
Polylib User’s Manual

The Polylib Team

September 26, 2002

Contents

1 Introduction 3
On polyhedra . 3
What is Polylib useful for? . 4
To know more about polyhedra and Polylib 4
About the organization of Polylib . 5
What does the user’s manual contain? 5

2 Getting started 6
2.1 A very simple example . 6
2.2 Using Polylib for solving it . 6

2.2.1 Install the library . 7
2.2.2 Write the C program . 8
2.2.3 Write the input to the C program 8
2.2.4 Compile and run the C program 9

3 Matrices and vectors 11
3.1 Basic operations on elementary data structures 11
3.2 Vector operations . 12
3.3 Matrix operations . 14

4 Polyhedra 16
4.1 Theoretical background . 16
4.2 Main functions in Polyhedron.c 19

4.2.1 Computing on Domains or polyhedra 19
4.2.2 Chernikova level functions 21

5 Lattices 23
5.1 Theoretical background . 23
5.2 Important functions in Lattice.c 25

6 Z-Polyhedra 27
6.1 Theoretical background . 27
6.2 Main functions of Zpolyhedron.c 28

7 Parametrized polyhedra and Ehrhart polynomials 30
7.1 Theoretical background . 30

7.1.1 Parameterized polyhedra representation 30
7.1.2 Parameterized vertices representation 31
7.1.3 Ehrhart polynomials representation 31

1

7.2 Main functions in polyparam.c . 31
7.3 Main functions and variables in ehrhart.c 32

8 Other tools 34

9 Data structures 37
9.1 Basic types . 37

9.1.1 Integer representation . 37
9.1.2 Error handling . 37
9.1.3 The saturation matrix . 37

9.2 The homogeneous representation of affine spaces 38
9.3 Matrices and Polyhedra . 39
9.4 Lattices and Z-polyhedra . 40
9.5 Parametrized Polyhedra . 41

10 Example 42

11 Installation 46
11.1 Hardware and software requirements 46
11.2 Installation procedure . 46
11.3 Options of the configure script 47
11.4 Known problems . 49

2

Chapter 1

Introduction

Polylib is a free C library for doing computations on polyhedra. The library
is operating on objects like vectors, matrices, lattices, polyhedra, Z-polyhedra,
unions of polyhedra and other intermediary structures. It provides functions for
all important operations on these structures.

Polylib can be downloaded from http://www.irisa.fr/polylib/
This document is Polylib user’s manual. It contains the information needed

to understand what Polylib does, how it can be installed, and a few words about
how it is implemented.

In this introduction, we first describe polyhedra, then we present the appli-
cations of Polylib, we develop a little bit the relationship between polyhedra
and parallelization techniques, we provide a few references, we present the or-
ganization of Polylib, and finally, we present the remaining of the document.

We are continuously maintaining the library. If you have any comment or
question about this document or the library itself, please feel free to contact us
(http://www.irisa.fr/polylib)

On polyhedra

The polyhedral theory derives from the theory of linear and integer programming.
A convex polyhedron has two dual representations: it can be seen as the

intersection of a finite number of half spaces, or as a combinations of vertices,
rays and lines. The first representation is also called implicit representation
while the second one is called the parametric representation (or generator rep-
resentation as every point in a polyhedral domain can be generated by a linear
combination of its generators). In order to avoid any misunderstanding between
the parametric representation and the parameterized polyhedra in the following
we will call it Minkovski representation.

Motzkin [MRTT] introduced the double representation method, a general
non-pivoting technique for solving the dual-computation for a cone. Chernikova
algorithm [Che65] showed how to pass from one representation to the other in
the restricting case of non-negative variables. Chernikova’s algorithm received
successive improvements [FQ88, Le 92] which resulted eventually in an efficient
computation kernel that forms the basis for polyhedra computations.

Polylib uses a double description form for representing polyhedra (actually,

3

http://www.irisa.fr/polylib/�
http://www.irisa.fr/polylib�

finite unions of polyhedra). The computation of one representation from the
other is realized with Chernikova’s algorithm. Based on this algorithms, Polylib
implements a variety of polyhedra operations, such as intersection, complement,
etc.

Polylib also manipulates affine functions (and image and pre-image of poly-
hedra) and permits to compute difference between two polyhedra. It also ex-
tends the concept of polyhedra to Z-polyhedra, that is to say, the intersection of
polyhedra and lattices. Finally, Polylib computes parameterized polyhedra and
coputes Ehrhart polynomials to find the number of integer points in a union of
rational convex polytopes.

What is Polylib useful for?

A polyhedral library can be used in various fields: In computational geometry,
combinatorial optimization, program optimization and parallelization, program
verification, . . . Polylib was developed while working on parallelization tech-
niques, and its main users belong to this community. This is the reason why we
give here more information on this domain.

The iteration domain of a loop nest can be represented by a convex polyhe-
dron, each integral point representing a vector of iteration indices. Therefore,
operations on polyhedra are useful for doing loop transformations and other
program restructuring transformations which are needed in parallelizing com-
pilers.

Along the same lines, polyhedra are a means of describing domain definitions
of variables in systems of affine recurrence equations, a formalism introduced
at the end of the sixties (of the last century!) to model parallel computations.
Therefore the development of methods to do synthesis, analysis and verification
of systems of recurrence equations requires also polyhedra computations. By
means of such methods one can transform an algorithm from a mathematical
description into an equivalent form that can be implemented either with special
purpose hardware (with systolic arrays for instance) or as a program which can
be run on a multiprocessor system.

To know more about polyhedra and Polylib

To know more about polyhedra and Polylib, the following references can be
consulted:

• A. Schrijver’s book [SCH86]: Theory of Linear and Integer Programming.

• D. K. Wilde’s report [Wil93] : A library for doing polyhedral operations

• S. P. K. Nookala and T. Risset [NRi00] A library for Z-Polyhedral opera-
tions

• Polylib reference manual

• V. Loechner [Loe99] Polylib:A library for Manipulating Parametrized Poly-
hedra

4

• K. Fukuda Polyhedral computation FAQ,
http://www.ifor.math.ethz.ch/ fukuda/fukuda.html

See also the links part of the Polylib web site.

About the organization of Polylib

Polylib is written in Ansi C and is running on Unix, Linux, and Windows
(provided Cygwin is installed). Polylib is evolving, and developed by Brigham
Young University, ICPS in Strasbourg , LIP in Lyon and Irisa in Rennes. The
sources of the library can be accessed via the central CVS repository in Rennes
at url: http://www.irisa.fr/cgi-bin/cvsweb.cgi/

Polylib is free, but is subject to the GNU General Public Licence agreement.
Currently, Polylib does not provide a user-friendly interface for computing poly-
hedra: if you want to try it, you have to write a C program which calls the
appropriate functions (see chapter 2 and annexe 10 for detailed explanations).

What does the user’s manual contain?

This document contains the following chapters.

• Chapter 2 present a rapid introduction of how to use the library.

• Chapter 3 describes matrix and vector routines of Polylib.

• Chapter 4 presents notions on polyhedra, and lists the main C functions
on polyhedra of Polylib.

• Chapter 5 describes lattice functions of Polylib.

• Chapter 6 describes functions of Polylib dealing with Z-polyhedra.

• Chapter 7 describes functions of Polylib dealing with parameterized poly-
hedra and Ehrhart polynomials.

• Chapter 8 describes a few additional tools of Polylib.

• Chapter 9 presents briefly the data structures of Polylib.

• Chapter 10 shows a short program that may serve as exemple of using
Polylib.

• Chapter 11 provides the necessary information to install Polylib.

5

Chapter 2

Getting started

This section is dedicated to the explanation of a very simple use of the Polylib
by a new user. It can be skipped by people who have already used the library.

2.1 A very simple example

Consider the C code of figure 2.1, and imagine you want to know exactly which
part of array A is accessed in both loop nests.

for (i=1;i<=N;i++)
for (j=1;j<= i; j++)

A[i][j]=0;
for (i=1;i<=N;i++)

for (j=1;j<= N; j++)
if (i+j>=N) A[i][j]=1;

Figure 2.1: two simple nested loops, N is a size parameter, not known at compile
time.

As array A is addressed with identity function, the element of A accessed
in memory directly correspond to the values taken by vector (i, j) during the
execution. The iteration space of the first loop is D1 = {i, j | 1 ≤ i ≤ N ; 1 ≤
j ≤ i} (see figure 2.2-(a)), the value of (i, j) accessed in the second loop nest
correspond to the polyhedron: D2 = {i, j | 1 ≤ i ≤ N ; 1 ≤ j ≤ N ; i + j ≥
N} see figure 2.2-(b)). On figure 2.2, we have represented these polyhedra as
well as the integer points contained in these polyhedra. Remind that, unless
otherwise specified, Polylib manipulates sets of integer points contained in a
polyhedron. The solution of the problem is simply obtained by intersecting
these two polyhedra: D3 = D1 ∩ D2 = {i, j | 1 ≤ j ≤ i ≤ N ; i + j ≥ N} (see
figure 2.2-(c)).

2.2 Using Polylib for solving it

This problem (computing the intersection of two given polyhedra) can be solved
by writing a C program that calls the functions defined in Polylib. For this, you

6

Figure 2.2: Polyhedra modeling the iteration spaces of the two loop nests of
figure 2.1 for N=5: (a) and (b), and the intersection of them: (c).

have to perform the following steps: install the library, write the C program,
write the input to the C program, compile and run the C program.

2.2.1 Install the library

The precise explanations of the installation procedure are present in chapter 11,
we briefly explain the main steps here. The following commands correspond to
an execution on a Sparc station under Solaris operating system. The commands
are quite identical on Windows (using cygwin) and linux platform.

1. Download the library (e.g. file polylib5.0.tgz at url :
http://www.irisa.fr/polylib/).

2. Decompress the archive:

gunzip polylib5.0.tgz
tar xvf polylib5.0.tar

This will create the Polylib directory where all Polylib files are.

3. Configure the makefile (for instance, if you want a 32 bit integer version):

cd Polylib
./configure --enable-int-lib

4. Compile the library (and run the tests):

make
make test

This installation procedure will place a library file called libpolylib32.a in di-
rectory Polylib/Obj.32.sparc-sun-solaris2.6/. This location can be mod-
ified by giving options to the configure script (see chapter 11).

7

http://www.irisa.fr/polylib/�

2.2.2 Write the C program

The C program is represented in figure 2.3. The domains D1 and D2 will be en-
tered to the program as constraints (implicit representation) because this is the
most intuitive way of representing them given the original problem. Hence, we
use the Matrix Read function to read them. Then, these constraints have to be
translated to polyhedra (i.e. the parametric representation has to be computed
by the Chernikova algorithm). Hence the use of the Constraints2Polyhedron
function (in the program of figure 2.3, we allow the domains to have 200 con-
straints or less). Finally we can intersect the polyhedra (DomainIntersection
function) and print out the result.

#include <stdio.h>
#include <polylib/polylib.h>

int main() {
Matrix *a1, *a2;
Polyhedron *D1, *D2, *D3;

a1 = Matrix_Read();
a2 = Matrix_Read();

D1 = Constraints2Polyhedron(a1, 200);
D2 = Constraints2Polyhedron(a2, 200);

D3 = DomainIntersection(D1,D2,200);

printf("\n D3 =");
Polyhedron_Print(stdout,P_VALUE_FMT,D3);
}

Figure 2.3: C program (file prog1.c) for solving the problem of section 2.1 with
Polylib

2.2.3 Write the input to the C program

The input format needed by the Matrix read function is quite unconvenient.
A constraint (say ~a · ~x ≥ b) is represented in a row

(
~a −b

)
of a matrix. In

addition, as Polylib handles equality and inequalities, the first column of this
matrix will be a 1 (for inequality) or a 0 (for equality). Hence, the constraint
i+2j >= 3 will correspond to a the following row:

(
1 1 2 −3

)
(assuming

that i and j are the only indices and that we have chosen to order them in the
order (i, j)).

In our case, we have to enter the constraint corresponding to domain D1 =
{i, j | 1 ≤ i ≤ N ; 1 ≤ j ≤ i}. In Polylib, you have to consider N as an index

8

hence, the constraints of domain D1 could be represented in matrix form as:

−1 0 1 0
1 0 0 −1
0 1 0 −1
1 −1 0 0

i
j
N
1

 ≥ 0

Similarly a possible matrix form for the constraints of D2 = {i, j | 1 ≤ i ≤
N ; 1 ≤ j ≤ N ; i + j ≥ N} could be:

−1 0 1 0
1 0 0 −1
0 −1 1 0
0 1 0 −1
1 1 −1 0

i
j
N
1

 ≥ 0

From these matrices, we deduce the input file to be written which is represented
in figure 2.4.

4 5
1 -1 0 1 0
1 1 0 0 -1
1 0 1 0 -1
1 1 -1 0 0
5 5
1 -1 0 1 0
1 1 0 0 -1
1 0 -1 1 0
1 0 1 0 -1
1 1 1 -1 0

Figure 2.4: The input file (file prog1.in) to program of figure 2.3

Writing the input file of figure 2.4 is painful, you can use the programs
readPol and writePol that translate back and forth form the external format
of polyhedra (like : {i,j | 1<=i<= N; 1<=j<=i }) and the internal input
format used in figure 2.4 (see the ”interesting links” on http://www.irisa.fr/
polylib).

2.2.4 Compile and run the C program

Here, we decompose the compilation into compiling and linking to make things
clear. We assume that prog1.c is situated just above the Polylib directory
(the -D flag indicates to the compiler, which type of integer you are using). The
compilation command is:

gcc -c -g -O2 -I Polylib/include -DLINEAR_VALUE_IS_INT prog1.c -o prog1.o

Then link it with the library to provide an executable.

gcc prog1.o Polylib/Obj.32.sparc-sun-solaris2.6/libpolylib32.a -o prog1

9

http://www.irisa.fr/polylib�
http://www.irisa.fr/polylib�

In general it might be better to use a makefile for compiling the C program, be-
cause many flags are set up in the file vars.mk. A sample Makefile is provided
in the example of the Polylib) hierarchy.

Finally, run the program on the input file of figure 2.4.

prog1 < prog1.in2

The output of the execution shown on figure 2.5. In this output form, the first
column of the matrix is translated into: Inequality or equality. Hence, for
instance, the first row: Inequality:

[
1 −1 0 0

]
should be read as i ≥

j. One can check that it corresponds to D3 = {i, j | 1 ≤ j ≤ i ≤ N ; i + j ≥ N}
Of course, Polylib should be used to solved more complex problem and it is

specifically dedicated to serve as a kernel library in a bigger program and not
as a stand-alone program.

D3 =POLYHEDRON Dimension:3
Constraints:5 Equations:0 Rays:5 Lines:0

Constraints 5 5
Inequality: [1 -1 0 0]
Inequality: [1 1 -1 0]
Inequality: [-1 0 1 0]
Inequality: [0 1 0 -1]
Inequality: [0 0 0 1]
Rays 5 5
Ray: [1 0 1]
Ray: [1 1 1]
Ray: [1 1 2]
Vertex: [1 1 2]/1
Vertex: [1 1 1]/1

Figure 2.5: Result of the execution of the program of figure 2.3 on the input file
of figure 2.4

10

Chapter 3

Matrices and vectors

As any polyhedral operation exploits structures like matrices, vectors or values,
Polylib provides elementary functions on these data structures. This chapter is
devoted to these functions. Section 3.1 presents the basic operations. Section 3.2
describes operations on vectors. Finally, section 3.3 presents operations on
matrices.

3.1 Basic operations on elementary data struc-
tures

Before going into the details of the available functions, we have to say a word
about the typing mechanism of Polylib (A more complete description of the
data structures of the library is provided in chapter 9). The integer handling
is based on the ArithLib library which was originally part of the Pips com-
piler (http://www.cri.ensmp.fr/~pips/home.html) developed at the ensmp
in Fontainebleau. In order to handle different integer size (32 bits, 64 bits or
infinite precision with the gmp library), integers are stored in a data structured
called value. At compile time, a value is translated either into 32-bit integer
or 64-bit integer or gmp integer (depending on the options provided during the
compilation). These value are mainly used for the coefficient of the constraints
and ray/vertices of the polyhedra.

Polylib contains a large amount of relational, algebraic or structural oper-
ations on integers. Here are some examples of the operations implemented in
Polylib:

• Search for the greatest integer value with the power two less then a given
integer.

int polylib sqrt(int i)

• Least Common Multiple of two values.

void Lcm(value i, value j,value* result)

• Greatest Common Divisor of two values.

void Gcd(value i, value j, value* result)

11

http://www.cri.ensmp.fr/~pips/home.html�

• Factorial for a integer.

void Factorial(int n, value* result)

• Number of ways to choose ’b’ items from ’a’ items.

void CNP(int a, int b, value* result)

In addition, there are some operations that will work only on fixed types.
Exemples are given by MSB, TOP and NEXT functions defined over the integer
type but not on the value type:

• MSB: put a one in the most significant bit of an int.

• TOP: largest representable positive number.

• NEXT(j,b): right shift the one bit in b and increments j if the last bit in
b is one.

3.2 Vector operations

Polylib contains tools for manipulating vector data structures. These functions
are in the file vector.c.

These functions allows the following operations:

• allocating, reading printing or deleting vectors,

• setting a value in each position of a vector,

• sorting values of a vector. This is done in Polylib in the Vector Sort
function using the heap sort algorithm. Other sort operations exists, such
as in function AffinePartSort which perform sorting operation on a list
of lattices.

• unary operations on vectors. Finding the minimum, maximum or greatest
common divisor for a vector. Based on the GCD of a vector other unary
operations are available like Vector Normalize.

• logical operations on vectors components, algebraic computations between
vectors.

Main functions in vector.c

int First Non Zero (Value *p, unsigned length) return the smallest com-
ponent index in ’p’ whose value is non-zero.

Vector * Vector Alloc (unsigned length): allocate memory space for a
vector.

void Vector Free (Vector *vector): free the memory space occupied by
Vector.

void Vector Print (FILE *Dst, char *Format, Vector *vector): print
the contents of a Vector.

12

Vector * Vector Read () read the components of a vector from the standard
input.

void Vector Set (Value *p, int n ,unsigned length): assign ’n’ to each
component of Vector ’p’.

void Vector Exchange : exchange the components of the vectors ’p1’ and
’p2’.

void Vector Copy (Value *p1, Value *p2, unsigned length): copy vec-
tor ’p1’ to vector ’p2’.

Vector Add (Value *p1, Value *p2, unsigned length): add two vectors
’p1’ and ’p2’ and store the result in ’p3’.

void Vector Sub (Value *p1, Value *p2, Value *p3, unsigned length):
subtract two vectors ’p1’ and ’p2’ and store the result in ’p3’.

void Vector Or (Value *p1, Value *p2, Value *p3, unsigned length):
compute bit-wise OR of vectors ’p1’ and ’p2’ and store it in ’p3’.

void Vector Scale (Value *p1, Value *p2, Value lambda, unsigned
length): scale (i.e. multiply) vector ’p1’ by factor ’lambda’ and store
it in ’p2’.

void Vector AntiScale (Value *p1, Value *p2, Value lambda, unsigned
length): antiscale (i.e. divide) vector ’p1’ by ’lambda’ and store it in ’p2’.

void Inner Product (Value *p1, Value *p2, unsigned length, Value
*result): return the inner product of two vectors ’p1’ and ’p2’.

void Vector Max (Value *p, unsigned length,Value *result): return the
maximum of the components of ’p’.

void Vector Min (Value *p, unsigned length, Value *result): return
the minimum of the components of Vector ’p’.

void Vector Combine (Value *p1, Value *p2, Value *p3, Value lambda,
Value mu, unsigned length): return the linear combination of two vec-
tors.

int Vector Equal (Value *Vec1, Value *Vec2, unsigned n): return 1 if
’Vec1’ equals ’Vec2’, otherwise return 0.

void Vector Min Not Zero (Value *p, unsigned length, int *index,
Value *result): return the component of ’p’ with minimum non-zero
absolute value.

void Vector Gcd (Value *p, unsigned length, Value *result): return
the GCD of components of Vector ’p’.

void Vector Map (Value *p1, Value *p2, Value *p3, unsigned length,
Value *(*f)()): given vectors ’p1’ and ’p2’, and a pointer to a function
returning ’Value’ type, compute p3[i] = f(p1[i],p2[i]).

13

void Vector Normalize (Value *p, unsigned length): reduce a vector by
dividing it by its GCD.

void Vector Normalize Positive (Value *p, int length,int pos): reduce
a vector to a positive vector by dividing it by its GCD.

void Vector Reduce (Value *p,unsigned length,void(*f)(Value,Value
*), Value *result) : reduce ’p’ by operating binary function on its
components successively.

void Vector Sort (Value *vector, unsigned n): sort the components of a
vector ’vector’ using heap sort.

3.3 Matrix operations

Matrix operations in Polylib can be found in three source files:

• matrix.c

• Matop.c

• NormalForms.c

Polylib provides function to:

• allocate, free, read and print matrices,

• compute specific form like the identity matrix, Hermite Normal form (see
page 24), Smith normal forms (see page 35)

• add, remove columns and rows in order to perform basic modifications of
matrices,

• transpose and invert matrices.

Main functions in Matop.c, matrix.c and NormalForms.c

Matrix * Matrix Alloc (unsigned NbRows, unsigned NbColumns): al-
locate space for matrix of dimensions ’NbRows x NbColumns’.

void Matrix Free (Matrix *Mat): free the memory space occupied by Ma-
trix ’Mat’.

void Matrix Print (FILE *Dst, char *Format, Matrix *Mat): print
the contents of the Matrix ’Mat’.

Matrix * Matrix Read (void) : read the contents of the matrix ’Mat’ from
standard input.

int MatInverse (Matrix *Mat, Matrix *MatInv): given a integer matrix
’Mat’, compute its inverse rational matrix ’MatInv’.

void rat prodmat (Matrix *S, Matrix *X, Matrix *P): compute the
matrix product between an integer matrix and a rational one.

14

void Matrix Vector Product (Matrix *Mat, Value *p1, Value *p2):
compute the matrix-vector product.

void Vector Matrix Product (Value *p1, Matrix *Mat, Value *p2):
compute the vector-matrix product.

void Matrix Product (Matrix *Mat1, Matrix *Mat2, Matrix *Mat3):
compute the matrix-matrix product.

int Matrix Inverse (Matrix *Mat, Matrix *MatInv): given a rational
matrix ’Mat’, compute its inverse rational matrix ’MatInv’.

static void transpose (Value *a, int n, int q): transpose a part of a ma-
trix.

static void smith (Value *a, Value *b, Value *c, Value *b inverse,
Value *c inverse, int n, int p, int q): find the Smith Normal Form
of a matrix.

void ExchangeRows (Matrix *M, int Row1, int Row2) : exchange the
rows ’Row1’ and ’Row2’ of the matrix ’M’.

void ExchangeColumns (Matrix *M, int Column1, int Column2): ex-
change the columns ’Column1’ and ’Column2’ of the matrix ’M’.

Matrix * Transpose (Matrix *A): compute the transpose of a matrix.

int findHermiteBasis (Matrix *M, Matrix **Result): compute the Her-
mite basis for a matrix (see [NRi00]).

Matrix * Identity (unsigned size): return an identity matrix of size ’size’.

Bool isinHnf (Matrix *A) : check if the matrix ’A’ is in Hermite normal
form.

Matrix * AddANullRow (Matrix *M): add a row of zeros at the end of a
matrix.

Matrix * RemoveColumn (Matrix *M, int Columnnumber): remove a
column from the matrix.

15

Chapter 4

Polyhedra

This chapter has two parts. Section 4.1 presents some theoretical results con-
cerning the theory of polyhedra. Then section 4.2 gives the list of Polylib func-
tions related to the basic part of the library, that is to say, classical polyhedra
representation. These functions can be found in the Polyhedron.c source file
that was one of the first Polylib packages.

4.1 Theoretical background

A nonempty set C of points in a Euclidean space is called a (convex) cone if
λx + µy ∈ C whenever x, y ∈ C and λ, µ ≥ 0. A cone C is polyhedral if

C = {x|Ax ≤ 0}
for some matrix A, i.e. if C is the intersection of finitely many linear half-spaces.
Results from the linear programming theory [SCH86] shows that the concepts
of polyhedral and finitely generated are equivalent.

Theorem 1. (Farkas-Minkowski-Weyl) A convex cone is polyhedral if and only
if it is finitely generated.

A short definition of a polyhedra may be a finitely generated convex cone but
in fact we are talking about the geometric representation of a list of constraints
provided as a linear system of equations and inequalities.

Definition 1. (Polyhedron) A convex polyhedron if it is the set of solutions
to a finite system of linear inequalities. It is called a convex polytope if it is a
convex polyhedron and it is bounded. When a convex polyhedron (or polytope)
has dimension k, it is called a k-polyhedron (k-polytope).

Hence, a set P of vectors in Rn is called a (convex) polyhedron if:

P = {x|Ax ≤ b}
for some matrix A and a vector b, i.e P is the intersection of finitely many affine
half-spaces. In Polylib manipulated objects are -integer polyhedra- which are
integer points on polyhedra.

P ′ = {x ∈ Zn|Ax ≤ b} = P ∩ Zn

16

For simplicity reason, from now on, we refer to polyhedra for integer polyhedra.
The concept of polyhedron and polytope are related by the means of the

decomposition theorem for polyhedra.

Theorem 2. (Decomposition theorem for polyhedra) A set P of vectors in a
Euclidean space is a polyhedron, if and only if P = Q + C for some polytope Q
and some polyhedral cone C.

For a set of vectors a1, · · · , an, if a vector b does not belong to the cone
generated by these vectors, then there exists a hyperplane separating b from
from a1, · · · , an. This result has also been formulated in the Farkas’ lemma. A
variant of this result is the following:

Lemma 1. Let A be a matrix and let b be a vector. Then the system Ax ≤ b
of linear inequalities has a solution x, if and only of yb ≥ 0 for each row vector
y ≥ 0 with yA = 0.

In Polylib the decomposition theorem is extensively used (in its extended
form for polyhedra). A polyhedron P can be represented by a set of in-
equalities (usually, implicit equalities are represented in a separate matrix):
P = {x|Ax = b, Cx ≥ d}, this representation is called implicit. From the
Minkowski characterization, we know that P has a dual representation, called
the parametric representation.

P = {x|x = Lλ + Rµ + V ν, where ν ≥ 0,
∑

ν = 1, µ ≥ 0}

Hence, each point of P can be expressed as a sum of:

• a linear combination of so called lines (columns of matrix L),

• a convex combination of vertices (columns of matrix V), and

• a positive combination of extremal rays (columns of matrix R).

Although the polyhedra theory cannot be detailed here, we review a set of
important concepts that are used when manipulating polyhedra. For a more
precise description, please refer to [SCH86, Wil93].

• The characteristic cone of a polyhedron P = {x|Ax ≤ b} is the polyhedral
cone

char.cone(P) = {y|x + y ∈ P,∀x ∈ P} = {y|Ay ≤ 0} .

Sometimes the characteristic cone is called the recession cone of P . If P =
Q+C, with Q a polytope an C a polyhedral cone, then C = char.cone(P)
.

• The lineality space of P = {x|Ax ≤ b} is the linear space

lin.space(P) = char.cone(P) ∩ −char.cone(P) = {y|Ay = 0} .

If the lineality space has dimension zero, P is said to be pointed.

17

• A supporting hyperplane of P = {x|Ax ≤ b} is the affine hyperplane
described by {x|cx = δ} where c is a nonzero vector and δ = max{cx|Ax ≤
b}.

• A subset F of a polyhedron P = {x|Ax ≤ b} is called a face if F = P or
if F is the intersection of P with a supporting hyperplane of P . In other
words F is a face if and only if there is a vector c for which F is the set of
vectors attaining max{cx|x ∈ P} provided that this maximum is finite.

A alternative description of a face is the nonempty subset F :

F = {x ∈ P |A′x = b′}

for some subsystem A′x ≤ b′ of Ax ≤ b.

• The faces of a polyhedron P have the following important properties:

– P has finitely many faces;

– each face is a nonempty polyhedron;

– if F is a face of P and F ′ ⊆ F , then: F ′ is a face of P if and only if
F ′ is a face of F .

• A facet of P is a maximal face distinct from P . In other words if there is
no redundant inequality in the polyhedron definition system: Ax ≤ b then
there exists a one-to-one correspondence between the facets of P and the
inequalities given by

F = {x ∈ P |aix = bi}
for any facet F of P and any inequality aix ≤ bi from Ax ≤ b .

The faces of dimension 0, 1, k− 2 and k− 1 are called the vertices, edges,
ridges and facets, respectively. The vertices coincide with the extremal
points of the polyhedron, that are also defined as points which cannot be
represented as convex combinations of two other points in the polyhedron.
When an edge is not bounded, there are two cases: either it is a line or a
half-line starting from a vertex. A half-line edge is called an extremal ray.

• The convex hull of a set Q is the convex combination of all points in Q.
It is the smallest convex set which contains all of Q.

Polylib implements procedures to compute, from one representation of a
polyhedron P (implicit of parametric), its dual representation of P , given the
implicit on. The algorithms was proposed by Chernikova [Che65] which re-
discovered the double description method introduced by Motzkin. Important
improvements were made in the conversion process between these representa-
tions by Fernandez [FQ88] and Le Verge [Le 92].

Based on this kernel algorithm, Polylib propose many computational func-
tion on polyhedra. More precisely, Polylib manipulates domains which are finite
unions of polyhedra 1.

1The user must be aware of the fact that Polylib is mostly used to represent the set of
integer points contained in domains, hence the set {x|x > 0} (which is not a polyhedron) will,
in fact, represent the set {x|x >= 1}. With this convention, Polylib is able to compute the
difference between polyhedra.

18

Polylib manipulates mixed inhomogeneous system of equations. The terms
inhomogeneous stands for the fact that it manipulates objects of an affine space
(not a linear space). To transform the inhomogeneous affine space of dimension
n into an homogeneous linear space of dimension n + 1, we use the following
mapping:

M : x −→
(

ξx
ξ

)
, ξ ≥ 0 .

With this mapping, a system P = {x | Ax = b, Cx ≥ d} in the original
inhomogeneous space is transformed into C = {x̃ | Ãx̃ = 0, C̃x̃ ≥ 0} where

Ã = (A − b), x̃ =
(

ξx
ξ

)
and C̃ =

(
C −d
0 1

)
.

In the internal representation of Polylib, object manipulated are cones (the
Chernikova algorithm works on cones), but this is transparent for the user which
naturally manipulates polyhedra (or union of polyhedra). As many Polylib
functions refer to domain, we precisely define what a domain is:

Definition 2. (Domain) A polyhedral domain of dimension n is a union of
polyhedra of dimension n.

4.2 Main functions in Polyhedron.c

Here is a brief description of the main functions of Polylib operating on poly-
hedra. Please refer the the reference manual for a more complete description.
Some of these functions operate on polyhedra (i.e. convex polyhedra) other op-
erate on domains (i.e. unions of polyhedra). Remind that, when using certain
functions (like DomainDifference for instance), the program assume that only
integer points inside the polyhedra are considered.

4.2.1 Computing on Domains or polyhedra

Polyhedron* Polyhedron Alloc (unsigned Dimension, unsigned NbCon-
straints, unsigned NbRays): allocate memory space for polyhedron.

void Polyhedron Free (Polyhedron *Pol) : free the memory space occu-
pied by the single polyhedron.

void Domain Free (Polyhedron *Pol) : free the memory space occupied
by the domain.

void Polyhedron Print (FILE *Dst,char *Format,Polyhedron *Pol) :
print the contents of a domain.

Polyhedron * Empty Polyhedron (unsigned Dimension) : create and re-
turn an empty polyhedron of dimension ’Dimension’.

Polyhedron * Universe Polyhedron (unsigned Dimension) : create and
return a universe polyhedron of dimension ’Dimension’.

Polyhedron * Constraints2Polyhedron (Matrix *Constraints,unsigned
NbMaxRays): given a matrix of constraints ’Constraints’, construct and
return a polyhedron using Chernikova’s algorithm.

19

Matrix * Polyhedron2Constraints (Polyhedron *Pol) : given a polyhe-
dron, extract its matrix of constraints.

Polyhedron * Rays2Polyhedron (Matrix *Ray,unsigned NbMaxConstrs)
: given a matrix of rays (i.e. vertices, rays ans lines) ’Ray’, create and
return a polyhedron using Chernikova’s algorithm.

Matrix * Polyhedron2Rays (Polyhedron *Pol) : given a polyhedron ’Pol’,
extract its matrix of rays (i.e. vertices, rays ans lines).

Polyhedron * AddConstraints (Value *Con, unsigned NbConstraints,
Polyhedron *Pol, unsigned NbMaxRays): add new constraints to a
polyhedron.

Polyhedron * DomainAddConstraints (Polyhedron *Pol, Matrix *Mat,
unsigned NbMaxRays): add constraints to each polyhedron in a poly-
hedral domain.

Polyhedron * AddRays (Value *AddedRays, unsigned NbAddedRays,
Polyhedron *Pol, unsigned NbMaxConstrs): add rays to a polyhe-
dron.

Polyhedron * DomainAddRays (Polyhedron *Pol, Matrix *Ray, un-
signed NbMaxConstrs): add rays to each polyhedron in a polyhedral
domain.

int PolyhedronIncludes (Polyhedron *Pol1, Polyhedron *Pol2): re-
turn 1 if ’Pol1’ contains ’Pol2’, 0 otherwise.

Polyhedron * AddPolyToDomain (Polyhedron *Pol, Polyhedron *PolDo-
main): add Polyhedron ’Pol’ to polyhedral domain ’PolDomain’.

Polyhedron * DomainIntersection (Polyhedron *Pol1, Polyhedron *Pol2,
unsigned NbMaxRays): return the intersection of two polyhedral do-
mains ’Pol1’ an’Pol2’.

Polyhedron * Polyhedron Copy (Polyhedron *Pol): create a copy of a
polyhedron.

Polyhedron * Domain Copy (Polyhedron *Pol): create a copy of a poly-
hedral domain.

Polyhedron * DomainSimplify (Polyhedron *Pol1, Polyhedron *Pol2,
unsigned NbMaxRays): simplify ’Pol1’ in the context of ’Pol2’: find
the largest domain that, when intersected with polyhedral domain ’Pol2’,
equals ’Pol1’∩’Pol2’.

Polyhedron * DomainUnion (Polyhedron *Pol1, Polyhedron *Pol2, un-
signed NbMaxRays): return the union of two polyhedral domains ’Pol1’
and ’Pol2’.

Polyhedron * DomainConvex (Polyhedron *Pol, unsigned NbMaxCon-
strs): concatenate the lists of rays and lines of the polyhedra of a domain
into one combined list. The result is the convex hull (a polyhedron) of a
domain.

20

Polyhedron * DomainDifference (Polyhedron *Pol1, Polyhedron *Pol2,
unsigned NbMaxRays) : create a new polyhedral domain which is the
difference of two domains.

Polyhedron * Polyhedron Image (Polyhedron *Pol, Matrix *Func, un-
signed NbMaxConstrs): compute the image of a polyhedron.

Polyhedron * Polyhedron Preimage (Polyhedron *Pol, Matrix *Func,
unsigned NbMaxRays): compute the preimage of a polyhedron. Note:
Func is not a necessarily invertable. This function computes the set of all
points x such that Func x ∈ Pol.

4.2.2 Chernikova level functions

The following functions represent the core of operations in Polylib. They are
used in the conversion process and work with localy defined types like the sat-
uration matrix. Their declaration is static so they are accessible to all the
functions declared in the file Polyhedron.c but not in any other functions.

In the following descriptions of functions we are using the term ”to saturate”.
As a short definition we can say that a ray or a line saturate a constraint if this
constraint is satisfied with equality. Extensive explanations regarding saturation
matrix can be found in the chapter 9.

struct SatMatrix : the saturation matrix is defined to be an integer (int type)
matrix but it is used at bit level by the Chernikova function: the ith bit
of the jth column is 1 if ray number i saturates constraint j.

static SatMatrix * BuildSat (Matrix *Mat, Matrix *Ray, unsigned
NbConstraints, unsigned NbMaxRays): build a saturation matrix
from constraint matrix ’Mat’ and a ray matrix ’Ray’.

void errormsg1 (char *f , char *msgname, char *msg): errormsg1 is
an external function which may be supplied by the calling program.

static SatMatrix * SMAlloc (int rows, int cols): allocate memory space
for a saturation matrix.

static void SMFree (SatMatrix **matrix): free the memory space occu-
pied by a saturation matrix.

static void SatVector OR (int *p1, int *p2, int *p3, unsigned length):
compute the bitwise OR of two parts of saturation matrices.

static void Combine (Value *p1, Value *p2, Value *p3, int pos, un-
signed length): compute the linear combination of two vectors ’p1’ and
’p2’, such that p3[pos]=0.

static SatMatrix * TransformSat (Matrix *Mat, Matrix *Ray, Sat-
Matrix *Sat): return the transpose of the saturation matrix ’Sat’.

static void RaySort (Matrix *Ray, SatMatrix *Sat, int NbBid, int
NbRay, int *equal bound, int *sup bound, unsigned RowSize1,
unsigned RowSize2, unsigned bx, unsigned jx): sort the rays (Ray,
Sat) into three tiers as used in the Chernikova function.

21

static int Chernikova (Matrix *Mat, Matrix *Ray, SatMatrix *Sat,
unsigned NbBid, unsigned NbMaxRays, unsigned FirstConstraint,
unsigned dual): This function is the kernel of Polylib, it computes the
dual of matrix ’Mat’ and place it in matrix ’Ray’.

int Gauss (Matrix *Mat, int NbEq, int Dimension): compute a minimal
system of equations using Gausian elimination method.

static Polyhedron * Remove Redundants (Matrix *Mat, Matrix *Ray,
SatMatrix *Sat, unsigned *Filter): compute a polyhedron composed
of ’Mat’ as constraint matrix and ’Ray’ as ray matrix after reductions.

static void SimplifyEqualities (Polyhedron *Pol1, Polyhedron *Pol2,
unsigned *Filter): eliminate equations of ’Pol1’ using equations of ’Pol2’.

static int SimplifyConstraints (Polyhedron *Pol1, Polyhedron *Pol2,
unsigned *Filter, unsigned NbMaxRays): If the intersection is empty
then store the smallest set of constraints of ’Pol1’ which on intersection
with ’Pol2’ gives empty set, in ’Filter’ array.

22

Chapter 5

Lattices

Polylib contains functions to operate on lattices, which are used in the Z-
polyhedra part of library. These functions are in the source file Lattice.c.
In this chapter, we provide first tome theoretical background, then we describe
the main lattice functions of Polylib.

5.1 Theoretical background

Lattice are manipulated in Polylib because they are used in constructing Z-
polyhedra. A subset L in Qn is a lattice if is generated by integral combination
of finitely many vectors: a1, · · · , am (ai ∈ Qn).

L = L(a1, · · · , am) = {λ1a1 + · · ·+ λmam|λ1, · · · , λn ∈ Z}
If the ai vectors have integral coordinates, L is an integer lattice. If the

linear space generated by the vectors (a1, · · · , am) is Qn, the lattice is said to
be full dimensional. If the ai vectors are linearly independent, they constitute
a basis of the lattice.

The affine object corresponding to a lattice is called an affine lattice. It is
constructed by adding the same constant vectors to all the points of a lattice.
For instance, the set L1 = {2i + 1, 3j + 5 | i, j ∈ Z} can be interpreted as an
affine lattice: it is the lattice defined by any integral linear combinations of the
vectors (2, 0) and (0, 3), plus the vector (1, 5)

L1 =
{

i

(
2
0

)
+ j

(
0
3

)
+

(
1
5

)
| i, j ∈ Z

}
.

In Polylib, only full-dimensional affine integral lattices are considered. It
can easily be proven that an element of this subset of affine lattices can always
be represented by a non singular integral matrix and an integral vector. For
instance, lattice L1 above, will be mathematically represented by:

L1 =
((

2 0
0 3

)
,

(
1
5

))

The data structure used to represent an affine lattice in Polylib is an affine
matrix. For example, lattice L1 will be represented in Polylib by the following

23

matrix:

L1 =

2 0 1
0 3 5
0 0 1

Lattice manipulation naturally leads to an intensive use of the Hermite nor-
mal form (HNF).

Definition 3. (Hermite normal form) A matrix A of full row rank is said
to be in Hermite normal form (HNF) if it has the form [B 0] where B is a non
singular, lower triangular, non negative matrix, in which each row has a unique
maximum entry located on the main diagonal of B.

Theorem 1. For any rational matrix A of full row rank, there exists a unique
matrix B in Hermite normal form and a unimodular matrix U such that A =
BU .

Consider the following matrices A, B and U . Then BU is the Hermite
decomposition of A.

A =

1 2 3
−3 2 0
1 0 0

 B =

1 0 0
0 1 0
4 5 6

 U =

1 2 3
−3 2 0
2 −3 −2

Proposition 3. (uniqueness of the Hermite normal form) Let A and A′ be
rational matrices of full row rank, with Hermite normal forms [B 0] and [B′ 0],
respectively. Then the columns of A generate the same lattice as those of A′, if
and only if B = B′.

In other words, two lattices are equal if and only if their respective matrices
have the same Hermite normal form.

Proposition 4. (lattice canonical form) Given a full-dimensional linear lattice
L, there exists a unique representation (H, 0) of L (i.e. L = {x | x = Hy, y ∈
Zn}), such that H is in Hermite normal form.

Proposition 5. (affine lattice canonical form) Given a full dimensional affine
lattice L, there exists a unique representation (H, h) of L (i.e. L = {x | x =
Hy + h, y ∈ Zn}), such that H is in Hermite normal form and 0 ≤ hi <
Hii, 1 ≤ i ≤ n.

For instance, consider the following lattice L:

L =
((

0 1
4 0

)
,

(
5
7

))
= {j + 5, 4i + 7 | i, j ∈ Z} ,

its unique canonical form is

L =
((

1 0
0 4

) (
0
3

))
.

Polylib can also handle unions of (affine integral full dimensionnal) lattices.
This provides a set of objects which is closed under union, intersection, image
by invertible integral functions (see [NRi00]).

24

For instance, consider the following lattice L:

L =
((

0 1
4 0

)
,

(
5
7

))
= {j + 5, 4i + 7 | i, j ∈ Z} ,

its unique normal form is

L =
((

1 0
0 4

) (
0
3

))
.

5.2 Important functions in Lattice.c

void PrintLatticeUnion (FILE *fp, char *format, LatticeUnion *Head):
print the contents of a list of Lattices ’Head’

void LatticeUnion Free (LatticeUnion *Head): free the memory allocated
to a union of lattices

LatticeUnion * LatticeUnion Alloc (void) : allocate a head for a list of
Lattices

Lattice * EmptyLattice (int dimension): create a empty lattice

Bool isEmptyLattice (Lattice *A): check if a lattice verifies the empty form

Bool isLinear (Lattice *A): check whether a lattice is linear (i.e. contains
0) or not

Bool LatticeIncludes (Lattice *A, Lattice *B): Verifies the lattice inclu-
sion

Bool sameLattice (Lattice *A, Lattice *B): check the similarity of two
lattices

Lattice * ExtractLinearPart (Lattice *A): return the linear part (matrix)
of an affine lattice

Lattice * LatticeIntersection (Lattice *X, Lattice *Y): given two lattices
’A’ and ’B’, return their intersection

LatticeUnion * LatticeDifference (Lattice *A,Lattice *B): compute the
lattice difference

LatticeUnion * Lattice2LatticeUnion (Lattice *X,Lattice *Y): Decom-
pose Lattice ’X’ as a union of shift of lattice ’Y’.

int FindHermiteBasisofDomain (Polyhedron *A, Matrix **B): find the
Hermite basis of a polyhedron

Lattice * LatticeImage (Lattice *A, Matrix *M): find the image of a
lattice

Lattice * LatticePreimage (Lattice *L, Matrix *G): find the preimage
of a lattice

25

Bool IsLattice (Matrix *m): check that the lattice is integral and full di-
mensional

static Bool SameLinearPart (LatticeUnion *A, LatticeUnion *B): check
the equality of the linear parts of lattices

LatticeUnion *LatticeSimplify (LatticeUnion *latlist): given a list of
lattices, return a simplified union of lattices

26

Chapter 6

Z-Polyhedra

Based on the results presented on previous chapters, the Z-polyhedra represent
a more recent part in Polylib. This chapter gives some exemples and motivates
the use of this structure. The functions working with Z-polyhedra can be found
in the Zpolyhedra.c source file.

This chapter contains two sections. The first one give some theoretical back-
ground on Z-polyhedra, and the second one lists the functions of Polylib related
to Z-polyhedra.

6.1 Theoretical background

Intuitively, Z-polyhedra are sparse polyhedra. They are used, for instance, to
model iteration domains of loops with non-unit stride. This object was first
introduced in the parallelization area by Corinne Ancourt in her PhD thesis
[ANC].

Definition 4. (Z-polyhedron) A Z-polyhedron is the intersection of a polyhe-
dron and an affine integral full dimensional lattice.

A Z-polyhedron can be defined as the image of a polyhedron by an invertible,
integral function. Consider, for instance, the lattice L1 = {2i + 1, 3j + 5 | i, j ∈
Z} and the polyhedron Q1 = {i, j | 0 ≤ i ≤ 5, 0 ≤ 3j ≤ 20}. Then Z1 = L1∩Q1

is a Z-polyhedron (see figure 6.1). Z1 can also be expressed as:

Z1 = {2i + 1, 3j + 5 | − 1 ≤ 2i ≤ 4,−15 ≤ 9j ≤ 5} ,

which is the image of polyhedron Q2 = {i, j| − 1 ≤ 2i ≤ 4,−15 ≤ 9j ≤ 5} by
the function (i, j → 2i + 1, 3j + 5). Q2 is obtained by taking the preimage of
Q1 by the function defining the lattice: (i, j → 2i + 1, 3j + 5).

As Polylib operates on domains made out of unions of polyhedra, it is natural
to define a similar object for Z-polyhedra. A Z-domain is a finite union of
intersections between a domain and a full dimensionnal integral affine lattice.
The set of Z-domains is closed under union, intersection, difference, and image
by integral invertible function.

The image and pre-image by rational functions is also implemented in Polylib,
but the result of the image (or pre-image) is always intersected with the canon-
ical lattice (Zn). See [NRi00] for further detail on this subject.

27

Figure 6.1: example of polyhedron Q1 = {i, j | 0 ≤ i ≤ 5, 0 ≤ 3j ≤ 20}, lattice
L1 = {2i+1, 3j +5 | i, j ∈ Z} and Z-polyhedron Z1 = Q1 ∩L1 (the dotted line
represent the shape of the original rational polyhedron).

From the implementation point of view, a Z-polyhedron is represented in-
ternally as the image of a polyhedron by an affine, invertible mapping. Hence,
storing a Z-polyhedron amounts to storing a domain and a matrix.

6.2 Main functions of Zpolyhedron.c

As for the polyhedra, the function operating on Z-polyhedra are classified de-
pending on whether they operate on Z-polyhedra or Z-domains (unions of Z-
polyhedra. However, Z-polyhedra and Z-domains are stored in the same data
structure.

Bool isEmptyZPolyhedron (ZPolyhedron *Zpol): Returns True if ’Zpol’
is empty, False otherwise

ZPolyhedron * ZPolyhedron Alloc (Lattice *Lat, Polyhedron *Poly):
allocate space for a Zpolyhedron structure

void ZDomain Free (ZPolyhedron *Head): free the memory used by the
Z-domain ’Head’

static void ZPolyhedron Free (ZPolyhedron *Zpol): free the memory used
by the Z-polyhderon ’Zpol’

ZPolyhedron * ZDomain Copy (ZPolyhedron *Head): copy a Z-Domain

static ZPolyhedron * ZPolyhedron Copy (ZPolyhedron *A): return a
copy of the Z-polyhedron ’A’

static ZPolyhedron * AddZPolytoZDomain (ZPolyhedron *A, ZPoly-
hedron *Head): add a Z-polyhedron to a Z-domain performing a check
of inclusion

ZPolyhedron * EmptyZPolyhedron (int dimension): return the empty
Z-polyhedron

Bool ZDomainIncludes (ZPolyhedron *A, ZPolyhedron *B): test the
inclusion of two Z-Domains

Bool ZPolyhedronIncludes (ZPolyhedron *A, ZPolyhedron *B) : test
the inclusion of two Z-polyhedra

28

void ZDomainPrint (FILE *fp, char *format, ZPolyhedron *A): print
the contents of a Z-domain ’A’

static void ZPolyhedronPrint (FILE *fp, char *format, ZPolyhedron
*A): print the contents of a Z-Polyhedron ’A’

ZPolyhedron * ZDomainUnion (ZPolyhedron *A, ZPolyhedron *B):
return the union of two Z-polyhedra domain

ZPolyhedron * ZDomainIntersection (ZPolyhedron *A, ZPolyhedron
*B): return the intersection of two Z-polyhedra domain

ZPolyhedron * ZDomainDifference (ZPolyhedron *A, ZPolyhedron *B):
return the Z-domain difference of the domains ’A’ and ’B’

ZPolyhedron * ZDomainImage (ZPolyhedron *A, Matrix *Func): find
the image of a Z-domain

ZPolyhedron * ZDomainPreimage (ZPolyhedron *A, Matrix *Func):
find the preimage of a Z-domain

ZPolyhedron * ZPolyhedronIntersection (ZPolyhedron *A, ZPolyhe-
dron *B): compute the Z-polyhedra intersection

static ZPolyhedron * ZPolyhedronDifference (ZPolyhedron *A, ZPoly-
hedron *B): return the difference of the two Z-polyhedra

static ZPolyhedron * ZPolyhedronImage (ZPolyhedron *ZPol, Matrix
*Func): return the image of a Z-polyhedron

static ZPolyhedron * ZPolyhedronPreimage (ZPolyhedron *Zpol, Ma-
trix *G): return the preimage of a Z-polyhedron

void CanonicalForm (ZPolyhedron *Zpol, ZPolyhedron **Result, Ma-
trix **Basis): find the canonical form for a Zpolyhedron

ZPolyhedron * IntegraliseLattice (ZPolyhedron *A) : transform a Zpoly-
hedron with a non integral Lattice

ZPolyhedron * ZDomainSimplify (ZPolyhedron *ZDom) : return the
simplified representation of the Z-domain ’ZDom’

Note: In all functions taking two Z-domains as input, they should have the
same affine integral lattice.

29

Chapter 7

Parametrized polyhedra
and Ehrhart polynomials

7.1 Theoretical background

In this chapter a class of methods for solving an Ehrhart polynomial, which
gives the exact formula for the number of integer points in the polytope, are
mentioned. These functions are working with special polyhedral structures:
parameterized polyhedron and validity domains. This work was theoretically
developed and then implemented at icps (Strasbourg) [Loe99].

7.1.1 Parameterized polyhedra representation

Polylib manipulates rational polyhedra as seen in the previous chapters. There
are two dual representations of polyhedra: the implicit representation, as a set
of constraints, and the Minkowski representation, as a set of lines, rays and
vertices.

A parameterized polyhedron is defined in the implicit form by a finite number
of inequalities and equalities, the difference from the classical approach being
that the constant part depends linearly on a parameter vector p for both equal-
ities and inequalities:

D(p) = {x ∈ Qn | Ax = A′p + a, Bx ≥ B′p + b} with p ∈ Qm

where A is a k × n integer matrix, A′ a k ×m integer matrix, a is an integer
k-vector, B is a k′ × n integer matrix, B′ a k′ ×m integer matrix and b is an
integer k′-vector.

The Minkowski representation, as a set of lines, rays, and vertices, of a
parameterized polyhedron is:

D(p) =
{

x ∈ Qn | x = Lλ + Rµ + V (p)ν, ∀λ, ∀µ ≥ 0, ∀ν ≥ 0,
∑

ν = 1
}

where L is the matrix containing the lines, R the matrix containing the rays,
and V (p) the matrix depending on the parameters p containing the vertices of
the polyhedron.

Polylib includes an algorithm computing the vertices V (p) of a parameterized
polyhedron.

30

7.1.2 Parameterized vertices representation

Each vertex of a parameterized polyhedron is an affine function of the parame-
ters p, defined over a validity domain: each vertex exists only if p is included into
the validity domain associated to this vertex. There are two ways of representing
such a set of parameterized vertices and validity domains:

• as a list of pairs, each one containing a vertex and its validity domain,

• as a list of distinct validity domains, and the complete matrix V (p) asso-
ciated to each validity domain.

There are two functions computing the parameterized vertices in these two
representations : Polyhedron2Param Vertices and Polyhedron2Param Domain
respectively.

7.1.3 Ehrhart polynomials representation

Ehrhart polynomials associated to each of the distinct validity domains corre-
spond to the number of integer points contained in a parameterized polytope,
when the parameters are integers.

Ehrhart polynomials are pseudo-polynomials, that is to say, polynomials
whose coefficients are periodic numbers. Periodic numbers take different val-
ues depending on the rest of the division of the parameters by the period of this
periodic number.

The function Polyhedron Enumerate, returns a list of validity domains and
each corresponding Ehrhart polynomial.

7.2 Main functions in polyparam.c

Polyhedron *PDomainIntersection (Polyhedron *Pol1,Polyhedron *Pol2,unsigned
NbMaxRays): computes the polyhedral intersection and in the case
when the result is of lower dimension, it is discarded from the resulting
polyhedra list.

Polyhedron *PDomainDifference (Polyhedron *Pol1,Polyhedron *Pol2,unsigned
NbMaxRays): computes the polyhedral difference and discard the de-
generated polyhedra.

Param Polyhedron *GenParamPolyhedron (Polyhedron *Pol): Create
a parameterized polyhedron with zero parameters..

Polyhedron **Elim Columns (Polyhedron *A,Polyhedron *E,int *p,int
*ref): Eliminate columns from polyhedron A, using the equalities in poly-
hedron E.

voidCompute PDomains (Param Domain *PD,int nb domains,int work-
ing space): Given parametric domain and number of parametric vertices,
find the vertices that belong to distinct sub-domains.

Param Polyhedron *Polyhedron2Param Vertices (Polyhedron *Din,Polyhedron
*Cin,int working space): Given a polyhedron in combined data and

31

parameters space, a context polyhedron representing the constraints on
the parameter space and a working space size, returns a parametric poly-
hedron with a list of parametric vertices and their defining domains.

voidParam Vertices Free (Param Vertices *PV): Free the memory allo-
cated to a list of parameterized vertices.

7.3 Main functions and variables in ehrhart.c

char **param name : global variable to print parameter names

enode * new enode (enode type type, int size, int pos): ehrhart poly-
nomial symbolic algebra system

void free evalue refs (evalue *e): release all memory referenced by e

enode * ecopy (enode *e): realize a copy of the enode argument

void print evalue (FILE *DST, evalue *e, char **pname): display an
evalue

void print enode (FILE *DST, enode *p, char **pname): display an
enode

static int eequal (evalue *e1,evalue *e2): verifies the equality between
two enodes

static void reduce evalue (evalue *e): try to reduce an evalue

static void emul (evalue *e1, evalue *e2, evalue *res): multiply two
evalues

void eadd (evalue *e1,evalue *res): add two evalues

void edot (enode *v1, enode *v2, evalue *res) : compute the inner prod-
uct of two vectors in enode form

static void aep evalue (evalue *e, int *ref) : transform the references in
a evalues vector, using ref

static void addeliminatedparams evalue (evalue *e,Matrix *CT) : trans-
form a vector of evalues in conformity with a given matrix

int cherche min (Value *min, Polyhedron *D, int pos): find an integer
point contained in polyhedron D

Polyhedron * Polyhedron Preprocess (Polyhedron *D, Value size, un-
signed MAXRAYS): find the smallest hypercube of size ’size’ contained
in polyhedron D

Polyhedron *Polyhedron Preprocess2 (Polyhedron *D, Value *size,
Value *lcm, unsigned MAXRAYS): finds a hypercube of size ’size’,
containing polyhedron D

int count points (int pos,Polyhedron *P,Value *context): compute the
integer points enumeration

32

static enode * P Enum (Polyhedron *L, Polyhedron *LQ, Value *con-
text, int pos, int nb param, int dim, Value lcm) : find the pseudo
polynomial representation for integer points

static Value * Scan Vertices (Param Polyhedron *PP, Param Domain
*Q, Matrix *CT) : compute the denominator of parameterized polyhe-
dron

Enumeration * Enumerate NoParameters (Polyhedron *P, Polyhedron
*C, Matrix *CT, Polyhedron *CEq, unsigned MAXRAYS): count
points in a non-parameterized polytope

Polyhedron Enumerate : count points in a polytope. The function returns
a pseudo-polynomial depending on the parameters.

33

Chapter 8

Other tools

This chapter presents auxiliary functions of Polylib: a solver for linear diophan-
tine equations, and functions to compute the Smith Normal Form or Hermite
Normal Form of a matrix.

Linear Diophantine equations

Linear Diophantine equations are linear equations in which only integer solutions
are allowed.

Consider a system of m equations in n variables for which we look for integral
solutions.

A ∗ x + b = 0

A is a m× n matrix and b is a vector of order m.
In the homogeneous space, the equation is Mx = 0 where

M =
[

A b
0 1

]

To solve such a sytems, first the rows of M are rearranged in such a way
that the first rank rows of A are the ones which contribute to the rank. This is
done with:

static void RearrangeMatforSolveDio (Matrix *M) : rearrange the ma-
trix in order to solve a diofantine equation.

Then the function SolveDiophantine for solving the equation can be used.
If a solution exists, the procedure returns rank, otherwise it returns −1.

int SolveDiophantine (Matrix *M, Matrix **U, Vector **X) : solve Dio-
phantine Equations

Generally this functions is used in connection with operations on lattices
because a lattice can be seen as a solution of a Diophantine equation.

34

Smith decomposition

Theorem 2. Smith Decomposition. If A is an n × n non-singular integer
matrix, there exist unimodular matrices U and V such that:

i. UAV = ∆
ii. ∆ is a diagonal matrix with entries δi ∈ Z,

iii. δ1 | δ2 . . . | δn

∆ is unique and is called the Smith normal form of A.

For example, consider the matrix:

M =

1 2 3
−3 2 0
1 0 0

Its Smith normal decomposition is: UMV = ∆ where:

∆ =

1 0 0
0 1 0
0 0 6

 U =

1 0 0
1 0 −1
2 1 1

 V =

1 −1 0
0 −1 3
0 1 −2

In [NRi00], an Affine Smith Normal form has been defined for affine matrices.
The corresponding function in Polylib is:

void AffineSmith (Lattice *A, Lattice **U, Lattice **V, Lattice **Diag)
: compute the Smith normal form of a matrix

Hermite Normal Form

A matrix of full row rank is said to be in Hermite Normal Form if it has
the form [B 0], where B is a nonsingular, lower triangular, nonnegative matrix,
in which each row has a unique maximum entry, which is located at the main
diagonal of B.

Each rational matrix of full row rank can be brought in HNF by a series of
elementary column operations.

The following proposition solve the problem of existence of a normal form
for an affine lattice :

Given a full dimensional affine lattice L, there exists a unique matrix H in
Hermite normal form and a unique vector h such that such that L = L(H) + h,
with the property 0 ≤ hi < Hii ∀i.

The unique affine Hermite form of a lattice is stored in ’H’ and the unimod-
ular matrix corresponding to A = H ∗ U is stored in the matrix ’U’.

Algorithm :

1. Check if the Lattice is Linear or not.

2. If it is not Linear, then Homogenise the Lattice.

3. Call hermite for a matrix.

4. If the Lattice was Homogenised, the HNF H must be Dehomogenised and
also corresponding changes must be made to the Unimodular Matrix U.

35

5. Return.

In Polylib we can find the following functions treating the Hermite Normal
Form:

static int hermite (matrix *H, Matrix *U, Matrix *Q) : compute the
hermite normal form of a matrix H.

void AffineHermite (Lattice *A, Lattice **H, Lattice **U) : find the
HNF for a lattice A.

int FindHermiteBasisofDomain (Polyhedron *A, Matrix *B) : find
the hermite basis of a polyhedron.

36

Chapter 9

Data structures

Data structures of Polylib are defined in the include/polylib directory of the
Polylib hierarchy (file types.h and arithmetique.h. We first present the basic
types and then the structured types (matrices, polyhedra, etc.).

9.1 Basic types

9.1.1 Integer representation

During Polylib computation, it may happen that integer size grow quite fast
(especially when using ehrhart). To avoid overflow, Polylib has adopted a
typing mechanism inherited from the Pips paralllelizer developed in ensmp
(Fontainebleau). This typing mechanism uses a macro called value for rep-
resenting integer. The file arithmetique.h file defines macros for every usual
operations on integers (for instance: the macro value plus(v1,v2) adds the
two values v1 and v2). At compile time a value will be changed into and int,
long int, long long int or mpz t (the gnu multi-precision data-type for in-
teger) depending on the flags given to the configure script (see chapter 11).

This typing mechanism is important to understand because, when using
the library for a project, one has to use its data structures by including the
polylib.h file, hence if this value macro is not used in the project, the devel-
oper has to perform explicit cast between int and values.

9.1.2 Error handling

Polylib use a catch-and-throw mechanism for overflow error that could happen
during execution (this mechanism is also taken from ArithLib). The correct
way tous the TRY, CATCH, UNCATCH, TRHOWand RETHROW macros can be seen by
looking at the code. However, these macros use the longjmp C function which
is not compatible with cygwin, these macro simply correspond to a print out on
the stderr on cygwin plateform.

9.1.3 The saturation matrix

The Saturation matrix is a boolean matrix which has a row for every constraint
and a column for every line or ray. Each element sij in S is defined as follows:

37

sij =
{

0, if constraint ci is saturated by ray(line) rj , i.e. cT
i rj = 0

1, otherwise, i.e. cT
i rj > 0

This saturation matrix is stored in a compact form. The bits in the binary
format of each integer in the stauration matrix stores the information whether
the corresponding constraint is saturated by a ray(line) or not.

Considering the fact that the rows associated with equations are all 0 and
all the column of the saturation matrix associated with lines are also 0 we can
conclude that only the entries associated with inequalities and rays can have 1’s
as well as 0’s.

S Lines Rays
Equations 0 0
Inequalities 0 0 or 1

typedef struct {
unsigned int NbRows;
unsigned int NbColumns;
int **p;
int *p_init;

} SatMatrix;

9.2 The homogeneous representation of affine
spaces

Polylib manipulates mixed inhomogeneous system of equations. The terms in-
homogeneous stands for the fact that it manipulates objects of an affine space
(not a linear space). To transform the inhomogeneous affine space of dimension
n into an homogeneous vector space of dimension n + 1 we use the following
mapping:

M : x −→
(

ξx
ξ

)
, ξ ≥ 0 .

With this mapping, a system P = {x | Ax = b, Cx ≥ d} in the original
inhomogeneous space is transformed into C = {x̃ | Ãx̃ = 0, C̃x̃ ≥ 0} where

Ã = (A − b), x̃ =
(

ξx
ξ

)
and C̃ =

(
C −d
0 1

)
.

An intuitive representation of this mapping is the following: the set P can be
seen as the intersection of the set C with the hyper-plane defined by the equality
ξ = 1. This transformation has the advantage of simplification in the storage
of the polyhedra (only cones are manipulated, hence only rays and lines are
stored). It also simplifies computations.

In this representation, the vector (ray) (1, 2, 1) in the homogeneous (linear)
space correspond to the vector (vertex) (1, 2) in the affine space and the vector
(ray) (1, 2, 2) in the homogeneous (linear) space correspond to the vector (ver-
tex) (1

2 , 1) in the affine space. Hence, the homogeneous representation allow
to represent rational numbers by using only integers. Finally the vector (ray)

38

(1, 2, 0) in the homogeneous (linear) space correspond to the infinite direction
(ray) (1, 2) in the affine space.

Similarly, any affine transformation x 7→ F.x+f is naturally extended to the

linear transformation
(

ξx
ξ

)
7→

(
F f
0 1

)(
ξx
ξ

)
. Hence, in this system, all

integral affine transformations manipulated in Polylib must have a (0, 0, . . . , 0, 1)
as last row. However, the fact that the last element of this row is not one may be
used for expressing rational transformation. Consider, for instance, the matrix

G =
(

1 0
0 2

)
. If we consider this matrix as a representation of an affine

transformation after mapping M, it represents the following function:

x
M−→

(
ξx
ξ

)
G−→

(
ξx
2ξ

)
=

(
2ξ x

2
2ξ

)
M−1

−→ x

2

Hence the function represented by
(

1 0
0 2

)
is equivalent to the function rep-

resented by:
(

1
2 0
0 1

)
.

9.3 Matrices and Polyhedra

Figure 9.1: Polyhedron structure.

The data types for Vector, Matrix and Polyhedron are the following:

typedef struct {
unsigned Size;

39

Value *p;
} Vector;

typedef struct matrix {
unsigned NbRows, NbColumns;
Value **p;
Value *p_Init;

} Matrix;

typedef struct polyhedron {
unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
Value **Constraint;
Value **Ray;
Value *p_Init;
struct polyhedron *next;

} Polyhedron;

The scheme of the polyhedron structure is represented on figure 9.1. Remind
that, in dimension n, each constraints is composed of n + 1 values, the last one
being the constant.

9.4 Lattices and Z-polyhedra

An affine lattice can be represented by an affine matrix. however, we name it
differently because usual operations on matrices normally do not correspond to
operations on lattices (like matrix product for instance). A special data type
has been created for unions of lattices.

typedef Matrix Lattice;

typedef struct LatticeUnion {
Lattice *M;
struct LatticeUnion *next;

} LatticeUnion;

Theoretically a Z-polyhedron can be represented either by the intersection
of a polyhedron and an affine integral full dimensional lattice or by the image
of a polyhedron by an affine integral full dimensional lattice. We choose this
second representation in Polylib. Hence the Zpolyhedron data structure below
represent the image of polyhedron P by the function corresponding to lattice
Lat. The Z-polyhedron represented is the union of all the Z-polyhedra if there
are other Z-polyhedra linked to the next pointer.

typedef struct ZPolyhedron {
Lattice *Lat ;
Polyhedron *P;
struct ZPolyhedron *next;

} ZPolyhedron;

40

9.5 Parametrized Polyhedra

There are two ways of representing the vertices of parameterized polyhedra
(Param Vertices and Param Domain). Both use the same data structure, Param Polyhedron,
described below by the below and shown on figure 9.2.

Figure 9.2: Param polyhedron structure

typedef struct _Param_Poly
{

int nbV;
Param_Vertices *V;
Param_Domain *D;

}
Param_Polyhedron;

typedef struct _Param_V
{ struct Param V *next;

Matrix *Vertex;
Matrix *Domain;

}
Param_Vertices;

typedef struct _Param_Domain
{ struct _Param_Domain *next;

Polyhedron *Domain;
int *F;

} Param_Domain;

41

Chapter 10

Example

This chapter illustrates the use of Polylib by means of a short example. This
example is a C source file which along with polyhedron.c and vector.c does
the following:

• Extraction of a minimal set of constraints from some set of constraints.

• Intersection of two convex polyhedra.

• Application of a linear function to a convex polyhedron.

• Verification that a convex polyhedron is included in some other convex
polyhedron.

These files are compiled together into an executable file called test. When
calling this application the polyhedral domains may be described in two input
files. We are using the file test.in as a sample input data and the file test.out
for the output produced by the program.

This program is shown in Fig. 10.1 and can be used as a pattern for your
own program.

In the following, we detail the different parts of the program. Each instruc-
tion of the program is numbered for reference in the following explanation.

Number 1 Read a matrix, for example:

4 4
1 0 1 -1
1 -1 0 6
1 0 -1 7
1 1 0 -2

This is a matrix for the following inequalities:

1 = inequality, 0x + 1y -1 >=0 -->y >= 1
1 = inequality, -1x + 0y +6 >=0 -->x <= 6
1 = inequality, 0x + -1y +7 >=0 -->y <= 7
1 = inequality, 1x + 0y -2 >=0 -->x >= 2

Notice that if the first number was a 0 instead of a 1, then that constraint
would be an equality instead of an inequality.

42

#include <stdio.h>
#include <polylib/polylib.h>

int main() {
Matrix *a, *b, *t;
Polyhedron *A, *B, *C, *D;

printf("Polyhedral Library Test\n\n");
a = Matrix_Read(); /* 1 */
b = Matrix_Read(); /* 2 */

A = Constraints2Polyhedron(a, 200); /* 3 */
B = Constraints2Polyhedron(b, 200); /* 4 */

Matrix_Free(a); /* 5 */
Matrix_Free(b); /* 6 */

a = Polyhedron2Constraints(A); /* 7 */
b = Polyhedron2Constraints(B); /* 8 */

printf("\na =");
Matrix_Print(stdout,P_VALUE_FMT,a); /* 9 */
printf("\nb =");
Matrix_Print(stdout,P_VALUE_FMT,b); /* 10 */
Matrix_Free(a); /* 11 */
Matrix_Free(b); /* 12 */

C = DomainIntersection(A, B, 200); /* 13 */
printf("\nC = A and B =");
Polyhedron_Print(stdout,P_VALUE_FMT,C); /* 14 */

t = Matrix_Read(); /* 15 */
D = Polyhedron_Preimage(C, t, 200); /* 16 */
Matrix_Free(t); /* 17 */
printf("\nD = transformed C ="); /* 18 */
Polyhedron_Print(stdout,P_VALUE_FMT,D); /* 19 */
Domain_Free(D); /* 20 */

if (PolyhedronIncludes(A,C)) /* 21 */
printf("\nWe expected A to cover C since C = A intersect B\n");

if (!PolyhedronIncludes(C,B)) /* 22 */
printf("and C does not cover B...\n");

Domain_Free(A);
Domain_Free(B);
Domain_Free(C);
return 0;

}

Figure 10.1: The test.c program

43

Number 2 Read in a second matrix containing a second set of constraints,
for example:

4 4
1 1 0 -1
1 -1 0 3
1 0 -1 5
1 0 1 -2

Number 3 and 4 Convert the constraints to a Polyhedron. This operation
computes the dual ray/vertice form of the system, and eliminates redundant
constraints and reduces them to a minimal form

The 200 parameter is the size of the working space (in terms of number of
rays) that is allocated temporarily and you can enlarge or reduce it as needed.

Number 5,6,11 and 12 Release variables ’a’ and ’b’.

Number 7 to 10 Illustrate how to translate back a polyhedron into a set of
constraints, and print them.

Number 13 Intersect the two polyhedra.

Number 14 This time, we call Polyhedron Print to look a the polyhedron
itself.

Number 15 to 20 Read in a third matrix t containing a transformation
matrix, for example this one that swaps the indices (x, y −→ y, x):

3 3
0 1 0
1 0 0
0 0 1

and take the preimage (transform the equations) of domain C to get D. Print
D, and free it.

Number 21 and 22 Checks the inclusion of A and C, and of C and B.
As a final note: some functions are defined for Domains, others for Polyhe-

dra. A domain is simply a list of polyhedra. Every polyhedron structure has a
”next” pointer used to make a list of polyhedra.

For instance, the union of two disjoint polyhedra is a domain consisting
of two polyhedra. If you want the enclosing convex domain, you have to call
DomainConvex explicity. Note that the inclusion function does not work on
domains, only on simple polyhedra...

The output produced by the program is shown in Fig. 10.2.

44

Polyhedral Library Test

a =4 4
1 0 1 -1
1 -1 0 6
1 0 -1 7
1 1 0 -2

b =4 4
1 1 0 -1
1 -1 0 3
1 0 -1 5
1 0 1 -2

C = A and B =POLYHEDRON Dimension:2
Constraints:4 Equations:0 Rays:4 Lines:0

Constraints 4 4
Inequality: [1 0 -2]
Inequality: [-1 0 3]
Inequality: [0 -1 5]
Inequality: [0 1 -2]
Rays 4 4
Vertex: [2 5]/1
Vertex: [3 5]/1
Vertex: [2 2]/1
Vertex: [3 2]/1

D = transformed C =POLYHEDRON Dimension:2
Constraints:4 Equations:0 Rays:4 Lines:0

Constraints 4 4
Inequality: [0 1 -2]
Inequality: [0 -1 3]
Inequality: [-1 0 5]
Inequality: [1 0 -2]
Rays 4 4
Vertex: [5 3]/1
Vertex: [5 2]/1
Vertex: [2 2]/1
Vertex: [2 3]/1

We expected A to cover C since C = A intersect B
and C does not cover B...

Figure 10.2: The test.c output

45

Chapter 11

Installation

This chapter describes how to install the different parts of the Polylib package.

11.1 Hardware and software requirements

Operating system

Polylib is running on unix-like platform (Solaris, Linux, HPUX) and also on
Windows platforms (provided you have installed cygwin). The Polylib system
will occupy approximately 12MBytes.

Software Requirements

Polylib is built on top of GNU software. In order to install Polylib you will need
the following tools.

• The GNU make command.

• The GNU gcc compiler.

• uncompressing facilities (zcat, gunzip, tar)

On Windows platforms, all these GNU command are available if you install
cygwin: http://www.cygwin.com/.

Polylib may be compiled in 32 bit integer mode, 64 bit integer mode or
arbitrary precision integer mode. This last mode requires the GNU GMP library
(ftp://ftp.gnu.org). Note that this library is not mandatory, you can compile
polylib on 32 or 64 bit mode without having GMP installed.

Documentation is available in the distribution, however, if you want to re-
build documentation files from sources files you will need the Doc++ documen-
tation tool http://docpp.sourceforge.net/ and a Latex Distribution.

11.2 Installation procedure

The Polylib-tree will require about 12 MB of disc space.
Download the polylibX.Y.tgz on http://www.irisa.fr/polylib/
Then type:

46

http://www.cygwin.com/�
ftp://ftp.gnu.org�
http://docpp.sourceforge.net/�
http://www.irisa.fr/polylib/�

gunzip polylibX.Y.tgz
tar -xvf polylibX.Y.tar

This will extract the tar file and install all the files in a directory. This
top-directory for the distribution will be named Polylib. This directory will be
called Polylib hereafter. This is how the Polylib-directory will look like after
the extraction:

ArithLib/
Test/
include/
source/
Changes
configure.in
vars.mk
vars.mk.in
Makefile
install-sh
config.guess
config.sub
configure

The installation procedure is based on the configure.in file which checks
for conditions that may change from one system to another, such as the presence
of particular header files or functions. The config.sub and config.guess files are
provided for an auto configuration process. They are used to determine the host
operating system, cpu, etc and put them into a canonical form. The configure
script tries to set system-dependent variables and creates vars.mk which is used
then in the Makefile. It will report what it finds.

The commands that should be typed for installing Polylib and testing its
working are the following.

cd Polylib
./configure
make
make test
make install

By default, the configure script install the 64 bit integer mode, many pa-
rameter of the configure script can be changed (see the explanations hereafter).

The make comand already installs the library in order to build the executa-
bles. make install installs the documentation, the includes and the binaries.

11.3 Options of the configure script

In fact configure has multiple options. These options allow you to customize
your Polylib installation.

The usage is:

configure [options] [host]

47

Options: [defaults in brackets after descriptions]

Configuration:
–cache-file=FILE cache test results in FILE
–help print this message
–no-create do not create output files
–quiet, –silent do not print ‘checking...’ messages
–version print the version of autoconf that created configure

Directory and file names:

–prefix=PREFIX install architecture-independent files
in PREFIX [/usr/local]

–exec-prefix=EPREFIX install architecture-dependent files
in EPREFIX [same as prefix]

–bindir=DIR user executables in DIR [EPREFIX/bin]
–sbindir=DIR system admin executables in

DIR [EPREFIX/sbin]
–libexecdir=DIR program executables in DIR [EPREFIX/libexec]
–datadir=DIR read-only architecture-independent data

in DIR [PREFIX/share]
–sysconfdir=DIR read-only single-machine data

in DIR [PREFIX/etc]
–sharedstatedir=DIR modifiable architecture-independent data

in DIR [PREFIX/com]
–localstatedir=DIR modifiable single-machine data

in DIR [PREFIX/var]
–libdir=DIR object code libraries in DIR [EPREFIX/lib]
–includedir=DIR C header files in DIR [PREFIX/include]
–oldincludedir=DIR C header files for non-gcc in DIR [/usr/include]
–infodir=DIR info documentation in DIR [PREFIX/info]
–mandir=DIR man documentation in DIR [PREFIX/man]
–srcdir=DIR find the sources in DIR [configure dir or ..]
–program-prefix=PREFIX prepend PREFIX to installed program names
–program-suffix=SUFFIX append SUFFIX to installed program names
–program-transform-name=PROGRAM run sed PROGRAM on installed program names

Host type:

–build=BUILD configure for building on BUILD [BUILD=HOST]
–host=HOST configure for HOST [guessed]
–target=TARGET configure for TARGET [TARGET=HOST]

Features and packages:

–disable-FEATURE do not include FEATURE (same as –enable-FEATURE=no)
–enable-FEATURE[=ARG] include FEATURE [ARG=yes]
–with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
–without-PACKAGE do not use PACKAGE (same as –with-PACKAGE=no)
–x-includes=DIR X include files are in DIR
–x-libraries=DIR X library files are in DIR

48

–enable and –with options recognized:

–enable-int-lib Enable that only an int library is constructed
–enable-longint-lib Enable that only a long int library is constructed (default)
–enable-longlongint-lib Enable that only a long long int library is constructed
–enable-gmpint-lib Enable that only a gmp int library is constructed
–enable-allint-lib Enable that 32, 64 and gmp int library is constructed
–enable-short-exec Enable that the int library is used by the executables

(by default, the long library is used if built)
–enable-extra-suffix Enable that the executables take an extra suffix depending

on the library size
–enable-all-exec Enable that the two sized libraries are used to build

two executables of each, which take an extra suffix
depending on the library (by default, only the long library is used)

–enable-onlyshared Enable that only a shared library is constructed
–enable-onlystatic Enable that only a static library is constructed
–disable-install-lib Disable installation of the library
–with-ldconfig-cache=FILE Run ldconfig -C < FILE >
–with-libgmp DIR Location of the GMP Distribution

You should run ’./configure –enable-gmpint-lib’ to use gmp.
As mentioned earlier you can build the Polylib if you don’t have GMP, but

it will fail when an overflow occurs.
The output of the configure script can be found in vars.mk which is included

by the makefile.
For installing the lib in a private directory you can use the prefix option:

./configure --prefix=MyDir

11.4 Known problems

The configure script does not correctly guess integer size on cygwin platform.
it results in a message during configuration :

checking size of int... 0
... sorry 4

which does not provide any problem (i.e. the size of integer are correctly set by
the script so it is nt a bug).

The cygwin implementation does not correctly work with long long int. It is
apparently due to a bug of cygwin gcc compiler which does not handle correctly
long long int type. Hence, under cygwin, if you do not use gmp you have to
configure in the following way: configure --enable-int-lib

If you try to install the version present under CVS Repository, a possible
error may rise due to the presence of the CVS subdirectory in each directory of
Polylib.

If you install Polylib the tests may fail for long long int library. In this case
you have to use -enable-longint-lib option:

.configure --enable-longint-lib

Notice that the Makefile will try to install the library before building the exe-
cutables, even when you do not run make install, unless you specify --disable-install-lib
as configure option.

49

Bibliography

[SCH86] A. Schrijver, Theory of linear and integer programming, John Wiley
and Sons, NY, 1986

[Wil93] D.K. Wilde, A library for doing polyhedral operations, Technical Re-
port 785, IRISA, Rennes, France, 1993

[NRi00] S. P. K. Nookala and T. Risset A library for Z-Polyhedral operations,
Technical Report 1330, IRISA, Rennes, France, 2000

[QRR97] P. Quinton, S. Rajopadhye and T. Risset On manipulating Z-
Polyhedra Technical Report 1016, IRISA, Rennes, France, 1997

[Loe99] V. Loechner, A library for Manipulating Parametrized Polyhedra
ICPS RR, March 1999

[Che65] N.V. Chernikova, An algorithm for finding a general formula for the
non-negative solutions of linear inequalities U.S.S.R. Computational
Mathematics and Mathematical Physics, 5(2):228-133, 1965

[FQ88] F. Fernandes and P. Quinton. Extemsion of Chernikova’s Al-
ghorithm for Solving General Mixed Linear Programming Problems.
Technical Report 437, IRISA, Rennes, France, 1988

[Le 92] H. Le Verge, A note on Chernikova’s Algorithm, Technical Report
635, IRISA, Rennes, France, 1992

[CH78] P. Cousot and N. Halbwachs, Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[MRTT] T. S. Motzkin and H. Raiffa and G. L. Thompson and R. M. Thrall,
The double description method. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games - Volume II, num-
ber 28 in Annals of Mathematics Studies, pages 51-73. Princeton
University Press, Princeton, New Jersey, 1953.

[ANC] Corinne Ancourt Génération de code pour multiprocesseurs à
mémoires locales PhD Thesis, France, 1991

50

