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DAMIÁN AVILA
JOSHUA CARP
CARLOS CORDOBA
MARIANNE CORVELLEC
SERGE GUELTON
KATY HUFF
URSULA ITURRARAN-VIVEROS
AARON MEURER
STUART MUMFORD
SAM PORTNOW
SAM PORTNOW
JOON RO
MATTHEW ROCKLIN
JOSHUA WARNER



CONTENTS

Preface 1
Andy Terrel, Jonathan Rocher

DMTCP: Bringing Checkpoint-Restart to Python 2
Kapil Arya, Gene Cooperman

Multidimensional Data Exploration with Glue 8
Christopher Beaumont, Thomas Robitaille, Alyssa Goodman, Michelle Borkin

Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms 13
James Bergstra, Dan Yamins, David D. Cox

SkData: Data Sets and Algorithm Evaluation Protocols in Python 21
James Bergstra, Nicolas Pinto, David D. Cox

Using Python to Study Rotational Velocity Distributions of Hot Stars 28
Gustavo Bragança, Simone Daflon, Katia Cunha, Thomas Bensby, Sally Oey, Gregory Walth

Automating Quantitative Confocal Microscopy Analysis 33
Mark E. Fenner, Barbara M. Fenner

Detection and characterization of interactions of genetic risk factors in disease 40
Patricia Francis-Lyon, Shashank Belvadi, Fu-Yuan Cheng

Pythran: Enabling Static Optimization of Scientific Python Programs 46
Serge Guelton, Pierrick Brunet, Alan Raynaud, Adrien Merlini, Mehdi Amini

Adapted G-mode Clustering Method applied to Asteroid Taxonomy 53
Pedro Henrique Hasselmann, Jorge Márcio Carvano, Daniela Lazzaro
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Preface
Andy Terrel∗†, Jonathan Rocher‡

F

SciPy 2013, the twelfth annual Scientific Computing with
Python conference, was held June 24th-29th 2013 in
Austin, Texas, USA. SciPy is a community dedicated to the
advancement of scientific computing through open source
Python software for mathematics, science, and engineering.
The annual SciPy Conference allows participants from
academic, commercial, and governmental organizations to
showcase their newest tools and technics, learn from skilled
users and developers, and collaborate on code development.
These tools most often involve lower level languages but
are characterized by a common goal of exposing most
functionalities to Python users to maximize efficiency and
simplicity of usage.

This 12th edition has seen an amazing surge in attendance,
with people from 5 continents, while retaining the great
collaborative and friendly atmosphere that has characterized
SciPy conferences over the years. Among many other
improvements, this edition has seen a big push in making
the proceedings of higher quality, available more quickly to
the community, and better recognized. We encourage you to
learn from these papers as well as the corresponding videos
of the talks at

http://conference.scipy.org/scipy2013

If you were able to attend SciPy2013, we hope this conference
has been fruitful professionally, allowing you to expand your
knowledge and network. And even if you were not able to join
us this year, we hope to see you in 2014!

For the SciPy2013 organizers,
Andy Terrel and Jonathan Rocher, chairs of SciPy2013

* Corresponding author: aterrell@tacc.utexas.edu
† University of Texas at Austin
‡ Enthought, Inc.

Copyright c○ 2013 Andy Terrel et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://conference.scipy.org/scipy2013
mailto:aterrell@tacc.utexas.edu
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DMTCP: Bringing Checkpoint-Restart to Python
Kapil Arya∗†, Gene Cooperman†

http://www.youtube.com/watch?v=1l_wGZz0JEE

F

Abstract—DMTCP (Distributed MultiThreaded CheckPointing) is a mature
checkpoint-restart package. It operates in user-space without kernel privilege,
and adapts to application-specific requirements through plugins. While DMTCP
has been able to checkpoint Python and IPython "from the outside" for many
years, a Python module has recently been created to support DMTCP. IPython
support is included through a new DMTCP plugin. A checkpoint can be re-
quested interactively within a Python session, or under the control of a specific
Python program. Further, the Python program can execute specific Python
code prior to checkpoint, upon resuming (within the original process), and upon
restarting (from a checkpoint image). Applications of DMTCP are demonstrated
for: (i) Python-based graphics using VNC; (ii) a Fast/Slow technique to use
multiple hosts or cores to check one Cython computation in parallel; and (iii) a
reversible debugger, FReD, with a novel reverse-expression watchpoint feature
for locating the cause of a bug.

Index Terms—checkpoint-restart, DMTCP, IPython, Cython, reversible debug-
ger

Introduction

DMTCP (Distributed MultiThreaded CheckPointing)
[Ansel09] is a mature user-space checkpoint-restart package.
One can view checkpoint-restart as a generalization of
pickling. Instead of saving an object to a file, one saves the
entire Python session to a file. Checkpointing graphics in
Python is also supported—by checkpointing a virtual network
client (VNC) session with Python running inside that session.

DMTCP is available as a Linux package for many pop-
ular Linux distributions. DMTCP can checkpoint Python
or IPython from the outside, i.e. by treating Python as a
black box. To enable checkpointing, the Python interpreter is
launched in the following manner:
$ dmtcp_checkpoint python <args>
$ dmtcp_command --checkpoint

The command dmtcp_command can be used at any point to
create a checkpoint of the entire session.

However, most Python programmers will prefer to request
a checkpoint interactively within a Python session, or else
programmatically from inside a Python or Cython program.

DMTCP is made accessible to Python programmers as
a Python module. Hence, a checkpoint is executed as
import dmtcp; dmtcp.checkpoint(). This Python

* Corresponding author: kapil@ccs.neu.edu
† Northeastern University

Copyright c○ 2013 Kapil Arya et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

module provides this and other functions to support the fea-
tures of DMTCP. The module for DMTCP functions equally
well in IPython.

This DMTCP module implements a generalization of a save-
Workspace function, which additionally supports graphics and
the distributed processes of IPython. In addition, three novel
uses of DMTCP for helping debug Python are discussed.

1. Fast/Slow Computation—Cython provides both
traditional interpreted functions and compiled C
functions. Interpreted functions are slow, but correct.
Compiled functions are fast, but users sometimes
declare incorrect C types, causing the compiled
function silently return a wrong answer. The idea of
fast/slow computation is to run the compiled version
on one computer node, while creating checkpoint
images at regular intervals. Separate computer nodes
are used to check each interval in interpreted mode
between checkpoints.

2. FReD—a Fast Reversible Debugger that works
closely with the Python pdb debugger, as well as
other Python debuggers.

3. Reverse Expression Watchpoint—This is a novel
feature within the FReD reversible debugger. As-
sume a bug occurred in the past. It is associated
with the point in time when a certain expression
changed. Bring the user back to a pdb session at the
step before the bug occurred.

The remaining sections describe: the DMTCP-Python Inte-
gration through a Python Module; and several extensions of the
integration of DMTCP with Python. The extensions include
support for Checkpointing Python-Based Graphics; Checking
Cython with Multiple CPython Instances (fast/slow technique);
and Reversible Debugging with FReD. More information
about DMTCP is added in Appendix: Background of DMTCP.

DMTCP-Python Integration through a Python Module

A Python module, dmtcp.py, has been created to support
checkpointing both from within an interactive Python/IPython
session and programmatically from within a Python or Cython
program. DMTCP has been able to asynchronously generate
checkpoints of a Python session for many years. However,
most users prefer the more fine-grained control of a Python
programmatic interface to DMTCP. This allows one to avoid
checkpointing in the middle of a communication with an
external server or other atomic transaction.

http://www.youtube.com/watch?v=1l_wGZz0JEE
mailto:kapil@ccs.neu.edu
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A Python Module to Support DMTCP

Some of the features of module.py are best illustrated
through an example. Here, a checkpoint request is made from
within the application.
...
import dmtcp
...
# Request a checkpoint if running under checkpoint
# control
dmtcp.checkpoint()
# Checkpoint image has been created
...

It is also easy to add pre- and post-checkpoint processing
actions.
...
import dmtcp
...
def my_ckpt(<args>):

# Pre processing
my_pre_ckpt_hook(<args>)
...
# Create checkpoint
dmtcp.checkpoint()
# Checkpoint image has been created
...
if dmtcp.isResume():

# The process is resuming from a checkpoint
my_resume_hook(<args>)
...

else:
# The process is restarting from a previous
# checkpoint
my_restart_hook(<args>)
...

return
...

The function my_ckpt can be defined in the application by
the user and can be called from within the user application at
any point.

Extending the DMTCP Module for Managing Sessions

These core checkpoint-restart services are further extended
to provide the user with the concept of multiple sessions. A
checkpointed Python session is given a unique session id to
distinguish it from other sessions. When running interactively,
the user can view the list of available checkpointed sessions.
The current session can be replaced by any of the existing
session using the session identifier.

The application can programmatically revert to an earlier
session as shown in the following example:
...
import dmtcp
...
sessionId1 = dmtcp.checkpoint()
...
sessionId2 = dmtcp.checkpoint()
...

...
if <condition>:

dmtcp.restore(sessionId2)
else:

dmtcp.restore(sessionId1)

Save-Restore for IPython Sessions

To checkpoint an IPython session, one must consider the
configuration files. The configuration files are typically stored

in user’s home directory. During restart, if the configuration
files are missing, the restarted computation may fail to con-
tinue. Thus, DMTCP must checkpoint and restore all the files
required for proper restoration of an IPython session.

Attempting to restore all configuration files during restart
poses yet another problem: the existing configuration files
might have newer contents. Overwriting these newer files with
copies from the checkpoint time may result in the loss of
important changes.

To avoid overwriting the existing configuration files, the
files related to IPython session are restored in a temporary
directory. Whenever IPython shell attempts to open a file in
the original configuration directory, the filepath is updated
to point to the temporary directory. Thus, the files in the
original configuration directory are never modified. Further,
the translation from original to temporary path is transparent
to the IPython shell.

Save-Restore for Parallel IPython Sessions

DMTCP is capable of checkpointing a distributed computa-
tions with processes running on multiple nodes. It automati-
cally checkpoints and restores various kinds of inter-process
communication mechanisms such as shared-memory, message
queues, pseudo-ttys, pipes and network sockets.

An IPython session involving a distributed computation
running on a cluster is checkpointed as a single unit. DMTCP
allows restarting the distributed processes in a different con-
figuration than the original. For example, all the processes
can be restarted on a single computer for debugging purposes.
In another example, the computation may be restarted on a
different cluster altogether.

Checkpointing Python-Based Graphics

Python is popular for scientific visualizations. It is possible
to checkpoint a Python session with active graphics windows
by using VNC. DMTCP supports checkpoint-restart of VNC
server. In this case, a VNC server can be started automatically.
The process environment is modified to allow the Python
interpreter to communicate with the VNC server instead of
the X-window server. For visualization, a VNC client can be
fired automatically to display the graphical window. During
checkpoint, the VNC server is checkpointed as part of the
computation, while the VNC client is not. During restart,
the Python session and the VNC server are restored from
their checkpoint images, and a fresh VNC client is launched.
This VNC client communicates with the restored server and
displays the graphics to the end user.
...
import dmtcp
...
# Start VNC server
dmtcp.startGraphics()

...

# Start VNC viewer
dmtcp.showGraphics()

# generate graphics (will be shown in the VNC viewer)
...
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To understand the algorithm behind the code, we recall some
VNC concepts. X-window supports multiple virtual screens.
A VNC server creates a new virtual screen. The graphics
contained in the VNC server is independent of any X-window
screen. The VNC server process persists as a daemon. A VNC
viewer displays a specified virtual screen in a window in
a console. When python generates graphics, the graphics is
sent to a virtual screen specified by the environment variable
$DISPLAY.

The command dmtcp.startGraphics() creates a new
X-window screen by creating a new VNC server and sets the
$DISPLAY environment variable to the new virtual screen.
All python graphics are now sent to this new virtual screen.
The additional screen is invisible to the python user until the
python command dmtcp.showGraphics() is given. The
Python Command dmtcp.showGraphics() operates by
invoking a VNC viewer.

At the time of checkpoint, the VNC server process is
checkpointed along with the python interpretor while the VNC
viewer is not checkpointed.

On restart, the VNC server detects the stale connection to
the old VNC viewers. The VNC server perceives this as the
VNC viewer process that has now died. The DMTCP module
then launches anew VNC viewer to connect to the VNC server.

Checking Cython with Multiple CPython Instances

A common problem for compiled versions of Python such
as Cython [Behnel10] is how to check whether the com-
piled computation is faithful to the interpreted computation.
Compilation errors can occur if the compiled code assumes a
particular C type, and the computation violates that assumption
for a particular input. Thus, one has to choose between
speed of computation and a guarantee that that the compiled
computation is faithful to the interpreted computation.

A typical scenario might be a case in which the compiled
Cython version ran for hours and produced an unexpected
answer. One wishes to also check the answer in a matter of
hours, but pure Python (CPython) would take much longer.

Informally, the solution is known as a fast/slow technique.
There is one fast process (Cython), whose correctness is
checked by multiple slow processes (CPython). The core
idea is to run the compiled code, while creating checkpoint
images at regular intervals. A compiled computation interval
is checked by copying the two corresponding checkpoints (at
the beginning and end of the interval) to a separate computer
node for checking. The computation is restarted from the
first checkpoint image, on the checking node. But when the
computation is first restarted, the variables for all user Python
functions are set to the interpreted function object. The interval
of computation is then re-executed in interpreted mode until
the end of the computation interval. The results at the end of
that interval can then be compared to the results at the end of
the same interval in compiled mode.

Figure 1 illustrates the above idea. A similar idea has been
used by [Ghoshal11] for distributed speculative parallelization.

Note that in order to compare the results at the end of
a computation interval, it is important that the interpreted

Fig. 1: Fast Cython with Slow CPython "checking" nodes.

version on the checker node stop exactly at the end of
the interval, in order to compare with the results from the
checkpoint at the end of the same interval. The simplest way
to do this is to add a counter to a frequently called function of
the end-user code. The counter is incremented each time the
function is called. When the counter reaches a pre-arranged
multiple (for example, after every million calls), the compiled
version can generate a checkpoint and write to a file the
values of variables indicating the state of the computation.
The interpreted version writes to a file the values of variables
indicating its own state of the computation.
mycounter = 0
def freq_called_user_fnc(<args>):

global mycounter
mycounter += 1
if mycounter % 1000000 == 0:

# if running as Cython:
if type(freq_called_user_fnc) == type(range):

# write curr. program state to cython.log
dmtcp.checkpoint()
if dmtcp.isRestart():

# On restart from ckpt image,
# switch to pure Python.

else: # else running as pure Python
# write curr. program state to purePython.log
sys.exit(0)

...
# original body of freq_called_user_fnc
return

The above code block illustrates the principles. One compares
cython.log and purePython.log to determine if the compiled
code was faithful to the interpreted code. If the Cython code
consists of direct C calls between functions, then it will also
be necessary to modify the functions of the C code generated
by Cython, to force them to call the pure Python functions on
restart after a checkpoint.

Reversible Debugging with FReD

While debugging a program, often the programmer over steps
and has to restart the debugging session. For example, while
debugging a program, if the programmer steps over (by issue
next command inside the debugger) a function f() only to
determine that the bug is in function f() itself, he or she is
left with no choice but to restart from the beginning.

Reversible debugging is the capability to run an application
"backwards" in time inside a debugger. If the programmer
detects that the problem is in function f(), instead of
restarting from the beginning, the programmer can issue a
reverse-next command which takes it to the previous
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Fig. 2: Fast Reversible Debugger.

Fig. 3: Reverse Commands.

step. He or she can then issue a step command to step into
the function in order to find the problem.

FReD (Fast Reversible Debugger) [Arya12], [FReD13] is
a reversible debugger based on checkpoint-restart. FReD is
implemented as a set of Python scripts and uses DMTCP
to create checkpoints during the debugging session. FReD
also keeps track of the debugging history. Figure 2 shows the
architecture of FReD.

A Simple UNDO Command

The UNDO command reverses the effect of a previous debug-
ger command such as next, continue or finish. This is
the most basic of reversible debugging commands.

The functionality of the UNDO command for debugging
Python is trivially implemented. A checkpoint is taken at the
beginning of the debugging session and a list of all debugging
commands issued since the checkpoint are recorded.

To execute the UNDO command, the debugging session is
restarted from the checkpoint image, and the debugging com-
mands are automatically re-executed from the list excluding
the last command. This takes the process back to before the
debugger command was issued.

In longer debugging sessions, checkpoints are taken at
frequent intervals to reduce the time spent in replaying the
debugging history.

Fig. 4: Reverse Expression Watchpoint.

More complex reverse commands

Figure 3 shows some typical debugging commands being
executed in forward as well as backward direction in time.

Suppose that the debugging history appears as
[next,next] i.e. the user issued two next commands.
Further, the second next command stepped over a function
f(). Suppose further that FReD takes checkpoints before
each of these commands. In this situation, the implementation
for reverse-next command is trivial: one restarts from
the last checkpoint image. However, if the command issued
were reverse-step, simply restarting from the previous
checkpoint would not suffice.

In this last case, the desired behavior is to take the debugger
to the last statement of the function f(). In such a situation
one needs to decompose the last command into a series
of commands. At the end of this decomposition, the last
command in the history is a step. At this point, the history
may appear as: [next,step,next, ...,next,step].
The process is then restarted from the last checkpoint and the
debugging history is executed excluding the last step com-
mand. Decomposing a command into a series of commands
terminating with step is non-trivial, and an algorithm for that
decomposition is presented in [Visan11] .

A typical debugging session in FReD with Python:
$ fredapp.py python -mpdb a.py
(Pdb) break main
(Pdb) run
(Pdb) fred-checkpoint
(Pdb) break 6
(Pdb) continue
(Pdb) fred-history
[break 6, continue]

(Pdb) fred-reverse-next
(Pdb) fred-history
[break 7, next, next, next, next, next, next, next,
next, next, next, step, next, next, next, where]

Reverse Expression Watchpoints

The reverse expression watchpoint automatically finds the
location of the fault for a given expression in the history of the
program execution. It brings the user directly to a statement
(one that is not a function call) at which the expression is
correct, but executing the statement will cause the expression
to become incorrect.

Figure 4 provides a simple example. Assume that a bug oc-
curs whenever a linked list has length longer than one million.
So an expression linked_list.len() <= 1000000 is
assumed to be true throughout. Assume that it is too expensive
to frequently compute the length of the linked list, since this
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would require O(n2) time in what would otherwise be a O(n)
time algorithm. (A more sophisticated example might consider
a bug in an otherwise duplicate-free linked list or an otherwise
cycle-free graph. But the current example is chosen for ease
of illustrating the ideas.)

If the length of the linked list is less than or equal to one
million, we will call the expression "good". If the length of
the linked list is greater than one million, we will call the
expression "bad". A "bug" is defined as a transition from
"good" to "bad". There may be more than one such transition
or bug over the process lifetime. Our goal is simply to find
any one occurrence of the bug.

The core of a reverse expression watchpoint is a binary
search. In Figure 4, assume a checkpoint was taken near the
beginning of the time interval. So, we can revert to any point in
the illustrated time interval by restarting from the checkpoint
image and re-executing the history of debugging commands
until the desired point in time.

Since the expression is "good" at the beginning of Figure
4 and it is "bad" at the end of that figure, there must exist
a buggy statement—a statement exhibiting the transition from
"good" to "bad". A standard binary search algorithm converges
to a case in which the current statement is "good" and the
next statement transitions from "good" to "bad". By the earlier
definition of a "bug", FReD has found a statement with a bug.
This represents success.

If implemented naively, this binary search requires that
some statements may need to be re-executed up to log2 N
times. However, FReD can also create intermediate check-
points. In the worst case, one can form a checkpoint at each
phase of the binary search. In that case, no particular sub-
interval over the time period needs to be executed more than
twice.

A typical use of reverse-expression-watchpoint:
$ ./fredapp.py python -mpdb ./autocount.py
-> import sys, time
(Pdb) break 21

Breakpoint 1 at /home/kapil/fred/autocount.py:21
(Pdb) continue

> /home/kapil/fred/autocount.py(21)<module>()
# Required for fred-reverse-watch
(Pdb) fred-checkpoint
(Pdb) break 28

Breakpoint 2 at /home/kapil/fred/autocount.py:28
(Pdb) continue

... <program output> ...
> /home/kapil/fred/autocount.py(28)<module>()

(Pdb) print num
10

(Pdb) fred-reverse-watch num < 5
(Pdb) print num

4
(Pdb) next
(Pdb) print num

5

Conclusion

DMTCP is a widely used standalone checkpoint-restart pack-
age. We have shown that it can be closely integrated with
Python. Specifically, parallel sessions with IPython, alter-
nating interpreted and compiled execution modes, graphics,
and enhancing Python debugger with reversibility. The im-
plementation can be extended by the end users to augment

Fig. 5: Architecture of DMTCP.

the capabilities of Python beyond the simple example of
checkpoint-restart.
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Appendix: Background of DMTCP

DMTCP [Ansel09] is a transparent checkpoint-restart package
with its roots going back eight years [Rieker06]. It works
completely in user space and does not require any changes to
the application or the operating system. DMTCP can be used
to checkpoint a variety of user applications including Python.

Using DMTCP to checkpoint an application is as simple as
executing the following commands:
dmtcp_checkpoint ./a.out
dmtcp_command -c
./dmtcp_restart_script.sh

DMTCP automatically tracks all local and remote child pro-
cesses and their relationships.

As seen in Figure 5, a computation running under DMTCP
consists of a centralized coordinator process and several user
processes. The user processes may be local or distributed. User
processes may communicate with each other using sockets,
shared-memory, pseudo-terminals, etc. Further, each user pro-
cess has a checkpoint thread which communicates with the
coordinator.

DMTCP Plugins

DMTCP plugins are used to keep DMTCP modular. There is a
separate plugin for each operating system resource. Examples
of plugins are pid plugin, socket plugin, and file plugin.
Plugins are responsible for checkpointing and restoring the
state of their corresponding resources.

The execution environment can change between checkpoint
and restart. For example, the computation might be restarted
on a different computer which has different file mount points, a
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Fig. 6: DMTCP Plugins.

different network address, etc. Plugins handle such changes in
the execution environment by virtualizing these aspects. Figure
6 shows the layout of DMTCP plugins within the application.

DMTCP Coordinator

DMTCP uses a stateless centralized process, the DMTCP
coordinator, to synchronize checkpoint and restart between
distributed processes. The user interacts with the coordinator
through the console to initiate checkpoint, check the status of
the computation, kill the computation, etc. It is also possible
to run the coordinator as a daemon process, in which case,
the user may communicate with the coordinator using the
command dmtcp_command.

Checkpoint Thread

The checkpoint thread waits for a checkpoint request from the
DMTCP coordinator. On receiving the checkpoint request, the
checkpoint thread quiesces the user threads and creates the
checkpoint image. To quiesce user threads, it installs a signal
handler for a dedicated POSIX signal (by default, SIGUSR2).
Once the checkpoint image has been created, the user threads
are allowed to resume executing application code. Similarly,
during restart, once the process memory has been restored, the
user threads can resume executing application code.

Checkpoint
On receiving the checkpoint request from the coordinator,
the checkpoint thread sends the checkpoint signal to all the
user threads of the process. This quiesces the user threads by
forcing them to block inside a signal handler, defined by the
DMTCP. The checkpoint image is created by writing all of
user-space memory to a checkpoint image file. Each process
has its own checkpoint image. Prior to checkpoint, each
plugin will have copied into user-space memory any kernel
state associated with its concerns. Examples of such concerns
include network sockets, files, and pseudo-terminals. Once
the checkpoint image has been created, the checkpoint thread
"un-quiesces" the user threads and they resume executing
application code.

At the time of checkpoint, all of user-space memory is
written to a checkpoint image file. The user threads are then
allowed to resume execution. Note that user-space memory
includes all of the run-time libraries (libc, libpthread, etc.),
which are also saved in the checkpoint image.

In some cases, state outside the kernel must be saved. For
example, in handling network sockets, data in flight must be
saved. This is done by draining the network data by sending
a special cookie through the "send" end of each socket in
one phase. In a second phase, after a global barrier, data is
read from the "receive" end of each socket until the special
cookie is received. The in-flight data has now been copied into
user-space memory, and so will be included in the checkpoint
image. On restart, the network buffers are refilled by sending
the in-flight data back to the peer process, which then sends
the data back into the network.

Restart
As the first step of restart phase, all memory areas of the
process are restored. Next, the user threads are recreated.
The plugins then receive the restart notification and restore
their underlying resources, translation tables, etc. Finally, the
checkpoint thread "un-quiesces" the user threads and the user
threads resume executing application code.
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Multidimensional Data Exploration with Glue
Christopher Beaumont∗†, Thomas Robitaille‡, Alyssa Goodman§, Michelle Borkin§
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Abstract—Modern research projects incorporate data from several sources,
and new insights are increasingly driven by the ability to interpret data in the
context of other data. Glue is an interactive environment built on top of the
standard Python science stack to visualize relationships within and between
datasets. With Glue, users can load and visualize multiple related datasets
simultaneously. Users specify the logical connections that exist between data,
and Glue transparently uses this information as needed to enable visualization
across files. This functionality makes it trivial, for example, to interactively
overplot catalogs on top of images.

The central philosophy behind Glue is that the structure of research data is
highly customized and problem-specific. Glue aims to accommodate this and
simplify the "data munging" process, so that researchers can more naturally
explore what their data have to say. The result is a cleaner scientific workflow,
faster interaction with data, and an easier avenue to insight.

Index Terms—data visualization, exploratory data analysis, Python

Introduction

The world is awash in increasingly accessible and increasingly
interrelated data. Modern researchers rarely consider data in
isolation. In astronomy, for example, researchers often comple-
ment newly-collected data with publicly-available survey data
targeting a different range of the electromagnetic spectrum.
Because of this, new discoveries are increasingly dependent
upon interpreting data in the context of other data.

Unfortunately, most of the current interactive tools for data
exploration focus on analyzing a single dataset at a time. It
is considerably more difficult to explore several conceptually
related datasets at once. Scientists typically resort to non-
interactive techniques (e.g., writing scripts to produce static
visualizations). This slows the pace of investigation, and makes
it difficult to uncover subtle relationships between datasets.

To address this shortcoming, we have been developing
Glue. Glue is an interactive data visualization environment
that focuses on multi-dataset exploration. Glue allows users
to specify how different datasets are related, and uses this
information to dynamically link and overlay visualizations
of several datasets. Glue also integrates into Python-based
analysis workflows, and eases the back-and-forth between
interactive and non-interactive data analysis.
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The Basic Glue Workflow

The central visualization philosophy behind Glue is the idea
of linked views -- that is, multiple related representations of a
dataset that are dynamically connected, such that interaction
with one view affects the appearance of another. For example,
a user might create two different scatter plots of a multi-
dimensional table, select a particular region of parameter space
in one plot, and see the points in that region highlighted in
both plots. Linked-view visualizations are especially effective
at exploring high-dimensional data. Glue extends this idea to
related data sets spread across multiple files.

Let’s illustrate the basic Glue workflow with an example. An
astronomer is studying Infrared Dark Clouds (environments
of star formation) in our Galaxy. Her data sets include a
catalog of known Infrared Dark Clouds, a second catalog of
"cores" (substructures embedded in these clouds where the
stars actually form), and a wide-field infrared survey image of
a particular cloud.

Step 1 She begins by loading the cloud catalog into Glue.
She creates a scatter plot of the position of each cloud, as well
as a histogram showing the distribution of surface densities.
She creates each visualization by dragging the data item onto
the visualization area. At this point, her screen looks like
Figure 1.

Step 2 She is interested in a particular region of the sky,
and thus draws a lasso around particular points in the scatter
plot. This creates a new "subset", which is shown in red on
each visualization (Figure 2). If she traces a different region on
either plot, the subset will update in both views automatically.

Step 3 Next she loads the infrared image. She would like
to see how the points in the catalog relate to structures in the
image, by overplotting the subset on the image. To do this,
she first "links" the data by defining the logical relationships
between the two files. She opens a data linking dialog, which
displays the attributes defined for each dataset (Figure 3).
The image has attributes for the x and y location of each
pixel, and the catalog has columns which list the location of
each object in the same coordinate system. She highlights the
attribute describing the x location attribute for each dataset
(Right Ascension), and "links" them (in effect informing Glue
that the two attributes describe the same quantity). She repeats
this for the y location attribute (declination), and closes the
dialog.

Step 4 Now, she can drag the subset onto the image, to
overplot these points at their proper location (this is possible

http://www.youtube.com/watch?v=47LNpvDlKUk
http://glueviz.org
mailto:cbeaumont@cfa.harvard.edu
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Fig. 1: The basic Glue interface, shown at the end of step 1. Datasets
are listed on the left panel. Dragging them to the right creates a new
visualization.

because Glue now has enough information to compute the
location of each catalog source in the image. The details of
how this is accomplished are described in the next section).
All three plots are still linked: if the user highlights a new
region in the image, this will redefine the subset and update
each plot. Figure 4 shows the Glue interface at this point.

The relationship between the catalog and image was very
simple; each dataset described the same spatial quantities, in
the same units. In general, connections between datasets are
more complicated. For example, the catalog of cores specifies
positions in a different coordinate system. Because of this,
Glue allows users to connect quantities across datasets using
transformation functions. Glue includes some of these func-
tions by default, but users can also write their own functions
for arbitrary transformations. Glue uses these functions as
needed to transform quantities between coordinate systems,
to correctly overlay visualizations and/or filter data in subsets.

Step 5 Our scientist discovers several interesting rela-
tionships between these datasets -- in particular, that sev-
eral distinct entries in the cloud catalog appear to form a
coherent, extended structure in the image. Furthermore, the
cores embedded in these clouds all have similar velocities,
strengthening the argument that they are related. At this
point, she decides to test this hypothesis more rigorously, by
comparing to models of structure formation. This analysis will
happen outside of Glue. She saves all of her subsets as masks,
for followup analysis. Furthermore, she saves the entire Glue
session, which allows her to re-load these datasets, dataset

Fig. 2: Glue after step 2. Tracing a cluster of points in the scatter
plot creates a new subset, The histogram plot updates automatically.

Fig. 3: The dialog for expression relationships between different
datasets in step 3. Here, both datasets use the same spatial coor-
dinates.

connections, and subset definitions at any time.

Glue Architecture

The scenario above outlines the basic workflow that Glue
enables -- Glue allows users to create interactive linked
visualizations, and to drill down into interesting subsets of
these visualizations. One of the design priorities in Glue is
to keep visualization code as simple and modular as possible,
so that adding new visualizations is straightforward. Here we
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Fig. 4: Once the catalog and image are linked, the user can overplot the original subset on the image (step 4).

provide an overview of how we have implemented cross-data
linking in Glue, while striving to keep visualization code as
simple as possible.

Keeping visualizations in-sync is accomplished with the
publish/subscribe pattern. Glue defines several standard mes-
sages that communicate state changes (e.g., that a subset
definition has been changed, a subset has been added or
removed, etc.). Visualization clients attach callback methods to
a central hub; these callback methods are meant to respond to a
particular type of state change (e.g., to change the appearance
of a plot). The hub is responsible for broadcasting messages it
receives -- in effect, calling each callback function registered
with a particular message. Thus, to stay synchronized, a visu-
alization client simply needs to implement callback functions
that handle each type of message, and register these with the
hub.

The hub receives messages to broadcast from data and
subset objects. The base classes for these objects override
the __setattribute__ method, such that state changes
automatically send messages to the hub. This means that, in
most situations, code that edits the state (for example, code that
translates user-drawn regions-of-interest to subset definitions)
need not manually broadcast messages.

Glue enables data linking across files by providing a simple,
dictionary-like interface for accessing attributes from data. For
example, consider the case where a user overplots a catalog on
top of an image. Such an overlay requires knowledge of the

location of each catalog entry in the pixel coordinate system
of the image. The pseudo-code for the overlay looks like this:
def overplot_catalog(catalog_data):

try:
# try to fetch requested quantities
x = catalog_data[’pixel_coord_x’]
y = catalog_data[’pixel_coord_y’]

except InvalidAttribute:
# cannot compute pixel location of catalog
return

# x, y are numpy arrays
plot(x, y)

In other words, visualization code simply looks up the in-
formation it needs. Behind the scenes, the data object is
responsible for retrieving and/or computing this quantity, and
returning a NumPy array. If it cannot do this, it raises an
InvalidAttribute exception, which visualization code
responds to. Importantly, visualization code is not responsible
for performing coordinate transformations.

Subsets also rely on this interface for filtering data. Each
subset stores its logical definition as a subset state. Funda-
mentally, subset states are combinations of inequalities. Each
subset state has a to_mask method that is capable of filtering
a given dataset. For example, the implementation of a simple
inequality subset state looks like this:
class GreaterThanSubsetState(SubsetState):

def __init__(self, attribute, threshold):
self.attribute = attribute
self.threshold = threshold
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Fig. 5: Eventually, the user annotates several interesting regions in
parameter space (step 5). These subsets can be exported as masks
for further analysis.

def to_mask(self, data):
# uses the data dictionary interface
return data[self.attribute] > self.threshold

Because subset states retain the information about which
quantities they constrain, they can be applied across datasets,
provided the quantities that they filter against are defined or
computable in the target dataset.

Internally, Glue maintains a graph of coordinate transfor-
mation functions when the user defines connections between
datasets. The nodes in this graph are all the attributes defined
in all datasets, and the edges are translation functions. When
client code tries to access a quantity that is not originally
stored in a dataset, Glue searches for a path from quantities
that are natively present to the requested quantity. If such a
path exists, The relevant set of transformation functions are
called, and the result is returned.

Integrating with Python Workflows

Python is the language-of-choice for many scientists, and the
fact that Glue is written in Python means that it is more
easily "hackable" than a typical GUI application. This blurs
the boundary between interactive and scripted analysis, and
can lead to a more fluid workflow. Here are several examples:

Custom data linking functions Glue allows users to spec-
ify arbitrary Python functions to translate between quantities
in different datasets. As a simple example, consider a function
which translates between pounds and kilograms:
from glue.config import link_function

@link_function(info=’Convert pounds to kilograms’)
def pounds2kilos(lbs):

return lbs / 2.2

Link functions accept and return NumPy arrays. The
link_function decorator adds this function to the list of

translation functions presented in the data linking UI. This
code can be put in a configuration file that glue runs on startup.

Custom data loading A traditional weakness of GUIs is
their fragility to unanticipated data formats. However, Glue
allows users to specify custom data loader methods, to parse
data in unrecognized formats. For example, to parse jpeg files:
from glue.config import data_factory
from glue.core import Data
from skimage.io import imread

@data_factory(’JPEG Reader’, ’*.jpg’)
def read_jpeg_image(file_name):

im = imread(file_name)

return Data(label=’Image’,
r=im[:, :, 0],
g=im[:, :, 1],
b=im[:, :, 2])

This function parses a data object with three attributes (the red,
green, and blue channels). The data_factory decorator
adds this function to the data loading user interface.

Setup Scripts Glue can be passed a Python script to run
on startup. This can be a convenient way to automate the
task of loading and linking several files that are frequently
visualized. This addresses another typical pain-point of GUIs
-- the repetitive mouse-clicking one has to do every time a
GUI is restarted.

Calling Glue from Python Glue can be invoked during a
running Python session. Many scientists use Python for data-
exploration from the command line (or, more recently, the
IPython notebook). Glue can be used to interact with live
Python variables. For example, Glue includes a convenience
function, qglue, that composes "normal" data objects like
NumPy arrays and Pandas DataFrames into Glue objects, and
initializes the Glue UI with these variables. qglue is useful
for quick questions about multidimensional data that arise mid-
analysis.

Similarly, Glue embeds an IPython terminal that gives users
access to the Python command line (and Glue variables) during
a glue session. Variables in a Glue session can be introspected
and analyzed on this command line.

Relationship to Other Efforts

Glue helps researchers uncover the relationships that exist
between related datasets. It enables users to easily create
multiple linked visualizations which can be used to identify
and drill down into interesting data subsets.

Many of the ideas behind Glue are rooted in previous
efforts (for a more thorough history from an astronomy
perspective, see [Goodman12]). The statistician John Tukey pi-
oneered many of the ideas behind what he termed Exploratory
Data Analysis (that is, the open-ended investigation of fea-
tures in datasets, as distinguished from Confirmatory Data
Analysis where specific hypotheses are tested systematically;
[Tukey77]). In the early 1970s, he developed the PRIM-9
program, which implemented the idea of creating multiple
views of multivariate data, and isolating data subsets. More
modern linked-visualization programs influenced by PRIM-9
include GGobi, Spotfire, DataDesk, and Tableau (the first is
free and open-source, the latter 3 are commercial).

http://ggobi.org/
http://spotfire.tibco.com
http://www.datadesk.com
http://www.tableausoftware.com
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Within the astronomy community, Topcat and Viewpoints
focus on linked visualization of tabular data. Finally, some
efforts from the Virtual Observatory community (especially the
SAMP protocol) allow different visualization tools to interop-
erate, and hence provide a limited linked-view environment.

Glue builds upon the ideas developed in these programs in a
few key ways. The majority of these linked-view environments
focus on the exploration of a single catalog. Glue generalizes
this approach in two directions. First, Glue is designed to
handle several files at a time, and to visually explore the
connections between these files. Second, Glue handles non-
tabular data like images -- this is critical for applications
in astronomy, medical imaging, and Geographic Information
Systems.

The landscape of data is evolving rapidly, and driving
revolutions both within and beyond science. The phenomenon
of "big data" is one of the most public facets of this revolution.
Rapidly growing volumes of data present new engineering
challenges for analysis, as well as new opportunities for data-
driven decision making. Glue tackles a different but equally
important facet of the data revolution, which we call "wide
data". Data are becoming increasingly inter-related, and the
ability to tease out these connections will enable new discov-
eries. Glue is a platform for visually and flexibly exploring
these relationships.
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Hyperopt: A Python Library for Optimizing the
Hyperparameters of Machine Learning Algorithms

James Bergstra∗†, Dan Yamins‡, David D. Cox§
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Abstract—Sequential model-based optimization (also known as Bayesian op-
timization) is one of the most efficient methods (per function evaluation) of
function minimization. This efficiency makes it appropriate for optimizing the
hyperparameters of machine learning algorithms that are slow to train. The
Hyperopt library provides algorithms and parallelization infrastructure for per-
forming hyperparameter optimization (model selection) in Python. This paper
presents an introductory tutorial on the usage of the Hyperopt library, including
the description of search spaces, minimization (in serial and parallel), and the
analysis of the results collected in the course of minimization. The paper closes
with some discussion of ongoing and future work.

Index Terms—Bayesian optimization, hyperparameter optimization, model se-
lection

Introduction

Sequential model-based optimization (SMBO, also known as
Bayesian optimization) is a general technique for function
optimization that includes some of the most call-efficient (in
terms of function evaluations) optimization methods currently
available. Originally developed for experiment design (and
oil exploration, [Mockus78]) SMBO methods are generally
applicable to scenarios in which a user wishes to minimize
some scalar-valued function f (x) that is costly to evaluate,
often in terms of time or money. Compared with standard
optimization strategies such as conjugate gradient descent
methods, model-based optimization algorithms invest more
time between function evaluations in order to reduce the
number of function evaluations overall.

The advantages of SMBO are that it:
• leverages smoothness without analytic gradient,
• handles real-valued, discrete, and conditional variables,
• handles parallel evaluations of f (x),
• copes with hundreds of variables, even with budget of

just a few hundred function evaluations.
Many widely-used machine learning algorithms take a sig-

nificant amount of time to train from data. At the same time,
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these same algorithms must be configured prior to training.
These configuration variables are called hyperparameters. For
example, Support Vector Machines (SVMs) have hyperparam-
eters that include the regularization strength (often C) the
scaling of input data (and more generally, the preprocessing of
input data), the choice of similarity kernel, and the various pa-
rameters that are specific to that kernel choice. Decision trees
are another machine learning algorithm with hyperparameters
related to the heuristic for creating internal nodes, and the
pruning strategy for the tree after (or during) training. Neural
networks are a classic type of machine learning algorithm
but they have so many hyperparameters that they have been
considered too troublesome for inclusion in the sklearn library.

Hyperparameters generally have a significant effect on the
success of machine learning algorithms. A poorly-configured
SVM may perform no better than chance, while a well-
configured one may achieve state-of-the-art prediction accu-
racy. To experts and non-experts alike, adjusting hyperparam-
eters to optimize end-to-end performance can be a tedious
and difficult task. Hyperparameters come in many varieties-
--continuous-valued ones with and without bounds, discrete
ones that are either ordered or not, and conditional ones that
do not even always apply (e.g., the parameters of an optional
pre-processing stage). Because of this variety, conventional
continuous and combinatorial optimization algorithms either
do not directly apply, or else operate without leveraging
valuable structure in the configuration space. Common practice
for the optimization of hyperparameters is (a) for algorithm
developers to tune them by hand on representative problems
to get good rules of thumb and default values, and (b) for
algorithm users to tune them manually for their particular
prediction problems, perhaps with the assistance of [multi-
resolution] grid search. However, when dealing with more
than a few hyperparameters (e.g. 5) this standard practice of
manual search with grid refinement is not guaranteed to work
well; in such cases even random search has been shown to be
competitive with domain experts [BB12].

Hyperopt [Hyperopt] provides algorithms and software in-
frastructure for carrying out hyperparameter optimization for
machine learning algorithms. Hyperopt provides an optimiza-
tion interface that distinguishes a configuration space and
an evaluation function that assigns real-valued loss values
to points within the configuration space. Unlike the standard

http://www.youtube.com/watch?v=Mp1xnPfE4PY
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minimization interfaces provided by scientific programming
libraries, Hyperopt’s fmin interface requires users to specify
the configuration space as a probability distribution. Speci-
fying a probability distribution rather than just bounds and
hard constraints allows domain experts to encode more of
their intuitions regarding which values are plausible for vari-
ous hyperparameters. Like SciPy’s optimize.minimize
interface, Hyperopt makes the SMBO algorithm itself an
interchangeable component so that any search algorithm can
be applied to any search problem. Currently two algorithms
are provided -- random search and Tree-of-Parzen-Estimators
(TPE) algorithm introduced in [BBBK11] -- and more algo-
rithms are planned (including simulated annealing, [SMAC],
and Gaussian-process-based [SLA13]).

We are motivated to make hyperparameter optimization
more reliable for four reasons:

Reproducibile research
Hyperopt formalizes the practice of model eval-
uation, so that benchmarking experiments can be
reproduced at later dates, and by different people.

Empowering users
Learning algorithm designers can deliver flexible
fully-configurable implementations to non-experts
(e.g. deep learning systems), so long as they also
provide a corresponding Hyperopt driver.

Designing better algorithms
As algorithm designers, we appreciate Hyperopt’s
capacity to find successful configurations that we
might not have considered.

Fuzz testing
As algorithm designers, we appreciate Hyperopt’s
capacity to find failure modes via configurations that
we had not considered.

This paper describes the usage and architecture of Hyperopt,
for both sequential and parallel optimization of expensive
functions. Hyperopt can in principle be used for any SMBO
problem, but our development and testing efforts have been
limited so far to the optimization of hyperparameters for deep
neural networks [hp-dbn] and convolutional neural networks
for object recognition [hp-convnet].

Getting Started with Hyperopt

This section introduces basic usage of the hyperopt.fmin
function, which is Hyperopt’s basic optimization driver. We
will look at how to write an objective function that fmin can
optimize, and how to describe a configuration space that fmin
can search.

Hyperopt shoulders the responsibility of finding the best
value of a scalar-valued, possibly-stochastic function over a
set of possible arguments to that function. Whereas most
optimization packages assume that these inputs are drawn
from a vector space, Hyperopt encourages you, the user, to
describe your configuration space in more detail. Hyperopt is
typically aimed at very difficult search settings, especially ones
with many hyperparameters and a small budget for function
evaluations. By providing more information about where your

function is defined, and where you think the best values are,
you allow algorithms in Hyperopt to search more efficiently.

The way to use Hyperopt is to describe:
• the objective function to minimize
• the space over which to search
• a trials database [optional]
• the search algorithm to use [optional]
This section will explain how to describe the objective func-

tion, configuration space, and optimization algorithm. Later,
Section Trial results: more than just the loss will explain how
to use the trials database to analyze the results of a search, and
Section Parallel Evaluation with a Cluster will explain how to
use parallel computation to search faster.

Step 1: define an objective function

Hyperopt provides a few levels of increasing flexibility /
complexity when it comes to specifying an objective function
to minimize. In the simplest case, an objective function is a
Python function that accepts a single argument that stands for
x (which can be an arbitrary object), and returns a single scalar
value that represents the loss ( f (x)) incurred by that argument.

So for a trivial example, if we want to minimize a quadratic
function q(x,y) := x2 + y2 then we could define our objective
q as follows:
def q(args):

x, y = args
return x ** 2 + y ** 2

Although Hyperopt accepts objective functions that are more
complex in both the arguments they accept and their return
value, we will use this simple calling and return convention for
the next few sections that introduce configuration spaces, op-
timization algorithms, and basic usage of the fmin interface.
Later, as we explain how to use the Trials object to analyze
search results, and how to search in parallel with a cluster, we
will introduce different calling and return conventions.

Step 2: define a configuration space

A configuration space object describes the domain over which
Hyperopt is allowed to search. If we want to search q over
values of x ∈ [0,1], and values of y ∈ R , then we can write
our search space as:
from hyperopt import hp

space = [hp.uniform(’x’, 0, 1), hp.normal(’y’, 0, 1)]

Note that for both x and y we have specified not only the hard
bound constraints, but also we have given Hyperopt an idea
of what range of values for y to prioritize.

Step 3: choose a search algorithm

Choosing the search algorithm is currently as simple
as passing algo=hyperopt.tpe.suggest or
algo=hyperopt.rand.suggest as a keyword argument
to hyperopt.fmin. To use random search to our search
problem we can type:
from hyperopt import hp, fmin, rand, tpe, space_eval
best = fmin(q, space, algo=rand.suggest)
print best
# => XXX
print space_eval(space, best)



HYPEROPT: A PYTHON LIBRARY FOR OPTIMIZING THE HYPERPARAMETERS OF MACHINE LEARNING ALGORITHMS 15

# => XXX

best = fmin(q, space, algo=tpe.suggest)
print best
# => XXX
print space_eval(space, best)
# => XXX

The search algorithms are global functions which may gen-
erally have extra keyword arguments that control their op-
eration beyond the ones used by fmin (they represent
hyper-hyperparameters!). The intention is that these hyper-
hyperparameters are set to default that work for a range of
configuration problems, but if you wish to change them you
can do it like this:
from functools import partial
from hyperopt import hp, fmin, tpe
algo = partial(tpe.suggest, n_startup_jobs=10)
best = fmin(q, space, algo=algo)
print best
# => XXX

In a nutshell, these are the steps to using Hyperopt. Implement
an objective function that maps configuration points to a
real-valued loss value, define a configuration space of valid
configuration points, and then call fmin to search the space
to optimize the objective function. The remainder of the paper
describes (a) how to describe more elaborate configuration
spaces, especially ones that enable more efficient search by
expressing conditional variables, (b) how to analyze the results
of a search as stored in a Trials object, and (c) how to use
a cluster of computers to search in parallel.

Configuration Spaces

Part of what makes Hyperopt a good fit for optimizing machine
learning hyperparameters is that it can optimize over general
Python objects, not just e.g. vector spaces. Consider the simple
function w below, which optimizes over dictionaries with
’type’ and either ’x’ and ’y’ keys:
def w(pos):

if pos[’use_var’] == ’x’:
return pos[’x’] ** 2

else:
return math.exp(pos[’y’])

To be efficient about optimizing w we must be able to (a) de-
scribe the kinds of dictionaries that w requires and (b) correctly
associate w’s return value to the elements of pos that actually
contributed to that return value. Hyperopt’s configuration space
description objects address both of these requirements. This
section describes the nature of configuration space description
objects, and how the description language can be extended
with new expressions, and how the choice expression sup-
ports the creation of conditional variables that support efficient
evaluation of structured search spaces of the sort we need to
optimize w.

Configuration space primitives

A search space is a stochastic expression that always evaluates
to a valid input argument for your objective function. A search
space consists of nested function expressions. The stochastic
expressions are the hyperparameters. (Random search is im-
plemented by simply sampling these stochastic expressions.)

The stochastic expressions currently recognized by Hy-
peropt’s optimization algorithms are in the hyperopt.hp
module. The simplest kind of search spaces are ones that
are not nested at all. For example, to optimize the simple
function q (defined above) on the interval [0,1], we could
type fmin(q, space=hp.uniform(’a’, 0, 1)).

The first argument to hp.uniform here is the label. Each
of the hyperparameters in a configuration space must be la-
beled like this with a unique string. The other hyperparameter
distributions at our disposal as modelers are as follows:

hp.choice(label, options)
Returns one of the options, which should be a list
or tuple. The elements of options can themselves
be [nested] stochastic expressions. In this case, the
stochastic choices that only appear in some of the
options become conditional parameters.

hp.pchoice(label, p_options)
Return one of the option terms listed in
p_options, a list of pairs (prob, option) in
which the sum of all prob elements should sum to
1. The pchoice lets a user bias random search to
choose some options more often than others.

hp.uniform(label, low, high)
Draws uniformly between low and high. When
optimizing, this variable is constrained to a two-sided
interval.

hp.quniform(label, low, high, q)
Drawn by round(uniform(low, high) /
q) * q, Suitable for a discrete value with respect
to which the objective is still somewhat smooth.

hp.loguniform(label, low, high)
Drawn by exp(uniform(low, high)). When
optimizing, this variable is constrained to the interval
[elow,ehigh].

hp.qloguniform(label, low, high, q)
Drawn by round(exp(uniform(low,
high)) / q) * q. Suitable for a discrete
variable with respect to which the objective is
smooth and gets smoother with the increasing size
of the value.

hp.normal(label, mu, sigma)
Draws a normally-distributed real value. When opti-
mizing, this is an unconstrained variable.

hp.qnormal(label, mu, sigma, q)
Drawn by round(normal(mu, sigma) / q)

* q. Suitable for a discrete variable that probably
takes a value around mu, but is technically un-
bounded.

hp.lognormal(label, mu, sigma)
Drawn by exp(normal(mu, sigma)). When
optimizing, this variable is constrained to be positive.

hp.qlognormal(label, mu, sigma, q)
Drawn by round(exp(normal(mu, sigma))
/ q) * q. Suitable for a discrete variable with
respect to which the objective is smooth and gets
smoother with the size of the variable, which is non-
negative.
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hp.randint(label, upper)
Returns a random integer in the range [0,upper).
In contrast to quniform optimization algorithms
should assume no additional correlation in the loss
function between nearby integer values, as compared
with more distant integer values (e.g. random seeds).

Structure in configuration spaces

Search spaces can also include lists, and dictionaries. Using
these containers make it possible for a search space to include
multiple variables (hyperparameters). The following code frag-
ment illustrates the syntax:
from hyperopt import hp

list_space = [
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1)]

tuple_space = (
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1))

dict_space = {
’a’: hp.uniform(’a’, 0, 1),
’b’: hp.loguniform(’b’, 0, 1)}

There should be no functional difference between using list
and tuple syntax to describe a sequence of elements in
a configuration space, but both syntaxes are supported for
everyone’s convenience.

Creating list, tuple, and dictionary spaces as illustrated
above is just one example of nesting. Each of these container
types can be nested to form deeper configuration structures:
nested_space = [

[ {’case’: 1, ’a’: hp.uniform(’a’, 0, 1)},
{’case’: 2, ’b’: hp.loguniform(’b’, 0, 1)}],

’extra literal string’,
hp.randint(’r’, 10) ]

There is no requirement that list elements have some kind
of similarity, each element can be any valid configuration
expression. Note that Python values (e.g. numbers, strings,
and objects) can be embedded in the configuration space.
These values will be treated as constants from the point of
view of the optimization algorithms, but they will be included
in the configuration argument objects passed to the objective
function.

Sampling from a configuration space

The previous few code fragments have defined various con-
figuration spaces. These spaces are not objective function
arguments yet, they are simply a description of how to
sample objective function arguments. You can use the routines
in hyperopt.pyll.stochastic to sample values from
these configuration spaces.
from hyperopt.pyll.stochastic import sample

print sample(list_space)
# => [0.13, .235]

print sample(nested_space)
# => [[{’case’: 1, ’a’, 0.12}, {’case’: 2, ’b’: 2.3}],
# ’extra_literal_string’,
# 3]

Note that the labels of the random configuration variables
have no bearing on the sampled values themselves, the labels

are only used internally by the optimization algorithms. Later
when we look at the trials parameter to fmin we will
see that the labels are used for analyzing search results too.
For now though, simply note that the labels are not for the
objective function.

Deterministic expressions in configuration spaces

It is also possible to include deterministic expressions within
the description of a configuration space. For example, we can
write
from hyperopt.pyll import scope

def foo(x):
return str(x) * 3

expr_space = {
’a’: 1 + hp.uniform(’a’, 0, 1),
’b’: scope.minimum(hp.loguniform(’b’, 0, 1), 10),
’c’: scope.call(foo, args=(hp.randint(’c’, 5),)),
}

The hyperopt.pyll submodule implements an expression
language that stores this logic in a symbolic representation.
Significant processing can be carried out by these intermediate
expressions. In fact, when you call fmin(f, space), your
arguments are quickly combined into a single objective-and-
configuration evaluation graph of the form: scope.call(f,
space). Feel free to move computations between these
intermediate functions and the final objective function as you
see fit in your application.

You can add new functions to the scope object with the
define decorator:
from hyperopt.pyll import scope

@scope.define
def foo(x):

return str(x) * 3

# -- This will print "000"; foo is called as usual.
print foo(0)

expr_space = {
’a’: 1 + hp.uniform(’a’, 0, 1),
’b’: scope.minimum(hp.loguniform(’b’, 0, 1), 10),
’c’: scope.foo(hp.randint(’cbase’, 5)),
}

# -- This will draw a sample by running foo(x)
# on a random integer x.
print sample(expr_space)

Read through hyperopt.pyll.base and
hyperopt.pyll.stochastic to see the functions
that are available, and feel free to add your own. One
important caveat is that functions used in configuration space
descriptions must be serializable (with pickle module) in
order to be compatible with parallel search (discussed below).

Defining conditional variables with choice and pchoice

Having introduced nested configuration spaces, it is worth
coming back to the hp.choice and hp.pchoice hy-
perparameter types. An hp.choice(label, options)
hyperparameter chooses one of the options that you provide,
where the options must be a list. We can use choice to
define an appropriate configuration space for the w objective
function (introduced in Section Configuration Spaces).
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w_space = hp.choice(’case’, [
{’use_var’: ’x’, ’x’: hp.normal(’x’, 0, 1)},
{’use_var’: ’y’, ’y’: hp.uniform(’y’, 1, 3)}])

print sample(w_space)
# ==> {’use_var’: ’x’, ’x’: -0.89}

print sample(w_space)
# ==> {’use_var’: ’y’, ’y’: 2.63}

Recall that in w, the ’y’ key of the configuration is not used
when the ’use_var’ value is ’x’. Similarly, the ’x’ key
of the configuration is not used when the ’use_var’ value
is ’y’. The use of choice in the w_space search space
reflects the conditional usage of keys ’x’ and ’y’ in the w
function. We have used the choice variable to define a space
that never has more variables than is necessary.

The choice variable here plays more than a cosmetic role;
it can make optimization much more efficient. In terms of w
and w_space, the choice node prevents y for being blamed
(in terms of the logic of the search algorithm) for poor
performance when ’use_var’ is ’x’, or credited for good
performance when ’use_var’ is ’x’. The choice variable
creates a special node in the expression graph that prevents the
conditionally unnecessary part of the expression graph from
being evaluated at all. During optimization, similar special-
case logic prevents any association between the return value
of the objective function and irrelevant hyperparameters (ones
that were not chosen, and hence not involved in the creation
of the configuration passed to the objective function).

The hp.pchoice hyperparameter constructor is similar
to choice except that we can provide a list of probabilities
corresponding to the options, so that random sampling chooses
some of the options more often than others.
w_space_with_probs = hp.pchoice(’case’, [

(0.8, {’use_var’: ’x’,
’x’: hp.normal(’x’, 0, 1)}),

(0.2, {’use_var’: ’y’,
’y’: hp.uniform(’y’, 1, 3)})])

Using the w_space_with_probs configuration space ex-
presses to fmin that we believe the first case (using ’x’)
is five times as likely to yield an optimal configuration that
the second case. If your objective function only uses a subset
of the configuration space on any given evaluation, then you
should use choice or pchoice hyperparameter variables to
communicate that pattern of inter-dependencies to fmin.

Sharing a configuration variable across choice branches

When using choice variables to divide a configuration space
into many mutually exclusive possibilities, it can be natural
to re-use some configuration variables across a few of those
possible branches. Hyperopt’s configuration space supports
this in a natural way, by allowing the objects to appear in
multiple places within a nested configuration expression. For
example, if we wanted to add a randint choice to the
returned dictionary that did not depend on the ’use_var’
value, we could do it like this:
c = hp.randint(’c’, 10)

w_space_c = hp.choice(’case’, [
{’use_var’: ’x’,
’x’: hp.normal(’x’, 0, 1),
’c’: c},

{’use_var’: ’y’,
’y’: hp.uniform(’y’, 1, 3),
’c’: c}])

Optimization algorithms in Hyperopt would see that c is used
regardless of the outcome of the choice value, so they would
correctly associate c with all evaluations of the objective
function.

Configuration Example: sklearn classifiers
To see how we can use these mechanisms to describe a more
realistic configuration space, let’s look at how one might
describe a set of classification algorithms in [sklearn].
from hyperopt import hp
from hyperopt.pyll import scope
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier\

as DTree

scope.define(GaussianNB)
scope.define(SVC)
scope.define(DTree, name=’DTree’)

C = hp.lognormal(’svm_C’, 0, 1)
space = hp.pchoice(’estimator’, [

(0.1, scope.GaussianNB()),
(0.2, scope.SVC(C=C, kernel=’linear’)),
(0.3, scope.SVC(C=C, kernel=’rbf’,

width=hp.lognormal(’svm_rbf_width’, 0, 1),
)),

(0.4, scope.DTree(
criterion=hp.choice(’dtree_criterion’,

[’gini’, ’entropy’]),
max_depth=hp.choice(’dtree_max_depth’,

[None, hp.qlognormal(’dtree_max_depth_N’,
2, 2, 1)],

])

This example illustrates nesting, the use of custom expression
types, the use of pchoice to indicate independence among
configuration branches, several numeric hyperparameters, a
discrete hyperparameter (the Dtree criterion), and a specifica-
tion of our prior preference among the four possible classifiers.
At the top level we have a pchoice between four sklearn
algorithms: Naive Bayes (NB), a Support Vector Machine
(SVM) using a linear kernel, an SVM using a Radial Basis
Function (’rbf’) kernel, and a decision tree (Dtree). The
result of evaluating the configuration space is actually a sklearn
estimator corresponding to one of the three possible branches
of the top-level choice. Note that the example uses the same C
variable for both types of SVM kernel. This is a technique for
injecting domain knowledge to assist with search; if each of
the SVMs prefers roughly the same value of C then this will
buy us some search efficiency, but it may hurt search efficiency
if the two SVMs require very different values of C. Note also
that the hyperparameters all have unique names; it is tempting
to think they should be named automatically by their path
to the root of the configuration space, but the configuration
space is not a tree (consider the C above). These names are
also invaluable in analyzing the results of search after fmin
has been called, as we will see in the next section, on the
Trials object.

The Trials Object

The fmin function returns the best result found during search,
but can also be useful to analyze all of the trials evaluated
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during search. Pass a trials argument to fmin to retain
access to all of the points accessed during search. In this case
the call to fmin proceeds as before, but by passing in a trials
object directly, we can inspect all of the return values that
were calculated during the experiment.
from hyperopt import (hp, fmin, space_eval,

Trials)
trials = Trials()
best = fmin(q, space, trials=trials)
print trials.trials

Information about all of the points evaluated during the search
can be accessed via attributes of the trials object. The
.trials attribute of a Trials object (trials.trials
here) is a list with an element for every function evaluation
made by fmin. Each element is a dictionary with at least
keys:

’tid’: value of type int
trial identifier of the trial within the search

’results’: value of type dict
dict with ’loss’, ’status’, and other informa-
tion returned by the objective function (see below for
details)

’misc’ value of dict with keys ’idxs’ and ’vals’
compressed representation of hyperparameter values

This trials object can be pickled, analyzed with your own
code, or passed to Hyperopt’s plotting routines (described
below).

Trial results: more than just the loss

Often when evaluating a long-running function, there is more
to save after it has run than a single floating point loss
value. For example there may be statistics of what happened
during the function evaluation, or it might be expedient to
pre-compute results to have them ready if the trial in question
turns out to be the best-performing one.

Hyperopt supports saving extra information alongside the
trial loss. To use this mechanism, an objective function must
return a dictionary instead of a float. The returned dictio-
nary must have keys ’loss’ and ’status’. The status
should be either STATUS_OK or STATUS_FAIL depending
on whether the loss was computed successfully or not. If the
status is STATUS_OK, then the loss must be the objective
function value for the trial. Writing a quadratic f(x) function
in this dictionary-returning style, it might look like:
import time
from hyperopt import fmin, Trials
from hyperopt import STATUS_OK, STATUS_FAIL

def f(x):
try:

return {’loss’: x ** 2,
’time’: time.time(),
’status’: STATUS_OK }

except Exception, e:
return {’status’: STATUS_FAIL,

’time’: time.time(),
’exception’: str(e)}

trials = Trials()
fmin(f, space=hp.uniform(’x’, -10, 10),

trials=trials)
print trials.trials[0][’results’]

An objective function can use just about any keys to store
auxiliary information, but there are a few special keys that are
interpreted by Hyperopt routines:
’loss_variance’: type float

variance in a stochastic objective function
’true_loss’: type float

if you pre-compute a test error for a validation error
loss, store it here so that Hyperopt plotting routines
can find it.

’true_loss_variance’: type float
variance in test error estimator

’attachments’: type dict
short (string) keys with potentially long (string)
values

The ’attachments’ mechanism is primarily useful for
reducing data transfer times when using the MongoTrials
trials object (discussed below) in the context of parallel
function evaluation. In that case, any strings longer than a
few megabytes actually have to be placed in the attachments
because of limitations in certain versions of the mongodb
database format. Another important consideration when using
MongoTrials is that the entire dictionary returned from the
objective function must be JSON-compatible. JSON allows
for only strings, numbers, dictionaries, lists, tuples, and date-
times.

HINT: To store NumPy arrays, serialize them to a string,
and consider storing them as attachments.

Parallel Evaluation with a Cluster

Hyperopt has been designed to make use of a cluster of
computers for faster search. Of course, parallel evaluation of
trials sits at odds with sequential model-based optimization.
Evaluating trials in parallel means that efficiency per function
evaluation will suffer (to an extent that is difficult to assess
a-priori), but the improvement in efficiency as a function of
wall time can make the sacrifice worthwhile.

Hyperopt supports parallel search via a special trials type
called MongoTrials. Setting up a parallel search is as
simple as using MongoTrials instead of Trials:
from hyperopt import fmin
from hyperopt.mongo import MongoTrials
trials = MongoTrials(’mongo://host:port/fmin_db/’)
best = fmin(q, space, trials=trials)

When we construct a MongoTrials object, we must specify
a running mongod database [mongodb] for inter-process com-
munication between the fmin producer-process and worker
processes, which act as the consumers in a producer-consumer
processing model. If you simply type the code fragment
above, you may find that it either crashes (if no mongod is
found) or hangs (if no worker processes are connected to the
same database). When used with MongoTrials the fmin
call simply enqueues configurations and waits until they are
evaluated. If no workers are running, fmin will block after
enqueing one trial. To run fmin with MongoTrials requires
that you:

1. Ensure that mongod is running on the specified
host and port,
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2. Choose a database name to use for a particular
fmin call, and

3. Start one or more hyperopt-mongo-worker pro-
cesses.

There is a generic hyperopt-mongo-worker script in Hyper-
opt’s scripts subdirectory that can be run from a command
line like this:
hyperopt-mongo-worker --mongo=host:port/db

To evaluate multiple trial points in parallel, simply start
multiple scripts in this way that all work on the same database.

Note that mongodb databases persist until they are deleted,
and fmin will never delete things from mongodb. If you call
fmin using a particular database one day, stop the search, and
start it again later, then fmin will continue where it left off.

The Ctrl Object for Realtime Communication with MongoDB

When running a search in parallel, you may wish to provide
your objective function with a handle to the mongodb database
used by the search. This mechanism makes it possible for
objective functions to:
• update the database with partial results,
• to communicate with concurrent processes, and
• even to enqueue new configuration points.
This is an advanced usage of Hyperopt, but it is supported

via syntax like the following:
from hyperopt import pyll

@hyperopt.fmin_pass_expr_memo_ctrl
def realtime_objective(expr, memo, ctrl):

config = pyll.rec_eval(expr, memo=memo)
# .. config is a configuration point
# .. ctrl can be used to interact with database
return {’loss’: f(config),

’status’: STATUS_OK, ...}

The fmin_pass_expr_memo_ctrl decorator tells fmin
to use a different calling convention for the objective function,
in which internal objects expr, memo and ctrl are exposed
to the objective function. The expr the configuration space,
the memo is a dictionary mapping nodes in the configuration
space description graph to values for those nodes (most
importantly, values for the hyperparameters). The recursive
evaluation function rec_eval computes the configuration
point from the values in the memo dictionary. The config
object produced by rec_eval is what would normally have
been passed as the argument to the objective function. The
ctrl object is an instance of hyperopt.Ctrl, and it
can be used to to communicate with the trials object being
used by fmin. It is possible to use a ctrl object with a
(sequential) Trials object, but it is most useful when used
with MongoTrials.

To summarize, Hyperopt can be used both purely sequen-
tially, as well as broadly sequentially with multiple current
candidates under evaluation at a time. In the parallel case,
mongodb is used for inter-process communication and dou-
bles as a persistent storage mechanism for post-hoc analysis.
Parallel search can be done with the same objective functions
as the ones used for sequential search, but users wishing to
take advantage of asynchronous evaluation in the parallel case
can do so by using a lower-level calling convention for their
objective function.

Ongoing and Future Work

Hyperopt is the subject of ongoing and planned future work
in the algorithms that it provides, the domains that it covers,
and the technology that it builds on.

Related Bayesian optimization software such as Frank Hut-
ter et al’s [SMAC], and Jasper Snoek’s [Spearmint] implement
state-of-the-art algorithms that are different from the TPE
algorithm currently implemented in Hyperopt. Questions about
which of these algorithms performs best in which circum-
stances, and over what search budgets remain topics of active
research. One of the first technical milestones on the road to
answering those research questions is to make each of those
algorithms applicable to common search problems.

Hyperopt was developed to support research into deep learn-
ing [BBBK11] and computer vision [BYC13]. Corresponding
projects [hp-dbn] and [hp-convnet] have been made public on
Github to illustrate how Hyperopt can be used to define and
optimize large-scale hyperparameter optimization problems.
Currently, Hristijan Bogoevski is investigating Hyperopt as a
tool for optimizing the suite of machine learning algorithms
provided by sklearn; that work is slated to appear in the
[hp-sklearn] project in the not-too-distant future.

With regards to implementation decisions in Hyperopt, sev-
eral people have asked about the possibility of using IPython
instead of mongodb to support parallelism. This would allow
us to build on IPython’s cluster management interface, and
relax the constraint that objective function results be JSON-
compatible. If anyone implements this functionality, a pull
request to Hyperopt’s master branch would be most welcome.

Summary and Further Reading

Hyperopt is a Python library for Sequential Model-Based
Optimization (SMBO) that has been designed to meet the
needs of machine learning researchers performing hyperpa-
rameter optimization. It provides a flexible and powerful
language for describing search spaces, and supports scheduling
asynchronous function evaluations for evaluation by multiple
processes and computers. It is BSD-licensed and available for
download from PyPI and Github. Further documentation is
available at [http://jaberg.github.com/hyperopt].
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Abstract—Machine learning benchmark data sets come in all shapes and
sizes, whereas classification algorithms assume sanitized input, such as (x,
y) pairs with vector-valued input x and integer class label y. Researchers and
practitioners know all too well how tedious it can be to get from the URL of a new
data set to a NumPy ndarray suitable for e.g. pandas or sklearn. The SkData
library handles that work for a growing number of benchmark data sets (small
and large) so that one-off in-house scripts for downloading and parsing data
sets can be replaced with library code that is reliable, community-tested, and
documented. The SkData library also introduces an open-ended formalization
of training and testing protocols that facilitates direct comparison with published
research. This paper describes the usage and architecture of the SkData library.

Index Terms—machine learning, cross validation, reproducibility

Introduction

There is nothing standard about data sets for machine learning.
The nature of data sets varies widely, from physical measure-
ments of flower petals ([Iris]), to pixel values of tiny public
domain images ([CIFAR-10]), to the movie watching habits of
NetFlix users ([Netflix]). Some data sets are tiny and others
are vast databases that push the limits of storage technology.
Different data sets test different algorithms’ abilities to make
different kinds of statistical inference. Often a single data
set may be used in several ways to evaluate multiple kinds
of algorithm. This flexibility and un-defined-ness makes it
challenging to design software abstractions for data sets.

In contrast to the great variety of data sets though, re-
searchers have condensed the variety of data sets to a much
smaller set of machine learning problems. For example, a great
deal of machine learning research addresses the classification
problem of assigning an integer-valued label (y) to some vector
of binary- or real-valued features (X). Many classification
algorithms have been developed, such as Support Vector
Machines, Decision Trees, and Nearest Neighbors. The reason
that they are all called classification algorithms is that they
provide a common mathematical interface.
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While the neatness of these mathematical abstractions is
reflected in the organization of machine learning libraries such
as [sklearn], we believe there is a gap in Python’s machine
learning stack between raw data sets and such neat, abstract
interfaces. Data, even when it is provided specifically to test
classification algorithms, is seldom provided as (feature, label)
pairs. Guidelines regarding standard experiment protocols (e.g.
which data to use for training) are expressed informally in web
page text if at all. The SkData library consolidates myriad
little details of idiosyncratic data processing required to run
experiments on standard data sets, and packages them as a
library of reusable code. It serves as both a gateway to access
a growing list of standard public data sets, and as a framework
for expressing precise evaluation protocols that correspond to
standard ways of using those data sets.

This paper introduces the SkData library ([SkData]) for
accessing data sets in Python. SkData provides two levels of
interface:

1. It provides low-level idiosyncratic logic for acquir-
ing, unpacking, and parsing standard data sets so
that they can be loaded into sensible Python data
structures.

2. It provides high-level logic for evaluating machine
learning algorithms using strictly controlled exper-
iment protocols, so that it is easy to make direct,
valid model comparisons.

These interfaces are provided on a data-set-by-data-set
basis. All data sets supported by SkData provide a low-
level interface. For a data set called foo the low-level
interface would normally be provided a submodule called
foo.dataset. SkData provides a high-level interface for
some, but not all supported data sets. This high-level interface
would normally be provided by submodule foo.view. The
high-level modules provide one or more views of the low-level
data which make the underlying data fit the form required by
machine learning algorithms.

Relative to language-agnostic repositories (such as the
[UCI] database of machine learning data sets), SkData pro-
vides Python code for downloading and loading diverse data
representations into more standardized in-memory formats.
Anyone using these data sets in a Python program would have
to use something like the low-level routines in SkData anyway

http://www.youtube.com/watch?v=u5amehIiImo
mailto:james.bergstra@uwaterloo.ca
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to simply load the data. Relative to standardized repositories
such as [MLData], SkData provides convenient downloading
and loading logic, as well as formal protocols (in Python)
for model selection and evaluation. Relative to the [Pandas]
Python library, SkData provides data set-specific logic for
downloading, parsing, and model evaluation; Pandas provides
useful data structures and statistical routines. It would make
sense to use SkData and Pandas together, and future data set
modules in SkData may use Pandas internally. The [PyTables]
library provides a high-performance HDF5 wrapper. It would
make sense to use SkData and PyTables together, such as for
example for low-level SkData routines to store and manipulate
downloaded data.

This paper is organized into the following sections:
1. Data set access (low-level)
2. Intro to experiment protocols (high-level)
3. Protocol case study: simple cross-validation
4. The experiment protocol
5. Command-line interface
6. Current list of data sets

Data Set Access (Low-level Interface)

There is nothing standard about data sets, and SkData’s low-
level interface correspondingly comprises many modules that
are not meant to be formally interchangeable. Still, there are
informal sorts of similarities in some aspects of what users
want to do with data, at least in the context of doing machine
learning. SkData’s low-level modules provide logic for several
common activities for most of the data sets supported by the
library:
• downloading,
• verifying archive integrity,
• decompressing,
• loading into Python, and
• deleting cached data.
These common activities are typically implemented by

methods on singleton classes within SkData’s low-level
modules. The data set class for the Labeled Faces in
the Wild ([LFW]) data set provides a representative ex-
ample of what low-level data set objects look like.
What follows is an abridged version of what appears in
skdata.lfw.dataset.
"""
<Description of data set>

<Citations to key publications>
"""

published_scores = {’PC11’: .881, ...}

url_to_data_file = ...
sha1_of_data_file = ...

class LFW(object):

@property
def home(self):

"""Return cache folder for this data set"""
return os.path.join(

skdata.data_home.get_data_home(),
’lfw’)

def fetch(self, download_if_missing=True):
"""Return iff required data is in cache."""
...

def clean_up(self):
"""Remove cached and downloaded files"""
...

@property
def meta(self):

"""Return meta-data as list of dicts"""
...

The next few sub-sections describe what the methods of this
class (as a representative low-level data set classes) and other
elements of the module are supposed to do. There is a con-
vention that this low-level logic for each data (e.g. foo) should
be written in a Python file called skdata.foo.dataset.
Other projects may implement data set classes in whatever files
are convenient. Technically, there is no requirement that the
low-level routines adhere to any standard interface, because
SkData includes no functions meant to work on any data set.

Context and Documentation

First, notice that the dataset.py file includes a significant
docstring describing the data set and providing some history
regarding its usage. This docstring should provide links to key
publications that either introduced or used this data set.

If the data set has a home page, that should be doc-
umented here too. Many data sets’ home pages maintain
a table of benchmarks and pointers to influential model
evaluation papers. It is appropriate to reproduce such ta-
bles in this dataset.py file either in the docstring, or,
more helpfully, as a module-level Python dictionary (e.g. the
published_scores module-level dictionary in our exam-
ple). Such a dictionaries makes it easier to produce figures
and tables showing performance relative to models from the
literature.

Downloading and Deleting

Often the first order of business when dealing with a data set
is to download it. Data sets come from a range of sources, but
it is worth distinguishing those that can be downloaded freely
(we will call these public) from the rest (private). The SkData
library is suitable and useful for both public and private data,
but it is more useful for public data sets because the original
download from a canonical internet source can be automated.
Whether a data set is private or public, the dataset.py
file should include checksums for verifying the correctness of
important data files when it makes sense to do so.

Most dataset modules use SkData’s
get_data_home() function to identify a local location for
storing large files. This location defaults to .skdata/ but it
can be set via a $SKDATA_ROOT environment variable. In our
code example, LFW.home() uses this mechanism to identify
a location where it can store downloaded and decompressed
data. The convention is that a dataset called foo would
use path.join(get_data_home(), ’foo’) as a
persistent cache location.

The fetch method downloads, verifies the correctness-
of, and decompresses the various files that make up the data
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set. It stores downloaded files within the folder returned by
LFW.home(). If download_if_missing is False, then
fetch raises an exception if the data is not present. When
fetch() returns, it means that the data can be loaded (see
below).

If a data set module downloads or creates files, then it
should also provide a mechanism for deleting them. In our
LFW example, the clean_up method recursively deletes the
entire LFW.home() folder, erasing the downloaded data and
all derived files. Other data sets may wish to provide a more
fine-grained approach to clean-up that perhaps erase derived
files, but not any archive files that cannot easily be replaced.

Decompressing, Parsing, and Loading

Experienced machine learning practitioners are well aware that
in terms of files and formats, a data set may be just about
anything. Some of the more popular data sets in machine
learning and computer vision include one or more of:

• Comma Separated Value (CSV) text files,
• XML documents (with idiosyncratic internal structure),
• Text files with ad-hoc formatting,
• Collections of image, movies, audio files,
• Matlab workspaces,
• Pickled NumPy ndarray objects, and
• HDF5 databases.

Correctly interpreting meta-data can be tricky and writing
code to simply load media collections that include files with
non-homogeneous formats, encoding types, sampling frequen-
cies, color spaces, and so on can be tedious.

One of the main reasons for developing and releasing
SkData was to save scientists the trouble of re-writing scripts
that make sense of data set files. A low-level data set module
should include the logic for reading, walking, parsing, etc.
any and all raw archive files. This logic should turn those raw
archive files into appropriate Python data structures such as
lists, dictionaries, NumPy arrays, Panda data frames, and/or
PyTables Table objects.

For example, the low-level LFW data set class’s meta at-
tribute is computed by parsing a few text files and walking the
directory structure within LFW.home(). The meta property
is a list of dictionaries enumerating what images are present,
how large they are, what color space they use, and the name of
the individual in each image. It does not include all the pixel
data because, in our judgement, the pixel data required a lot
of memory and could be provided instead by a lazy array (see
[Dealing with Large Data] below). The LFW low-level module
contains an additional method called parse_pairs_file
which parses some additional archived text files describing
the train/test splits that the LFW authors recommend using
for the development and evaluation of algorithms. This may
seem ad-hoc, and indeed it is. Low-level modules are meant
to be particular to individual data sets, and not standardized.

There isn’t a lot more to say about low-level dataset
modules in general. Section [Current List of Data Sets] below
enumerates the data sets currently in SkData that have some
degree of low-level support, and that list continues to grow.

Intro to Experiment Protocols (High-level Interface)

Users who simply want a head start in getting Python access to
downloaded data are well-served by the low-level modules, but
users who want a framework to help them reproduce previous
machine learning results by following specific experiment
protocols will be more interested in using SkData’s higher-
level view interface. The next few sections describe the high-
level protocol abstractions provided by SkData’s various data
set-specific view modules.

Background: Classification and Cross-Validation
Before we get into view module abstractions for experiment
protocols, this section will introduce the machine learning
methodology that these abstractions will ultimately provide.

SkData’s high-level modules currently provide structure for
classification problems. A classification problem, in machine
learning terms, is a scenario in which labels (without loss of
generality: integers) are to be predicted from features. If we
wish to predict the name of an individual in a photograph, or
categorize email as spam or not-spam, it is natural to look at
these as classification problems.

It is useful to set this up formally. If Y is our set of possible
labels, and X is the set of possible feature vectors, then a
classifier is a mapping (or model) m : X →Y . A classification
algorithm is a procedure for selecting a particular model from
a set M of possible models. Generally this selection is made
on the basis of data that represent the sorts of features and
labels that we believe will arise. If we write this belief as a
joint density P(x,y) over X ×Y then we can write down
one of the most important selection criteria for classification
models:

`(m) = E
[
I{y6=m(x)}

]
(1)

m(∗) = argminm∈M `(m) (2)

Any function like the ` here that assigns a real-valued score
to a model can be called a loss function. This particular
loss function is called the Zero-One loss because it is the
expected value of a random variable that is either Zero
(when our classifier is wrong) or One (when our classifier
predicts the label). In terms of end-of-the-day accuracy, m(∗)

is, by definition, the best model we could possibly choose.
Classification algorithms represent various ways of minimizing
various loss functions over various sets of models.

In practice, we cannot expect a mathematical expression
for P(x,y). Instead, we must content ourselves with a sample
D of < x,y > pairs. An enumeration of the various ways of
using the examples in D to select and evaluate models from
M is beyond the scope of this paper. (For more information,
see e.g. [HTF09]). SkData is designed to support the full
variety of such protocols, but in the interest of keeping this
paper focused, we will only use what is called simple cross-
validation to illustrate how SkData’s high-level view modules
make it easy to evaluate classification algorithms on a range
of classification tasks.

Protocol Case Study: Simple Cross-Validation

Simple cross-validation is a technique for evaluating a learning
algorithm (e.g. a classification algorithm), on the basis of a
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representative sample of independent, identically drawn (iid)
< x,y > pairs. It is helpful to think of a learning algorithm
as encapsulating the selection criterion and optimization al-
gorithm corresponding to Eqns 1 and 2, and as providing a
mapping A : D →M from a data set to a model. Evaluating
a classification algorithm means estimating how accurate it is
likely to be on data it has never seen before. Simple cross-
validation makes this estimate by partitioning all available data
D into two disjoint subsets. The first subset Dtrain is called a
training set; it is used to choose a model m from M . The
second subset Dtest is called a test set; since this data was not
used during training, it represents a sample of all data that
the learning algorithm has never seen. Mathematically, simple
cross-validation means evaluating an algorithm A as follows:

m = A(Dtrain) (3)

`(A) =
1
|Dtest| ∑

<x,y>∈Dtest

I{y6=m(x)} (4)

The abstractions provided by SkData make it as easy to evalu-
ate an algorithm on a data set as Eqns 3 and 4 suggest. Conve-
niently, the [sklearn] library provides learning algorithms such
as LinearSVC that implement a methods fit and predict
that correspond exactly to the requirements of Eqns. 3 and 4
respectively. As a convenience and debugging utility, SkData
provides a simple wrapper called SklearnClassifier
that makes it easy to apply any sklearn classifier to any
SkData classification view. Using this wrapper, evaluating an
SVM on the [Iris] data set for example, looks like this:
1 from sklearn.svm import LinearSVC
2 from skdata.base import SklearnClassifier
3 from skdata.iris.view import SimpleCrossValidation
4

5 # Create an evaluation protocol
6 iris_view = SimpleCrossValidation()
7

8 # Choose a learning algorithm
9 estimator = LinearSVC

10 algo = SklearnClassifier(estimator)
11

12 # Run the evaluation protocol
13 test_error = iris_view.protocol(algo)
14

15 # See what happened:
16 for report in algo.results[’best_model’]:
17 print report[’train_name’], report[’model’]
18

19 for report in algo.results[’loss’]:
20 print report[’task_name’], report[’err_rate’]
21

22 print "TL;DR: average test error:", test_error

The next few Subsections explain what these functions do, and
suggest how Tasks and Protocols can be used to encode more
elaborate types of evaluation.

Case Study Step 1: Creating a View

The first statement of our cross-validation code sample creates
a view of the Iris data set.
6 iris_view = SimpleCrossValidation()

The SimpleCrossValidation class uses Iris data set’s
low-level interface to load features into a numpy ndarray,
and generally prepare it for usage by sklearn. In general, a
View may be configurable (e.g. how to partition D into training

and testing sets) but this simple demonstration protocol does
not require any parameters.

Case Study Step 2: Creating a Learning Algorithm

The next two statements of our cross-validation code sample
create a learning algorithm, as a SkData class.

10 estimator = LinearSVC
11 algo = SklearnClassifier(estimator)

The argument to SklearnClassifier is a parameter-
free function that constructs a sklearn.Estimator in-
stance, ready to be fit to data. The algo object keeps
track of the interactions between the iris_view protocol
object and the estimator classifier object. When wrapping
around sklearn’s Estimators it is admittedly confusing
to call algo the learning algorithm when estimator is
also deserving of that name. The reason we call algo the
learning algorithm here (rather than estimator) is that
SkData’s high-level modules expect a particular interface of
learning algorithms. That high-level interface is defined by
skdata.base.LearningAlgo.

The SklearnClassifer acts as an adapter that im-
plements the skdata.base.LearningAlgo interface in
terms of sklearn.Estimator. The class serves two roles:
(1) it provides a reference implementation for how handle
commands from a protocol object; (2) it supports unit tests
for protocol classes in Skdata. Researchers are encouraged
to implement their own LearningAlgo classes following
the example of the SklearnClassifier class. Custom
LearningAlgo classes can compute and save algorithm-specific
statistics, and implement performance-enhancing hacks such
as custom data iterators and pre-processing caches. The
practice of appending a summary dictionary to the lists in
self.results has proved useful in our own work, but it likely
not the best technique for all scenarios. A LearningAlgo
subclass should somehow record the results of model training
and testing, but SkData’s high-level view modules does not
require that those results be stored in any particular way. We
will see more about how a protocol object drives training and
testing later in [The Evaluation Protocol].

Case Study Step 3: Evaluating the Learning Algorithm

The heavy lifting of the evaluation process is carried out by
the protocol() call on line 14.

14 test_error = iris_view.protocol(algo)
15

16 # See what happened:
17 for report in algo.results[’best_model’]:
18 print report[’train_name’], report[’model’]
19

20 for report in algo.results[’loss’]:
21 print report[’task_name’], report[’err_rate’]

The protocol method encapsulates a sort of dialog between
the iris_view object as a driver, and the algo object
as a handler of commands from the driver. The protocol in
question (iris.view.SimpleCrossValidation) hap-
pens to use just two kinds of command:

1. Learn the best model for training data
2. Evaluate a model on testing data

The first kind of command produces an entry in
the algo.results[’best_model’] list. The
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second kind of command produces an entry in the
algo.results[’loss’] list.

After the protocol method has returned, we can loop
over these lists (as in lines 17-21) to obtain a summary of
what happened during our evaluation protocol.

The Experiment Protocol

Now that we have seen the sort of code that SkData’s high-
level evaluation protocol is meant to support, the next few
sections dig a little further into how it works.

The Protocol Container: Task

The main data type supporting SkData’s experiment protocol
is what we have called the Task. The skdata.base file
defines the Task class, and it used in all aspects of the
protocol layer. A Task instance represents a semantically
labeled subsample of a data set. It is simply a dictionary
container with access to elements by object attribute (it is
a namespace), but it has two required attributes: name and
semantics. The name attribute is a string that uniquely
identifies this Task among all tasks involved in a Protocol.
The semantics attribute is a string that identifies what kind
of Task this is.

A task’s semantics identifies (to the learning algorithm)
which other attributes are present in the task object,
and how they should be interpreted. For example, if a
task object has ’vector_classification’ semantics,
then it is expected to have (a) an ndarray attribute
called x whose rows are examples and columns are fea-
tures, and (b) an ndarray vector attribute y whose el-
ements label the rows of x. If a task object instead has
’indexed_image_classification’ semantics, then it
is expected to have (a) a sequence of RGBA image ndarrays
in attribute .all_images, (b) a corresponding sequence of
labels .all_labels, and (c) a sequence of integers .idxs
that picks out the relevant items from all_images and
all_labels as defined by NumPy’s take function.

The set of semantics is meant to be open. In the future,
SkData may have a data set for which none of these semantics
applies. For example SkData may, in the future, provide access
to aligned multi-lingual databases of text. At that point it may
well be a good idea to define a ’phrase_translation’
task whose inputs and outputs are sequences of words. The
new semantics string would cause existing learning algorithms
to fail, but failing is reasonable because phrase translation is
not obviously reducible to existing semantics.

The semantics identifiers employed so far in SkData in-
clude:
• ’vector_classification’
• ’indexed_vector_classification’
• ’indexed_image_classification’
• ’image_match_indexed’

Vector classification was explained above, it corresponds
quite directly to the sort of X and y arguments ex-
pected by e.g. sklearn’s LinearSVC.fit. The indexed
semantics allow learning algorithms to cache example-
wise pre-processing in certain protocols, such as K-fold

cross-validation. The general idea is that Tasks with e.g.
’indexed_vector_classification’ semantics share
the same X and y arrays, but use different index lists to
denote different selections from X and y. Whenever dif-
ferent indexed tasks refer to the same rows of X and y,
the learning algorithm can re-use cached pre-processing. The
’image_match_indexed’ semantics was introduced to
accommodate the LFW data set in which image pairs are
labeled according to whether they feature the same person or
different people. Future data sets featuring labeled image pairs
may leverage learning algorithms written for LFW by reusing
the ’image_match_indexed’ semantics. Future data sets
with new kinds of data may wish to use new semantics strings.

Protocol Commands (LearningAlgo Interface)

Now that we have established what Tasks are, we can describe
the methods that a LearningAlgo must support in order to
participate in the most basic protocols:
best_model(task, valid=None)

Instruct a learning algorithm to find the best possible
model for the given task, and return that model to
the protocol driver. If a valid (validation) task is
provided, then use it to detect overfitting on train.

loss(model, task)
Instruct a learning algorithm to evaluate the given
model for the given task. The returned value should
be a floating point scalar, but the semantics of that
scalar are defined by the semantics of the task.

forget_task(task)
Instruct the learning algorithm to free any possible
memory that has been used to cache computations
related to this task, because the task will not be used
again by the protocol.

These functions are meant to have side effects, in the sense
that the LearningAlgo instance is expected to record statis-
tics and summaries etc., but the LearningAlgo instance is
expected not to cheat! For example, the best_model method
should use only the examples in the task argument as training
data. The interface is not designed to make this sort of cheating
difficult to do, it is only designed to make cheating easy to
avoid.

A LearningAlgo can also include additional methods for
use by protocols. For example, one data set in SkData features
a protocol that distinguishes between the selection of features
and the selection of a classifier of those features. That protocol
calls an additional method that is not widely used:
retrain_classifier(model, task)

Instruct the learning algorithm, to retrain only the
classifier, and not repeat any internal feature selection
that has taken place.

When new protocols require new commands for learning
algorithms, our policy is to add them. As evidenced by the
short list of commands above, we have only had to do this
once to date.

The SemanticsDelegator LearningAlgo

Authors of new LearningAlgo base classes may wish
to inherit from base.SemanticsDelegator instead.
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The SemanticsDelegator class handles calls to e.g.
best_model by appending the semantics string to the
call name, and calling that more specialized function, e.g.
best_model_indexed_vector_classification.
While the number of protocol commands may be small, a new
LearningAlgo subclass might implement some protocol
commands quite differently for different semantics strings,
with little code overlap. The SemanticsDelegator base
class makes writing such LearningAlgo classes a little
easier.

The SklearnClassifier uses the
SemanticsDelegator in a different way, to facilitate
a cascade of fallbacks from specialized semantics to more
general ones. The indexed image tasks are converted first to
indexed vector tasks, and then to non-indexed vector tasks
before finally being handled by the sklearn classifier. This
pattern of using machine learning reductions to solve a range
of tasks with a smaller set of core learning routines is a
powerful one, and a LearningAlgo subclass presents a
natural place to implement this pattern.

Protocol Objects

Having looked at the Task and LearningAlgo classes,
we are finally ready to look at that last piece of SkData’s
protocol layer: the Protocol objects themselves. Protocol ob-
jects (such as iris.view.SimpleCrossValidation)
walk a learning algorithm through the process of running an
experiment. To do so, they must provide a view of the data set
they represent (e.g. Iris) that corresponds to one of the Task
semantics. They must create Task objects from subsets of that
view in order to call the methods of a LearningAlgo.

In the case study we looked at earlier, the call to
iris_view.protocol(algo) constructed two Task ob-
jects corresponding to a training set (train) and a test set
(test) of the Iris data and then did the following:
model = algo.best_model(train)
err = algo.loss(model, test)
return err

More elaborate protocols construct more task objects, and
train and test more models, but typically the protocol
methods are quite short. Doubly-nested K-fold cross-validation
is probably the most complicated evaluation protocol, but
it still consists essentially of two nested for loops calling
best_model and loss using a single K-way data partition.
It can be useful to implement longer protocols as iterators
rather than methods so that they can be aborted early.

Dealing with Large Data

Generally, each data set module is free to deal with large data
in a manner befitting its data set, although particular Task
semantics constrain the data representations that can be used
at the protocol layer. Two complementary techniques are used
within the SkData library to keep memory and CPU usage
under control when dealing with potentially enormous data
sets. The first technique is to use the indexed Task semantics.
Recall that when using indexed semantics, a Task includes
an indexable data structure (e.g. ndarray, DataFrame, or
Table) containing the whole of the data set D, and a vector

of positions within that data structure indicating a subset of
examples. Many indexed Task instances can be allocated at
once because each indexed Task shares a pointer to a common
data set. Only a vector of positions must be allocated for each
Task, which is relatively small.

The second technique is to use the lazy array in
skdata.larray as the indexable data structure for indexed
Tasks. The larray can delay many transformations of an
ndarray until elements are accessed by __getitem__. For
example, if a protocol only requires the first 100 examples of
a huge data set, then only those examples will be loaded and
processed. The larray supports transformations such as re-
indexing, elementwise functions, a lazy zip, and cacheing.
Lazy evaluation together with cacheing makes it possible
for protocol objects to pass very large data sets to learning
algorithms, and for learning algorithms to treat very large
data sets in sensible ways. The lazy array does not make
batch learning algorithms into online ones, but it provides a
mechanism for designing iterators so that online algorithms
can traverse large numbers of examples in a cache-efficient
way.

Command-line Interface

Some data sets also provide a main.py file that provides a
command-line interface for operations such as downloading,
visualizing, and deleting data. The LFW data set for example,
has a simple main.py script that supports one command that
downloads (if necessary) and visualizes a particular variant of
the data using [glumpy].
python -c skdata/lfw/main.py show funneled

Several other data sets also have main.py scripts, which
support various commands. These scripts are meant to follow
the convention that running them with no arguments prints
a usage description, but they may not all conform. In most
cases, the scripts are very short and easy to read so go ahead
and look at the source if the help message is lacking.

Current List of Data Sets

The SkData library currently provides some level of support
for about 40 data sets (some data sets are parametrically
related, not clearly distinct). The data sets marked with (*)
provide the full set of low-level, high-level, and script inter-
faces described above. Details and references for each one can
be found in the SkData project web page, wiki, and source
code. Many of the synthetic data sets are inherited from the
sklearn project; the authors have contributed most of the
image data sets.

Blobs
Synthetic: isotropic Gaussian blobs

Boston
Real-estate features and prices

Brodatz
Texture images

CALTECH101
Med-res Images of 101 types of object

CALTECH256
Med-res Images of 256 types of object
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CIFAR10 (*)
Low-res images of 10 types of object

Convex
Small images of convex and non-convex shapes

Digits
Small images of hand-written digigs

Diabetes
Small non-synthetic temporal binary classification

IICBU2008
Benchark suite for biological image analysis

Iris (*)
Features and labels of iris specimens

FourRegions
Synthetic

Friedman{1, 2, 3}
Synthetic

Labeled Faces in the Wild (*)
Face pair match verification

Linnerud
Synthetic

LowRankMatrix
Synthetic

Madelon
Synthetic

MNIST (*)
Small images of hand-written digigs

MNIST Background Images
MNIST superimposed on natural images

MNIST Background Random
MNIST superimposed on noise

MNIST Basic
MNIST subset

MNIST Rotated
MNIST digits rotated around

MNIST Rotated Background Images
Rotated MNIST over natural images

MNIST Noise {1,2,3,4,5,6}
MNIST with various amounts of noise

Randlin
Synthetic

Rectangles
Synthetic

Rectangles Images
Synthetic

PascalVOC {2007, 2008, 2009, 2010, 2011}
Labeled images from PascalVOC challenges

PosnerKeele (*)
Dot pattern classification task

PubFig83
Face identification

S Curve
Synthetic

SampleImages
Synthetic

SparseCodedSignal
Synthetic

SparseUncorrelated
Synthetic

SVHN (*)
Street View House Numbers

Swiss Roll
Synthetic dimensionality reduction test

Van Hateren Natural Images
High-res natural images

Conclusions

Standard practice for handling data in machine learning and
related research applications involves a significant amount of
manual work. The lack of formalization of data handling steps
is a barrier to reproducible science in these domains. The
SkData library provides both low-level data wrangling logic
(downloading, decompressing, loading into Python) and high-
level experiment protocols that make it easier for researchers
to work on a wider variety of data sets, and easier to reproduce
one another’s work. Development to date has focused on
classification tasks, and image labeling problems in particular,
but the abstractions used in the library should apply to many
other domains from natural language processing and audio in-
formation retrieval to financial forecasting. The protocol layer
of the SkData library (especially using the larray module)
supports large or infinite (virtual) data sets as naturally as small
ones. The library currently provides some degree of support
for about 40 data sets, and about a dozen of those feature
full support of SkData’s high-level, low-level, and main.py
script APIs.
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Using Python to Study Rotational Velocity
Distributions of Hot Stars

Gustavo Bragança∗†, Simone Daflon†, Katia Cunha‡, Thomas Bensby§, Sally Oey¶, Gregory Walth‖

F

Abstract—Stars are fundamental pieces that compose our Universe. By study-
ing them we can better comprehend the environment in which we live. In
this work, we have studied a sample of 350 nearby O and B stars and
have characterized them in aspects of their multiplicity, temperature, spectral
classifications, and projected rotational velocity.

Python is a robust language with a steep learning curve, i.e. one can make
rapid progress with it. In this proceeding, we will present how we used Python in
our research.

Index Terms—Astronomy, Stars, Galactic Disk

Introduction

The study of O and B stars is an important key to understand-
ing how star formation occurs. When these stars are born,
they have the greatest mass, temperature and rotation. Their
mass can go from 2.5 up to 120 times the Solar mass, their
temperatures ranging from 11,000 K up to 60,000 K, and
rotation up to 400 km/s.

By definition, a star is born when it starts synthesizing Hy-
drogen into Helium through nuclear fusion. The star performs
this nucleosynthesis during some 90% of their life. When stars
are at this stage, they are called dwarfs. Most of the studied
stars on this work are dwarfs. Due to their young age, dwarf
stars have not lost too much of their mass, and so, the majority
of their stellar properties are kept unchanged. This helps us
understand how these stars formed.

Stars are born inside molecular clouds and, usually, a molec-
ular cloud can generate several stars. After their formation,
these stars compose a stellar association, that, in its infancy, is
still gravitationally bounded. With their unchanged properties,
it is possible to trace the membership of these stars and then
verify if some stars are from the same association.

The Python programming language is very powerful, robust,
clean and easy to learn. The scripting nature allows the
programmer to have a dynamic workflow and not lose too
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much time with debugging and compiling. With a set of
packages, like Scipy, Numpy and Matplotlib, Python becomes
very suited for scientific research. On the last years, it has
been widely adopted in the Astronomic community and several
astronomical packages are being translated to Python or just
recently being created. All of these motivated us to use Python
in our research.

In this proceedings, we relate how we used Python in our
research. A more profound scientific analysis can be found at
[Brag12].

Research development

Sample Characterization

The observed sample of stars is displayed in Figure 1 in terms
of their Galactic longitude and heliocentric distance projected
onto the Galactic plane. The stars in the sample are all nearby
(∼ 80% are within 700 pc) and relatively bright (V ∼ 5−10).

We used Python allied to the Matplotlib package to con-
struct the plot presented in Figure 1 and all plots of this work.
The code for this plot is:
import numpy as np
import matplotlib.pyplot as plt

# Distance projected on the Galactic plane
proj_dist = distance_vector * np.cos(latitude_vector)

plt.polar(longitude_vector, proj_dist, ’k.’)
for i in binary_list:

for j, star in enumerate(stars_id_list):
#Compare stellar IDs
if i == star:

plt.plot(longitude_vector[j],
proj_dist[j],
’wo’, ms=3, mec=’r’)

# Configure aesthetics and save
plt.ylim([0,1])
plt.yticks([0.7]])
plt.xlabel(u’Longitude (${\degree}$)’)

As we have said before, stars usually are born in groups.
Thus, a great majority of them are binaries or belong to
multiple systems. For a spectroscopic study, as was this, the
only problem occurs when the spectrum of one observation has
two or more objects. The identification of these objects was
done on a visual inspection and with support of the works
of [Lefe09] and [Egle08]. Since the study of these stars was
outside the scope of our project, we discarded them. These
objects are represented in Figure 1 as red circles.

Our sample is composed of high-resolution spectroscopic
observations with wavelength coverage from 3350 up to 9500

mailto:ga.braganca@gmail.com
http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
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Fig. 1: Polar plot showing the positions of the sample stars projected
onto the Galactic plane. The plot is centered on the Sun. The open
red circles are spectroscopic binaries/multiple systems identified in
our sample.

Angstrons. Sample spectra are shown in Figure 2 in the
spectral region between 4625 and 4665 Angstrom, which
contains spectral lines of C, N, O, and Si. The code to plot
this Figure is:
# set some constants
# stars ID
HIP = [’53018’, ’24618’, ’23060’, ’36615’, ’85720’]
# temperature of each star
T = [’16540’, ’18980’, ’23280’, ’26530’, ’32420’]
# spectral lines to be identified
lines = [’N II’, ’Si IV’, ’N III’, ’O II’, ’N III’,

’O II’, ’N II’, ’C III’, ’O II’, ’Si IV’,
’O II’]

# wavelength of spectral lines
lines_coord = [4632.05, 4632.80, 4635.60, 4640.45,

4642.10, 4643.50, 4644.89, 4649.00,
4650.84, 4656.00, 4663.25]

# displacement values
displace = [0, 0.3, 0.6, 0.9, 1.2]

# iterate on stars
for i, star_id in enumerate(HIP):

# load spectra
norm = np.loadtxt(’HIP’ + star_id + ’.dat’)
# if it is the first star,
# make small correction on wavelength

if i == 0:
norm[:,0] += 1

# plot and add texts
plt.plot(norm[:,0], norm[:,1] + displace[i], ’-’)
plt.text(4621, 1.065 + displace[i],

’HIP ’+ star_id, fontsize = 10)
plt.text(4621, 1.02 + displace[i],

’T(Q) = ’ + T[i] + ’ K’, fontsize = 10)

# add line identification
for i, line_id in enumerate(lines):

plt.vlines(lines_coord[i], 2.25, 2.40,
linestyles = ’dashed’, lw=0.5)

plt.text(lines_coord[i], 2.45, line_id,
fontsize = 8, ha = ’center’,
va = ’bottom’, rotation =’ vertical’)

# define aesthetics and save
plt.xlabel(u’Wavelength (\u212B )’)
plt.ylabel(’Flux’)
plt.axis([4620, 4670, 0.85, 2.55])

Fig. 2: Example spectra of five sample stars in the region 4625-
4665 Angstrom. Some spectral lines are identified. The spectra were
arbitrarily displaced in intensity for better viewing.

To analyze the spectra images we have used IRAF (Image and
Reduction Analysis Facility), which is a suite of softwares
to handle astronomic images developed by the NOAO1. We
had to do several tasks on our spectra (e.g. slice them at a
certain wavelength and normalization) to prepare our sample
for further analysis. Some of these tasks had to be done
manually and on a one-by-one basis, but some others were
automated. The automation could have been done through
IRAF scrips, but fortunately, the STSCI2 has developed a
Python wrapper for IRAF called PyRAF. For example, we
show how we used the IRAF task SCOPY to cut images from
a list using pyRAF:
from pyraf import iraf

# Starting wavelength
iraf.noao.onedspec.scopy.w1 = 4050
# Ending wavelength
iraf.noao.onedspec.scopy.w2 = 4090

for name in list_of_stars:
# Spectrum to be cut
iraf.noao.onedspec.scopy.input = name
# Name of resulting spectrum
result = name.split(’.fits’)[0] + ’_cut.fits’
iraf.noao.onedspec.scopy.output = result
# Execute
iraf.noao.onedspec.scopy(mode = ’h’)

We also have performed a spectral classification on the stars
and, since this was not done using Python, more information
can be obtained from the original paper.

We have obtained effective temperature (Teff) from a
calibration presented in [Mass89] that uses the photometric
reddening-free parameter index Q ([John58]).

A histogram showing the distribution of effective temper-
atures for OB stars with available photometry is shown in
Figure 3. The effective temperatures of the target sample peak
around 17,000 K, with most stars being cooler than 28,000 K.

1. National Optical Astronomy Observatory
2. Space Telescope Science Institute
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Fig. 3: Histogram showing the distribution of effective temperatures
for the studied sample.

Fig. 4: Box plot for the studied stars in terms of the spectral type.
The average vsin i for the stars in each spectral type bin is roughly
constant, even considering the least populated bins.

Projected rotational velocities

We have obtained projected rotational velocities (vsin i) for
266 stars of our sample (after rejecting spectroscopic bina-
ries/multiple systems) using measurements of full width at half
maximum of He I lines and interpolation in a synthetic grid
from [Dafl07]. We did not use Python to obtain vsin i, so, for
more information, we suggest the reader to look in the original
paper. However, to analyze the stars vsin i we used Python,
especially the matplotlib package for visualization analysis and
the Scipy.stats package for statistics analysis.

The boxplot is a great plot to compare several distributions
side by side. In this work, we used a boxplot to analyze the
vsin i for each spectral type subset, as can be seen in Figure
4. The average vsin i for the stars in each spectral type bin
is roughly constant, even considering the least populated bins.
The code used to plot it was:
#Start boxplot
bp = plt.boxplot(box, notch=0)

Fig. 5: Histogram of vsin i distribution of our sample on the top
panel. The bottom panel compares the normalized distribution of a
subsample of stars in our sample with a magnitude cut in V = 6.5
and a sample with 312 field stars (spectral types O9–B4 IV/V) culled
from [Abt02].

# Define color of medians
plt.setp(bp[’medians’], color=’red’)
# Add small box on the mean values
plt.scatter(range(1,9), mean_vector,

c=’w’, marker=’s’, edgecolor=’r’)
# Set labl for the axis
plt.xlabel(u’Spectral Type’)
plt.ylabel(r’$v\sin i$ (km s$^{-1}$)’)
# Set limit for the axis
plt.axis([0, 9, 0, 420])
# Set spectral types on the x-axis
plt.xticks(range(1,9), [’O9’, ’B0’, ’B1’,

’B2’, ’B3’, ’B4’, ’B5’, ’B6’])
# Put a text with the number of objects on each bin
[plt.text(i+1, 395, WSint(length[i]), fontsize=12,
horizontalalignment=’center’) for i in range(0,8)]
# Save figure

And the distribution of vsin i for the stars of our sample is
presented on Figure 5. The distribution has a modest peak
at low vsin i (∼ 0− 50 km/s) but it is overall flat (a broad
distribution) for vsin i roughly between 0 and 150 km/s; the
number of stars drops for higher values of vsin i. [Abt02]
provide the cornerstone work of the distributions of projected
rotational velocities of the so-called field OB stars. To compare
our sample with Abt’s, we subselected our sample on magni-
tude and Abt’s sample on spectral type. Both distributions are
shown on the bottom panel of Figure 5. The code used to build
this plot follows:
# Plot vsini distribution
# Top Panel
ax1 = plt.subplot2grid((3, 1),(0, 0), rowspan = 2)
#Create histogram
ax1.hist(vsini_vector, np.arange(0,400,50),

histtype = ’step’, ec=’black’,
color=’white’, label = ’This study’)

# Configure aesthetics
ax1.set_ylabel(r’Number of stars’)
ax1.legend(loc = ’upper right’)
ax1.set_xticks([])
ax1.set_yticks(range(0,100,20))
# Bottom Panel
# Plot our sample subselected on V < 6.5
ax2 = plt.subplot2grid((3, 1), (2, 0))

http://docs.scipy.org/doc/scipy/reference/stats.html
http://en.wikipedia.org/wiki/Box_plot
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Fig. 6: Distribution of vsin i for the studied samples of OB association
(top panel) and cluster members (lower panel) are shown as red
dashed line histograms. The black solid line histograms represent
the combined sample: stars in this study plus 143 star members of
clusters and associations from [Dafl07]. Both studies use the same
methodology to derive vsin i.

# Set weights to obtain a normalized distribution
weights = np.zeros_like(brighter_than_65) +

1./brighter_than_65.size
# Plot Abt’s subselected sample
ax2.hist(brighter_than_65, np.arange(0, 400, 50),

weights = weights, histtype = ’step’,
ec=’black’, color=’white’,
label = ’This study (V<6.5)’)

# Set weights to obtain a normalized distribution
weights = np.zeros_like(abtS)+1./abtS.size
ax2.hist(abtS, np.arange(0,400,50), weights = weights,

histtype = ’step’, ec=’black’, color=’white’,
ls= ’dashed’,
label = ’Abt et al. (2002) O9-B4 IV/V’)

# Configure aesthetics and save
ax2.set_xlabel(r’$v\sin i$ (km s$^{-1}$)’)
ax2.set_ylabel(r’Percentage of stars’)
ax2.legend(loc = ’upper right’,prop={’size’:13})
ax2.set_yticks(np.arange(0,0.5,0.1))
ax2.set_ylim([0,0.45])
plt.subplots_adjust(hspace=0)

There is evidence that there are real differences between the
vsin i distributions of cluster members when compared to field
([Wolf07], [Huan08]); there are fewer slow rotators in the
clusters when compared to the field or the stars in clusters tend
to rotate faster. Using literature results ([Hump84], [Brow94],
[Zeeu99], [Robi99], [Merm03], [Tetz11]), we separated our
sample into four different categories according to the star’s
membership: field, cluster, association and runaway. We have
merged our sample with that of [Dafl07] in which their results
were obtained using the same methodology as ours. We present
in Figure 6 the distributions of stars belonging to clusters and
from associations.

We have used the Kolmogorov-Smirnov (KS) statistics to
test the null hypothesis that membership subsamples are drawn
from the same population. For this we used the ks_2samp
task available on the scipy.stats package. The resulting values
are available in Table 1. Note that, any differences between
the distributions of clusters and associations in this study are

Field Association Cluster Runaway
Field -- 92% 88% 18%
Association 92% -- 50% 40%
Cluster 88% 50% -- 71%
Runaway 18% 40% 71% --

TABLE 1: Resulting values for the KS test for the membership
groups.

not very clear and may not be statistically significant; larger
studies are needed. Also, the runaway subsample seems to
be more associated with the dense cluster environments, as
expected from a dynamical ejection scenario.

Conclusions

We have investigated a sample of 350 OB stars from the nearby
Galactic disk. Our focus was to realize a first characterization
of this sample. We obtained effective temperature using a
photometric calibration and determined that the temperature
distribution peaks around 17,000 K, with most stars being
cooler than 28,000 K.

We calculated the projected rotational velocities using the
full width at half measure of He I lines and found that the
distribution has a modest peak at low vsin i (∼ 0− 50 km/s)
but it is overall flat (a broad distribution) for vsin i roughly
between 0 and 150 km/s; the number of stars drops for higher
values of vsin i.

We subselected our sample on a membership basis and,
when the OB association and cluster populations are compared
with the field sample, it is found that the latter has a larger
fraction of slowest rotators, as previously shown by other
works. In fact, there seems to be a gradation from cluster
to OB association to field in vsin i distribution.

We have constantly used Python in the development of this
work. In our view, the advantages of Python are the facility of
learning, the robust packages for science and data analysis, a
plot package that renders beautiful plots in a fast and easy way,
and the increase of packages for the astronomic community.

Acknowledgments

We warmly thank Marcelo Borges, Catherine Garmany, John
Glaspey, and Joel Lamb for fruitful discussion that greatly
improved the original work. G.A.B. thanks the hospitality of
University of Michigan and of NOAO on his visit, Leonardo
Uieda and Katy Huff for their help in this proceedings and
also thanks all Python developers for their great work. G.A.B.
also acknowledges Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq-Brazil) and Coordenação de
Aperfeiçoamento de Pessoas de Nível Superior (CAPES -
Brazil) for his fellowship. T.B. was funded by grant No. 621-
2009-3911 from the Swedish Research Council (VR). M.S.O.
and T.B. were supported in part by NSF-AST0448900. M.S.O.
warmly thanks NOAO for the hospitality of a sabbatical visit.
K.C. acknowledges funding from NSF grant AST-907873.
This research has made use of the SIMBAD database, operated
at CDS, Strasbourg, France.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp
http://docs.scipy.org/doc/scipy/reference/stats.html


32 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

REFERENCES

[Abt02] Abt, H. A., Levato, H., Grosso, M., Astrophysical Journal, 573:
359, 2002

[Brag12] Braganca, G. A, et al., Astronomical Journal, 144:130, 2012.
[Brow94] Brown, A. G. A., de Geus, E. J., de Zeeuw, P. T., Astronomy &

Astrophysics, 289: 101, 1994
[Dafl07] Daflon, S., Cunha, K., de Araujo, F. S. W., & Przybilla, N.,

Astronomical Journal, 134:1570, 2007
[Egle08] Eggleton, P. P., & Tokovinin, A. A., M.N.R.A.S., 389:869, 2008
[John58] Johnson, H. L., Lowell Obs. Bull., 4:37, 1958
[Huan08] Huang, W., & Gies, D. R., Astronomical Journal, 683: 1045, 2008
[Hump84] Humphreys, R. M., McElroy, D. B., Astrophysical Journal,

284:565, 1984
[Lefe09] Lefevre, L., Marchenko, S. V., Moffat, A. F. J., Acker, A., Astron-

omy & Astrophysics, 507:1141, 2009
[Mass89] Massey, P., Silkey, M., Garmany, C. D., Degioia-Eastwood, K.,

Astronomical Journal, 97:107, 1989,
[Merm03] Mermilliod, J.-C., Paunzen, E., Astronomy & Astrophysics,

410:51, 2003
[Robi99] Robichon, N., Arenou, F., Mermilliod, J.-C., Turon, C., Astronomy

& Astrophysics, 345:471, 1999
[Tetz11] Tetzlaff, N., Neuhäuser, R., Hohle, M. M., M.N.R.A.S., 410:190,

2011
[Wolf07] Wolff, S. C., Strom, S. E., Dror, D., & Venn, K., Astronomical

Journal, 133:1092, 2007
[Zeeu99] de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A.

G. A., Blaauw, A., Astronomical Journal, 117:354, 1999



PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013) 33

Automating Quantitative Confocal Microscopy
Analysis
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Abstract—Quantitative confocal microscopy is a powerful analytical tool used
to visualize the associations between cellular processes and anatomical struc-
tures. In our biological experiments, we use quantitative confocal microscopy
to study the association of three cellular components: binding proteins, recep-
tors, and organelles. We propose an automated method that will (1) reduce
the time consuming effort of manual background correction and (2) compute
numerical coefficients to associate cellular process with structure. The project
is implemented, end-to-end, in Python. Pure Python is used for managing
file access, input parameters, and initial processing of the repository of 933
images. NumPy is used to apply manual background correction, to compute
the automated background corrections, and to calculate the domain specific
coefficients. We visualize the raw intensity values and computed coefficient
values with Tufte-style panel plots created in matplotlib. A longer term goal of
this work is to explore plausible extensions of our automated methods to triple-
label coefficients.

Index Terms—confocal microscopy, immunofluorescence, thresholding, colo-
calization coefficients

Introduction

Light microscopes capture energy emitted from fluorescently
labeled-proteins within a biological sample. Fluorescent labels
are bound to molecules of interest in the sample. The corre-
sponding pixel intensity in the captured image is proportional
to the amount of molecule in the sample. Multiple molecules
can be labelled simultaneously by using fluorescent labels
with different excitation/emission spectra. We designed and
executed a biological experiment to determine the presence
of a binding protein and a receptor protein at sub-cellular
structures over time. The experiment was analyzed by quan-
titative confocal microscopy and resulted in a set of 933
RGB (red, green, and blue) images. Colocalization of binding
protein, receptor, and subcellular structure is represented by
RGB intensities in a pixel. The co-occurrence of signal in
multiple channels signifies interesting biological phenomena.
Therefore, we employed statistical methods of colocalization
to quantify co-occurrence of RGB. The following sections
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describe our methods of quantifying the data contained in these
experiments.

Confocal Microscopy

Conventional light microscopes produce a two-dimensional
image from a three-dimensional sample by flattening its Z-
axis into one visual plane [Cro05]. Thus, the notion of depth
is removed by merging deep and shallow material into a
single cross-section in the XY-plane. Confocal microscopes
maintain Z-axis fidelity by performing repeated scans of very
thin (∼5µm) XY-sections at fixed depths. A stack of confocal
images represents the original three-dimensional sample. In
an RGB confocal image, the brightness of a two-dimensional
pixel represents the intensity of fluorescence in each of the
three RGB color channels.

Background noise is the portion of the intensity signal
that does not represent true biological phenomena. Confocal
microscopy inherently reduces background noise from auto-
fluorescence of cellular material, light refractive scatter, and
detection artifacts [Cro05]. It is further reduced by choosing
appropriate (1) microscope hardware, (2) fluorescent labels,
and (3) computer software settings [Bol06], [Cro05]. Even
the best confocal microscopy technique and practice produces
images that contain background noise. For a detailed descrip-
tion of basic confocal optics and digital imaging, see [Bol06].
Pre-processing tools decrease background noise, but images
often need additional manual background correction [Bol06],
[Zin07], [Gou05]. Image processing filters, deconvolution,
background subtraction and threshold techniques reduce back-
ground noise using different algorithms [Rob12]. Each tech-
nique has application specific advantages and weaknesses.

Biological Context and Experimental Model

We used confocal microscopy to investigate the post-
endocytosis transport of two proteins in neurons. Specifically,
we assessed the localization of binding proteins and their
receptors to sub-cellular structures. Post-endocytosis transport
of proteins is a highly regulated, complex process [Yap12].
Briefly, the intracellular transport pathway is initiated when an
extracellular protein binds to its receptor on the cell membrane.
Once internalized, the proteins may be localized to three
sub-cellular structures: endosomes, lysosomes, and recycling

http://www.youtube.com/watch?v=ar5YtgiXfNI
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vesicles. Proteins are internalized in endosomes, degraded in
lysosomes, and transported back to the cell membrane in recy-
cling vesicles. In our model, neuroblastoma cells were treated
with a binding protein over different treatment times (10, 15,
30, 60, or 120 minutes). Following binding protein treatment,
we stained cells for binding protein (red), receptor (green),
and sub-cellular structure (blue). In different treatments, blue
represents different sub-cellular structures. We performed six
replicates of each condition, resulting in 6 Series for each
condition. At each experimental Time, a set of 6 image stacks
were captured with 5-12 optical XY-sections comprising one
stack.

In these experiments, the binding protein is brain-derived
neurotrophic factor (BDNF), the receptor is the truncated trkB
receptor (trkB.t1), and the sub-cellular structures are endo-
somes, lysosomes, and recycling vesicles. For the biological
importance of this system, see [Fen12]. The co-occurrence of
red, green, and blue represents the presence of BDNF and
trkB.t1 at one of the sub-cellular structures.

Manual Thresholding

We applied a manual thresholding procedure to reduce back-
ground noise. For each channel (R, G, and B) within an
image, we (1) visually assessed the single-channel histogram
and determined a threshold intensity, (2) mapped all intensity
values at or below the threshold to zero, and (3) linearly
scaled the remaining values to the intensity range [1,255].
Additionally, we recorded the range, [low,high], around the
manual threshold value that resulted in equivalent expert
visual perception of the thresholded image. The thresholding
procedure was repeated for each channel. Consequently, all
intensity values for red, green, and blue below their respective
thresholds are attributed to background noise and discarded.
The major drawback to manual thresholding is the large
time involvement of an imaging expert. Within- and between-
experimenter reliability, differences in color output between
visual displays, and access to expensive software packages
are additional drawbacks to manual thresholding.

Automating the Thresholding Procedure

Initially, we manually determined threshold values for one
randomly selected stack per experimental condition called our
training set. Later, we manually thresholded the entire image
set. Using the training set, we developed a linear regression
model of the manual thresholds. Applying this linear model,
we predicted thresholds for the full image set.

To generate automated background thresholds, we first
extracted the deciles of the intensity histograms after removing
non-responder pixels (see Visualization of Colocalization).
Then, we considered linear regression models from (1) the
intensity deciles and the channel to (2) the midpoint of the
expert threshold range. For model development, we used only
the training set of images. Our initial model included all
deciles and the channel. Only the 8th and 9th deciles (80-
and 90-percentiles) and the channel had statistically significant
coefficients. We retained only these features in our model with
a resulting R2 of 0.6907 with p < 2.2e− 16. We evaluated

the predictive ability of the model on the full dataset. The
mean absolute error against the midpoint was 6.1313; the
mean distance from the [low,high] threshold range was 2.2662.
While these metrics are encouraging, we are more interested in
the overall effect of automated thresholding on the computed
colocalization coefficients, discussed below.

Finally, we compared the images generated by applying
manual and automated thresholds. Both methods produced
visually similar images (Figure 1). In both cases, the greatest
amount of background correction occurred in the green chan-
nel. This is expected due to natural autofluorescence of cellular
material in the green channel. However, the green channel
also demonstrated the greatest difference between methods:
the automated method under-corrected.

Visualization of Colocalization

In total, the images contain approximately 1 billion pixels.
Only a small percent of the pixels represent protein, receptor,
or sub-cellular structure. Therefore, the majority of the image
pixels have zero intensity in all channels. These pixels are non-
responders and are removed from further analysis. Channels
values of 255 are considered to be over-saturated and are re-
moved because they likely represent experimental or imaging
artifacts. We computed the bivariate probability distributions
of intensity values for each pair of channels across Time and
Organelle. Due to the very large probability mass for low
intensity values, we graphed the log-probabilities to visualize
the behavior of the distribution tails. We generated a Tufte-
style [Tuf01] panel plot of the bivariate histograms for all
conditions. The panel plot for Time=10, Organelle=Endosome
is shown in Figure 2.

From the panel plot, we see that the bivariate distributions
under manual and automated thresholding are qualitatively
similar. For example, the RG histograms show low green inten-
sities distributed over a wide range of red, with green showing
a skew towards higher red intensities. The RB histograms
show more even distributions over both channels. The GB
histograms show lower green intensities over a wider range of
blue. The patterns are the same for both thresholding methods.
Next, we discuss quantitative assessments of colocalization.

Quantification of Colocalization

In dual- and triple-label confocal microscopy, several measures
of association are used to quantify the degree of colocalization
among labeled molecules [Bol06], [Zin07]. The two most
commonly used measures are Pearson and Manders coeffi-
cients [Man92], [Man93], [Com06], [Zin07]. Other measures
of colocalization are described below. We call all of these
measures the colocalization coefficients.

Here, we consider the two-dimensional grid of RGB pixels
as three one-dimensional vectors of intensity values for each
color channel. In analogy with the moments of a random
variable (as opposed to sample statistics), we define the
colocalization coefficients for vectors x and y of the same
length n.
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Fig. 1: Effects of thresholding on visual image representation. Images are of Time=10, Organelle=Endosome, Series=3. Confocal images
have low signal-noise ratios, but still require background correction prior to quantifying biological phenomena (A,E,I). When a threshold
is applied manually, the background noise is minimal (E-H). Automated thresholding methods reduce background noise to similar levels
compared to manual thresholding (I-L). The green channel has more background noise after automated thresholding (K), compared to manual
(G). Panels A, E, and I are RGB; Panels B, F, and J are the red channel; Panels C, G, and K are the green channel; Panels D, H, and L
are the blue channel. The black and white panels are detailed views of the outlined squares in the left-most column.

Let mean(x) = sum(x)/n, dot(x,y) = ∑
i

xiyi, cov(x,y) =

dot(x−mean(x),y−mean(y))/n, and var(x) = cov(x,x):

Pearson(x,y) = cov(x,y)/
√

var(x)var(y)

The split k-overlap coefficients are:

k1(x,y) = dot(x,y)/dot(x,x)
k2(x,y) = dot(x,y)/dot(y,y)

Let θxy be the angle between x and y and recall
√

dot(x,x) is
the length of x:

Manders(x,y) = cos(θxy)

= dot(x,y)/
√

dot(x,x)dot(y,y)
Manders2(x,y) = k1k2

Pearson(x,y) = Manders(x−mean(x),y−mean(y))

Let ITx(x) = x > Tx, (i.e., 1 if x > Tx, 0 otherwise), then the
m-colocalization coefficients are:

m1(x,y) = dot(x, ITy(y))/sum(x)

m2(x,y) = dot(y, ITx(x))/sum(y)

Generally, the colocalization coefficients have the following
interpretations when applied to vectors. Pearson is the degree
of linear relationship between the two vectors. Pearson2 is the
fraction of the variance in y explained by the linear relationship
with x. Manders, more broadly known as the cosine similarity,
is the cosine of the angle between the two intensity vectors.

m1 is the proportion of x, summed when y is above
threshold, to the sum total of all x values; m2 is likewise for
y. k1 (equivalent to cos(θxy)length(x)/length(y)) is the ratio
of the length of x and y times the cosine similarity between
them.

In colocalization analysis, the colocalization coefficients
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Fig. 2: Log-probabilities of the bivariate intensity distributions. After removing zeros, we plotted the log-probabilities of the bivariate intensity
distributions. Each channel pair is represented for both manual and automated threshold images. The distributions for manual and automated
thresholds are similar. Axis bars show 10-, 25-, 50-, 75-, and 90-percentiles for the univariate intensity distributions. Data are from Time=10,
Organelle=Endosome aggregated over all Series.

have the following semantics. Pearson describes the linear
relationship between two channels. Manders describes the
directional similarity between the two channels. Thus, Man-
ders is not sensitive to variation in total intensity, which may
happen with different fluorophores. m1 describes the amount
of channel one intensity when channel two is on to the total
amount of channel one intensity. k1 is similar to Manders,
but weights the degree of directional similarity by the ratio
of the lengths of x and y. The m and k coefficients are
not symmetric in their arguments. Generally, the coefficients
range in [0,1] ([-1, 1] in the case of Pearson and Manders)
with larger absolute values indicating a stronger association
between values. Pearson, Manders, and other ad hoc statis-
tics are commonly used association measures in confocal
colocalization, but their method of application, analysis, and
interpretation of conclusions varies greatly in the literature
[Bro00], [Phe01], [Val05], [Li04], [Rei12].

We computed the set of all colocalization coefficients ef-
ficiently by noting the common mathematical components of
the coefficients and computing the common values only once.
In the m-coefficients, the threshold Tx is taken to be zero,

since the coefficients are computed after manual or automated
thresholding.
1 import math
2 import numpy as np
3 from numpy.core.umath_tests import inner1d
4 # inner1d computes inner product on last dimension
5 # and broadcasts the rest
6

7 R,G,B = 0,1,2
8 channelPairs = [(R,G), (R,B), (G,B)]
9

10 # safely perform dot product on uint8 arrays
11 # note the trailing "." to call sum
12 def safedot(a, b):
13 return (np.multiply(a,b,dtype=np.uint16).
14 sum(dtype=np.float64))
15

16 # Compute colocalization coefficients on
17 # the image array
18 def ccc(ia):
19 # means, sumSqMeanErrors are 1x3; others Nx3
20 # indicator is dtype bool; others float64
21 sumSqs = \
22 inner1d(ia.T, ia.T).astype(np.float64)
23

24 sums = \
25 ia.sum(axis=0, dtype=np.float64)
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26

27 means = sums / ia.shape[0]
28 meanErrors = ia - means
29

30 sqMeanErrors = meanErrors**2
31 sumSqMeanErrors = sqMeanErrors.sum(axis=0)
32 del sqMeanErrors
33

34 indicator = ia>0
35

36 # dict of channelPairs -> respective dot product
37 crossDot = {(c1,c2) : safedot(ia[:,c1], ia[:,c2])
38 for c1,c2 in channelPairs}
39

40 # dict of channelPairs -> sum of c1, when c2 > 0
41 # factored out of loop for readability
42 sumIf = {(c1,c2) :
43 ia[:,c1][indicator[:,c2]].sum()
44 for c1,c2 in channelPairs}
45

46 results = {}
47 for c1, c2 in channelPairs:
48 k1 = crossDot[(c1,c2)] / sumSqs[c1]
49 k2 = crossDot[(c1,c2)] / sumSqs[c2]
50

51 results[(c1,c2)] = {
52 "Pearson" :
53 (np.dot(meanErrors[:,c1],
54 meanErrors[:,c2]) /
55 np.sqrt(sumSqMeanErrors[c1] *
56 sumSqMeanErrors[c2])),
57

58 "Manders" : math.sqrt(k1*k2),
59

60 "Coloc(m)1" : sumIf[(c1,c2)] / sums[c1],
61 "Coloc(m)2" : sumIf[(c2,c1)] / sums[c2],
62

63 "Overlap(k)1" : k1,
64 "Overlap(k)2" : k2}
65

66 return results

Colocalization Coefficient Results

We computed the colocalization coefficients, for the manual
and automated threshold images, over each time point for the
Endosome organelle after grouping image stacks (Figure 3).
The coefficients were used to compare the effects of manual
versus automated thresholding on the scientific interpretation
of the confocal images. For this analysis, correlation coef-
ficients were calculated for each channel pair (Table 1). In
the RG channel pair, there is a similar pattern seen between
automated and manually thresholded images, for all correlation
coefficient calculated (Figure 3).

For instance, Pearson at Endosomes, 10, Manual is
0.32±0.02 (mean ± standard error over Series) while for En-
dosome, 10, Automated is 0.35±0.01. The Pearson coefficient
for Endosomes, 30, Manual is 0.55±0.03 and Endosomes,
30, Automated is 0.55±0.03. By Endosomes, 60, the Pear-
son’s coefficient for Manual is 0.35±0.04 and Automated is
0.39±0.03. The scientific interpretation of the coefficient data,
regardless of Manual versus Automated, suggests that binding
protein (red) and receptor (green) are associated with each
other at all times, but that their greatest association occurs
30 minutes post-treatment time. The same conclusions are
obtained from interpreting Manders (Table 1). We can use
the combined data from all channel pairs to develop a model
of intracellular localization of binding protein and receptor.

Applications

The automated background correction method we used can be
applied to images generated from any type of microscopy stud-
ies including wide-field, live-cell, and electron microscopy.
A second biological application for background correction
is microarray analysis. Microarrays are tools used to study
experimental differences in DNA, protein, or RNA, which
often produce very large datasets [Hell02]. Multi-channel
microarray experiments have similar background noise chal-
lenges as confocal microscopy. Most microarray experimental
data is captured in the form of two-color channel images with
background noise generated from non-specific label binding
or processing artifacts. A third biological application for our
automated thresholding method is magnetic resonance imaging
(MRI) [Bal10]. In MRI images, background correction is
often needed for phase distortion and general background
noise. While other methods need to be applied to correct
for phase distortion, our methods could be applied to reduce
general background noise. Other biological applications in-
clude 2-D protein gel electrophoresis, protein dot blots, and
western blot analysis [Dow03], [Gas09]. For any of these
techniques, the background noise in the resulting images must
be corrected prior to quantification of biological phenomena.
Non-biological applications for our background correction
method include, but are not limited to, photo restoration and
enhancement [Dep02]. The correlation coefficient processing
can be applied in many of these applications or any generic
RGB image workflow.

Conclusions

Confocal microscopy is a powerful tool to investigate phys-
iological processes in morphological context. Quantitative
analysis of confocal images is possible using optimized image
capture settings, background correction, and colocalization
statistics. We used confocal microscopy to quantify the intra-
cellular colocalization of a binding protein and a receptor to a
specific organelle, over time. There were two major hurdles:
(1) the time and consistency required for manually thresh-
olding a large number of images and (2) batch processing
of large image sets for statistical analysis. In 2005, Goucher
et al. developed an open source image analysis program,
in Perl, to batch process colocalization for RGB images
using an ad hoc association metric [Gou05]. The purpose of
our methods was to further this type of automated process
to combine automated thresholding with batch processing
of colocalization coefficients using Python. The benefits of
our model are: (1) reducing the time consuming effort of
manual background correction and (2) batch processing of
multiple correlation measures for multi-color images. While
our experiments focus on applying automated quantification
methods to better understand intracellular protein transport,
our computational methods can be used to study a wide range
of biological and non-biological phenomena. A longer term
goal of this work is to explore plausible extensions of our
automated methods to triple-label coefficients.

Source code, under a BSD license, for computing colocal-
ization coefficients, panel plots, and various other utilities is
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Pair Coeff Src 10 15 30 60 120
RG P Man 0.32±0.02 0.31±0.03 0.55±0.03 0.35±0.04 0.45±0.04
RG P Auto 0.35±0.01 0.31±0.02 0.55±0.03 0.39±0.03 0.48±0.05
RG M Man 0.51±0.03 0.50±0.02 0.68±0.02 0.55±0.03 0.59±0.04
RG M Auto 0.54±0.01 0.51±0.02 0.68±0.02 0.59±0.03 0.63±0.04
RB P Man 0.06±0.01 0.09±0.01 0.01±0.02 0.09±0.03 0.07±0.02
RB P Auto 0.07±0.01 0.06±0.02 0.00±0.02 0.11±0.02 0.08±0.03
RB M Man 0.24±0.02 0.26±0.02 0.19±0.03 0.27±0.03 0.23±0.02
RB M Auto 0.24±0.02 0.24±0.01 0.20±0.02 0.28±0.03 0.20±0.03
GB P Man 0.07±0.02 0.06±0.02 −0.01±0.03 0.09±0.03 0.06±0.02
GB P Auto 0.09±0.01 0.04±0.02 −0.01±0.03 0.12±0.02 0.08±0.03
GB M Man 0.29±0.02 0.31±0.02 0.22±0.03 0.30±0.03 0.25±0.02
GB M Auto 0.30±0.02 0.28±0.02 0.22±0.03 0.31±0.03 0.22±0.03

TABLE 1: Pearson and Manders Coefficients for Endosomes. Src = Auto is Automated threshold; Man is Manual threshold. Coeff = P is
Pearson; Coeff = M is Manders. Values are mean and standard error, calculated over six repeated Series.

Fig. 3: Correlation coefficients for manual and automated threshold images. Pearson, Manders, m-, and k-overlap coefficients were calculated
for manual and automated threshold images. The coefficients were calculated for each channel pair. Similar patterns for correlations
coefficients are seen between manual and automated threshold images. The data in this figure was taken from the experimental condition
Endosomes (i.e., B represents endosome) over all Times and Series . Values in one vertical line, a strip, come from the six repeated Series
in that condition. Left to right, triples of strips are from increasing Time.

available at https://github.com/mfenner1/py_coloc_utils .
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Detection and characterization of interactions of
genetic risk factors in disease

Patricia Francis-Lyon∗†, Shashank Belvadi†, Fu-Yuan Cheng†

http://www.youtube.com/wa?v=IA09mZRCCA8

F

Abstract—It is well known that two or more genes can interact so as to enhance
or suppress incidence of disease, such that the observed phenotype differs from
when the genes act independently. The effect of a gene allele at one locus can
mask or modify the effect of alleles at one or more other loci. Discovery and
characterization of such gene interactions is pursued as a valuable aid in early
diagnosis and treatment of disease. Also it is hoped that the characterization of
such interactions will shed light on biological and biochemical pathways that are
involved in a specific disease, leading to new therapeutic treatments.

Much attention has been focused on the application of machine learning
approaches to detection of gene interactions. Our method is based upon training
a supervised learning algorithm to detect disease, and then quantifying the effect
on prediction accuracy when alleles of two or more genes are perturbed to
unmutated in patterns so as to reveal and characterize gene interactions. We
utilize this approach with a support vector machine.

We test the versatility of our approach using seven disease models, some
of which model gene interactions and some of which model biological indepen-
dence. In every disease model we correctly detect the presence or absence
of 2-way and 3-way gene interactions using our method. We also correctly
characterize all of the interactions as to the epistatic effect of gene alleles in both
2-way and 3-way gene interactions. This provides evidence that this machine
learning approach can be used to successfully detect and also characterize
gene interactions in disease.

Index Terms—machine learning, support vector machine, genetic risk factors,
gene interactions

Introduction

The mapping of an input vector of features to an output value
is well-studied as applied to both regression and classification.
In both cases there is great interest in detecting the presence
or absence of interactions of input parameters. In the case of
human disease, the interest is accompanied by the hope that
knowledge of such interactions could reveal basic information
about biochemical functioning that could inform therapies.
For example, we can search for interactions among genes
that code for proteins that are involved in metabolism of
estrogen in breast tissue for their effect on susceptibility to
ER positive breast cancer. If we found such interactions,
whether enhancing or diminishing cancer susceptibility, this

* Corresponding author: pfrancislyon@cs.usfca.edu
† University of San Francisco

Copyright c○ 2013 Patricia Francis-Lyon et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
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provided the original author and source are credited.

could provide information on protein pathways that could be
the target of therapies for this cancer.

Since biological interaction is difficult to quantify, ap-
proaches for discovering gene interactions in disease typically
use a definition of interaction of parameters borrowed from
statistics: interaction is seen as departure from a linear model
[Cordell09]. For example, the following would be a linear
model of disease penetrance (Y) as a function of allele values
of gene A (Gα ) and gene B (Gβ ):

Y = χ +αGα +βGβ

If parameters α and β could be trained so that the model
accurately represented penetrance (probability that an indi-
vidual of a given genotype would exhibit disease), then the
function would be considered linear and the input parameters
Gα and Gβ would be regarded as statistically independent
(not interacting). This approach is widely used in multiple
linear regression. While the principle is the same, a more
general genotype model employs different parameters to rep-
resents the effects of having either one copy of the risk
allele or two for each of gene A and gene B [Cordell09].
A graphical representation of penetrance factor as the vertical
axis and input parameters along horizontal axes help convey
understanding. Figure 1 is such a graphical representation of
statistical independence, patterned on Risch’s additive disease
model (described below), which represents biological indepen-
dence. Figure 2, illustrating statistical interaction, is patterned
after Risch’s multiplicative model, which represents biological
interaction.

Background

Supervised machine learning (ML) algorithms learn a function
that maps an input vector of parameters to labeled output. This
is accomplished by utilizing knowledge of the correct result
(label) while training the model. In regression, the algorithm
learns to produce continuous values of the dependent (output)
variable given input vectors. In classification, the output is
prediction of which of two or more classes an input vector
will fall into depending on its features.

While ML algorithms such as artificial neural network
(ANN) and support vector machine (SVM) are valuable merely
as black box classifiers or for producing correct regression

http://www.youtube.com/wa?v=IA09mZRCCA8
mailto:pfrancislyon@cs.usfca.edu
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Fig. 1: Penetrance factor with independent input parameters. Here
the two input parameters separately influence penetrance, neither
enhancing nor diminishing the effect of the other. Their effects on
penetrance are merely additive.
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Fig. 2: Penetrance factor with interacting input parameters. Here
the two input parameters interact so as to enhance incidence of
disease. As their effect is multiplicative, the effect on penetrance is
greater than the mere additon of separate main effects of the input
parameters.

output, it is also a goal to understand relationships among
features that have been discovered by the trained ML model.
Some approaches, such as examining neural network weights,
are dependent on the workings of the particular ML method,
and expose how the method makes a prediction.

Other approaches however, are agnostic to the workings of
the ML method even as they open up the ’black box’ to reveal
what relationships among input parameters were discovered.
Our method falls within this category. Such methods, that
focus on what is learned rather than how it is learned have been
surveyed [Francis02]. These include visualization methods and
the computation of a sensitivity value for each parameter. Sen-
sitivities are determined by calculating the change in average
square error in predicting the test set when that input value

in each example is perturbed to a constant value (ex: mean
or median) [Potts00]. Visualization methods perturb input
parameters in specified ways designed to reveal information
about the function learned by the ML method. They have
been used with a variety of ML methods, and have been used
successfully, particularly with continuous output tasks. One
such method plots a two-dimensional surface of ANN output
as two particular inputs are varied while the rest are held
constant [Mose93]. Pairwise plots are produced in this way to
visualize the relationships between input parameters. Another
visualization approach, most suited to models with continuous
inputs, discovers interactions of parameters by displaying
deviation from linear function. This method utilizes graphical
plots of generalized additive models to find interactions of
environmental risk factors (smoking, drinking) in lung cancer
[Plate97]. While these methods were used with an ANN they
do not depend on internal structure of the network and could
be used with other supervised learning approaches.

Our approach observes the effect of perturbing input gene
allele values to unmutated (ie: 0,1,2 -> 0) in patterns designed
to reveal whether susceptibility to disease is independently or
epistatically affected by inputs. We have developed a metric to
quantify deviation in prediction accuracy produced by epistatic
inputs as opposed to independent inputs. Here we apply our
method to an SVM, although it is also applicable to other ML
algorithms, such as neural networks.

Support Vector Machines
The Support Vector Machines (SVM) is a supervised learning
algorithm introduced by Vapnik which began to be widely
used in classification in the 1990’s. SVMs are trained with
a learning algorithm from optimization theory that searches a
hypothesis space of linear functions operating on data that has
been pushed into a high dimensional feature space [Crist97].
Basically, an SVM is a hyperplane classifier which finds
the optimal hyperplane to separate data into classes. When
dividing two classes, the optimal hyperplane is orthogonal
to the shortest line connecting the convex hulls of the two
classes, and intersecting it halfway between the two classes
at a perpendicular distance d from either class. The support
vectors are those elements of the training set that lie on the
margins of either class (at a distance d from the decision line).
It is these training examples, rather than the centers of clusters,
that are relevant to the algorithm and are critical for finding
the margins between the classes. Complexity of the algorithm
may be reduced by removing the other training examples from
the kernel expansion (described below). The unique optimal
hyperplane is found by solving the optimization problem:

minimize
1
2
||w||2

subject to yi.((w.xi)+b)>= 1

This optimization problem is solved using Lagrange multipli-
ers and minimizing the Lagrangian.

To allow for noise in the data that would preclude perfect
classification, a slack variable ε can be introduced in order to
relax the constraints:

subject to yi.((w.xi)+b)>= 1− εi
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where εi >= 0, i = 1,2, ...,m

The amount of slack is specified by the user of an SVM in
the variable C, known as the regularization or soft-margin
parameter, which controls the error penalty according to the
equation below. Higher C weights classification errors more,
allowing them more influence on the selection of the optimal
hyperplane. With very high C, a hyperplane must be chosen
such that there is virtually no misclassification of training
examples, which can lead to overfitting. A lower value of
C limits the influence of outliers on the solution, allowing
a hyperplane with a wider margin and a decision function
with a smoother surface that may misclassify some of the
training examples. The optimization problem that is solved
when allowing for slack ε is:

minimize
1
2
||w||2 +C

m

∑
i=1

εi

subject to yi.((w.xi)+b)>= 1− εi

where εi >= 0, i = 1,2, ...,m

SVMs have the ability to find a separating hyperplane even
if one does not exist in the space of the input vector, as long
as the training data may be mapped into a higher dimensional
feature space in which such a separating hyperplane exists. A
kernel function may be employed for non-linear classification.
A kernel is a function k(xi,x j) that given two vectors in
input space, returns the dot product of their images in feature
space. This is used to compute the separating hyperplane
without actually having to carry out the mapping into higher
dimensional space. The common kernels used are radial basis,
polynomial, sigmoidal, and inverse quadratic.

Perhaps most commonly used is the radial basis kernel,
which finds the maximum margin classifier based upon the
Euclidean distance between vectors in input space. After
training, the support vectors will occupy the center of the RBF
and the parameter gamma will determine how much influence
each one has over the data space. With smaller gamma the
influence of each support vector is extended to cover more
area, so fewer support vectors are needed. Smaller gamma
also allows for higher generalization and a smoother decision
function. Larger gamma allows for a more detailed decision
surface, but is prone to overfitting.

Methods

Data models and sets

For this study we used genomeSimla to create datasets to
simulate 7 disease models from the literature, some of which
exhibit biological independence and some of which exhibit
epistasis. For each of these disease models we created datasets
to investigate both 2-way and 3-way interactions: 14 datasets
in all. Each dataset contained 10 gene loci, of which 2 (or 3
when investigating 3-way interactions) were functional genes,
constructed with penetrance matrices according to the disease
model under investigation. Each gene locus was encoded as
the number of mutated alleles (0,1,or 2). For each dataset a
population of 1 million individuals was constructed such that

the overall disease prevalence of the population was .01 with
case or control status designated according to the penetrance
matrix of the functional genes modeling the disease. It was
assumed that genes were in linkage equilibrium and the Hardy-
Weinberg equilibrium held. From these populations samples
were randomly drawn of 1000 case (diseased) and 1000
control individuals for each disease model.

The seven disease models investigated included three intro-
duced by Risch, three introduced by Gunther et al and one
introduced by Ritchie et al. Additionally, we extended each of
these models to three functional genes. Each disease model
specifies the penetrance matrix, that is, the probability for
each genotype that the disease phenotype is observed. Details
below are for the version of the disease models with two
functional genes. Each gene value sums up the number of
mutated alleles, for example, AA (unmutated) = 0, Aa (one
allele mutated) = 1 and aa (both alleles mutated) = 2. Note
that these designations are codominant, so that capitalization
does not indicate a dominant gene.

For the three Risch models each element fi j of penetrance
matrix f is specified by formulation [Risch90]:

fi j = P(Y = 1|Gα = i,Gβ = j) i, j ∈ {0,1,2}.

Here P(Y=1)indicates the probability that an individual of the
genotype indicated by row i (gene A) and column j (gene B) of
the penetrance matrix is diseased, as determined by the values
of gene A = i and gene B = j.

For the Risch models, let ai a_i and b j denote the individual
penetrance values for genes A and B respectively.

1. Additivity model (biological independence):

fi j = ai +b j such that 0 <= ai,b j <= 1,ai +b j < 1

2. Heterogeneity model (biological independence):

fi j = ai +b j−aib j such that 0 <= ai,b j <= 1

3. Multiplicative model (biological interaction):

fi j = aib j

Three epistatic models are given by Gunther et al [Günther09]
as penetrance matrices. In each case the constant c denotes the
baseline risk of disease and r, r1, r2 denote risk increase or
decrease

4. EPIRR models an epistatic relationship between two
recessive genes, such that disease is not impacted unless both
genes are fully mutated, in which case penetrance is multiplied
by the factor r. This may increase or decrease risk of disease:

f =




BB Bb bb
AA c c c
Aa c c c
aa c c rc




5. EPIDD models an epistatic relationship between two dom-
inant genes, such that penetrance is multiplied by r1 if both
genes are mutated, but not fully. When both alleles of both
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genes are mutated, then penetrance is multiplied by r2, typi-
cally a factor causing more impact on disease risk:

f =




BB Bb bb
AA c c c
Aa c r1c r1c
aa c r1c r2c




6. EPIRD models an epistatic relationship between one dom-
inant and one recessive gene. If the recessive gene is fully
mutated, penetrance will be multiplied by r1. If additionally
the dominant gene is fully mutated then penetrance is multi-
plied by r2, causing a different impact on disease. Interactions
are more difficult to detect for this disease model than for the
other Gunther et al models since there is both a main effect
and an epistatic effect:

f =




BB Bb bb
AA c c c
Aa c c c
aa r1c r1c r2c




7. MDR: This final disease model is specified by Ritchie et
al [Ritchie01] to exhibit XOR (exclusive or) interactions. The
specification is supplied as a penetrance matrix:

f =




BB Bb bb
AA 0 0 .2
Aa 0 .2 0
aa .2 0 0




Machine Learning Algorithm

Our novel method to detect gene interactions in a disease is
based upon detecting deviation in prediction accuracy when
information is removed from our entire test set by perturb-
ing gene allele values to zero (unmutated). Upon removing
mutation information for a functional gene, we would expect
prediction accuracy to drop. Yet when a non-functional gene is
similarly perturbed, we would expect change in prediction ac-
curacy to be insignificant. If mutation information is removed
for two non-interacting genes, we would expect the change
in prediction accuracy to be additive. However, if the genes
are interacting, we would expect that deviation in prediction
accuracy would depart from the linear model, as described in
the Introduction and illustrated in Figures 1 and 2.

Our method is illustrated in Figure 3. For each disease
model we train a supervised ML algorithm to distinguish
examples that are diseased from those that are not. The disease
phenotype is learned by the ML algorithm as a function of
the input vector of ten gene loci. If the disease model under
investigation contains gene interactions, then we assume the
ML algorithm learned them, and we attempt to uncover this
knowledge utilizing perturbations and our metric. Our method
applies to a variety of supervised learning algorithms. In
this paper we use it with a Support Vector Machine (SVM)
[Crist97], utilizing the RBF kernel. The SVM we used is part
of the scikit-learn package [scikit-learn], and is derived from
libsvm [LIBSVM].

We use a radial basis function (RBF) kernel, and need to
determine parameters C and gamma, discussed above. We

Fig. 3: Detecting gene interactions with supervised machine learn-
ing. 1. Train the model (in this case SVM) to detect disease. If there
were gene interactions, we assume the model learned them. 2. Perturb
input genes of test set to unmutated in patterns selected to reveal
interactions via the effect on prediction accuracy. 3. Apply the metric
to determine if there were or were not interacting genetic risk factors
in the disease.

utilize cross validation grid search for model selection. An
SVM is constructed with the parameters from the grid search
best estimator, and is trained with the entire training set.
(Refitting the entire dataset to the CV model having best
parameters is done by default in the call to GridSearchCV
fit). Because our method is based on detecting deviation in
prediction accuracy when we later perturb the test set, we
constrain the soft margin parameter C so as to be somewhat
intolerant of error: our grid search is of C values from 100 up
to 10000. By mandating higher C, we also favor a less smooth
decision surface over tolerance of error, enabling us to learn
functions with more complexity. Our grid search is of gamma
values [0.01, 0.1, 1, 10].

After the model is selected by cross-validation grid search
and trained, then we run the test set and establish PT , which is
prediction accuracy of the test set with total information, no
perturbations. Single-gene perturbations are then run on the
test set for each of the ten gene loci in turn, perturbing that
gene to unmutated. Figure 3 depicts the single genes 2 and
7 being perturbed, with resulting prediction accuracies P2 and



44 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

P7. After single-gene perturbations, then all possible pairs are
perturbed. In the case of ten genes this is:

(
10
2

)
= 45 pairs .

Figure 3 shows genes 2 and 7 being together perturbed
to unmutated for the entire test set, resulting in prediction
accuracy P2,7 With the mutation information of these two
genes removed, we expect a drop in prediction accuracy from
the unperturbed set accuracy, PT . This deviation, PT - P2,7 is
compared with the deviations in prediction accuracy that result
from the same genes being singly perturbed. We quantify this
as the metric:

m = |(PT −P2,7)− ((PT −P2)+(PT −P7))|/PT

If the deviations in prediction accuracy with the single gene
perturbations sum up to the deviation of the double gene
perturbation then this supports a claim that there are no
interactions. We allow .03 error in each of the three deviations,
so m = .09 is our cutoff for determining if there are 2-
way interactions. If m exceeds .09 we claim that the effects
on disease of gene mutations at the separate loci are not
additive, and we have found interactions. When the selected
(best predicting) model finds no interactions, then we take an
additional step. As stated above, our approach assumes that
if interactions exist, they will be found by the ML algorithm.
We found that in some cases a machine learning algorithm
could find interactions, but the best classifier among its models
might detect disease with a decision function that did not
include interactions. To address this we take a second look
for interactions with an alternate gamma. Our alternative is
the gamma that is closest to the selected gamma, an order
of magnitude larger, except when the selected gamma is >=
.1, in which case we set gamma to an order of magnitude
smaller. We rerun cross validation grid search to find the best
C with this alternative gamma, construct an SVM with these
new parameters, and train on the entire training set. We apply
the metric to the test set to look again for interactions. In
most cases where rerun is done the gamma is larger, which
limits the influence of single training examples, so that in cases
where interactions are difficult to detect a perturbation will
more likely result in a classification change which we will
detect as error. If both the best predicting and the alternative
gamma model find no interactions, then we claim that there
are none. Otherwise, we note the gene perturbations of the test
data that resulted in a metric above the cutoff as an interaction
found. The principle is the same for 3-way interactions, where
the metric is:

m = |(PT −Pabc)− ((PT −Pa)+(PT −Pb)+(PT −Pc))|/PT

and the cutoff is .12, since there are 4 deviations, for each we
again allow .03.

If interactions are found, we next apply a mask and per-
turb masked genes to unmutated in order to characterize the
interaction. In this study we applied 2 masks: an AND mask
to determine if interacting genes are both mutated, and an
XOR mask to determine if interacting genes have one gene
mutated and the other unmutated. Figure 4 on the left shows

Disease Metric Interactions Found Actual
Model Found Actual AND XOR AND XOR
ADD .07 none none N/A N/A N/A N/A
MULT .19 (4,9) (4,9) yes no yes no
HET .05 none none N/A N/A N/A N/A
EPIRR .41 (4,9) (4,9) yes no yes no
EPIDD .15 (4,9) (4,9) yes no yes no
EPIRD .10 (4,9) (4,9) yes no yes no
MDR .48 (4,9) (4,9) yes yes yes yes

TABLE 1: Results for 2-Loci.

the regions of a penetrance matrix that are AND in red and
those that are XOR in lavender. For example, an AND mask
will only perturb genes where neither gene A nor gene B
is zero (unmutated). On the right we see that the interacting
genes of the disease model EPIDD are all in the AND region.
In our characterization runs, then, we find as expected AND
interactions but no XOR interactions (see Results).

Fig. 4: Characterizing the gene interactions that were detected.
To characterize the interactions that were detected: perturb masked
area to unmutated, observe effect on prediction accuracy. If prediction
accuracy changes significantly with a specific mask, then there are
interactions of that type. On the left we see AND mask (red) and
XOR mask (lavender). On the right we see the EPIDD disease
model, exhibiting interactions of type AND, but none of type XOR.
This correlates with the interactions that were characterized by our
method (see table 1)

Results

Our method correctly identified all gene pairs (2-way) in the
7 disease models as either interacting or independent. In the
case of the 5 disease models with 2-way interactions only
the correct pair was found to interact, the other 44 pairs
were found to not be interacting. In the 2 disease models
with no interactions, all 45 pairs were found to not interact.
Additionally, all interacting pairs were characterized correctly.
(see Table 1).

Our method also correctly identified all gene triplets (3-
way) as either interacting or independent. In the case of the 2
disease models with no interactions, all 120 triplets were found
to be non-interacting. In the case of the 5 disease models with
interactions, only the correct triplet and also triplets containing
two of the correct three interacting genes were found to be
interacting, as expected. Additionally, all interacting triplets
were characterized correctly. (see Table 2).
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Abstract—Pythran is a young open source static compiler that turns modules
written in a subset of Python into native ones. Based on the fact that scientific
modules do not rely much on the dynamic features of the language, it trades
them in favor of powerful, eventually inter procedural, optimizations. These
include detection of pure functions, temporary allocation removal, constant
folding, Numpy ufunc fusion and parallelization, explicit thread-level parallelism
through OpenMP annotations, false variable polymorphism pruning, and auto-
matic vector instruction generation such as AVX or SSE.

In addition to these compilation steps, Pythran provides a C++ runtime library
that leverages the C++ STL to provide generic containers, and the Numeric
Template Toolbox (NT2) for Numpy support. It takes advantage of modern
C++11 features such as variadic templates, type inference, move semantics and
perfect forwarding, as well as classical ones such as expression templates.

The input code remains compatible with the Python interpreter, and output
code is generally as efficient as the annotated Cython equivalent, if not more,
without the backward compatibility loss of Cython. Numpy expressions run faster
than when compiled with numexpr, without any change of the original code.

Index Terms—static compilation, numpy, c++

Introduction

The Python language is growing in popularity as a language
for scientific computing, mainly thanks to a concise syntax, a
high level standard library and several scientific packages.

However, the overhead of running a scientific application
written in Python compared to the same algorithm written
in a statically compiled language such as C is high, due to
numerous dynamic lookup and interpretation cost inherent
in high level languages. Additionally, the Python compiler
performs no optimization on the bytecode, while scientific
applications are first-class candidates for many of them.

Following the saying that scientific applications spend 90%
of their time in 10% of the code, it is natural to focus on
computation-intensive piece of code. So the aim may not be to
optimize the full Python application, but rather a small subset
of the application.
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Several tools have been proposed by an active community to
fill the performance gap met when running these computation-
intensive piece of code, either through static compilation or
Just In Time (JIT) compilation.

An approach used by Cython [cython] is to suppress the
interpretation overhead by translating Python Programs to
C programs calling the Python C API [pythoncapi]. More
recently, Nuitka [nuitka] has taken the same approach using
C++ has a back-end. Going a step further Cython also uses an
hybrid C/Python language that can efficiently be translated to
C code, relying on the Python C API for some parts and on
plain C for others. ShedSkin [shedskin] translates implicitly
strongly typed Python program into C++, without any call to
the Python C API.

The alternate approach consists in writing a Just In
Time(JIT) compiler, embedded into the interpreter, to dynami-
cally turn the computation intensive parts into native code. The
numexpr module [numexpr] does so for Numpy expressions
by JIT-compiling them from a string representation to native
code. Numba [numba] extends this approach to Numpy-
centric applications while PyPy [pypy] applies it to the whole
language.

To the notable exception of PyPy, these compilers do not
apply any of the static optimization techniques that have
been known for decades and successfully applied to statically
compiled language such as C or C++. Translators to statically
compiled languages do take advantage of them indirectly,
but the quality of generated code may prevent advanced
optimizations, such as vectorization, while they are available
at higher level, i.e. at the Python level. Taking into account
the specificities of the Python language can unlock many new
transformations. For instance, PyPy automates the conversion
of the range builtin into xrange through the use of a dedicated
structure called range-list.

This article presents Pythran, an optimizing compiler for
a subset of the Python language that turns implicitly stati-
cally typed modules into parametric C++ code. It supports
many high-level constructs of the 2.7 version of the Python
language such as list comprehension, set comprehension,
dict comprehension, generator expression, lambda functions,
nested functions or polymorphic functions. It does not support
global variables, user classes or any dynamic feature such as
introspection, polymorphic variables.

http://www.youtube.com/watch?v=KT5-uGEpnGw
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Unlike existing alternatives, Pythran does not solely perform
static typing of Python programs. It also performs various
compiler optimizations such as detection of pure functions,
temporary allocation removal or constant folding. These trans-
formations are backed up by code analysis such as alias-
ing, inter-procedural memory effect computations or use-def
chains.

The article is structured as follows: Section 1 introduces the
Pythran compiler compilation flow and internal representation.
Section 2 presents several code analysis while Section 3
focuses on code optimizations. Section 4 presents back-end
optimizations for the Numpy expressions. Section 5 briefly in-
troduces OpenMP-like annotations for explicit parallelization
of Python programs and section 6 presents the performance
obtained on a few synthetic benchmarks and concludes.

Pythran Compiler Infrastructure

Pythran is a compiler for a subset of the Python language.
In this paper, the name Pythran will be used indifferently to
refer to the language or the associated compiler. The input
of the Pythran compiler is a Python module —not a Python
program— meant to be turned into a native module. Typically,
computation-intensive parts of the program are moved to a
module fed to Pythran.

Pythran maintains backward compatibility with CPython.
In addition to language restrictions detailed in the following,
Pythran understands special comments such as:
#pythran export foo(int list, float)

as optional module signature. One does not need to list all
the module functions in an export directive, only the functions
meant to be used outside of the module. Polymorphic functions
can be listed several times with different types.

The Pythran compiler is built as a traditional static compiler:
a front-end turns Python code into an Internal Representation
(IR), a middle-end performs various code optimizations on this
IR, and a back-end turns the IR into native code. The front-end
performs two steps:

1. turn Python code into Python Abstract Syntax
Tree(AST) thanks to the ast module from the stan-
dard library;

2. turn the Python AST into a type-agnostic Pythran
IR, which remains a subset of the Python AST.

Pythran IR is similar to Python AST, as defined in the
ast module, except that several nodes are forbidden (most
notably Pythran does not support user-defined classes, or the
exec instruction), and some nodes are converted to others to
form a simpler AST easier to deal with for further analyses
and optimizations. The transformations applied by Pythran on
Python AST are the following:

• list/set/dict comprehension are expanded into loops
wrapped into a function call;

• tuple unpacking is expanded into several variable assign-
ments;

• lambda functions are turned into named nested functions;
• the closure of nested functions is statically computed to

turn the nested function into a global function taking the
closure as parameter;

• implicit return None are made explicit;
• all imports are fully expanded to make function access

paths explicit
• method calls are turned into function calls;
• implicit __builtin__ function calls are made explicit;
• try ... finally constructs are turned into nested try ... except

blocks;
• identifiers whose name may clash with C++ keywords are

renamed.
The back-end works in three steps:
1. turning Pythran IR into parametric C++ code;
2. instantiating the C++ code for the desired types;
3. compiling the generated C++ code into native

code.
The first step requires to map polymorphic variables and

polymorphic functions from the Python world to C++. Pythran
only supports polymorphic variables for functions, i.e. a
variable can hold several function pointers during its life
time, but it cannot be assigned to a string if it has already
been assigned to an integer. As shown later, it is possible to
detect several false variable polymorphism cases using use-def
chains. Function polymorphism is achieved through template
parameters: a template function can be applied to several types
as long as an implicit structural typing is respected, which is
very similar to Python’s duck typing, except that it is checked
at compile time, as illustrated by the following implementation
of a generic dot product in Python:
def dot(l0, l1):

return sum(x*y for x,y in zip(l0,l1))

and in C++:
template<class T0, class T1>

auto dot(T0&& l0, T1&& l1)
-> decltype(/* skipped */)
{

return pythonic::sum(
pythonic::map(

operator_::multiply(),
pythonic::zip(

std::forward<T0>(l0),
std::forward<T1>(l1))

)
);

}

Although far more verbose than the Python version, the C++
version also uses a form of structural typing : the only
assumption these two version make are that l0 and l1 are
iterable, their content can be multiplied and the result of the
multiplication is accumulatable.

The second step only consists in the instantiation of the top-
level functions of the module, using user-provided signatures.
Template instantiation then triggers the different correctly
typed instantiations for all functions written in the module.
Note that the user only needs to provide the type of the
functions exported outside the module. The possible types of
all internal functions are then inferred from the call sites.

The last step involves a template library, called pythonic
that contains a polymorphic implementation of many functions
from the Python standard library in the form of C++ template
functions. Several optimizations, most notably expression tem-
plate, are delegated to this library. Pythran relies on the C++11
[cxx11] language, as it makes heavy use of recent features such
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Fig. 1: Pythran compilation flow.

as move semantics, type inference through decltype(...) and
variadic templates. As a consequence it requires a compatible
C++ compiler for the native code generation. Boost.Python
[boost_python] is involved for the Python-to-C++ glue. Gen-
erated C++ code is compatible with g++ 4.7.2 and clang++
3.2.

It is important to note that all Pythran analyses are type-
agnostic, i.e. they do not assume any type for the variables
manipulated by the program. Type specialization is only
done in the back-end, right before native code generation.
Said otherwise, the Pythran compiler analyzes polymorphic
functions and polymorphic variables.

Figure 1 summarizes the compilation flow and the involved
tools.

Code Analyses

A code analysis is a function that takes a part of the IR (or the
whole module’s IR) as input and returns aggregated high-level
information. For instance, a simple Pythran analysis called
Identifiers gathers the set of all identifiers used throughout
the program. This information is later used when the creation
of new identifiers is required so that no conflict occurs with
existing ones.

One of the most important analysis in Pythran is the alias
analysis, sometimes referred as points-to analysis. For each
identifiers, it computes an approximation of the set of locations
this identifier may point to. For instance, let us consider the
polymorphic function foo defined as follows:
def foo(a,b):

c = a or b
return c*2

The identifier c involved in the multiplication may refer to
• a fresh location if a and b are scalars
• the same location as a if a evaluates to True
• the same location as b otherwise.
As we do not specialise the analysis for different types and

the true value of a is unknown at compilation time, the alias
analysis yields the approximated result that c may point to a
fresh location, a or b.

Without this kind of information, even a simple instruction
like sum(a) would yield very few informations as there is no
guarantee that the sum identifiers points to the sum built-in.

When turning Python AST to Pythran IR, nested functions
are turned into global functions taking their closure as param-
eter. This closure is computed using the information provided
by the Globals analysis that statically computes the state of
the dictionary of globals, and ImportedIds that computes the
set of identifiers used by an instruction but not declared in this
instruction. For instance in the following snippet:
def outer(outer_argument):

def inner(inner_argument):
return cos(outer_argument) + inner_argument

return inner

The Globals analysis called on the inner function defini-
tion marks cos as a global variable, and ImportedIds marks
outer_argument and cos as imported identifiers.

A rather high-level analysis is the PureFunctions analysis,
that computes the set of functions declared in the module that
are pure, i.e. whose return value only depends from the value
of their argument. This analysis depends on two other anal-
yses, namely GlobalEffects that computes for each function
whether this function modifies the global state (including I/O,
random generators, etc.) and ArgumentEffects that computes
for each argument of each function whether this argument may
be updated in the function body. These three analyses work
inter-procedurally, as illustrated by the following example:
def fibo(n):

return n if n < 2 else fibo(n-1) + fibo(n-2)

def bar(l):
return map(fibo, l)

def foo(l):
return map(fibo, random.sample(l, 3))

The fibo function is pure as it has no global effects or argument
effects and only calls itself. As a consequence the bar function
is also pure as the map intrinsic is pure when its first argument
is pure. However the foo function is not pure as it calls the
sample function from the random module, which has a global
effect (on the underlying random number generator internal
state).

Several analyses depend on the PureFunctions analysis.
ParallelMaps uses aliasing information to check if an identifier
points to the map intrinsic, and checks if the first argument is
a pure function using PureFunctions. In that case the map is
added to the set of parallel maps, because it can be executed
in any order. This is the case for the first map in the following
snippet, but not for the second because the print b involves an
I/O.
def pure(a):

return a**2

def guilty(a):
b = pure(a)
print b
return b

l = list(...)
map(pure, l)
map(guilty, l)

ConstantExpressions uses function purity to decide whether
a given expression is constant, i.e. its value only depends
on literals. For instance the expression fibo(12) is a constant
expression because fibo is pure and its argument is a literal.
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UseDefChains is a classical analysis from the static com-
pilation world. For each variable defined in a function, it
computes the chain of use and def. The result can be used
to drive various code transformations, for instance to remove
dead code, as a def followed by a def or nothing is useless. It
is used in Pythran to avoid false polymorphism. An intuitive
way to represent use-def chains is illustrated on next code
snippet:
a = 1
if cond:

a = a + 2
else:

a = 3
print a
a = 4

In this example, there are two possible chains starting from
the first assignment. Using U to denote use and D to denote
def, one gets:

D U D U D

and:

D D U D

The fact that all chains finish by a def indicates that the last
assignment can be removed (but not necessarily its right hand
part that could have a side-effect).

All the above analyses are used by the Pythran developer
to build code transformations that improve the execution time
of the generated code.

Code Optimizations

One of the benefits of translating Python code to C++ code is
that it removes most of the dynamic lookups. It also unveils
all the optimizations available at C++ level. For instance, a
function call is quite costly in Python, which advocates in favor
of using inlining. This transformation comes at no cost when
using C++ as the back-end language, as the C++ compiler
does it.

However, there are some informations available at the
Python level that cannot be recovered at the C++ level. For
instance, Pythran uses functor with an internal state and a goto
dispatch table to represent generators. Although effective, this
approach is not very efficient, especially for trivial cases. Such
trivial cases appear when a generator expression is converted,
in the front-end, to a looping generator. To avoid this extra
cost, Pythran turns generator expressions into call to imap and
ifilter from the itertools module whenever possible, removing
the unnecessary goto dispatching table. This kind of transfor-
mation cannot be made by the C++ compiler. For instance,
the one-liner len(set(vec[i]+i for i in cols)) extracted from
the nqueens benchmarks from the Unladen Swallow project
is rewritten as len(set(itertools.imap(lambda i: vec[i]+i,cols))).
This new form is less efficient in pure Python (it implies one
extra function call per iteration), but can be compiled into C++
more efficiently than a general generator.

A similar optimization consists in turning map, zip or filter
into their equivalent version from the itertool module. The
benefit is double: first it removes a temporary allocation,
second it gives an opportunity to the compiler to replace list

accesses by scalar accesses. This transformation is not always
valid, nor profitable. It is not valid if the content of the output
list is written later on, and not profitable if the content of the
output list is read several times, as each read implies the (re)
computation, as illustrated in the following code:

def valid_conversion(n):
# this map can be converted to imap
l = map(math.cos, range(n))
return sum(l) # sum iterates once on its input

def invalid_conversion(n):
# this map cannot be converted to imap
l = map(math.cos, range(n))
l[0] = 1 # invalid assignment
return sum(l) + max(l) # sum iterates once

The information concerning constant expressions is used to
perform a classical transformation called ConstantUnfolding,
which consists in the compile-time evaluation of constant
expressions. The validity is guaranteed by the ConstantEx-
pressions analysis, and the evaluation relies on Python ability
to compile an AST into byte code and run it, benefiting from
the fact that Pythran IR is a subset of Python AST. A typical
illustration is the initialization of a cache at compile-time:

def esieve(n):
candidates = range(2, n+1)
return sorted(

set(candidates) - set(p*i
for p in candidates
for i in range(p, n+1))

)

cache = esieve(100)

Pythran automatically detects that eseive is a pure function
and evaluates the cache variable value at compile time.

Sometimes, coders use the same variable in a function
to represent value with different types, which leads to false
polymorphism, as in:

a = cos(1)
a = str(a)

These instructions cannot be translated to C++ directly because
a would have both double and str type. However, using
UsedDefChains it is possible to assert the validity of the
renaming of the instructions into:

a = cos(1)
a_ = str(a)

that does not have the same typing issue.
In addition to these python-level optimizations, the Pythran

back end library, pythonic, uses several well known optimiza-
tions, especially for Numpy expressions.

Library Level Optimizations

Using the proper library, the C++ language provides an ab-
straction level close to what Python proposes. Pythran provides
a wrapper library, pythonic, that leverage on the C++ Standard
Template Library (STL), the GNU Multiple Precision Arith-
metic Library (GMP) and the Numerical Template Toolbox
(NT2) [nt2] to emulate Python standard library. The STL is
used to provide a typed version of the standard containers
(list, set, dict and str), as well as reference-based memory
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management through shared_ptr. Generic algorithms such as
accumulate are used when possible. GMP is the natural pick
to represent Python’s long in C++. NT2 provides a generic
vector library called boost.simd [boost_simd] that enables the
vector instruction units of modern processors in a generic way.
It is used to efficiently compile Numpy expressions.

Numpy expressions are the perfect candidates for library
level optimizations. Pythran implements three optimizations
on such expressions:

1. Expression templates [expression_templates] are
used to avoid multiple iterations and the creation
of intermediate arrays. Because they aggregates all
ufunc into a single expression at compile time,
they also increase the computation intensity of the
loop body, which increases the impact of the two
following optimizations.

2. Loop vectorization. All modern processors have
vector instruction units capable of applying the same
operation on a vector of data instead of a single data.
For instance Intel Sandy Bridge can run 8 single-
precision additions per instruction. One can directly
use the vector instruction set assembly to use these
vector units, or use C/C++ intrinsics. Pythran relies
on boost.simd from NT2 that offers a generic vector
implementation of all standard math functions to
generate a vectorized version of Numpy expressions.
Again, the aggregation of operators performed by the
expression templates proves to be beneficial, as it
reduces the number of (costly) loads from the main
memory to the vector unit.

3. Loop parallelization through OpenMP [openmp].
Numpy expression computation do not carry any
loop-dependency. They are perfect candidates for
loop parallelization, especially after the expression
templates aggregation, as OpenMP generally per-
forms better on loops with higher computation in-
tensity that masks the scheduling overhead.

To illustrate the benefits of these three optimizations com-
bined, let us consider the simple Numpy expression:
d = numpy.sqrt(b*b+c*c)

When benchmarked with the timeit module on an hyper-
threaded quad-core i7, the pure Python execution yields:
>>> %timeit np.sqrt(b*b+c*c)
1000 loops, best of 3: 1.23 ms per loop

then after Pythran processing and using expression templates:
>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 621 us per loop

Expression templates replace 4 temporary array creations and
4 loops by a single allocation and a single loop.

Going a step further and vectorizing the generated loop
yields an extra performance boost:
>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 418 us per loop

Although the AVX instruction set makes it possible to store
4 double precision floats, one does not get a 4x speed up

because of the unaligned memory transfers to and from vector
registers.

Finally, using both expression templates, vectorization and
OpenMP:

>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 105 us per loop

The 4 hyper-threaded cores give an extra performance boost.
Unfortunately, the load is not sufficient to get more than an
average 4x speed up compared to the vectorized version. In the
end, Pythran generates a native module that performs roughly
11 times faster than the original version.

As a reference, the numexpr module that performs JIT
optimization of the expression yields the following timing:

>>> %timeit numexpr.evaluate("sqrt(b*b+c*c)")
1000 loops, best of 3: 395 us per loop

Next section performs an in-depth comparison of Pythran with
three Python optimizers: PyPy, ShedSkin and numexpr.

Explicit Parallelization

Many scientific applications can benefit from the parallel
execution of their kernels. As modern computers generally
feature several processors and several cores per processor, it
is critical for the scientific application developer to be able to
take advantage of them.

As explained in the previous section, Pythran takes advan-
tage of multiple cores when compiling Numpy expressions.
However, when possible, it is often more profitable to paral-
lelize the outermost loops rather than the inner loops —the
Numpy expressions— because it avoids the synchronization
barrier at the end of each parallel section, and generally offers
more computation intensive computations.

The OpenMP standard [openmp] is a widely used solution
for Fortran, C and C++ to describe loop-based and task-based
parallelism. It consists of a few directives attached to the code,
that describe parallel loops and parallel code sections in a
shared memory model.

Pythran makes this directives available at the Python level
through string instructions. The semantic is roughly similar
to the original semantics, assuming that all variables have
function level scope.

The following listing gives a simple example of explicit
loop-based parallelism. OpenMP 3.0 task-based parallelism
form is also supported.

def pi_estimate(darts):
hits = 0
"omp parallel for private(x,y,dist), reduction(+:hits)"
for i in xrange(darts):

x,y = random(), random()
dist = sqrt(pow(x, 2) + pow(y, 2))
if dist <= 1.0:

hits += 1.0
pi = 4 * (hits / DARTS)
return pi

The loop is flagged as parallel, performing a reduction using
the + operator on the hits variable. Variable marked as private
are local to a thread and not shared with other threads.
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Tool CPython Pythran PyPy ShedSkin
Timing 861ms 11.8ms 29.1ms 24.7ms
Speedup x1 x72.9 x29.6 x34.8

TABLE 1: Benchmarking result on the Pystone program.

Tool CPython Pythran PyPy ShedSkin
Timing 1904.6ms 358.3ms 546.1ms 701.5ms
Speedup x1 x5.31 x3.49 x2.71

TABLE 2: Benchmarking result on the NQueen program.

Benchmarks

All benchmarks presented in this section are ran on
an hyper-threaded quad-core i7, using examples shipped
along Pythran sources, available at https://github.com/
serge-sans-paille/pythran in the pythran/test/cases directory.
The Pythran version used is the HEAD of the scipy2013
branch, ShedSkin 0.9.2, PyPy 2.0 compiled with the -jit flag,
CPython 2.7.3, Cython 0.19.1 and Numexpr 2.0.1. All timings
are made using the timeit module, taking the best of all runs.
All C++ codes are compiled with g++ 4.7.3, using the tool
default compiler option, generally -O2 plus a few optimizing
flags depending on the target.

Cython is not considered in most benchmarks, because
to get an efficient binary, one needs to rewrite the original
code, while all the considered tools are running the very
same Python code that remains compatible with CPython.
The experiment was only done to have a comparison with
Numexpr.

Pystone is a Python translation of whetstone, a famous
floating point number benchmarks that dates back to Algol60
and the 70’s. Although non representative of real applications,
it illustrates the general performance of floating point number
manipulations. Table 1 illustrates the benchmark result for
CPython, PyPy, ShedSkin and Pythran, using an input value
of 10**3. Note that the original version has been updated to
replace the user class by a function call.

It comes at no surprise that all tools get more than decent
results on this benchmark. PyPy generates a code almost as
efficient as ShedSkin. Altough both generate C++, Pythran
outperforms ShedSkin thanks to a higher level generated code.
For instance all arrays are represented in ShedSkin by pointers
to arrays that likely disturbs the g++ optimizer, while Pythran
uses a vector class wrapping shared pointers.

Nqueen is a benchmark extracted from the former Unladen
Swallow* project. It is particularly interesting as it makes an
intensive use of non-trivial generator expressions and integer
sets. Table 2 illustrates the benchmark results for CPython,
PyPy, ShedSkin and Pythran. The code had to be slightly
updated to run with ShedSkin because type inference in
ShedSkin does not support mixed scalar and None variables.
The input value is 9.

It seems that compilers have difficulties to take advantage
of high level constructs such as generator expressions, as the
overall speedup is not breathtaking. Pythran benefits from the
conversion to itertools.imap here, while ShedSkin and PyPy

Tool CPython Pythran PyPy ShedSkin
Timing 1295.4ms 270.5ms 277.5ms 281.5ms
Speedup x1 x4.79 x4.67 x4.60

TABLE 3: Benchmarking result on the hyantes kernel, list version.

Tool CPython Pythran Pythran+OpenMP
Timing 450.0ms 4.8ms 2.3ms
Speedup x1 x93.8 x195.7

TABLE 4: Benchmarking result on the hyantes kernel, numpy version.

rely on more costly constructs. A deeper look at the Pythran
profiling trace shows that more than half of the execution time
is spent allocating and deallocating a set used in the internal
loop. There is a memory allocation invariant that could be
taken advantage of there, but none of the compiler does.

Hyantes† is a geomatic application that exhibits typical
usage of arrays using loops instead of generalized expressions.
It is helpful to measure the performance of direct array
indexing.

Table 3 illustrates the benchmark result for CPython, PyPy,
ShedSkin and Pythran, when using lists as the data container.
The output window used is 100x100.

The speed ups are not amazing for a numerical application.
there are two reasons for this poor speedups. First, the hyantes
benchmark makes heavy usage of trigonometric functions, and
there is not much gain there. Second, and most important, the
benchmark produces a big 2D array stored as a list of list, so
the application suffers from the heavy overhead of converting
them from C++ to Python. Running the same benchmark using
Numpy arrays as core containers confirms this assumption, as
illustrated by Table 4. This table also demonstrates the benefits
of manual parallelization using OpenMP.

Finally, arc_distance‡ presents a classical usage of Numpy
expression. It is typically more efficient than its loop alter-
native as all the iterations are done directly in C. Its code is
reproduced below:
def arc_distance(theta_1, phi_1, theta_2, phi_2):

"""
Calculates the pairwise arc distance
between all points in vector a and b.
"""
temp = (np.sin((theta_2-theta_1)/2)**2

+ np.cos(theta_1)*np.cos(theta_2)
* np.sin((phi_2-phi_1)/2)**2)

distance_matrix = 2 * np.arctan2(
sqrt(temp),sqrt(1-temp))

return distance_matrix

Figure 5 illustrates the benchmark result for CPython,
Cython, Numexpr and Pythran, using random input arrays
of 10**6 elements. Table 6 details the Pythran performance.
Cython code is written using the parallel.prange feature and
compiled with -fopenmp -O2 -march=native.

*. http://code.google.com/p/unladen-swallow/
†. http://hyantes.gforge.inria.fr/
‡. The arc_distance test_bed is taken from to https://bitbucket.org/

FedericoV/numpy-tip-complex-modeling

https://github.com/serge-sans-paille/pythran
https://github.com/serge-sans-paille/pythran
http://code.google.com/p/unladen-swallow/
http://hyantes.gforge.inria.fr/
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling
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Tool CPython Cython Numexpr Pythran
Timing 192.2ms 36.0ms 41.2ms 17.1ms
Speedup x1 x5.33 x4.67 x11.23

TABLE 5: Benchmarking result on the arc distance kernel.

Pythran (raw) Pythran
(+AVX)

Pythran
(+OMP)

Pythran (full)

186.3ms 75.4ms 41.1ms 17.1ms
x1.03 x2.54 x4.67 x11.23

TABLE 6: Benchmarking result on the arc distance kernel, Pythran
details.

It shows a small benefit from using expression templates on
their own, most certainly because the loop control overhead
is negligible in front of the trigonometric functions. It gets
a decent x2.5 speed-up when using AVX over not using it.
The benefit of OpenMP, although related to the number of
cores, makes a whole speedup greater than x11 over the
original Numpy version, without changing the input code.
Quite the opposite, Numexpr requires rewriting the input and
does not achieve the same level of performance as Pythran
when OpenMP and AVX are combined.

Writing efficient Cython code requires more work than just
typing the variable declarations using Cython’s specific syntax:
it only takes advantage of parallelism because we made it
explicit. Without explicit parallelization, the generated code
runs around 176ms instead of 36ms. Cython does not generate
vectorized code, and gcc does not vectorize the inner loop,
which explains the better result obtained with Pythran.

Future Work

Although Pythran focuses on a subset of Python and its
standard library, many optimizations opportunities are still
possible. Using as Domain Specific Language(DSL) approach,
one could use rewriting rules to optimize several Python
idioms. For instance, len(set(x)) could lead to an optimized
count_uniq that would iterate only once on the input sequence.

There is naturally more work to be done at the Numpy level,
for instance to support more functions from the original mod-
ule. The extraction of Numpy expressions from for loops is
also a natural optimization candidate, which shares similarities
with code refactoring.

Numpy expressions also fit perfectly well in the polyhedral
model. Exploring the coupling of polyhedral tools with the
code generated from Pythran offers enthusiastic perspectives.

Conclusion

This paper presents the Pythran compiler, a translator, and an
optimizer, that converts Python to C++. Unlike existing static
compilers for Python, Pythran leverages several function-level
or module-level analyses to provide several generic or Python-
centric code optimizations. Additionally, it uses a C++ library
that makes heavy usage of template programming to provide
an efficient API similar to a subset of Python standard library.

This library takes advantage of modern hardware capabilities
—vector instruction units and multi-cores— in its implemen-
tation of parts of the numpy package.

This paper gives an overview of the compilation flow, the
analyses involved and the optimizations used. It also com-
pares the performance of compiled Pythran modules against
CPython and other optimizers: ShedSkin, PyPy and numexpr.

To conclude, limiting Python to a statically typed subset
does not hinders the expressivity when it comes to scientific
or mathematic computations, but makes it possible to use a
wide variety of classical optimizations to help Python match
the performance of statically compiled language. Moreover,
one can use high level information to generate efficient code
that would be difficult to write for the average programmer.
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Abstract—The original G-mode was a clustering method developed by A.
I. Gavrishin in the late 60’s for geochemical classification of rocks, but was
also applied to asteroid photometry, cosmic rays, lunar sample and planetary
science spectroscopy data. In this work, we used an adapted version to
classify the asteroid photometry from SDSS Moving Objects Catalog. The
method works by identifying normal distributions in a multidimensional space
of variables. The identification starts by locating a set of points with smallest
mutual distance in the sample, which is a problem when data is not planar.
Here we present a modified version of the G-mode algorithm, which was
previously written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy
and Matplotlib packages. The NumPy was used for array and matrix manipu-
lation and Matplotlib for plot control. The Scipy had a import role in speeding
up G-mode, Scipy.spatial.distance.mahalanobis was chosen as
distance estimator and Numpy.histogramdd was applied to find the initial
seeds from which clusters are going to evolve. Scipy was also used to quickly
produce dendrograms showing the distances among clusters.

Finally, results for Asteroids Taxonomy and tests for different sample sizes
and implementations are presented.

Index Terms—clustering, taxonomy, asteroids, statistics, multivariate data,
scipy, numpy

Introduction

The clusters are identified using the G-mode multivariate
clustering method, designed by A. I. Gavrishin and published
in Russia in the late 60’s [Cor76]. The algorithm was originally
written in FORTRAN V by A. Coradini in the 70’s [Cor77]
to classify geochemical samples [Cor76, Bia80], but is also
applicable to a wide range of astrophysical fields, as Small
Solar System Bodies [Bar87, Bir96, Ful08, Per10], disk-
resolved remote sensing [Pos80, Tos05, Cor08, Ley10, Tos10],
cosmic rays [Gio81] and quasars [Cor83]. In 1987, Bar87 used
original G-mode implementation to classify measurements of
asteroids made by the Eight-Color Asteroid Survey [Zel85]
and IRAS geometric albedos [Mat86] to produce a taxonomic
scheme. Using a sample of 442 asteroids with 8 variables, they
recognized 18 classes using a confidence level of 97.7%. Those
classes were grouped to represent the asteroid taxonomic
types. G-mode also identified that just 3 variables were enough
to characterize the asteroid taxonomy.

* Corresponding author: hasselmann@on.br
† Observatorio Nacional, Rio de Janeiro, Brazil

Copyright © 2013 Pedro Henrique Hasselmann et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
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The G-mode classifies N elements into Nc unimodal clusters
containing Na elements each. Elements are described by
M variables. This method is unsupervised, which allows an
automatic identification of clusters without any a priori knowl-
edge of sample distribution. For that, user must control only
one critical parameter for the classification, the confidence
levels q1 or its corresponding critical value Gq1. Smaller this
parameter get, more clusters are resolved and smaller their
spreads are.

So, we chose this method to classify the asteroid obser-
vations from Sloan Digital Sky Moving Object Catalog, the
largest data set on photometry containing around 400,000
moving object entries, due to its previous success on asteroid
taxonomy, unsupervision and lower number of input param-
eters. However, we were aware the computational limitation
we were going to face, since the method never was applied
to samples larger than 10,000 elements [Ley10] and its last
implementation was outdated. Therefore, the G-mode used
here follows an adapted version of the original method pub-
lished by Gav92, briefly described by Ful00 and reviewed
by Tos05 . Median central tendency and absolute deviation
estimators, a faster initial seed finder and statistical whitening
were introduced to produce a more robust set of clusters and
optimize the processing time. The coding was performed using
Python 2.7 with support of Matplotlib, NumPy and SciPy
packages*. The algorithm can be briefly summarized by two
parts: the first one is the cluster recognition and the second
evaluates each variable in the classification process. Each one
is going to be described in the following sections.

Recognition Of The Unimodal Clusters

The first procedure can be summarized by the following topics
and code snippets:
• The data is arranged in N X M matrix. All variables are
Scipy.cluster.vq.whiten , which means they are
divided by their absolute deviation to scale all them up.
This is a important measure when dealing with percentage
variables, such as geometric albedos.

• Initial seed of a forming cluster is identified. At the
original implementation, the G-mode relied on a brute-
force algorithm to find the three closest elements as initial

*. The codebase is hosted through GitHub .

mailto:hasselmann@on.br
http://github.com/pedrohasselmann/GmodeClass
http://github.com/pedrohasselmann
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seed, which required long processing time. Therefore, in
this version, the initial seeds are searched recursively
using Numpy.histogramdd , which speeds up the
output:
’’’ barycenter.py ’’’

def boolist(index, values, lim):
if all([boo(item[0],item[1]) \

for item in izip(values,lim)]):
return index

def pairwise(iterable):
’’’s -> (s0,s1), (s1,s2), (s2, s3), ...’’’
a, b = tee(iterable)
next(b, None)
return izip(a, b)

def volume(lst):
p = 1
for i in lst: p *= i[1] - i[0]
return p

def barycenter_density(data, grid, upper, \
lower, dens, nmin):

from numpy import histogramdd, array, \
unravel_index, amax

rng = range(data.shape[1])

nbin = map(int,array([grid]*data.shape[1]))

hist, edges = histogramdd( \
data,bins=nbin,range=tuple(zip(lower, upper))

\ )

limits = array( \
[list(pairwise(edges[i])) for i in rng])

ind = unravel_index(argmax(hist), hist.shape)

zone = array([limits[i,j] \
for i, j in izip(rng, ind)])

density = amax(hist) / volume(zone)

if density > dens and amax(hist) > nmin:
zone = zone.T
return barycenter_density(data, grid, \

zone[1], zone[0], density, nmin)
else:

return filter(lambda x: x != None, \
imap(lambda i, y: \
boolist(i,y,zone), \
xrange(data.shape[0]), data))

The function above divides the variable hyperspace into large
sectors, and the initial seed is searched for only in the
most crowded sector. Recursively, the most crowded sector
is once divided as long as the density increases. When density
decreases or the minimal number of points set by the user is
reached, the procedure stops. The initial seed is chosen from
the elements of the most crowded sector. In the end, starting
central tendency µi and standard deviation σi are estimated
from the initial seed. If any standard deviation is zero, the
value is replaced by the median uncertainty of the variable.

• Z² criterion. In the next step, the Mahalanobis distance
(Scipy.spatial.distance.mahalanobis) be-
tween the tested cluster and all elements are computed:

−→
Z2

j = (−→χ j−−→µ )T S−1(−→χ j−−→µ )

where χ j is the jth element and S is covariance matrix
of the tested cluster.

• Hypothesis Testing. The Z² estimator follows a χ2 dis-
tribution, but for sake of simplification, Z² can be trans-
formed to Gaussian estimator G if the degree of freedom
~f is large enough, which is satisfied for most of samples.
Now, the critical value Gq1 in hypothesis testing are
given as multiples of σ , simplifying its interpretation.
Therefore, the vectorized transformation [Abr72] can be
written:

~G j =

√
2 · ~Z2−

√

2 ·
~f
N
−1

while the elements of the vector degree of freedom are
given by:

fk = N · M

∑M
s=1 r2

ks

for fk > 100 , where r2
ks is the correlation coefficient. For

30 < fk < 100 , the G parameter becomes:

~G j =

(
Z2

~f

)1/3
− (1− 2

9 ·
~f
N )√

2
9 ·

~f
N

Then the null hypothesis χi j = µi is tested with a statis-
tical significance level of P(G j ≤ Gq1, f ) (P, probability)
for a χ j to belong to a tested class, i.e., a class contains
the χ j element if its estimator G j satisfies G j ≤ Gq1 .

• µi and σi are redefined on each iteration. The iteration is
executed until the Na and correlation matrix R converge
to stable values. Once the first unimodal cluster is formed,
its members are removed from sample and the above
procedure is applied again until all the sample is depleted,
no more initial seeds are located or the condition N >
M-1 is not satisfied anymore. If a initial seed fails to
produce a cluster, its elements are also excluded from
the sample.

As soon as all unimodal clusters are found and its central
tendency and absolute deviation are computed, the method
goes to the next stage: to measure the hyper-dimension dis-
tance between classes and evaluate the variable relevance to
the classification.

Variable Evaluation and Distance Matrix

This part of the method is also based on Z² criterion, but
now the objects of evaluation are the clusters identified on
the previous stage. The variables are tested for their power
to discriminate clusters against each other. For this purpose,
the Nc×Nc (Nc, the number of clusters) symmetric matrices
of Gaussian estimators are computed for each variable i as
follows:

Gci(a,b) =
√

2
[
Z2

i (a,b)+Z2
i (b,a)

]
−
√

2(Na +Nb)−1

where Na and Nb are respectively the number of members
in the a-th and b-th class, while Z2

i (a,b) and Z2
i (b,a) are a

reformulation of Z² estimator, now given by:

Z2
i (a,b) =

Nb

∑
j=1

Z2
i jb =

Nb

∑
j=1

(
χi jb−µi,a

)2

σ2
i,a
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Z2
i (b,a) can be found just by permuting the equation indices.
The Gci matrix gives the efficiency of variable i to resolve

the clusters, each element represent the capacity of a variable
i to discriminate a pair of cluster from each other. If all
the elements are lower then a given critical value, then this
variable is not significant for the classification procedure.
Thus, smaller matrix values indicate less distinction between
clusters. To discriminate the redundant variables, all the el-
ements of Gci matrix are tested against the null hypothesis
µi,a = µi,b, and if none of them satisfy Gci(a,b) < Gq1 , the
method is iterated again without the variable i. The method
is repeated until stability is found on the most suitable set of
meaningful variables for the sample.

The Nc× Nc symmetric Distance Matrix between clus-
ters with respect to all meaningful variables is also calcu-
lated. The same interpretation given to Gci matrices can be
used here: higher D²(a,b) elements, more distinction between
clusters are presented. D²(a,b) matrix is used to produce
a Scipy.cluster.hierarchy.dendrogram , which
graphically shows the relation among all clusters.

Robust Median Statistics

Robust Statistics seeks alternative estimators which are not
excessively affected by outliers or departures from an assumed
sample distribution. For central tendency estimator µi, the
median was chosen over mean due to its breakdown point
of 50% against 0% for mean. Higher the breakdown point,
the estimator is more resistant to variations due to errors
or outliers. Following a median-based statistics, the Median
of Absolute Deviation (MAD) was selected to represent the
standard deviation estimator σ . The MAD is said to be
conceived by Gauss in 1816 [Ham74] and can be expressed
as:

MAD(χi) = med
{
|χ ji−med (χi) |

}

To be used as a estimator of standard deviation, the MAD must
be multiplied by a scaling factor K, which adjusts the value
for a assumed distribution. For Gaussian distribution, which
is the distribution assumed for clusters in the G-mode, K =
1.426 . Therefore:

σi = K ·MAD

Computing the Mahalanobis distance is necessary to estimate
the covariance matrix. MAD is expanded to calculate its terms:

Sik = K2 ·med
{
|(χ ji−med (χi)) ·

(
χ jk−med (χk)

)
|
}

The correlation coefficient rs,k used in this G-mode version
was proposed by She97 to be a median counterpart to the
Pearson correlation coefficient, with breakpoint of 50%, simi-
lar to MAD versus standard deviation. The coefficient is based
on linear data transformation and depends on MAD and the
deviation of each element from the median:

ri,k =
med2|u|−med2|v|
med2|u|+med2|v|

where
u =

χi j−med (χs)

σi
+

χk j−med (χk)

σk

v =
χi j−med (χm)

σi
− χk j−med (χn)

σk

The application of median statistics on G-mode is a departure
from the original concept of the method. The goal is producing
more stable classes and save processing time from unnecessary
successive iterations.

Code Structure, Input And Output

The GmodeClass package, hosted in GitHub , is organized
in a object-oriented structure. The code snippets below show
how the main class and its objects are implemented, explaining
what each one does, and also highlighting its dependences:
’’’ Gmode.py ’’’

’’’ modules: kernel.py, eval_variables.py,
plot_module.py, file_module.py, gmode_module.py
support.py ’’’

class Gmode:

def __init__(self):
’’’
Make directory where tests are hosted.
Run support.py and read shell commands.
’’’

def Load(self):
’’’
Make directory in /TESTS/ where test’s plots,
lists and logs are kept. This object is run
when __init__() or Run() is called.
’’’

def LoadData(self, file):
’’’
dependencies: operator
Load data to be classified.
’’’

def Run(self, q1, sector, ulim, minlim):
’’’
dependencies: kernel.py
Actually run the recognition procedure.
Returns self.cluster_members, self.cluster_stats.
’’’

def Evaluate(self, q1):
’’’
dependencies: eval_variables.py
Evaluate the significance of each variable and
produce the distance matrices.
Returns self.Gc and self.D2. ’’’

def Extension(self, q1):
’’’
dependencies: itertools
Classify data elements excluded
from the main classification.
Optional feature.
Modify self.cluster_members
’’’

def Classification(self):
’’’ Write Classification into a list. ’’’

def ClassificationPerID(self):
’’’
dependencies: gmode_module.py
If the data elements are
measurements of group of objects,
organize the classification into
a list per Unique Identification.

http://github.com/pedrohasselmann
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’’’

def WriteLog(self):
’’’
dependencies: file_module.py
Write the procedure log with informations about
each cluster recognition,
variable evaluation and distance matrices.
’’’

def Plot(self, lim, norm, axis):
’’’
dependencies: plot_module.py
Save spectral plots for each cluster.
’’’

def Dendrogram(self):
’’’
dependencies: plot_module.py
Save scipy.cluster.hierarchy.dendrogram figure.
’’’

def TimeIt(self):
’’’
dependencies: time.time
Time, in minutes, the whole procedure
and save into the log.
’’’

if __name__ == ’__main__’:

gmode = Gmode()
load = gmode.LoadData()
run = gmode.Run()
ev = gmode.Evaluate()
ex = gmode.Extension() # Optional.
col = gmode.ClassificationPerID()
end = gmode.TimeIt()
classf = gmode.Classification()
log = gmode.WriteLog()
plot = gmode.Plot()
dendro = gmode.Dendrogram()

Originally, G-mode relied on a single parameter, the confi-
dence level q1, to resolve cluster from a sample. However,
tests on simulated sample and asteroid catalogs (More in
next sections), plus changes on initial seed finder, revealed
that three more parameters were necessary for high quality
classification. Thus, the last code version ended up with the
following input parameters:
• q1 or Gq1 ( --q1, self.q1) : Confidence level or

critical value. Must be inserted in multiple of σ . Usually
it assumes values between 1.5 and 3.0 .

• Grid (--grid, -g, self.grid) : Number of times
which barycenter.barycenter_density() will
divide each variable up on each iteration, according to
sample’s upper and lower ranges. Values between 2 and
4 are preferable.

• Minimum Deviation Limit (--mlim, -m,
self.mlim) : Sometimes the initial seeds starts
with zeroth deviation, thus this singularity is corrected
replacing all deviation by the minimum limit when lower
than it. This number is given in fraction of median error
of each variable.

• Upper Deviation Limit (--ulim, -u,
self.ulim) : This optional parameter is important
when the clusters have high degree of superposition
and its necessary the identification of smaller mingled
clusters. The upper limit is a restriction which determines

how much a cluster might grow up. This value is given
in fraction of total standard deviation of each variable.

The output is contained in a directory created in /TESTS/
and organized in a series of lists and plots. On the di-
rectory /TESTS/.../maps/ , there are on-the-fly den-
sity distribution plots showing the locus of each cluster
in sample. On /TESTS/.../plots/ , a series of vari-
able plots permits the user to verify each cluster pro-
file. On the lists clump_xxx.dat , gmode1_xxx.dat
, gmode2_xxx.dat and log_xxx.dat the informations
about cluster statistics, classification per each data element,
classification per unique ID and report of the formation of
clusters and distance matrices are gathered. Working on a
Python Interpreter, once Gmode.Run() was executed, users
might call self.cluster_members to get a list of
sample indexes organized into each cluster they are members
of. The self.cluster_stats returns a list with each
cluster statistics. Gmode.Evaluate() gives the self.Gc
matrix and self.D2 distance matrix among clusters.

Users must be aware that input data should be formatted
in columns in this order: measurement designation, unique
identification, variables, errors. If errors are not available, its
values should be replaced by 0.0 and mlim parameter might
not be used. There is no limit on data size, however the
processing time is very sensitive to the number of identified
cluster, which may slow down the method for a bigger number.
For example, with 20,000 elements and 41 clusters, the G-
mode takes around to 2 minutes for whole procedure (plots
creation not included) when executed in a Intel Core 2 Quad
2.4 GHz with 4 Gb RAM.

Our implementation also allows to import Gmode and
use it on a Python Interpreter or through shells as in the
example below:

python Gmode.py --in path/to/file \
--q1 2.0 -g 3 -u 0.5 -m 0.5 -n Nickname

Finally, since the plot limits, normalization and axis are
optimized to asteroid photometry, users on shell are invited
to directly change this parameters in config.cfg. If data
is not normalized thus norm = None. More aesthetic op-
tions are going to be implemented in future versions using
Matplotlib.rcParams.

Code Testing

For testing the efficiency of the Adapted G-mode version,
a bidimensional sample of 2000 points was simulated using
Numpy.random. The points filled a range of 0 to 10.
Three random Gaussian distributions containing 500 points
each (Numpy.random.normal), plus 500 random points
(Numpy.random.rand) composed the final sample (Figure
1). These Gaussians were the aim for the recognition ability
of clustering method, while the random points worked as
background noise. Then, simulated sample was classified using
the Original [Gav92] and Adapted G-mode version. The results
are presented in Table 1 and figures below.

†. Central Tendency.
‡. Standard Deviation.
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Gaussians C.T.† S.D.‡ N N-Original N-Adapted
1 (3,3) (0.5,0.25) 500 471 (5.8%) 512 (2.4%)
2 (3,8) (0.7,0.7) 500 538 (7.6%) 461 (7.8%)
3 (7,5) (0.7,0.7) 500 585 (17%) 346

(30.8%)

TABLE 1: Gaussian Distributions in Simulated Sample.

Fig. 1: Simulated Sample of 2000 points. Blue dots represent the bidi-
mensional elements and the clusters are three Gaussian distributions
composed of random points.

Fig. 2: Red filled circles are the elements of clusters identified by
Original G-mode. The green filled circles represent the initial seed.
Classification made with q1 = 2.2σ .

Fig. 3: Clusters identified by Adapted G-mode. Labels are the same
as previous graphics. Classification made with q1 = 2.2σ .

Comparing results from both versions, it is noticeable how
each version identifies clusters differently. Since the initial
seed in the Original G-mode starts from just the closest points,
there is no guarantee that initial seeds will start close or inside
clusters. The Original version is also limited for misaligned-
axis clusters, due to the use of a normalized euclidean distance
estimator, that does not have correction for covariance. This
limitation turn impossible the identification of misaligned
clusters without including random elements in, as seen in
Figure 2 .

The Adapted version, otherwise, seeks the initial seed
through densest regions, thus ensuring its start inside or close
to clusters. Moreover, by using the Mhalonobis distance as
estimator, the covariance matrix is taken into account, which
makes a more precise identification of cluster boundaries
(Figure 3). Nevertheless, Adapted G-mode has a tendency to
undersize the number of elements on the misaligned clusters.
For cluster number 3 in Table 1 , a anti-correlated gaussian
distribution, the undersizing reaches 30.8%. If the undersizing
becomes too large, its possible that “lost elements” are iden-
tified as new cluster. Therefore, it may be necessary to group
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clusters according to its d²(a,b) distances.

Sloan Digital Sky Survey Moving Objects Catalog 4

SDSS Moving Objects Catalog 4th (SDSSMOC4) release is
now the largest photometric data set of asteroids [Ive01,
Ive10], containing 471,569 detections of moving objects,
where 202,101 are linked to 104,449 unique objects. It has
a system of five magnitudes in the visible [Fuk96] , pro-
viding measurements and corresponding uncertainties. As the
photometric observations are obtained almost simultaneously,
rotational variations can be discarded for most of the asteroids.
The SDSS-MOC4 magnitudes employed here are first con-
verted to normalized reflected intensities1 [Lup99]. Thereby
solar colors were obtained from Ive01 and extracted from
asteroid measurements. A middle band called g’ was chosen as
reference [Car10], thus being discarded from the classification
procedure.

In what follows, all observations of non-numbered asteroids,
with uncertainties in each filter greater than the 3rd quartile,
have been excluded. Moreover, all detections 15 degrees from
the Galactic Plane and with |DEC|< 1.26 were eliminated due
to inclusion of sources in crowded stellar regions, which have
a high possibility of misidentification2 . Finally, the sample
contained 21,419 detections linked to 17,027 asteroids.

Preliminary Results on Asteroid Photometric Classification

When looking at the density distributions (Figure 4) it is
possible to notice two large agglomerations with accentuated
superposition between them. Previous photometry-based tax-
onomic systems [Tho84, Bar87] were developed over smaller
samples, with less than 1,000 asteroids, thus overlay was not
a huge problem. Those two groups are the most common
asteroid types S (from Stone) and C (from Carbonaceous). A
important indicative that a classification method is working for
asteroid taxonomy is at least the detachment of both groups.
Nonetheless, even though both groups are being identified
in the first and second clusters when SDSSMOC4 sample is
classified, the third cluster was engulfing part of members left
from both groups and other smaller groups mingled among
them (Figure 5). The loss of obvious unimodal distribution
patterns on data may be the cause for such generalization in
the third cluster. This behavior was interrupting the capacity
of the method to identify smaller clusters. Therefore, to deal
with that, a upper deviation limit was introduced to halt
the cluster evolution, thus not permiting clusters to become
comparable in sample size. Figure 6 is a example of a cluster
recognized with upper deviation limit on, showing that third
cluster is not getting into a large size anymore, allowing other
cluster to be identified. This specific test resulted in 58 cluster
recognitions, most of them with lower than 100 members.
Thus, the upper limit parameter turned up useful for sample
with varied degrees of superposition.

1. http://ned.ipac.caltech.edu/help/sdss/dr6/photometry.html
2. http://www.astro.washington.edu/users/ivezic/sdssmoc/sdssmoc.html

Fig. 4: Density distributions of reflected intensities measured from
asteroid observations by SDSSMOC4. The colors correspond to
degrees of point agglomeration.

Conclusions

In this paper, a refined version of a clustering method de-
veloped in the 70’s was presented. The Adapted G-mode
used Mahalonobis distance as estimator to better recognize
misaligned clusters, and used Numpy.histogramdd to
faster locate initial seeds. Robust median statistics was also
implemented to more precisely estimate central tendency and
standard deviation, and take less iteration to stabilize clusters.

Tests with simulated samples showed a quality increase
in classification and successful recognition of clusters among
random points. However, tests with asteroid samples indicated
that for presence of superposition is necessary introduction of
one more parameter. Therefore, users must previously inspect
their samples before enabling an upper limit parameter.

Finally, the Adapted G-mode is available for anyone through
GitHub . The codebase has no restriction on sample or
variable size. Users must only fulfill the requirements related
to installed packages and data format.
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Fig. 5: Density distributions with the third cluster identified by G-
mode without upper limit. The cluster is marked by red filled circles.
Classification made with q1 = 1.5σ and minlim = 0.5.
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Ginga: an open-source astronomical image viewer
and toolkit

Eric Jeschke∗†

http://www.youtube.com/watch?v=nZKy_nYUxCs

F

Abstract—Ginga is a new astronomical image viewer written in Python. It
uses and inter-operates with several key scientific Python packages: NumPy,
Astropy, and SciPy. A key differentiator for this image viewer, compared to older-
generation FITS viewers, is that all the key components are written as Python
classes, allowing for the first time a powerful FITS image display widget to be
directly embedded in, and tightly coupled with, Python code.

We call Ginga a toolkit for programming FITS viewers because it includes a
choice of base classes for programming custom viewers for two different modern
widget sets: Gtk and Qt, available on the three common desktop platforms.
In addition, a reference viewer is included with the source code based on a
plugin architecture in which the viewer can be extended with plugins scripted in
Python. The code is released under a BSD license similar to other major Python
packages and is available on GitHub.

Ginga has been introduced only recently as a tool to the astronomical
community, but since SciPy has a developer focus this talk concentrates on
programming with the Ginga toolkit. We cover two cases: using the bare image
widget to build custom viewers and writing plugins for the existing full-featured
Ginga viewer. The talk may be of interest to anyone developing code in Python
needing to display scientific image (CCD or CMOS) data and astronomers
interested in Python-based quick look and analysis tools.

Index Terms—FITS, viewer, astronomical, images, Python, NumPy, SciPy,
Astropy

Introduction

Ginga is a new astronomical image viewer and toolkit written
in Python. We call Ginga a toolkit for programming scientific
image viewers [Jes12] because it includes a choice of base
classes for programming custom viewers for two different
modern widget sets: Gtk and Qt, available on the three
common desktop platforms (Linux, Mac, and Windows).

Ginga uses and inter-operates with several key scientific
Python packages: NumPy, Astropy and SciPy. Ginga will
visualize FITS1 files as well as other common digital image
formats and can operate on any imaging data in NumPy
array format. Ginga components are written as Python classes,
which allows the image display widget to be directly embed-
ded in, and tightly coupled with, Python code. The display
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widget supports arbitrary scaling and panning, rotation, color
mapping and a choice of automatic cut levels algorithms.

A reference viewer is included with the Ginga source code
based on a plugin architecture in which the viewer can be
extended with plugins scripted in Python. Example plugins are
provided for most of the features of a "modern" astronomical
FITS viewer. Users wishing to develop an imaging program
employing Ginga can follow one of two logical development
paths: starting from the widget and building up around it, or
starting from the reference viewer and customizing it via a
plugin.

Getting and installing Ginga

Ginga is released under a BSD license similar to other major
scientific Python packages and is available on GitHub: http://
github.com/ejeschke/ginga . It is a distutils-compatible Python
package, and is also available in PyPI. Installing it is as simple
as:
pip install ginga

or:
python setup.py install

Use the latter if you have downloaded the latest source as
a tarball from http://ejeschke.github.com/ginga or cloned the
git repository from https://github.com/ejeschke/ginga.git . The
package will be installed as "ginga" and the reference viewer
will also be installed as ginga (but located wherever scripts
are stored).

Prerequisites and dependences: Ginga will run under Python
versions from 2.7 to 3.3. Note that as a minimum you will need
to have at least installed numpy and one of the Python Gtk or
Qt bindings (e.g. pygtk, pyqt4). For full functionality you
will also need scipy and astropy [Tol13]. Certain features
in the reference viewer also be activated if matplotlib is
installed.

Part 1: Developing with the Ginga Widget

When developing with the Ginga toolkit for visualizing FITS
files there are two main starting points one might take:

• using only the Ginga widget itself, or

1. Flexible Image Transport System--the current standard for archiving and
exchanging astronomical data as files.

http://www.youtube.com/watch?v=nZKy_nYUxCs
mailto:eric@naoj.org
http://github.com/ejeschke/ginga
http://github.com/ejeschke/ginga
http://ejeschke.github.com/ginga
https://github.com/ejeschke/ginga.git
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• starting with the full-featured reference viewer that comes
with Ginga and customize it for some special purpose.

The first way is probably best for when the developer has
a custom application in mind, needs a bare-bones viewer or
wants to develop an entirely new full-featured viewer. The
second way is probably best for end users or developers that
are mostly satisfied with the reference viewer as a general
purpose tool and want to add some specific enhancements
or functionality. Because the reference viewer is based on a
flexible plugin architecture this is fairly easy to do. In this
paper we address both of these approaches.

First, let’s take a look at how to use the "bare" Ginga
FITS viewing widget by itself. The FitsImageZoom widget
handles image display, scaling (zooming), panning, manual
cut levels, auto cut levels with a choice of algorithms, color
mapping, transformations, and rotation. Besides the image
window itself there are no additional GUI (Graphical User
Interface) components and these controls are handled progra-
matically or directly by keyboard and mouse bindings on the
window. Developers can enable as many of the features as
they want, or reimplement them. The user interface bindings
are configurable via a pluggable Bindings class, and there
are a plethora of callbacks that can be registered, allowing the
user to create their own custom user interface for manipulating
the view.

Fig. 1: A simple, "bare bones" FITS viewer written in Qt.

Listing 1 shows a code listing for a simple graphical FITS
viewer using this widget (screenshot in Figure 1) written
in around 100 or so lines of Python. It creates a window
containing an image view and two buttons. This example,
included with the Ginga package, will open FITS files dragged
and dropped on the image window or via a dialog popped up
when clicking the "Open File" button.

Looking at the constructor for this particular viewer, you
can see where we create a FitsImageZoom object. On
this object we enable automatic cut levels (using the ’zscale’
algorithm), auto zoom to fit the window and set a callback
function for files dropped on the window. We extract the
user-interface bindings with get_bindings(), and on this
object enable standard user interactive controls for panning,
zooming, cut levels and simple transformations (flip x/y and
swap axes). We then extract the platform-specific widget (Qt-
based, in this case) using get_widget() and pack it into
a Qt container along with a couple of buttons to complete the
viewer.

#! /usr/bin/env python
#
# example1_qt.py -- Simple, configurable FITS viewer.
#
import sys, os
import logging

from ginga.AstroImage import pyfits
from ginga.qtw.QtHelp import QtGui, QtCore
from ginga.qtw.FitsImageQt import FitsImageZoom

class FitsViewer(QtGui.QMainWindow):

def __init__(self, logger):
super(FitsViewer, self).__init__()
self.logger = logger

fi = FitsImageZoom(self.logger)
fi.enable_autocuts(’on’)
fi.set_autocut_params(’zscale’)
fi.enable_autozoom(’on’)
fi.set_callback(’drag-drop’, self.drop_file)
fi.set_bg(0.2, 0.2, 0.2)
fi.ui_setActive(True)
self.fitsimage = fi

bd = fi.get_bindings()
bd.enable_pan(True)
bd.enable_zoom(True)
bd.enable_cuts(True)
bd.enable_flip(True)

w = fi.get_widget()
w.resize(512, 512)

vbox = QtGui.QVBoxLayout()
vbox.setContentsMargins(

QtCore.QMargins(2, 2, 2, 2))
vbox.setSpacing(1)
vbox.addWidget(w, stretch=1)

hbox = QtGui.QHBoxLayout()
hbox.setContentsMargins(

QtCore.QMargins(4, 2, 4, 2))

wopen = QtGui.QPushButton("Open File")
wopen.clicked.connect(self.open_file)
wquit = QtGui.QPushButton("Quit")
self.connect(wquit,

QtCore.SIGNAL("clicked()"),
self, QtCore.SLOT("close()"))

hbox.addStretch(1)
for w in (wopen, wquit):

hbox.addWidget(w, stretch=0)

hw = QtGui.QWidget()
hw.setLayout(hbox)
vbox.addWidget(hw, stretch=0)
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vw = QtGui.QWidget()
self.setCentralWidget(vw)
vw.setLayout(vbox)

def load_file(self, filepath):
fitsobj = pyfits.open(filepath, ’readonly’)
data = fitsobj[0].data
# compressed FITS file?
if (data == None) and (len(fitsobj) > 1) \

and isinstance(fitsobj[1],
pyfits.core.CompImageHDU):

data = fitsobj[1].data
fitsobj.close()

self.fitsimage.set_data(data)
self.setWindowTitle(filepath)

def open_file(self):
res = QtGui.QFileDialog.getOpenFileName(self,

"Open FITS file",
".",
"FITS files (*.fits)")

if isinstance(res, tuple):
fileName = res[0].encode(’ascii’)

else:
fileName = str(res)

self.load_file(fileName)

def drop_file(self, fitsimage, paths):
fileName = paths[0]
self.load_file(fileName)

def main(options, args):

app = QtGui.QApplication(sys.argv)
app.connect(app,

QtCore.SIGNAL(’lastWindowClosed()’),
app, QtCore.SLOT(’quit()’))

logger = logging.getLogger("example1")
logger.setLevel(logging.INFO)
stderrHdlr = logging.StreamHandler()
logger.addHandler(stderrHdlr)

w = FitsViewer(logger)
w.resize(524, 540)
w.show()
app.setActiveWindow(w)

if len(args) > 0:
w.load_file(args[0])

app.exec_()

if __name__ == ’__main__’:
main(None, sys.argv[1:])

Scanning down the code a bit, we can see that whether
by dragging and dropping or via the click to open, we
ultimately call the load_file() method to get the data into the
viewer. As shown, load_file uses Astropy to open the file and
extract the first usable HDU as a NumPy data array. It then
passes this array to the viewer via the set_data() method. The
Ginga widget can take in data either as 2D NumPy arrays,
Astropy/pyfits HDUs or Ginga’s own AstroImage
wrapped images.

A second class FitsImageCanvas (not used in this
example, but shown in Figure 2), adds scalable object plotting
on top of the image view plane. A variety of simple graphical
shapes are available, including lines, circles, rectangles, points,

Fig. 2: An example of a FitsImageCanvas widget with graphical
overlay.

polygons, text, rulers, compasses, etc. Plotted objects scale,
transform and rotate seamlessly with the image. See the
example2 scripts in the Ginga package download for details.

Part 2: Developing Plugins for Ginga

We now turn our attention to the other approach to developing
with Ginga: modifying the reference viewer. The philosophy
behind the design of the reference viewer distributed with the
Ginga is that it is simply a flexible layout shell for instantiating
instances of the viewing widget described in the earlier section.
All of the other important pieces of a modern FITS viewer--
a panning widget, information panels, zoom widget, analysis
panes--are implemented as plugins: encapsulated modules that
interface with the viewing shell using a standardized API. This
makes it easy to customize and to add, change or remove
functionality in a very modular, flexible way.

The Ginga viewer divides the application window GUI into
containers that hold either viewing widgets or plugins. The
view widgets are called "channels" in the viewer nomenclature,
and are a means of organizing images in the viewer, func-
tioning much like "frames" in other viewers. A channel has a
name and maintains its own history of images that have cycled
through it. The user can create new channels as needed. For
example, they might use different channels for different kinds
of images: camera vs. spectrograph, or channels organized by
CCD, or by target, or raw data vs. quick look, etc. In the
default layout, shown in 2 the channel tabs are in the large
middle pane, while the plugins occupy the left and right panes.
Other layouts are possible, by simply changing a table used
in the startup script.

Ginga distinguishes between two types of plugin: global
and local. Global plugins are used where the functionality is
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Fig. 3: The Ginga reference viewer (Qt version), with some plugins active.

generally enabled during the entire session with the viewer
and where the plugin is active no matter which channel is
currenly under interaction with the user. Examples of global
plugins include a panning view (a small, bird’s-eye view of
the image that shows a panning rectangle and allows graphical
positioning of the pan region), a zoomed view (that shows
an enlarged cutout of the area currently under the cursor),
informational displays about world coordinates, FITS headers,
thumbnails, etc. Figure 4 shows an example of two global
plugins occupying a notebook tab.

Local plugins are used for modal operations with images
in specific channels. For example, the Pick plugin is used
to perform stellar evaluation of objects, finding the center
of the object and giving informational readings of the exact
celestial coordinates, image quality, etc. The Pick plugin is
only visible while the user has it open, and does not capture the
mouse actions unless the channel it is operating on is selected.
Thus one can have two different Pick operations going on
concurrently on two different channels, for example, or a Pick
operation in a camera channel, and a Cuts (line cuts) operation
on a spectrograph channel. Figure 5 shows an example of the
Pick local plugin occupying a notebook tab.

Anatomy of a Local Ginga Plugin

Let’s take a look at a local plugin to understand the API for
interfacing to the Ginga shell. In Listing 2, we show a stub
for a local plugin.
from ginga import GingaPlugin

class MyPlugin(GingaPlugin.LocalPlugin):

def __init__(self, fv, fitsimage):

super(MyPlugin, self).__init__(fv, fitsimage)

def build_gui(self, container):
pass

def start(self):
pass

def stop(self):
pass

def pause(self):
pass

def resume(self):
pass

def redo(self):
pass

def __str__(self):
return ’myplugin’

The purpose of each method is as follows.

__init__(self, fv, fitsimage): This method is
called when the plugin is loaded for the first time. fv is a
reference to the Ginga shell and fitsimage is a reference to
the FitsImageCanvas object associated with the channel
on which the plugin is being invoked. You need to call the
superclass initializer and then do any local initialization.

build_gui(self, container): This method is
called when the plugin is invoked. It builds the GUI used by
the plugin into the widget layout passed as container. This
method may be called many times as the plugin is opened and
closed for modal operations. The method may be omitted if
there is no GUI for the plugin.
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Fig. 4: Two global plugins: Pan (top) and Info (bottom), shown
sharing a tab.

start(self): This method is called just after
build_gui() when the plugin is invoked. This method
may be called many times as the plugin is opened and closed
for modal operations. This method may be omitted.
stop(self): This method is called when the plugin is

stopped. It should perform any special clean up necessary to
terminate the operation. The GUI will be destroyed by the
plugin manager so there is no need for the stop method to do

Fig. 5: The Pick local plugin, shown occupying a tab.

that. This method may be called many times as the plugin is
opened and closed for modal operations. This method may be
omitted if there is no special cleanup required when stopping.
pause(self): This method is called when the plugin

loses focus. It should take any actions necessary to stop han-
dling user interaction events that were initiated in start()
or resume(). This method may be called many times as the
plugin is focused or defocused. The method may be omitted
if there is no user event handling to disable.
resume(self): This method is called when the plugin

gets focus. It should take any actions necessary to start
handling user interaction events for the operations that it does.
This method may be called many times as the plugin is focused
or defocused. The method may be omitted if there is no user
event handling to enable.
redo(self): This method is called when the plugin is

active and a new image is loaded into the associated channel.
It can optionally redo the current operation on the new image.



66 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

This method may be called many times as new images are
loaded while the plugin is active. This method may be omitted.

Putting it All Together: The Ruler Plugin

Finally, in Listing 3 we show a completed plugin for Ruler.
The purpose of this plugin to draw triangulation (distance
measurement) rulers on the image. For reference, you may
want to refer to the ruler shown on the canvas in Figure 2 and
the plugin GUI shown in Figure 6.

Fig. 6: The Ruler local plugin GUI, shown occupying a tab.

from ginga.qtw.QtHelp import QtGui, QtCore
from ginga.qtw import QtHelp

from ginga import GingaPlugin

class Ruler(GingaPlugin.LocalPlugin):

def __init__(self, fv, fitsimage):
# superclass saves and defines some variables
# for us, like logger
super(Ruler, self).__init__(fv, fitsimage)

self.rulecolor = ’lightgreen’
self.layertag = ’ruler-canvas’
self.ruletag = None

self.dc = fv.getDrawClasses()
canvas = self.dc.DrawingCanvas()
canvas.enable_draw(True)
canvas.set_drawtype(’ruler’, color=’cyan’)
canvas.set_callback(’draw-event’,

self.wcsruler)
canvas.set_callback(’draw-down’, self.clear)
canvas.setSurface(self.fitsimage)
self.canvas = canvas

self.w = None
self.unittypes = (’arcmin’, ’pixels’)
self.units = ’arcmin’

def build_gui(self, container):
sw = QtGui.QScrollArea()

twidget = QtHelp.VBox()
sp = QtGui.QSizePolicy(

QtGui.QSizePolicy.MinimumExpanding,
QtGui.QSizePolicy.Fixed)

twidget.setSizePolicy(sp)
vbox1 = twidget.layout()
vbox1.setContentsMargins(4, 4, 4, 4)
vbox1.setSpacing(2)
sw.setWidgetResizable(True)
sw.setWidget(twidget)

msgFont = QtGui.QFont("Sans", 14)
tw = QtGui.QLabel()

tw.setFont(msgFont)
tw.setWordWrap(True)
self.tw = tw

fr = QtHelp.Frame("Instructions")
fr.layout().addWidget(tw, stretch=1,

alignment=QtCore.Qt.AlignTop)
vbox1.addWidget(fr, stretch=0,

alignment=QtCore.Qt.AlignTop)

fr = QtHelp.Frame("Ruler")

captions = ((’Units’, ’combobox’),)
w, b = QtHelp.build_info(captions)
self.w = b

combobox = b.units
for name in self.unittypes:

combobox.addItem(name)
index = self.unittypes.index(self.units)
combobox.setCurrentIndex(index)
combobox.activated.connect(self.set_units)

fr.layout().addWidget(w, stretch=1,
alignment=QtCore.Qt.AlignLeft)

vbox1.addWidget(fr, stretch=0,
alignment=QtCore.Qt.AlignTop)

btns = QtHelp.HBox()
layout = btns.layout()
layout.setSpacing(3)
#btns.set_child_size(15, -1)

btn = QtGui.QPushButton("Close")
btn.clicked.connect(self.close)
layout.addWidget(btn, stretch=0,

alignment=QtCore.Qt.AlignLeft)
vbox1.addWidget(btns, stretch=0,

alignment=QtCore.Qt.AlignLeft)

container.addWidget(sw, stretch=1)

def set_units(self):
index = self.w.units.currentIndex()
units = self.unittypes[index]
self.canvas.set_drawtype(’ruler’,

color=’cyan’,
units=units)

self.redo()
return True

def close(self):
chname = self.fv.get_channelName(

self.fitsimage)
self.fv.stop_operation_channel(chname,

str(self))
return True

def instructions(self):
self.tw.setText("Draw (or redraw) a line "

"with the right mouse "
"button. Display the "
"Zoom tab to precisely "
"see detail.")

self.tw.show()

def start(self):
self.instructions()
# start ruler drawing operation
try:

obj = self.fitsimage.getObjectByTag(
self.layertag)

except KeyError:
# Add ruler layer
self.fitsimage.add(self.canvas,

tag=self.layertag)
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self.canvas.deleteAllObjects()
self.resume()

def pause(self):
self.canvas.ui_setActive(False)

def resume(self):
self.canvas.ui_setActive(True)
self.fv.showStatus("Draw a ruler with "

"the right mouse button")

def stop(self):
# remove the canvas from the image,
# this prevents us from getting draw events
# when we are inactive
try:

self.fitsimage.deleteObjectByTag(
self.layertag)

except:
pass

self.fv.showStatus("")

def redo(self):
# get the ruler object on the canvas
obj = self.canvas.getObjectByTag(

self.ruletag)
if obj.kind != ’ruler’:

return True

# calculate and assign distances
text_x, text_y, text_h = \
self.canvas.get_ruler_distances(obj.x1,

obj.y1,
obj.x2,
obj.y2)

obj.text_x = text_x
obj.text_y = text_y
obj.text_h = text_h
self.canvas.redraw(whence=3)

def clear(self, canvas, button, data_x, data_y):
self.canvas.deleteAllObjects()
return False

def wcsruler(self, surface, tag):
# drawing callback. The newly drawn object
# on the canvas is tagged
obj = self.canvas.getObjectByTag(tag)
if obj.kind != ’ruler’:

return True

# remove the old ruler
try:

self.canvas.deleteObjectByTag(
self.ruletag,

redraw=False)
except:

pass

# change some characteristics of the
# drawn image and save as the new ruler
self.ruletag = tag
obj.color = self.rulecolor
obj.cap = ’ball’
self.canvas.redraw(whence=3)

def __str__(self):
return ’ruler’

This plugin shows a standard design pattern typical to local
plugins. Often one is wanting to draw or plot something on
top of the image below. The FitsImageCanvas widget
used by Ginga allows this to be done very cleanly and
conveniently by adding a DrawingCanvas object to the

image and drawing on that. Canvases can be layered on top
of each other in a manner analogous to "layers" in an image
editing program. Since each local plugin maintains it’s own
canvas, it is very easy to encapsulate the logic for drawing
on and dealing with the objects associated with that plugin.
We use this technique in the Ruler plugin. When the plugin is
loaded (refer to __init__() method), it creates a canvas,
enables drawing on it, sets the draw type and registers a
callback for drawing events. When start() is called it
adds that canvas to the widget. When stop() is called it
removes the canvas from the widget (but does not destroy
the canvas). pause() disables user interaction on the canvas
and resume() reenables that interaction. redo() simply
redraws the ruler with new measurements taken from any
new image that may have been loaded. In the __init__()
method you will notice a setSurface() call that associates
this canvas with a FitsImage-based widget--this is the key
for the canvas to utilize WCS information for correct plotting.
All the other methods shown are support methods for doing
the ruler drawing operation and interacting with the plugin
GUI.

The Ginga package includes a rich set of classes and there
are also many methods that can be called in the shell or in
the FitsImageCanvas object for plotting or manipulating
the view. Length constraints do not permit us to cover even a
portion of what is possible in this paper. The best way to get
a feel for these APIs is to look at the source of one of the
many plugins distributed with Ginga. Most of them are not
very long or complex. In general, a plugin can include any
Python packages or modules that it wants and programming
one is essentially similar to writing any other Python program.

Writing a Global Plugin

This last example was focused on writing a local plugin.
Global plugins employ a nearly identical API to that shown
in Listing 2, except that the constructor does not take a
fitsimage parameter, because the plugin is expected to be
active across the entire session, and is not associated with any
particular channel. build_gui() and start() are called
when the Ginga shell starts up, and stop() is never called
until the program terminates2. pause() and resume()
can safely be omitted because they should never be called.
Like local plugins, build_gui() can be omitted if there
is no GUI associated with the plugin. Take a look at some
of the global plugins distributed with the viewer for more
information and further examples. The IRAF plugin, which
handles IRAF/ginga interaction similarly to IRAF/ds9, is an
example of a plugin without a GUI.

Conclusion

The Ginga FITS viewer and toolkit provides a set of building
blocks for developers wishing to add FITS image visualization
to their Python-based application, or end users interested

2. Unless the user reloads the plugin. Most plugins in Ginga can be
dynamically reloaded using the Debug plugin, which facilitates debugging
tremendously, since Ginga itself does not have to be restarted, data does not
have to be reloaded, etc.
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in a Python-scriptable, extensible viewer. Two avenues of
development are possible: a "blue sky" approach by using a
flexible FitsImageCanvas display widget and building up
around that, or by starting with the plugin-based reference
viewer and customizing by modifying or writing new plugins.
In either case, the software can be targeted to two different
widget sets (Gtk and Qt) across the common desktop platforms
that Python is available on today. The code is open-sourced
under a BSD license and is available via the GitHub code
repository or via PyPI.

Future plans for Ginga mostly center around the develop-
ment of some additional plugins to enhance capabilities. Ideas
suggested by users include:

• mosaicking of images
• simple, user-customizable pipelines for handling flat field-

ing, bias frames, dark frame subtraction, bad pixel mask-
ing, etc.

• improving the set of graphical plotting elements
• semi-transparent colored overlays, for showing masks,

etc.
• improving PDF and postscript output options
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Exploring Collaborative HPC Visualization Workflows
using VisIt and Python
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Abstract—As High Performance Computing (HPC) environments expand to
address the larger computational needs of massive simulations and specialized
data analysis and visualization routines, the complexity of these environments
brings many challenges for scientists hoping to capture and publish their work
in a reproducible manner.

Collaboration using HPC resources is a particularly difficult aspect of the
research process to capture. This is also the case for HPC visualization, even
though there has been an explosion of technologies and tools for sharing in
other contexts.

Practitioners aiming for reproducibility would benefit from collaboration tools
in this space that support the ability to automatically capture multi-user collabo-
rative interactions. For this work, we modified VisIt, an open source scientific
visualization platform, to provide an environment aimed at addressing these
shortcomings.

This short paper focuses on two exploratory features added to VisIt:
1. We enhanced VisIt’s infrastructure expose a JSON API to clients over

WebSockets. The new JSON API enables VisIt clients on web-based and
mobile platforms. This API also enables multi-user collaborative visualization
sessions. These collaborative visualization sessions can record annotated user
interactions to Python scripts that can be replayed to reproduce the session in
the future, thus capturing not only the end product but the step-by-step process
used to create the visualization.

2. We have also added support for new Python & R programmable pipelines
which allow users to easily execute their analysis scripts within VisIt’s parallel
infrastructure. The goal of this new functionality is to provide users familiar with
of Python and R with an easier path to embed their analysis within VisIt.

Finally, to showcase how these new features enable reproducible science,
we present a workflow that demonstrates a Climate Science use case.

Index Terms—python, reproducibility, collaboration, scripting

Introduction

Reproducibility is one of the main principles of the scientific
method.

Without reproducibility, experimental trials that confirm
or deny a given hypothesis cannot be confirmed by other
scientists, potentially creating concerns about the validity of
initial results.
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Visualization often plays a role in the scientific method;
when exploring data sets, scientists form hypotheses about
phenomena in the data, design experiments by setting up
visualization parameters, and then carry out the experiment by
applying visualization algorithms. The resulting visualizations
then confirm or deny each hypothesis. However, since this
process is regularly carried out in an ad hoc manner and in
rapid succession, reproducibility is often a secondary concern.

Consequently, the outputs from visualization and analysis
routines often lack the information about how they were
generated, and thus how to interpret the results.

In favorable circumstances, the initial scientist performing
the analysis either took notes or remembers the details of the
experiment, and theoretically would be able to reproduce it.
But following scientists regularly do not have this information.
Although they can view the resulting visualizations, and make
educated guesses about how the data was processed, reproduc-
ing the result is very difficult. This is particularly true because
visualization routines have many ’knobs’ that control how they
execute.

Beginning approximately one decade ago, the visualization
community increased its emphasis on including provenance as
part of the visualization process.

For example, the VisTrails system [silva2007prov], an early
provenance advocate, produced the necessary information to
recreate everything about a given visualization.

This represented a leap forward in the problem, since the ad
hoc and rapid nature of visualization-based exploration could
now be automatically accounted for.

However, provenance is still far from being commonplace,
and only rarely do scientists broadcast their exact steps to
create their results.

Further, provenance is only one component of the larger
problem. Knowing the parameters that went into a visu-
alization is important, but these parameters are much less
meaningful when the program used to generate the results is
no longer available. This is especially problematic when ’one-
off’ programs are generated to create a specific visualization, a
common scenario when people are performing novel analysis.
After one-off programs generate the necessary visualizations,
their code often quickly atrophies or is lost altogether. Finally,
such programs are rarely accessible to following scientists who
recreate the experiment.

http://www.youtube.com/watch?v=ei_pFi2xOUc
mailto:hkrishnan@lbl.gov
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Following these observations, the research described in this
paper depends on the following premises:

1. Enduring visualization frameworks are crucial for main-
taining reproducibility.

• We also note that focusing on a single
application—as opposed to many one-offs for
many problems—allows for significantly more
resources to be allocated to development, allow-
ing the application to be maintainable, reliable,
sharable, and to have important reproducibility
features, i.e., provenance.

2. These frameworks must provide constructs that enable
novel and complex analyses.

With this research, we explored adding a flexible, Python-
based infrastructure to an existing visualization framework.
Our Python system is made up of rich, composable operations
that enable the development of new, novel analyses which can
then be reincorporated into the visualization framework. This
approach enables the specialized analysis typically reserved
for one-off applications to be handled within one application,
significantly increasing the capabilities available to scientists.
In this paper, we describe the system, as well as a use case in
climate science.

Finally, leading-edge simulation science increasingly in-
volves large teams with diverse backgrounds, and these teams
need to be able to analyze data in collaborative settings. But
collaborative analysis complicates the provenance tracking that
is necessary for reproducibility. Our system is able to perform
this tracking and we describe how it functions.

Related Work

There is growing interest in the practice of reproducible
research for simulations. Open source software, virtualization,
and cloud computing platforms have enabled workflows that
can be adopted by scientific peers with very low barriers to
entry [res_cloud], [web_repro]. Increased interest in repro-
ducibility also is driven by notable research retractions such
as Herndon, Ash and Pollin’s re-analysis [herndon_debt] of
Reinhart and Rogoff’s work [gtod]. Conclusions from the
original analysis were adopted as a high profile economic
policy driver, raising concerns about the potential impact of
analysis errors.

The spectra of approaches to reproducible research are
quite broad. In one of the most comprehensive examples,
[Brown2012] the authors provide a companion website to their
paper where they released their analysis source code, latex
paper source, their data, and a turn-key virtual machine-based
workflow that allows anyone to regenerate the bulk of the
analysis used for the research. In many contexts, each of these
steps alone poses a significant challenge. Beyond source code
sharing there are several software development environments
that support presentation of a computational narrative via a
notebook concept. These include IPython [ipython] Notebook,
Sage [sage], Matlab, Maple, and Wolfram Mathematica.

Data sharing is also a key component. Systems like the Earth
Systems Grid [bernholdt2005earth] have been very successful
sharing data, but also require teams to support this sharing.

Of course, high performance computing creates additional
challenges for data sharing, since the data sets are considerably
bigger. (The ESG system faces many of these challenges as a
provider of HPC data sets.)

There are many rich visualization frameworks that provide
constructs and interface concepts understood by users. For
this work, we decided to extend VisIt [HPV_VisIt], in no
small part because of its support of Python in its parallelized
server [vscipy2012]. Other examples of such frameworks are
ParaView [HPV_PV], FieldView [FieldView], and EnSight
[EnSight]. From the perspective of a flexible infrastructure for
creating custom analyses out of existing primitives, the most
comparable work is that of IPython [ipython] and VisTrails
[silva2007prov]. Our work is unique in that we have melded a
rich visualization framework with a flexible infrastructure for
developing new analyses, creating an environment that offers
extensibility, usability, and long-term reproducibility.

System

VisIt is a richly-featured, massively-parallel data analysis and
visualization application which runs on hardware ranging from
modest desktop systems to large distributed memory compute
clusters. VisIt is composed of several cooperating components,
each with their own functions within the system. The main
component is a central viewer which displays results and
acts as a state manager coordinating the different components.
Plotted results are generated by a compute server component
that reads files, executes data flow networks, and sends results
back to the viewer. There are also different clients, including
a graphical user interface, Python language interface, and Java
language interface. The Python and Java language interfaces
allow for complex analysis programs to be built on top of
VisIt’s infrastructure.

We extended VisIt’s existing ability to support multiple
simultaneous clients by adding support for Web-based clients,
which typically connect on demand. The viewer is able to
listen for inbound socket connections from Web clients and
establish communication with them using technologies such
as WebSockets. We created new proxy classes in various
languages such as JavaScript to expose functions that enable a
client to control VisIt. These proxy classes enable the creation
of lightweight, custom Web applications that dynamically
connect to existing VisIt viewer sessions forming the core of
the infrastructure needed for collaborative visualization across
a range of devices. For example, these enhancements enable
VisIt clients running on smart phones and tablet computers
to be connected simultaneously to VisIt services running on a
shared server.

JSON API

VisIt normally uses a binary protocol to communicate among
components. We enhanced VisIt to also support communica-
tion using JavaScript Object Notation (JSON), which allows
objects to be represented in an easy to use ASCII form.
JSON is widely supported in browsers and Python, eliminating
the need for custom client code to transmit and decode
VisIt’s binary protocol. Using JSON as the mechanism for
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exchanging objects between VisIt and Web clients enables
other novel capabilities. For instance, since JSON objects also
communicate the names of fields in addition the field values,
we can traverse the JSON objects to automatically create input
property panels or provide automatically generated classes.

Scripting API

[vscipy2012] introduced VisIt’s Python Filter Runtime, which
embeds a Python interpreter into each MPI Task of VisIt’s
compute engine. This functionality allows users to write
Python scripts that access low-level mesh data structures
within VisIt’s distributed-memory parallel pipelines. The ini-
tial Python Filter Runtime exposed two of VisIt’s building
blocks to Python programmers:

1. Python Expressions, filters which calculate derived
quantities on an existing mesh.

2. Python Queries, filters which summarize data from
an existing mesh.

Building on this infrastructure we extended the use of the
Python Filter Runtime into the context of VisIt’s Operators,
which are filters that implement general data transformations.

This functionality is implemented in a new Scripting Oper-
ator and is supported by a Python-based Scripting API. The
API allows users to easily compose several Python and R data
analysis scripts into a sub-pipeline within VisIt. The goal of
this new API is to provide users familiar with Python and R an
easier path to embed their analysis within VisIt. To achieve this
goal, the Scripting API attempts to shield the user from VisIt’s
internal filter and contract abstractions and places a focus on
writing streamlined analysis routines. This is in contrast to
VisIt’s Python Expressions and Queries, which require users
to understand these abstractions to write filters using Python.

Scripting sub-pipelines are coordinated using a Python
dataflow network module. Our Scripting infrastructure lever-
ages the dataflow network’s filter graph abstraction to insert
additional filters which handle data transformations between
VisIt’s internal VTK based data model the data structures
used in scripts. Python user scripts can process both Python
wrapped VTK datasets and field values as numpy arrays.
The module uses Rpy2 to execute scripts written in R. In
this context numpy arrays are the primary data structure
interface between Python and R scripts. The module also uses
a topological sort to ensure proper script execution precedence
and provides reference counting and storage of intermediate
results. This ensures that user scripts are executed efficiently.

To support distributed-memory parallel algorithms, both
Python and R scripts have access to a MPI context. In Python
scripts MPI calls are supported via mpi4py [mpi4py]. In R
scripts MPI is supported via pbdMPI [pbdMPI].

We also provide a set of filters that encapsulate common
data access patterns for ensemble and time series analysis.
These filters are invoked using three categories of script calls:
template functions, helper functions, and visit functions:

1. Template functions: for_each_location - at
each location call a user defined kernel (written in R
or Python) with the data value and a neighborhood

around the data point. After kernel execution, the
resulting values are returned back to calling script.

2. Helper functions: visit_write - write dataset
to a file using a supported format such as NETCDF
or visit_get_mesh_info, then return details about the
underlying mesh dataset.

3. Visit functions: VisIt operators and utility func-
tions can be registered with the scripting system.
Therefore, within the Python or R environment,
users can exercise any registered VisIt function and
have it return results. For example, the PeaksOver-
Threshold Operator in VisIt can register a signature
with the Script operator and then a user can call this
functionality within their script.

Reproducibility

Each of the clients connected to the VisIt viewer can send
commands and state intended to drive the VisIt session. These
multiple input streams are consolidated into a single input
stream in the viewer that lets the different clients perform
actions. As actions are performed, they can cause changes in
state that need to be sent back to clients. When new state is
sent back to the various clients, they are free to respond as
required, depending on their function. For example, when the
GUI receives new state, it updates the controls in its windows
to reflect the new state from the viewer. When the Python in-
terface receives new state, it transforms the state back into the
requisite Python commands needed to cause the state change
and logs the commands to a log file that can be replayed later.
This same infrastructure is used to record actions taken by
the GUI into corresponding Python code that can reproduce
the same GUI actions. We have extended VisIt’s Python
recording mechanism so it annotates the generated Python
code with the identity of the user who caused the command
to be generated. This increases the available visualization
provenance information while still producing a log file that
can be replayed to restore the state of the system in a future
VisIt session. VisIt’s existing Python interface can be used
to replay the generated script. We have also extended VisIt’s
Python interface with a new WriteScript() function that
can write Python code to reproduce the exact state of the
visualization system. This produces Python code that is much
more concise, requiring far fewer visualization operations to
be performed to restore VisIt’s state. We envision being able to
build on this capability to automatically produce streamlined
domain-specific applications that can set up their plots based
on the output from the WriteScript() function.

Evaluation

The collaboration we have had with climate scientists has
proven to be a rich test-bed for the exploration of this
workflow. The collaboration began with the integration of VisIt
and R to do parallel statistical analysis on very large climate
data sets using large HPC resources. The climate scientists
were interesting in using a statistical technique called extreme
value analysis [coles-2001] to understand rare temperatue and
precipitation patterns and events in global simulations at very
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Fig. 1: Extreme precipitation analysis done on an ensemble of two
CAM5.1 control runs over 1959-2007 using Generalized Extreme
Value Analysis (Top), and Peaks-over-Threshold (Bottom)

fine temporal resolutions. Initially, several different extreme
value analysis algorithms were implemented and incorporated
into VisIt as built-in operations. As we worked with the climate
scientists, and statisticians, it became clear that a more flexible
framework where arbitrary analyses could be easily scripted
and experimented with would prove valuable. It would also
make it easier for scientists to collaborate, verify various
techniques, and make reproducibility much easier.

Figure 1 shows early results using this new framework on
estimated annual return values that would occur once every
20 years on average, using Generalized Extreme Value, and
Peaks-over-Threshold, respectively. The analyses were done
on an ensemble of two CAM5.1 control runs over the period
of 1959-2007 of daily precipitation.

These analyses required a kernel to be executed at
each spatial location using precipitation values over all of
the time steps. This was supported using the API call
ForEachLocation(user-kernel). The VisIt infrastructure par-
allelizes the computation required to read in all of the time
steps, and aggregates all the time values for each location. The
user supplied kernel is then executed using the vector of time-
values as input. Another API call is made to write the analysis
results out in the desired format, in this case, NETCDF. For
both the examples shown in Figure 1, the same API call was
made with different user-defined kernels.

Using this capability has several advantages. First, it makes
it much easier for domain scientists to experiment with dif-
ferent analysis techniques. Large, parallel visualization frame-

works are complex, large pieces of source code, and domain
scientists will rarely have the experience to make changes to
perform the analysis. This framework allows the scientists to
focus on the environment they are most familiar with, analysis
kernels written in R or Python, and leave the details of efficient
parallel processing of large scientific data to the visualization
framework developers. And second, it makes comparison and
reproducibility much easier since the required elements are just
the R or Python kernel code written by the domain scientists.
The results can be shared and verified independent of VisIt by
execution of the kernel in either Python or R environments on
the same, or additional data.

Conclusions and Future Work

Reproducibility is an important element of the scientific
method, since it enables the confirmation of experimental
trials that confirm or deny a hypothesis, and visualization is a
common mechanism for evaluating experiments. Hence, it is
important that visualizations be carried out in a reproducible
manner. With this work, we demonstrated that it is possible to
extend a richly featured visualization framework with flexible
analysis routines in a way that supports reproducibility, and we
also demonstrated how capable such a system can be. Further,
we considered the problem of collaborative analysis, which is
increasingly needed as scientific teams are more and more
often made up of large teams. Python was a key element
to our success. Since many packages already have Python
interfaces, it expedited incorporation of packages like R, and
provided a familiar setting for users wanting to develop new
interfaces. In total, we believe this work was impactful, since
it extends the capabilities of many user groups and does it in a
reproducible way. Finally, there are many future directions for
this effort, including improved support for plotting and data
retrieval (i.e., file readers), language support beyond Python,
and tighter integration with the overall VisIt system.
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Abstract—SunPy is a data analysis toolkit which provides the necessary
software for analyzing solar and heliospheric datasets in Python. SunPy aims
to provide a free and open-source alternative to the current standard, an IDL-
based solar data analysis environment known as SolarSoft (SSW). We present
the latest release of SunPy, version 0.3. Though still in active development,
SunPy already provides important functionality for solar data analysis. SunPy
provides data structures for representing the most common solar data types:
images, lightcurves, and spectra. To enable the acquisition of scientific data,
SunPy provides integration with the Virtual Solar Observatory (VSO), a single
source for accessing most solar data sets, and integration with the Heliophysics
Event Knowledgebase (HEK), a database of transient solar events such as solar
flares or coronal mass ejections. SunPy utilizes many packages from the greater
scientific Python community, including NumPy and SciPy for core data types
and analysis routines, PyFITS for opening image files, in FITS format, from
major solar missions (e.g., SDO/AIA, SOHO/EIT, SOHO/LASCO, and STEREO)
into WCS-aware map objects, and pandas for advanced time-series analysis
tools for data from missions such as GOES, SDO/EVE, and Proba2/LYRA, as
well as support for radio spectra (e.g., e-Callisto). Future releases will build upon
and integrate with current work in the Astropy project and the rest of the scientific
python community, to bring greater functionality to SunPy users.

Index Terms—Python, Solar Physics, Scientific Python

Introduction

Modern solar physics, similar to astrophysics, requires increas-
ingly complex software tools both for the retrieval as well as
the analysis of data. The Sun is the most well-observed star.
As such, solar physics is unique in its ability to access large
amounts of high resolution ground- and space-based obser-
vations of the Sun at many different wavelengths and spatial
scales with high time cadence. Modern solar physics, similar to
astrophysics, therefore requires increasingly complex software
tools, both for the retrieval and the analysis of data. For
example, NASA’s Solar Dynamics Observatory (SDO) satellite
records over 1 TB of data per day all of which is telemetered
to the ground and available for analysis. As a result, scientists
have to process large volumes of complex data products. In
order to make meaningful advances in solar physics, it is
important for the software tools to be standardized, easy to
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use, and transparent, so that the community can build upon a
common foundation.

Currently, most solar physics analysis is performed with a
library of routines called SolarSoft [SSW]. SolarSoft is a set
of integrated software libraries, databases, and system utilities
which provide a common programming and data analysis
environment for solar physics. It is primarily an IDL (Interac-
tive Data Language)-based system, although some instrument
teams integrate executables written in other languages. While
SSW is open-source and freely available, the IDL core is not.
In addition, contributing to SolarSoft is not open to the public.
One of SunPy’s key aims is to provide a free and open source
alternative to the SolarSoft library.

The scope of a solar physics library can be divided up
into two main parts, data processing and data analysis. Data
processing is the process of calibrating and aligning data,
while data analysis is the scientific analysis of the processed
data. SunPy’s current scope is data analysis with minimal data
processing.

SunPy currently depends upon the core scientific packages
like NumPy, SciPy and matplotlib. As well as Pandas, suds,
PyFITS / astropy.io.fits and beautifulsoup4. The latest release
of SunPy is available in PyPI and can be installed in the usual
manner.

SunPy Data Types

At SunPy’s core are interoperable data types that cover the
wide range of observational data available. These core data
types, Lightcurve, Map, and Spectra, cover multi-dimensional
data and provide basic manipulation and visualization routines
with a consistent API. In this section each of these key data
types are described.

While these different data types have clear applications to
different types of observations, there are also clear interlinks
between them, for example a one pixel slice of a MapCube
should result in a Lightcurve and a one pixel slice of a
Composite Map should be a Spectrum. While these types of
interoperability are not yet implemented in SunPy, it is a future
goal.

The major change in version 0.3 of SunPy is a refactoring
of the core data types. This process involved a change in
the inheritance structure for Map and Spectrum away from
inheriting the numpy.ndarray object to having a more flexible
data attribute. This refactoring has also led to some related
changes and the ground work being done to facilitate the
integration of Astropy’s NDData object.

http://www.youtube.com/watch?v=bXPPTCkaVu8
http://sdo.gsfc.nasa.gov
mailto:stuart@mumford.me.uk


SUNPY: PYTHON FOR SOLAR PHYSICISTS 75

Map

The "Map" data type is designed for interpreting and pro-
cessing the most common form of solar data, that of a two-
dimensional image most often taken by a CCD camera. A
Map object consists of a data array endowed with a coordinate
system and combined with meta data. Most often, these data
are provided in the form of FITS files but image data can
come from other file types, such as JPG2000, as well. The
meta data in most solar FITS files conform to a historic
standard to describe the image such as observation time,
wavelength of the observation, exposure time, etc. In addition,
standard header tags specify a coordinate system and provide
the information necessary to transform the pixel coordinates to
physical coordinates such as sky coordinates. Newer missions
such as STEREO or AIA on SDO make use of a more
precise standard defined by Thompson [WCS]. Thompson
also defined standard coordinate transformations to convert
from observer-based coordinates to coordinates on the Sun.
Since the Sun is a gaseous body with no fixed points of
reference and different parts of the Sun rotate at different rates,
this is a particularly tricky problem. Through SunPy’s WCS
(World Coordinate System) library, which has implemented
most of these coordinates systems, SunPy Map objects can
transform data between them. SunPy maps also provide other
core functionality such as routines to rescale, resample, rotate
and visualize data and convenience functions for plotting using
matplotlib.

There are many forms of image data that can be stored in
a Map. SunPy maps can handle 2D image data as well as 3D
image data for both wavelength-composite images and other
series, such as time series data. All 2D map types have a
common parent which has been designed with the possibility
of integrating with the Astropy library’s NDData object.

The other main functionality for SunPy’s Map type, and
other data types, is to provide transparent handling of instru-
ment specific code. This code can take the form of translation
of non-standard or specific meta data or more complex cali-
bration routines. These functions are handled primarily by the
implementation of "sources" which are subclasses of the 2D
map object, which then hold this specific code. This leads to
many different objects being in the map "family", this is why
an automated factory class Map has been developed to provide
the user with a transparent interface for the creation of Maps.

It is very simple to create and visualize a map in SunPy
0.3:
import sunpy
mymap = sunpy.Map(sunpy.AIA_171_IMAGE)
mymap.peek()

the output of this command is shown in Fig. 1.
SunPy’s visualization routine are designed to interface as

much as possible with matplotlib’s pyplot package. It is
therefore possible to create more complex plots using custom
matplotlib commands.
import matplotlib.pyplot as plt
import sunpy

mymap = sunpy.Map(sunpy.AIA_171_IMAGE)

fig = plt.figure()
im = mymap.plot()

Fig. 1: Default visualization of a AIAMap.

plt.title("The Sun!")
plt.colorbar()
plt.show()

This would produce the same image as Fig. 1 but with a
custom title.

LightCurve

Time series data are an important element in solar physics and
many data sources are available. In recognition of this fact,
SunPy provides a Lightcurve object which recognizes a num-
ber of data sources. The main engine behind the Lightcurve
object is the pandas data analysis library. Each Lightcurve
holds its data inside a pandas object. The Lightcurve ob-
ject, as all other SunPy objects, is wrapper around a data
object. Since pandas already provides many capabilities, the
SunPy Lightcurve object does not need to. The Lightcurve
object recognizes the following data sources; GOES X-ray
Sensor (XRS) , SDO EUV Variability Experiment (EVE), and
PROBA2/LYRA. Since time series data is generally relatively
small and there is no established standard as to how it should
be stored and distributed, each SunPy Lightcurve object pro-
vides the ability to download it’s own data in its constructor.
The example below retrieves the data, creates a Lightcurve
object and plots the data in the default manner (show in 2):
import sunpy
goes = sunpy.lightcurve.GOESLightCurve.create(

’2012/06/01’, ’2012/06/05’)
goes.peek()

Spectra

SunPy offers a Spectrogram object, currently with a special-
ization for e-Callisto (an international network of solar radio
spectrometers) spectrograms. It allows the user to seamlessly
join different observations; download data through an interface
that only requires location and time-range to be specified;
linearize the frequency axis and automatically downsample
large observations to allow them to be rendered on a normal
computer screen and much more to help analyze spectrograms.
The data can currently be read from Callisto FITS files, but

http://www.swpc.noaa.gov/rt_plots/xray_1m.html
http://www.swpc.noaa.gov/rt_plots/xray_1m.html
http://lasp.colorado.edu/home/missions-projects/quick-facts-sdo-eve/
http://proba2.sidc.be
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Fig. 2: Default visualization of a GOESLightCurve.

the system is designed in a way that makes it easy to include
new data-sources with potentially different data formats (such
as LOFAR).

Spectra is designed to have a consistent interface along with
the other data types. This means the plotting and manipulation
methods, where there is shared functionality share the same
names and the general structure of the objects are standardized.

Solar Data Retrieval and Access

Most solar observations provided by NASA or ESA follow
an open data policy1 which means that all data is available
publicly, as soon the data is telemetered to the ground.
However, these data are normally archived by the institution in
charge of the instrument that made the observations. This fact
makes browsing data and data retrieval a difficult and tedious
task for the scientist. In recognition of this fact, the Virtual
Solar Observatory (VSO) [VSO] was developed. The VSO
strives to provides a one-stop shop for solar data, by building
a centralized database with access to multiple archives. The
VSO allows the user to search using parameters such as
instrument name or type, time, physical observable and/or
spectral range. VSO’s main interface is web-based, but an
API based on a WSDL webservice is also available. SunPy
provides a Python front-end to this API.

A new problem arose with the launch of the SDO mission.
The large size of the images (4 times larger than the previous
missions), together with the fast cadence of their cameras (~10
images per minute) makes it challenging to use of the data in
the same manner as from previous observations. Previously
the standard workflow was to download long time series of
data and to view animations to identify features of interest
to the scientist. For SDO this would involve downloading
prohibitively large amounts of data. The Heliophysics Event
Knowledgebase [HEK] was created to solve this overload of
data. The principle behind the HEK is to run a number of
automated detection algorithms on the data that is obtained
by SDO to populate a database with information about the
features and events observed in each image. Thus allowing

searches for event types or properties, enabling scientists to
selectively download only the portion or slices of the images
needed for further analysis. SunPy provides a programmatic
way to search and retrieve the information related to the events,
but currently does not have facilities for downloading the
observational data. This allows, for example, over plotting of
the feature contours on an image, to study their properties and
evolution, etc. The HEK interface in SunPy was developed
in concert with SunPy’s VSO tool, so they have a consistent
interface.

Events on the Sun also affect the rest of the solar system.
Very high energy radiation produced during solar flares has
effects on our ionosphere almost instantaneously. High-energy
particles arriving few minutes later can permanently damage
spacecraft. Similarly large volumes of plasma traveling at
high velocities (~1000 km/s), produced as an effect of a
coronal mass ejection, can have multiple negative effects
on our technological dependent society. These effects can
be measured everywhere in the solar system, and the HE-
Liophysics Integrated Observatory [HELIO] has built a set
of tools that helps to find where these events have been
measured, taking into account the speed of the different events
and the movement of planets and spacecraft within that time
range. HELIO includes ’Features’ and ’Event’ catalogs similar
to what is offered by HEK. It also offers access to solar
observations, similar to the VSO, but enhanced with access
to observations at other planets through a propagation model
to link any event with its origin or its effects. Each of these
tools has an independent webservice, therefore they could be
easily implemented as a set of independent tools. However,
SunPy offers the opportunity to create a better implementation
where the data retrieved could interact with the rest of SunPy’s
features. HELIO implementation on SunPy is in its early
development stages.

Community

One of SunPy’s major advantages over its predecessors is that
it is being developed as an open source community inside
the wide and diverse general scientific python community.
While the SolarSoft library is "open source" in terms of the
code being freely available, most of the development takes
place internally and there is no clear process for contribution
from outsiders. In addition to transitioning the solar physics
community to Python, SunPy also aims to instill the principals
of open source development in the community.

The scientific python community is much more established
in other disciplines than it is in solar physics. SunPy is making
use of existing scientific python projects, with deeper integra-
tion with projects like Astropy and scikit-image possible in
the future. This collaboration is another strength that sets the
scientific python community apart from other similar solutions.

SunPy has benefited greatly from summer of code schemes.
During its first two years (2011, 2012), SunPy participated on
the ESA Summer of Code In Space (SOCIS). This program
is inspired by Google Summer Of Code (GSOC) and aims
to raise the awareness of open source projects related to
space, promote the European Space Agency and to improve

http://virtualsolar.org
http://virtualsolar.org
http://sdo.gsfc.nasa.gov
http://sdo.gsfc.nasa.gov
http://www.lmsal.com/hek/
http://www.lmsal.com/hek/
http://sdo.gsfc.nasa.gov
http://helio-vo.eu/
http://helio-vo.eu/
http://sophia.estec.esa.int/socis2012/
https://developers.google.com/open-source/soc/
http://www.esa.int/
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the existing space-related open-source software. The VSO
implementation, and the first graphical user interface (GUI)
were developed during these two summer programs. In 2013
SunPy is also taking part in GSOC under the umbrella of the
Python Software Foundation (PSF). We are looking forward
to the advances this will bring to the capabilities and reach of
the project through the work of our two students.

SunPy has also benefited from fledgling input from the solar
physics community, for example the implementation of the e-
Callisto spectrograph support was enabled by the Astrophysics
Research Group at Trinity College Dublin. It is hoped that this
kind of contribution from the solar physics community will
become the driving force for the project once a core library is
in place.

Future

SunPy 0.3 provides an excellent, flexible base for future
expansion of the project. This work has provided the footing
for future integration with Astropy. The capabilities of Astropy
combined with the overlapping requirements of SunPy and
Astropy mean that there is much scope for these two projects
to work closely together. SunPy plans to investigate making
use of the NDData type of Astropy which is built upon
ndarray and combines metadata with arrays of data, as well
as integration of Astropy’s WCS and unit implementations.

The goal for SunPy is to develop the project into a flexible
package for data analysis and scientific application. While in
the long term SunPy aims to become the defacto package for
all solar physics data processing and analysis, to achieve this
goal it is required that SunPy gains more traction within the
solar physics community. This is both to increase the user
base and to attract new missions and instruments to adopt
Python/SunPy for their data processing pipeline.

The SunPy team would like to thank the organizers of SciPy
for the opportunity to present on the SunPy project.
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Reproducible Documents with PythonTeX
Geoffrey M. Poore∗†
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Abstract—PythonTeX is a LaTeX package that allows Python code in a LaTeX
document to be executed. This makes possible reproducible documents that
combine analysis with the code required to perform it. Writing such documents
can be more efficient because code is adjacent to its output. Writing is also less
error-prone since results may be accessed directly from within the document,
without copy-and-pasting. This paper provides an overview of PythonTeX,
including Python output caching, dependency tracking, synchronization of errors
and warnings with the LaTeX document, conversion of documents to other for-
mats, and support for languages beyond Python. These features are illustrated
through an extended, step-by-step example of reproducible analysis performed
with PythonTeX.

Index Terms—reproducible science, reproducible documents, dynamic report
generation

Introduction

The concept of "reproducible documents" is not new—indeed,
there are at least two definitions, each with its own history.

According to one definition, a reproducible document is
a document whose results may be conveniently reproduced
via a makefile or a similar approach [Schwab]. Systems
such as Madagascar [MAD] and VisTrails [VIS] represent a
more recent and sophisticated version of this idea. The actual
writing process for this type of document closely resembles
the unreproducible case, except that the author must create
the makefile (or equivalent), and thus it is easier to ensure
that figures and other results are current.

According to another definition, a reproducible document
is a document in which analysis code is embedded. The
document itself both generates and reports results, using
external data. This approach is common among users of the
R language. Sweave has allowed R to be embedded in LaTeX
since 2002 [Leisch]. The knitr package provides similar but
more powerful functionality, and has become increasingly
popular since its release in 2011 [Xie]. This approach to
reproducible documents has roots in literate programming,
through noweb [Ramsey] ultimately back to Knuth’s original
concept [Knuth]. Knuth suggested that programs be written
as literature, interweaving code and documentation in a form
geared toward human readers. Similarly, a reproducible docu-
ment with embedded code integrates code and document into
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a unified whole. The writing process for such a document
can be significantly different from the unreproducible case
because of the tight integration that is possible. For example,
it is possible to create dynamic reports with Sweave and knitr
that automatically accommodate whatever data is provided.

These two definitions of a reproducible document need not
be mutually exclusive. They might be thought of as two ends of
a continuum, with a given project potentially benefiting from
some combination. The makefile-style approach may be more
appropriate for large codebases and complex computations,
but even then, it can be convenient to embed plotting code
in reports. Likewise, even a relatively simple analysis might
benefit from externalizing some code and managing it via the
makefile-style approach, rather than embedding everything.

This paper is primarily concerned with the second type
of reproducible document, in which code is embedded. In
the Python ecosystem, there are several options for creating
such documents. The IPython notebook provides a highly
interactive interface in which code, results, and text may be
combined [IPY]. Reproducible documents may be created
with Sphinx [Brandl], though the extent to which this is
possible strongly depends on the extensions employed. Pweave
is essentially Sweave for Python, with support for reST,
Sphinx, and markdown in addition to LaTeX [Pastell]. There
have also been LaTeX packages that allow Python code to
be included in LaTeX documents: python.sty [Ehmsen],
SageTeX [Drake], and SympyTeX [Molteno]. PythonTeX is
the most recent of these packages.

The LaTeX-based approach has some drawbacks. It is less
interactive than the IPython notebook. And it can be less con-
venient than a non-LaTeX system for converting documents to
formats such as HTML. At the same time, a LaTeX package
has several significant advantages. Since the user directly
creates a valid LaTeX document, the full power of LaTeX
is immediately accessible. A LaTeX package can also provide
superior LaTeX integration compared to other approaches that
do support LaTeX but are not integrated at the package level.
For example, PythonTeX makes it possible to create LaTeX
macros that contain Python code.

The PythonTeX package builds on previous LaTeX pack-
ages, emphasizing performance and usability. Python code
may be divided into user-defined sessions, which automatically
run in parallel via the multiprocessing module [MULT].
All code output is cached and the user has fine-grained control
over when code will be re-executed, including the option
to track document dependencies. This allows a PythonTeX

http://www.youtube.com/watch?v=G-UDHc2UVOg
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document to be compiled just as quickly as a normal LaTeX
document so long as no Python code is modified. Python
errors and warnings are synchronized with the document’s line
numbering, so that their source is easily located. PythonTeX
documents may be easily converted to plain LaTeX documents
suitable for journal submission or format conversion. While
PythonTeX’s focus is on Python, the package may extended
to support additional languages.

PythonTeX Overview

Using the PythonTeX package is as simple as adding the
command
\usepackage{pythontex}

to the preamble of a LaTeX document and slightly modifying
the way you compile the document. When a document using
the PythonTeX package is first compiled, all of the Python
code contained in the document is saved to an auxiliary file
(with delimiters). To execute the Python code, you simply
run the provided script pythontex.py with the document
name as an argument. In a standard PythonTeX installation, a
symlink or launching wrapper for this script is created in your
TeX installation’s bin/ directory, so that the script will be
on your PATH. The next time you compile the document, all
Python-generated content will be included.

PythonTeX is compatible with all standard LaTeX engines
(executable binaries): pdfTeX, XeTeX, and LuaTeX. It has
been tested with TeX Live [TL] and MiKTeX [MIK], and
should work with other distributions.

Commands and Environments

PythonTeX provides a number of LaTeX commands and
environments. These can be used to run any valid Python code;
even imports from __future__ are allowed, so long as they
occur before any other code.

The code environment runs whatever code is provided. By
default, any printed content is automatically included in the
document. For example,
\begin{pycode}
my_string = ’A string from Python!’
print(my_string)
\end{pycode}

creates
A string from Python!

The block environment also executes its contents. In this
case, the code is typeset with highlighting from Pygments
[PYG]. Printed content is not automatically included, but may
be brought in via the \printpythontex command. For
example,

\begin{pyblock}
print(my_string)
\end{pyblock}
\begin{quotation}
\printpythontex
\end{quotation}

typesets

print(my_string)

A string from Python!

All commands and environments take an optional argument
that specifies the session in which the code is executed.
If a session is not specified, code is executed in a default
session. In the case above, the variable my_string was
available to be printed in the block environment because the
block environment shares the same default session as the code
environment.

Inline versions of the code and block environments are pro-
vided as the commands \pyc and \pyb. A special command
\py is provided that returns a string representation of its
argument. For example, \py{2**8} yields 256.

PythonTeX also provides a verbatim command \pyv and
environment pyverbatim. These simply typeset highlighted
code; nothing is executed. Descriptions of additional com-
mands and environments are available in the documentation.

Caching

All Python output is cached. PythonTeX also tracks the exit
status of each session, including the number of errors and
warnings produced (it parses stderr). By default, code
is only re-executed by pythontex.py when it has been
modified or when it produced errors on the last run.

That approach is most efficient for many cases, but some-
times the user may need finer-grained control over code
execution. This is provided via the package option rerun,
which accepts five values:

• never: Code is never executed; only syntax highlighting
is performed.

• modified: Only modified code is executed.
• errors: Only modified code or code that produced

errors on the last run is executed.
• warnings: Code is executed if it was modified or if it

produced errors or warnings previously.
• always: Code is always executed.

Tracking Dependencies and Created Files

Code may need to be re-executed not just based on its
own modification or exit status, but also based on external
dependencies.

PythonTeX includes a Python class that provides several
important utilities. An instance of this class called pytex
is automatically created in each session. The utilities class
provides an add_dependencies() method that allows
dependencies to be specified and tracked. Whenever Python-
TeX runs, all dependencies are checked for modification,
and all code with changed dependencies is re-executed (un-
less rerun=never). By default, modification is detected
via modification time (os.path.getmtime()) [OSPATH],
since this is fast even for large data sets. File hashing may be
used instead via the package option hashdependencies.

The PythonTeX utilities class also provides an
add_created() method. This allows created files to
be deleted automatically when the code that created them
is re-executed, preventing unused files from accumulating.
For example, if a figure is saved under one name, and later
the name is changed, the old version would be deleted
automatically if it were tracked.
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When there are only a few dependencies or created files, it
may be simplest to specify them manually. For example, the
line
pytex.add_dependencies(’data.txt’)

could be added after data.txt is loaded. In cases where the
manual approach is tedious, the entire tracking process may
be automated. A custom version of open() could be defined
in which each file opened is tracked based on whether it is
opened for reading (dependency) or writing (created).

Synchronizing Errors and Warnings
When pythontex.py runs, it prints an annotated version
of the stderr produced by user code. Before each error or
warning, a message is inserted that specifies the corresponding
line number in the document. For example, if the code
environment
\begin{pycode}
s = ’Python
\end{pycode}

were on line 20 of a document, then when PythonTeX runs,
it would return a message in the form

* PythonTeX stderr - error on line 20:
File "<scriptname>", line 46
s = ’Python

^
SyntaxError: EOL while scanning string literal

where <scriptname> is the name of the temporary script
that was executed. This greatly simplifies debugging.

PythonTeX provides a sophisticated system that parses
stderr and synchronizes line numbers in errors and warn-
ings with the document’s line numbering. As PythonTeX
assembles the code to be executed, it creates a record of where
each chunk of code originated in the document. The actual
scripts that are executed are assembled by inserting user code
into predefined templates that provide access to the PythonTeX
utilities class and additional functionality. This means that
the line numbers of the code that is actually executed differ
not only from the document’s line numbering, but also from
the user code’s numbering. In the example above, the error
occurred on line 20 of the document, on line 46 of the code
that was actually executed, and on line 1 of the user code.
PythonTeX keeps a running tally of how many lines originated
in user code versus templates, so that the correct line number
in the document may be calculated.

In some cases, errors or warnings may only reference a
line number in the file in which they occur. For example, if
warnings.warn() [WAR] is used in an imported module,
a line number in the module will be referenced, but a line
number in the code that imported the module will not. The
previous approach to synchronization fails. To deal with this
scenario, PythonTeX writes delimiters to stderr before each
command and environment. This allows messages that do not
reference a line number in the user’s code to be tracked back
to a single command or environment in the document.

Converting PythonTeX Documents
One disadvantage of a reproducible document created with
PythonTeX is that it mixes plain LaTeX with Python code.

Many publishers will not accept documents that require spe-
cialized packages. In addition, some format converters for
LaTeX documents only support a subset of LaTeX com-
mands—so PythonTeX support is not an option.

To address these issues, PythonTeX includes a
depythontex utility. It creates a version of a document
in which all Python code has been replaced by its output.
There is no way to tell that the converted document ever
used PythonTeX. Typically, the converted document is a
perfect copy of the original, though occasionally spacing
may be slightly different based on the user’s choice of
depythontex options. A few features are especially
noteworthy.

• Any Python-generated figures that were included in the
original document will be included in the converted docu-
ment; the converted document still checks the same paths
for figures. It is possible to configure PythonTeX so that
figures created by matplotlib [MPL] and other plotting li-
braries are automatically included in the document, with-
out the user needing to enter an \includegraphics
command. (Additional details are provided in the doc-
umentation.) Even in these cases, figures are correctly
included in the converted document.

• Any code highlighted by PythonTeX in the original ver-
sion can also be highlighted in the depythontex ver-
sion. Highlighted code can be converted into the format of
the listings [LST], minted [MINT], or fancyvrb
[FV] packages for LaTeX. Line numbering and syntax
highlighting are preserved if the target package supports
them.

When Python Is Not Enough

While PythonTeX is focused on providing Python-LaTeX
integration, most of the LaTeX interface is language-agnostic.
In many cases, adding support for an additional language is as
simple as providing two templates and creating a new instance
of a Python class that defines languages. For example, support
for Ruby has just been added to PythonTeX. This required two
Ruby templates and a few lines of Python—only about 70 lines
of code total. Most of the Ruby code simply implements a
Ruby version of the PythonTeX utilities class, which manages
dependencies, created files, and LaTeX integration. Part of this
process also involved specifying the format of Ruby errors,
warnings, and associated line numbers, so that Ruby errors
and warnings can be synchronized with the document.

Support for additional languages will be added in the near
future.

Case Study: Average Temperatures in Austin, TX

The remainder of this paper illustrates the application of
PythonTeX through a reproducible analysis of average tem-
peratures in Austin, TX. I will calculate monthly average high
temperatures in 2012 at the Austin-Bergstrom International
Airport from daily highs. In addition to demonstrating the
basic features of PythonTeX, this example shows how per-
formance may be optimized and how the final document may
be converted to other formats.
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Data Set

Daily high temperatures for 2012 at the Austin-Bergstrom
International Airport were downloaded from the National
Oceanic and Atmospheric Administration (NOAA)’s National
Climatic Data Center [NCDC]. The data center’s website
provides a data search page. Setting the zip code to 78719
and selecting “Daily CHCND” accesses daily data at the
airport. Maximum temperature TMAX was selected under the
“Air temperature” category of daily data, and the data were
downloaded in comma-separated values (CSV) format. The
CSV file contained three columns: station name (the airport
station’s code), date (ISO 8601), and TMAX (temperature in
tenths of a degree Celsius). The first three lines of the file are
shown below:

STATION,DATE,TMAX
GHCND:USW00013904,20120101,172
GHCND:USW00013904,20120102,156

Since the temperatures are in tenths of a degree Celsius, the
172 in the second line is 17.2 degrees Celsius.

Document Setup

I will use the same IEEEtran document class used by the
SciPy proceedings, with a minimal preamble. All Python
sessions involved in the analysis should have access to the
pickle module [PKL] and to lists of the names of the
months. PythonTeX provides a pythontexcustomcode
environment that is used to add code to all sessions of a given
type. I use that environment to add the pickle import and
the lists to all sessions for the py family of commands and
environments (pycode, pyblock, \pyc, \pyb, \py, etc.).

\documentclass[compsoc]{IEEEtran}
\usepackage{graphicx}
\usepackage{pythontex}

\begin{pythontexcustomcode}{py}
import pickle
months = [’January’, ’February’, ’March’, ’April’,

’May’, ’June’, ’July’, ’August’,
’September’, ’October’, ’November’,
’December’]

months_abbr = [m[:3] for m in months]
\end{pythontexcustomcode}

\title{Monthly Average Highs in Austin,
TX for 2012}

\author{Geoffrey M. Poore}
\date{May 18, 2013}

\begin{document}

\maketitle

Loading Data and Tracking Dependencies

The first step in the analysis is loading the data. Since the
data set is relatively small (daily values for one year) and
in a simple format (CSV), it may be completely loaded into
memory with the built-in open() function.

\subsection*{Load the data}

\begin{pyblock}[calc]
data_file = ’../austin_tmax.csv’
f = open(data_file)
pytex.add_dependencies(data_file)

raw_data = f.readlines()
f.close()
\end{pyblock}

Notice the optional argument calc for the pyblock en-
vironment. I am creating a session calc in which I will
calculate the monthly average highs. Later, I will save the
final results of the calculations, so that they will be available to
other sessions for plotting and further analysis. In this simple
example, dividing the tasks among multiple sessions provides
little if any performance benefit. But if I were working with
a larger data set and/or more intensive calculations, it could
be very useful to separate such calculations from the plotting
and final analysis. That way, the calculations will only be
performed when the data set or calculation code is modified.

The data file austin_tmax.csv is located in my docu-
ment’s root directory. Since the PythonTeX working directory
is by default a PythonTeX directory created within the doc-
ument directory, I have to specify a relative path to the data
file. I could have set the working directory to be the document
directory instead, via \setpythontexworkingdir{.}.
But this way all saved files will be isolated in the PythonTeX
directory unless a path is specified, keeping the document
directory cleaner.

The data file austin_tmax.csv is now a dependency of
the analysis. The analysis should be rerun in the event the data
file is modified, for example, if a better data set is obtained.
Since this is a relatively simple example, I add the dependency
manually via add_dependencies(), rather than creating
a custom version of open() that tracks dependencies and
created files automatically.

Data Processing

Now that the data are loaded, they may be processed. The
first row of data is a header, so it is ignored. The temperature
readings are sorted into lists by month. Temperatures are
converted from tenths of a degree Celsius to degrees Celsius.
Finally, the averages are calculated and saved. The processed
data file is added to the list of created files that are tracked, so
that it is deleted whenever the code is run again. This ensures
that renaming the file wouldn’t leave old versions that could
cause confusion.

\subsection*{Process the data}

\begin{pyblock}[calc]
monthly_data = [[] for x in range(0, 12)]
for line in raw_data[1:]:

date, temp = line.split(’,’)[1:]
index = int(date[4:-2]) - 1
temp = int(temp)/10
monthly_data[index].append(temp)

ave_tmax = [sum(t)/len(t) for t in
monthly_data]

f = open(’ave_tmax.pkl’, ’wb’)
pytex.add_created(’ave_tmax.pkl’)
pickle.dump(ave_tmax, f)
f.close()
\end{pyblock}



82 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Plotting

Once the calculations are finished, it is time to plot the results.
This is performed in a new session. Notice that pickle
and the list of months are already available since they were
added to all sessions via pythontexcustomcode. As
before, dependencies and created files are specified. In this
particular case, I have also matched the fonts in the plot to
the document’s fonts.
\subsection*{Plot average monthly TMAX}

\begin{pyblock}[plot]
from matplotlib import pyplot as plt
from matplotlib import rc

rc(’text’, usetex=True)
rc(’font’, family=’serif’,

serif=’Times’, size=10)

f = open(’ave_tmax.pkl’, ’rb’)
pytex.add_dependencies(’ave_tmax.pkl’)
ave_tmax = pickle.load(f)
f.close()

fig = plt.figure(figsize=(3,2))
plt.plot(ave_tmax)
ax = fig.add_subplot(111)
ax.set_xticks(range(0,11,2))
labels = [months_abbr[x]

for x in range(0,11,2)]
ax.set_xticklabels(labels)
plt.title(’Monthly Average Highs’)
plt.xlabel(’Month’)
plt.ylabel(’Average high (Celsius)’)
plt.xlim(0, 11)
plt.ylim(16, 39)
plt.savefig(’ave_tmax.pdf’,

bbox_inches=’tight’)
pytex.add_created(’ave_tmax.pdf’)
\end{pyblock}

\includegraphics[width=3in]{ave_tmax.pdf}

Summary of Results

It might be nice to add a summary of the results. In this case,
I simply add a sentence giving the maximum monthly average
temperature and the month in which it occurred. Notice the
way in which Python content is interwoven with the text. If
a data set for a different year were used, the sentence would
update automatically.
\subsection*{Summary}

\begin{pyblock}[summary]
f = open(’ave_tmax.pkl’, ’rb’)
pytex.add_dependencies(’ave_tmax.pkl’)
ave_tmax = pickle.load(f)
f.close()

tmax = max(ave_tmax)
tmax_month = months[ave_tmax.index(tmax)]
\end{pyblock}

The largest monthly average high was
\py[summary]{round(tmax, 1)} degrees
Celsius, in \py[summary]{tmax_month}.

\end{document}

Output and Conversion

I compile the document to PDF by running pdflatex, then
pythontex.py, and finally pdflatex on the file. The

output is shown in Figure 1.
To compile this particular document, I have to run

pythontex.py twice in a row. The first run creates the
saved data in ave_tmax.pkl. The second run gives the
plot and summary sessions access to the saved data. Since
all sessions are executed in parallel, there is no guarantee that
the data file will be created before the plot and summary
sessions try to access it. If the data file does not exist,
these sessions produce errors during the first run and are
automatically re-executed during the second run.

The analysis is complete at this point if a PDF is all that is
desired. But perhaps the analysis should also be posted online
in HTML format. A number of LaTeX-to-HTML converters
exist, including TeX4ht [TEX4HT], HEVEA [HEVEA], and
Pandoc [PAN]. I will use Pandoc in this example since the
document has a simple structure that Pandoc fully supports.
A different converter might be more appropriate for a more
complex document.

Since Pandoc only supports a basic subset of LaTeX,
it is not aware of the PythonTeX commands and environ-
ments and cannot convert the document in its current form.
This is where the depythontex utility is needed. To use
depythontex, I modify the case study document by adding
the depythontex option when the PythonTeX package is
loaded:

\usepackage[depythontex]{pythontex}

I also edit the document so that the figure is saved as a PNG
rather than a PDF, so that it may be included in a webpage.
Next, I compile the document with LaTeX, run the PythonTeX
script, and compile again. This creates an auxiliary file that
depythontex needs. Then I run depythontex on the
case study document:

depythontex casestudy.tex --listing=minted

This creates a file depythontex_casestudy.tex in
which all PythonTeX commands and environments have been
replaced by their output. The depythontex utility provides
a --listing option that determines how PythonTeX code
listings are translated. In this case, I am having them translated
into the syntax of the minted package [MINT], since Pandoc
can interpret minted syntax. Next, I run Pandoc on the
depythontex output:

pandoc --standalone depythontex_casestudy.tex
-o casestudy.html

Together, casestudy.html and ave_tmax.png provide
an HTML version of casestudy.tex, including syntax
highlighting (Figure 2).

Conclusion

PythonTeX provides an efficient, user-friendly system for cre-
ating reproducible documents with Python and LaTeX. Since
code output is cached and user-defined sessions run in parallel,
document compile times are minimized. Errors and warnings
are synchronized with the document’s line numbering so that
debugging is simple. Because PythonTeX documents can be
converted to plain LaTeX documents, the system is suitable for
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1

Monthly Average Highs in Austin, TX for 2012
Geoffrey M. Poore

F

Load the data

data_file = '../austin_tmax.csv'
f = open(data_file)
pytex.add_dependencies(data_file)
raw_data = f.readlines()
f.close()

Process the data

monthly_data = [[] for x in range(0, 12)]
for line in raw_data[1:]:

date, temp = line.split(',')[1:]
index = int(date[4:-2]) - 1
temp = int(temp)/10
monthly_data[index].append(temp)

ave_tmax = [sum(t)/len(t) for t in
monthly_data]

f = open('ave_tmax.pkl', 'wb')
pytex.add_created('ave_tmax.pkl')
pickle.dump(ave_tmax, f)
f.close()

Plot average monthly TMAX

from matplotlib import pyplot as plt
from matplotlib import rc

rc('text', usetex=True)
rc('font', family='serif',

serif='Times', size=10)

f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

fig = plt.figure(figsize=(3,2))
plt.plot(ave_tmax)
ax = fig.add_subplot(111)
ax.set_xticks(range(0,11,2))
labels = [months_abbr[x]

for x in range(0,11,2)]
ax.set_xticklabels(labels)
plt.title('Monthly Average Highs')
plt.xlabel('Month')

plt.ylabel('Average high (Celsius)')
plt.xlim(0, 11)
plt.ylim(16, 39)
plt.savefig('ave_tmax.pdf',

bbox_inches='tight')
pytex.add_created('ave_tmax.pdf')
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Monthly Average Highs

Summary
f = open('ave_tmax.pkl', 'rb')
pytex.add_dependencies('ave_tmax.pkl')
ave_tmax = pickle.load(f)
f.close()

tmax = max(ave_tmax)
tmax_month = months[ave_tmax.index(tmax)]

The largest monthly average high was 36.3 degrees
Celsius, in August.

Fig. 1: The PDF version of the temperature case study.
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Fig. 2: A screenshot of part of the HTML version of the case study.

writing journal papers and documents that must be converted
to other formats.

Most of the key elements planned for PythonTeX are already
in place, but several significant enhancements are coming in
the future. Support for additional languages will be added
soon. Better support for macro programming with PythonTeX
that mixes Python and LaTeX code is also under development.
Several usability enhancements are in preparation, including
the option to automatically include stderr in the document,
next to its source, as an aid in debugging.

PythonTeX is under active development and provides
many features not discussed here. Additional information and
the latest release are available at https://github.com/gpoore/
pythontex.
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Abstract—There is evidence to suggest that a surprising proportion of pub-
lished experiments in science are difficult if not impossible to reproduce. The
concepts of data sharing, leaving an audit trail and extensive documentation are
fundamental to reproducible research, whether it is in the laboratory or as part
of an analysis. In this work, we introduce a tool for documentation that aims to
make analyses more reproducible in the general scientific community.

The application, lpEdit, is a cross-platform editor, written with PyQt4, that
enables a broad range of scientists to carry out the analytic component of
their work in a reproducible manner—through the use of literate programming.
Literate programming mixes code and prose to produce a final report that reads
like an article or book. lpEdit targets researchers getting started with statistics
or programming, so the hurdles associated with setting up a proper pipeline
are kept to a minimum and the learning burden is reduced through the use of
templates and documentation. The documentation for lpEdit is centered around
learning by example, and accordingly we use several increasingly involved
examples to demonstrate the software’s capabilities.

We first consider applications of lpEdit to process analyses mixing R and
Python code with the LATEX documentation system. Finally, we illustrate the use
of lpEdit to conduct a reproducible functional analysis of high-throughput se-
quencing data, using the transcriptome of the butterfly species Pieris brassicae.

Index Terms—reproducible research, text editor, RNA-seq

Introduction

The ability to independently reproduce published works is cen-
tral to the scientific paradigm. In recent years, there has been
mounting concern over the number of studies that are difficult
if not impossible to reproduce [Ioannidis05], [Prinz11]. The
reasons underlying a lack of reproducibility in science are
numerous and it happens that with regards to funding and
publication preference there is an emphasis on discovery with
little reward for studies that reproduce results [Russell13].
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The difficulties in reproducing a study can be broadly
categorized as experimental and analytic. Whether it is in
the laboratory or on a computer, problems with replication
can be minimized through the use of three key concepts: (1)
data sharing, (2) leaving an audit trail and (3) documentation.
Data sharing refers to all raw data and appropriate metadata,
provided under a convenient set of standards, ideally through
a free and open repository, like the Gene Expression Omnibus
[Edgar02]. Laying an audit trail in the laboratory can be
done through the careful use of electronic notebooks, and for
code, as is already commonplace in many fields, through the
use of version control systems like Git http://git-scm.com or
Mercurial http://mercurial.selenic.com.

Massive data sharing efforts are underway [Butler12] and
the advantages of electronic systems for documenting changes
are self-evident. The third aspect, documentation, can be
carried out in the laboratory with electronic notebooks easily
enough. However, the analyses that go along with experiments
are far more difficult to properly document, and unsurprisingly
this aspect of reproducible research remains a major obstacle
particularly in the life-sciences.

Apart from data sharing, leaving an audit trail and docu-
mentation, there are other important aspects of reproducible
research to consider such as the over-reliance on p-values
[Ioannidis08], [Gadbury12] and the use of inappropriate sta-
tistical tests. Statistical problems would be drastically eas-
ier for other scientists to identify if the original data and
well-documented code were made readily available. In com-
puter science, extensively documented code is often produced
through the use of literate programming [Knuth84].

In general, literate programming is the mixing of program-
ming code and prose to produce a final report that reads in a
natural way. In this work, we differ from most of the available
resources for literate programming in that our focus is on
producing reports that are intended for non-programmers, yet
still embracing many of the important tenets of literate pro-
gramming. For those with an extensive computing background
there are a number of great tools like Org-mode [Schulte12]
that are available. Often, biologists, chemists and other wet-
lab scientists, however, lack the time to adequately learn
a complicated environment and the prospect of learning is
daunting when it comes to many of the available tools.

The environment we have developed here, literate program-
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ming edit (lpEdit), is a cross-platform application that enables
a broad range of scientists to carry out the analytic component
of their work in a reproducible manner. This work is not
intended for those already well-versed in the use of text editors
and literate programming environments, although the sim-
plicity and ability to use either the application programming
interface (API) version or a graphical user interface (GUI)
version has appeal to a variety of researchers.

lpEdit: a literate programming editor

Many of the tools available for literate programming do not
provide a graphical editor, which is a barrier for adoption by
non-specialists. Other tools depend on a particular operating-
system and only a handful of tools can switch freely between
several programming languages. The motivation to build lpEdit
arose because there was no apparent library/tool that fit these
three criteria in a simple and intuitive way.

We have developed here an environment for literate pro-
gramming, based on the model-view-controller (MVC) soft-
ware architecture pattern. The only major difference from
conventional realizations of MVC patterns is that instead of
the user interacting directly with the controller in a non-
GUI mode, we have developed a convenience class called
NoGuiAnalysis for this purpose.

The GUI editor portion of lpEdit is written with PyQt4
http://www.riverbankcomputing.com/software/pyqt, which are
Python bindings to the widget toolkit Qt http://qt.digia.com.
For the basic editing component of the software we use the Qt
port of Scintilla http://www.scintilla. org called QScintilla http:
//www.riverbankcomputing.com/software/qscintilla. The addi-
tional prerequisites are the Python packages for numeric
computing (NumPy) [Oliphant07] and the ubiquitous docu-
mentation tool Sphinx http: //sphinx-doc.org.

The software is available under the GNU General Public Li-
cense version 3.0 or later from http://bitbucket.org/ajrichards/
reproducible-research. The accompanying documentation can
be found at http://ajrichards.bitbucket.org/lpEdit/index.html.

LATEX and reStructuredText

Perhaps the most widely used literate programming tool is
Sweave [Leisch02] which embeds R code into a LATEX docu-
ment. Due to its popularity and because Sweave is now part
of the R project [RCore12], the Sweave environment may be
used from within lpEdit. Another notable projects that mixes R
and LATEX is knitr http://yihui.name/knitr. RStudio [RStudio]
is a graphical editor that supports Sweave and knitr.

R is a standard language for statistics, but for other common
computational tasks, like text processing and web-applications,
it is used less frequently than scripting languages. We opted
to add Python, a scripting language, because it is being
increasingly used in the life-sciences [Bassi07] and because
it has a clean syntax that ultimately aids transparency and
reproducibility. Several well-featured literate programming
tools exist for Python including PyLit http://pylit.berlios.de
and like PyLit our software uses reStructuredText (reST)
http://docutils.sourceforge.net/rst.html, although we addition-
ally allow arbitrary Python code to be included in LATEX source

*.rnw

*.nw

*.rst

PDF

HTML

LaTeX

SphinxPython

R

Fig. 1: Summary of the possible workflows using lpEdit. First, a
language, either R or Python is selected then it is embedded into a
specific document (*.rnw, *.nw or *.rst). Next a LATEX or Sphinx
project is built for the document, which then allows for both HTML
and PDF output formats.

documents. Another powerful tool for reproducible research
using Python is the IPython notebook [Perez07].

There are three types of file extensions currently permitted
for use with lpEdit: the Sweave extension (*.rnw); a Noweb
[Ramsey94] inspired syntax (*.nw); and the reST file exten-
sion (*.rst). By selecting an embedded language and a file
type there are a number of different workflows available as
shown in Figure 1.

lpEdit as a library

lpEdit has a simple API, which facilitates the use of unit
testing and exposes the functions of this library for those who
are not in need of a text editor. In this section, we explain
how to create a project and build reports using the command
line, in order to illustrate the basic mechanics of lpEdit. The
following example script, BasicPython.nw, is bundled with the
package lpEdit. To build a project and compile it into report
form only a few commands are needed.
1 from lpEdit import NoGuiAnalysis
2 nga = NoGuiAnalysis()
3 nga.load_file("BasicPython.nw",fileLang="python")
4 nga.build()
5 nga.compile_pdf()
6 nga.compile_html()

First the class is imported (line 1) from the module lpEdit and
then it is instantiated (line 2). The file is then loaded and the
language may be specified (line 3). The build() method
creates a directory to contain the project in the same folder
as BasicPython.nw. The build-step also creates a *.tex
document. This directory is what lpEdit refers to as a project
and it is where both reST and LATEX projects are managed. The
compile_pdf() command either uses sphinx-build or
pdflatex. The compile_html() command defaults to
sphinx-build or latex2pdf depending on the project
type. In most cases the default paths for pdflatex, python,
R, and sphinx-build are found automatically, however,
they may be customized to a user’s preference. To modify
these variables without the GUI, there is a configuration file
corresponding to the current version of lpEdit located in the
user’s home directory.
import os
os.path.join(os.path.expanduser("~"),".lpEdit")

lpEdit as an editor

The primary purpose of lpEdit as a text editor was to benefit
students and those who are learning to program statistical

http://www.riverbankcomputing.com/software/pyqt
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analyses. In order to make it easier on these user groups,
we provide as part of lpEdit’s documentation a number of
examples that illustrate different statistical tests. We have left
out features found in other editors or literate programming
environments to make it easier to focus on report content.

Documenting by example

Like Sweave, lpEdit uses a Noweb [Ramsey94] inspired
syntax. The advantages are that due to a simplified syntax,
the flow of the document is only minimally interrupted by the
presence of code. Also, to reduce the learning burden on new
users, we suggest they concentrate on learning LATEX, reST
and the embedded programming language of choice instead of
lpEdit-specific tricks to embed plots, tables or other convenient
features. For *.rnw, *.nw and *.rst documents, we embed
code in the following way.

<<label=code-chunk-1>>=
print("Hello World!")
@

Although this particular example may not be executed in lpEdit
because it is not a valid LATEX or reST document, it illustrates
that code, in this case just a print statement, is included by
placing it between "« txt »=" and "@", where txt is any
arbitrary string, preferably something informative. Note that
under Sweave txt is a place where options may be passed.
Refer to the official documentation for more comprehensive
examples.

Documents written in LATEX, or reST are written as they
normally would be although now there is a way to execute
embedded code within the document. There is no limit to
the number of code chunks and lpEdit will execute them in
sequential order, preserving the variable space. The building
step is where code chunks are executed and output gathered.
There is one thing to keep in mind when working with
projects, and that is the idea of scope. Suppose, there are
two documents document1.rst and document2.rst.
If we build document1.rst then document2.rst, the
results from document1.rst will be preserved, which is
convenient when there are code chunks that take significant
time to run.

Involved analyses

Analyses can take the form of long complicated pipelines, that
may not reasonably be reproduced at the click of a button.
This may happen if, for example, a database needs to be
populated before an analysis can be carried out or perhaps
there is a hardware constraint, such as the requirement of
a high-performance computing infrastructure. In these cases,
lpEdit or another documentation software may still be used to
document details that would not normally be present in the
methods section of a published manuscript. For analyses that
are accompanied by substantial code and/or data, we provide
the keyword INCLUDE which simply tells lpEdit that a given
file is part of the current project. For example, files may be
included in a *.nw or *.rnw document by

%INCLUDE MyFunctions.py, MyData.csv

where the INCLUDE statement is preceded by a comment
indicator. For reST documents ".. " is used. At build time
symbolic links are created. For a reST document, INCLUDE
is preceded by the comment indicator. With increasingly
involved analyses, the readability of documentation should
not deteriorate and to this end prose may be simplified by
including code and data as links. Other than INCLUDE and
the syntax to embed code, reST and LATEX, documents are
written as they normally would be, which has the important
benefit of minimizing the learning burden.

Analyzing the Pieris brassicae transcriptome

The analysis of high-throughput sequencing data has the
earmarks of a highly involved analysis pipeline. The appeal
of high-performance sequencing [Margulies05], referred to
as RNA-seq, when applied to messenger RNA, is that a
large number of genes are quickly examined in terms of
both expression and genetic polymorphisms. For RNA-seq
the sheer quantity of data and diversity of analysis pipelines
can be overwhelming, which substantiates all the more a
need for transparent analysis documentation. Here we describe
the transcriptome of the cabbage butterfly (Pieris brassicae)
[Feltwell82], a species prevalent throughout much of Europe,
that is an interesting model for studying species mobility with
respect to different selection pressures [Ducatez12].

cDNA library construction

Messenger RNA was extracted from the thorax, head and
limbs of 12 male and female P. brassicae and pooled to
construct a normalized cDNA library (BioS&T, Montreal,
Canada). This library was subsequently sequenced using a
Roche 454 pyrosequencing platform and because there is no
reference genome for P. brassicae a de novo assembly pipeline
was followed. The sequencing and assembly was carried out
at the sequencing center Genotoul http://bioinfo.genotoul.fr
and made available using the NG6 [Mariette12] software
environment. Prior to assembly, the reads were filtered to
ensure quality-a step that included a correction for replicate
bias [Mariette11]. The assembler Newbler [Margulies05], was
then used to align and order the reads into 16,889 isotigs and
11,891 isogroups.

Analysis database and environment

Because P. brassicae is a species without a reference genome,
the assembled isotigs must be compared to species that
have functional descriptions. In order to make time-efficient
comparisons we first created a database using PostgreSQL
http://postgresql.org (version 9.1.9). The database contained
gene, accession, taxon, and functional ontology information
all of which is available through the National Center for
Biotechnology Infomation (NCBI) FTP site http://www.ncbi.
nlm.nih.gov/Ftp. The database is detailed in Figure 2. The
interaction with tables in the database was simplified through
the use of the object relational mapper available as part of
the python package SQLAlchemy http://www.sqlalchemy.org.
The schema figure was generated using the Python pack-
age sqlalchemy_schemadisplay https://pypi.python.org/pypi/
sqlalchemy_schemadisplay.

http://bioinfo.genotoul.fr
http://postgresql.org
http://www.ncbi.nlm.nih.gov/Ftp
http://www.ncbi.nlm.nih.gov/Ftp
http://www.sqlalchemy.org
https://pypi.python.org/pypi/sqlalchemy_schemadisplay
https://pypi.python.org/pypi/sqlalchemy_schemadisplay
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taxa
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- ncbi_id

- name

- common_name_1

- common_name_2

- common_name_3

go_terms

- id

- go_id

- aspect

- description

genes

- id

- ncbi_id

- description

- symbol

- chromosome

- map_location

- synonyms

- taxa_id

+ id

+ taxa_id
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- id
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- protein_gi
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- genomic_start

- genomic_stop
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- gene_id

+ id

+ gene_id
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- id

- evidence_code
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- gene_id

- go_term_id
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+ gene_id

+ id

+ go_term_id

Fig. 2: Database entity diagram. A gene-centric relational database
for data available through NCBI’s FTP website.

Functional characterization of the transcriptome

For each isotig, functional annotations were found by using
the Basic Local Alignment Search Tool (BLAST) [Altschul90]
via NCBI’s BLAST+ command line interface [Camacho09].
Specifically, each isotig was locally aligned to every sequence
in the Swiss-Prot database [UniProtConsortium12] then using
our local database, accession names were mapped to gene
names and corresponding functional annotations were gath-
ered. The handling of sequence data was done using the classes
and functions provided by BioPython [Cock09].

Of the nearly 17,000 isotigs that were examined, 11,846
were considered hits (E-value ≤ 0.04). The isotigs were then
mapped to 6901 unique genes. The appropriate Gene Ontology
[Ashburner00] annotations were then mapped back to the
isotigs. A navigable version of the analyses and results is
available as part of the online supplement http://ajrichards.
bitbucket.org/lpedit-supplement. The supplement is the docu-
mentation produced using lpEdit. All scripts that were used in
this analysis are provided therein and the supplement details
the individual steps in this process in a way that is impossible
to include as part of a manuscript methods section.

Conclusions and future work

The RNA-seq example demonstrates that involved analyses
may be well- documented in a way that is interesting for those
who understand the technical details of the analysis and those
who do not. In the future, more languages, even compiled
ones, may be integrated into the project, which is feasible
because lpEdit uses the Python package subprocess to
make arbitrary system calls. It is not our intention for lpEdit
to evolve to be a replacement for already established tools,
like Org-mode. Rather, it is meant as a simple tool to help
newcomers with programming and statistics. With the API
version of lpEdit there remains the possibility that it may be
adapted as a plug-in or extension to existing text editors.

Given that the target user-base for lpEdit are those with
limited computing background, there are a number of power-
user features left out of the current version for the sake
of a nearly ‘push button approach’. Despite this restricted

approach, lpEdit is free to use, fork and modify as the
community would like and over time more interesting features
will make it into the project without sacrificing the important
idea of simplicity. Being a community-driven effort, we are
open to feature requests and will adapt to the needs of the
general user population.
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GraphTerm: A notebook-like graphical terminal
interface for collaboration and inline data visualization

Ramalingam Saravanan∗†

http://www.youtube.com/watch?v=nO0ceHmTlDQ

F

Abstract—The notebook interface, which blends text and graphics, has been
in use for a number of years in commercial mathematical software and is now
finding more widespread usage in scientific Python with the availability browser-
based front-ends like the Sage and IPython notebooks. This paper describes
a new open-source Python project, GraphTerm, that takes a slightly different
approach to blending text and graphics to create a notebook-like interface.
Rather than operating at the application level, it works at the unix shell level by
extending the command line interface to incorporate elements of the graphical
user interface. The XTerm terminal escape sequences are augmented to allow
any program to interactively display inline graphics (or other HTML content)
simply by writing to standard output.

GraphTerm is designed to be a drop-in replacement for the standard unix
terminal, with additional features for multiplexing sessions and easy deployment
in the cloud. The interface aims to be tablet-friendly, with features like click-
able/tappable directory listings for navigating folders etc. The user can switch,
as needed, between standard line-at-a-time shell mode and the notebook mode,
where multiple lines of code are entered in cells, allowing for in-place editing
and re-execution. Multiple users can share terminal sessions for collaborative
computing.

GraphTerm is implemented in Python, using the Tornado web framework for
the server component and HTML+Javascript for the browser client. This paper
discusses the architecture and capabilities of GraphTerm, and provides usage
examples such as inline data visualization using matplotlib and the notebook
mode.

Index Terms—GUI, CLI, graphical user interface, command line interface,
notebook interface, graphical shell

Introduction

Text and graphics form important components of the user inter-
face when working with computers. Early personal computers
only supported the textual user interface, more commonly
known as the command line interface (CLI). However, when
the Apple Macintosh popularized the graphical user interface
(GUI), it soon became the preferred means for interacting with
the computer. The GUI is more user-friendly, especially for
beginners, and provides a more pleasant visual experience.
The GUI typically provides buttons and widgets for the most
common tasks, whereas the CLI requires recalling and typing
out commands to accomplish tasks. However, the friendliness
of the GUI comes at a cost—it can be much more difficult to
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† Texas A&M University

Copyright c○ 2013 Ramalingam Saravanan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

perform advanced tasks using the GUI as compared to using
the CLI. Using a GUI is analogous to using a phrase book
to express yourself in a foreign language, whereas using a
CLI is like learning words to form new phrases in the foreign
language. The former is more convenient for first-time and
casual users, whereas the latter provides the versatility required
by more advanced users.

The dichotomy between the textual and graphical modes
of interaction also extends to scientific data analysis tools.
Traditionally, commands for data analysis were typed into a
terminal window with an interactive shell and the graphical
output was displayed in a separate window. Some commercial
software, such as Mathematica and Maple, provided a more
integrated notebook interface that blended text and graphics,
thus combining aspects of the CLI with the GUI. One of the
exciting recent developments in scientific Python has been the
development of alternative, open source, notebook interfaces
for scientific computing and data analysis—the Sage and
IPython notebooks [Perez12]. Since Python is a more general-
purpose language than Mathematica or Maple, the notebook
interface could potentially reach a much wider audience.

A notebook display consists of a sequence of cells, each
of which can contain code, figures, or text (with markup).
Although originally developed for exploratory research, note-
books can be very useful for presentations and teaching as
well. They can provide step-by-step documentation of complex
tasks and can easily be shared. The cells in a notebook
do not necessarily have to be executed in the sequence in
which they appear. In this respect, the notebook interface
can be considered an expression of "literate programming",
where snippets of code are embedded in natural language
documentation that explains what the code does [Knuth84].

Another emerging area where the notebook interface
could serve as an important tool is reproducible research
[Stodden13]. As computational techniques are increasingly
being used in all areas of research, reproducing a research
finding requires not just the broad outline of the research
methodology but also documentation of the software de-
velopment environment used for the study. The need for
reproducible research is highlighted by the recent controversy
surrounding the highly influential Reinhart-Rogoff study that
identified a negative relationship between a country’s debt
and its economic growth rate. A follow-up study [Herndon13]
identified a simple coding error that affects key findings of

http://www.youtube.com/watch?v=nO0ceHmTlDQ
mailto:sarava@tamu.edu
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the original study. The self-documenting nature of code and
results presented in a notebook format can make it easy to
share and reproduce such computations.

Background

The author had some experience with commercial notebook
interfaces before, but used the IPython Notebook interface
for the first time in January 2013, when teaching an intro-
ductory undergraduate programming course for geoscientists
using Python. After initially using the command line Python
interpreter, the class switched to using IPython Notebook,
whose inline code editing and graphics display turned out
to be really convenient. The notebook interface was used
for presenting lecture material, and the students used it for
their programming assignments, turning in their notebooks for
grading (in PDF format) .

The author had previously been working on a project called
GraphTerm, which implements a "graphical terminal interface"
using a Python backend and a HTML5+Javascript frontend
[GraphTerm]. It was a follow-up to two earlier projects, the
browser-based AjaxTerm, and XMLTerm, a GUI-like browser
built using the Mozilla framework [Sarava00]. GraphTerm is
aimed at being a drop-in replacement for XTerm, the standard
unix terminal, with additional graphical and collaborative
features. It retains all the features of the CLI, including pipes,
wildcards, command recall, tab completion etc., and also
incorporates web-based sharing, as well as GUI-like features,
such as clickable folder navigation, draggable files, inline
image display etc. (There also other terminal projects with
similar goals, such as TermKit for OS X and Terminology for
Linux.)

The distinctive features of the notebook interface, such as
inline editing and graphics, are not specific to any particular
programming language or interactive shell. Also, the Graph-
Term code already had the capability to incorporate GUI-like
features into the terminal. Therefore, it seemed worth experi-
menting with GraphTerm to see how far it could be extended to
support a generic, language-independent, notebook interface,
while still retaining full backward compatibility with the unix
terminal. The goal was to allow the terminal to be switched to
a notebook mode, regardless of what application was running
in the shell. The backward compatibility requirements and
the loose coupling between the notebook and the underlying
application could make it more fragile and restricted, but that
would be an unavoidable trade-off. The rest of this paper
reports on the results of this effort to combine the CLI, GUI,
and the notebook interface.

Implementation

The standard unix terminal supports two types of buffers:
(i) the normal scroll buffer that contains lines of text, and
(ii) the full screen buffer used by text editors like vi etc.
Special character strings known as escape sequences are output
by programs to switch the terminal between the two buffers
[XTerm]. GraphTerm currently supports most of the standard
XTerm escape sequences and introduces additional escape
sequences that allow display of HTML fragments in the scroll

Fig. 1: Architecture of GraphTerm. Browser client connects to
Tornado server using websockets. Hosts connect to server using TCP.

buffer and the full screen buffer. The HTML fragments can
contain just about anything that can be displayed on a web
page, including text with markup, tables, and images.

The GraphTerm server is written in pure python, using the
Tornado web framework, with websocket support. The browser
client uses standard HTML5+Javascript+CSS (with jQuery).
The code is released under the BSD License and the repository
is available on Github.

The GraphTerm server may be run on the desktop or on a
remote computer. Users create and access terminal sessions
by the connecting to the Graphterm server on the default
port 8900, either directly or through SSH port forwarding
(Figure 1). By default, the localhost on the computer where the
GraphTerm server is running is available for opening terminal
sessions. Other computers can also connect to the GraphTerm
server, on a different port (8899), to make them accessible as
hosts for connection from the browser.

A pseudo-tty (pty) device is opened on the host for each
terminal session. By setting the PROMPT_COMMAND envi-
ronment variable, GraphTerm determines when the standard
output of the previous command ends, and the prompt for the
new command begins. The connection between the browser
and the GraphTerm server is implemented using websockets
(bi-directional HTTP). The GraphTerm server acts as a router
sending input from controlling browser terminal sessions to the
appropriate pty on the host computer, and transmitting output
from each pty to all connected browser terminal sessions.

All the scroll buffer and full screen buffer content is stored
on the server, which means that the terminal is persistent
across different browser sessions. For example, you can leave
the terminal on your desktop computer at work and access
the exact same content on your laptop browser when you
get home. This allows GraphTerm to be used like the GNU
screen or tmux programs. Storing the content on the server
also allows multiple users to share access to the same terminal
session for collaboration, similar to, e.g., Google Docs. This
means that multiple users will be able to view and modify a
GraphTerm notebook session in real time.

http://acko.net/blog/on-termkit
http://www.enlightenment.org/p.php?p=about/terminology
http://tornadoweb.org
https://github.com/mitotic/graphterm
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Fig. 2: Output of helloworld.sh within GraphTerm, showing
inline HTML text and image.

The GraphTerm API

Programs running within a GraphTerm shell communicate
with it by writing to its standard output a block of text using
a format similar to a HTTP response, preceded and followed
by XTerm-like escape sequences:
\x1b[?1155;<cookie>h
{"content_type": "text/html", ...}

<div>
...
</div>
\x1b[?1155l

where <cookie> denotes a numeric value stored in the envi-
ronment variable GTERM_COOKIE. This random cookie is a
security measure that prevents malicious files from accessing
GraphTerm. The opening escape sequence is followed by an
optional dictionary of header names and values, using JSON
format. This is followed by a blank line, and then any data
(such as the HTML fragment to be displayed).

A simple bash shell script, hello_world.sh, illustrates
this API:
#!/bin/bash
# A Hello World program using the GraphTerm API

prefix=https://raw.github.com/mitotic/graphterm
url=$prefix/master/graphterm/www/GTYY500.png
esc=‘printf "\033"‘
code="1155"
# Prefix escape sequence
echo "${esc}[?${code};${GTERM_COOKIE}h"
# Display text with HTML markup
echo ’<b>Hello</b>’
echo ’<b style="color: red;">World!</b><p>’
# Display inline image
echo "<a><img width="200" src=\"$url\"></a>"
# Suffix escape sequence
echo "${esc}[?${code}l"

If run within GraphTerm, the script produces the output shown
in Figure 2.

Features

GraphTerm is written in pure Python and the only dependency
is the tornado web server module. It can be installed
using easy_install or setuptools. Once the Graph-
Term server program is started, it listens on port 8900 on
localhost by default, and any browser can be used to
connect to it and open new terminal sessions using the URL
http://localhost:8900. At this point, GraphTerm can
be used like a regular terminal, with commands like ls,

Fig. 3: Output of ls and gls commands for the same directory.
The names displayed by gls are hyperlinked, and may be clicked to
navigate to a folder or open a file.

Fig. 4: Output of gls with icon display enabled. Clicking on
the folder icon for 00_vanderwalt (red rectangle) executes the
command cd 00_vanderwalt; gls -f via the command line
(green rectangle) to navigate to the folder and list its directory
contents. (This action also overwrites any immediate previous file
navigation command in the GraphTerm command history, to avoid
command clutter.)

vi, etc. However, to use the graphical capabilities of Graph-
Term, one needs to use GraphTerm-aware versions of these
commands, with names like gls and gvi, that are part of
the command toolchain that is bundled with the code. The
toolchain commands communicate using pipes and may be
written any language, e.g., Bash shell script, Python etc., using
the API described above. The GUI-like features of GraphTerm
implemented using this toolchain are discussed and illustrated
below.

Clickable folders and files

The output of the standard ls command displays the directory
listing as plain text, whereas the gls command from the
toolchain displays a hyperlinked ("clickable") directory listing
(Figure 3).

By default, gls does not display icons or images in the
directory listing. However, icon display can be enabled using
the GraphTerm menubar (Figure 4).

You can navigate folders in GraphTerm using GUI-like
actions, like you would do in the Windows Explorer or the
Mac Finder, while retaining the ability to drop back to the CLI
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Fig. 5: File fig2.png is dragged from the Downloads folder from
the source terminal and dropped into the . (current directory) folder
icon displayed by gls in the destination terminal. This executes
the command mv /user/rsarava/Downloads/fig2.png .
in the destination terminal to move the file.

at any time. If the current command line is empty, clicking on
a hyperlinked folder will insert a new command line of the
form:

cd newdir; gls -f

which will change the current directory to newdir and list its
contents. Clicking on a hyperlinked filename will generate a
new command line to invoke platform-dependent commands
like open or xdg-open to open the file using the default
program for its file type. This feature illustrates one of the
basic design goals of GraphTerm, that each GUI-like action
should generate a corresponding shell command that actually
carries out that action. This allows the action to be logged and
reproduced later.

Drag and drop

GraphTerm currently provides limited support for drag-and-
drop operations, including support for uploading/copying files
between terminal sessions on different computers connected
to the same GraphTerm server. As shown in Figure 5, when
a file is dragged from the source terminal and dropped into a
folder displayed in the destination terminal, a mv command is
generated to perform the task. Thus the GUI action is recorded
in the command line for future reference.

Session sharing and theming

GraphTerm terminal sessions can be shared between multiple
computers, with different types of access levels for additional
users accessing the same terminal, such as read-only access
or full read-write access. Since a GraphTerm terminal session
is just a web page, it also supports theming using CSS
stylesheets. The terminal sharing and theming are decoupled,
which means that two users can view the same terminal using
different themes (Figure 6)!

Fig. 6: Two shared views of a GraphTerm terminal session showing
the output of the command head -20 episodeIV.txt on a
computer running OS X Lion. The left view is in a Firefox window
with the default theme and the right view shows the same terminal
in a Chrome window, using the stars3D perspective theme (which
currently does not work on Firefox).

Inline graphics

Since GraphTerm can display arbitrary HTML fragments, it is
easy to display graphical output from programs. The gimage
command in the toolchain can be used to display inline
images. The toolchain also includes the yweather command
to display the current weather forecast graphically using
the Yahoo Weather API. Other toolchain commands include
glandslide to use the Python-based landslide presentation
tool and greveal that uses reveal.js to display slideshows
within a GraphTerm window.

GraphTerm can be used for inline display of graphical
output from matplotlib (Figure 7). The API bundled
with GraphTerm uses the StringIO module to capture the
binary plot data using the png image output produced by the
Agg renderer and then displays the image using GraphTerm
escape sequences. A module called gmatplot is supplied
with GraphTerm to provide explicit access to this plotting
API. Another module gpylab is also provided, for monkey
patching existing plotting code to work within GraphTerm
with little or no changes. For example, if the Python interpreter
is invoked using the following command:
python -i $GTERM_DIR/bin/gpylab.py

then pylab functions like draw, figure, and show will
automatically use the Graphterm API to display inline graphics
(e.g. see the notebook example shown in Figure 8).

Since communication with GraphTerm occurs solely via
the standard output of a program, inline graphics can be
displayed from any plotting program, including commercial
software like IDL and other plotting packages like the NCAR
Command Language (NCL). Inline graphics display can also
be used across SSH login boundaries by including support for
the GraphTerm API in the plotting program on the remote
machine.

Notebook mode

GraphTerm can be switched from the normal terminal mode
to a blank notebook mode using the key sequence Shift-Enter

https://github.com/adamzap/landslide
http://lab.hakim.se/reveal-js
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Fig. 7: Inline display of a 2-dimensional filled contour plot of surface
air temperature on the globe, generated by matplotlib. The code
for this plot is taken from the textbook by [Lin12].

Fig. 8: GraphTerm notebook mode, where the notebook contents are
read from a file saved using the ipynb format. The first cell contains
Markdown text and the second cell contains python code to generate
a simple plot using matplotlib. Note the use of raw_input to
prompt the user for terminal input.

or using the menubar. The user can also click on a notebook
file displayed in the gls directory listing to open it and pre-
fill the notebook cells with content from the file (Figure 8).
The notebook mode supports the normal terminal operations,
such as reading from the standard input (i.e., raw_input in
Python) and using debuggers, as well as GraphTerm extensions
like inline graphics. (Full screen terminal operations are not
supported in the notebook mode.)

Users can save the contents of the displayed notebook to
a file at any time. Users exit the notebook mode and revert

Fig. 9: When switching back to the terminal mode after exiting the
notebook mode, the notebook contents can either be discarded or be
appended like normal terminal output, as shown above.

to the normal terminal mode using the menubar or simply by
typing Control-C. When exiting the notebook mode, users can
choose to either merge all the notebook content back into the
terminal session or discard it (Figure 9).

The notebook implementation in GraphTerm attempts to
preserve interoperability with the IPython Notebook to the
extent possible. GraphTerm can read and write notebooks
using the IPython Notebook format (*.ipynb), although
it uses the Markdown format for saving notebook content.
(Markdown was chosen as the native format because it is
more human-friendly than ReStructuredText or JSON, allows
easy concatenation or splitting of notebook files, and can
be processed by numerous Markdown-aware publishing and
presentation programs like landslide and reveal.js. )
GraphTerm supports many of the same keyboard shortcuts
as IPython Notebook. GraphTerm can also be used with
the command-line version of IPython. However, the generic,
loosely-coupled notebook interface supported by GraphTerm
will never be able to support all the features of IPython
Notebook.

Here is how the notebook mode is implemented within
GraphTerm: when the user switches to the notebook mode,
a separate scroll buffer is created for each cell. When the
user executes a line of code within a GraphTerm notebook
cell, the code output is parsed for prompts to decide whether
to continue to display the output in the output cell, or to
return focus to the input cell. This text-parsing approach does
make the GraphTerm notebook implementation somewhat
fragile, compared to other notebook implementations that have
a tighter coupling with the underlying code interpreter (or
kernel). However it allows GraphTerm to work with interactive

http://daringfireball.net/projects/markdown
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Fig. 10: Inline graphics in notebook mode when running the standard
R interpreter within GraphTerm.

shells for any platform, such as R (Figure 10) (or any interac-
tive program with prompts, including closed source binaries
for languages like IDL).

Since all GraphTerm content is stored on the server, the
notebook can be accessed by multiple users simultaneously
for collaboration. Like inline graphics, the notebook mode
works transparently when executing interactive shells after a
remote SSH login, because all communication takes place via
the standard output of the shell. The non-graphical notebook
mode can be used without the remote program ever being
aware of the notebook interface. However, the remote program
will need to use the GraphTerm escape sequences to display
inline graphics within the notebook.

Conclusion

The GraphTerm project extends the standard unix terminal to
support many GUI-like capabilities, including inline graphics
display for data analysis and visualization. Adding features
like clickable folder navigation to the CLI also makes it
more touch-friendly, which is likely to be very useful on
tablet computers. Incorporating GUI actions within the CLI
allows recording of many user actions as scriptable commands,
facilitating reproducibility.

GraphTerm also demonstrates that the notebook interface
can be implemented as an extension of the CLI, by parsing
the textual output from interactive shells. This allows the
notebook interface to be "bolted on" to any interactive shell
program and to be used seamlessly even across SSH login
boundaries. The notebook features and the real-time session
sharing capabilities could make GraphTerm an useful tool for

collaborative computing and research.
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Modeling the Earth with Fatiando a Terra
Leonardo Uieda∗†, Vanderlei C. Oliveira Jr†, Valéria C. F. Barbosa†

http://www.youtube.com/watch?v=Ec38h1oB8cc

F

Abstract—Geophysics is the science of using physical observations of the
Earth to infer its inner structure. Generally, this is done with a variety of numerical
modeling techniques and inverse problems. The development of new algorithms
usually involves copy and pasting of code, which leads to errors and poor code
reuse. Fatiando a Terra is a Python library that aims to automate common tasks
and unify the modeling pipeline inside of the Python language. This allows users
to replace the traditional shell scripting with more versatile and powerful Python
scripting. The library can also be used as an API for developing stand-alone
programs. Algorithms implemented in Fatiando a Terra can be combined to build
upon existing functionality. This flexibility facilitates prototyping of new algorithms
and quickly building interactive teaching exercises. In the future, we plan to
continuously implement sample problems to help teach geophysics as well as
classic and state-of-the-art algorithms.

Index Terms—geophysics, modeling, inverse problems

Introduction

Geophysics studies the physical processes of the Earth. Geo-
physicists make observations of physical phenomena and use
them to infer the inner structure of the planet. This task
requires the numerical modeling of physical processes. These
numerical models can then be used in inverse problems to infer
inner Earth structure from observations. Different geophysi-
cal methods use different kinds of observations. Geothermal
methods use the temperature and heat flux of the Earth’s
crust. Potential field methods use gravitational and magnetic
field measurements. Seismics and seismology use the ground
motion caused by elastic waves from active (man-made) and
passive (earthquakes) sources, respectively.

The seismic method is among the most widely studied due
to the high industry demand. Thus, a range of well established
open-source software have been developed for seismic pro-
cessing. These include Seismic Un*x (SU) [SU], Madagascar
[MAD], OpendTect, and GêBR. A noteworthy open-source
project that is not seismic related is the Generic Mapping
Tools (GMT) project [GMT]. The GMT are a well established
collection of command-line programs for plotting maps with a
variety of different map projections. For geodynamic modeling
there is the Computational Infrastructure for Geodynamics
(CIG), which has grouped various well documented software

* Corresponding author: leouieda@gmail.com
† Observatorio Nacional

Copyright c○ 2013 Leonardo Uieda et al. This is an open-access article
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packages. However, even with this wide range of well main-
tained software projects, many geophysical modeling software
that are provided online still have no open-source license
statement, have cryptic I/O files, are hard to integrate into
a pipeline, and make code reuse and remixing challeng-
ing. Some of these problems are being worked on by the
Solid Earth Teaching and Research Environment (SEATREE)
[SEATREE] by providing a common graphical interface for
previously existing software. The numerical computations are
performed by the pre-existing underlying C/Fortran programs.
Conversely, the SEATREE code (written in Python) handles
the I/O and user interface. This makes the use of these tools
easier and more approachable to students. However, the lack
of a common API means that the code for these programs
cannot be easily combined to create new modeling tools.

Fatiando a Terra aims at providing such an API for geo-
physical modeling. Functions in the fatiando package use
compatible data and mesh formats so that the output of
one modeling function can be used as input for another.
Furthermore, routines can be combined and reused to create
new modeling algorithms. Fatiando a Terra also automates
common tasks such as griding, map plotting with Matplotlib
[MPL], and 3D plotting with Mayavi [MYV]. Version 0.1 of
Fatiando a Terra is focused on gravity and magnetic methods
because this is the main focus of the developers. However,
simple "toy" problems for seismology and geothermics are
available and can be useful for teaching geophysics.

The following sections illustrate the functionality and design
of Fatiando a Terra using various code samples. An IPython
[IPY] notebook file with these code samples is provided by
[SAMPLES] at http://dx.doi.org/10.6084/m9.figshare.708390.

Package structure

The modules and packages of Fatiando a Terra are bundled into
the fatiando package. Each type of geophysical method has
its own package. As of version 0.1, the available modules and
packages are:

• fatiando.gravmag: gravity and magnetic methods;
• fatiando.seismic: seismic methods and seismol-

ogy;
• fatiando.geothermal: geothermal modeling;
• fatiando.mesher: geometric elements and meshes;
• fatiando.gridder: grid generation, slicing, interpo-

lation, etc;
• fatiando.io: I/O of models and data sets from web

repositories;

http://www.youtube.com/watch?v=Ec38h1oB8cc
http://www.cwp.mines.edu/cwpcodes/
http://www.ahay.org/
http://opendtect.org
http://www.gebrproject.com
http://gmt.soest.hawaii.edu/
http://gmt.soest.hawaii.edu/
http://www.geodynamics.org
mailto:leouieda@gmail.com
http://geosys.usc.edu/projects/seatree/
http://www.fatiando.org
http://matplotlib.org
http://code.enthought.com/projects/mayavi
http://ipython.org/
http://dx.doi.org/10.6084/m9.figshare.708390
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Fig. 1: Example of 1) generating a random scatter of points (black
dots), 2) using that to make synthetic data, and 3) automatically
gridding and plotting the data using a Fatiando a Terra wrapper for
the Matplotlib contourf function.

• fatiando.utils: miscellaneous utilities;
• fatiando.constants: physical constants;
• fatiando.gui: simple graphical user interfaces;
• fatiando.vis: 2D and 3D plotting;
• fatiando.inversion: inverse problem solvers and

regularization;

Griding and map plotting

Fatiando a Terra handles map data as 1D Numpy arrays,
typically x-, y-, z-coordinates and an extra array with
the corresponding data. However, Matplotlib functions, like
contourf and pcolor, require data to be passed as 2D
arrays. Moreover, geophysical data sets are often irregularly
sampled and require griding before they can be plotted. Thus,
griding and array reshaping are ideal targets for automation.

The fatiando.vis.mpl module imports all the func-
tions in matplotlib.pyplot, adds new functions, and
overwrites others to automate repetitive tasks (such as grid-
ing). Thus, the basic functionality of the pyplot inter-
face is maintained while customizations facilitate common
tasks. The following example illustrates the use of the cus-
tom fatiando.vis.mpl.contourf function to automat-
ically grid and plot some irregularly sampled data (Figure 1):
from fatiando import gridder
from fatiando.vis import mpl
area = [-20, 20, -50, 50]
x, y = gridder.scatter(area, n=100)
data = x**2 + y**2
mpl.figure()
mpl.axis(’scaled’)
mpl.contourf(y, x, data, shape=(50, 50),

levels=30, interp=True)
mpl.colorbar(orientation=’horizontal’)
mpl.plot(y, x, ’.k’)
mpl.xlabel(’y (East-West)’)
mpl.ylabel(’x (North-South)’)
mpl.show()

Notice that, in the calls to mpl.contourf and mpl.plot,
the x- and y-axis are switched. That is because it is common
practice in geophysics for x to point North and y to point East.

Map projections in Matplotlib are handled by the Basemap
toolkit. The fatiando.vis.mpl module also provides
helper functions to automate the use of this toolkit. The

Fig. 2: Example of map plotting with the Robinson projection using
the Matplotlib Basemap toolkit.

fatiando.vis.mpl.basemap function automates the
creation of the Basemap objects with common parameters.
This object can then be passed to the contourf, contour
and pcolor functions in fatiando.vis.mpl and they
will automatically plot using the given projection (Figure 2):
mpl.figure()
bm = mpl.basemap(area, projection=’robin’)
bm.drawmapboundary()
bm.drawcoastlines()
mpl.contourf(x, y, data, shape=(50, 50), levels=30,

interp=True, basemap=bm)
mpl.colorbar(orientation=’horizontal’)
mpl.show()

Meshes and 3D plotting

The representation of 2D and 3D geometric elements is
handled by the classes in the fatiando.mesher module.
Geometric elements in Fatiando a Terra can be assigned
physical property values, like density, magnetization, seismic
wave velocity, impedance, etc. This is done through a props
dictionary whose keys are the name of the physical property
and values are the corresponding values in SI units:
from fatiando import mesher
model = [

mesher.Prism(5, 8, 3, 7, 1, 7,
props={’density’:200}),

mesher.Prism(1, 2, 4, 5, 1, 2,
props={’density’:1000})]

The fatiando.vis.myv module contains functions
to automate 3D plotting using Mayavi [MYV]. The
mayavi.mlab interface requires geometric elements to be
formatted as TVTK objects. Thus, plotting functions in
fatiando.vis.myv automatically create TVTK represen-
tations of fatiando.mesher objects and plot them using a
suitable function of mayavi.mlab. Also included are utility
functions for drawing axes, walls on the figure bounding
box, etc. For example, the fatiando.vis.myv.figure
function creates a figure and rotates it so that the z-axis points
down, as is standard in geophysics. The following example
shows how to plot the 3D right rectangular prism model that
we created previously (Figure 3):

http://matplotlib.org/basemap
http://matplotlib.org/basemap
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Fig. 3: Example of plotting a list of right rectangular prisms in
Mayavi.

from fatiando.vis import myv
bounds = [0, 10, 0, 10, 0, 10]
myv.figure()
myv.prisms(model, ’density’)
myv.axes(myv.outline(bounds))
myv.wall_bottom(bounds)
myv.wall_north(bounds)
myv.show()

The fatiando.mesher module also contains classes
for collections of elements (e.g., meshes). A good exam-
ple is the PrismMesh class that represents a structured
mesh of right rectangular prisms. This class behaves as
a list of fatiando.mesher.Prism objects and can be
passed to functions that ask for a list of prisms, like
fatiando.vis.myv.prisms. Physical properties can be
assigned to the mesh using the addprop method (Figure 4):
mesh = mesher.PrismMesh(bounds, shape=(3, 3, 3))
mesh.addprop(’density’, range(mesh.size))
myv.figure()
myv.prisms(mesh, ’density’)
myv.axes(myv.outline(bounds))
myv.show()

Often times the mesh is used to make a detailed model of
an irregular region of the Earth’s surface. In such cases, it
is necessary to consider the topography of the region. The
PrismMesh class has a carvetopo method that masks the
prisms that fall above the topography. The example below
illustrates this functionality using synthetic topography (Figure
5):
from fatiando import utils
x, y = gridder.regular(bounds[:4], (50, 50))
heights = -5 + 5*utils.gaussian2d(x, y, 10, 5,

x0=10, y0=10)
mesh = mesher.PrismMesh(bounds, (20, 20, 20))
mesh.addprop(’density’, range(mesh.size))
mesh.carvetopo(x, y, heights)
myv.figure()
myv.prisms(mesh, ’density’)
myv.axes(myv.outline(bounds))
myv.wall_north(bounds)
myv.show()

Fig. 4: Example of generating and visualizing a structured prism
mesh.

Fig. 5: Example of generating and visualizing a prism mesh with
masked topography.

When modeling involves the whole Earth, or a large area of
it, the geophysicist needs to take into account the Earth’s
curvature. In such cases, rectangular prisms are inadequate
for modeling and tesseroids (e.g., spherical prisms) are better
suited. The fatiando.vis.myv module contains auxiliary
functions to plot along with tesseroids: an Earth-sized sphere,
meridians and parallels, as well as continental borders (Figure
6):
model = [

mesher.Tesseroid(-60, -55, -30, -27, 500000, 0,
props={’density’:200}),

mesher.Tesseroid(-66, -55, -20, -10, 300000, 0,
props={’density’:-100})]

fig = myv.figure(zdown=False)
myv.tesseroids(model, ’density’)
myv.continents(linewidth=2)
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Fig. 6: Example of creating a tesseroid (spherical prism) model and
visualizing it in Mayavi.

myv.earth(opacity=1)
myv.meridians(range(0, 360, 45), opacity=0.2)
myv.parallels(range(-90, 90, 45), opacity=0.2)
# Rotate the camera to get a good view
scene = fig.scene
scene.camera.position = [21199620.406122234,

-12390254.839673528, -14693312.866768979]
scene.camera.focal_point = [-535799.97230670298,

-774902.33205294283, 826712.82283183688]
scene.camera.view_angle = 19.199999999999996
scene.camera.view_up = [0.33256519487680014,

-0.47008782429014295, 0.81756824095039038]
scene.camera.clipping_range = [7009580.0037488714,

55829873.658824757]
scene.camera.compute_view_plane_normal()
scene.render()
myv.show()

Forward modeling

In geophysics, the term "forward modeling" is used to describe
the process of generating synthetic data from a given Earth
model. Conversely, geophysical inversion is the process of
estimating Earth model parameters from observed data.

The Fatiando a Terra packages have separate modules for
forward modeling and inversion algorithms. The forward mod-
eling functions usually take as arguments geometric elements
from fatiando.mesher with assigned physical proper-
ties and return the synthetic data. For example, the module
fatiando.gravmag.tesseroid is a Python implemen-
tation of the program Tesseroids (http://leouieda.github.io/
tesseroids) and calculates the gravitational fields of tesseroids
(e.g., spherical prisms). The following example shows how to
calculate the gravity anomaly of the tesseroid model generated
in the previous section (Figure 7):
from fatiando import gravmag
area = [-80, -30, -40, 10]
shape = (50, 50)
lons, lats, heights = gridder.regular(area, shape,

z=2500000)
gz = gravmag.tesseroid.gz(lons, lats, heights, model)
mpl.figure()
bm = mpl.basemap(area, ’ortho’)

Fig. 7: Example of forward modeling the gravity anomaly using the
tesseroid model shown in Figure 6.

bm.drawcoastlines()
bm.drawmapboundary()
bm.bluemarble()
mpl.title(’Gravity anomaly (mGal)’)
mpl.contourf(lons, lats, gz, shape, 30, basemap=bm)
mpl.colorbar()
mpl.show()

The module fatiando.gravmag.polyprism imple-
ments the method of [PLOUFF] to forward model the gravity
fields of a 3D right polygonal prism. The following code
sample shows how to interactively generate a polygonal prism
model and calculate its gravity anomaly (Figures 8 and 9):

# Draw a polygon and make a polygonal prism
bounds = [-1000, 1000, -1000, 1000, 0, 1000]
area = bounds[:4]
mpl.figure()
mpl.axis(’scaled’)
vertices = mpl.draw_polygon(area, mpl.gca(),

xy2ne=True)
model = [mesher.PolygonalPrism(vertices, z1=0,

z2=500, props={’density’:500})]
# Calculate the gravity anomaly
shape = (100, 100)
x, y, z = gridder.scatter(area, 300, z=-1)
gz = gravmag.polyprism.gz(x, y, z, model)
mpl.figure()
mpl.axis(’scaled’)
mpl.title("Gravity anomaly (mGal)")
mpl.contourf(y, x, gz, shape=(50, 50),

levels=30, interp=True)
mpl.colorbar()
mpl.polygon(model[0], ’.-k’, xy2ne=True)
mpl.set_area(area)
mpl.m2km()
mpl.show()
myv.figure()
myv.polyprisms(model, ’density’)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

http://leouieda.github.io/tesseroids
http://leouieda.github.io/tesseroids
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Fig. 8: Screen-shot of interactively drawing the contour of a 3D
polygonal prism, as viewed from above.

Fig. 9: Example of forward modeling the gravity anomaly of a 3D
polygonal prism. a) forward modeled gravity anomaly. b) 3D plot of
the polygonal prism.

Fig. 10: Example of using the "sandwich model" imaging method
to recover a 3D image of a geologic body based on its gravity
anomaly. The colored blocks are a cutoff of the imaged body. The
black contours are the true source of the gravity anomaly.

Gravity and magnetic methods

Geophysics uses anomalies in the gravitational and magnetic
fields generated by density and magnetization contrasts within
the Earth to investigate the inner Earth structure. The Fatiando
a Terra 0.1 release has been focused on gravity and magnetic
methods. Therefore, the fatiando.gravmag package con-
tains more advanced and state-of-the-art algorithms than the
other packages.

The module fatiando.gravmag.imaging imple-
ments the imaging methods described in [FP]. These methods
aim to produce an image of the geologic source from the
observed gravity or magnetic data. The following code sample
uses the "sandwich model" method [SNDW] to image the
polygonal prism, produced in the previous section, based on
its gravity anomaly (Figure 10):
estimate = gravmag.imaging.sandwich(x, y, z, gz,

shape, zmin=0, zmax=1000, nlayers=20, power=0.2)
body = mesher.vfilter(1.3*10**8, 1.7*10**8,

’density’, estimate)
myv.figure()
myv.prisms(body, ’density’, edges=False)
p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

Also implemented in Fatiando a Terra are some recent de-
velopments in gravity and magnetic inversion methods. The
method of "planting anomalous densities" by [UB] is imple-
mented in the fatiando.gravmag.harvester module.
In contrast to imaging methods, this is an inversion method,
i.e., it estimates a physical property distribution (density in the
case of gravity data) that fits the observed data. This particular
method requires the user to specify a "seed" (Figure 11) around
which the estimated density distribution grows (Figure 12):
# Make a mesh and a seed
mesh = mesher.PrismMesh(bounds, (15, 30, 30))
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Fig. 11: The small blue prism is the seed used by
fatiando.gravmag.harvester to perform the inversion
of a gravity anomaly. The black contours are the true source of the
gravity anomaly.

seeds = gravmag.harvester.sow(
[[200, 300, 100, {’density’:500}]],
mesh)

myv.figure()
myv.prisms([mesh[s.i] for s in seeds])
p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()
# Now perform the inversion
data = [gravmag.harvester.Gz(x, y, z, gz)]
estimate = gravmag.harvester.harvest(data, seeds,

mesh, compactness=0.1, threshold=0.0001)[0]
mesh.addprop(’density’, estimate[’density’])
body = mesher.vremove(0, ’density’, mesh)
myv.figure()
myv.prisms(body, ’density’)
p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)
p.actor.mapper.scalar_visibility = False
p.actor.property.color = (0, 0, 0)
myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])
myv.wall_north(bounds)
myv.wall_bottom(bounds)
myv.show()

A toy seismic tomography

The following example uses module
fatiando.seismic.srtomo to perform a simplified 2D
tomography on synthetic seismic wave travel-time data. To
generate the travel-times we used a seismic wave velocity
model constructed from an image file. The colors of the
image are converted to gray-scale and the intensity is mapped
to seismic wave velocity by the img2prop method of
the fatiando.mesher.SquareMesh class. This model
(Figure 13) is then used to calculate the travel-times between
a random set of earthquake locations and seismic receivers
(seismometers):

Fig. 12: The blue prisms are the result of a gravity inversion using
module fatiando.gravmag.harvester. The black contours
are the true source of the gravity anomaly. Notice how the inversion
was able to recover the approximate geometry of the true source.

import urllib
from fatiando import mesher, utils, seismic
from fatiando.vis import mpl
area = (0, 500000, 0, 500000)
shape = (30, 30)
model = mesher.SquareMesh(area, shape)
link = ’/’.join(["http://fatiando.readthedocs.org",

"en/Version0.1/_static/logo.png"])
urllib.urlretrieve(link, ’model.png’)
model.img2prop(’model.png’, 4000, 10000, ’vp’)
quake_locations = utils.random_points(area, 40)
receiver_locations = utils.circular_points(area, 20,

random=True)
quakes, receivers = utils.connect_points(

quake_locations, receiver_locations)
traveltimes = seismic.ttime2d.straight(model, ’vp’,

quakes, receivers)
noisy = utils.contaminate(traveltimes, 0.001,

percent=True)

Now the noise-corrupted synthetic travel-times can be used in
our simplified tomography:
mesh = mesher.SquareMesh(area, shape)
slowness, residuals = seismic.srtomo.run(noisy,

quakes, receivers, mesh, smooth=10**6)
velocity = seismic.srtomo.slowness2vel(slowness)
mesh.addprop(’vp’, velocity)
# Make the plots
mpl.figure(figsize=(9, 7))
mpl.subplots_adjust(top=0.95, bottom=0.05,

left=0.05, right=0.95)
mpl.subplot(2, 2, 1)
mpl.title(’Velocity model (m/s)’)
mpl.axis(’scaled’)
mpl.squaremesh(model, prop=’vp’, cmap=mpl.cm.seismic)
mpl.colorbar(pad=0.01)
mpl.points(quakes, ’*y’, label="Sources")
mpl.points(receivers, ’^g’, label="Receivers")
mpl.m2km()
mpl.subplot(2, 2, 2)
mpl.title(’Ray paths’)
mpl.axis(’scaled’)
mpl.squaremesh(model, prop=’vp’, cmap=mpl.cm.seismic)
mpl.colorbar(pad=0.01)
mpl.paths(quakes, receivers)
mpl.points(quakes, ’*y’, label="Sources")
mpl.points(receivers, ’^g’, label="Receivers")
mpl.m2km()
mpl.subplot(2, 2, 3)
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Fig. 13: Example run of a simplified 2D tomography. The top-
left panel shows the true velocity model with the locations of
earthquakes (yellow stars) and receivers (green triangles). The top-
right panel shows the ray-paths between earthquakes and receivers.
The bottom-left panel is the velocity estimated by the tomography.
The bottom-right panel is a histogram of the travel-time residuals of
the tomography. Notice how the majority of residuals are close to 0
s, indicating a good fit to the data.

mpl.title(’Estimated velocity (m/s)’)
mpl.axis(’scaled’)
mpl.squaremesh(mesh, prop=’vp’, cmap=mpl.cm.seismic,

vmin=4000, vmax=10000)
mpl.colorbar(pad=0.01)
mpl.m2km()
mpl.subplot(2, 2, 4)
mpl.title(’Residuals (s)’)
mpl.hist(residuals, bins=10)
mpl.show()

Even though the implementation in
fatiando.seismic.srtomo is greatly simplified
and not usable in real tomography problems, the result in
Figure 13 illustrates interesting inverse problem concepts.
Notice how the estimated velocity is blurred in the corners
where no rays pass through. This is because the data (travel-
times) provide no information about the velocity in those
areas. Areas like those constitute the null space of the inverse
problem [MENKE], where any velocity value estimated
will provide an equal fit to the data. Thus, the tomography
problem requires the use of prior information in the form of
regularization. Most commonly used in tomography problems
is the Tikhonov first-order regularization, e.g., a smoothness
constraint [MENKE]. The amount of smoothness imposed
on the solution is controlled by the smooth argument of
function fatiando.seismic.srtomo.run. That is how
we are able to estimate a unique and stable solution and why
the result is specially smoothed where there are no rays.

Conclusion

The Fatiando a Terra package provides an API to develop
modeling algorithms for a variety of geophysical methods.
The current version (0.1) has a few state-of-the-art gravity
and magnetic modeling and inversion algorithms. There are

also toy problems in gravity, seismics and seismology that are
useful for teaching basic concepts of geophysics, modeling,
and inverse problems.

Fatiando a Terra enables quick prototyping of new algo-
rithms because of the collection of fast forward modeling
routines and the simple syntax and high level of the Python
language. After prototyping, the performance bottlenecks of
these algorithms can be easily diagnosed using the advanced
profiling tools available in the Python language. Optimization
of only small components of code can be done without loss
of flexibility using the Cython language [CYTHON].

The biggest challenge that Fatiando a Terra faces in the
near future is the development of a user and, consequently, a
developer community. This is a key part for the survival of
any open-source project.
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