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Abstract

Low-Cost Telemetry Encoder Backplane Communication

by

Timothy B. Campbell, Master of Science

Utah State University, 2006

Major Professor: Dr. Charles M. Swenson
Department: Electrical and Computer Engineering

The Low-Cost Telemetry Encoder (LCTE) was developed by the Space Dynamics

Laboratory under contract for the NASA Sounding Rocket Operations Contract. LCTE

performs data handling and telemetry encoding for sounding rocket missions. Using a

variety of data inputs, LCTE collects, formats, and encodes data. LCTE serializes the

encoded data and outputs the serial data stream to a transmitter on the rocket. A ground

station is then able to receive and process the collected data.

Thus far the LCTE design has undergone three phases. During phase one the original

LCTE system was developed. The system included a power board, a telemetry board, and

stackable aluminum enclosures for the boards. The telemetry board featured 32 analog

inputs, 32 digital inputs, and one asynchronous serial input. The system was programmed

to run a fixed telemetry matrix which read data from all these inputs. The phase two design

provided a PC-based Graphical User Interface which allowed users to easily reconfigure

the telemetry matrix as well as define the functions of the 32 digital lines. Finally, phase

three extended the LCTE design to include communication via the backplane connector.

This allowed LCTE to communicate directly with science or other boards included in the

hardware stack.
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The LCTE phase three design required additions and modifications to two parts of the

LCTE system: the PC Graphical User Interface and the Field-Programmable Gate Array

VHDL code. New VHDL code was also developed for a Sweeping Langmuir Probe/Floating

Potential Probe (SLP/FPP) science board which utilized the LCTE backplane commu-

nication. The backplane communication protocol is quite simple and allows maximum

flexibility when designing boards to be used in conjunction with LCTE.

This report describes the new additions to the phase two LCTE design in detail. It

also explains the details of the backplane sections of the SLP/FPP science board, as well

as includes other options which may be appropriate for future science boards targeted for

the LCTE backplane interface.

(63 pages)
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Chapter 1

Introduction

1.1 Sounding Rockets and Telemetry Systems

Sounding rockets are one method currently used to perform space research. Although

these rockets lack the ability to place experiments into an earth orbit, they are able to

launch payloads to altitudes of up to 1500 kilometers. The rockets are normally designed

to fly along a parabolic trajectory which includes an upleg, downleg, and apogee as seen

in fig. 1.1. When compared to satellite missions, sounding rockets offer a solution that is

cheaper and requires less time for payload integration. Sounding rocket flights generally

are only 5-20 minutes long, but this is adequate for a number of scientific experiments [1].

Rather than storing data during the flight and later recovering the data storage unit,

a telemetry system is often employed on sounding rockets. The telemetry system gathers

data from science experiments and sorts the data into an organized format. The system

uses radios to transmit formatted data from the rocket back to an earth-based station in

real-time. The base station receives and stores the data which is then made available to

scientists for analysis.

A telemetry matrix specifies how the system should format data. Common vocabulary

associated with telemetry matrices includes: major frame, minor frame, words, word size,

and bit rate. Figure 1.2 shows an example matrix and identifies some of the components

of a telemetry matrix. The complete two-dimensional matrix as seen in the figure is called

a major frame. Each row in the major frame is called a minor frame. The minor frames

are further divided into words. In this example there are eight words per minor frame and

16 minor frames per major frame. Word size specifies the number of bits in each word and

the bit rate specifies the number of bits transmitted per second.

The telemetry system transmits information beginning with the first word in the first

minor frame of the telemetry matrix. Each word from the first minor frame is transmitted
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Fig. 1.1: Trajectory of a sounding rocket.

in turn and when the end of the first minor frame is reached, the telemetry system moves

to the first word of the second minor frame. When the last word of the last minor frame

is transmitted, the system loops back and starts over, transmitting the first word of the

first minor frame again. Channels which appear more than once per minor frame are said

to be supercommutated. The A0 channel in the matrix shown in fig. 1.2 is an example

of supercommutation since it appears twice per minor frame. Channels appearing less

frequently than once per minor frame are called subcommutated channels. The P2 and P3

channels in column 5 of the matrix in fig. 1.2 are examples of subcommutation since each

appears only once every two minor frames.

Three different types of words exist in the telemetry matrix: Sub-Frame Identification

(SFID) words, Frame Synchronization (FS) words, and data words. SFID words are used

to indicate which minor frame is currently being transmitted. SFID words generally appear
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1 2 3 4 5 6 7 8

1 SFID A0 P0 P1 P2 A0 FS1 FS2
2 | | | | P3 | | |
3 | | | | P2 | | |
4 | | | | P3 | | |
5 | | | | P2 | | |
6 | | | | P3 | | |
7 | | | | P2 | | |
8 | | | | P3 | | |
9 | | | | P2 | | |

10 | | | | P3 | | |
11 | | | | P2 | | |
12 | | | | P3 | | |
13 | | | | P2 | | |
14 | | | | P3 | | |
15 | | | | P2 | | |
16 SFID A0 P0 P1 P3 A0 FS1 FS2

Sub-Frame 

Identification

Supercommutated 

Data Channel

Subcommutated 

Data Channels

Frame Synchronization 

Words

Fig. 1.2: Example telemetry matrix.

before subcommutated words within a minor frame. This allows the telemetry receiver to

use the SFID value to determine exactly which subcommutated word is being transmitted

in a particular minor frame. FS words are words with a constant pre-determined value and

are used by the receiver for synchronization. Data words make up the bulk of a telemetry

matrix. They contain data sampled from the various inputs available to the telemetry

system. L-3 Communications has put together an educational tutorial which has more

information about telemetry systems [2].

The NASA Sounding Rocket Program (NSRP) (which is implemented under the

NASA Sounding Rocket Operations Contract (NSROC)) has been supplying sounding

rockets for space research since 1959. The program offers a low-cost, quick-response effort
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that currently provides 20-30 flight opportunities per year to space scientists [3]. Previ-

ously the WFF-93 encoder has been the telemetry encoder system used for the sounding

rocket flights. This encoder has a cost of $6,500-$15,000 per unit. NSROC wanted a new

telemetry encoder solution that would be suitable for smaller payloads and cost around

$1,000 per unit [4]. Because of Utah State University’s past involvement with sounding

rocket experiments, NSROC selected the Space Dynamics Laboratory (SDL) to develop a

new lower cost encoder solution [5].

1.2 The Low-Cost Telemetry Encoder

1.2.1 Development Overview

The Low-Cost Telemetry Encoder (LCTE) developed by SDL has undergone three

design phases. The original design phase was accomplished by a team of professional

engineers and student employees. This design phase produced the LCTE system hardware.

The hardware includes a power board, a telemetry board, and mechanical enclosures for the

boards. Documentation for the main parts of the system include power board schematics

[6], telemetry board schematics [7], tray schematics [8], and top tray schematics [9]. These

schematics and other supporting documentation are maintained by SDL document control.

Mechanical analysis and system tests were completed to verify system performance and the

system was programmed to implement a fixed telemetry matrix utilizing analog, parallel

digital, and serial digital inputs.

The second design phase was completed by Jeff Henry while working as an intern for

NSROC. During this phase, new firmware was written for the system and a new PC-based

Graphical User Interface (GUI) was created. A user manual was compiled which provided

instructions for using the new firmware and software [10]. After the phase two design was

completed, telemetry matrices could be created using the PC GUI and then uploaded to

the telemetry board, thus allowing the telemetry system to be user-configurable.
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The third design phase is the subject of this thesis. The primary goal of phase three

was to extend the LCTE system to enable backplane communications. Backplane commu-

nication allows LCTE to read data from other boards on the stack through the backplane

connector.

1.2.2 Hardware

The phase one LCTE system hardware is described in the thesis, “Implementation of a

User-Configurable Low-Cost Telemetry Encoder” by Jeff Henry [4]. A general description

of the hardware is included here for completeness. The LCTE hardware includes two

boards, the power board and the telemetry board, and mechanical tray enclosures. The

two boards can be installed in the trays and stacked together as shown in fig. 1.3. When

assembled, a backplane connection is made between the two boards. This connection

supplies power to the telemetry board from the power board.

The telemetry board features 32 analog inputs, 32 Digital Input/Output (DIO) lines,

and two asynchronous serial channels. A 110-pin connector on the front of the board

houses these data lines as well as ground lines and control lines for an optional digital po-

tentiometer. The encoded, filtered telemetry stream is output through an SMA connector

which also resides on the front of the telemetry board.

A top-level block diagram of the telemetry board is shown in fig. 1.4. As illustrated

in the diagram, two key components of the telemetry board are the Microchip PIC18

microcontroller and the Altera ACEX1K Field-Programmable Gate Array (FPGA). The

microcontroller is used together with two RS-232/422 level shifters to create the two asyn-

chronous serial channels. The FPGA is the heart of the telemetry board. It contains about

100,000 logic gates, 49,000 memory bits, and is contained in a 484-pin ball grid array pack-

age. The FPGA controls two 16-to-1 analog multiplexers, two 16-bit Analog-to-Digital

Converters (ADCs), controls the function (input or output) of the digital lines and reads

from, or writes to, the 32 digital lines. The FPGA also reads asynchronous serial data from

the microcontroller and formats, serializes, and encodes sampled data. Forty-one of the

FPGA Input/Output (IO) lines were also connected to pins in the backplane connector,
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Fig. 1.3: LCTE system hardware.

but were not used in the phase one design. A four or six-pole Bessel filter is used to filter

the encoded serial data stream and a potentiometer is used to tune the level of the filter

output. The LCTE system hardware developed during phase one has remained unchanged

during subsequent design phases.

1.2.3 Software and Firmware

The phase one design implemented the telemetry matrix using a Look-Up Table (LUT)

structure that was coded into the FPGA firmware. A fixed 50-by-32 telemetry matrix was

implemented which utilized all 32 analog inputs, all 32 digital inputs, and one asynchronous

serial input. The FPGA firmware specified 16-bit words and transmitted data at 800 kbps.
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Fig. 1.4: High-level telemetry board block diagram.

The phase two design introduced user configurability by adding the PC GUI software

and creating new firmware for the microcontroller and the FPGA. The phase two PC GUI

allows a user to configure the following matrix parameters:

• Word Size: 8-16 bits

• Bit Rate: 0.650-4000 kbps

• Matrix Size: Up to 3072 data words

• Matrix Dimensions: 1-255 rows and 2-255 columns
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• Frame Sync Words: 1 or 2, 16-bit words

• Encoding: RNRZ-L or BiPhase-L

• ADC Acquisition: 2.75 µseconds or greater

• Asynchronous Serial Input: 2400-115200 baud

• Digital Line Direction: Input or output

• Digital Input Function: 8-bit parallel, Synchronous serial, or Time event

• Digital Output Function: Synchronous serial controls

The phase two design allows the user to create separate sampling and telemetry ma-

trices. The sampling matrix defines the order in which data channels are to be sampled. It

also allows more than one input channel to be sampled during a single word period. The

telemetry matrix defines the order in which sampled data is inserted into the telemetry

stream. Using separate sampling and telemetry matrices is very useful because it is often

desirable for data channels to be sampled with a fixed sampling period. Some telemetry

matrices are difficult to arrange so that channels appear at regular intervals without adding

significant overhead to the matrix. Separate matrices allow a user to create a sampling

matrix where the channels are sampled at the correct fixed intervals, sampling multiple

words during one word period if necessary, and then create a different telemetry matrix

where the data can be serialized and transmitted efficiently.

Once the desired parameters are selected and matrices are constructed using the GUI,

the data is compiled into two LUTs. The first LUT is called the setup LUT and holds

all the necessary telemetry system parameters. The second LUT is called the sampling

LUT. Each entry in the sampling LUT contains the information necessary for sampling

during one word period. After the LUTs are compiled, they are then uploaded into the

microncontroller flash memory using one of the asynchronous serial inputs. Upon reset,

the setup LUT is read from the microcontroller and the setup parameters are passed to
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Fig. 1.5: Sampling LUT and FPGA memory block diagram.

the FPGA to configure it for the new matrix. Then, once every word period, an interrupt

is sent from the FPGA to the microcontroller. In the Interrupt Service Routine (ISR), the

next entry from the sampling LUT is read and passed to the FPGA. This entry contains

both a channel select code and a memory address. The channel select code indicates to the

FPGA which input channel is to be sampled next. The memory address specifies where

the sampled data should be stored in the FPGA memory. During the subsequent word

period the input channel is sampled and the data is stored in the FPGA memory while the

following sampling LUT entry is read from the microcontroller. Using this process, input

channels can be sampled in one order and the data can be stored in the FPGA memory in

a different order. The FPGA memory is read sequentially and inserted into the telemetry

stream. The GUI creates the sampling LUT according to the sampling matrix so that the

input channels are sampled in the correct order, but creates memory addresses so that the

sampled data is written to the FPGA memory ordered according to the telemetry matrix.

Figure 1.5 shows the structure of the microcontroller LUT and FPGA data memory.

1.2.4 Tropical Storm Requirements

The goal of the Tropical Storm mission is to measure plasma characteristics in the

ionosphere above a tropical storm. A thesis written by Albert Hummel [11] discusses the

purpose and science behind the Tropical Storm mission in greater detail. The Tropical

Storm project motivated the third phase of the LCTE system design. An instrument

suite, including a Plasma Impedance Probe (PIP), a Sweeping Langmuir Probe (SLP),
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and Floating Potential Probes (FPP), was to be combined with the LCTE telemetry com-

ponents to create one complete package. One Printed Circuit Board (PCB) was designed

to hold the electronics for the PIP, while a second PCB was designed to house the elec-

tronics for both the SLP and FPP instruments. Both science PCBs used the LCTE system

form factor, and were designed to mate to the LCTE backplane connector, creating a stack

with four levels: the power board, the telemetry board, the SLP/FPP board, and the PIP

board.

The telemetry requirements of the Tropical Storm project included a bit rate of 2.5

Mbps. Early tests using the LCTE phase two design exposed two main issues. First, whn

running at bit rates above 1 Mbps, the word period was shorter than the time required to

read an entry from the sampling LUT. Since the FPGA tried to read an entry from the

LUT once every word period, the system was not able to keep up. Second, the ISR to read

the sampling LUT had priority over the ISR used to read incoming data from the GUI.

This meant that once the system was programmed with a bit rate faster than 1 Mbps, the

system would always be stuck in the sampling LUT ISR and would no longer respond to

the PC GUI.

In order to use the LCTE system in the Tropical Storm mission, three main points

needed to be resolved. First, the microcontroller and FPGA firmware needed to be mod-

ified to allow the system to run at rates above 1 Mbps. Second, the LCTE backplane

communication needed to be developed. Third, the GUI needed to be updated to allow

backplane channels to be included in a telemetry matrix as well as to resolve some stability

issues.

1.3 Thesis Overview

The remainder of this report describes how the bugs resulting from the second design

phase were corrected and resolved as well as how the design was extended and modified

to include backplane communications. Chapter 2 continues to discuss the problem en-

countered when using bit rates higher than 1 Mbps. In order to resolve the problem, the

sampling LUT was moved from the microcontroller to the FPGA. This chapter explains
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the details of moving the sampling LUT and the implications the move had on the rest

of the design. Chapter 3 describes the backplane interface. The chapter includes the pro-

tocol used in backplane communication as well as the additions and modifications made

to the LCTE firmware. Chapter 3 also discusses the sections of the firmware created for

the SLP/FPP science board that pertain to usage of the backplane. This includes unique

features of the SLP/FPP design as well as general ideas to consider when creating a digital

design that involves LCTE backplane communication. The firmware for the FPGA on the

PIP instrument is the main subject of a thesis written by Jason Bingham [12]. Chapter 4

of this thesis describes the additions and modifications made to the PC GUI which allow

backplane channels to be included in telemetry matrices. It also discusses changes made to

enhance program stability. Finally, Chapter 5 contains a summary of the work completed

during phase three and the current capabilities of the LCTE telemetry system. Chapter 5

also includes a few comments and ideas for future design efforts involving LCTE.
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Chapter 2

Sampling LUT

2.1 Problem Review

The software GUI developed for LCTE during the second design phase allowed a user

to select telemetry matrix parameters, create sampling and telemetry matrices, and upload

the settings and matrices to the LCTE telemetry board. The firmware created for the

microcontroller and FPGA utilized a sampling LUT which was stored in the microcontroller

flash memory. An entry from the LUT was read by the microcontroller and written to the

FPGA during each word period to obtain sampling instructions for the following word

period. This architecture gave the LCTE telemetry system the flexibility of separate

sampling and telemetry matrices. However, a problem with this particular architecture

was soon discovered. When faster bit rates were used, multiple word periods were required

for the FPGA to obtain a single entry from the sampling LUT. Another problem also arose.

Since the microcontroller was continually executing the ISR to read sampling LUT entries,

the lower priority ISR used for GUI communication was never given any execution time.

There were two options available to resolve these problems. First, the system perfor-

mance specifications could be altered, slowing the maximum bit rate from 4 Mbps to 1

Mbps. Alternatively, the microcontroller and FPGA firmware could be modified so that

the sampling LUT structure would be copied from the microcontroller to the FPGA mem-

ory on startup or reset. Copying the sampling LUT to the FPGA would allow the system

to run bit rates up to 4 Mbps, but it would remove the ability to have separate sampling

and telemetry matrices.

Due to system requirements imposed by the Tropical Storm mission, reducing the

maximum bit rate to 1 Mbps was not a viable solution. Instead, the microcontroller and

FPGA firmware was modified. The sampling LUT was moved to the FPGA and the feature

of separate sampling and telemetry matrices was discarded.
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2.2 Interrupt Execution Time

The firmware developed during the second design phase included an ISR in the mi-

crocontroller. This ISR read an entry from the sampling LUT in the microcontroller flash

memory and then wrote the LUT entry to the FPGA. At the beginning of each word pe-

riod, the FPGA would send an interrupt signal to the microcontroller causing the ISR to

execute. The time required for the microcontroller to execute the ISR was calculated, but

never verified. It was later discovered that reading from the microcontroller flash memory

took much longer than anticipated and the ISR was not able to execute within a single

word period when the system was running at bit rates above 1 Mbps.

In order to resolve this issue, allowing the system to run at up to 4 Mbps, the firmware

was changed for both the microcontroller and the FPGA. Rather than holding the sampling

LUT in the microcontroller and reading one entry every word period, the entire sampling

LUT is copied to the FPGA memory every time the board is turned on. With the sampling

LUT in the FPGA memory, the LUT entries are available to the FPGA without having to

execute the slow ISR in the microcontroller. Previously, the FPGA memory was used to

hold sampled data until it was inserted into the telemetry stream, allowing separate sam-

pling and telemetry matrices. Since the FPGA memory is now occupied by the sampling

LUT, separate sampling and telemetry matrices are no longer allowed. Instead, sampling

is performed in the order specified by the telemetry matrix.

Since the sampling and telemetry matrices were reduced to one matrix and because

the FPGA memory is used to hold the sampling LUT, the memory addresses previously

included in the sampling LUT were no longer necessary. When using separate matrices,

these addresses specified where sampled data should be written within the FPGA memory.

This allowed the data to be sampled in a particular order and then written to the FPGA

memory in a different order. With the sampling LUT occupying the FPGA memory the

sampled data is no longer written to memory at all. This reduced the size of the sampling

LUT which in turn allowed the telemetry matrix to include 4096 data words rather than

the previously stated 3072 data words.
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Fig. 2.1: Modified sampling LUT and FPGA memory block diagram.

The telemetry matrix is used to determine the order in which the input channels are

sampled, but because some input channels, such as the synchronous serial inputs, require

more than one word period to sample, sampling is started three word periods ahead of the

telemetry stream. So, during the first word period, an entry containing a channel select

code is read from the sampling LUT. During the next word period, sampling begins on

the input channel indicated by the channel select code. When the data is obtained it is

written to one of four holding registers. Meanwhile, once every word period another entry

is read from the sampling LUT and another sample is started. This process continues

until the telemetry board is powered down. A counter is used to address one of the four

holding registers and the data is read from the register and inserted into the telemetry

stream. Figure 2.1 shows a block diagram depicting the modified microcontroller and

FPGA firmware.

As mentioned earlier, some input channels require more than one word period to

acquire sample data, yet others require only a few clock cycles of the FPGA. This means

that although sampling is started in order, sampling may not finish in order. Rather than

writing data to the four holding registers in the order it is obtained, a counter value is read

and temporarily stored when each sample is started. The sampled data is then written

to the holding register indicated by the stored counter value. This ensures that the data

is written to the holding registers in the correct order. A second counter is then be used

to read the four holding registers sequentially and the data is inserted into the telemetry

stream in the correct order corresponding to the telemetry matrix.
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2.3 Interrupt Priority

The ISR previously used to read the sampling LUT had priority over the ISR used to

communicate with the GUI. Since the sampling LUT ISR executed continually when bit

rates above 1 Mbps were used, the telemetry board quit responding to the GUI. Moving

the sampling LUT to the FPGA on startup eliminated the need for the sampling LUT ISR.

In addition to removing the the sampling LUT ISR, the remaining interrupt priorities were

reevaluated giving priority to the most critical processes. Carefully reordering the interrupt

priorities has increased the stability of both the telemetry board operation as well as the

PC GUI.
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Chapter 3

Backplane Interface

3.1 Development Overview

One goal of the Tropical Storm mission was to take the existing LCTE telemetry

system and combine it with new revisions of science instruments which SDL had used

before. New versions of the PIP, SLP, and FPP instruments were designed. The new

designs utilized PCBs which would be able to stack directly on top of the LCTE power

and telemetry boards. When completed the system included the LCTE power board and

telemetry board along with an SLP/FPP science board and a PIP science board, creating

a stack with 4 levels. A block diagram showing the connection between the four boards is

shown in fig. 3.1.

Before work on either end of the backplane interface began, the protocol for commu-

nication through the backplane was defined. A simple protocol utilizing an 8-bit address

bus, an output enable signal, and a 16-bit parallel data bus selected.

Once the backplane communication protocol was defined, the telemetry board FPGA

firmware was expanded. This first began with an in-depth review of the FPGA firmware

to understand how it currently obtained samples from the other input channels. Once the

PIPSLP/FPP

LCTE

8Address

Output Enable

Data 16

Fig. 3.1: Backplane stack block diagram.
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Fig. 3.2: Backplane timing diagram.

other inputs were understood, a backplane module was added which integrated seamlessly

into the firmware.

New FPGA firmware was developed for the SLP/FPP and PIP science boards while

the LCTE FPGA firmware was being modified. This chapter includes a description of

the parts of the SLP/FPP FPGA firmware which complete the other end of backplane

communication. Also discussed are ideas and options that should be considered when

creating a design using the backplane communication. Some of these ideas described are

implemented in the SLP/FPP design and some are not.

3.2 Protocol Definition

Before any work on the telemetry firmware began, the protocol for the backplane

interface was chosen. Eight pins in the backplane connector were set aside as address pins,

another pin is used for an output enable signal, and 16 others are used for a parallel data

bus. An address is placed on the the address (BP ADDR) bus, addressing one of the

boards on the stack. The output enable (BP OE) line is driven low, enabling data output

onto the backplane data (BP DATA) bus. The data is read by the telemetry board and

the process ends with the BP OE line being driven back high. This process is shown in

fig. 3.2.

The backplane address (BP ADDR) and output enable (BP OE) pins are always out-

put from LCTE and read by other boards on the stack. The backplane data (BP DATA)

bus is configured as an input to LCTE and the other boards on the stack output to the

data bus. Five hundred nanoseconds after LCTE outputs an address on the BP ADDR
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bus, the BP OE signal is driven low. Five hundred nanoseconds after the falling edge of

the BP OE signal, the telemetry board reads the data on the BP DATA bus. The BP OE

signal is driven back high after the data is read which completes process.

Science and other boards on the stack must be designed to control the status of the

BP DATA pins using only the BP ADDR and BP OE signals. Boards on the stack must

guarantee that, when addressed, valid data is output on the BP DATA bus at most 450

nanoseconds after the falling edge of the BP OE signal and is held until the rising edge of

the BP OE signal. If data is output to the BP DATA bus later than 450 nanoseconds after

the falling edge of the BP OE signal, or is not held until the rising edge of the BP OE

signal, correct data transfer from the board to LCTE is not guaranteed. Boards on the

stack must also always place the BP DATA pins in a high-impedance state whenever an

address other than their own is present on the BP ADDR bus, as well as whenever the

BP OE signal is high. The address zero is a reserved address and all boards should place

the BP DATA pins in a high-impedance state whenever the zero address is present on the

BP ADDR bus. Failure to place the BP DATA pins in a high-impedance state when the

BP OE signal is high or when another board’s address or the zero address is present on

the BP ADDR bus can damage FPGAs connected to the BP DATA bus.

3.3 LCTE FPGA Firmware

After the backplane communication protocol was defined, the next step was to extend

the telemetry board FPGA firmware to include support for backplane communication.

The first step involved to extend the telemetry board firmware was to understand how the

FPGA sampled data from the other input channels. Once the other input channels were

understood a backplane input module was added that functioned in an identical fashion.

This section includes an overview of the FPGA firmware and the backplane input module,

as well as a detailed description firmware and the new additions.

3.3.1 Firmware Overview

Understanding the workings of the phase two LCTE FPGA design required more ef-

fort than originally anticipated due to the relative complexity of the system. However,
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Fig. 3.3: FPGA high-level block diagram.

once the design was understood, the additions necessary to extend the design to include

backplane communication were minimal. Figure 3.3 shows a high-level block diagram il-

lustrating the layout of the FPGA. The CLK RESET module passes the clock and reset

signals through to the rest of the design. The UPCONTROLLER module handles com-

munications with the microcontroller and passes data from the microcontroller to the rest

of the design. The ADCCONTROLLERS module handles the control signals for the two

16-bit ADCs and reads the converted input data and the DIOCONTROLLERS module

handles the digital input/output, synchronous serial, and time event control and sampling.

The TELEMETRY module takes the sampled data, serializes it and encodes the data,

creating the telemetry stream. The DATCONTROLLER module is the bulk of the design.

On reset, it receives the sampling LUT after it is passed through the UPCONTROLLER

module, and writes the LUT to the FPGA memory. Then during normal operation the

DATCONTROLLER reads the sampling LUT entries from memory and generates sample

requests for data. The DATCONTROLLER also temporarily stores sampled data until it

is passed to the TELEMETRY module.
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Fig. 3.4: DATCONTROLLER block diagram.

Additions to the FGPA firmware for the backplane functionality all took place within

the DATCONTROLLER module. A block diagram of the sub-level contained within the

DATCONTROLLER module is seen in fig. 3.4.

The MEM CONTROLLER module is one of the more complicated sections in the

FPGA firmware. It controls access to the FPGA memory, writing the sampling LUT

to memory on startup and then reading the LUT entries from memory during normal

operation. It also controls access to the four holding registers. The MEM CONTROLLER

uses matrix parameters from the setup LUT together with word and bit strobe signals

and internal counters to generate synchronization signals. In addition to these two tasks,

the MEM CONTROLLER parses out channel select codes and channel addresses from the

sampling LUT entries.

The SAMPLEDECODER module generates sample requests using the channel select

codes from the MEM CONTROLLER module, the MUX SEL signal, and the word strobe

signal. These sample requests trigger other sections of the design, eventually causing a

sample to be made.

The REG modules receive the sample requests from the SAMPLEDECODER block.

When samples are requested, the REG modules initiate a sampling and then, after new

data is obtained, pass sampled data to the DATA ARBITER module. The DATA ARBITER
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module then writes the data into the holding register module. Later the data is moved

from the holding registers and passed to the TELEMETRY block where it is inserted into

the telemetry stream.

3.3.2 DATCONTROLLER Module Detail

From fig. 3.4 it is clear that a little more is going on inside the DATCONTROLLER

module than is described in the previous section. This section describes the details con-

tained within the DATCONTROLLER module. Although the detail in this section is not

necessary to understand the backplane function of the telemetry board, this section is

included as a reference for possible future work with the telemetry board FPGA firmware.

As previously mentioned, the MEM CONTROLLER module controls access to the

FPGA memory. When the sampling LUT is passed to the DATCONTROLLER module

on reset the MEM CONTROLLER module uses a simple counter to write the LUT sequen-

tially to the FPGA memory. During normal operation, the MEM CONTROLLER module

uses the WORD STROBE H signal from the TELEMETRY module, along with counters

and the PCM SIZE value, which contains the matrix dimensions, to generate the MI-

NOR STROBE H and MAJOR STROBE H signals. These signals indicate the end of mi-

nor and major frames. It also uses the same counter to generate the MUX SEL signal which

indicates when Frame Sync (FS) words and the Sub-Frame Identification (SFID) word

should be inserted into the telemetry stream. Additionally, the MEM CONTROLLER

module generates the 13-bit WORD COUNT signal used for the time event sampling.

The 2-bit DATA BUFF SEL signal is passed to the different sampling modules and even-

tually to the DATA ARBITER to indicate which of the four registers sampled data should

be written to. The 2-bit DATAMEM RD ADDR signal controls the reads from the bank

of registers. The MEM CONTROLLER module also controls reading from the sampling

LUT contained in the FPGA memory and parses the channel select codes and address bits

out of each channel select word. Table 3.1 shows the structure of the channel select words

and table 3.2 shows the 4-bit channel select codes.
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Table 3.1: Channel select word format.

Bit Channel Select
15 NOT USED
14 NOT USED
13 NOT USED
12 NOT USED
11 ChSel3
10 ChSel2
9 ChSel1
8 ChSel0
7 BPAddr7
6 BPAddr6
5 BPAddr5
4 BPAddr4

BPAddr3 or
3 ADAddr3 or

BPAddr2 or
2 ADAddr2 or

BPAddr1 or
1 ADAddr1 or

SSAddr1
BPAddr0 or

0 ADAddr0 or
SSAddr0

Table 3.2: Four-bit channel select codes.

Channel Symbol Code
Analog to Digital Converter 0 ADC0 0x0
Analog to Digital Converter 1 ADC1 0x1

Digital Input 0 DI0 0x2
Digital Input 1 DI1 0x3
Digital Input 2 DI2 0x4
Digital Input 3 DI3 0x5

Asynchronous Serial AS 0x6
Synchronous Serial SS 0x7

Time Event TE 0x8
Backplane BP 0x9
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The SAMPLEDECODER module uses the channel select codes obtained from the

MEM CONTROLLER module, together with the two-bit MUX SEL signal, to generate

sample request pulses. The MUX SEL signal determines whether the a sample request

is for a data word, a SFID word, or a FS word. If a data word sample is indicated by

the MUX SEL signal, the channel select code value, CHAN SEL CODE, further specifies

exactly which type of data input is to be sampled. As a result, a sample request pulse is

output on one of the SMPL H signals, either ADC0, ADC1, DIO0, DIO1, DIO2, DIO3,

TE, SS, UART, BP, SFID, FS1, or FS2.

The sample requests generated by the SAMPLEDECODER module initiate a sample

(the ADC0 and ADC1 REG modules also use the four least significant bits of the chan-

nel select word to select one of the 16 inputs to the ADC0 and ADC1 multiplexers, the

SS REG module uses the two least significant bits of the channel select word to specify

which of the four SS channels to sample, and BP REG module uses the eight least sig-

nificant bits as the BP ADDR backplane address). The sample request pulses also cause

the REG modules to temporarily store the current DATA BUFF SEL value from the

MEM CONTROLLER module. When sample data is obtained, the corresponding REG

module signals the DATA ARBITER module and passes the sampled data and stored

DATA BUFF SEL value along. The DATA ARBITER module uses the DATA BUFF SEL

value to address the correct holding register and passes the data into the holding register

module. The DATA BUFF SEL addressing may seem redundant at first since the sam-

pling LUT is read sequentially and the channel select words are stored in the sampling LUT

according to the order specified by the telemetry matrix, but some samples take longer

than one word period to obtain. The synchronous serial inputs, for instance, take two

word periods to obtain a sample. A parallel digital input, on the other hand, takes only a

few clock cycles to obtain a sample. Thus, even though samples are started in the correct

order, they may not finish in the correct order. By keeping track of the order in which the

samples were generated, using the DATA BUFF SEL value, the MEM CONTROLLER

module can simply use 2-bit counter DATAMEM RD ADDR to generate the address used

to read data out of the holding registers and pass it along to the TELEMETRY module.
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3.3.3 BP REG Module

The BP REG module is the main addition to the FPGA firmware which allows back-

plane communications. This module operates similar to the other REG modules in that

it receives a sample request, initiates backplane channel sampling, and then forwards the

sampled data to the DATA ARBITER. A state machine within the BP REG module im-

plements the backplane protocol described earlier in this chapter, addressing boards on

the stack and reading data from the backplane data bus.

In more detail, when a pulse is sent on the BP SMPL H signal, the SMPL ADDR value

from the MEM CONTROLLER module is read. This is the backplane address which was

contained in the lower eight bits of the channel select word from the sampling LUT. The

address value is passed through to the BP SMPL ADDR bus which is directly connected

to the backplane connector. The DATA BUFF SEL value is stored temporarily in the

BP REG module, which is used after the data is sampled to indicate which of the four

holding registers the data should be written to. A state machine then controls the timing

of the BP OE signal which is also output to the backplane connector. Data from the back-

plane connector is input on the BP DATA IN bus. The same state machine which controls

the BP OE signal, also determines when the BP DATA IN bus is read. When the back-

plane data has been acquired, the BP REG module outputs the sampled data on the in-

ternal BP DATA bus. The BP REG module also puts the DATA BUFF SEL value on the

BP DATA ADDR lines and signals to the DATA ARBITER, via the BP DATA RDY H

signal, that the value on the internal BP DATA bus is ready to be written to a holding

register. After that point the process is identical to any of the other types of samples. The

data is held in the holding register until the DATAMEM RD ADDR addresses the holding

register. The data is then read from the holding register and passed to the TELEMETRY

module where it is serialized, encoded, and inserted into the telemetry stream.

3.3.4 BP REG State Machine

The backplane interface timing is controlled by the state machine shown in fig. 3.5.

The state machine waits in an idle state most of the time. When a sample request is sent
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Fig. 3.5: BP REG state machine diagram.

to the BP REG module, the state machine is activated and moves to a new state where

the backplane address is output to the backplane address bus. After counters indicate that

sufficient time has passed, the state machine moves to a new state again where the address

continues to be held on the backplane address bus and the output enable signal is driven

low. This enables the addressed board on the stack to output data to the backplane data

bus. When the counters in the BP REG module indicate a second time that the correct

amount of time has passed, the state machine continues to the next state where the data

bus is read and the output enable line is driven back high, disabling the backplane data

bus. The data is then available to the rest of the BP REG module and the state machines

returns to the idle state where it awaits the next backplane sample request.

Specifically, the state machine idles in the BP ENBL WAIT state until the BP SMPL H

signal is pulsed. This pulse moves the state machine to the CLKBP SYNC state where
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the backplane address from the SMPL ADDR bus is stored to a temporary register,

TEMP ADDR. The counter BP CNT is incremented on every cycle of the system’s 20

MHz clock. When the BP CNT value reaches four, it is reset back to zero and the count-

ing starts over. Conditioning state transitions upon BP CNT value so that transitions

occur when the count equals four effectively slows the backplane interface and synchro-

nizes it to a 4 MHz clock cycle. When the state machine is in the CLKBP SYNC state, it

waits for the BP CNT to reach a value of four and then moves on to the ADDR OUT state.

While in the ADDR OUT state the backplane address, TEMP ADDR, is output to the

backplane address bus. The state machine remains in this state until the BP CNT value

reaches four again. The state machine then moves to the WAIT1 state. In the WAIT1

state, the address is still output on the backplane address bus and again the state ma-

chine awaits for the BP CNT value of four. When the count is reached, the state machine

continues to the OE OUT state. In this state, the BP OE signal is dropped low, enabling

the addressed science board to output data to the backplane data bus, and then the state

machine again awaits the BP CNT value of four. When the count reaches four, the state

machine moves to the WAIT2 state where the backplane address is still held constant and

the BP OE signal is still driven low. Finally, when the BP CNT reaches the value of four

again, the state machine moves to the DATA RD state where the backplane data bus is

read and the BP OE signal is brought back high, disabling the data bus after the read.

The state machine then returns to the BP ENBL WAIT state, returning the backplane

address bus to the address 0 and awaiting the next BP SMPL H pulse.

3.4 SLP/FPP FPGA Firmware

The Tropical Storm SLP/FPP science board is a combination of two science instru-

ments fabricated onto one PCB. The SLP part of the board was designed to measure the

density and temperature of electrons and ions along the flight path of the instrument.

The FPP instrument measures the floating potential of the atmosphere relative to the

spacecraft. Although the science and exact function of the SLP/FPP science board is be-

yond the scope of this thesis, the SLP/FPP FPGA firmware serves as an example of how



27

S
L
P
_
A
D
C
_
C
O
N
T
R
O
L

D
A
C
_
C
O
N
T
R
O
L

D
A
C
_
D
A
T
A
[1
5
:0
]

S
L
P
_
A
D
C
_
S
T
A
T
U
S

S
L
P
_
D
A
T
A
[1
5
:0
]

H
K
_
A
D
C
_
S
T
A
T
U
S

H
K
_
M
U
X
_
C
O
N
T
R
O
L

FPP_ADC_CONTROL

FPP_ADC_STATUS

FPP_DATA[17:0]

B
P
_
D
A
T
A
[1
5
:0
]

SLP_DAC_CONTROLLER

PARAM_CONFIG

BP_INTERFACE

SLP_ADC_MANAGER

F
P
P
_
A
D
C
_
M
A
N
A
G
E
R

NEGOTIATOR

SLP_MUX_DEFAULTS

S
L
P
_
M
N
_
S
W
P
_
C
N
T

S
L
P
_
M
X
_
S
W
P
_
C
N
T

S
L
P
_
S
T
P
_
S
Z

SLP_CSMPL_CNT[2:0] S
L
P
_
S
M
P
L
_
R
Q
S
T
_
H

H
G
_
S
M
P
L
_
R
D
Y
_
H

L
G
_
S
M
P
L
_
R
D
Y
_
H

H
K
_
S
M
P
L
_
R
Q
S
T
_
H

H
K
_
S
M
P
L
_
R
D
Y
_
H

FPP_CSMPL_CNT[2:0]

NXT_HK_MUX_RQST_H

M
U
X
_
A
D
D
R
[3
:0
]

FPP_SMPL_RQST_H

H
G
_
D
A
T
A
[1
5
:0
]

L
G
_
D
A
T
A
[1
5
:0
]

H
K
_
D
A
T
A
[1
5
:0
]

FPP0_DATA[19:0]

FPP2_DATA[19:0]
B
P
_
H
G
_
R
D
_
H

B
P
_
L
G
_
R
D
_
H

B
P
_
H
K
_
R
D
_
H

B
P
_
F
P
P
0
_
R
D
_
H

B
P
_
F
P
P
1
_
R
D
_
H

B
P
_
F
P
P
2
_
R
D
_
H

B
P
_
F
P
P
3
_
R
D
_
H

B
P
_
F
P
P
4
_
R
D
_
H

B
P
_
H
G
_
D
A
T
A
[1
5
:0
]

B
P
_
L
G
_
D
A
T
A
[1
5
:0
]

B
P
_
H
K
_
D
A
T
A
[1
5
:0
]

B
P
_
F
P
P
0
_
D
A
T
A
[1
5
:0
]

B
P
_
F
P
P
1
_
D
A
T
A
[1
5
:0
]

B
P
_
F
P
P
2
_
D
A
T
A
[1
5
:0
]

B
P
_
F
P
P
3
_
D
A
T
A
[1
5
:0
]

B
P
_
F
P
P
4
_
D
A
T
A
[1
5
:0
]

NXT_HK_MUX[3:0]

BP_MUX_SEL[3:0]

BP_ADDR[7:0]

S
Y
S
_
C
L
K

R
E
S
E
T
_
L

CLK_RESET_COND

CLK0

RESET_H

FPP3_DATA[19:0]

FPP0_SMPL_RDY_H

FPP1_DATA[19:0]

C
A
L
_
D
A
T
A
_
R
D
Y
_
H

C
A
L
_
G
O
_
L

C
A
L
_
E
N
A
B
L
E
_
L

C
A
L
_
M
O
D
E
[4
:0
]

C
A
L
_
S
E
R
_
D
A
T
A

H
K
_
A
D
C
_
D
A
T
A
[1
5
:0
]

B
P
_
O
E
_
L

HK_ADC_MANAGER

H
K
_
A
D
C
_
C
O
N
T
R
O
L

Fig. 3.6: SLP/FPP top-level block diagram.

to communicate with LCTE using the backplane connector. The design also highlights

a few key points to be considered when implementing a design which utilizes backplane

communications.

3.4.1 SLP/FPP Firmware Overview

Figure 3.6 shows a top-level block diagram of the SLP/FPP digital design. The

CLK RESET COND module passes the input clock and reset signals through to the rest

of the design. The SLP MUX DEFAULTS module provides the default settings for some

of the control lines of the housekeeping multiplexer. The SLP, Housekeeping (HK), and

FPP ADC MANAGER modules control the SLP, HK, and FPP ADCs, respectively. The

SLP DAC Controller module controls the SLP DAC which drives the voltage that is applied

to the SLP probe.
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The three remaining modules in the design demonstrate the usage of backplane com-

munication. These modules are the PARAM CONFIG, NEGOTIATOR, and BP INTERF-

ACE modules. The PARAM CONFIG module houses parameters and configuration set-

tings which may need to be modified for future SLP/FPP experiments or different teleme-

try matrices. The NEGOTIATOR module essentially acts as a multiplexer communicating

with the backplane connector during normal operation and responding to the calibration

port when the board is in calibration mode. Finally, the BP INTERFACE module mul-

tiplexes sampled SLP, FPP, and HK data onto the backplane data bus and controls the

high-impedance state of the data pins. The BP INTERFACE module also notifies the

NEGOTIATOR when a particular channel has been read by LCTE.

3.4.2 PARAM CONFIG Module

The PARAM CONFIG module provides a convenient location to hold variables that

may change between SLP/FPP experiments. Grouping these variables into one VHDL

file greatly simplifies changes that would need to be made in order to reuse the design in

future SLP/FPP experiments. One section of the PARAM CONFIG module is used to

decode the backplane address. When an address is present on the backplane address bus,

the PARAM CONFIG module decodes the address and outputs a corresponding BP MUX

value to the BP INTERFACE module. The BP MUX value then selects one of the SLP,

FPP, or Housekeeping (HK) data channels or it indicates that the address does not belong

to the SLP/FPP board and places the backplane data pins in a high-impedance state.

Table 3.3 shows how the backplane addresses and BP MUX values are set in the Tropical

Storm design.

In the Tropical Storm design all HK channels were assigned the same backplane ad-

dress, yet there are 11 different HK data types. An analog multiplexer is used on the

SLP/FPP board to pass one HK channel at a time to the HK ADC. In order to use one

address to access all 11 HK data types, another LUT was created in the PARAM CONFIG

module. This LUT specifies the HK multiplexer select value which should be used next.

Each time data for a HK channel is read through the backplane, a counter is incremented
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Table 3.3: Backplane multiplexer LUT.

Address BP MUX Select Data Channel
1 1000 Housekeeping
2 1001 SLP High Gain
3 1010 SLP Low Gain
4 1011 FPP0
5 1100 FPP1
6 1101 FPP2
7 1110 FPP3
19 1111 FPP4

Others 0000 High-Impedance

and the next HK multiplexer select value is pulled from the HK LUT. Table 3.4 shows how

the HK CNT counter value can be mapped to HK multiplexer select values and HK data

channels.

The housekeeping channels are an example of multiple channels that are addressed

using a single backplane address. Section 3.5.1 contains more detail regarding benefits of

using this approach and when it may be appropriate to use.

3.4.3 BP INTERFACE Module

The BP INTERFACE module is the gateway to the backplane data bus for the

SLP/FPP design. This interface controls the state of the backplane data pins, multi-

plexes the SLP, FPP, and HK data onto the backplane, and signals to the NEGOTIATOR

module when a particular channel has been read. Although the backplane data bus must

be controlled carefully to avoid damaging the FPGA, the BP INTERFACE module is fairly

straightforward.

The BP INTERFACE reads the BP MUX select value output from the PARAM CON-

FIG module and uses the value in three ways. First, the BP MUX value is used to control

the data multiplexer shown in fig. 3.7. This multiplexer selects which data input channel

to pass through to the backplane output register. Secondly, the BP MUX value is used in

a case statement, which forms the BP OUTPUT LUT, to drive enable lines corresponding

to the different data channels as seen in fig. 3.8. Finally, the BP MUX select value is
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Table 3.4: Housekeeping multiplexer LUT.

HK CNT HK MUX Select Housekeeping Channel
0 0000 Temperature 1
1 0010 1.5 VD
2 0011 3.3 VD
3 0100 5.0 VD
4 0001 Temperature 2
5 0101 +5 VA
6 0110 -5 VA
7 0100 5.0 VD
8 0000 Temperature 1
9 0111 +12 VA
10 1000 -12 VA
11 1001 SLP VRef
12 0001 Temperature 2
13 1010 FPP VRef
14 0100 5.0 VD

Others 0000 Temperature 1

used together with the CAL ENABLE L, BP OE, and RESET H signals to enable output

from the output register onto the backplane data bus. If any of the four signals is not in

the correct state, the BP INTERFACE puts the backplane data lines in a high-impedance

state. This implementation cleanly avoids backplane data bus contentions.

Besides using the BP OE signal to control the state of the backplane data bus lines,

edge detection is performed on the signal. When a falling edge is detected, a pulse is

created on the BP OE FALL H signal. This signal is used with the BP EN H signals to

generate new sample requests which are passes to the NEGOTIATOR module when a data

channel has been read. The BP OE FALL H signal is also used to load the output register

with the data output from the multiplexer.

For clarification, an example of the BP INTERFACE operation is given. When the

housekeeping address is present on the backplane address bus, the BP MUX binary value

“1000” is read from the BP MUX LUT in the PARAM CONFIG module and output to

the BP INTERFACE. The binary value “1000” sets the multiplexer to pass the data on the

BP HK DATA bus through to the backplane output register. It also sets the BP HK EN H
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Fig. 3.7: Backplane interface multiplexer.

signal high. Next when the BP OE signal goes low, the BP OE FALL H signal is pulsed

which in turn causes a pulse on the BP HK RD H signal. The BP OE FALL H pulse also

causes the housekeeping data being output from the multiplexer to be registered in the

backplane output register. If the CAL ENABLE L signal is high, meaning the FPGA is not

in calibration mode, and the RESET H line is low, meaning the FPGA is not being reset,

the “1” in the upper bit of the BP MUX value is “anded” together with the correct states of

the other three signals, including the BP OE signal which is still low, and the housekeeping

data now held in the backplane output register is passed through to the backplane data

bus. Next, when the BP OE signal is driven back high by the LCTE telemetry board, the

output of the and gate goes back low and the backplane data bus pins are placed back into

a high-impedance state. The process then repeats during the next word period. When

an address for another board on the stack, or the reserved address 0, is present on the
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Fig. 3.8: Backplane interface LUT and BP RD H signals.

backplane address bus, the BP MUX value selected from the BP MUX LUT is “0000”.

Since the BP MUX value does not match any entries in the BP OUTPUT LUT, none of

the BP EN H signals are driven high, so no BP RD H pulses will be generated. The most

significant bit of the BP MUX value is “0” so the backplane data pins will remain in a

high-impedance state, avoiding bus contentions.

3.4.4 NEGOTIATOR Module

The SLP/FPP board can be operated in a calibration mode, utilizing communications

through the calibration port, or normal mode where the board responds to requests from

the LCTE telemetry board coming through the backplane connector. The main func-

tion of the NEGOTIATOR module is to switch between the calibration and backplane

connections. When the module is in backplane mode it handles read acknowledges from

the BP INTERFACE in the Request Handling section (see fig. 3.9) and buffers data be-

tween the SLP and FPP ADC MANAGER modules and the BP INTERFACE in the
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Fig. 3.9: Request handling block diagram.

Data Handling section( see fig. 3.10). When LCTE reads data from any channel via the

backplane connection, a corresponding read pulse is sent from the BP INTERFACE to the

NEGOTIATOR. The NEGOTIATOR combines these read pulses as necessary to generate

sample requests for the SLP, FPP, and HK ADC MANAGER modules. These requests

then trigger ADC sampling and new sample data is presented back to the NEGOTIATOR.

The details of the NEGOTIATOR operation are best explained using an example. For

instance, in the Tropical Storm SLP/FPP design there are two types of SLP measurements.

A high gain (HG) and a low gain (LG) measurement. When LCTE reads the HG channel,

a HG RD H pulse is sent to the NEGOTIATOR. This sets the HG JK flip-flop in the

Request Handling section of the NEGOTIATOR. Then, after the LG channel is read,
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a LG RD H pulse is sent, setting the LG JK flip-flop. The output of the two JK flip-

flops is “anded” together to create the SLP SMPL RQST H pulse which is sent to the

SLP ADC MANAGER. This pulse also resets both the HG and LG JK flip-flops. New

HG and LG data is then sampled by the SLP ADC MANAGER and the data is held

on the HG DATA and LG DATA busses. When the next SLP SMPL RQST H pulse is

generated, the values present on the HG DATA and LG DATA busses are registered in

the Data Handling section of the NEGOTIATOR and output on the BP HG DATA and

BP LG DATA busses. The next time LCTE addresses the HG and LG channels, the data

on the BP HG DATA and BP LG DATA busses are output on the backplane data bus

through the BP INTERFACE module. Similar processes take place when the HK and

FPP data channels are read by LCTE, however, HK data is not buffered in the Data

Handling section of the NEGOTIATOR.

The reasoning for implementing buffering within the NEGOTIATOR, as opposed to

sending data directly from the ADC MANAGER modules to the BP INTERFACE, is

discussed in section 3.5.3.

When the board is in Calibration mode, a five-bit CAL MODE value is read by the

calibration LUTs seen in the Request Handling block diagram. The CAL MUX LUT

outputs the correct HK MUX select value for the current mode, the CAL REQ LUT sets

the appropriate enable lines high, and the CAL FPP PARAM LUT selects the sampling

frequency, number of samples to be taken, and number of samples to use for co-adding

for the different FPP calibration modes. The output of the calibration LUTs is combined

with the falling edge of the CAL GO L signal to generate CAL RD H signals. Multiplexers

controlled by the CAL ENABLE L signal are used to select either the BP RD H signals

or the CAL RD H signals to pass on to the appropriate ADC MANAGER modules. The

majority of the Data Handling section consists of different registers and components which

are used to serialize the calibration data and send it to a PC via the calibration port.
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Fig. 3.10: Data handling block diagram.

3.5 Synchronous Backplane Design

The Tropical Storm SLP/FPP digital design implements a synchronous design. When

LCTE reads data from one of the data channels, a corresponding BP RD H pulse is gen-

erated. The BP RD H pulse in turn generates a request for a new ADC sample. In short,

every time LCTE reads data for a channel, it also triggers the start of a new sample.

Since LCTE requests data in the order specified by the telemetry matrix, the samples are

also initiated in that same order. Using this synchronous approach, the SLP, FPP, and

HK channels sample rates are determined by the telemetry matrix itself. In this case the

science board is synchronized with LCTE. This feature simplifies the science board digital

design since no controls to implement correct timing of samples are necessary. One reason
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for using a synchronous design is that it is not uncommon for the telemetry matrix to

change form part way through a project. This does not pose a problem for a synchronous

science board since the telemetry matrix itself is generating the sample requests. In this

case, no counters or timers need to be recalculated or updated.

Particular to the SLP/FPP board, if the number of points in the SLP sweep or range

of the sweep change, the new maximum, minimum, and step values will need to be mod-

ified. Also, if the order of the housekeeping channels or the number of housekeeping

samples changes, the HK MUX LUT would need to be updated. However, all of these

parameters, along with detailed notes on how to correctly change them, are contained in

the PARAM CONFIG module so only one VHDL file needs to be modified. This mini-

mizes the effort required to update the science board. Once modified, the FPGA project

would need to be recompiled and the FPGA would need to be reprogrammed with the new

compilation using Altera’s Quartus II software.

When using the synchronous design approach, there are a few options for choosing

the way backplane addresses are assigned and how they are interpreted by boards on the

stack. First, each data channel can be addressed by a unique backplane address. This would

limit the number of data channels accessible by the LCTE board to 255 since the address

bus is 8 bits and address 0 is reserved. Also, each separate backplane address requires

a separate input into the data multiplexer in the BP INTEFACE as well as separate

BP EN H and BP RD H signals. So, if a board were to have 255 data channels, the

multiplexer would then also need 255 inputs and there would be 255 BP EN H signals

and 255 BP RD H signals. This requires writing VHDL code for a BP INTERFACE

module that has 255 16-bit data intputs, 255 BP RD H outputs, a LUT with 255 BP EN H

outputs, and a case statement with 255 cases to implement the data multiplexer. Although

this code would not be complicated, it is monotonous and would require attention to detail

while copying, pasting, and modifying 255 lines of code for each of the main sections of

the BP INTERFACE module. The following subsections discuss some of the backplane

addressing scheme alternatives.
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3.5.1 Single Address with Multiple Channels

Using a single address to read data from multiple channels is a little confusing at

first, but in the end can save some coding hassle. In order to use one address for multiple

channels, the order of the channels as they appear in the telemetry matrix needs to be

programmed into the science board. This can be easily achieved using a LUT and a counter.

The counter is incremented every time LCTE reads data from the shared address. The

LUT indicates the next channel to be sampled using the value of the counter. This is

how the housekeeping channels work in the Tropical Storm SLP/FPP board. In this case

it is especially advantageous since all the housekeeping channels are multiplexed together

and share a single ADC. Whenever LCTE reads from the general housekeeping address, a

new sample request is generated and sent to the HK ADC Manager module. Then, after

the housekeeping ADC finishes sampling, the HK SMPL RDY H signal increments the

HK CNT value in the PARAM CONFIG module, and the next housekeeping multiplexer

select value is read from the HK MUX LUT. If separate backplane addresses were to be

used, no LUT would be necessary, but the SLP/FPP board would not have any prior

knowledge of the sampling order. This would require that the HK ADC MANAGER

module maintains a current sample of each of the 16 housekeeping channels at all times.

3.5.2 Single Channel with Multiple Addresses

The title Single Channel with Multiple Addresses may be a little misleading. The

concept is simply the compliment of the Single Address with Multiple Channels idea. In

some cases, it is easier to assign each channel in a group its own address for clarity, yet all

channels in the group may need to be sampled at the same time, or it may increase the

throughput or the simplicity of the digital design if all channels in the group are sampled

simultaneously. For instance, in the Tropical Storm SLP/FPP design, there are four FPP

channels, each with its own ADC. All four channels must be sampled simultaneously and

even share a single signal which starts the conversion on all four of the ADCs. In addition

to this, each FPP channel returns a 20-bit data word. Since LCTE can only handle up to

16-bit data words, the four least significant bits of each FPP channel are parsed and then
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Fig. 3.11: Concatenation to create the fifth FPP data channel.

concatenated with the four bits from each of the other channels to create a fifth 16-bit FPP

word as seen in fig. 3.11. For these two reasons, a new sample only needs to be requested

when all five of the 16-bit FPP channels have been read by LCTE. To accomplish this,

the BP FPPx RD H pulses are still generated and sent to the Negotiator module just as

when LCTE reads data using any of the other backplane addresses, however each read

pulse sets a JK flip-flop in the Negotiator module. The outputs of all five JK flip-flops

are then “anded” together. The output of the and gate is registered to create the single

FPP SMPL RQST H pulse as well as to reset all five JK flip-flops.

In other cases, all channels in a group may need to be sampled before some other

event occurs. For example, the SLP instrument works by applying a voltage to a probe

using a DAC. After an appropriate settling time, both of the HG and LG SLP channels

can be sampled. Once both channels have been sampled, the probe voltage is incremented

and new HG and LG samples can be made. By combining the HG and LG RD H signals

into a single channel request, the SLP DAC CONTROLLER can wait until the sampling

of the single channel is finished and then apply a new voltage to the probe. In addition,

both the HG and LG ADCs require acquisition and conversion times. Sampling the two

channels at the same time allows both ADCs to work in parallel, performing conversions

at the same time. This reduces the time required between SLP samples.
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3.5.3 Data Buffering and Sample Time

Another idea used in the Tropical Storm SLP/FPP instrument is a data buffer in the

NEGOTIATOR module. Each FPP channel, as well as the HG and LG SLP channels,

has a buffer that is one word deep. Adding this buffer delays the sampled data by one

word in the telemetry matrix. Following the process all the way through, LCTE first

reads a channel which generates a new sample request. New data is obtained and held

on the output of the ADC MANAGER module. LCTE then performs a second read on

the channel. This registers the data from the ADC MANAGER and places it on the

corresponding BP DATA bus. Finally, when LCTE reads the channel for the third time

the data is transferred through the backplane and inserted into the telemetry stream. So,

for instance, if a particular channel appears only once per minor frame, the data observed

in the third minor frame was actually sampled when the data was read for the first minor

frame. The advantage to adding the buffer is that it allows for faster sampling rates when

multiple addresses generate a single sample. Consider the FPP channels as an example.

When the FPP ADC MANAGER receives a pulse on the FPP SMPL RQST H signal, the

ADC sampling process begins. As soon as the ADC sampling finishes the data output on

the FPP DATA busses changes. The ADC conversion time, however, only has a guaranteed

maximum, assuring that the conversion will not take longer than a specified amount of

time. Since running a little fast is not usually a problem, a minimum conversion time

is not specified. This means there is no way to guarantee how long the old data will be

valid on the FPP DATA busses once a new sample is started. For this reason, it must be

assumed that once a sample request is generated, the old data on the FPP DATA busses is

invalidated. So, a new sample request cannot be sent to the FPP ADC MANAGER until

all five data words have been read by LCTE, but sampling must finish before LCTE tries

to read the first word again. Figure 3.12 illustrates a timing diagram without buffering

the data. The figure assumes 100 kilosamples/sec ADCs are used and that eight samples

are co-added to obtain the final data. As the figure illustrates, a minimum of 80 µseconds

is required from the time the last data word is read and the time the first data word of
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Fig. 3.12: FPP sample timing without buffering.

the newly sampled data is read. In this case the sampling period for the FPP channels is

divided into two sections. First, the 80 µseconds while the FPP ADCs are sampling and

co-adding, and second, the time period where LCTE reads the data for all five channels.

The amount of time it takes LCTE to read all five channels depends on the bit rate, number

of bits per word, and ordering of the FPP samples in the telemetry matrix. Assuming a

fastest-case scenario, all five words would appear back-to-back in the telemetry matrix and

the matrix would use 8-bit words and run at 4 Mbps. In this case it would take five word

periods, or 10 µseconds, to read all five FPP channels. This means the total sample period

for the FPP channels would be 90 µseconds which gives a maximum sample rate of 11.111

kHz. For the Tropical Storm project 16-bit words are used and a bit rate of 2.5 Mbps is

employed. This gives a maximum FPP sample rate of 8.928 kHz if no buffering is included

in the Data Handling section of the NEGOTIATOR.

If a buffer is included, the sample request not only starts a new sample, but also

registers the data from the previous sample present on the FPP DATA busses to the

BP FPP DATA busses. Now the FPP ADC sampling doesn’t need to finish until just

before the second read of the last BP FPP DATA word. After LCTE has read all five

BP FPP DATA words again, the five new FPP DATA words are registered in the NE-

GOTIATOR buffers, updating the BP FPP DATA busses. Figure 3.13 shows a timing
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Fig. 3.13: FPP sample timing with buffering.

diagram using the same ADCs and co-adding used in the unbuffered system, but with

buffering implemented. From the diagram it can be seen that instead of requiring 80

µseconds between the last read of the old data and the first read of the new data, 80

µseconds are required between the last read of the old data and the last read of the new

data. In this case, since the data is buffered in the NEGOTIATOR module, LCTE can

be reading the buffered FPP data at the same time new FPP data is being sampled. This

means that the sampling period becomes a function of the maximum FPP ADC sample

rate. It is no longer a function of the telemetry data rate, word size, or matrix ordering.

So, with buffering implemented, the maximum FPP sample rate is always 12.5 kHz.

3.6 Asynchronous Backplane Design

Because the synchronous design uses the telemetry matrix to control sampling, it may

not be practical for all projects. At times, telemetry matrices are constructed such that

data channel samples do not appear at fixed intervals, yet a fixed sampling rate may be

desired. In such a case, all data channels can be implemented similar to the Single Address

with Multiple Channels case. LUTs similar to the HK MUX LUT could be used to specify
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the ordering of samples, and counters can be used to generate the sample requests rather

than using the LCTE backplane reads. When an asynchronous design is used, it is assumed

that the science board sampling and the telemetry matrix sampling are not aligned. Thus,

it is possible that LCTE has not read the first data sample from a particular channel before

the second data sample has been obtained. This requires the use of buffers to temporarily

store data until LCTE requests it. At that point the data is read from the buffer and

output on the backplane data bus. Although the immediate sample rates of the science

board and LCTE are not the same, the average sample rate of the two must be equal. If

the average sample rate of the science board does not match the average sample rate in

the telemetry matrix, the science board data buffers will either overflow or underflow.

For example, the SLP/FPP design could be implemented using an asynchronous ap-

proach. The design could include one housekeeping counter which would generate a sample

pulse at the desired housekeeping sample rate, one SLP counter generating a sample pulse

at the desired SLP sampling rate, and one FPP counter generating a sample pulse at the

desired FPP sampling rate. A housekeeping LUT would still need to be implemented which

would output the appropriate housekeeping multiplexer select value during each housekeep-

ing sample, ordered according to the telemetry matrix. If the same SLP ADC MANAGER

module from the synchronous design was used to control the SLP ADCs in the asyn-

chronous design, an SLP LUT would not be required since a single SLP sample request

generates new data for both the HG and LG channels. The FPP sampling would not re-

quire a LUT either if the FPP ADC MANAGER module from the synchronous design was

used. Again, in the synchronous design one FPP sample request results in new data for all

five FPP channels. A First-In-First-Out (FIFO) buffer for each of the three channel types

could be used to buffer the sampled data until LCTE could read it. Since each housekeep-

ing request generates just one housekeeping sample and the samples were requested in the

order specified by the telemetry matrix, the data could be inserted into the housekeeping

FIFO in the exact order that the HK ADC MANAGER module obtained them. The SLP

HG and LG data would need to be inserted into the SLP FIFO in the same order it is read
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Fig. 3.14: Asynchronous SLP/FPP system using three FIFOs.

by LCTE (either HG first or LG first). The FPP data would also need to be written to

the FPP FIFO in the correct order. Two simple state machines could control writing to

the SLP and FPP FIFOs. The state machines could wait for a DATA RDY H signal and

then cycle through, writing each sample to the FIFO in the same order that the telemetry

matrix reads the channels. A BP INTERFACE module and PARAM CONFIG module

similar to those in the synchronous design could be used to decode backplane addressing

and multiplex data from the three FIFO sources onto the backplane data bus. In this

particular example, separate addresses for the HG, LG, FPP0, FPP1, FPP2, FPP3, and

FPP4 channels could be used, but both the HG and LG addresses would read from the

SLP FIFO and all FPP addresses would read from the FPP FIFO. Alternatively, the ad-

dressing could be reduced to just three addresses, a housekeeping address, an SLP address,

and an FPP address. Figure 3.14 shows a block diagram of a possible implementation of

an asynchronous SLP/FPP design.
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Chapter 4

Graphical User Interface

Phase one of the LCTE design left the telemetry parameters such as bit rate, encoding

type, matrix dimensions, and others hard-coded into the LCTE FPGA firmware. The

telemetry matrix ordering was also built into the firmware. This required modifying and

recompiling the FPGA VHDL code and reprogramming the FPGA every time the telemetry

matrix changed. While this provides a usable telemetry system, it does not work well as

a reconfigurable system. Modifying the FPGA firmware to make changes to the telemetry

matrix also does not make for a very secure system. Changing any of the telemetry

parameters would require a thorough knowledge of the low-level telemetry board FPGA

firmware. Mistakes could easily be introduced into the system. In addition, these mistakes

might go unnoticed for some time, making the system very difficult to debug. The LCTE

phase two design identified the configurable system parameters, removed them from the

FPGA firmware, and placed them within the PC GUI. The GUI provides a more robust

method for correctly modifying the telemetry parameters and reconfiguring the telemetry

encoder system.

4.1 GUI Overview

The GUI allows a user to easily reconfigure the LCTE telemetry board. It primarily

consists of a few tabbed pages shown in fig. 4.1 and fig. 4.2. On the Setup tab, shown

in fig. 4.1 (a), matrix parameters can be input and the digital line functions can be set.

The Matrix tab, seen in fig. 4.1 (b), displays the formatted telemetry matrix. The Format

tab, as seen in fig. 4.1 (c), is where the user selects which channels to include and specifies

where they should appear in the matrix. Figure 4.1 (d), shows the Readback tab which

allows the user to read back sampled data from the telemetry board to the PC for a specific

channel. To program the telemetry board, the user first specifies the settings on the Setup
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Fig. 4.1: GUI Setup, Matrix, Format, and Readback tabs.

tab. Next, the user selects the input channels to be used and specifies their ordering on the

Format tab. After data channels are selected and their ordering are specified, the Commit

button is clicked to create a matrix which is then displayed on the Matrix tab. Once the

settings are as desired and the correct matrix is displayed on the Matrix tab, the Compile

button is selected which creates the setup and sampling LUTs. Finally, the LUTs are

transferred to the telemetry board when the Program button is clicked.

4.2 GUI BP Channels Tab

The BP (Backplane) Channels tab in the GUI was added as part of the phase three

design efforts to allow backplane communication. The BP Channels tab allows users to

configure the backplane channel addressing. The BP Channel tab, shown in fig. 4.2,
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Fig. 4.2: GUI BP channels tab.

includes two columns and the Save BP Channels button. To add a backplane channel to

the matrix the user types a name for the channel in the BPName column and then types

an integer address, 1 through 255 (address 0 is reserved), in the BPAddr column. Once all

the desired backplane channels have been added to the list, the Save BP Channels button

is clicked to add the channels to the list of available input channels on the Format tab.

4.3 GUI Operation

The Format Tab lists the available input channels and allows a user to specify which

channels are used and where they should appear in the telemetry matrix. When the

Commit button is clicked the software reads the “Enabled” checkbox for each data channel.

If a channel is selected, it is added to the matrix according to the Word, Word Int, Frame,

and Frame Int parameters. The SFID word is always included in the matrix whether the

enabled box is checked or not. The SFID is required for the telemetry board to operate

correctly. After the data channels and SFID words have been added to the matrix, the

program then fills the last one or two columns with the FS1 and/or FS2 words depending

on the number of FS words specified on the Setup Tab. If changes are to be made to the
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matrix, the Edit button must be clicked first to allow the Format Tab to be edited. After

changes are made, the Commit button is clicked to add the changes to the matrix. The

Reset button can be clicked to reset the Enabled check boxes and the Word, Word Int,

Frame, and Frame Int values.

Once the system parameters have been selected and the correct telemetry matrix

is displayed on the Matrix tab, the new setup and sampling LUTs can be compiled by

clicking the Compile button. When this button is clicked the program reads the parameters

specified on the setup tab and compiles them into the setup LUT. The program then works

its way through the matrix displayed on the Matrix tab. The program starts with the first

cell in the matrix, reading the text and comparing it with the list of available channels.

When a match is found, the index of the matching item in the list is recorded. The index is

then used in a case statement which returns the correct channel select word. The analog,

parallel digital, synchronous serial, time event, and asynchronous serial channel select

words are hard-coded into the case statement. The backplane channels require one extra

step to add the backplane address to the channel select code. When the program determines

that a matrix cell contains a backplane channel, the program reads the backplane address

corresponding to the backplane channel from the table on the BP Channels tab. The

address is then combined with the channel select code from the case statement and the

completed channel select word is then added to the sampling LUT. These channel select

words and codes created by the matrix are the channel select words and codes that are

later used by the FPGA firmware, and are shown in table 3.1 and table 3.2.

One major issue with the GUI after the second design phase was that it suffered

from a number of unhandled exceptions. These unhandled exceptions occur when a user

attempts some action within the GUI, but no code has been written to define what that

action should do. For instance, if a user specifies that the telemetry matrix should have

eight words per minor frame, some code needs to include a check so that if the user then

tries to include a data channel in column 9, the data channel is either ignored or, better

yet, a warning is displayed notifying the user that column 9 does not exist. Unfortunately,
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many instances such as this were not handled by the code in the phase two GUI. If the

GUI was not used just right, errors would occur and the user would have to start over.

Resolving the interrupt priorities in the microcontroller firmware helped to alleviate some

of these unhandled exceptions, but more fool-proofing and checking was added to the GUI

to attempt to catch mistakes before the program became unstable.
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Chapter 5

Recapitulation

5.1 Phase Three Results

The completion of the phase three design efforts provided a flexible and easy-to-use

telemetry system. Although the convenience of separate sampling and telemetry matrices

was removed to resolve timing issues, the input capabilities were expanded and the maxi-

mum size of the telemetry matrix was increased. The end result of all three phases of the

design efforts truly is a low-cost telemetry solution. The following is a list of the current

features of LCTE after the completion of phase three.

• Word size: 8-16 bits

• Bit rate: .650-4000 kbps

• Matrix size: 0-4096 data words

• Matrix dimensions: 1-255 rows and 2-255 columns

• Frame sync words: 1 or 2, 16-bit words

• Encoding: RNRZ-L or BiPhase-L

• Analog inputs: 32

• Analog acquisition: adjustable, 2.75 µseconds or greater

• Digital lines: 32, configured as input or output in groups of 8

• Digital input function: 8-bit parallel, synchronous serial, or time event

• Digital output function: synchronous serial controls

• Asynchronous serial input: 2400-115200 baud
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• Backplane input: 255 channels

The SLP/FPP FPGA design provides a template that could be used to speed the

development of future science boards to be used in conjunction with LCTE. Although

much of the FPGA design is specific to the SLP/FPP project, other designs could be

developed using the same backplane modules and ideas implemented in this design. A

great deal of effort was put into the Tropical Storm SLP/FPP design to simplify and

localize the changes necessary to use the design in future SLP/FPP experiments. In any

case, the methods used in this design to implement backplane communication have been

tested and found to function efficiently. Using these components in new science boards

could save days, or possibly even weeks, of design time.

5.2 Next Steps

When considering future possibilities for LCTE, there are countless modifications and

upgrades that could be made to make LCTE more suitable for different applications.

Thinking of different scenarios, there are three main points which I think would have the

greatest benefit for the system.

First, the sacrifice of separate sampling and telemetry matrices was a great one. Sep-

arate matrices further simplify LCTE operation by making it easy to setup sampling at

fixed rates (which is usually desirable) even when dealing with a difficult telemetry matrix.

Faster access speeds to more memory can provide a solution that offers separate matrices.

The ACEX1K FPGA currently used in the design has 49,152 memory bits. The phase

three design uses these all of these bits to hold a copy of the telemetry matrix within

the FPGA. The Cyclone FPGA used on the Tropical Storm SLP/FPP board has 239,616

memory bits, nearly five times the amount of the ACEX1K. Using a newer FPGA, such

as the Cyclone, in the design would provide sufficient memory with fast enough access

speeds to implement the separate matrices. Unfortunately, using a new FPGA would most

likely require a new PCB layout. Besides a new PCB layout, the PC GUI, the microcon-

troller firmware, and the FPGA firmware would need modifications. The original phase
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two versions of these softwares which already implemented separate matrices would only

need slight modification to accomplish the new design. The only differences would be

that the sampling LUT would need to be copied from the microcontroller flash memory to

the extra memory in the newer FPGA on startup (just as it is in the phase three design

implementing a single telemetry matrix). Then, rather than sending an interrupt to the

microcontroller every word period to obtain the next entry in the sampling LUT, the entry

could be read directly from the FPGA memory.

Secondly, more options for the backplane itself still exist. One possible minor mod-

ification would be to combine the backplane address and data busses into a single bus.

This would increase complexity on both ends of the backplane communication but could

free seven backplane pins. Currently there are twelve unused pins in addition to five ma-

trix synchronization signals available on the backplane. Using these available pins and

synchronization signals, other types of backplane communication could be developed that

may better suit other types of data acquisition boards. New types of backplane commu-

nication would require modification of the PC GUI to generate new channel select codes.

Also new modules would need to be added to the DATCONTROLLER block of the FPGA

design to control and read the additional backplane interfaces. It may also be beneficial

to set aside a few of the backplane lines as control signal lines. Any of the 32 digital

input/output lines can easily be connected to spare lines in the backplane by modifying

the LCTE FPGA firmware. Formal ways of making the connections using the PC GUI

could be developed. Specific to the Tropical Storm mission, two digital input lines are

forwarded to the backplane connector to indicate to the science boards when the rocket

motor and payload separation occur. Also specific to Tropical Storm, was the concern that

the FPGAs would overload the DC/DC convertors on the power board upon powering up

at the same time. Two more backplane lines were set aside so that LCTE could control

the power-up sequence of the science boards if needed. No modifications to LCTE have

been made to implement the power-up sequence, but as technology advances and parts

with higher power requirements are used, a power-up sequence may prove to be a very

useful feature.
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Third, one option that has already been discussed is the ability to output the non-

encoded telemetry stream through one of the digital output lines. This would allow any

digital input device with sufficient data rates to receive the telemetry stream. This is

a much more cost-effective solution allowing use of the telemetry stream for debugging

and calibration without purchasing bit-sync and decommutation equipment (Either stand-

alone equipment or PCI equipment for a PC). Modifying the FPGA firmware would be a

quick way to patch the design, however that would require programming the FGPA with

the modified firmware, and then reprogramming with the released firmware when normal

operation was desired. A much better solution would include modifying the PC GUI to

include the telemetry stream as one of the selectable digital output options. This solution

would require a new revision of the FPGA firmware, but it would only be a slight variation

from the current firmware.

Currently the LCTE system offers a flexible and relatively cheap solution suitable for

many applications. The phase three design effort has successfully accomplished its goal

of extending the capability of LCTE to include backplane communication. During work

on the phase three design, the system was refined, reworked, and improved to provide a

reliable, expandable solution that continues to meet, and in some cases exceed, NSROC’s

expectations.
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