
muScript User Manual Feb 2014

muScript User Manual

1 Introduction

muScript (µScript) is a command line version of the muJava (µJava) mutation analysis tool. It uses
µJava’s core mutation engine. The purpose of µScript is to facilitate experimental studies using
mutation testing. By combining a few flexible commands, users can design scripts, run a large
amount of tests, and collect execution results without using GUI interface of µJava.

As with µJava, µScript is provided on an “as is” basis. We have no funds and very limited
resources to provide support or even respond to queries.

µScript has four commands, as listed in Table 1. They are all included in the µJava .jar file and
called with the syntax “java mujava.cli.command.”

Table 1: µScript Commands
Command Description Section
testnew Create a test session 3
genmutes Generate mutants 4
runmutes Run test cases against mutants 6
markequiv Mark mutants as equivalent 7

2 Setting up the µScript Configuration File

Before running µScript, it is necessary to set the correct directory location and other configuration
information. The configuration file is named mujava.config. It is an extended version of the µJava
configuration file, with the possibility of adding additional options.

1. Home directory location: MuJava HOME =
An absolute path is required so that µScript can find classes under test, find test sets, to save
results. For example, in Windows, we can set it as “c:\mujava”; in a Mac, Linux, or Unix
machine, it could be “/Users/username/mujava”

2. Debug mode: (optional) Debug mode =
We can set the debug mode to either “true” or “false.” Enabling debug mode will display more
detailed intermediate results on the console.

3. Classpath:
To get µScript running, six library jar files must be defined correctly in the classpath:
mujava.jar, commons-io.jar, openjava.jar, tools.jar, junit.jar, and hamcrest-core.jar.

1

For example, on a Windows platform, if all the jar files are stored in the directory “c:\mujava”,
extend “CLASSPATH” in the “Environment Variables” by adding the paths:
c:\mujava\junit.jar;c:\mujava\hamcrest-core-1.3.jar;c:\mujava\mujava.jar;
c:\mujava\openjava.jar;c:\mujava\commons-io-2.4.jar
on a Unix/Linux platform, if all the jar files are stored in the directory “/home/ldeng2/mujava”,
the following command will define them in the classpath:
export CLASSPATH=‘‘$CLASSPATH:/home/ldeng2/mujava/mujava.jar:

/home/ldeng2/mujava/commons-io-2.4.jar:/home/ldeng2/mujava/openjava.jar:

/usr/local/java/jdk1.7.0/lib/tools.jar:/home/ldeng2/mujava/junit.jar:

/home/ldeng2/mujava/hamcrest-core.jar’’

3 Creating a Test Session

Command: testnew
A test session defines an independent mutation test on a program component. It comprises

source files (in Java), bytecode class files, JUnit tests, and results. These are stored in four directories
that testnew creates, testset, result, classes, and src.

Figure 1 shows the directories created by testnew for the session session1.

Figure 1: Test Session Directory

The program testnew also prepares for subsequent processes, such as compiling Java source files
and copying compiled class files into the new session created.

Parameters:

1. <session name> <src file name 1> <src file name 2> ... <src file name n>}

2

The “<session name>” will be used as the name of the new session and the root directory of
the test session. If a session with that name already exists in the home directory of µScript,
an error message will be returned and the program will exit without making any changes.
The source file names can be given with or without the .java extension. Normally, one test
session contains only one class under test, however, it is possible to put multiple classes in
one session. This is normally done when the class under test uses another class.

Figure 2 shows four example commands that can be used to create a new test session for the
Java source code named cal.java saved in c:\mujava\src folder.

Figure 2: Example Commands for Creating New Test Sessions

Java source files should usually be saved in the src folder of the home directory, so that only
file names are required when creating a new session (the first example command in Figure 2).

However, µScript is also able to fetch source files from other directories with an absolute path,
such as shown in the last two commands in Figure 2.

2. <-debug>

If the configuration file does not set the debug mode, it can be set as an option to testnew.
Options given on the command line have higher priority than the configuration file, so they
override the settings in the file. Note the debug option is available with ALL subsequent
commands. An example is shown in Figure 3.

4 Generating Mutants

Command: genmutes1

1Prerequisite: Make sure the current version of Openjava.jar from the µJava website is correctly set in the system’s
environment.

3

Figure 3: Creating a New Test Session With the Debug Mode

Figure 4: Generating ROR and AOIS Mutants

The program genmutes is used to generate mutants. The current version is only able to generate
method level mutants.

Parameters:

1. -<operator name 1> -<operator name 2> ... <session name>

Each “<operator name>” is one of {AORB, AORS, AOIU, AOIS, AODU, AODS, ROR,
COR, COD, COI, SOR, LOR, LOI, LOD, ASRS, ALL}. The operator names can be either
lower or upper case. If no “-<operator name>” is provided, by default, µScript will generate
mutants for all operators. This is equivalent to using the name “ALL.”

The “<session name>” takes the name of a test session that already exists.

For example, Figure 4 shows a command to generate all ROR and AOIS mutants for the class
in session1. Note that µJava discards mutants that do not compile. µScript prints the total
number of mutants generated.

As shown in Figure 5, each mutant has its own folder in which it saves all necessary informa-
tion. All mutants generated will be stored in the path:
muScriptHome/sessionName/result/Classname/traditional mutants

4

Figure 5: ROR and AOIS Mutants in the result Folder

2. −all <session name>

The “−all” option enables all 15 traditional method-level mutation operators, as shown in
Figure 6. Thus, the cal.java class has 173 mutants. Also, if the current session has more than
one class, genmutes will generate mutants for all classes.

Figure 6: Generating ALL mutants

5 Creating Tests

µScript uses JUnit tests that are supplied by the tester. They can be created in any IDE or
command line tools, and must be compiled to .class files outside of µScript. As shown in Figure 7,
the .class files need to be put in the folder session name/testset/, which is created by the testnew
command. The tester can add new JUnit test files at any time.

Thus, a common process might be to create a few tests, run the mutants on the tests, then
examine the live mutants and either mark them as equivalent or generate additional tests. This
process can repeat until the tester is satisfied with the mutation score. In this way, the mutants
become “guides” to help the tester design good tests.

5

Figure 7: JUnit Test Files in the testset Folder

6 Running Tests

Command: runmutes2

The program runmutes runs tests against mutants. It saves results in two files in the result folder,
named result list.csv and mutant list. The result files are used in additional calls to runmutes, and
by the markequiv command. result list.csv can be opened in Excel or other spreadsheet applications,
and mutant list can be opened in any text editor.

runmutes can run in one of three modes:

1. (-default) Each test is run against mutants that are alive (not killed or marked equivalent).
This is the typical way mutation testing is used in practice.

2. (-dead) Each test is run against all live and dead mutants (but not equivalent mutants). This
supports experimental studies. An additional option -equiv, can be added to run the tests
against all equivalent mutants as well.

3. (-fresh) A new results file with a time stamp is generated. The old results file is not used,
thus all mutants start as alive, and all tests are run against all live mutants.

The -default, -dead, and -fresh modes are mutually exclusive.

Parameters:

1. -<operator name1> -<operator name2> ... <testset name> <session name>

The “<operator name>” is one of {AORB, AORS, AOIU, AOIS, AODU, AODS, ROR, COR,
COD, COI, SOR, LOR, LOI, LOD, ASRS, ALL}. The operator names can be either lower
or upper case. If no operator name is provided, by default, µScript will run tests against all
mutants. This is equivalent to using the name “ALL.”

The “<session name>” is an already existing test session.

2Tip: Make sure JUnit is correctly configured in the system environment.

6

The “<testset name>” is the name of a JUnit test file, without the .class extension. If no
testset name is given, µScript will run all test sets in the testset directory.

Figure 8 shows the test set calTest being executed against all mutants in the session session1.
After execution, the total number of mutants killed, the number of total mutants, and the
mutation score are displayed.

Figure 8: Running Mutants in default Mode

2. -all <testset name> <target session name>

The “-all” option runs the test set against all 15 of the traditional method-level mutation
operators.

3. -p <random percentage>

Sometimes we would like to randomly choose a subset of the total mutants, so the “-p” option
is provided. This is a common experimental technique. We can specify a number from 0 to 1
as the random percentage. For example Figure 9 uses “-p 0.5” to run tests against 50% of
the live mutants, chosen randomly.

Figure 9: Running Tests Against 50% of the Mutants, Randomly Chosen

7

7 Marking Mutants as Equivalent

Command: markequiv
The program “markequiv” is used to mark live mutants as equivalent.
Parameters:

1. <class name> <mutant 1> <mutant 2> ... <mutant n> <session name>

The “<class name>” specifies the name of the target class. The options “<mutant 1> <mutant 2> ... <mutant n>”
specifies names of live mutants, as listed in result list.csv. The “{<session name>” takes the
session name.

The example in Figure 10 marks the mutant named ROR 8 of class cal in session1 as equiv-
alent. If a mutant is already dead, µScript will skip it; if a mutant does not exist, it will be
ignored.

Figure 10: Marking an Equivalent Mutant

8

