

i

File Transfer between SD Memory Card and USB

Flash Drive through UART PIC Interfacing with

Mass Storage Device Controller

by

Meryl Anne Filomena B. Coching

Kristine Doctor

Francis Mark V. Evangelista

Lynda Clarissa C. Santos

A Thesis Report Submitted to the School of Electrical Engineering,

Electronics Engineering, and Computer Engineering in Partial

Fulfillment of the requirements for the degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology

December 2011

ii

iii

ACKNOWLEDGEMENT

This study would not have been possible without the people who supported and

helped us. First of all, we would like to thank Engr. IsaganiVillamor, our thesis adviser, for

helping, guiding and giving us valuable advices. He imparted us his knowledge and expertise

for the completion of this study. We give our deepest gratitude to our parents for

continuously supporting and inspiring us to our long journey. To all of our closest friends and

love ones for giving us emotional care and camaraderie that helped us get through difficult

times. We would also like to thank our panel members and instructor Engr. Jerry Turingan,

Engr. Dionis Padilla and Engr. AyraPanganiban for giving us recommendations and

corrections to improve this study. Lastly, to the Almighty God for providing us the strength,

knowledge and willpower to finish this study.

iv

TABLE OF CONTENTS

TITLE PAGE i

APPROVAL PAGE ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT viii

Chapter 1: INTRODUCTION 1

Chapter 2: REVIEW OF RELATED LITERATURE 5

Implementation of a USB Slave To Slave File Transfer Device Using

Microcontroller 5

Interfacing To an MMC or SD Card via SPI 6

Elements of a Transfer 8

Embedded Universal Serial Bus Host 8

Bus Speeds 9

Chapter 3: FILE TRANSFER BETWEEN SD MEMORY CARD AND USB FLASH

DRIVE THROUGH UART PIC INTERFACING WITH MASS STORAGE

DEVICE CONTROLLER

 Abstract 11

 Introduction 11

 Methodology 15

 Results and Discussion 25

 Conclusion 30

v

 References 31

Chapter 4: CONCLUSION 33

Chapter 5: RECOMMENDATION 35

REFERENCES 37

APPENDICES 38

 Appendix A 38

 Appendix B 49

 Appendix C 50

 Appendix D 51

vi

LIST OF TABLES

Table 3.1: Single File Copy Test 21

Table 3.2: File Accuracy (from SD Memory Card to USB Flash Drive) 21

Table 3.3: File Accuracy (from USB Flash Drive to SD Memory Card) 22

Table 3.4: File Accuracy Percentage using MD-5 Checksum

(from SD Memory Card to USB Flash Drive) 26

Table 3.5: File Accuracy Percentage using MD-5 Checksum

(from USB Flash Drive to SD Memory Card) 27

vii

LIST OF FIGURES

Figure 1.1 Comparison of Prices of Microcontrollers used 2

Figure 2.1: System Setup 6

Figure 2.2: General Block Diagram 6

Figure 2.3: Connection Schematic for the MMC/SD card socket 7

Figure 2.4: A USB 2.0 hub uses high speed whenever possible,

switching to low and full speeds when necessary 8

Figure 2.5: To access generic USB mass-storage devices, an embedded

system must contain a USB host controller, which can be

on a separate chip or embedded in a microcontroller. 9

Figure 3.1: Methodology Flow Chart 15

Figure 3.2: Conceptual Diagram 16

Figure 3.3: Schematic Diagram of the main device 17

Figure 3.4 Program Flow Chart – Main() 18

Figure 3.5 Program Flow Chart – Home() and Copy() 19

Figure 3.6 Program Flow Chart – Cin() 19

Figure 3.6 Program Flow Chart – initAll() and Command() 20

Figure 3.7 File Accuracy Test Results from USB Slave to Slave File Transfer Device 24

viii

ABSTRACT

Flash memories like SD Memory card and USB Flash drive are widely used

nowadays. However, transferring files within those storage devices cannot be done

without the aid of desktop computers, laptop, etc. This paper presents the research and

development of a device as an alternative to computers in transferring files between a

USB Flash Drive and SD Memory Card. A mass storage device controller together with a

microcontroller was used to initiate the operation of the device with a maximum capacity

of 4 GB in the USB Flash Drive and 4 GB Memory Card. The study began by

constructing the main device down to its testing part in which the integrity and accuracy

of files were considered. T-test was used as a statistical method to determine whether the

difference between two proportions; that is the file accuracy of transferring file from the

device and from the device of the previous research is significant in the Implementation

of a USB Slave to Slave File Transfer Device Using Microcontrollers. Though some

errors were produced in the testing process, the final result stated that there was no

significant difference between the file transfer accuracy of the device and the previous

study.

Keywords: USB Flash Drive, SD Memory Card, USB Embedded Host Controller,

UART, File Transfer.

1

Chapter 1

INTRODUCTION

Portability and mobility of storage devices like flash drives and memory cards are

becoming so popular to carry and transport data on the go. Unlike CD/DVD, hard drive,

floppy disk or tape drive, a flash memory has no moving parts, so it guarantees fast

read/write speeds and more durable compared to other forms of storage media. Flash memory

does not follow a standard form factor, so it can be designed or shaped depending on what

the customer wants. Using a flash drive/memory card to transfer a file typically uses a

computer (e.g. laptop, pc, netbook or tablet) to initialize mass storage communication which

is not portable. Although a memory card is used in mobile phones withtheir diminutive sizes,

it limits another memory card type of larger size to host them. Additionally, mobile phones

cannot host a flash drive and memory card at the same time to transfer data. The proposed

system bridges the gap of flash drive to memory card data transfer when a computer is not at

hand. Moreover, booting a computer just to transfer a file/s brings annoyance.

 In an earlier research, an embedded system is used wherein a slave to slave flash

drive transfer makes it possible to transfer file/s using a programmable microcontroller with

USB multi-role embedded host/peripheral controller and navigation control. This makes it

possible to transfer data from a flash drive to another flash drive with 100% data integrity

using MD5 checksum algorithm. That research also benchmarks the speed of data transfer

depending on the size of the file and the depth of the file location in a folder. The device

2

consumes a small amount of power only, has low memory footprint and less resources are

utilized.

 The research project being proposed in this study addresses the problem of flash drive

to flash drive transfer without the use of a computer. The transfer of data between flash drive

and memory card is not included. This study focuses on a design that is inexpensive and can

readily be implemented without the use of a computer. Figure 1.1 shows the comparison of

prices for the microcontrollers used by the previous research and the proposed system.

Figure 1.1 Comparison of Prices of Microcontrollers used

It can be shown that PIC18F458, the one that was used in the previous research costs

more than the microcontroller that will be used in this research project, which is

PIC18F4550. The previous researchers used 20x4 Liquid Crystal Display (LCD) screen

which is larger than the size of the screen that will be used in the device and therefore it will

not be as expensive as the device used in the previous research.

It is important to note that the speed of data transfer is slow compared to a computer

due to the host controller used which is USB 2.0 full speed. Theoretically, if the host

microcontroller used follows the USB 2.0 high speed standard, the speed of data transfer

should be much faster than the computer since there is no associated overhead in the bus

compared to the computer.

The main objective of this study is to develop a device that can transfer files from

flash drive to memory card and vice versa. Specific objectives include the following: to

3

create an interface that will list all the file/s or folder/s in the current directory,to make sure

that the user has the ability to navigate through it using the buttons; to have a successful file

transfer between flash drive and memory card; and to determine whether there is a significant

difference between the file accuracy of transferring file from USB Flash Drive to SD

Memory Card or vice versa used in the present study and that of the previous study.Since

there is only one display, the user can choose if he/she wants to see the contents of the flash

drive or the memory card only. The compatibility between the flash drive and the memory

card will depend on the capacity, standard used and additional features added by the

manufacturer such as creating additional encrypted partition. The design is an extension of

the previous research but of different implementation. The device should handle all file

formats since it will not deal with the content of the file but rather its existence on the

physical medium. However, it is important to mention that the study will concentrate on the

integrity of the data copied. The user’s ability to transfer data between flash drive and

memory card in a small devicecan reduce the utilization of computer which translates into

saving power and resources. Additionally, it uses less amount of carbon footprint because of

low heat emission and only uses portable electricity.The device emits low heat in such a way

that it does not require that high amount of electricity, which produces heat whenever it

functions. Also, compared to the computers used in transferring files between a USB flash

drive and a memory card, the device has lesser components than the first. The device is said

to use portable electricity in such a way that the device only uses 5V source of power which

is low compared to other computers such as laptops which uses 15V to 20V. The device can

also be battery operated. A portable embedded system capable of transferring data can save

unexpected circumstances such as no electricity or no computer availability. It can be also

4

interfaced with other designs provided that they have a common port to transmit data. The

key importance of this design is to show how powerful an embedded system can be in

specific applications wherein it keeps the cost at minimum due to its use of limited resources.

The device is capable of transferring data to and from the Secure Digital card and

Universal Serial Bus disk. It supports only File Allocation Table (FAT/FAT32) file system to

be able to access data. Since the memory card slot is Secure Digital compliant, it can mount

other memory card/s that can be plugged via SD adapter. However, this is not covered by the

study. Some SD type memory cards such as Secure Digital High Capacity (SDHC) and

Secure Digital Extended Capacity (SDXC) are newer standards which are not supported by

the device. Only flash drive/s with total space of 4.0 Gigabyte can be plugged on the USB

port that conforms to USB 2.0 standard while external hard drives are not supported due to

their high power requirements. The device will have LCD and directional buttons for

file/folder navigation, as well as another button to show the available options. Copy, paste,

delete and auto-replace of file only are supported due to time constraints in the development

and the file name follows the 8.3 convention.

5

Chapter 2

REVIEW OF RELATED LITERATURE

Implementation of a USB Slave To Slave File Transfer Device Using Microcontrollers

A thesis study entitled “Implementation of a USB Slave to Slave File Transfer

Device” by Mark Alvin U. Chua, Charles D. Jorge, Ana Marian M. Pedro, Brian Emmanuel

G. Tam, and Gregory G. Cu is about developing a device that copies and transfers file from

one flash drive to another flash drive using the USB 1.1 interface without the need for a

Personal Computer (PC) to act as mediator. Figure 2.1 shows the system setup while Figure

2.2 shows the general block diagram of the system. Contents of the flash drives are displayed

in their 8.3 filename format through a twenty character by four lines - sized dot-matrix

character liquid crystal display (LCD). The system is also able to check for identical

file/folder/directory names and requests for a user confirmation to either proceed and

overwrite a file/folder/directory or not. In addition, the system is able to check if there is a

sufficient memory space for the file/folder/directory to be copied onto the destination flash

drive; if not, the system requests the user to delete some files or folder/directories to free

some memory in the destination flash drive.

The system uses the Cypress CY7C67300, a programmable microcontroller and USB

multi-role embedded host/peripheral controller, which has its own Basic Input/Output

System and Framework program.

6

Fig. 2.1 System Setup

Fig. 2.2 General Block Diagram

Interfacing To an MMC or SD Card via SPI

Cyan Technology wrote an article entitled “Interfacing to an MMC or SD Card via

SPI”. The article discusses that MMC card and the SD card are flash memory storage based

devices. Both card types support proprietary data transfer protocols using four data bits, and

are compatible though they have different initialisation. The major difference is that the SD

 7

card is designed to provide optional security by allowing encryption of the device contents.

The MMC card supports additional bus widths (up to 8 bits). The SD card also supports

several modes that are not present in the MMC card, including SDIO (secure digital

input/output) that can be used as an external communications interface using the standard SD

card format.

The application is based on the use of an MMC/SD card interface daughter board,

connected to the eCOG1k evaluation board. The daughter board contains a card socket, as

well as the necessary connections for monitoring and control. Figure 2.3 shows the schematic

of the daughter board, including eCOG1k specific connections.

Figure 2.3 Connection Schematic for the MMC/SD card socket

8

Elements of a Transfer

 According to Jan Axelson, who wrote the book entitled “USB COMPLETE Second

Edition”, the elements of transferring data consist of the following (Please refer to Figure

2.4). All bus traffic travels to or from a device endpoint. The endpoint is a buffer that stores

multiple bytes. Typically, the endpoint is a block of data memory or a register in the

controller chip. The data stored at an endpoint may be received data or data waiting to

transmit. The host also has buffers that hold received data and data waiting to transmit, but

the host does not have endpoints. Instead, the host serves as the start and finish for

communications with device endpoints.

Figure 2.4 A USB 2.0 hub uses high speed whenever possible, switching to low and full

speeds when necessary

Embedded Universal Serial Bus Host

A USB host controller is needed to access such USB storage devices. An embedded

system that functions as a USB host for flash drives requires the following hardware (Figure

 9

2.5). A microcontroller or intelligent hardware is required to manage the embedded system’s

operation. A USB host controller, which can be embedded in a microcontroller chip or on a

separate chip that interfaces to the CPU, microcontroller, or other intelligent hardware, is

needed. A flash drive is connected to a USB port on the host (Axelson, 2006).

The host manages the flow of data on the bus. Multiple peripherals may want to

transfer data at the same time. The host controller divides the available time into segments

called frames (on a full-speed host) or microframes (on a high-speed host). The host gives

each transmission a portion of a frame or microframe. A frame is 1 millisecond; a

microframe is 125 microseconds.

Figure 2.5 To access generic USB mass-storage devices, an embedded system must contain

a USB host controller, which can be on a separate chip or embedded in a microcontroller.

Bus Speeds

 The USB 2.0 specification defines three bus speeds: high speed at 480 Mbps, full

speed at 12 Mbps and low speed at 1.5 Mbps. In addition to data, the bus carries status,

10

control and error-checking signals. All peripherals share the bus, so the data throughput is

always less than the bit rate on the bus. In theory, on an otherwise idle bus, a full-speed

device can transfer just over 1.2 MBps and a high-speed device can transfer more than 53

MBps. The actual rate of data transfer varies depending on the efficiency of the host’s and

device’s programming, how busy the bus is, and hardware capabilities of the host and drive.

 A review of the literature shows that there had been studies on host controller

devices, storage controllers, and file transfer using embedded systems. However, these

studies show that there is no existing system similar to this study. Existing studies only

transfer files of both USB flash drive and no study existsin managing file between different

devices like SD memory card and USB flash drive.

11

Chapter 3

FILE TRANSFER BETWEEN SD MEMORY CARD AND USB FLASH DRIVE

THROUGH UART PIC INTERFACING WITH MASS STORAGE DEVICE

CONTROLLER

Abstract

Flash memories like SD Memory card and USB Flash drive are widely used

nowadays. However, transferring files within those storage devices cannot be done without

the aid of desktop computers, laptop, etc. This paper presents the research and development

of a device as an alternative to computers in transferring files between a USB Flash Drive

and SD Memory Card. A mass storage device controller together with a microcontroller was

used to initiate the operation of the device with a maximum capacity of 4 GB in the USB

Flash Drive and 4 GB Memory Card. The study beganby constructing the main device down

to its testing part in which the integrity and accuracy of files were considered. T-test was

used as a statistical method to determine whether the difference between two proportions;

that is the file accuracy of transferring file from the device and from the device of the

previous research is significant in the Implementation of a USB Slave to Slave File Transfer

Device Using Microcontrollers. Though some errors were produced in the testing process,

the final result stated that there was no significant difference between the file transfer

accuracy of the device and the previous study.

Keywords: USB Flash Drive, SD Memory Card, USB Embedded Host Controller,

UART, File Transfer.

Introduction

Portability and mobility of storage devices like flash drives and memory cards are

becoming so popular to carry and transport data on the go. Unlike CD/DVD, hard drive,

floppy disk or tape drive, a flash memory has no moving parts, so it guarantees fast

read/write speeds and more durable compared to other forms of storage media. Flash memory

does not follow a standard form factor, so it can be designed or shaped depending on what

the customer wants. Using a flash drive/memory card to transfer a file typically uses a

computer (e.g. laptop, pc, netbook or tablet) to initialize mass storage communication which

is not portable. Although a memory card is used in mobile phones withtheir diminutive sizes,

 12

it limits another memory card type of larger size to host them. Additionally, mobile phones

cannot host a flash drive and memory card at the same time to transfer data. The proposed

system bridges the gap of flash drive to memory card data transfer when a computer is not at

hand. Moreover, booting a computer just to transfer a file/s brings annoyance.

 In an earlier research, an embedded system is used wherein a slave to slave flash

drive transfer makes it possible to transfer file/s using a programmable microcontroller with

USB multi-role embedded host/peripheral controller and navigation control. This makes it

possible to transfer data from a flash drive to another flash drive with 100% data integrity

using MD5 checksum algorithm. That research also benchmarks the speed of data transfer

depending on the size of the file and the depth of the file location in a folder. The device

consumes a small amount of power only, has low memory footprint and less resources are

utilized.

 The research project being proposed in this study addresses the problem of flash drive

to flash drive transfer without the use of a computer. The transfer of data between flash drive

and memory card is not included. This study focuses on a design that is inexpensive and can

readily be implemented without the use of a computer. Figure 1.1 shows the comparison of

prices for the microcontrollers used by the previous research and the proposed system.

Figure 1.1 Comparison of Prices of Microcontrollers used

13

It can be shown that PIC18F458, the one that was used in the previous research costs

more than the microcontroller that will be used in this research project, which is

PIC18F4550. The previous researchers used 20x4 Liquid Crystal Display (LCD) screen

which is larger than the size of the screen that will be used in the device and therefore it will

not be as expensive as the device used in the previous research.

It is important to note that the speed of data transfer is slow compared to a computer

due to the host controller used which is USB 2.0 full speed. Theoretically, if the host

microcontroller used follows the USB 2.0 high speed standard, the speed of data transfer

should be much faster than the computer since there is no associated overhead in the bus

compared to the computer.

The main objective of this study is to develop a device that can transfer files from

flash drive to memory card and vice versa. Specific objectives include the following: to

create an interface that will list all the file/s or folder/s in the current directory, to make sure

that the user has the ability to navigate through it using the buttons; to have a successful file

transfer between flash drive and memory card; and to determine whether there is a significant

difference between the file accuracy of transferring file from USB Flash Drive to SD

Memory Card or vice versa used in the present study and that of the previous study.Since

there is only one display, the user can choose if he/she wants to see the contents of the flash

drive or the memory card only. The compatibility between the flash drive and the memory

card will depend on the capacity, standard used and additional features added by the

manufacturer such as creating additional encrypted partition. The design is an extension of

the previous research but of different implementation. The device should handle all file

formats since it will not deal with the content of the file but rather its existence on the

 14

physical medium. However, it is important to mention that the study will concentrate on the

integrity of the data copied. The user’s ability to transfer data between flash drive and

memory card in a small devicecan reduce the utilization of computer which translates into

saving power and resources. Additionally, it uses less amount of carbon footprint because of

low heat emission and only uses portable electricity.The device emits low heat in such a way

that it does not require that high amount of electricity, which produces heat whenever it

functions. Also, compared to the computers used in transferring files between a USB flash

drive and a memory card, the device has lesser components than the first. The device is said

to use portable electricity in such a way that the device only uses 5V source of power which

is low compared to other computers such as laptops which uses 15V to 20V. The device can

also be battery operated. A portable embedded system capable of transferring data can save

unexpected circumstances such as no electricity or no computer availability. It can be also

interfaced with other designs provided that they have a common port to transmit data. The

key importance of this design is to show how powerful an embedded system can be in

specific applications wherein it keeps the cost at minimum due to its use of limited resources.

The device is capable of transferring data to and from the Secure Digital card and

Universal Serial Bus disk. It supports only File Allocation Table (FAT/FAT32) file system to

be able to access data. Since the memory card slot is Secure Digital compliant, it can mount

other memory card/s that can be plugged via SD adapter. However, this is not covered by the

study. Some SD type memory cards such as Secure Digital High Capacity (SDHC) and

Secure Digital Extended Capacity (SDXC) are newer standards which are not supported by

the device. Only flash drive/s with total space of 4.0 Gigabyte can be plugged on the USB

port that conforms to USB 2.0 standard while external hard drives are not supported due to

15

their high power requirements. The device will have LCD and directional buttons for

file/folder navigation, as well as another button to show the available options. Copy, paste,

delete and auto-replace of file only are supported due to time constraints in the development

and the file name follows the 8.3 convention.

Methodology

Figure 3.1 Methodology Flow Chart

The methodology in this study is summarized through a flow chart shown in Figure

3.1 and is followed with a detailed discussion for each method in order to meet the desired

objectives.

 16

A conceptual diagram is created by the researchers in order to visualize the main

device to be made and also its functions. A study is conducted for the suitable materials

needed to build the system. The conceptual diagram shown in Figure 3.2 includes the system

design necessary in the hardware and software integration.

 Figure 3.2 Conceptual Diagram

To be able to transfer file/s between a USB Flash Drive and an SD Memory Card, a

device will be developed using a Mass Storage Device Controller and a microcontroller. The

USB Device or Host Controller has built-in commands and file system support, particularly a

FAT file system, which will be utilized to aid the file transfer. The microcontroller will be

programmed and will be responsible for reading and writing files in a flash memory or flash

drive. Specifically, the PIC18F4550 microcontroller will access the said host hardware

controller via an asynchronous serial (UART) port. In UART mode, UART_TX pin is used

to send data/responses to the microcontroller and UART_RX pin to receive commands/data

from the microcontroller. The said two pins will be connected to the TX and RX UART pins

of PIC18F4550 respectively. The command set provided by the mass storage host controller

17

will be parsed by the microcontroller using C language. To make the device portable, a 9V

battery supply to be regulated into 6V will be used. A schematic diagram shown in Figure 3.3

is simulated to come up with the desired output.

Figure 3.3 Schematic Diagram of the main device

The user interface will be connected to the host controller and PIC microcontroller,

and will serve as the main component in which the user can view the file/s inside the flash

drive and memory card. It will consist of a 4x20 Liquid Crystal Display (LCD), and buttons

for selection. The PIC will accept inputs from the user through buttons and the PIC will

determine what button is pressed to perform functions and processes that are needed. When a

file has been successfully copied or transferred from one storage device to another, an

indication will be displayed on the screen which confirms that the file is done copying.

U1

G
N
D

V
C
C

C
V

R
S
R
W

E D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

Next

V1
9 V

5V
LM7806KC

LINE VREG

COMMON

VOLTAGE

8Mhz

15pF

15pF

10kΩ

10kΩ

10kΩ

10kΩ

Prev

Cancel

12

Options/Ok

VCC

5V

USBWiz1

RX
TX

Mode0
Mode1
-
+
CTS

1kΩ

1kΩ

 18

The program flow chart for different subroutines for the PIC microcontroller in the

following figures below shows the process in responding to the user activity, specifically in

the file management between the SD Memory Card and USB Flash Drive.

Figure 3.4 Program Flow Chart – Main()

Main()

initAll()

Home()

Display Menu.
Input Menu Choice.

choice==1?
Y

N

clrscr()

Command(“FM S”)
Initialize SD Files

Command(“FM 1”)
Initialize Flash Files

choice=Cin(2)

Wait for input
from button

While not option
button

Choice=cin(3)

Display
option
choices

checkIfFolder()

Delete? Copy?

Copy()Delete()

Paste?

Paste()

If Folder and
Open folder?

OpenFolder()

End

Next Button Previous Button

Get Next File Get Previous File

Y

N

Y Y Y Y

N

N

N

Y

N

Y

19

Home()

Display "Open USB Mem Files"
Display "Open SD Mem Files"

Display *CDES*

Return

Delete()

Write Serially the “DF” and “CR”

clrscr()

Return

Copy()

Is there a copy
in memory?

Clear previous
copied file

Write serially the
command to host

controller for copy

Return

Figure 3.5 Program Flow Chart – Home() and Copy()

Cin(char maxIndex)

char isCancel = 0, isOk
= 0;

char input=1;

While !isCancel or
!isOk

Previous Button?
Y

input--

input==0

input=maxIndex

Next Button?

Y

N

Y

Input++

Input>maxIndex

Input=1

Ok Button?

Y

N

isOk=1

Cancel Button?

isCancel=1

N

Y Y

Get Input from
Button

Return input

N N

Y

Input=0

N

Figure 3.6 Program Flow Chart – Cin()

20

initAll()

TRISB = 0;
 TRISC = 0x07;
 TRISD = 0x01;

 PORTB = 0;

Call predefined
functions for LCD

clrscr()

Return

Command(char* command)

Write serially the
command to host

controller

Return

Paste()

Does the user did
copy?

Write serially the
command to host

controller for paste

“Do copy First”

Y

N

Return

Figure 3.6 Program Flow Chart – initAll() and Command()

A transfer transaction is considered successful if, for a single file copy, the file has

been copied completely. For folder copy, all the contents within the folder/directory

concerned are copied completely; and this includes sub-folders and files within the folders to

be copied. Testing the accuracy of a file or folder transfer is a means of testing the integrity

of the written data in a USB flash drive or SD memory card. An experiment should be

conducted in order to determine the file accuracy percentage by taking the ratio of the size of

the successfully transferred file and the original file size in bytes. The Message Digest

Algorithm-5 (MD5) will also be usedto verify data integrity through the creation of a 128-bit

message digest from data input (which may be a message of any length) that is claimed to be

as unique to that specific data as a fingerprint is to the specific individual.

 21

Before the accuracy test, the information about the sample files to be copied must be

gathered first. For the single file copy test, Table 3.1 summarizes the different information

such as the individual file name, file name extension and the file size in bytes to be copied.

Note that 15 sample files will be tested and copied from a 4 GB USB Flash Drive to a 4 GB

SD Memory Card and 15 samples also from 4 GB SD Memory Card to a 4 GB USB Flash

Drive, for a total of 30 samples.

Table 3.1 Single File Copy Test

File Name

File Extension

File Size in Bytes

1. File1 pka 85KB

2. File2 txt 1KB

3. File3 mp3 5,546KB

4. File4 exe 1,386KB

5. File5 xls 46KB

6. File6 docx 1,255KB

7. File7 bmp 2,903KB

8. File8 cache 8KB

9. File9 rar 4,365KB

10. File10 jpg 5,652KB

11. File11 exe 7,925KB

12. File12 pptx 302KB

13. File13 exe 3,783KB

14. File14 pdf 2,045KB

15. File15 avi 6,384KB

 After the information has been gathered, the file accuracy test is next. Table 3.2

summarizes the file accuracy test results when files are being copied from a 4 GB SD

Memory Card to a 4 GB USB Flash Drive.

Table 3.2 File Accuracy (from SD Memory Card to USB Flash Drive)

File Name File Extension File Size in

Kbytes

Transfer Speed Accuracy

1. File1 pka 85KB

2. File2 txt 1KB

22

3. File3 mp3 5,546KB

4. File4 exe 1,386KB

5. File5 xls 46KB

6. File6 docx 1,255KB

7. File7 bmp 2,903KB

8. File8 cache 8KB

9. File9 rar 4,365KB

10. File10 jpg 5,652KB

11. File11 exe 7,925KB

12. File12 pptx 302KB

13. File13 exe 3,783KB

14. File14 pdf 2,045KB

15. File15 avi 6,384KB

On the other hand, Table 3.3 summarizes the file accuracy test results when files are

being copied from a 4 GB Flash Drive to a 4 GB SD Memory Card. Note that the same files

will be copied and for the purpose of testing, those files inside the Flash Drive that were

copied during the previous test will be erased first to avoid overwriting of files and to give

way to the next test.

Table 3.3 File Accuracy (from USB Flash Drive to SD Memory Card)

File Name File Extension File Size in

Bytes

Transfer Speed Accuracy

1. File1 pka 85KB

2. File2 txt 1KB

3. File3 mp3 5,546KB

4. File4 exe 1,386KB

5. File5 xls 46KB

6. File6 docx 1,255KB

7. File7 bmp 2,903KB

8. File8 cache 8KB

9. File9 rar 4,365KB

10. File10 jpg 5,652KB

11. File11 exe 7,925KB

12. File12 pptx 302KB

13. File13 exe 3,783KB

14. File14 pdf 2,045KB

15. File15 avi 6,384KB

 23

However, it is worthwhile to note that the accuracy of transferring files between a SD

Memory Card and a USB Flash Drive cannot be assured to be a hundred percent accurate due

to several factors.

The accuracy results of Tables 3.2 and Tables 3.3 will then be compared individually

with the past research in which a USB Slave to Slave File Transfer Device shown in Figure

3.5 is used and tested its file accuracy. The statistical treatment to be used is the two-

proportion or the so called two-sample t-test. This test procedure will be made to determine

whether the difference between two proportions; that is the file accuracy of transferring file

from the device and from the previous research is significant. It would also verify if same

actual files are copied and transferred directly from whichever source and destination, be it

USB Flash Drive of SD Memory Card. Therefore, two kinds of statistically treated tests are

expected at the end of this chapter; the first one will compare if the file accuracy of

transferring file/s from SD Memory card to USB Flash Drive and from the previous research

is significant. The second test will compare if the file accuracy of transferring file/s from

USB Flash Drive to SD Memory card, used in the present study and from the previous

research is significant

The two-sample t-test begins by stating the null and alternative hypothesis. In this

case, the null hypothesis states that there is no difference between the two population

proportions. Therefore, the null and alternative hypotheses will be stated in the following

form.

H0: P1 = P2

Ha: P1 ≠ P2

24

The next step will be stating the rejection criteria, starting with the degrees of

freedom (df) wherein the formula is stated to be the sum of the samples in both groups minus

2 (df) = (n1+n2)-2. In this case, df is defined to be (15+12)-2=25. Note that the sample size

n1 is the sample size from Table 3.2 wherein the sizes are tested from the accuracy results

from SD Memory Card to USB Flash Drive. On the other hand, n2 will be obtained from the

accuracy results of the previous research wherein its sample size is equal to 12.

Figure 3.7File Accuracy Test Results from USB Slave to Slave File Transfer Device

 The next step is to determine the level of confidence – alpha. The t-distribution table

is used to determine the critical value in order to get the level of confidence for a two-tailed t-

test. In this case, the level of confidence for a degree of freedom equal to 25 is Alpha.05,

with a critical value tcv= 2.060 (See Appendix).

The next step is to compute for the standard error (SE) of the sampling distribution

difference between two proportions.

 25

where n1 is the size of Table 3.2, and n2 is the size of Figure 3.5. is the variance computed

in sample 1 and is the variance computed in sample 2. The

variance is computed using the formula,

where X is the accuracy percentage of each file, M is the mean or the average accuracy

percentage of each sample and N is the number of scores in each sample.

 Lastly, the t-ratio is computed using the formula, Write the t-ratio formula, t =

(mean1 - mean2) / sqrt((variance1 / size of sample1) + (variance2 / size of sample2)) or

If the t-value is greater than the critical value 2.060, the Null Hypothesis will be

rejected and say that the two samples have the difference. Otherwise, a significant difference

is not found and fails to reject the Null Hypothesis.

Results and Discussion

 In performing the MD-5 checksum algorithm for both file transfer between USB

Flash Drive and SD Memory Card, a table is created to gather the data such as the file name

and extension of the sample files, and the source and destination’s (from USB Flash Drive to

26

SD Memory Card or vice versa) actual checksums. Another column is added to compute for

the accuracy percentage per file transfer. In this case, the computation is based on the ratio of

the 32-hexadecimal numbers of the destination from the source.

 Table 3.4 summarizes the data gathered in testing the file accuracy from SD Memory

Card to USB Flash Drive. Based from the results obtained, some file transfers were not

successfully established. Specifically, the destination checksum of file1.pka is different from

its source by 3 hexadecimal numbers. Same is through with file4.exe and file14.pdf lastly, for

file15, in which an error occurred during the file transfer and therefore, no destination

checksum was made. The file accuracy percentage for each field is 100% if the source is

equal to the destination. In the case of the three files that yield to different results other than

that, the computation using the file accuracy percentage formula is done.

Table 3.4 File Accuracy Percentage using MD-5 Checksum (from SD Memory Card to USB

Flash Drive)

File

Name

Source

(MD5)

Destination

(MD5)

Accuracy

File1.pka b7ca1cc671e70c0cd350833e

2b22e1f3

b7ca1cc671e10a2cd350833e

2b22e1f3

90.625%

File2.txt 88fcc62dbc58d1f4b3fa8dedb

b6aaf38

88fcc62dbc58d1f4b3fa8ded

bb6aaf38

100%

File3.mp3 6418464099797641232d7dd

c9a96b6ee

6418464099797641232d7dd

c9a96b6ee

100%

File4.exe c7722c4ec4fc3ac818658ef00

a49e2b4

c7722c4eca3dbad818658ef0

0a49e2b4

81.25%

File5.xls 13ae3a6a1db81cfcef570d0a2

4ea09e2

13ae3a6a1db81cfcef570d0a

24ea09e2

100%

File6.docx f59cb7d6c15ffe465a76c1b01

66f772c

f59cb7d6c15ffe465a76c1b0

166f772c

100%

File7.bmp 033d47aab079aa403f96f033c

78eb5ec

033d47aab079aa403f96f033

c78eb5ec

100%

File8.cache c8221439a4d15092bc29f0f0

7909fef7

c8221439a4d15092bc29f0f0

7909fef7

100%

File9.rar 5d84e04b9c11f600e9daaae7

4dec0b9d

5d84e04b9c11f600e9daaae7

4dec0b9d

100%

 27

File10.jpg f417634ec8dbfa3fb6c57c36a

614398d

f417634ec8dbfa3fb6c57c36a

614398d

100%

File11.exe 30be90d08f03a4a749f661b2

efaf01ec

30be90d08f03a4a749f661b2

efaf01ec

100%

File12.pptx 02e3ac32137dd06b10df59b4

46885fec

02e3ac32137dd06b10df59b4

46885fec

100%

File13.exe 3a9500a528286d773309bc1d

21d91469

3a9500a528286d773309bc1

d21d91469

100%

File14.pdf c7722c4ec4fc3ac818658ef00

a49e2b4

c7722c4ec4fc3ac818658efaa

a83f7c4

71.875%

File15.avi a115b7bb3d272fb148e1fb75

85ffd806

---- 0%

 On the other hand, Table 3.6 summarizes the file accuracy percentage from USB

Flash Drive to SD Memory Card. Based from the results in the table; the checksum of the

source is equal to that of the destination for all file transfer operations. Therefore, the

accuracy percentage for all files being transferred from USB Flash Drive to SD Memory

Card is 100%.

Table 3.5 File Accuracy Percentage using MD-5 Checksum (from USB Flash Drive to SD

Memory Card)

File

Name

Source

(MD5)

Destination

(MD5)

Accuracy

File1.pka b7ca1cc671e70c0cd350833e

2b22e1f3

b7ca1cc671e70c0cd350833e

2b22e1f3

100%

File2.txt 88fcc62dbc58d1f4b3fa8dedb

b6aaf38

88fcc62dbc58d1f4b3fa8ded

bb6aaf38

100%

File3.mp3 6418464099797641232d7dd

c9a96b6ee

6418464099797641232d7dd

c9a96b6ee

100%

File4.exe c7722c4ec4fc3ac818658ef00

a49e2b4

c7722c4ec4fc3ac818658ef0

0a49e2b4

100%

File5.xls 13ae3a6a1db81cfcef570d0a2

4ea09e2

13ae3a6a1db81cfcef570d0a

24ea09e2

100%

File6.docx f59cb7d6c15ffe465a76c1b01

66f772c

f59cb7d6c15ffe465a76c1b0

166f772c

100%

File7.bmp 033d47aab079aa403f96f033c

78eb5ec

033d47aab079aa403f96f033

c78eb5ec

100%

File8.cache c8221439a4d15092bc29f0f0

7909fef7

c8221439a4d15092bc29f0f0

7909fef7

100%

File9.rar 5d84e04b9c11f600e9daaae7

4dec0b9d

5d84e04b9c11f600e9daaae7

4dec0b9d

100%

File10.jpg f417634ec8dbfa3fb6c57c36a

614398d

f417634ec8dbfa3fb6c57c36a

614398d

100%

File11.exe 30be90d08f03a4a749f661b2

efaf01ec

30be90d08f03a4a749f661b2

efaf01ec

100%

28

File12.pptx 02e3ac32137dd06b10df59b4

46885fec

02e3ac32137dd06b10df59b4

46885fec

100%

File13.exe 3a9500a528286d773309bc1d

21d91469

3a9500a528286d773309bc1

d21d91469

100%

File14.pdf c7722c4ec4fc3ac818658ef00

a49e2b4

c7722c4ec4fc3ac818658ef0

0a49e2b4

100%

File15.avi a115b7bb3d272fb148e1fb75

85ffd806

a115b7bb3d272fb148e1fb75

85ffd806

100%

 The file accuracy results obtained in Tables 3.4 and 3.5 are transferred to the last

columns of Tables 3.2 and 3.3 so as to complete the File Accuracy tables of both scenarios.

Table 3.2 File Accuracy (from SD Memory Card to USB Flash Drive)

File Name File Extension File Size in

Kbytes

Transfer Speed Accuracy

1. File1 pka 85KB 0:1 90.625%

2. File2 txt 1KB 0:1 100%

3. File3 mp3 5,546KB 1:50 100%

4. File4 exe 1,386KB 0:29 81.25%

5. File5 xls 46KB 0:1 100%

6. File6 docx 1,255KB 0:25 100%

7. File7 bmp 2,903KB 1:00 100%

8. File8 cache 8KB 0:1 100%

9. File9 rar 4,365KB 1:32 100%

10. File10 jpg 5,652KB 1:58 100%

11. File11 exe 7,925KB 2:39 100%

12. File12 pptx 302KB 0:3 100%

13. File13 exe 3,783KB 1:16 100%

14. File14 pdf 2,045KB 0:53 71.875%

15. File15 avi 6,384KB 0:2 0%

Table 3.3 File Accuracy (from USB Flash Drive to SD Memory Card)

File Name File Extension File Size in

Bytes

Transfer Speed Accuracy

1. File1 pka 85KB 0:3 100%

2. File2 txt 1KB 0:1 100%

3. File3 mp3 5,546KB 2:31 100%

4. File4 exe 1,386KB 0:22 100%

5. File5 xls 46KB 0:2 100%

6. File6 docx 1,255KB 0:27 100%

7. File7 bmp 2,903KB 1:17 100%

8. File8 cache 8KB 0:1 100%

9. File9 rar 4,365KB 2.17 100%

10. File10 jpg 5,652KB 2:48 100%

11. File11 exe 7,925KB 3:01 100%

12. File12 pptx 302KB 0:7 100%

13. File13 exe 3,783KB 1:34 100%

 29

14. File14 pdf 2,045KB 0:52 100%

15. File15 avi 6,384KB 2:38 100%

Based from the results gathered, differences can be seen during the file transfer of the

device between the SD Memory Card and USB Flash Drive especially on the transfer speed

of the device. It can be observed that in terms of the transfer speed, transferring files from

USB Flash Drive to SD Memory Card requires more time than transferring files from SD

Memory Card to USB Flash Drive when using the device. However, in terms of the file

accuracy percentage, Table 3.2 has obtained file accuracy less than 100% which means that

errors were produced during the testing process and the transfer of a single file was

unsuccessful for some.

The accuracy, M, for the sample files n1 transferred as shown in Table 3.2 is

(90.625+100+100+81.25+100+100+100+100+100+100+100+100+100+71.875+0) / 15 =

89.5833.

The variance for sample n1 was computed to be ((90.625-89.5833)
2

+ (100-

89.5833)
2

+ (100-89.5833)
2
+ (81.25-89.5833)

2
+ (100-89.5833)

2
+ (100-89.5833)

2
+ (100-

89.5833)
2
+ (100-89.5833)

2
+ (100-89.5833)

2
+ (100-89.5833)

2
+ (100-89.5833)

2
+ (100-

89.5833)
2
+ (100-89.5833)

2
+ (71.875-89.5833)

2
+ (0-89.5833)

2
) / 14 = 685.9189

Since all the 12 files are 100% accurate for sample n2 as shown in Figure 3.5, which is

the data from the previous study, the mean M is equal to 100 and the variance is equal to

0.

The standard error (SE) of the sampling distribution difference between two

proportions was obtained by
14(685.9189)+11(0)

25

15+12

15(12)
 = 7.5901.

30

Finally, the t-ratio, t, was obtained to be
89.5833−100

7.5901
 = -1.3724. Since -1.3724<2.060,

the null hypothesis is not rejected. It then implies that there is no significant difference

between the accuracy of the transferring files from SD Memory Card to USB Flash Drive

and the previous study which is USB Slave to Slave File Transfer Device.

For the second part of the statistical treatment, Table 3.3 is then compared to Figure

3.5. However, since the file accuracy percentage in Table 3.3 is also the same as the latter, it

is automatically concluded that P1 = P2 and the null hypothesis is not rejected, implying that

there is no significant difference between the file accuracy of the transferring files from USB

Flash Drive to SD Memory Card and the previous study which is USB Slave to Slave File

Transfer Device.

Conclusion

The development of the main device for this study requires both the hardware and

software to be properly coordinated with each other to meet the objectives of this study.The

researchers were able to develop the device using Mass Storage Device Controller and

microcontroller as the major components of the hardware.

The user interface of the system provides the capability to browse the contents of the

specified file or folder. To differentiate a file from a folder, a folder has a slash symbol (/) at

the end of the name. The user navigates through the Options/OK button, cancel button and to

scroll the contents using the previous and next button of the hardware.

The design has successfully transferred data between the flash drive and SD (Secure

Digital) memory card. The file management features of the device are configured correctly to

 31

respondto the user activities. It is also able to host memory cards that can fit in SD card

adapter. The accuracy of the file transferred is verified using MD5 checksum which checks

for file integrity.

During the testing process, the file transfer from SD Memory Card to USB Flash

Drive had a higher transfer speed compared to the other way around even when same exact

files are being tested. Some errors were produced especially in the part of the first scenario

wherein the accuracy of transferring files from SD Memory Card to USB Flash Drive is less

than a hundred percent. Factors affecting such may include both external and internal device

errors. External factors include the noise and interferences obtained by the physical device.

Internal device errors include the program inside the USB host controller. Nevertheless, after

the statistical treatment, it is concluded that there is no significant difference between the file

transfer accuracy of the device and device used in the previous study.

References

[1] Mark Alvin U. Chua Charles D. Jorge Ana Marian M. Pedro Brian Emmanuel G. Tam

Gregory G. Cu, “Implementation of a USB Slave to Slave File Transfer Device Using

Microcontrollers”

[2] Jan Axelson, “USB COMPLETE Second Edition,” Madison, WI: Lakeview Research

LLC, 2004

[3] Jan Axelson, “Serial Port Complete Second EditionCOM Ports, USB Virtual COM Ports,

and Ports for Embedded Systems”,Dec. 2007,

[4] Jan Axelson, USB Mass Storage: Designing and Programming Devices and Embedded

Hosts

32

[5] GHI Electronics, “USBWiz User Manual”, Rev. 2.27 April 2009

[6] GHI Electronics, “USBWiz OEM Manual”, 2006

[7] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C: From USB to RTOS with

the PIC 18F Series

[8] MikroElektronika, C Compiler for Microchip PIC Microcontrollers User’s Manual

[9] John Morton, The PIC Microcontroller: Your Personal Introductory Course, Third

Edition

[10] Cyan Technology, “Interfacing to an MMC or SD Card via SPI”, 2008

33

Chapter 4

CONCLUSION

The development of the main device for this study requires both the hardware and

software to be properly in accordance with each other and to meet the objectives of this

study.The researchers were able to develop the device using Mass Storage Device Controller

and microcontroller as the major components of the hardware.

The user interface of the system provides the capability to browse the contents of the

specified file or folder. To differentiate a file from a folder, a folder has a slash symbol (/) at

the end of the name. The user navigates through the Options/OK button, cancel button and to

scroll the contents using the previous and next button of the hardware.

The design has successfully transferred data between the flash drive and SD (Secure

Digital) memory card. The file management features of the device are configured correctly to

respond for the user activities. It is also able to host memory cards that can fit in SD card

adapter. The accuracy of the file transferred is verified using MD5 checksum which checks

for file integrity.

During the testing process, the file transfer from SD Memory Card to USB Flash

Drive has a higher transfer speed compared to the other way around even when same exact

files are being tested. Some errors were produced when the accuracy of transferring files

from SD Memory Card to USB Flash Drive was tested and is less than a hundred percent.

Factors affecting such may include both external and internal device errors. External factors

include the noise and interferences obtained by the physical device. Internal device errors

include the program inside the USB host controller. Nevertheless, after the statistical

34

treatment, it is concluded that there is no significant difference between the file transfer

accuracy of the device and the device used in previous study.

35

Chapter 5

RECOMMENDATION

 There are still several functions that need to be improved in the prototype of this

study. As designed, the directories cannot be transferred between SD Memory card and USB

Flash Drive. Therefore, it is recommended that the system be reprogrammed to transfer

folders between the two memories. Searching files can also be difficult especially when

traversing many files and folders. It may also be time consuming for the user especially when

there are a lot of files in the memory. To make the system more efficient, a search or find

function should be integrated to the system.

 The LCD is limited to 4 x 20 characters only. As a result, only one file can be viewed

at a time. Simultaneous viewing for both drives can help the user look for files and switch

between two drives faster. Thus, instead of using a normal 4 x 20 Liquid Crystal Display,

future researchers can use a larger size of it. LiquidGraphics Crystal Display can also be used

for a high quality of visual experience; however it can be a trade-off with the low power

advantage of the device.

Since the device is capable of transferring data to and from the Secure Digital card

and Universal Serial Bus disk only, it is recommended to have additional memory slots of

some memory cards such as Memory Stick Pro and the like. This will enable the

microcontrollerto be used to handle numerous input/output ports for serial communication.

 The filenames to be displayed in the device are limited to only 8 characters long and

the file extension is limited to 3 characters only because of the FAT/FAT32 implications. If

ever future researchers advise the support of New Technology File System (NTFS) on the

36

device, the USB host controller should be replaced with a host controller to support it.The

need to implement the system using larger memory size is also recommended.

 Copy, paste, delete and auto-replace of file are the only features of the current device.

Additional file management features should be added to make the device more useful and

beneficial since it can be easily implemented inside the program code of the device as long as

the right algorithm and structure is acquired.

37

REFERENCES

[1] Mark Alvin U. Chua Charles D. Jorge Ana Marian M. Pedro Brian Emmanuel G. Tam

Gregory G. Cu, “Implementation of a USB Slave to Slave File Transfer Device Using

Microcontrollers”

[2] Jan Axelson, “USB COMPLETE Second Edition,” Madison, WI: Lakeview Research

LLC, 2004

[3] Jan Axelson, “Serial Port Complete Second EditionCOM Ports, USB Virtual COM Ports,

and Ports for Embedded Systems”,Dec. 2007,

[4] Jan Axelson, USB Mass Storage: Designing and Programming Devices and Embedded

Hosts

[5] GHI Electronics, “USBWiz User Manual”, Rev. 2.27 April 2009

[6] GHI Electronics, “USBWiz OEM Manual”, 2006

[7] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C: From USB to RTOS with

the PIC 18F Series

[8] MikroElektronika, C Compiler for Microchip PIC Microcontrollers User’s Manual

[9] John Morton, The PIC Microcontroller: Your Personal Introductory Course, Third

Edition

[10] Cyan Technology, “Interfacing to an MMC or SD Card via SPI”, 2008

38

APPENDICES

Appendix A

Program Listing

//LCD declarations
sbit LCD_RS at RD2_bit;sbit LCD_EN at RD3_bit;

sbit LCD_D7 at RB7_bit;sbit LCD_D6 at RB6_bit;sbit LCD_D5 at RB5_bit;sbit LCD_D4 at

RB4_bit;sbit LCD_D3 at RB3_bit;sbit LCD_D2 at RB2_bit;sbit LCD_D1 at RB1_bit;sbit

LCD_D0 at RB0_bit;

sbitLCD_RS_Direction at TRISD2_bit;sbitLCD_EN_Direction at TRISD3_bit; sbit

LCD_D7_Direction at TRISB7_bit;sbit LCD_D6_Direction at TRISB6_bit;sbit

LCD_D5_Direction at TRISB5_bit;sbit LCD_D4_Direction at TRISB4_bit;sbit

LCD_D3_Direction at TRISB3_bit;sbit LCD_D2_Direction at TRISB2_bit;sbit

LCD_D1_Direction at TRISB1_bit;sbit LCD_D0_Direction at TRISB0_bit;

//GLOBAL VARIABLES
char CR = 0x0D; //CARRIAGE RETURN
char BS = 0x08; //BACKSPACE

char* devOn;

charfName[12],fAttrib[2],fSize[8];
char isEof = 0;

int nextMinus1 = 0;
intprevCtr = 0;

charcopyBufferName[12];

char copyBufferSize[8];

char isCopy = 0;

voidclrscr(){

Lcd_Cmd(_LCD_CLEAR);
}

void Command(char* command){

UART1_Write_Text(command);

39

UART1_Write(CR);
}

voidCout(char lineNum,char* fileLineString){ Lcd_Out(lineNum,1,fileLineString);
}

voidgotoxy(char row,char col){ LCD_Out(row,col,"");
}

void Home(){

Cout(1,"Open USB Mem Files"); Cout(2,"Open SD Mem Files");

Lcd_Out(4,8,"*CDES*");
}

charcheckIfFolder(char fAttrib[]){ if((fAttrib[0] == '1' &&fAttrib[1] == '0')
|| (fAttrib[0] == '3' &&fAttrib[1] == '2')

|| (fAttrib[0] == '1' &&fAttrib[1] == '2')){ return 1;

}else{ return 0;
}

}

voidWritePerCh(char size,char array[],char type){ char ctrSize = 0;
if(type == 0){ // 0 if write in LCD
while(ctrSize< size){
if(array[ctrSize]!=' '){
Lcd_Chr_CP(array[ctrSize]);
}
ctrSize++;
}
}else if(type == 1){ //if 1 write in UART
while(ctrSize< size){
if(array[ctrSize]!=' '){
UART1_Write(array[ctrSize]);
}

40

ctrSize++;
}
}
}

void FilesDisplay(){ clrscr(); Lcd_Out(1,5,devOn); gotoxy(3,1);

WritePerCh(8,fSize,0); gotoxy(2,1); WritePerCh(12,fName,0);

if(checkIfFolder(fAttrib)){

LCD_Cmd(_LCD_MOVE_CURSOR_LEFT); LCD_Chr_Cp('/');
}

}

chardummy_char; void Dummy_Read(){ int timeout = 0;

while(timeout<30000){

if(UART1_Data_Ready()){ dummy_char = UART1_Read();
}
timeout++;
}
}

voidinitAll(){ TRISB = 0; TRISC = 0x07; TRISD = 0x01;

PORTB = 0; LCD_Init();

Lcd_Cmd(_LCD_UNDERLINE_ON); Lcd_Cmd(_LCD_BLINK_CURSOR_ON);

UART1_Init(9615);
Dummy_Read();

41

Cout(1,"Initializing..."); Delay_ms(1000); clrscr();
}

charCin(char maxIndex){ char isCancel = 0, isOk = 0; char input=1;

while(!isCancel&& !isOk){ //buttons

if(PORTC.F2){ //previous Delay_ms(500);

input--; if(input == 0){
input = maxIndex;
}
}

if(PORTD.F0){ //next Delay_ms(500); input++;

if(input >maxIndex){ input = 1;
}
}

if(PORTC.F0){ // OK is pressed Delay_ms(500);
isOk = 1;
}

if(PORTC.F1){ // Cancel is pressed Delay_ms(500);

isCancel = 1; input = 0;
}
//end of buttons determination

if(input == 1){ gotoxy(1,1);

}else if(input == 2){ gotoxy(2,1);

42

}else if(input == 3){ gotoxy(3,1);

}else if(input == 4){ gotoxy(1,15);

}else if(input == 5){ gotoxy(2,15);

}else if(input == 6){ gotoxy(3,15);
}

} //end of while

return input;
} //end of Cin function

charHandleErrorCodes(){ // function HandleErrorCodes char errorCode[10] = "";

charerrorCodeCtr = 0; char noError = 0;

while(errorCodeCtr<4){ if(UART1_Data_Ready()){ errorCode[errorCodeCtr] =

UART1_Read(); //Lcd_Chr_CP(errorCode[errorCodeCtr]); Delay_ms(1);
errorCodeCtr++;
}
}

//start of identifying the errors if(strstr(errorCode,"00")){

noError = 1;
}
returnnoError;
}
voidgetFileString(){ //GETFILESTRING

charexactFullFileStr[25]; char fileLineStr[40] = ""; char*

tempPtr;

charfileLineCtr = 0; int timeout = 0;

//getFileStringAgain: Command("NF"); while(timeout<10000){

if(UART1_Data_Ready()){ fileLineStr[fileLineCtr++] = UART1_Read();

43

}

timeout++; }//end of while

if(strstr(fileLineStr,"!4D")== 0){

tempPtr = strchr(fileLineStr,CR); //point to the first CR

tempPtr++; //inc to alis the CR, point to next

strncpy(exactFullFileStr,tempPtr,24); //copy the first 24 char so the exess are remove

//get the fName only

strncpy(fName,exactFullFileStr,12); //copy the first 12 char to fName

//get the attrib

fAttrib[0] = exactFullFileStr[13]; fAttrib[1] = exactFullFileStr[14];

//get the size

tempPtr = strrchr(fileLineStr,' '); //point to the last ' '

tempPtr++; //then inc to point to the next char

strncpy(fSize,tempPtr,8); //then copy 8 chars

}else{

isEof = 1;

}

} //end of function getFileString()

void Copy(){

}

void Paste(){

UART1_Write_Text("OF 1W>");

WritePerCh(12,copyBufferName,1);

44

UART1_Write(CR);

Dummy_Read();

UART1_Write_Text("RW 0 1>"); WritePerCh(8,copyBufferSize,1); UART1_Write(CR);

clrscr(); Cout(2,"Copying");

while(!UART1_Data_Ready()){

}

if(HandleErrorCodes()){ clrscr(); Cout(2,"Success");

//UART1_Write_Text("CF 0"); UART1_Write_Text("CF 1"); Delay_ms(1000);

}else{ Cout(2,"Error");

}

}

//MAIN FUNCTION!!!!! //variables used in main function char choice;

void main(){ // Main function

initAll();

Start:

clrscr(); Home(); inputAgain:

choice = Cin(2); //the the user will wait for the user input if(choice == 0){

gotoinputAgain; }else if(choice == 1){

Command("FM 1");
devOn = "Flash Files";

}else{
Command("FM S");
devOn = "SD Mem Files";

45

}

if(!HandleErrorCodes()){
Dummy_Read();
Cout(3,"Error");
gotoinputAgain;
}else{
// view files in storage
JustOpen:
clrscr();

Command("IL");
Dummy_Read();
Cout(1,"Loading...");
Delay_us(3000);
nextMinus1 = 0;

Current: //if cancel is pressed
clrscr();
Cout(2,"Press Next");
do{

if(PORTD.F0){ //this is the next button (->)pressNext:
Delay_ms(500);
nextMinus1++;
getFileString();
if(isEof){
nextMinus1--;
isEof = 0;
Cout(4,"EOF, Press Previous");
}else{

FilesDisplay();

}
} // end of next button

if(PORTC.F2){ //this is the previous button (<-)
Delay_ms(500);

prevCtr = 1;

46

nextMinus1--;

if(nextMinus1 <= 0){

nextMinus1++; }else{
Command("IL");

Dummy_Read();

while(prevCtr<=nextMinus1){

getFileString();
prevCtr++;
} //end of while

FilesDisplay();

} //end of else

} //end of if previous button
}while(!PORTC.F0); //option
//go here if options is pressed

if(PORTC.F0){ //ok so now if we just pressed options in the while code above, it will
automatically go here

clrscr();
Delay_ms(500);
if(checkIfFolder(fAttrib)){
Cout(1,"Home");
Cout(2,"Open Folder");
Cout(3,"Paste");
FolOpInputAgain:
choice = Cin(3);
if(choice == 0){
//cancel is pressed
goto Current; //just back
}else if(choice == 1){
goto Start;

}else if(choice == 2){ //for open folder
UART1_Write_Text("CD ");

47

WritePerCh(12,fName,1);
UART1_Write(BS); //ok kasipag folder dba '.' lngung extension xemprepag "CD

folder.", backspace kaparafoldernamelng
UART1_Write(CR);
gotoJustOpen; //IL again
}else if(choice == 3){ //PASTE nmannasa folder nakatapat...

if(isCopy){

Paste(); }else{

clrscr();

Cout(2,"Do copy first!");
Delay_ms(500);
}

gotoJustOpen;
}

}else{
Cout(1,"Home | Delete");
Cout(2,"Copy");
Cout(3,"Paste");
FileOpInputAgain:

choice = Cin(4);

if(choice == 0){
//cancel is pressed, need to back to current
goto Current; //just back

}else if(choice == 1){

goto Start;

}else if(choice == 2){ //this is if copy is chosen

if(isCopy){

Command("CF 0");
}

UART1_Write_Text("OF 0R>");

WritePerCh(12,fName,1);

UART1_Write(CR);

strncpy(copyBufferName,fName,12);

strncpy(copyBufferSize,fSize,8);
isCopy = 1;
//goto Current;
gotoJustOpen;

}else if(choice == 3){ //paste is chosen

48

if(isCopy){ Paste();

}else{ clrscr();
Cout(2,"Do copy first!");
Delay_ms(500);

}

gotoJustOpen;

}else if(choice == 4){ //delete is chosen
UART1_Write_Text("DF ");
WritePerCh(12,fName,1);
UART1_Write(CR);
clrscr();
Cout(2,"Deleted");
Delay_ms(500);

gotoJustOpen; } //end of paste //goto Current;
}
} //end of PORTC.F0 if option is pressed

}
}//end of main

49

Appendix B

Pictures of Prototype

50

Appendix C

T-Table

