as Vect3d
Dim v2 as Vect3d
Dim distance as Single

vli.x = 1.0
vi.y = 2.0
vi.z = 3.0
v2.x = 4.0
v2.y = 5.0
v2.z = 6.0

distance = Vect3dDistance(vl, v2)
Message "Distance between two vectors is " + str$(distance)
End Sub

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions 89

Vect3dDot

Description
Thisfunction cal culatesthe dot product of vectorsv1 and v2 and returnsthe scalar result of those two vectors.

Syntax
dotproduct = Vect3dDot(vl,v2)
Arguments Data Type
vl Vect3d
v2 Vect3d

Return Data Type
Single.

Example

Sub Main(Q)
Dim vl as Vect3d
Dim v2 as Vect3d
Dim dotproduct as Single

vli.x = 1.0
vi.y = 2.0
vi.z = 3.0
v2.x = 4.0
v2.y = 5.0
v2.z = 6.0

dotproduct = Vect3dDot(vl, v2)
Message "'Dot product is " + str$(dotproduct)
End Sub

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

90 Math Commands and Functions Chapter 4 Global Methods

Vect3dEqual

Description

This function tests the vectors v1 and v2 to seeif their components are equivalent. If they are, this function
returns True. Otherwise, this function returns False.

Syntax
result = Vect3dequal (v1,v2)
Arguments Data Type
vl Vect3d
v2 Vect3d

Return Data Type
Boolean.

Example

Sub Main()
Dim vl as Vect3d
Dim v2 as Vect3d
Dim result as Boolean

vli.x = 1.0
vi.y = 2.0
vi.z = 3.0
v2.x = 1.0
v2.y = 2.0
v2.z = 3.0

result = Vect3dEqual (v1,v2)
IT result then
MsgBox "‘Vectors are equivalent"
else
MsgBox *‘Vectors are not equivalent’
End IFf
End Sub

Chapter 4 Global Methods Math Commands and Functions 91

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

92

Math Commands and Functions

Vect3dInit

Description

This command initializes vector V to (0,0,0).

Syntax
Vect3dInit v

Arguments Data Type

\ Vect3d

Example

Sub Main()
Dim v as Vect3d
Vect3dInit v
Vect3dPrint v
End Sub

See Also

Chapter 4 Global Methods

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;

Vect3dRotate; Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions 93

Vect3dInvert

Description

This command negates the vector v and stores the result in vminus. So, vminus.x = —v.x, vminus.y = -V.y,
and vminus.z = —v.z

Syntax
Vect3dInvert vil,vminus
Arguments Data Type
\ Vect3d
vminus Vect3d
Example
Sub Main(Q)

Dim v as Vect3d
Dim vminus as Vect3d

< <<
N < X
oo
WN R
coo

Vect3dInvert v, vminus
Vect3dPrint vminus
End Sub

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

94

Math Commands and Functi

Vect3dMag()

Description
This function calculates the

Syntax
mag = Vect3dMag(v)

ons

magnitude of the vector v.

Arguments

Data Type

\"

Vect3d

Return Data Type
Single.

Example

Sub Main(Q)
Dim v as Vect3d
Dim mag as Singl

wWN P
[eNeoNe]

< < <
N < X

Vect3dMag v, mag

Message "Magnitude of the vector is " + str$(mag)

End Sub

See Also

e

Chapter 4 Global Methods

Normal ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions 95

Vect3dMultMatrix3d

Description
This command multiplies the vector V1 by a Matrix3d, M, and places the result in the vector V2.

Syntax
Vect3dMultmatrix3d v1i, m, v2
Arguments Data Type
vl Vect3d
m Matrix3d
v2 Vect3d
Example
Sub Main()

dim m as matrix3d
matrix3dinit m
m.E0O2 = 3.0
m.E20 = 9.0

dim vl as vect3d
dim v2 as vect3d

vi.x = 1.0
vi.y = 2.0
vi.z = 3.0

Vect3dMultmatrix3d vi, m, v2
Vect3dPrint v2
End Sub

See Also

Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint; Vect3dRotate;
Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

96 Math Commands and Functions Chapter 4 Global Methods

Vect3dMultMatrix4d

Description
This command multiplies the vector V1, by a Matrix4d, M, and places the result in the vector V2.

Syntax
Vect3dMultmatrix4d vli, m, v2
Arguments Data Type
vl Vect3d
m Matrix4d
v2 Vect3d
Example
Sub Main()

dim m as matrix4d
matrix4dinit m
m.EO3 = 3.0
m.E30 = 9.0

dim vl as vect3d
dim v2 as vect3d

vi.x = 1.0
vi.y = 2.0
vi.z = 3.0

Vect3dMultmatrix4d vi, m, v2
Vect3dPrint v2
End Sub

See Also

Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint; Vect3dRotate;
Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions 97

Vect3dNorm

Description
This command normalizes v and stores the result back in v, overwriting the original value.

Syntax
Vect3dNorm v
Arguments Data Type
% Vect3d
Remarks

Sincethisisadestructive operation, you may want to save the original value of v before calling Vect3dNorm.

Example

Sub Main(Q)
Dim v as Vect3d

< <<
N < X
oo
WN R
coo

Vect3dNorm v
Vect3dPrint v
End Sub

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross, Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

98 Math Commands and Functions Chapter 4 Global Methods

Vect3dPrint

Description
This command prints to the WorldUp Status Window the value of the vector V.

Syntax

vect3dprint v

Arguments Data Type

\ Vect3d

Example

Sub Main()
Dim v as Vect3d
V.X 1.
v.y = 2.
v.z = 3.
Vect3dPr
End Sub

0
0
0
i

nt v

See Also

Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint; Vect3dRotate;
Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

Chapter 4 Global Methods Math Commands and Functions

Vect3dRotate

Description

This command rotates the vector v1 by the indicated rotation given by rot. There are two waysto call this
function. In the first syntax, the origina vector is modified. The second syntax takes an additional vector
argument, v2, in which the result gets stored.

Syntax1
Vect3dRotate vi,rot

Syntax2
Vect3dRotate v1,rot,v2
Arguments Data Type
vl Vect3d
rot Orientation
v2 Vect3d
Remarks

If using the first form, you may want to save the original value of v1 before calling Vect3dRotate.

Example

dim v as Vect3d
dim ori as orientation

v.x =1
v,y =0
v.z =0

orientset ori, 0, -90, 0O
Vect3drotate v, ori
Vect3dPrint v

See Also

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm;
Vect3dPrint; Vect3dRotatePoint; Vect3dSubtract

99

100 Math Commands and Functions Chapter 4 Global Methods

Vect3dRotatePoint

Description

This command rotates the vector Vin, around a 3D point given by the vector Point, by the rotation specified
by Rot, and puts the result in the vector Vourt.

Syntax
Vect3dRotatePoint Vin, Rot, Vout, Point
Arguments Data Type
Vin Vect3d
Rot Orientation
Vout Vect3d
Point Vect3d
Example
Sub Main()

dim vin as Vect3d
dim ori as orientation
dim vout as Vect3d
dim point as Vect3d
vin.x = 1
vin.y = 0
vin.z =0
orientset or
point.x =
point.y
point.z =
Vect3drotate vin, ori, vout
Vect3dPrint vout
Vect3dinit vout
Vect3dRotatePoint vin, ori, vout, point
Vect3dPrint vout

End Sub

, 0, -90, O

g1 o1 01 =

0.
0.
0.

Chapter 4 Global Methods Math Commands and Functions 101

See Also

Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit; Vect3dinvert;
Vect3dMag(); Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm; Vect3dPrint; Vect3dRotate;
Vect3dRotatePoint; Vect3dMults; Vect3dSubtract

102

Math Commands and Functions Chapter 4 Global Methods

Vect3dScale

Description
This command multiples the vector v by the scalar specified for s and stores the result back into v.

Syntax
Vect3dScale v, s
Arguments Data Type
\ Vect3d
S Single
Remarks

Thisis adestructive operation, so you may want to save the original value of v before calling Vect3dScale.

Example

Sub Main()
Dim v as Vect3d
Dim s as Single

v.x = 1.0
v,y = 2.0
v.z = 3.0
s =2.0

Vect3dScale v, s
Vect3dPrint v
end sub

See Also

Normal ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dMag(); Vect3dMultMatrix3d; Vect3dM ultMatrix4d; Vect3dNorm; Vect3dPrint;
Vect3dRotate; Vect3dRotatePoint; Vect3dSubtract

Chapter 4 Global Methods

Vect3dSubtract

Description

This command subtracts vector v2 from v1 and stores the result in vout.

Syntax
Vect3dSubtract v1,v2,vout
Arguments Data Type
vl Vect3d
v2 Vect3d
vout Vect3d
Example
Sub Main(Q)
Dim vl as Vect3d
Dim v2 as Vect3d

Dim vout as Vect3d

vl._x

vi.y
vli.z

V2.X

v2.y
v2.z

WN P
[eNeNe]

o g b
[eNeoNe]

Vect3dSubtract v1, v2, vout
Vect3dPrint vout

end sub

See Also

Math Commands and Functions

Norma ToSlope(); Vect3dAdd; Vect3dCross; Vect3dDistance(); Vect3dDot; Vect3dEqual; Vect3dinit;
Vect3dinvert; Vect3dMag(); Vect3dScale; Vect3dMultMatrix3d; Vect3dMultMatrix4d; Vect3dNorm;
Vect3dPrint; Vect3dRotate; Vect3dRotatePoint

103

104 Math Commands and Functions Chapter 4 Global Methods

Orientation

DirToOrient

Description

This command converts a direction vector into an orientation. Because a direction vector does not uniquely
identify an orientation, the twist around the vector is not defined. To define the twist, use the command
DirTwistToOrient.

Syntax

DirToOrient dir,ori

Arguments Data Type

dir Vect3d

ori Orientation

Example

sub main()
dim dir as Vect3d
dim ori as Orientation
dir.x=5
dir.y=7
dir.z=3
DirToOrient dir,ori
OrientPrint ori
end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
OrientInvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEuler; OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 105

DirTwistToOrient

Description

This command converts the Vect3d, dir, to the Orientation, ori, having a twist as specified by the argument
twist.

Syntax
DirTwistToOrient dir, twist, ori
Arguments Data Type
dir Vect3d
twist Single
ori Orientation
Example

sub main()
dim dir as Vect3d
dim twist as Single
dim ori as Orientation
dir.x=5
dir.y=7
dir.z=3
twist = 0.5
DirTwistToOrient dir,ori
OrientPrint ori

end sub

See Also

DirToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate; OrientInvert;
OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

106

Math Commands and Functions

OrientAdd

Description

Chapter 4 Global Methods

This command combines the rotations ori1 and ori2 and puts the result in oriout. Y ou can think of thisas

adding the rotation of ori2 to the orientation of oril.

Syntax

orientadd ori,ori2,oriout

Arguments Data Type

oril Orientation

ori2 Orientation

oriout Orientation
Remarks

This operation is order-dependent. For example, OrientAdd A, B, C does not give the same result as

OrientAdd B, A, C.

Example
Sub Main

Dim oril as Orientation
Dim ori2 as Orientation
Dim oriout as Orientation

OrientSet oril, 90, 0, O
OrientSet ori2, 0, 90, O
OrientAdd oril, ori2, oriout
message "Adding ori2 to oril"
OrientPrint oriout

OrientAdd ori2, oril, oriout
message "Adding oril to ori2"
OrientPrint oriout

end sub

Chapter 4 Global Methods Math Commands and Functions 107

OrientAngle()

Description

This function returns the angle swept by the orientation ori, in radians. For example, if ori isarotation by .5
radians around the Y axis, OrientAngle would return .5.

Syntax
angle = OrientAngle(ori)
Arguments Data Type
ori Orientation

Return DataType
Single.

Example

Sub Main(Q)
Dim ori as orientation
Dim angle as single

"create a rotation of 90 degrees about the X and Y axes
OrientSet ori, 90,90, O

"convert this to an angle
angle = OrientAngle(ori)
message str$(angle)

end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientEqual(); Orientlnit; Orientlnterpolate; Orientlnvert;
OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

108

Math Commands and Functions

OrientEqual()

Description

Chapter 4 Global Methods

This function tests the orientations ori1 and ori2 to see if their components are equivalent. If they are, this

function returns True. Otherwise, this function returns False.

Syntax
result = OrientEqual (oril, ori2)
Arguments Data Type
oril Orientation
ori2 Orientation

Return Data Type
Boolean.

Example

Sub Main()
dim oril as Orientation
dim ori2 as Orientation
IT OrientEqual(oril,ori2) then
MsgBox "‘Orientations are equivalent”
else

MsgBox "‘Orientations are not equivalent”

End If
End Sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); Orientlnit; Orientlnterpolate; Orientlnvert;
OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;

OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 109

Orientlnit

Description
This command initializes an orientation to (0, 0, 0, 1), which is no rotation.

Syntax

OrientlInit ori

Arguments Data Type

ori Orientation

Example

Sub Main()
Dim ori as Orientation
Orientlnit ori
OrientPrint ori

end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; OrientInterpolate;
OrientInvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEuler; OrientToEulerNear

110

Math Commands and Functions

Orientinterpolate

Description

Chapter 4 Global Methods

This command finds the spherical linear interpolation using the shortest path between orientations ori1 and
ori2, and places the result in the orientation, oriout. The factor argument is a value between 0 and 1 which
specifies the point of interpolation (e.g., afactor = 0.5 would find an orientation between oril and ori2).

Syntax
Orientinterpolate oril, ori2, factor, oriout
Arguments Data Type
oril Orientation
ori2 Orientation
factor Single
oriout Orientation
Example
Sub Main()

dim oril as orientation
dim ori2 as orientation
dim oriout as orientation
dim factor as single

dim vi1
dim v2
vl.
vl.
vl.
V2.
V2.
V2.

POOOOoOPR

N X NX X
1

as vect3d
as vect3d

dirtoorient vl, oril
dirtoorient v2, ori2

factor

orientinterpolate oril, ori2, factor, oriout

= 0.5

orientprint oriout

End Sub

Chapter 4 Global Methods Math Commands and Functions 111

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnvert;
OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

112 Math Commands and Functions Chapter 4 Global Methods

Orientlnvert

Description

Thiscommand invertsthe orientation Oriln, and storesthe result in OriOut. So, OriOut.x =-Oriln.x, OriOut.y
=-Oriln.y, OriOut.z = -Oriln.z, and OriOut.w = Oriln.w.

Syntax
Orientlnvert Oriln, OriOut
Arguments Data Type
Oriln Orientation
OriOut Orientation
Example
Sub Main

Dim oriln as Orientation
Dim oriOut as Orientation

OrientSet oriln, 90, 0, 90
Orientinvert oriln, oriOut
OrientPrint oriln
OrientPrint oriOut

End Sub

See Also

OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate; Orientlnvert; OrientPrint; OrientRotate;
OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler; OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 113

OrientPrint

Description
This command prints to the WorldUp Status Window the value of the Orientation, ori.

Syntax

OrientPrint ori

Arguments Data Type

ori Orientation

Example

Sub Main()
dim ori as Orientation
OrientSet ori, 90, 0, O
OrientPrint ori

End Sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; OrientInterpolate;
OrientInvert; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

114

Math Commands and Functions Chapter 4 Global Methods

OrientScale

Description

This command scales the magnitude of the specified orientation by the factor indicated. For example, if ori
specifiesarotation by 10 degreesaround the Y axis, scaling it by 2 will produce arotation by 20 degrees, and
scaling it by .5 will produce arotation by 5 degrees.

Syntax

OrientScale ori, s

Arguments Data Type

ori Orientation

s Single

Example

Sub Main()

Dim ori as Orientation

message "'ori is 90 degrees rotation about x-axis'

OrientSet ori, 90, 0, O

message "‘before scaling”

OrientPrint ori

OrientScale ori, 0.5

message "‘after scaling”

OrientPrint ori

message "'this is same as 45 degrees rotation about x-axis"
end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; OrientInterpolate;
Orientlnvert; OrientPrint; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 115

OrientSet

Description

This command sets or changes the specified orientation ori, using the valuesinrot_x, rot_y, and rot_z, which
specify therotation (in degrees) as composed of anglesaround thex, y, and z axes. Theseangles (rot_x, rot_y,
and rot_z) are often referred to as “euler angles.”

Syntax
OrientSet ori, x_rot, y rot, z_rot
Arguments Data Type
ori Orientation
x_rot Single
y_rot Single
z_rot Single
Example
Sub Main()

Dim ori as Orientation
message "'90 degrees rotation about x-axis"
OrientSet ori, 90, 0, O
OrientPrint ori
end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSubtract; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

116 Math Commands and Functions Chapter 4 Global Methods

OrientSubtract

Description

This command finds the rotational difference between ori2 and oril, and puts the result in oriout. Y ou can
think of this as subtracting one orientation from another.

Syntax
OrientSubtract oril, ori2, oriout
Arguments Data Type
oril Orientation
ori2 Orientation
oriout Orientation
Remarks

This operation is order-dependent. For example, OrientSubtract A, B, C does not give the same result as
OrientSubtract B, A, C.

Example

Sub Main()
Dim oril as Orientation
Dim ori2 as Orientation
Dim oriout as Orientation

OrientSet oril, 90, 0, O
OrientSet ori2, 0, 90, O
OrientSubtract oril, ori2, oriout
message "'Subtracting ori2 from oril"
OrientPrint oriout
OrientAdd ori2, oril, oriout
message "‘Subtracting oril from ori2"
OrientPrint oriout

End Sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSet; OrientToDir; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 117

OrientToDir

Description

This command converts the specified orientation into a direction vector. Because a direction vector does not
uniquely identify an orientation, the twist information islost. To preserve the twist information, use the
command OrientToDirTwist.

Syntax
OrientToDir ori, dir
Arguments Data Type
ori Orientation
dir Vect3d
Example
Sub Main()

Dim dir as Vect3d
Dim ori as orientation
OrientSet ori, 45, 45, 45
OrientToDir ori, dir
message "‘Direction is
Vect3dPrint dir

end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDirTwist; OrientToEuler;
OrientToEulerNear

118 Math Commands and Functions Chapter 4 Global Methods

OrientToDirTwist

Description

This command is similar to OrientToDir, which converts an orientation into a direction vector. However, it
also getsthe twist factor from the orientation, ori, apart from the direction. The direction vector isthe vector
that results from taking a unit vector along the Z-axis, (e.g., 0.0, 0.0, 1.0) and rotating it by ori.

Syntax
OrientToDirTwist ori, dir, twist
Arguments Data Type
ori Orientation
dir Vect3d
twist Single
Example
Sub Main

Dim dir as Vect3d
Dim ori as orientation
Dim twist as Single

OrientSet ori, 45, 45, 45

OrientToDirTwist ori, dir, twist

message "'Direction is '

Vect3dPrint dir

message ""Twist is " + str$(twist)
End Sub

See Also

DirToQrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual (); Orientlnit; Orientl nterpolate;
OrientInvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToEuler;
OrientToEulerNear

Chapter 4 Global Methods Math Commands and Functions 119

OrientToEuler

Description

This command extracts the euler angles, specified in radians, from the orientation, ori. An orientation
structure can be converted into two eulers. The two eulers are stored in the eulers, first and second.

Syntax
OrientToEuler ori, first, second
Arguments Data Type
ori Orientation
first Vect3d
second Vect3d
Example
Sub Main()

Dim ori as Orientation
OrientSet ori, 0, 90, O
Dim first as Vect3d
Dim second as Vect3d
OrientToEuler ori, first, second
Vect3dPrint first
Vect3dPrint second
End Sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEulerNear

120 Math Commands and Functions Chapter 4 Global Methods

OrientToEulerNear

Description

Thiscommand gives an euler that is closest to the specified euler, near, corresponding to a given orientation,
ori. An orientation structure can be converted into two eulers. Thisfunction determines which of thesetwo is
closer to the indicated reference euler, near. Theresult is stored in the euler, result.

Syntax
OrientToEulerNear ori, near, result
Arguments Data Type
ori Orientation
near Vect3d
result Vect3d
Example
Sub Main()

dim ori as Orientation
dim near as Vect3d
near.x = -2
near.y = 2
near.z = -2
dim result as Vect3d
OrientSet ori, 90, 0, O
OrientToEulerNear ori, near, result
Vect3dPrint near
Vect3dPrint result

End Sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEuler

Chapter 4 Global Methods Math Commands and Functions 121

DirToOrient

Description

This command converts a direction vector into an orientation. Because a direction vector does not uniquely
identify an orientation, the twist around the vector is not defined. To define the twist, use the command
DirTwistToOrient.

Syntax
DirToOrient dir,ori
Arguments Data Type
dir Vect3d
ori Orientation
Example

sub main()
dim dir as Vect3d
dim ori as Orientation
dir.x=5
dir.y=7
dir.z=3
DirToOrient dir,ori
OrientPrint ori
end sub

See Also

DirToOrient; DirTwistToOrient; OrientAdd; OrientAngle(); OrientEqual(); Orientlnit; Orientlnterpolate;
Orientlnvert; OrientPrint; OrientScale; OrientSet; OrientSubtract; OrientToDir; OrientToDirTwist;
OrientToEuler; OrientToEulerNear

122

Math Commands and Functions

Trigonometry

ArcCos

Description

This function returns the arccosine of x in the range 0 to Pl radians.

Syntax
y = ArcCos(x)

where,

x isavalue between —1 and 1 whose arccosine isto be got.

Arguments

Data Type

X

Double

Return DataType
Double.

Example

Sub Main()
Dim x as Double
Dim y as Double
X =0
y = ArcCos(x)
Message str$(y)
End Sub

Chapter 4 Global Methods

Chapter 4 Global Methods Math Commands and Functions 123

ArcSin

Description
This function returns the arcsine of x in the range —P1/2 to PI/2 radians.

Syntax
y = ArcSin(x)
where

x isavalue between —1 and 1 whose arcsine is to be got.

Argument Data Type

X Double

Return DataType
Double.

Example

Sub Main(Q)
Dim x as Double
Dim y as Double
X =1
y = ArcSin(x)
Message str$(y)
End Sub

124

Math

Commands and Functions

ArcTan2()

Description

This function returns the arctangent of x1/x2 in the range —PI to PI radians.

Syntax

y =
where,

ArcTangent(x1l, x2)

x1 and x2 are any humbers.

Arguments Data Type
x1 Double
X2 Double

Return DataType
Double.

Example
Sub Main()

Dim x1 as Double
Dim x2 as Double
Dim y as Double

X1 =1

X2 = 4

y = ArcTan2(x1, x2)
Message str$(y)

End Sub

Chapter 4 Global Methods

125

Methods On Objects

Besides the standard BasicScript commands and functions, WorldUp has special scripting commands and
functions that you can use in your scripts. These methods provide access to WorldUp-specific functionality.

The Commands and Functions discussed in theis chapter are called Methods on Objects This meansthat you
need to use an object of a particular WorldUp type. Be sure that you have avalid object of the correct type
before attempting to call these functions. Otherwise your method calls will not work correctly, and you will
see error messages in the Status Window.

Hereisahierarchical list of the World Up Object types that have scripting methods that you can call.

* VBase

* Node
Movable
Geometry
Imported

* Path

» Script

» Sound

* Viewpoint

* Window

» W2WSharedProperty
e List
Note the level of indentation in the Methods on Objects list. It indicates the type inheritance. Node inherits
from VBase, and Movable inherits from Node. Path is at the same indent level as Node, indicating that it
inheritsfrom VBase aswell. List does not inherit from VBase. Y ou can automatically call the methods of any
typethat you inherit from, aswell asyour own object's functions. For example, you can call aVBase function
using aMovable, such as AddTask(...). If you happen to have a VBase object that you know isaso avalid
Movable, you must use CastToMovable before you can call Movable functions on your VBase.

126

Get and Set Methods Chapter 5 Methods On Objects

Get and Set Methods

Description

WorldUp automatically creates a Get and Set method for every WorldUp type, including those that you
create. If you want to Get the value of a particular object, you append the object type to the word “ Get,”
followed by the object name as in the following example:

set table=GetMovable("'Table'™)

To set aparticular object, use the word “ Set,” followed by the name of the object to set, an equal sign, and
then the value to use for the new object asin the following example:

set myobject=Getfirstsphere()

See Also
GetNext(); GetFirst()

Chapter 5 Methods On Objects VBase Commands and Functions 127

VBase Commands and Functions

AddTask

Description
This command is amethod on the V Base object type and associates a Script object as atask on an object. An
object may have one or more tasks associated with it.

Syntax
[VBase] -AddTask ScriptVariable

where,
VBase is a WorldUp object type, and

ScriptVariable isthe script to be associated with the object.

Arguments Data Type
ScriptVariable Script
Example
Sub Main O

Dim cyl as cylinder
Dim es as script
set cyl = GetCylinder('GarbageCan'™)
set es = GetScript("EmptyTrashScript')
" Take out the garbage every frame
cyl.AddTask es

End Sub

See Also
Construct(); RemoveTask; VBase Type

128

VBase Commands and Functions Chapter 5 Methods On Objects

Construct()

Description

This function is a method on the VBase object type and returns a reference to the object created. There are
two ways to call this command. The first syntax takes just one argument which is the name of the object
created. If an object by the given name already exists, anew object with aunique nameis created. The second
syntax takes an additional boolean argument which specifies whether or not the object isto be created if
another object by the same name already exists.

Syntax1
result = [VBase].Construct(Name)

where,
VBase isaWorldUp object type, and

Name is the name of the object to be created.

Arguments Data Type
Name String
Syntax2

result = [VBase].Construct(Name, CreateUnique)
where,

VBase isaWorldUp object type,

Name is the name of the object to be created, and

CreateUnique specifies whether or not the object isto be created if another object by the same name
already exists. If TRUE, thisis equivalent to syntax1 of the function.

Arguments Data Type
Name String
CreateUnique Boolean

Return Data Type
Boolean.

Chapter 5 Methods On Objects VBase Commands and Functions 129

Remarks

This function does not add the object created to the scene graph. Y ou need to call the command AddChild to
do so.

Example

sub main
dim b as new block
dim success as boolean
dim theRoot as root

success = b.construct("'Block-1",FALSE)
if success then
Set theRoot=GetFirstRoot()
"add Block-1 as first child of the root
theRoot.addchild b, 0O
end if
end sub

See Also
DeleteObject

130 VBase Commands and Functions Chapter 5 Methods On Objects

RemoveTask

Description
This command is a method on the Vbase object type and disassociates an existing script task from an object.

Syntax

[VBase] -RemoveTask ScriptVariable
where,

VBase isaWorldUp object type, and

Scriptvariable isthe script to be disassociated from the object.

Arguments Data Type
ScriptVariable Script
Example
Sub Main O

Dim cyl as cylinder
Dim es as script
set cyl = GetCylinder("'GarbageCan'™)
set es = GetScript("EmptyTrashScript')
"Enough, let it accumulate
cyl _.RemoveTask es

End Sub

See Also
Construct(); AddTask; VBase Type

Chapter 5 Methods On Objects Node Commands and Functions 131

Node Commands and Functions

I n addition to the methods described for the Node object typein thissection, you can also call V Base methods,
since aNode is aparticular type of VBase object.

AddChild

Description

This command isamethod on the Node object type and adds the specified object to the scene graph asachild
of the parent node. There are two waysto call this command. The first syntax takes just one argument which
isthe child object to be added and adds it after the last child of the parent node. The second syntax takes an
additional integer argument which specifies the position where the child object is to be added.
Syntax1

[Node] -AddChild ChildObject
where,

Node is the node to which the object is to be added, and

ChildObject isthe object to be added as the last child of the parent node.

Arguments Data Type
ChildObject WorldUp Object Type
Syntax2

[Node] .AddChild ChildObject, ChildNum
where,
Node is the node to which the object is to be added,
ChildObject isthe object to be added as the childnum'th child of the parent node, and
Chi IdNum specifies the position where the object is to be added.

Arguments Data Type

ChildObject WorldUp Object Type

ChildNum Integer

132 Node Commands and Functions Chapter 5 Methods On Objects

Remarks

If the object that you are adding already existsin the scene graph, thiscommand creates an additional instance
of that node.

Example

sub main()
dim b as new block
dim success as boolean
dim theRoot as root

success = b.construct("'Block-1",FALSE)
if success then
Set theRoot=GetFirstRoot()
"add Block-1 as first child of the root
theRoot.addchild b, 0O
end if
end sub

See Also
GetChild; GetParent(); RemoveChild

Chapter 5 Methods On Objects Node Commands and Functions 133

GetChild

Description
This command is a method on the Node object type gives quick access to the child of anode. Although this
isastrictly redundant method (one can get the children list to get children nodes), this methods gives more
convenient access to a node' s children. GetChild takes an index to specify which child is desired. Zero will
give thefirst child of the node. If the index given does not correspond to a child of the node, “nothing” will
be returned.
Syntax

Set Child = [Node].GetChild(ChildIndex)
where,

Node is the node whose child is to be accessed, and

Chi IdIndex is the number of the child which is accessed.

Chi ldisthe node returned.

Arguments Data Type

ChildIndex Integer

Return Data Type
Node.

Example

sub main()
dim block as block
dim child as Node

set block = GetBlock("Block-1")
set child = b.GetChild(2)
if child is not nothing then
message "'Block-1"s third child is ™ + child.Name
end if
end sub

See Also
AddChild; GetParent(); RemoveChild

134

Node Commands and Functions Chapter 5 Methods On Objects

GetParent()

Description

This function is a method on the Node object type and returns the node’ s parent. There are two ways to call
this function. Thefirst syntax takes no arguments and returns the first parent of the node. If the node has
multiple parents, the second syntax can be used, which takes an integer argument to select between the
different parents.

Syntax1
Set ParentNode = [Node].GetParent()

where,

Node is the node whose parent is to be got.

Syntax2
Set ParentNode = [Node].GetParent(WhichParent)

where,
Node is the node whose parent is to be got, and

WhichParent specifies the particular parent node to be got.

Arguments Data Type

WhichParent Integer

Return Data Type
Node.

Remarks

When using the second syntax, if WhichParent isgreater than the number of parentsthe node has, GetParent()
will return nothing.

Example

Sub Main(Q)
Dim geom as Block
Dim parent as Node

Set geom = GetBlock("block-1")
Set parent = geom.GetParent()

Chapter 5 Methods On Objects Node Commands and Functions 135

Message parent.Name + "is parent of block-1"
End Sub

See Also
AddChild; RemoveChild

136

Node Commands and Functions Chapter 5 Methods On Objects

RemoveChild

Description

This command is amethod on the Node object type and removes the specified node and its sub-tree from the
scene graph. Thus, the removed nodes are no longer rendered. If your scene graph contains multiple instances
of the specified node, any instances that are not located within the specified node' s sub-tree remain in the
scene graph and continue to be rendered. Y ou can add a removed node back into the scene graph at alater
time using the command AddChild.

Syntax
[Node] -RemoveChild ChildObject
where,
Node is the node whose child is to be removed, and

ChildObject isthe object to be removed.

Arguments Data Type
ChildObject WorldUp Object Type
Example

sub main()
dim b as block
dim theRoot as root

set b = getfirstblock()
Set theRoot=GetFirstRoot()
theRoot.removechild b

end sub

Chapter 5 Methods On Objects Movable Commands and Functions

Movable Commands and Functions

In addition to the methods described for the Movable object type in this section, you can aso call Node
methods, since aMovableis a particular type of Node object.

GetGlobalLocation

Description

This command is a method on the Movable object type. It gives the global position and orientation of the
movable. If you are only interested in one or the other, you may supply either aVect3d and an Orientation to
retrieve argument you are interested in.

Syntax

[Movable] .GetGlobalLocation Position, Ori
[Movable] -GetGlobalLocation Position
[Movable] -GetGlobalLocation Ori

where,
Movable is the movable whose global position and orientation are being accessed,
Position isthe position of the movable, and

Ori isthe orientation of the movable.

Arguments Data Type

Position Vect3d

Ori Orientation
Remarks

If this movabl e appears multiple timesin the scene graph (the movabl e has multiple parents), this method will
choose an arbitrary instance of the movable.

Example

Sub Main ()
* This example moves the ""Hand" object 10 units in the global
" Z direction.
dim obj as Movable
set obj = GetMovable("Hand")

137

138 Movable Commands and Functions

dim pos as Vect3d, ori as Orientation
obj .GetGlobalLocation pos, ori
pos.Z = pos.Z + 10
obj .SetGloballLocation pos, ori
End Sub

See Also
SetGlobal L ocation

Chapter 5 Methods On Objects

Chapter 5 Methods On Objects Movable Commands and Functions 139

IntersectsMovable()

Description

This function is a method on the Movable object type and detects a collision between the two specifed
movables. The collision test is based on bounding boxes. There are two ways to call this function. The first
syntax checks for collision between the two specified movables, taking into account their sub-trees. The
second syntax lets you specify whether sub-trees are to be involved in the collision testing. If thereisan
intersection, this function returns True. Otherwise, it returns False.

Syntax1
flag = [Movable]. IntersectsMovable(AnotherMovable)

where,
Movable isthe movable being tested for intersection, and

AnotherMovable isthe movable with which intersection is being tested.

Arguments Data Type
AnotherMovable Movable
Syntax2

flag = [Movable]. IntersectsMovable(AnotherMovable, _
IgnoreChidrenl, IgnoreChildren2)

where,
Movable is the movable being tested for intersection,
AnotherMovable isthe movable with which intersection is being tested,

IgnoreChi Idrenl specifies whether the sub-tree of the movable being tested for intersection isto be
ignored (default is FALSE), and

IgnoreChi Idren2 specifies whether the sub-tree of the movable with which intersection is being tested
isto beignored (default is FALSE).

Arguments Data Type
AnotherMovable Movable
IgnoreChildrenl Boolean

IgnoreChildren2 Boolean

140 Movable Commands and Functions Chapter 5 Methods On Objects

Example

Sub Task (obj as Movable)
Dim intobj as Movable
Dim flag as Boolean
Set intobj = GetMovable(*'block-2'"")
" check for intersection between obj (include sub-tree) and
" intobj (ignore subtree)
flag = obj.IntersectsMovable(intobj,false,true)
if flag then

message(obj.name + " Intersects with " + intobj.name)
else
message(obj.-name + " has no intersections.')
end if
end sub
See Also

IntersectsM ovabl ()

Chapter 5 Methods On Objects Movable Commands and Functions

IntersectsUniverse()

Description
This function is a method on the Movable object type and detects a collision between the Movable (the sub-
treeisignored) and any node. The collision test is based on bounding boxes. There are two ways to call this
function. Thefirst syntax does not take any arguments. The second syntax takes an argument, which is the
node object intersected. If there is an intersection, this function returns True. Otherwise, it returns False.
Syntax1

flag = [Movable]. IntersectsUniverse()

where,

Movable isthe movable being tested for intersection.

Syntax2
flag = [Movable]. IntersectsUniverse(IntObj)
where,
Movable isthe movable being tested for intersection, and
IntObj isthe node that the movable intersected.

Arguments Data Type

IntObj Node

Return Data Type
Boolean.

Example

sub task (obj as Movable)
dim intobj as Node
dim flag as Boolean
flag = obj.IntersectsUniverse(intobj)
if flag then

message(obj.-name + ' Intersects with " + intobj.name)
else

message(obj.name + " has no intersections.')
end if

end sub

141

142 Movable Commands and Functions Chapter 5 Methods On Objects

See Also
PitchParent; Roll; RollParent; Rotate; RotateParent; TimeRotate; Y aw; Y awParent

Chapter 5 Methods On Objects Movable Commands and Functions 143

Pitch

Description
This command is a method on the Movable object type and rotates the movable around its local X-Axis by
the angle specified (in degrees).
Syntax
[Movable].Pitch Angle
where,
Movable is the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the movable'slocal X-axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Geometry)
Set MyObject = GetFirstGeometry()
MyObject.Pitch 30

End Sub

144

Movable Commands and Functions Chapter 5 Methods On Objects

PitchParent

Description
This command is a method on the Movable object type and rotates the movable around the parent’s X-axis
(parent reference frame).
Syntax
[Movable] .PitchParent Angle
where,
Movable is the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the parent's X-axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Cylinder)
Set MyObject = GetFirstCylinder()
"Assuming the cylinder is a child of a movable
MyObject.PitchParent 30

End Sub

See Also
Pitch; Roll; RollParent; Rotate; RotateParent; Y aw; Y awParent

Chapter 5 Methods On Objects Movable Commands and Functions 145

Roll

Description
This command is a method on the Movable object type and rotates the movable around its local Z-Axis by
the angle specified (in degrees).
Syntax
[Movable].Roll Angle
where,
Movableis the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the movable's local Z-axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Geometry)
Set MyObject = GetFirst Geometry()
MyObject.Roll 45

End Sub

See Also
Pitch; PitchParent; RollLocal; Roll Parent; Rotate; RotateParent; TimeRotate; Yaw; Y awParent

146

Movable Commands and Functions Chapter 5 Methods On Objects

RollParent

Description
This command is a method of the Movable object type and rotates the object around the parent’s Z-axis
(parent reference frame)
Syntax
[Movable].RollParent Angle
where,
Movable is the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the parent's Z-axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Cylinder)
Set MyObject = GetFirstCylinder()
"Assuming the cylinder is a child of a movable
MyObject.RollIParent 30

End Sub

See Also
Pitch; PitchParent; Roll; Rotate; RotateParent; Y aw; Y awParent

Chapter 5 Methods On Objects Movable Commands and Functions 147

Rotate

Description

This command is a method on the Movable object type and rotates the movabl e by the given rotation. There
are two waysto call thisfunction. Y ou can specify the rotation either as an orientation or by specifying the
angle (in degrees) to rotate around a given axis. The movable is rotated in the local reference frame.

Syntax1
[Movable] .Rotate Ori

where,
Movable is the movable to be rotated, and

Ori isthe orientation specifying the rotation.

Arguments Data Type
Ori Orientation
Syntax2

[Movable] -Rotate Axis,Angle
where,
Movable is the movable to be rotated,

Axisisthex,y, or z axis (specified by the constants X_AXIS, Y_AXIS, and Z_AXIS respectively)
around which the movableisto be rotated, and

Angleisthe angle (in degrees) of rotation around the given axis.

Arguments Data Type

Axis Integer

Angle Single
Example

Sub Task(M as Movable)
Set M = GetFirstCylinder()
M.Rotate X_axis, 30

End Sub

148 Movable Commands and Functions Chapter 5 Methods On Objects

See Also
Pitch; PitchParent; Roll; RollParent; Rotate; RotateParent; TimeRotate; Y aw; Y awParent

Chapter 5 Methods On Objects Movable Commands and Functions 149

RotateParent

Description

This command is a method on the Movable object type and rotates the movabl e by the given rotation. There
are two waysto call thisfunction. Y ou can specify the rotation either as an orientation, or by specifying the
angle (in degrees) to rotate around a given axis. The movableis rotated in the parent reference frame.

Syntax1
[Movable] .RotateParent Ori

where,
Movable is the movable to be rotated, and

Ori isthe orientation specifying the rotation.

Arguments Data Type
Ori Orientation
Syntax2

[Movable] -RotateParent Axis,Angle
where,
Movable isthe movable to be rotated,

Axisisthex,y, or z axis (specified by the constants X_AXIS, Y_AXIS, and Z_AXIS respectively)
around which the movableisto be rotated, and

Angleisthe angle (in degrees) of rotation around the given axis.

Arguments Data Type

Axis Integer

Angle Single
Example

Sub Task(M as Movable)
"Assuming the cylinder is a child of a movable
Set M = GetFirstCylinder()
M.RotateParent X _AXIS,10

End Sub

150

Movable Commands and Functions Chapter 5 Methods On Objects

SetGlobalLocation

Description
This command is a method on the Movable object type. It setsthe global position and orientation of the
movable.
Syntax
[Movable].SetGlobalLocation Position, Ori
where,
Movable is the movable whose global position and orientation is being set,
Posi tion specifies the new position of the movable, and

Ori specifies the new orientation of the movable.

Arguments Data Type

Position Vect3d

Ori Orientation
Remarks

If thismovable appears multipletimesin the scene graph (the movable has multiple parents), this method will
choose an arbitrary instance of the movable.

Example

Sub Main ()
" This example moves the "Hand" object 10 units in the
" global Z direction.
dim obj as Movable
set obj = GetMovable("Hand")
dim pos as Vect3d, ori as Orientation
obj .GetGlobalLocation pos, ori
pos.Z = pos.Z + 10
obj.SetGlobalLocation pos, ori
End Sub

See Also
GetGlobalLocation

Chapter 5 Methods On Objects Movable Commands and Functions 151

TimeRotate

Description

This command is a method on the Movable object type and rotates the movable along the X, Y, and Z axes
by avelicity specified for each axis in units of degrees per second. This method will allow you to rotate an
object a given speed independent of the frame rate. There are two waysto call thisfunction. Y ou can specify
thetranglation either asaVect3d or as 3 floats. A reference frame parameter may be added to specify whether
to rotate the object in thelocal, parent, or global reference frame. If no frameis specified, rotation will occur
in the local reference frame.

Syntax1

[Movable].TimeRotate Velocity
[Movable] .TimeRotate Velocity, Frame

where,
Movable isthe movable to be transated, and
Velocity isthe Vect3d specifying the velocity the movable will be translated.

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see
below)

Arguments Data Type

Velocity Vect3d

Frame Integer
Syntax2

[Movable].TimeRotate X, Y, Z
[Movable].TimeRotate X, Y, Z, Frame

where,
Movable is the movable to be translated,
X isthe degrees per second to yaw the object,
Y isthe degrees per second to pitch the object,

Z isthe degrees per second to roll the object, and

152

Movable Commands and Functions Chapter 5 Methods On Objects

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see

bel ow)
Arguments Data Type
X Single
Y Single
z Single
Frame Integer

Frame Option

The frame parameter can be set to either Local Frame, ParentFrame, or GlobalFrame.

LocalFrame translates Viewpoint in the movable’ slocal frame (Positive Z is the direction the object is
facing, Negative Y is up from the direction the viewpoint is facing, etc.)

ParentFrame translates Viewpoint in the object’s parent’ s frame.

GlobalFrame translates Viewpoint in the global frame, independent of the orientation of the movable or any

of its parent’s.

Example

Sub Task(M as Movable)
" This will yaw the object 180 degrees per second
" (revolve one every two seconds)
" independent of frame rate
M.TimeRotate 180, 0, O, LocalFrame

End Sub

See Also

TimeTrand ate; Rotate; FrameDuration

Chapter 5 Methods On Objects Movable Commands and Functions 153

TimeTranslate

Description

Thiscommand isamethod on the Movabl e object type and translates the movable along the X, Y, and Z axes
by avelicity specified for each axis. Values are given in units per second. This method will allow you to
translate an object a given speed independent of the frame rate. A reference frame parameter may be added
to specify whether to tranglate the abject in the local, parent, or global reference frame. If no frameis
specified, translation will occur in the local reference frame.

Syntax1

[Movable].TimeTranslate Velocity
where,
Movable isthe movable to be trandated, and
Velocity isthe Vect3d specifying the velocity the movable will be translated.

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see
below)

Arguments Data Type
Velocity Vect3d
Syntax2

[Movable] -TimeTranslate X, Y, Z
where,

Movable isthe movable to be translated,

X isthe speed along the x-axis,

Y isthe speed along the y-axis, and

Z isthe speed along the z-axis.

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see
bel ow)

Arguments Data Type

X Single

154

Movable Commands and Functions Chapter 5 Methods On Objects

Arguments Data Type
Y Single

z Single
Frame Integer

Frame Option

The frame parameter can be set to either Local Frame, ParentFrame, or GlobalFrame.

LocalFrame translates Viewpoint in the movable’ slocal frame (Positive Z is the direction the object is
facing, Negative Y is up from the direction the viewpoint is facing, etc.)

ParentFrame translates Viewpoint in the object’s parent’ s frame.

GlobalFrame translates Viewpoint in the global frame, independent of the orientation of the movable or any

of its parent’s.

Example

Sub Task(M as Movable)
" This will move the object 10 units per second
" forward, independent of the frame rate
M.TimeTranslate 0, O, 10, LocalFrame

End Sub

See Also

Trandate; TimeRotate; FrameDuration

Chapter 5 Methods On Objects Movable Commands and Functions

Translate

Description

Thiscommand isamethod on the Movabl e object type and translates the movable along the X, Y, and Z axes
by the number of units specified for each axis. There are two waysto call this function. Y ou can specify the
trandation either asaVect3d or as 3 floats. A reference frame parameter may be added to specify whether to
trans ate the object in the local, parent, or global reference frame. If no frameis specified, trandation will
occur in the local reference frame.

Syntax1

[Movable].Translate Vector

where,
Movable isthe movable to be trandated, and
Vector isthe Vect3d specifying the trandlation.

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see
below)

Arguments Data Type

Vector Vect3d

Frame Integer
Syntax2

[Movable] .-Translate X, Y, Z,
[Movable].-Translate X, Y, Z, Frame

where,
Movable isthe movable to be translated,
X isthe trandation along the x-axis,
Y isthe trandation along the y-axis,

Z isthe trandation along the z-axis, and

155

156

Movable Commands and Functions Chapter 5 Methods On Objects

Frame isan optional parameter which specifies the reference frame the object will be trandated in (see

bel ow)
Arguments Data Type
X Single
Y Single
z Single
Frame Integer

Frame Option

LocalFrame translates Viewpoint in the movable’ slocal frame (Positive Z is the direction the object is
facing, Negative Y is up from the direction the viewpoint is facing, etc.)

ParentFrame translates Viewpoint in the object’s parent’ s frame.

GlobalFrame transates Viewpoint in the global frame, independent of the orientation of the movable or any

of its parent’s.

Example

Sub Task(M as Movable)
Set M = GetFirstCylinder()
M.Translate 1,1,1

End Sub

See Also

TimeTranglate; TransateParent; Pitch; PitchParent; Roll; Roll Parent; Rotate; RotateParent; Y awParent

Chapter 5 Methods On Objects Movable Commands and Functions

TranslateParent

Description

Thiscommand isamethod on the Movabl e object type and translates the movable along the X, Y, and Z axes
by the number of units specified for each axis. There are two waysto call this function. Y ou can specify the
trangdation either as a Vect3d or as 3 floats. The movableistrandated in the parent reference frame.

This command is obsolete. The Translate command now allows specification of areference frame. This
method is still supported for backward compatibility.

Syntax1

[Movable].TranslateParent Vector
where,

Movable isthe movable to be trandated, and

Vector isthe Vect3d specifying the trandlation.

Arguments Data Type
Vector Vect3d
Syntax2

[Movable] -TranslateParent X, Y, Z
where,

Movable isthe movable to be translated,

X isthe translation along the x-axis,

Y isthe translation along the y-axis, and

Z isthe trandation along the z-axis.

Arguments Data Type
X Single
Y Single

z Single

157

158 Movable Commands and Functions Chapter 5 Methods On Objects

Example

Sub Task(M as Movable)
Set M = GetFirstCylinder()
"Assuming the cylinder is a child of a movable
M.TranslateParent 1,0,0

End Sub

See Also
Translate

Chapter 5 Methods On Objects Movable Commands and Functions 159

Yaw

Description
This command isamethod on the M ovabl e object type and rotates the movable around itslocal Y -axis by the
angle (in degrees) specified.
Syntax
[Movable].Yaw Angle
where,
Movable is the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the movable'sloca Y -axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Geometry)
Set MyObject = GetFirstGeometry()
MyObject.Yaw 30

End Sub

160

Movable Commands and Functions Chapter 5 Methods On Objects

YawParent

Description
This command is a method on the Movabl e object type and rotates the movable around the parent’'s Y axis
(parent reference frame).
Syntax
[Movable].YawParent Angle
where,
Movable is the movable to be rotated, and

Angleisthe angle (in degrees) of rotation around the parent's Y -axis.

Arguments Data Type
Angle Single
Example

Sub Task(MyObject as Cylinder)
Set MyObject = GetFirstCylinder()
"Assuming the cylinder is a child of a movable
MyObject.YawParent 30

End Sub

See Also
Pitch; PitchParent; Roll; RollParent; Rotate; RotateParent; Y awL ocal

Chapter 5 Methods On Objects Geometry Commands and Functions

Geometry Commands and Functions

In addition to the methods described for the Geometry object type in this section, you can also call Movable
methods, since a Geometry is a particular type of Movable object.

BeginEdit

Description

This command is a method on the Geometry object type and starts the editing session on the geometry. This
function must be called before you can edit the geometry.

Syntax
[Geometry] .BeginEdit
where,

Geometry isthe geometry to be edited.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d

set x = GetGeometry(“'ball')
X._BeginEdit

vertex=x.GetFirstVertex()
while vertex<>0
X.GetVertexPosition vertex, pos

"deform the geometry
pos.X=pos.X + pos.Y
Xx.SetVertexPosition vertex, pos

vertex=x.GetNextVertex(vertex)
wend
X.EndEdit
end sub

161

162 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

See Also
EndEdit; RecomputeStats; SetVertexNormal; SetVertexPosition

Chapter 5 Methods On Objects Geometry Commands and Functions 163

EndEdit

Description

This command is a method on the Geometry object type and ends the editing session on the geometry. This
function must be called after you have finished editing the geometry.

Syntax
[Geometry].EndEdit
where,

Geometry isthe geometry being edited.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d

set x = GetGeometry(“'ball™)
X.BeginEdit

vertex=x.GetFirstVertex()
while vertex<>0
X.GetVertexPosition vertex, pos

"deform the geometry
pos.X=pos.X + pos.Y
X.SetVertexPosition vertex, pos

vertex=x.GetNextVertex(vertex)
wend
X.EndEdit
end sub

164 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

GetFirstPoly()

Description

This function is a method on the Geometry abject type and returns the number of the first polygon of the
geometry asalLong.

Syntax
poly = [Geometry].GetFirstPoly()
where,

Geometry is the geometry whose polygon is being accessed.

Return Data Type
Long.

Example

sub main()
dim geom as Geometry
dim poly as long
dim center as Vect3d

set geom = GetGeometry("'block-1")
poly = geom.GetFirstPoly()

geom.GetPolyCenter poly, center
Message "Polygon center is at " + str$(center.X) + _
str$(center.Y) + str$(center.z2)

end sub

See Also
GetNextPoly()

Chapter 5 Methods On Objects Geometry Commands and Functions 165

GetFirstVertex()

Description

This function is a method on the Geometry object type and returns the number of the first vertex in the
geometry asalLong. Thisfunction is primarily used with the GetNextV ertex function to iterate through the
geometry’ s vertices.

Syntax
vertex = [Geometry].GetFirstVertex()
where,

Geometry isthe geometry whose vertex is being accessed.

Return Data Type
Long.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d

set x = GetGeometry(“'ball')
X.BeginEdit

vertex=x.GetFirstVertex()
while vertex<>0
X.GetVertexPosition vertex, pos

"deform the geometry
pos.X=pos.X + pos.Y
X.SetVertexPosition vertex, pos

vertex=x.GetNextVertex(vertex)
wend
X_-EndEdit
end sub

See Also
GetNextVertex()

166

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

GetNextPoly()

Description
This function is a method on the Geometry object type and returns the number of the next polygon of the
geometry asalL ong. Thisfunction is used with the GetFirstPoly function to iterate through the polygons of a
geometry.
Syntax

poly = [Geometry].GetNextPoly(poly)
where,

Geometry is the geometry whose polygon is being accessed, and

Poly isthe number of the current polygon.

Return Data Type
Long.

Example

sub main()
dim geom as Geometry
dim poly as long
dim center as Vect3d

set geom = GetGeometry("'block-1")

poly = geom.GetFirstPoly()

while poly <> 0
geom.GetPolyCenter poly, center
Message "'Polygon center is at " + str$(center.X) + _
str$(center.Y) + str$(center.z2)

poly = geom.GetNextPoly(poly)
wend
end sub

See Also
GetFirstPoly()

Chapter 5 Methods On Objects Geometry Commands and Functions 167

GetNextVertex()

Description
This function is a method on the Geometry object type and returns the number of the next vertex in the
geometry asalong. Thisfunction is primarily used with the GetFirstVertex function to iterate through the
geometry’ s vertices.
Syntax

vertex = [Geometry].GetNextVertex(Vertex)
where,

Vertexisthe number of the current vertex.

Arguments Data Type

Vertex Long

Return Data Type
Long.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d
set x = GetGeometry(“'ball')
X._BeginEdit
vertex=x.GetFirstVertex()
while vertex<>0
X.GetVertexPosition vert, pos
"deform the geometry
pos.X=pos.X + pos.Y
X.SetVertexPosition vertex, pos
vertex=x.GetNextVertex(vertex)
wend
X.EndEdit
end sub

See Also
GetFirstVertex()

168 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

GetPolyCenter

Description
This command is a method on the Geometry object type and finds the center of gravity for the specified
polygon.
Syntax
[Geometry].GetPolyCenter Poly,Center
where,
Geometry is the geometry whose polygon is being accessed,
Poly isthe polygon whose center is to be got, and

Centeristhe Vect3d that gets filled with the position of the center of the polygon.

Arguments Data Type

Poly Long

Center Vect3d
Remarks

The center of gravity of a polygon is the average position of the polygon’s vertices.

Example

sub main()
dim geom as Geometry
dim poly as long
dim center as Vect3d

set geom = GetGeometry(*'block-1")
poly = geom.GetFirstPoly()

geom.GetPolyCenter poly, center
Message "Polygon center is at " + str$(center.X) + _
str$(center.Y) + str$(center.Zz)

end sub

See Also
GetFirstPoly(); GetNextPoly(); GetPolyld(); GetPolyNormal; GetPolyNumVerts(); GetPolyV ertex()

Chapter 5 Methods On Objects Geometry Commands and Functions 169

GetPolyld()

Description
This function is a method on the Geometry abject type and returns the ID of the specified polygon.

Syntax
id = [Geometry].-GetPolyld(Poly)

where,
Geometry is the geometry whose polygon is being accessed, and
Poly isthe polygon whose ID is being accessed.

Arguments Data Type

Poly Long

Return Data Type
Integer.

Remarks

By default, a polygon’s D valueisO. ID values are useful if you want to refer a polygon or a group of
polygons by ID rather than by its unique number (which iswhat is returned by the functions GetFirstPoly()
and GetNextPoly()). For example, your application might assign certain meaning to ID values or group
polygons by ID, which is not as readily done using the unique number values. Setting a polygon’sID isalso
useful for identifying apolygon in an .NFF fileif the geometry to which the polygon belongs is written out.
You can set the ID of a polygon by calling the function SetPolyld.

Example

sub task(geom as block)
dim poly as long
dim id as integer

set geom = GetBlock(**MyBlock')

poly = geom.GetFirstPoly()
while poly <> 0
d = geom.GetPolyid(poly)
if id = 1 then
geom._SetPolyTexture poly, "DOOR"™, FALSE, TRUE

170 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

end if
poly = geom.GetNextPoly(poly)
wend
end sub

See Also

GetFirstPoly(); GetNextPoly(); GetPolyCenter; GetPolyNormal; GetPolyNumV erts(); GetPolyVertex();
SetPolyld

Chapter 5 Methods On Objects Geometry Commands and Functions 171

GetPolyNormal

Description
Thiscommand is amethod on the Geometry object type and finds the normal vector of the specified polygon.

Syntax
[Geometry].GetPolyNormal Poly,Normal

where,
Geometry is the geometry whose polygon is being accessed,
Poly isthe polygon whose normal isto be got, and

Normal isthe Vect3d that getsfilled with the normal of the polygon.

Arguments Data Type

Poly Long

Normal Vect3d
Remarks

The polygon normal is a unit vector (avector whose length is equal to 1.0) perpendicular to the plane of the
polygon pointing from the polygon’s front face. The polygon normal together with the polygon’s center of
gravity define the plane of the polygon.

Example

sub main()
dim geom as Geometry
dim poly as long
dim normal as Vect3d

set geom = GetGeometry(*“'block-1")
poly = geom.GetFirstPoly()
geom.GetPolyNormal poly, normal
Message "Polygon normal is " + str$(normal.X) + _
str$(normal.Y) + str$(normal.Zz)
end sub

See Also
GetFirstPoly(); GetNextPoly(); GetPolyCenter; GetPolyld(); GetPolyNumVerts(); GetPolyVertex()

172 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

GetPolyNumVerts()

Description
This function is a method on the Geometry object type and returns the number of vertices in the specified
polygon.
Syntax
numverts = [Geometry].GetPolyNumVerts(Poly)
where,
Geometry is the geometry whose polygon is being accessed, and

Poly isthe polygon whose number of verticesisto be got.

Arguments Data Type

Poly Long

Return Data Type
Integer.

Example

sub main()
dim geom as Geometry
dim poly as long
dim numvrts as integer

set geom = GetGeometry(*'ball')
poly = geom.GetFirstPoly()

numverts = geom.GetPolyNumVerts(poly)
Message "Number of vertices in polygon are
end sub

+ str$(numverts)

See Also
GetFirstPoly(); GetNextPoly(); GetPolyCenter; GetPolyld(); GetPolyNormal; GetPolyV ertex()

Chapter 5 Methods On Objects Geometry Commands and Functions 173

GetPolyVertex()

Description

This function is a mehtod on the Geometry object type and returns the ID number of the specified vertex in
the given polygon as aLong.

Syntax
vertex = [Geometry].GetPolyVertex(Poly, Index)

where,

Geometry is the geometry whose polygon is being accessed, Poly is the polygon whose vertex isto be
got, and Indexisthe vertex number whose ID isto be returned (it should be between 0 and numverts-1,
where numverts is the total number of verticesin the polygon as returned by the function GetPolyNum-
Verts().

Arguments Data Type
Poly Long
Index Integer

Return Data Type
Integer.

Example

sub main()
dim geom as Geometry
dim poly as long
dim numvrts as integer
set geom = GetGeometry("'block-1")
poly = geom.GetFirstPoly()
numverts = geom.GetPolyNumVerts(poly)
for i = 0 to (numverts - 1)
vertex = geom.GetPolyVertex(poly, i)
message "'Vertex id " + str$(vertex)
Next 1
end sub

See Also
GetFirstPoly(); GetNextPoly(); GetPolyCenter; GetPolyld(); GetPolyNormal; GetPolyNumV erts()

174

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

GetVertexNormal

Description

This command is a method on the Geometry object type and finds the normal vector of the specified vertex.

Syntax
[Geometry].GetVertexNormal Vertex,Normal

where,

Geometry isthe geometry whose vertex of one of the polygons is being accessed, Vertexisthe vertex
whose normal isto be got, and Normal is the Vect3d that gets filled with the normal of the vertex.

Arguments Data Type

Vertex Long

Normal Vect3d
Remarks

The vertex normal is used for Gouraud shading of polygons when all of the vertices in the polygon have
normal s associated with them.

Example

sub main()
dim geom as Geometry
dim poly as long
dim numverts as integer
dim normal as vect3d
set geom = GetGeometry(*'ball')
poly = geom.GetFirstPoly()
numverts = geom.GetPolyNumVerts(poly)
for i = 0 to (nhumverts - 1)
vertex = geom.GetPolyVertex(poly, i)
geom_GetVertexNormal vertex, normal
message "'Vertex normal is " + str$(normal.X) _
+str$(normal .Y) + str$(normal.z)
Next 1|
end sub

See Also
GetFirstVertex(); GetNextVertex(); GetPolyVertex(); GetV ertexPosition; SetVertexNormal

Chapter 5 Methods On Objects

GetVertexPositio

Description

n

Geometry Commands and Functions

This command is a method on the Geometry object type and finds the specified vertex’ s positionin local

coordinates.

Syntax

[Geometry].GetVertexPosition Vertex,Position

where,

Geometry isthe geometry whose vertex is being accessed,

Vertexisthe vertex whose position isto be got,and

Position isthe Vect3d that getsfilled with the position of the vertex in local coordinates.

Arguments Data Type

Vertex Long

Position Vect3d
Example

sub main()

dim x as Geometry

dim vert as long

dim pos as Vect3d

set x = GetGeome
X._BeginEdit

try('bal ')

vert=x.GetFirstVertex()

while vert<>0

X.GetVertexPosition vert,pos

"deform the g

eometry

pos.X=pos.X + pos.Y

x.SetVertexPosition vert, pos

vert=x.GetNextVertex(vert)

wend
X.EndEdit
end sub

175

176 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

See Also

GetFirstVertex(); GetNextVertex(); GetPolyVertex(); GetVertexNormal; SetVertexPosition;
RecomputeStats; Scale; SetPolyld; SetPolyTexture; SetTextureReflect; SetTexture; SetVertexNormal;
Stretch

Chapter 5 Methods On Objects Geometry Commands and Functions 177

Morph

Description
This command is a method on the Geometry object type and morphs the geometry from Geometry1 to
Geometry2. The degree of morph is dependent on the morph factor. For example, a morph factor of 1 would
completely morph the morphed geometry from Geometryl to Geometry2, whereas a morph factor of 0.5
would only morph the geometry to something which appears somewhat in between Geometry1 and
Geometry?2.
Syntax

[Geometry] .Morph Geometryl,Geometry2,Factor
where,

Geometry is the geometry being morphed,

Geometryl isthe source geometry,

Geometry?2 isthe target geometry, and

Factor isthe morph factor, which isavalue from 0 to 1 indicating what degree of morph to generate
between the two geometries.

Arguments Data Type

Geometryl Geometry

Geometry2 Geometry

Factor Single
Remarks

Typically, the morphed object starts out as a duplicate of Geometryl. Thisway the object morphs correctly
from Geometry1 to Geometry?2.

If Geometryl isone of the primitive geometries, you can use the functions Duplicate or DuplicateObject to
create a copy of Geometryl. However, if Geometryl is of the Imported type, using Duplicate() or
DuplicateObject() won't work because this would create an instance of Geometry1 and when you use the
morph function both the morphed geometry and Geometry1 would be modified. So, if Geometryl is of type
Imported, you need to use the function Forklmported() to create a copy of it as shown in the example.

Both Geometry1 and Geometry2 must have identical numbers of vertices. The number of polygons doesn't
matter since only vertices are actualy moved.

178 Geometry Commands and Func-
tions

Example

Dim factor as Single
Dim forked as Boolean
Sub Task(c as Imported)
Dim a as Imported
Dim b as Imported
Set a = Getlmported(*'clown0'™)
Set b = Getlmported(*'clownl'™)
Dim key as String
key = GetKey()
If key <> """ Then
Select Case key
Case ''s"
IT Not forked Then
Dim result as Boolean
result = ForklImported(c)
forked = TRUE
Else

Chapter 5 Methods On Objects

Message "Already forked - press -> or <- keys _

to morph"
End If
Case "'r"
IT Not forked Then
Message "Press s to fork first"”
Else
factor = factor + 0.1
If factor >1 Then
factor = 1
End If
c.morph a,b,factor
End If
Case "1"
If Not forked Then
Message "'Press s to fork first"
Else
factor=factor-0.1
I factor <0 Then
factor = 0
End If
c.morph a,b,factor
End If
End Select
End If
End Sub

Chapter 5 Methods On Objects Geometry Commands and Functions 179

RecomputeStats

Description

This command is amethod on the Geometry object type and recomputes the geometry’ s properties based on
the location of its vertices. The properties computed are Dimensions, Midpoint, Radius, GeomDimensions,
GeomMidpoint, and GeomRadius. If ClearVertsis TRUE, this command will also remove unused vertices
(that is, vertices that aren’t referenced by any of the geometry’ s polygons) from the geometry.

Syntax
[Geometry].RecomputeStats ClearVerts
where,
Geometry isthe geometry whose properties are to be computed, and

ClearVerts specifies whether unused vertices are to be removed.

Arguments Data Type
ClearVerts Boolean
Remarks

Since EndEdit al so recomputes the properties of the geometry, it is not necessary to call thisfunction, except
when you need to remove unused vertices.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d

set x = GetGeometry(“'ball'™)
X.BeginEdit

vertex=x.GetFirstVertex()
while vertex<>0
X.GetVertexPosition vertex, pos

"deform the geometry
pos.X=pos.X + pos.Y
X.SetVertexPosition vertex, pos

180 Geometry Commands and Func-
tions

vertex=x.GetNextVertex(vertex)
wend
X.EndEdit TRUE
" remove unused vertices
X.RecomputeStats TRUE
end sub

See Also
BeginEdit; EndEdit

Chapter 5 Methods On Objects

Chapter 5 Methods On Objects Geometry Commands and Functions 181

SetPolyld

Description
This command is a method on the Geometry object type and sets the polygon’sID.

Syntax
[Geometry].SetPolyID Poly,ID
where,

Geometry is the geometry whose polygon is being accessed, Poly is the polygon whose ID is being set,
and 1D isthe value to which the polygon's ID isto be set.

Arguments Data Type

Poly Long

ID Integer
Remarks

By default a polygon’s 1D valueis 0. ID values are useful if you want to refer to a polygon or a group of
polygons by ID rather than by its unique number (which iswhat is returned by the functions GetFirstPoly()
and GetNextPoly()). For example, your application might assign certain meaning to 1D values or group
polygons by ID, which is not as readily done using the unique number values. Setting apolygon’sID isalso
useful for identifying a polygon in an NFF file if the geometry to which the polygon belongs is written out.

Example

sub main()
dim geom as Block
dim poly as long
dim id as integer
set geom = GetBlock(""MyBlock'™)
poly = geom.GetFirstPoly()
" set id of first three polygons
for i = 0 to 2
geom_SetPolyld poly, 1
poly = geom.GetNextPoly(poly)
next i
end sub

See Also
GetPolyld

182

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

SetPolyTexture

Description
This command is a method on the Geometry object type and applies atexture from the specified texture file
to the specified polygon of the geometry. Y ou can also specify whether the texture is shaded or transparent.
Syntax

[Geometry].SetPolyTexture Poly, FileName, Shaded, Transparent
where,

Geometry is the geometry whose polygon is being accessed,

Poly isthe number of the polygon that needs to be textured,

FileName refersto the texturefile,

Shaded specifies whether the texture is shaded, and

Transparent specifies whether the texture is transparent.

Arguments Data Type

Poly Long

FileName String

Shaded Boolean

Transparent Boolean
Remarks

If atextureis shaded (shaded=true), then intensity of the texture elements are affected by lighting. If colored
lights are used, the color of texture elementsis also affected. If the texture is not shaded (shaded=false), the
texture appears in the source bitmap file. If atexture is transparent (transparent=true), black pixelsin the

texture would not be rendered, and so portions of the polygon to which the texture is applied will be visible.

Example
sub task(geom as block)
dim poly as long
dim id as integer

poly = geom.GetFirstPoly()
while poly <> 0

Chapter 5 Methods On Objects

Geometry Commands and Functions 183

d = geom.GetPolyid(poly)
if id = 1 then

geom_SetPolyTexture poly, "DOOR"™, FALSE, TRUE
end if

poly = geom.GetNextPoly(poly)
wend

end sub

See Also

SetTextureReflect; SetTexture

184

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

SetPolyTextureUVv

Description
This command is a method on the Geometry object type and applies a texture with UV values specified by
the user, on the specified polygon. This command is useful for draping atexture over ageometry and also to
do simple texture animations. Y ou can also specify whether the texture is shaded or transparent.
Syntax

[Geometry].SetPolyTextureUV Poly, FileName, U, V, Shaded, Transparent
where,

Geometry is the geometry whose polygon is being accessed,

Poly isthe number of the polygon that needs to be textured,

FileName refersto the texturefile,

Uisan array of single (floats) specifying the texture u coordinate values,

Visan array of single (floats) specifying the v coordinate values for the texture to be used to map the tex-
ture to the polygon,

Shaded specifies whether the texture is shaded, and

Transparent specifies whether the texture is transparent.

Arguments Data Type
Poly Long
FileName String
U array of Single
\% array of Single
Shaded Boolean
Transparent Boolean
Remarks

The elements of arrays U and V specify respectively the texture u and v coordinates used when mapping the
texture to the vertices of the polygon. U = 0.0 corresponds to the | eft edge of the source bitmap and U = 1.0
corresponds to the right edge. Similarly, V = 0.0 and V = 1.0 correspond to the bottom and top edges
respectively, of the source bitmap.

Chapter 5 Methods On Objects Geometry Commands and Functions 185

If atexture is shaded (shaded=true), then intensity of the texture elements are affected by lighting. If colored
lights are used, the color of texture elementsis also affected. If the texture is not shaded (shaded=false), the
texture appears in the source bitmap file. If atexture is transparent (transparent=true), black pixelsin the

texture would not be rendered, and so portions of the polygon to which the texture is applied will be visible.

Texture Manipulation Example
" Applies the bottom half of a texture (DOOR.TGA) to all

Sub task(g

polygons of a geometry

as geometry)

dim poly as long

dim u(4)
dim v(4)

u(0)
v(0)
u(1l)
v(1)
u(2)
v(2)
u(3)
v(3)

poly = g.

cNoNeoh Neoll leoNe)
(NN NeolNoNeoNeoNe)

as single
as single

getfirstpoly()

While poly <> 0
g.setpolytextureuv poly,"DOOR",u,v, True, false
poly = g.getnextpoly(poly)

wend
End Sub

Texture Animation Example
" Applies the textute (DOOR.TGA) to

" animation

Sub task(g

each polygon of the sphere. The "v*

value of the texture is manipulated so
that it "streches”™ vertically every frame
giving the impression of simple texture

as subsphere)

dim poly as long

dim u(4)
dim v(4)

as single
as single

"v is a user-defined property of the subsphere type

186 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

g-v=g9g.v+ 0.1

if (g-v > 1) then
g-v=0.0
end if
u(0) = 0.0
v(0) = 0.0
u(d) = 1.0
v(1l) = 0.0
u(2) = 1.0
v(2) = g.v
u(3) = 0.0
v(3) = g.v

poly = g.getfirstpoly()
While poly <> 0
g-SetPolyTextureUV poly,"”DOOR",u,v, True, false
poly = g.getnextpoly(poly)
wend
End Sub

See Also
SetPolyTexture; SetTexture

Chapter 5 Methods On Objects Geometry Commands and Functions 187

SetTexture

Description
This command is a method on the Geometry object type and applies a texture from the specified texturefile
to the geometry. (Y ou can also specify whether the texture is shaded or transparent.)
Syntax
[Geometry].SetTexture FileName, Shaded, Transparent
where,
Geometry isthe geometry that is to be textured,
Fi leName refersto the texture file,
Shaded specifies whether the texture is shaded, and

Transparent specifies whether the texture is transparent.

Arguments Data Type

FileName String

Shaded Boolean

Transparent Boolean
Remarks

If atextureis shaded (shaded=true), then intensity of the texture elements are affected by lighting. If colored
lights are used, the color of texture elementsis also affected. If the texture is not shaded (shaded=false), the
texture appears in the source bitmap file. If atexture is transparent (transparent=true), black pixelsin the

texture would not be rendered, and so portions of the polygon to which the texture is applied will be visible.

Example

"Sets the texture (DOOR.TGA) to the specified geometry
sub task(g as Geometry)

g-settexture "DOOR™, TRUE, FALSE
end sub

See Also
SetPolyTexture; SetTextureReflect

188

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

SetTextureReflect

Description

This command is a method on the Geometry object type and applies a pre-built reflection map from the
specified texture file onto the specified geometry. Thisfunction is used to simulate highly reflective surfaces
such as polished metal or mirror finished surfaces. By applying a spherically mapped image to the surface of
ageometry, with UV values which change in relation to the viewer’ s position, an effect very similar in
appearance to true environmental reflection is achieved at afraction of the computational cost. Infact, since
you providetheimagefor the map, it can represent an environment that is compl etely different from the scene
in which the geometry exists.

Syntax
[Geometry].SetTextureReflect FileName

where Geometry is the geometry that is to be textured. Fi leName refersto the texture file, which isapre-
built reflection map

Remarks

Note that areflection map is atexture map. Consequently, you may not apply atexture map and areflection
map to the same object. Material properties are blended with the reflection map, like any texture mapping.
This function also optimizes the geometry data structures so they render faster.

This function only works under OpenGL. In D3D players, the function has no effect.
There are several waysto build an image that will provide an acceptable environment map:

1 Using a3D-rendering application such as 3D Studio Max or POVray, model the scene as necessary to rep-
resent the reflected environment. Place a sphere in the center of the scene. The sphere should be small,
relative to the scene. Apply ahighly reflective, ray-traceable material to the sphere. Set up the Viewpoint
to simulate a camera with infinite focal length centered on the sphere. Take a close-up image, where the
spherefillsthe frame. Use thisimage as your pre-built reflection map.

2 You can get asimilar effect in areal world situation, using a camerawith infinite focal length to photo-
graph alarge silvered sphere in the center of your scene. San the photograph to get your texture file.

3 Another way to create a useable photograph is to use an extremely wide-angle (or fish-eye) lens to photo-
graph the scene.

Example

"Sets the texture (reflectWorld.TGA) on the specified geometry
sub task(g as Geometry)
g.settexturereflect "reflectWorld.tga™

Chapter 5 Methods On Objects Geometry Commands and Functions 189

end sub

See Also
SetTexture

190

Geometry Commands and Func- Chapter 5 Methods On Objects
tions

SetVertexNormal

Description
This command is a method on the Geometry object type and sets the normal vector of the specified vertex.
There are two ways to call this function. Y ou can specify the normal as avect3d or as 3 floats.
Syntax1
[Geometry].SetVertexNormal Vertex, Normal
where,
Vertexisthe vertex whose Normal isto be set, and

Normal isthe normal vector.

Syntax2

[Geometry] .SetVertexNormal Vertex, Normal.X, Normal.Y, Normal.Z
where,

Vertexisthe vertex whose Normal isto be set,

Normal . X is the x-component of the normal vector,

Normal .Y isthe y-component of the normal vector, and

Normal . Z is the z-component of the normal vector.

Remarks

A significant improvement can be made in the shading of continuous serfacesif lighting is calculated at each
vertex, instead of at the center of each polygon. Thisiscalled Gouraud shading and resultsin smooth surfaces
when used correctly. Y ou should keep the following in mind about Gouraud shading:

 Itisintended for curved, continuous surfaces, not structures like boxes.
* It requires you to define anormal vector at each vertex.
 Itincursa(usually small) speed penalty since it requires more computation.

Note For WorldUp geometries, spheresand cylinders have vertex normals set when they are created, whereas
blocks and text3d objects don’'t. For imported types, it depends whether they were set in the modeling
program in which they were created. WorldUp reads vertex normals from OBJ, 3DS, FLT, SLP, and WRL
files.

Chapter 5 Methods On Objects

Example

Sub MainQ)

Dim po
Dim ge

Set ge
poly =
While
Dim
Dim

num

For i

ly as Long
om as Sphere

om = GetSphere("'sphere-1'")
geom.GetFirstPoly()
poly <> 0

i as Integer

num as Integer

geom.GetPolyNumVerts(poly)
= 0 to num-1

Dim normal as Vect3d

Dim vert as long

vert = geom.GetPolyVertex(poly, i)
geom.GetVertexNormal vert, normal
" invert the vertex normals
normal.x = -normal .x

normal.y = -normal .y

normal.z = -normal .z
geom.SetVertexNormal vert,normal

Next i

pol
Wend
End Sub
See Also

GetVertexNor

y = geom.GetNextPoly(poly)

mal

Geometry Commands and Functions

191

192 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

SetVertexPosition

Description
This command is a method on the Geometry object type and sets the vertex position specified in world
coordinates.
Syntax
[Geometry].SetVertexPosition Vertex,Position
where,
Geometry isthe geometry whose vertex is being accessed,
Vertexisthe vertex whose position is being set, and

Position isthe Vect3d that specifies the new position on the.

Arguments Data Type

Vertex Long

Position Vect3d
Remarks

Before calling this function, you must call the command BeginEdit to put the geometry in editing mode.

Example

sub main()
dim x as Geometry
dim vertex as long
dim pos as Vect3d

set x = GetGeometry(“'ball'™)
X.BeginEdit

vert=x.GetFirstVertex()
while vert<>0
X.GetVertexPosition vert, pos

"deform the geometry
pos.X=pos.X + pos.Y
X.SetVertexPosition vert, pos

Chapter 5 Methods On Objects

vert=x.GetNextVertex(vert)
wend
X.EndEdit
end sub

See Also
GetVertexPosition

Geometry Commands and Functions

193

194 Geometry Commands and Func- Chapter 5 Methods On Objects
tions

Stretch

Description
Thiscommand isamethod on the Geometry object type and stretchesthe geometry alongits X, Y, and Z axes
by the factors specified.
Syntax
[Geometry].Stretch x Factor,y Factor,z Factor
where,
x Factor isthe factor by which to stretch the geometry alongsits X axis,
y Factoristhefactor by which to stretch the geometry alongsits Y axis, and
z Factor isthe factor by which to stretch the geometry alongsits Z axis.

Arguments Data Type

x Factor Single

y Factor Single

z Factor Single
Example

sub main()
Dim MyObject as Sphere
Dim x_Factor as single
Dim y_Factor as single
Dim z_Factor as single

Set MyObject = GetSphere(**Globe™)

X _Factor = 0.5
y_Factor = 1.5
z_Factor = 0.5
MyObject.Stretch x_Factor, y Factor, z_Factor
end sub
See Also

Scale.

Chapter 5 Methods On Objects Geometry Commands and Functions 195

Scale

Description
This command is a method on the Geometry object type and scales a geometry object uniformly about all of
its axes by the value specified by Factor.
Syntax
[Geometry].Scale Factor
where,
Geometry isthe geometry to be scaled, and

Factor isthe scale factor.

Arguments Data Type
Factor Single
Example
Sub Main()

Dim MyObject as Sphere
Dim ScaleFactor as single
Set MyObject = GetSphere(*'Globe™)
ScaleFactor = 0.5
" Shrink the object by 0.5 on all axes
MyObject.Scale ScaleFactor

End Sub

See Also
Stretch

196

Imported Commands and Functions Chapter 5 Methods On Objects

Imported Commands and Functions

In addition to the methods described for the Imported object type in this section, you can also call Geometry
methods, since Imported is a particular type of Geometry object.

Forkimported()

Description
Thisfunction creates a new entry in the resource for this object. Thus, the object is no longer sharing its
resource entry with other objects. Its pivot point, stretch, and optimization isno longer affected by the objects
referring to the original entry.
Syntax

result = ForkImported(ImportedGeometry)
where,

ImportedGeometry isthe imported geometry which is to be forked.

Arguments Data Type

ImportedGeometry Imported

Return DataType
Boolean.

Remarks

Thisfunction is only available when the resource entry that the geometry referencesis currently referenced
by at least one other object in the universe.

Example

The following morphing example uses the Forklmported() function. To run this example, load in the models
clown0 and clownl as resources (load them as single geometries) and drag them into the universe. Drag in
clownO again to create an instance. At this point the instance shares the referenced geometry. Attach the
following script to the instanced object. After Forklmported() is called, the instanced object no longer shares
the referenced geometry.

Note that if the geometry is not forked, the morphing operation would modify the actual geometry.

Chapter 5 Methods On Objects

Dim factor as Single

Dim forked as Boolean

Sub Task(c as Imported)
Dim a as Imported
Dim b as Imported

Set a
Set b

GetlImported(*'clown0™)
GetlImported(*'clownl™)

Dim key as String
key = GetKey()
If key <> " Then
Select Case key
Case "'s"
IT Not forked Then
dim result as Boolean

Imported Commands and Functions

result = ForkImported(c)
forked = TRUE
Else
Message "'Already forked - press "r® or "1" keys _
to morph"
End IF
Case "'r"

IT Not forked Then
Message ""Press s to fork first"
Else
factor = factor + 0.1
If factor >1 Then
factor = 1

End IFf
c.morph a,b,factor
End If
Case "I"

I Not forked Then

Message "'Press s to fork first"”
Else

factor=factor-0.1

IT¥ factor <0 Then

factor = O
End If
c.morph a,b,factor
End If
End Select
End If

End Sub

197

198 Path Commands and Functions Chapter 5 Methods On Objects

Path Commands and Functions

In addition to the methods described for the Path object typein this section, you can also call VBase methods,
since aPath is a particular type of VBase object.

AppendElement

Description
This command is a method on the Path object type and appends an element after the last element in the path.

Syntax
[Path] .AppendElement Pos, Ori

where,
Path isthe path to which the element is to be appended,
Pos isthe position of the element, and

Ori isthe orientation of the e ement.

Arguments Data Type

Pos Vect3d

Ori Orientation
Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> "" then
select case key
case "'p"
thePath.Play
case ''s"
thePath.Stop
case "'r"
thePath.Rewind
case "'d"
dim pos as vect3d

Chapter 5 Methods On Objects Path Commands and Functions 199

dim ori as orientation
dim view as Viewpoint

set view = getviewpoint('viewpoint-1')
vect3dinit pos
view.getposition pos
orientinit ori
view.getorientation ori
thepath.AppendElement pos,ori
end select
end if
end sub

See Also
GetCurrentElement(); GetElementL ocation; SetElementL ocation

200

Path Commands and Functions Chapter 5 Methods On Objects

GetCurrentElement()

Description

This function is a method on the Path object type and returns the ID of the current element of the path. This
ID can then be used to set and get the location of the element.

Syntax
Id = [Path].GetCurrentElement()

where,

Path is the path whose element is being accessed.

Return Data Type
Long.

Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Play
case "'s"
thePath.Stop
case "'r"
thePath.Rewind
case "'c"
dim pos as vect3d
dim ori as orientation
dim view as Viewpoint
dim id as long

id = thepath.GetCurrentElement()
message "Current Element is " + str$(id)

thepath.GetElementLocation id, pos, ori
message ''Current Element Position"
Vect3dPrint pos

message ''Current Element Orientation"

Chapter 5 Methods On Objects Path Commands and Functions 201

OrientPrint ori
end select
end if
end sub

See Also
AppendElement; GetElementL ocation; SetElementL ocation

202 Path Commands and Functions Chapter 5 Methods On Objects

GetElementLocation

Description
This command is a method on the Path object type and gets the position and orientation of the element
specified by Elementld and places the values into the Pos and Ori arguments.
Syntax
[Path] -GetElementLocation Elementld, Pos, Ori
where,
Path is the path whose element is being accessed,
Elementld istheld of the element,
Pos isthe Vect3d that gets filled with the position of the element, and
Ori isthe Orientation that gets filled with the orientation of the element.

Arguments Data Type

Elementld Long

Pos Vect3d

Ori Orientation
Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath._Play
case '"'s"
thePath.Stop
case "'r"
thePath.Rewind
case ''c"
dim pos as vect3d
dim ori as orientation
dim view as Viewpoint
dim id as long

Chapter 5 Methods On Objects Path Commands and Functions

id = thepath.GetCurrentElement()
message ''Current Element is " + str$(id)

thepath.GetElementLocation id, pos, ori
message "‘Current Element Position™

Vect3dPrint pos
message "'Current Element Orientation"

OrientPrint ori
end select
end if
end sub

See Also
AppendElement; GetCurrentElement(); SetElementL ocation; GetElementLocation

203

204 Path Commands and Functions Chapter 5 Methods On Objects

GetFirstElement

Description

Thisfunction is amethod on the Path object type and returns a handle to the first element of a path. It can be
used with the GetNextElement function to iterate through a path’ s elements.

Syntax

ElementHandle = [Path].GetFirstElement
where,

Path is the path whose element is being accessed, and

ElementHandle is the handle of the first el ement.

Return Data Type
Long.

Example

sub task (thePath as path)

dim Count as Integer

dim ElementHandle as Long

ElementHandle = thePath.GetFirstElement

while ElementHandle <> 0
dim pos as Vect3d, ori as Orientation
thePath.GetElementLocation ElementHandle, pos, ori
Message " Element: " + str$(Count) + " is :"
Vect3dPrint pos

Count = Count + 1
ElementHandle = thePath.GetNextElement(ElementHandle)
wend
end sub

See Also
GetNextElement; AppendElement; GetCurrentElement(); SetElementL ocation

Chapter 5 Methods On Objects Path Commands and Functions

GetNextElement

Description

This function is amethod on the Path object type. It takes a handle to an element of a path and returns the
next sequential element. If the function returns zero, the passed in element was the last of the path. It can be
used with the GetFirstElement function to iterate through a path’ s elements.

Syntax

NextHandle = [Path].GetNextElement(ElementHandle)

where,

Path is the path whose element is being accessed,

ElementHandle is areference to a element of the path, and

NextHandle is the element which follows the one passed on.

Arguments

Data Type

ElementHandle

Long

Return Data Type

Long.

Example

sub task (thePath as path)
dim Count as Integer
dim ElementHandle as Long

ElementHandle

thePath.GetFirstElement

while ElementHandle <> 0
dim pos as Vect3d, ori as Orientation
thePath._GetElementLocation ElementHandle, pos, ori

Message "

Element: " + str$(Count) + " is "

Vect3dPrint pos
Count = Count + 1

ElementHandle

wend
end sub

See Also

= thePath.GetNextElement(ElementHandle)

GetFirstElement; AppendElement; GetCurrentElement(); SetElementL ocation

205

206

Path Commands and Functions Chapter 5 Methods On Objects

Play

Description

This command is a method on the Path object type and begins the playback of the indicated path from the
path’s current element. When a path plays, the viewpoint or object associated with the path is moved from
element to element along the path.

Syntax
[Path]-Play
where,

Path isthe path to be played.

Remarks

Once apath is playing, it continues until finished or stopped (by calling the Stop command). Once apathis
finished playing, you need to rewind it (by calling the Rewind command) to play it again. Y ou cannot
simultaneously play and record apath. If the path you wish to play is currently recording, you need to stop it,
rewind it, and then play it.

Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Play
case ''s"
thePath.Stop
case "'r"
thePath.Rewind
end select
end if
end sub

See Also
Playl; Record; Recordl; Rewind; Save; Seek; Stop

Chapter 5 Methods On Objects Path Commands and Functions 207

Play1

Description

This command is a method on the Path object type and begins the playback of the indicated path for one
frame. When a path plays, the viewpoint or object associated with the path is moved for one frame along the
path.

Syntax
[Path] -Playl

Remarks

Y ou cannot simultaneously play and record a path.

Example

sub task (thePath as path)
dim key as string
key = GetKey()
if key <> """ then
select case key
case "'p"
thePath.Playl
case "'r"
thePath._Rewind
end select
end if
end sub

See Also
Play; Record; Recordl; Rewind; Save; Seek; Stop.

208 Path Commands and Functions Chapter 5 Methods On Objects

Record

Description
This command is a method on the Path object type and starts the indicated path recording.

Syntax
[Path] -Record

Remarks

Thiswill append elements after the last element in the path. Y ou cannot simultaneously play and record a
path.

Example

sub task (thePath as path)
dim key as string
key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Play
case "'s"
thePath.Stop
case "'e"
thePath.Record
case "'r"
thePath.Rewind
end select
end if
end sub

Chapter 5 Methods On Objects Path Commands and Functions 209

Recordl

Description
This command is a method on the Path object type and records the indicated path for one frame.

Syntax
[Path] -Recordl

Remarks

Thiswill append asingle element after the last element in the path. Y ou cannot simultaneously play and
record a path.

Example

sub task (thePath as path)
dim key as string
key = GetKey()
if key <> """ then
select case key
case "'p"
thePath.Playl
case "'e"
thePath._Recordl
case "'r"
thePath.Rewind
end select
end if
end sub

See Also
Play; Playl; Recordl; Rewind; Save; Seek; Stop

210 Path Commands and Functions

Rewind

Description

Chapter 5 Methods On Objects

Thiscommand isamethod on the Path object type and rewinds a path (that is, it setsa path’s current element

pointer to the first element in the path).

Syntax
[Path] -Rewind
where,

Path is the path to be rewound.

Remarks
Y ou cannot rewind a path that is playing or recording.

Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Play
case ''s"
thePath.Stop
case "'r"
thePath.Rewind
end select
end if
end sub

Chapter 5 Methods On Objects Path Commands and Functions 211

Save

Description

This command is a method on the Path object type and saves the indicated path to the given filename.

Syntax
[Path] -Save FileName
where,

Path isthe path to be saved, and Fi leName is the name to which thefileis to be saved.

Arguments Data Type
FileName String
Remarks

Thefileis saved to the current directory if no absolute pathname is specified.

Example

sub task (thePath as path)
dim key as string
key = GetKey()
if key <> """ then
select case key
case "'p"
thePath.Play
case ''s"
thePath.Stop
case "'e"
thePath._Record
case "'r"
thePath.Rewind
case "a"
thePath.Save 'foo.pth"
message "‘Saved path"
end select
end if
end sub

See Also
Play; Playl; Record; Recordl; Rewind; Seek; Stop

212 Path Commands and Functions Chapter 5 Methods On Objects

Seek

Description

This command is a method on the Path object type and moves the current element counter forward or
backward by the indicated offset.

Syntax
[Path] -Seek Offset
where,
Path is the path whose counter is to be moved, and

Offsetisthe amount by which the current element counter is moved. A positive amount moves the
counter forward, whereas a negative amount moves it backward.

Arguments Data Type
Offset Integer
Example

sub task (thePath as path)
dim key as string
key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Playl
case "'e"
thePath.Recordl
case "'r"
thePath.Rewind
case "k"
" move the current element counter back 5 elements
thepath.Seek -5
end select
end if
end sub

See Also
Play; Playl; Record; Recordl; Rewind; Save; Stop

Chapter 5 Methods On Objects Path Commands and Functions

SetElementLocation

Description
This command is a method on the Path object type and sets the position and orientation of the element
specified by Elementld, according to the values specified by the Pos and Ori arguments.
Syntax
[Path] -SetElementLocation Elementld, Pos, Ori
where,
Path is the path whose element is being accessed,
Elementld istheld of the element,
Pos isthe Vect3d that specifies the new position of the element, and

Ori isthe Orientation that specifies the new orientation of the element.

Arguments Data Type

Elementld Long

Pos Vect3d

Ori Orientation
Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath._Play
case '"'s"
thePath.Stop
case "'r"
thePath.Rewind
case "'c"
dim pos as vect3d
dim ori as orientation
dim view as Viewpoint
dim id as long

213

214

Path Commands and Functions

id = thepath.GetCurrentElement()

message ''Current Element is " + str$(id)
set view = getviewpoint('viewpoint-1')
vect3dinit pos

view.getposition pos

orientinit ori

view.getorientation ori

message ''Set position and orientation to that _

of viewpoint”

Vect3dPrint pos

OrientPrint ori
thepath.SetElementLocation id, pos, ori

end select
end if

AppendElement; GetCurrentElement(); GetElementL ocation

Chapter 5 Methods On Objects

Chapter 5 Methods On Objects Path Commands and Functions 215

Stop

Description
This command is a method on the Path object type and stops a path that is either playing or recording.

Syntax
[Path] -Stop
where,

Path isthe path to be stopped from playing or recording.

Example

sub task (thePath as path)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
thePath_Play
case ''s"
thePath.Stop
case "'r"
thePath.Rewind
end select
end if
end sub

See Also
Play; Playl; Record; Recordl; Rewind; Save; Seek

216

Script Commands and Functions Chapter 5 Methods On Objects

Script Commands and Functions

In addition to the methods described for the Script object type in this section, you can also call VBase
methods, since a Script is a particular type of VBase object.

Run

Description

This subroutineisamethod on the Script object type. If called on a script with no arguments, this method will
execute the “sub Main” of the script, if the script has one. Optionally, Run can include a string specifying a
subroutineto be run other than the Main subroutine. An additional optional parameter can be given to passin
aWorldUp object in to the subroutine (Warning: make sure the object passed in matches the type of the
parameter of the subroutine. If not, WorldUp may crash.)

Syntax

[Script]-Run
[Script] -Run EntryPoint
[Script] -Run EntryPoint, Object

where,
Scriptisthe script being run,
EntryPoint isan optiona parameter specifying a subroutine name other than "Main"
Objectisan optional parameter as an argument to the subroutine

WhichParent specifies the particular parent node to be got.

Arguments Data Type
EntryPoint String
Object WorldUp Object Type
Example
Sub MainQ)

" This will run the "Sub Main" from the startup script
GetScript("StartUpScript”).Run

" This will run the Task from the Block-1Script, passing in Block-1
GetScript("Block-1Script™).Run "Task', GetBlock('Block-1'))

Chapter 5 Methods On Objects Script Commands and Functions 217

End Sub

218 Sound Commands and Functions Chapter 5 Methods On Objects

Sound Commands and Functions

In addition to the methods described for the Sound object type in this section, you can also call VBase
methods, since a Sound is a particular type of VBase object.

Play

Description

This command is a method on the Sound object type and cues a sound to begin playing. When asound is
finished playing, it returns to the beginning of the sample.

Syntax
[Sound] -Play
where,

Sound is the sound to be played.

Example

sub task(theSound as sound)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
theSound.Play
case '"'s"
theSound.Stop
end select
end if
end sub

See Also
Stop

Chapter 5 Methods On Objects Sound Commands and Functions 219

Stop

Description
This command is a method on the Sound object type and stops a currently playing sound.

Syntax
[Sound] -Stop
where,

Sound s the sound to be stopped.

Example

sub task(theSound as subsound)
dim key as string

key = GetKey()
if key <> """ then
select case key
case "'p"
theSound.Play
case "'s"
theSound.Stop
end select
end if
end sub

See Also
Play

220

Viewpoint Commands and Func- Chapter 5 Methods On Objects
tions

Viewpoint Commands and Functions

In addition to the methods described for the Viewpoint object type in this section, you can also call VBase
methods, since aViewpoint is aparticular type of VBase object.

Rotate

Description

This command is a method on the Viewpoint object type and rotates the viewpoint around a given axis, and
around the viewpoint’s position.

Syntax
[Viewpoint].Rotate Axis, Radians

where,

Viewpoint isthe viewpoint to be rotated (specified by the constants X_AXIS, Y_AXIS, and Z_AXIS
respectively),
Axisisthe X, Y, or Z axis around which the viewpoint is to be rotated, and

Radians isthe angle (in radians) of rotation around the given axis.

Arguments Data Type
Axis Ingeger
Radians Single
Example
sub main()

dim view as viewpoint

set view = getfirstviewpoint()
"rotate viewpoint around the Y axis
view.rotate Y_AX1S,0.018

end sub

See Also
Translate

Chapter 5 Methods On Objects Viewpoint Commands and Functions 221

Translate

Description

This command is amethod on the Viewpoint object type and moves the viewpoint. By default, translate will
move the viewpoint in its local frame. Optionally, the viewpoint can be translated in the global frame.
Syntax

[Viewpoint].Translate Vector
[Viewpoint].Translate Vector, Frame

where,
Viewpoint isthe viewpoint to be rotated,
Vector isthe vector by which the viewpoint will be translated

Frame is an optional parameter to specify which the viewpoint will be trandated in.

Arguments Data Type

Vector Vect3d

Frame (optional) Integer
Syntax2

[Viewpoint].-Translate X, Y, Z
[Viewpoint].Translate X, Y, Z, Frame

where,
Viewpoint isthe viewpoint to be rotated,
X isthe distancein the x direction to translate the object,
Y isthe distancein they direction to translate the object,
Z isthe distance in the z direction to trand ate the object, and

Frame is an optional parameter to specify which the viewpoint will be trandated in.

Arguments Data Type
X Single
Y Single

z Single

222 Viewpoint Commands and Func- Chapter 5 Methods On Objects

tions
Arguments Data Type
Frame (optional) Integer

Frame Option
The frame parameter can be set to either LocalFrame or GlobalFrame.

LocalFrame translates Viewpoint in the viewpoint’ slocal frame (Positive Z isthe direction the viewpoint is
facing, Negative Y is up from the direction the viewpoint islooking, etc.)

GlobalFrame trandates Viewpoint in the global frame, independent of the orientation of the viewpont.

Example

sub main()
dim view as viewpoint
set view = getfirstviewpoint()
view.translate 0, 0, 10.0
" Move the viewpoint forward 10 units, the direction
" its facing
end sub

sub main()

dim view as viewpoint

set view = getfirstviewpoint()

dim v as Vect3d

v.Y = 10

view.translate v, GlobalFrame

" Move the viewpoint 10 units down in the global frame.
end sub

See Also
Rotate

Chapter 5 Methods On Objects W2WSharedProperty Commands 223
and Functions

W2WSharedProperty Commands and Functions

I n addition to the methods described for the W2\W SharedProperty object typein thissection, you can also call
VBase methods, since a W2W SharedProperty is a particular type of VBase object.

SendUpdate

Description

This subroutine is a method of the W2WSharedProperty object and performs a force update to the server.
Properties are usually updated automatically, but devel opers who wish to have more control over network
traffic can set aproperty’ s UpdateFrequency to “ No automatic updates’, and use“ SendUpdate” to update the
property manually

Syntax
[SharedPropertyObject] .SendUpdate
where,

SharedPropertyObject isthe shared property which is updated

Example

Sub Main(Q)
dim sp as W2WSharedProperty
set sp = GetSharedProperty(GetNode("Tree-1"), "Rotation")
sp.SendUpdate

End Sub

See Also
ShareProperty; UnshareProperty; GetSharedProperty

224

Window Commands and Functions Chapter 5 Methods On Objects

Window Commands and Functions

All coordinates for the Window draw functions are normalized (that is, range from 0 to 1). The lower-left
corner of the window is (0,0), and the upper-right corner is (1,1).

In addition to the methods described for the Window object type in this section, you can also call VBase
methods, since aWindow is a particular type of VBase object.

Activate

Description

Thiscommand isamethod on the Window object type and opens a named window or makes an open window
the active window.

Syntax

[Window] -activate

Remarks

This command works only on application windows.

Example

sub main()

Rem when assigned as a user-defined script
" this will toggle window focus between

" two different application windows

dim winl as SubWindow
dim win2 as SubWindow
dim iter as iterator

set winl = GetFirstSubWindow(iter)
set win2 = GetNextSubWindow(iter)
"isActive is a user defined property
if winl.isActive = True then
win2.activate
winl.isActive
win2.isActive
else
winl.activate

False
True

Chapter 5 Methods On Objects Window Commands and Functions 225

winl.isActive = True
win2.isActive = False
end if
end sub

226

Window Commands and Functions Chapter 5 Methods On Objects

AddUserButton

Description

Thiscommand isamethod on the Window object type and adds a user button of size 26 x 26 to the navigation
bar. It is specific to application windows only and cannot be called for development windows. Y ou can
associate a script object (having a Main subroutine) with this button which gets executed every time the
button is clicked.

Syntax
[Window] -AddUserButton ClickAction, Name, Description

where,

windowis the application window to which the button isto be added,

ClickAction isthe Script object to be associated with this button,

Name is the name of the button to be used in the command SetUserButtonBitmap, and
Description isthe text that will appear as atool tip.

Arguments Data Type

ClickAction Script

Name String

Description String
Remarks

Usually this command is called in the startup script.

Example

Sub Main()
Dim w as Window
Dim s as Script
Set w = GetWindow("'window-1"")
Set s = GetScript('mousescript'™)
w._AddUserButton s, "mybutton', “Exit"
w.SetUserButtonBitmap "mybutton™, "exit_bmp™
w._NavBarOptions NAVBARSHOW

End Sub

See Also
NavBarOptions; SetUserButtonBitmap

Chapter 5 Methods On Objects Window Commands and Functions 227

Draw3DLine

Description

This command is a method on the Window object type and draws a 3D line in the simulation space. Theline
will be drawn with the current 3D drawing color set with the Set3DColor method, and with the current 3D
drawing line width set by the Set3DLineWidth method. There are two ways to call this function. Theline
needs two points in 3d space to be drawn between. Y ou can specify these two pointsas a2 Vect3d or as 6
floats.
Syntax1

[Window] -Draw3DLine BeginningVector, EndingVector
where,

Windowis the window to which the 3D point is to be drawn,

BeginningVector isthe Vect3d specifying the beginning of the 3D line, and

BeginningVector isthe Vect3d specifying the end of the 3D line.

Arguments Data Type

BeginningVector Vect3d

EndingVector Vect3d
Syntax2

[Window] -Draw3DLine Bx, By, Bz, Ex, Ey, Ez
where,

Windowis the window to which the 2D point is to be drawn,

BX is the x-coordinate of the beginning point,

BY isthe y-coordinate of the beginning point,

BZ is the z-coordinate of the beginning point,

EX is the x-coordinate of the ending point,

EY isthe x-coordinate of the ending point, and

228 Window Commands and Functions Chapter 5 Methods On Objects

EZ isthe y-coordinate of the ending point.

Arguments Data Type
BX Single
BY Single
Bz Single
EX Single
EY Single
EZ Single
Remarks

The script in which you call this command must be assigned as a Draw3D task for the window. Y ou do this
by setting the window’ s Draw3D Task Property to the corresponding Script object.

Example

Sub Task(w as Window)

“draw a 3d line

w.Set3DColor 0,1,0

w.Draw3DLine 0.0, 0.0, 0.0, 1.0, 1.0, 1.0
End Sub

See Also
Set3DColor; Set3DLineWidth

Chapter 5 Methods On Objects Window Commands and Functions

DrawBox

Description

This command is a method on the Window object type and draws an outline of arectangle using the current
drawing color, which can be set by the command SetColor. The default drawing color iswhite. There are two
ways to call thisfunction. Y ou can specify the lower-left and the upper-right pointsas 2 Vect2d' s or as 4

floats.

Syntax1

[Window] -DrawBox Pointl, Point2

where,

Windowis the window to which the rectangle is to be drawn,

Pointlisthe Vect2d specifying the lower-left corner point, and

Point2isthe Vect2d specifying the upper-right corner point.

Arguments Data Type

Pointl Vect2d

Point2 Vect2d
Syntax2

[Window] -DrawBox X1, Y1, X2, Y2

where,

Windowis the window to which the rectangle is to be drawn,

X1 isthe x-coordinate of the lower-left corner point,

Y1 isthe y-coordinate of the lower-left corner point,

X2 isthe x-coordinate of the upper-right corner point, and

Y2 isthe y-coordinate of the upper-right corner point.

Arguments Data Type
X1 Single
Y1 Single

229

230 Window Commands and Functions Chapter 5 Methods On Objects

Arguments Data Type

X2 Single

Y2 Single
Remarks

The script in which you call this command must be assigned as a Draw task for the window. Y ou do this by
setting the window' s Draw Task Property to the corresponding Script object.

The lower-left and the upper-right points must be specified in normalized window coordinates (that is, 0.0
1.0). 0,0 specifies the bottom-left corner of the window.

Example

Sub Task(w as Window)
Set w = GetWindow(*'devwindow-1'")
"draw a red rectangle
w.SetColor 1,0,0
w._.DrawBox 0.1,0.1,0.9,0.9

End Sub

See Also

DrawCircle; DrawLine; DrawPoint; DrawText; SetColor

Chapter 5 Methods On Objects Window Commands and Functions

DrawCircle

Description

This command is a method on the Window object type and draws an outline of a circle using the current
drawing color, which can be set by the command SetColor. The default drawing color iswhite. There are two
ways to call thisfunction. Y ou can specify the center of the circle asaVect2d or as 2 floats.

Syntax1
[Window] -DrawCircle Center, Radius

where,
Windowis the window to which the circleis to be drawn,
Center isthe Vect2d specifying the center of the circle, and

Radiusistheradius of the circle.

Arguments Data Type

Center Vect2d

Radius Single
Syntax2

[Window] -DrawCircle X, Y, Radius
where,
Windowis the window to which the circleis to be drawn,
X isthe x-coordinate of the center of the circle,
Y isthe y-coordinate of the center of the circle,

Radiusistheradius of thecircle.

Arguments Data Type
X Single
Y Single

Radius Single

231

232 Window Commands and Functions Chapter 5 Methods On Objects

Remarks

The script in which you call this command must be assigned as a Draw task for the window. Y ou do this by
setting the window’ s Draw Task Property to the corresponding Script object.

The center and radius must be specified in normalized window coordinates (that is, 0.0-1.0). 0,0 specifiesthe
bottom-left corner of the window.

Example

Sub Task(w as Window)
Set w = GetWindow("'devwindow-1'")
"draw a red circle
w.SetColor 1,0,0
w.DrawCircle 0.5,0.5,0.2
End Sub

See Also

DrawBox; DrawLine; DrawPoint; DrawText; SetColor

Chapter 5 Methods On Objects Window Commands and Functions

DrawLine

Description
This command is a method on the Window object type and draws a 2D line between the specified points,
using the current drawing color which can be set by the command SetColor. The default drawing color is
white. There are two waysto call this function. Y ou can specify the 2 points as 2 Vect2d' s or as 4 floats.
Syntax1

[Window] -DrawLine Pointl, Point2
where,

Windowis the window to which the 2D lineisto be drawn,

Pointlisthe Vect2d specifying the beginning point, and

Point2isthe Vect2d specifying the ending point.

Arguments Data Type

Pointl Vect2d

Point2 Vect2d
Syntax2

[Window] -DrawLine X1, Y1, X2, Y2
where,
Windowis the window to which the 2D lineisto be drawn,
X1 isthe x-coordinate of the beginning point,
Y1 isthe y-coordinate of the beginning point,
X2 isthe x-coordinate of the ending point, and

Y2 isthe y-coordinate of the ending point.

Arguments Data Type
X1 Single
Y1 Single

X2 Single

233

234 Window Commands and Functions Chapter 5 Methods On Objects

Arguments Data Type
Y2 Single
Remarks

The script in which you call this command must be assigned as a Draw task for the window. Y ou do this by
setting the window' s Draw Task Property to the corresponding Script object.

The beginning and the ending points must be specified in normalized window coordinates (that is, 0.0-1.0).
0,0 specifies the bottom-left corner of the window.

Example

Sub Task(w as Window)
Set w = GetWindow(*'devwindow-1'")
“draw a red line
w.SetColor 1,0,0
w.DrawLine 0.1,0.1,0.9,0.9
End Sub

See Also

DrawBox; DrawCircle; DrawPoint; DrawText; SetColor

Chapter 5 Methods On Objects Window Commands and Functions 235

DrawPoint

Description

This command is a method on the Window object type and draws a 2D point (asingle pixel) at the specified
position, using the current drawing color, which can be set by the command SetColor The default drawing
color iswhite. There are two ways to call this function. Y ou can specify the point asaVect2d or as 2 floats.

Syntax1
[Window] -DrawPoint Point

where,
Windowis the window to which the 2D point is to be drawn,

Pointisthe Vect2d specifying the position of the pixel.

Arguments Data Type
Pointl Vect2d
Syntax2

[Window] -DrawPoint X, Y

where,
Windowis the window to which the 2D point is to be drawn,
X is the x-coordinate of the point, and

Y isthe y-coordinate of the point.

Arguments Data Type

X Single

Y Single
Remarks

The script in which you call this command must be assigned as a Draw task for the window. Y ou do this by
setting the window’ s Draw Task Property to the corresponding Script object.

The position of the point must be specified in normalized window coordinates (that is, 0.0-1.0). 0,0 specifies
the bottom-left corner of the window.

236 Window Commands and Functions

Example

Sub Task(w as Window)
Set w = GetWindow("'devwindow-1'")
"draw a red point
w.SetColor 1,0,0
w.DrawPoint 0.5,0.5
End Sub

See Also
DrawBox; DrawCircle; DrawLine; DrawText; SetColor

Chapter 5 Methods On Objects

Chapter 5 Methods On Objects Window Commands and Functions 237

DrawText

Description

This command is a method on the Window object type and writes atext string at the specified position using
the current drawing color, which can be set by the command SetColor. The default drawing color iswhite.
There are two ways to call this function. Y ou can specify the starting position as aVect2d or as 2 floats.

Syntax1
[Window] -DrawText Start, Text

where,
windowis the window to which the text is to be written,
Startisthe Vect2d specifying the starting position of the text, and

Textisthetext to be written.

Arguments Data Type

Start Vect2d

Text String
Syntax2

[Window] -DrawText X, Y, Text
where,
Windowis the window to which the text is to be written,
X isthe x-coordinate of the starting position of the text,
Y isthe y-coordinate of the starting position of the text, and

Text isthe text to be written.

Arguments Data Type
X Single
Y Single

Text String

238

Window Commands and Functions Chapter 5 Methods On Objects

Remarks

The script in which you call this command must be assigned as a Draw task for the window. Y ou do this by
setting the window’ s Draw Task Property to the corresponding Script object.

The start position is the vertical center and horizontal |eft edge of the generated font bitmap and must be
specified in normalized window coordinates (that is, 0.0-1.0). 0,0 specifies the bottom-left corner of the
window.

Example

Sub Task(w as Window)
Set w = GetWindow("'devwindow-1'")
“"write the text in red
w.SetColor 1,0,0
w.DrawText 0,0.05,"WorldUp™

End Sub

See Also
DrawBox; DrawCircle; DrawLine; DrawPoint; SetColor; TextExtent

Chapter 5 Methods On Objects Window Commands and Functions

GetMousePosition

Description

This command is a method on the Window object type and gets the mouse position in window coordinates
(in pixels). Optionally, it also gets the information whether the mouse isin the window or not. There are two
waysto call thisfunction. Thefirst syntax takes just one argument which getsfilled with the mouse position.
The second syntax takes an additional boolean argument which gets filled with the information whether the
mouse is in the window or not. If the mouse is outside the window, the position reports how far out of the
window the mouseiis.

Syntax1

[Window] -GetMousePosition WindowPosition
where,
windowis the window whose mouse position is to be got, and

WindowPosition isthe Vect2d that getsfilled with the mouse position.

Arguments Data Type
WindowPosition Vect2d
Syntax2

[Window] -GetMousePosition WindowPosition, IsMouselnWindow
where,

Windowis the window whose mouse position is to be got,

WindowPosition isthe Vect2d that getsfilled with the mouse position, and

IsMouse InWindow gets filled with the information whether the mouse is in the window or not.

Arguments Data Type

WindowPosition Vect2d

IsMouselnWindow Boolean
Remarks

0,0 specifies the top-l€eft corner of the window. To get the mouse position in screen coordinates you need to
access the Position property of the mouse. See the example in the command PickGeometry.

239

240 Window Commands and Functions Chapter 5 Methods On Objects

Example

Sub Task(w as Window)
Dim v as Vect2d
Dim b as Boolean
Dim m as Mouse

w.GetMousePosition v

Set m = GetMouse(''the mouse')

Message str$(v.-x) + str$(v.y)

b = v.x>0 and v.y>0 and v.x<w.ClientWidth and _
v.y<w.ClientHeight

If b Then
Message "in window"
Else
Message "‘not in window"
End If
End Sub

Sub Task(w as Window)
Dim v as Vect2d
Dim b as Boolean
Dim m as Mouse

w.GetMousePosition v,b
Set m = GetMouse('"the mouse')
Message str$(v.x) + str$(v.y)

IT b Then

Message ""in window'
Else

Message "‘not in window
End If

End Sub

Chapter 5 Methods On Objects Window Commands and Functions 241

LineWidth

Description

This command is a method on the Window object type and sets the width of the line to be drawn with the
commands DrawL ine, DrawBox, and DrawCircle in pixels.

Syntax
[Window] .LineWidth Width
where,
Windowis the window for which the line width is to be set, and

widthisthe value to which the line width is to be set.

Arguments Data Type
Width Single
Remarks

The value set for line width will remain set for any calls to DrawLine, DrawBox, and DrawCircle on the
window until LineWidth for the window is called again.

Example

Sub Task()
Dim w as Window

Set w = GetWindow("'devwindow-1"")
“draw a red line
w.SetColor 1,0,0
w.LineWidth 5.5
w.DrawLine 0.1,0.1,0.9,0.9
End Sub

See Also
DrawBox; DrawCircle;.DrawLine; SetColor

242

Window Commands and Functions Chapter 5 Methods On Objects

NavBarOptions

Description

Thiscommand isamethod on the Window object type and setsthe optionsfor the navigation bar. It is specific
to application windows only and cannot be called for development windows.

Syntax
[Window] -NavBarOptions Options

where,

Windowis the application window whose navigation bar options are to be set, and

Options isthe combination of the following constants:

NAVBARSHOW: This showsthe navigation bar. Thisisnot an option for the free plug-in, asthe navigation
bar will always appear.

NAVBUTTONSHIDE: This hides the navigation buttons.
NAVBARUSERBUTTONSHIDE: This hides any user buttons added.
NAVBARMENUH IDE: This prevents the right-click menu from appearing on the navigation bar.

Arguments Data Type
Options Integer
Example
Sub Main()

Dim w as Window
Dim s as Script

Set w = GetWindow("'window-1"")

Set s = GetScript('mousescript')
w._AddUserButton s, "mybutton', “Exit"
w.SetUserButtonBitmap "mybutton™, "exit_bmp™
w._NavBarOptions NAVBARSHOW+NAVBARMENUHIDE

End Sub
If Optionsis 0 the navigation bar is hidden.

See Also
AddUserButton; SetUserButtonBitmap

Chapter 5 Methods On Objects Window Commands and Functions 243

Project3DPointToWindowPoint

Description
Thisfunction isamethod on the Window object type and can be used to determine where a point in the world
will appear on aparticular window. If the point is not visible from the window, the function will return False.
If the point is visible, the coordinates of the position within the window will be given in aVect2d.
Syntax

Isln = [Window] -Project3DPointToWindowPoint(3dpoint, windowpt)
where,

Windowis being projected to,

3dpointisthe position in 3d space that the point is being projected from,

windowpt is the position the point appears in the window, if the point isin the window at all, and

IsInwill be Trueif the point isin the window, false if otherwise.

Arguments Data Type
3dpoint Vect3d
windowpt Vect2d

Return Data Type
Boolean.

Example

Sub Main()
Dim w as Window
Dim b as Movable
set b = GetMovable("Block-1")
Dim pos as Vect3d
b_GetGloballLocation pos
dim winpt as Vect2d
Set w = GetWindow("'window-1"")
if w.Project3DPointToWindowPoint(pos, winpt) then
Message "'Block-1 appears in the window at:"
Message str$(winpt.X) + ", " + str3(winpt.Y)
end if
End Sub

244 Window Commands and Functions Chapter 5 Methods On Objects

See Also
GetMousePosition; Raylntersect()

Chapter 5 Methods On Objects Window Commands and Functions 245

PointSize

Description

This command is a method on the Window object type and sets the width of the point to be drawn with the
DrawPoint command.

Syntax
[Window] -PointSize Width
where,
windowis the window for which the point size isto be set, and

Widthisthe value to which the point size isto be set.

Arguments Data Type
Width Single
Remarks

The value set for line width remains set for any calls to DrawPoint on the window until PointSize for the
window is called again.

Example

Sub Task()
Dim w as Window

Set w = GetWindow("'devwindow-1"")
"draw a red point
w.SetColor 1,0,0
w.PointSize 3.5
w.DrawPoint 0.5,0.5
End Sub

See Also
DrawBox; DrawPoint; SetColor

246

Window Commands and Functions Chapter 5 Methods On Objects

Set3DColor

Description

This command is a method on the Window object type to set the color used for drawing 3D lines on the
window with the Draw3DLine method.

Syntax1

[Window] -Set3DColor Red, Green, Blue

where,

Windowis the window to which the 2D point is to be drawn,

Red is the red component of the color being set, where Oisno red and 1.0 isfull red,

Greenisthe green component of the color being set, where 0 isno green and 1.0 isfull green,

Blue isthe blue component of the color being set, where 0 isno blue and 1.0 isfull blue,

Arguments Data Type

Red Single

Green Single

Blue Single
Remarks

The script in which you call this command must be assigned as a Draw3D task for the window. Y ou do this
by setting the window’s Draw3D Task Property to the corresponding Script object.

Example

Sub Task(w as Window)

“draw a 3d line

w.Set3DColor 0,1,0
w.Draw3DLine 0.0, 0.0, 0.0, 1.0, 1.0, 1.0

End Sub

See Also

Draw3DLine; Set3DLineWidth.

Chapter 5 Methods On Objects Window Commands and Functions 247

Set3DLineWidth

Description
This command is a method on the Window object type to set the width in pixels used for drawing 3D lines
on the window with the Draw3DLine method.
Syntax
[Window] -Set3DLineWidth Pixelwidth
where,
Windowis the window to which the 2D point is to be drawn,

PixelwWidth isthewidth in pixels 3D linewill in drawn with.

Arguments Data Type
PixelWidth Single
Remarks

The script in which you call this command must be assigned as a Draw3D task for the window. Y ou do this
by setting the window’ s Draw3D Task Property to the corresponding Script object.

Example

Sub Task(w as Window)

“draw a 3d line

w.Set3DLine 3.0

w.Draw3DLine 0.0, 0.0, 0.0, 1.0, 1.0, 1.0
End Sub

See Also
Draw3DLine; Set3DColor

248 Window Commands and Functions Chapter 5 Methods On Objects

SetColor

Description
This command is a method on the Window object type and sets the window’ s current drawing color for all
2D draw functions (DrawBox, DrawCircle, DrawLine, DrawPoint, and DrawText). The default drawing
color iswhite.
Syntax

[Window] -SetColor Red,Green,Blue
where,

Red specifies the value of the red hue of the color,

Green specifiesits green value, and

Blue specifiesits blue value.

Arguments Data Type

Red Single

Green Single

Blue Single
Remarks

Red, green, and blue valuesrange from 0.0to 1.0. Black is0.0,0.0,0.0, and whiteis 1.0,1.0,1.0. The value set
for the drawing color will remain set for the window until SetColor is called for that window again.

Example

Sub Task(w as Window)
Set w = GetWindow(**devwindow-1'")
"write the text in red
w.SetColor 1,0,0
w._DrawText 0,0.05,"WorldUp"

End Sub

See Also
DrawBox; DrawCircle; DrawLine; DrawPoint; DrawText

Chapter 5 Methods On Objects Window Commands and Functions 249

SetUserButtonBitmap

Description

This command is a method on the Window object type and sets the bitmap for the button created with the
command AddUserButton. The bitmap must be a Windows .BMP file. The bitmap will be centered but not

stretched.

Syntax
[Window] - SetUserButtonBitmap Name, FileName

where,
windowis the application window to which the button isto be added,
Name is the name of the button as used in the command AddUserButton, and

FileName isthe name of the bitmap file.

Arguments Data Type
Name String
FileName String
Example
Sub Main()

Dim w as Window
Dim s as Script

Set w = GetWindow("'window-1"")
Set s = GetScript('mousescript'™)
w._AddUserButton s, "mybutton', “Exit"
w.SetUserButtonBitmap "mybutton™, "exit_bmp"
w._NavBarOptions NAVBARSHOW

End Sub

See Also
AddUserButton; NavBarOptions

250

Window Commands and Functions Chapter 5 Methods On Objects

TextExtent

Description
This command is a method on the Window object type and finds the dimensions of a string as it would be
drawn with the DrawText function.
Syntax
[Window] - TextExtent Text, Dimensions
where,
Window is the window to which the text would be drawn,
Text isthe text whose extents are to be got, and

Dimensions isthe Vect2d that getsfilled with the width and height of the text.

Arguments Data Type

text String

dimensions Vect2d
Example

Sub Task(w as Window)
Dim point as Vect2d
Dim extent as Vect2d
Dim start as Vect2d

" center text around the point 0.5,0.5
point.x = 0.5
point.y = 0.5
w.TextExtent "WorldUp", extent
start.x = point.x - extent.x /2
start.y = point.y - extent.y /2
w._DrawText start, "WorldUp"

End Sub

See Also
DrawText; SetColor.

Chapter 5 Methods On Objects Window Commands and Functions 251

ZoomAll

Description

This command is a method on the Window object type and zooms the viewpoint of the specified window in
or out until all graphical objectsin the universe are within view. ZoomAll does not change the viewpoint’s
orientation.

Syntax
[Window] -ZoomAl 1
where,

Windowis the window whose viewpoint isto be zoomed.

Remarks

This command has the same effect as clicking the Zoom-All button on the Development window, or its
corresponding option on the View menu.

Example

Sub MainQ)
Dim w as Window
Set w = GetWindow('devwindow-1"")
w.ZoomAl I

End Sub

See Also

ZoomToNode

252

Window Commands and Functions Chapter 5 Methods On Objects

ZoomToNode

Description

This command is a method on the Window object type and zooms the viewpoint of the specified window in
or out until it is directly in front of the specified node. ZoomToNode does not change the viewpoint’s
orientation.

Syntax
[Window] - ZoomToNode ZoomedNode
where,
windowis the window whose viewpoint is to be zoomed to the specified node, and

ZoomedNode is the node to zoom to.

Arguments Data Type
ZoomedNode Node
Remarks

This command has the same effect as clicking the Zoom to Selected Node button on the Development
window, or its corresponding option on the View menu.

Example

Sub Main(Q)
Dim w as Window
Dim zoomednode as Node

Set zoomednode = GetFirstNode()
Set w = GetWindow('devwindow-1'")
w.ZoomToNode zoomednode

End Sub

See Also
ZoomAll

Chapter 5 Methods On Objects List Commands and Functions

List Commands and Functions

This chapter contains methods for the List data type.

AddTolList

Description
This command is a method on the List data type and adds the specified object to thelist.

Syntax
[List] -AddToList ObjectToAdd

where,
Lististhelist to which the object isto be added, and
ObjectToAdd isthe object to be added to the list.

Arguments Data Type
ObjectToAdd WorldUp Object Type
Remarks

List isaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main
dim obj as subblock
dim listobj as subblock
dim iter as iterator
Set obj=CGetFirstSubblock(iter)
obj.mylist_AddToList obj
"mylist is a user-defined property of type List
do
set listobj = GetNextSubblock(iter)
if listobj is not nothing then obj.mylist_AddToList listobj
loop while listobj is not nothing
end sub

253

254 List Commands and Functions Chapter 5 Methods On Objects

See Also
GetFirstObject(); GetFirstObject(); GetNextObject()

Chapter 5 Methods On Objects List Commands and Functions 255

AppendList

Description
This command is amethod on the List data type and adds the elements of a passed in list to the end of the
current list.
Syntax
[List]-AppendList CopyFromList
where,
Lististhelist which will be appended to, and
CopyFromLististhelist to be copied from.

Arguments Data Type
CopyFromList List
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Notethat just “dim”ing alist does not create alist. It merely creates areferenceto alist. If you would like to
create anew list, use the BasicScript “new” operator.

Example

sub main
dim bl as Node, b2 as Node
set bl = GetBlock("Block-1")
set b2 = GetBlock("Block-2")
dim B1Children as List, B2Children as List
set Bi1Children = bl.Children
set B2Children = b2.Children
B1Children.AppendList B2Children
bl.Children = B1Children
" We have added all of the children of Block-2
" to Block-1

end sub

See Also
Copy; Union; Intersection; SubtractList

256

List Commands and Functions Chapter 5 Methods On Objects

Copy

Description
This command is amethod on the List data type and copies the elements of apassed in list in to the current
list. Any objects already in the list are lost.
Syntax
[List] -AddToList CopyFromList
where,
Lististhelistinto which thelist will be copied, and
CopyFromLististhelist to be copied from.

Arguments Data Type
CopyFromList List
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Notethat just “dim”ing alist does not create alist. It merely creates areferenceto alist. If you would like to
create anew list, use the BasicScript “new” operator.

Example

sub main
dim root as Node
set root = GetRoot("Root-1")
dim RootsChildren as List
set RootsChildren = root.Children

dim CopyOfList as new List
CopyOfList.Copy RootsChildren

" Now we can modify CopyOfList without affecting the
" children list
end sub

See Also
Union; AppendList; Intersection

Chapter 5 Methods On Objects List Commands and Functions 257

Count

Description

This function isamethod on the List data type and is used to determine the number of object in alist.

Syntax
Number = [List].Count
where,
Lististhelist whose objects are being counted,

Number isthe count of the objectsin thelist

Return Data Type
Integer.

Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main

dim root as Node

set root = GetNode("Root-1")

dim list as List

set list = root.Children

Message ""Root-1 has " + str$(list.Count) + * Children”
end sub

See Also
GetFirstObject(); GetNextObject()

258 List Commands and Functions Chapter 5 Methods On Objects

Empty

Description

This command is a method on the List datatype and is used to remove all of the objects from alist.

Syntax
[List] -Empty
where,

Lististhelist which will be emptied.

Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main

dim root as Node

set root = GetNode(""Root-1")

dim list as List

set list = root.Children

list_Empty

root.Children = list

" Now Root-1 has No Children (A rather boring scene)
end sub

See Also
GetFirstObject(); GetNextObject()

Chapter 5 Methods On Objects List Commands and Functions 259

GetFirstObject()

Description
Thisfunction isamethod on the List datatype and returns areference to thefirst object in thelist. The object
returned will be of type VVBase, so you may need to cast it to another type with the VVBaseT o<type> function.
This function is commonly used with the GetNextObject() function to iterate through the objectsin the list.
Syntax

set vbaseobject = [List].GetFirstObject()
where,

Lististhelist whose first object is to be accessed.

Return Data Type
WorldUp Object Type.

Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main()
dim r as Root
dim I as list

setr
set 1

= GetRoot(''Root-1"")
= r.children
" iterate through list
dim o as VBase
set o = L.GetFirstObject()
while o is not nothing
Message o.name
set 0 = |.GetNextObject()
wend
end sub

See Also
AddToList; GetFirstObject(); GetNextObject()

260

List Commands and Functions Chapter 5 Methods On Objects

GetNextObject()

Description

Thisfunctionisamethod on the List datatype and returns areference to the next object in the list. The object
returned will be of type VVBase, so you may need to cast it to another type with the VVBaseT o<type> function.
This function is commonly used with the GetFirstObject() function to iterate through the objectsin the list.

Syntax
set vbaseobject = [List].GetNextObject()

where,

Lististhelist whose next object is to be accessed.

Return Data Type
WorldUp Object Type.

Remarks
ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main()
dim r as Root
dim I as list

setr
set 1

= GetRoot(''Root-1"")
= r.children
" iterate through list
dim o as VBase
set o = L.GetFirstObject()
while o is not nothing
Message o.name
set o = |.GetNextObject()
wend
end sub

See Also

AddToList; GetFirstObject(); GetFirstObject(); WorldUp Basiccript Reference Manual; Object Types;
What's New in This Release

Chapter 5 Methods On Objects List Commands and Functions 261

Intersection

Description
Thiscommand isamethod on the List datatype and removes from thelist which are not shared by the passed
inlist.
Syntax
[List]-Intersection IntersectionList
where,
Lististhelist from which objects may be removed, and

IntersectionLististhelist which the List is compared with to determine which objects are not com-
mon.

Arguments Data Type
IntersectionList List
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Notethat just “dim”ing alist does not create alist. It merely creates areferenceto alist. If you would like to
create anew list, use the BasicScript “new” operator.

See Also

AppendList; Copy; Union; SubtractList

262

List Commands and Functions Chapter 5 Methods On Objects

IsinList

Description
This function isamethod on the List data type and is used to determine if agiven object isin thelist.

Syntax

Isln = [List].IslInList Object
where,

Lististhelist being checked,

Object to be search for, and

IsInisthe result which will be Trueif the object isinthelist, Falseif not.

Arguments Data Type

Object Node

Return Data Type
Boolean.

Remarks
ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main
dim root as Node
set root = GetNode("Root-1")
dim list as List
set list = root.Children
if list.IslInList(GetNode("Block-1")) then
Message "Block-1 is a Child of Root-1""
end if
end sub

See Also
GetFirstObject(); GetNextObject()

Chapter 5 Methods On Objects List Commands and Functions 263

RemoveFromList

Description

This command is a method on the List data type and removes the specified object from the list.

Syntax
[List]-RemoveFromList ObjectToRemove
where,
Lististhelist from which the object isto be removed, and

ObjectToRemove is the object to be removed from the list.

Arguments Data Type
ObjectToRemove WorldUp Obiject Type
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Example

sub main()

dim obj as subblock
dim listobj as subblock
dim iter as iterator

Set obj = GetFirstSubBlock(iter)
“create the list
obj.mylist_AddToList obj
"mylist is a user-defined property of type List
do
set listobj = GetNextsubblock(iter)
if listobj is not nothing then obj.mylist_AddToList
listobj
loop while listobj is not nothing

dim o as VBase
set o =obj.mylist_GetFirstObject()
dim 1 as integer
For i =1 To 3
set 0 = obj.mylist.GetNextObject()
Next i

264 List Commands and Functions

" remove 4th object from list
obj.mylist.RemoveFromList o

set 0 = obj.mylist_GetFirstObject()
whille o is not nothing

Message 0.name
set o = obj.mylist.GetNextObject()

wend
end sub

See Also
AddToList; GetFirstObject(); GetNextObject()

Chapter 5 Methods On Objects

Chapter 5 Methods On Objects List Commands and Functions 265

SubtractList

Description
This command isamethod on the List data type and removes from the list which are shared by the passed in
list.
Syntax
[List]-SubtractList SubtractionList
where,
Lististhelist from which objects may be removed, and

SubtractionList isthelist which the List is compared with to determine which objects are common
and should be removed.

Arguments Data Type
SubtractionList List
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Notethat just “dim”ing alist does not create alist. It merely creates areferenceto alist. If you would like to
create anew list, use the BasicScript “new” operator.

See Also

AppendList; Copy; Intersection; Union.

266

List Commands and Functions Chapter 5 Methods On Objects

Union

Description

This command isamethod on the List datatype and adds all of the elements of a passed in list to the current
listif they are not already in thelist.

Syntax
[List]-Union CopyFromList
where,
Lististhelist which will be added to, and

CopyFromLististhelist from which objects which List does not have will be copied.

Arguments Data Type
CopyFromList List
Remarks

ListisaWorldUp data type that enables you to manipulate groups of objects.

Notethat just “dim”ing alist does not create alist. It merely creates areferenceto alist. If you would like to
create anew list, use the BasicScript “new” operator.

See Also
AppendList; Copy; Intersection; SubtractList

267

Error Messages

When you are compiling or running scripts, and World Up encounters an error, the script stops running and
the World Up Status window displays an error message. In the Script window, the statement that is causing
the error message will be highlighted. This section describes some of the more common error messages and
their solutions.

ERROR: ASSIGNMENT VARIABLE AND EXPRESSION ARE OF DIFFERENT TYPES

Make sure you declare the object with the appropriate type. For example, if you have a subtype of Sphere
called Ball, and an object created from the Ball subtype called Ball-1, the following script will produce this
error:

dim b as Ball
set b = GetSphere("Ball-1")

While the following code will not:

dim b as Sphere
set b = GetSphere("Ball-1")

ERROR: OPERATOR TYPE MISMATCH
This means that two expressions that are operated on do not agree, for example:

dim geom as Geometry, movable as Movable
if 4 = "sdfwe™ then

if geom is 4 then

if geom is movable then

All result in this error.

ERROR: (PROPERTY NAME) IS NOT A PROPERTY OF THE OBJECT.

The script is calling an object property that does not exist as part of the object type. To see what properties
are available for a given object, select the object in the Type Browser, then click the All tab in the Property
Browser.

268

Appendix A Error Messages

If you are trying to access a complex property (Vect2d, Vect3d, Orientation, RGB, LODRanges), you will
haveto usethe Get... and Set... functions of the object. For example, if you aretrying to access the Rotation
property of aMovable (which uses the Orientation data type), you will have to use the following code:

dim rot as Orientation

obj .GetRotation rot
ERROR: THE OBJECT DOES NOT HAVE AN ASSIGNABLE DEFAULT PROPERTY
There are numerous cases in which you may get this error:
» Assigning an object variable without specifying "set"

 Trying to reference an object routine or property from aVariant variable (that is, you haven't dim'ed a
variable you're trying to use as an object variable)

» Using an object variable in an expression without specifying an object routine or property (for example,
"Message obj" will give the error, but "M essage obj.Name" will not)

ERROR: TYPE MISMATCH IN PARAMETER XXX

The parameter xxx is not the proper data type to pass into the function. Check the online help to determine
the argument data types expected by the function.

NTIME ERROR: OBJECT VARIABLE OR WITH BLOCK VARIABLE NOT SET.

Most likely you are using a variable that is set to nothing. This usually happens when you have defined a
variable but never set it, or you have received an object from afunction, but did not check if it was nothing.
For example:

dim obj as Movable

obj.Translate 1, 0, O

dim obj as Geometry

set obj = PickGeometry(ScrPt)
message "'You picked: " + obj.Name

Thefirst script excerpt will give an error since you used the variable before setting it to anything. The second
excerpt might give an error, since PickGeometry can return nothing, and must be checked before using.

Index

Symbols

< comparison operator, 21
<> comparison operator, 21
= comparison operator, 20
> comparison operator, 21

A
Activate, 224
AddChild, 131
Adding

tasks, 5
AddTask, 127
AddToList, 253
AddUserButton, 226
AppendElement, 198
AppendList, 255
ArcCos, 122
ArcSin, 123
ArcTan2(), 124

B
BasicScript

branching and looping statements, 23

caling Clibraries, 31
dialog boxes, displaying, 15
Dim statement, 19
Do...While, 25
For...Next statement, 25
If...then statement, 24
language, introduction, 2
New keyword, 32, 33
Public statement, 19
public variables, 19
Rem statement, 18
routines, 21
variables, 19
While statement, 25
World Up interface, 26
BeginEdit, 161

Branching and looping statements, 23

Breakpoints
debugging scripts, 13
BrowserSetL ocation, 43

(o
Clibraries
caling from BasicScript, 31
Calling C libraries, 31
Calling routines, 22
Casting, 28
CastTo function, 28
CDecl keyword, 31
Compiling scripts, 12

Complex properties, definition, 30
Component/Progressive Loading, 51

Construct, 128

Construct function, 32

Copy, 256

Count, 257

Creating
scripts, Stand-Alone, 9
scripts, Task, 5
Shutdown scripts, 10
Startup scripts, 10
User scripts, 10

D
Datatypes

World Up, 26
Debugging scripts, 13
Declare operator, 22
DeleteObject, 36
Deleting

tasks from objects, 8
Dialog boxes

displaying from scripts, 15
Dim statement, 19
DirToOrient, 104, 121
DirTwistToOrient, 105
DLL, calling Clibraries, 31
Do...While statement, 25
Double datatype, 18
Draw3DLine, 227
DrawBox, 229
DrawCircle, 231

269

270

DrawLine, 233 GetNextVertex, 167
DrawPoint, 235 GetParent, 134
DrawText, 237 GetPolyCenter, 168
DSO, calling C libraries, 31 GetPolyld, 169
Duplicate, 37 GetPolyNormal, 171
DuplicateObject, 38 GetPolyNumVerts, 172
GetPolyVertex, 173
E GetSharedProperty, 48
.EBSfiles GetVertexNormal, 174
writing, introduction, 1 GetVertexPosition, 175
ect3dCross, 87 Global routines, 30
Edit Tasks List dialog box, 6
Empty, 258 |
EndEdit, 163 If...then statements, 24
Integer datatype, 18
= Intersection, 261
File Path Not In Search Path dialog box, 6 IntersectsMovable, 139
Find dialog box, 12 IntersectsUniverse, 141
Finding is operator, 21
text in scripts, 12 IsinList, 262
For...Next statement, 25 Iterators, 28, 33
Forklmported, 196
FrameDuration, 45 L
LineWidth, 241
G List datatype, 27
Get and Set Methods, 126 Lists
Get function, 27 iterating through (scripts), 33
GetChild, 133 LoadWorld, 50
GetCurrentElement, 200
GetElementLocation, 202 M
GetFirst, 40 Matrix3d datatype, 26
GetFirst function, 28 Matrix3dCopy, 69
GetFirstElement, 204 Matrix3dGetElement, 70
GetFirstObject, 259 Matrix3dinit, 71
GetFirstPoly, 164 Matrix3dMultMatrix3d, 72
GetFirstVertex, 165 Matrix3dPrint, 69
GetGlobal Location, 137 Matrix3dSetElement, 74
GetKey, 46 Matrix3dTranspose, 75
GetMousePosition, 239 Matrix4d datatype, 27
GetNext, 42 Matrix4dCopy, 76
GetNext function, 28 Matrix4dGetElement, 77
GetNextElement, 205 Matrix4dinit, 78
GetNextObject, 260 Matrix4dinvert, 79

GetNextPoly, 166 Matrix4dMultMatrix4d, 80

Matrix4dPrint, 81
Matrix4dSetElement, 82
Matrix4dTranspose, 83
Message, 53

Morph, 177

N

NavBarOptions, 242
New keyword, 32, 33
Non-object variables, 20
NormalToSlope, 84

not operator, 21

@]

Object routines, 30
Object variables, 20
Objects

creating from script, 32

Opening

scripts, 11
Operators

<, 21

<> 21

=, 20

> 21

Declare, 22

is, 21

not, 21
OrientAdd, 106
OrientAngle, 107
Orientation datatype, 26
OrientEqual, 108
Orientlnit, 109
Orientinterpolate, 110
Orientlnvert, 112
OrientPrint, 113
OrientScale, 114
OrientSet, 115
OrientSubtract, 116
OrientToDir, 117
OrientToDirTwist, 118
OrientToEuler, 119
OrientToEulerNear, 120

P

PickGeometry, 54
PickPlane, 56
Pitch, 143
PitchParent, 144
Play, 206, 218
Playl, 207
PointSize, 245

Project3DPointToWindowPoint, 243

ProjectToPlane, 58
Properties

accessing from scripts, 29

Public statement, 19

R
RaylIntersect, 59
RecomputeStats, 179
Record, 208
Recordl, 209
Rem statement, 18
RemoveChild, 136
RemoveFromList, 259
RemoveTask, 130
Rewind, 210
RGB datatype, 26
Roll, 145
RollParent, 146
Rotate, 147, 220
RotateParent, 149
Routines
BasicScript, 21
caling, 22
defining, 21
global, 30
object, 30

World Up, introduction, 2

Run, 216

Running Stand-Alone scripts, 10

S
Save, 211
Saving

scripts, 12
Scale, 195
Script window, 7

271

272

Scripts

caling Clibraries, 31

debugging, 13

finding and replacing text, 12

going to aline number, 12

iterators, 28, 33

opening, 11

retrieving objects, 27

saving and compiling, 12
Seek, 212
SendToContainer, 61
SendUpdate, 223
Set3DColor, 246
Set3DLineWidth, 247
SetColor, 248
SetCursor, 62
SetElementLocation, 213
SetGlobal Location, 150
SetPolyld, 181
SetPolyTexture, 182
SetTexture, 187
SetTextureReflect, 188
SetUserButtonBitmap, 249
SetVertexNormal, 190
SetVertexPosition, 192
ShareProperty, 64
Shutdown scripts, 9

creating, 10
Simple properties, definition, 29
SimulationStop, 65
SimulationTime, 66
Single datatype, 18
Stand-Alone scripts

creating, 9

description, 2

running, 10

working with, 9
Startup scripts, 9

creating, 10
Statements

branching and looping, 23

Do...While, 25

For...Next, 25

If...then, 24

While, 25

Stop, 215, 219
Stretch, 194
String datatype, 18
SubtractList, 265

T
Task scripts
creating and attaching, 5
description, 3
detaching from objects, 8
execution order, 3

listing objects associated with, 9
rearranging the order of an object’stasks, 8

running, 9

working with, 5
TextExtent, 250
ThisScript, 67
TimeRotate, 151
TimeTrandate, 153
Tokens, undefined, 23
Trandlate, 155, 221
TrandlateParent, 157

U
Undefined tokens, 23
Union, 266
UnshareProperty, 68
User scripts, 9
creating, 10
running, 10
User-Defined Action button, 10

Y,
Variable Watch dialog box, 14
Variables

BasicScript, 19

declaring, 19

non-object, 20

object, 20

public, 19

setting and comparing, 20

watching, debugging, 14
Variant datatype, 18
Vect2d datatype, 26

273

Vect3d datatype, 26
Vect3dAdd, 86
Vect3dDistance, 88
Vect3dDot, 89
Vect3dEqual, 90
Vect3dinit, 92
Vect3dinvert, 93
Vect3dMag, 94
Vect3dMultMatrix3d, 95
Vect3dMultMatrix4d, 96
Vect3dNorm, 97
Vect3dPrint, 98
Vect3dRotate, 99
Vect3dRotatePoint, 100
Vect3dScale, 102
Vect3dSubtract, 103

w
Watching variables, debugging, 14
While statement, 25
Window Functions, 224
Writing scripts
casting, 28
CastTo function, 28
creating objects, 32
debugging, 13
displaying dialog boxes, 15
Get function, 27
GetFirst function, 28
GetNext function, 28
interacting with World Up objects and
environment, 26
iterators, 28, 33
object properties, accessing, 29
routines, 30
working with lists, 33
World Up data types, 26

Y
Yaw, 159
Y awParent, 160

V4
ZoomToNode, 252

274

