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1.1

1.2

1.3

Introduction

Overview

The Spacecraft Data Handling IP cores represent a collection of cores that have been developed spe-
cifically for the space sector.

These IP cores implement functions commonly used in spacecraft data handling and management sys-
tems. They implement international standards from organizations such as Consultative Committee for
Space Data Systems (CCSDS), European Cooperation on Space Standardization (ECSS), and the
former Procedures, Standards and Specifications (PSS) from the European Space Agency (ESA).

The IP cores cover the following functions:

*  PacketWire Interface - acts as a master on the AMBA bus providing remote control
»  PacketWire Receiver Interface - acts as a slave on the AMBA bus

*  PacketWire Transmitter Interface - acts as a slave on the AMBA bus

*  Packet Parallel Interface - acts as a slave on the AMBA bus

*+  Combined ADC / DAC Interface - supports devices targeted for the space sector

*  External FIFO Interface with DMA - supports devices targeted for the space sector
*  CAN controller with DMA, based on ESA’s HurriCANe IP core

*  CCSDS Time Manager - with datation and pulse generation

*  CCSDS/ECSS Convolutional Encoder and Quicklook Decoder

*  CCSDS/ECSS Telemetry Encoder

*  CCSDS/ECSS Telecommand Decoder - Coding Layer

*  CCSDS/ECSS Telemetry Receiver (for ground test station only)

*  CCSDS/ECSS Telecommand Transmitter (for ground test station only)

*  General Purpose Input Output - with pulse generation

*  General Purpose Timer Unit- with external clock input, event outputs, and datation latch

*  Version and Revision information register

Implementation characteristics

The cores are portable and can be implemented on most FPGA and ASIC technologies, and have been
tested for Actel RTAX and Xilinx Virtex-2 FPGA technologies.

The cores are available in VHDL source code and, when applicable, use the plug&play configuration
method described in the ‘GRLIB User’s Manual’.

Licensing

The tables below lists the provided IP cores and their AMBA plug&play device ID. The license col-
umn indicates if a core is available under GNU GPL and/or under a commercial license. Cores
marked with FT are only available in the FT version of GRLIB.

Note: The open-source version of GRLIB includes only cores marked with GPL or LGPL.



Table 1. Spacecraft data handling functions

Name Function Vendor:Device License
GRTM CCSDS Telemetry Encoder 0x01 : 0x030 FT *
GRTC CCSDS Telecommand Decoder 0x01 : 0x031 FT *
GRPW Packetwire receiver with AHB interface 0x01 : 0x032 COM/GPL
GRCTM CCSDS Time manager 0x01 : 0x033 COM/GPL
GRHCAN CAN controller with DMA 0x01 : 0x034 FT **
GRFIFO External FIFO Interface with DMA 0x01 : 0x035 COM
GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 COM
GRPULSE General Purpose Input Output 0x01 : 0x037 FT
GRTIMER General Purpose Timer Unit 0x01 : 0x038 FT
AHB2PP Packet Parallel Interface 0x01 : 0x039 FT
GRVERSION Version and Revision information register 0x01 : 0x03A FT
APB2PW PacketWire Transmitter Interface 0x01 : 0x03B COM/GPL
PW2APB PacketWire Receiver Interface 0x01 : 0x03C COM/GPL
GRCE/GRCD CCSDS/ECSS Convolutional Encoder and Quicklook Decoder | N/A FT *
GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082 FT *
GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x083 FT *

Note *: The GRTM, GRTC, GRTMRX and GRTCTX core are not included in the FT delivery. Con-

tact Gaisler Research for licensing details.

Note **: The delivery of the CAN controller does not contain the HurriCANe CAN Controller IP

core. The HurriCANe core must be obtained separately from the European Space Agency (ESA).
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2.2

AHB2PP - AMBA AHB to Packet Parallel Interface

Overview

The AMBA AHB to Packet Parallel Interface implements the PacketParallel protocol used by the
Packet Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.

The core implements the following functions:

»  Packet Parallel protocol

*  General Purpose Input Output port

The core provides the following external and internal interfaces:

»  Packet Parallel interface (octet data, packet delimiter, write strobe, abort, ready, busy)
*»  AMBA AHB slave interface, with sideband signals as per [GRLIB]

*  AMBA APB slave interface, with sideband signals as per [GRLIB]

The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:

»  Busy and ready signalling from Packet Parallel interface
*  Read back of output data
»  Interrupts on ready for new word, or ready for new packet

Data is transferred to the Packet Parallel interface by writing to the AMBA AHB slave interface,
located in the AHB 1/O area. Writing is only possible when the Packet Parallel packet valid delimiter
is asserted, else the access results in an AMBA access error. It is possible to transfer one, two or four
bytes at a time, following the AMBA big-endian convention regarding send order. The last written
data can be read back via the AMBA AHB slave interface. Data are output as octets on the Packet Par-
allel interface.

In the case the data from a previous write access has not been fully transferred over the Packet Parallel
interface, a new write access will result in an AMBA retry response. The progress of the interface can
be monitored via the AMBA APB slave interface. An interrupt is generated when the data from the
last write access has been transferred. An interrupt is also generated when the Packet Parallel ready
indicator is asserted.

Interrupts

Two interrupts are implemented by the Packet Parallel interface:

Index: Name: Description:
0 NOT BUSY Ready for a new data (word, half-word or byte)
1 READY Ready for new packet

The interrupts are configured by means of the pirg VHDL generic.
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Registers

The core is programmed through registers mapped into APB address space.

Table 2. AHB2PP registers

APB address offset Register

16#000# Configuration Register
16#004# Status Register
16#008# Control Register
16#010# Data Input Register
16#014# Data Output Register
16#018# Data Direction Register

2.3.1 Configuration Register (R/W)

Table 3. Configuration Register

31 3 0
- WS

3-0: WS Number of additional Wait States

All bits are cleared to 0 at reset.

The width of the write strobe can be extended by mean of the WS field. The nominal asserted width is
one system clock period (corresponding to WS=0). The asserted period can be extended up to a total
asserted width of 16 system clock periods.

The minimum gap between octet write accesses when the strobe is de-asserted is one system clock
period when WS={0, 3}, two when WS={4, 7}, three when WS={8, 11}, and four when WS={12,
15}.

2.3.2 Status Register (R)

Table 4. Status register

31 3 2 1 0
BUSY PP Busy PP Ready
2: BUSY AHB2PP interface busy with data transfer
1: PP Busy Packet Parallel busy input
0: PP Ready Packet Parallel ready input

All bits are cleared to 0 at reset.

2.3.3 Control Register (R/'W)
Table 5. Control Register

31 4 3 2 10
PP Abort | PP Valid ‘RST |EN ‘

PP Abort Packet Parallel abort output
PP Valid Packet Parallel valid output
RESET  Reset complete core when 1
ENABLE Enable Packet Parallel interface when 1, else enable GPIO function

e



All bits are cleared to 0 at reset. Note that RESET is read back as 0b.

2.3.4 Data Input Register (R)

Table 6. Data Input Register

31 8 7 0
DIN

7-0: DIN Input data ppidata[7:0]

All bits are cleared to 0 at reset.

2.3.5 Data Output Register (R/W)

Table 7. Data Output Register

31 8 7 0
DOUT

7-0: DOUT Output data ppo.data[7:0]

All bits are cleared to 0 at reset.

Note that the GPIO functionality can only be used when the Packet Parallel interface is disabled via
the Control Register above.

2.3.6 Data Register (R/'W)

Table 8. Data Direction Register

31 8 7 0
DDIR

7-0: DDIR Direction: ppo.enable[7:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.

Note that the GPIO functionality can only be used when the Packet Parallel interface is disabled via
the Control Register above.

AHB 1I/0 area

Data to be transferred to the Packet Parallel interface is written to the AMBA AHB slave interface
which implements a AHB 1/O area. See [GRLIB] for details.

Note that the address is not decoded by the core. Address decoding is only done by the AMBA AHB
controller, for which the I/O area location and size is configured by means of the ioaddr and iomask
VHDL generics.
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It is possible to transfer one, two or four bytes at a time, following the AMBA big-endian convention
regarding send order. The last written data can be read back via the AMBA AHB slave interface. Data
are output as octets on the Packet Parallel interface.

Table 9. AHB 1/O area - data word definition

31 24 23 16 15 8 7 0
DATA [31:24] DATA [23:16] DATA [15:8] DATA [7:0]

Table 10. AHB 1/O area - send order

Transfer size Address DATA [31:24] | DATA [23:16] | DATA [15:8] DATA [7:0] | Comment
offset
Word 0 first second third last Four bytes sent
Halfword 0 first last - - Two bytes sent
2 - - first last Two bytes sent
Byte 0 first - - - One byte sent
1 - first - - One byte sent
2 - - first - One byte sent
3 - - - first One byte sent

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x039. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options
Table 11 shows the configuration options of the core (VHDL generics).

Table 11. Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 1 - NAHBSLV-1 0

ioaddr Addr field of the AHB IO bar. 0 - 16#FFF# 0

iomask Mask field of the AHB IO bar. 0 - 16#FFF# 16#F00#
pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the AHB2PP. 0 - NAHBIRQ-1 0

syncrst Only synchronous reset 0,1 1

oepol Output enable polarity 0,1 1
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2.7

2.8

2.9

Signal descriptions

Table 12 shows the interface signals of the core (VHDL ports).

Table 12. Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB slave input signals -
AHBO * Output AHB slave output signals -
PPI busy n Input Packet Parallel busy signal -
ready Packet Parallel ready signal
data[7:0] Packet Parallel data (GPIO only)
PPO abort Output Packet Parallel abort signal -
valid n Packet Parallel packet delimiter signal -
Wwr_n Packet Parallel octet write strobe
data[7:0] Packet Parallel octet data
enable[7:0] Enable/drive octet data output

* see GRLIB IP Library User’s Manual

Library dependencies

Table 13 shows the libraries used when instantiating the core (VHDL libraries).

Table 13. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC_Types Signals, component Component declarations, signals.
Instantiation

This example shows how the core can be instantiated.

TBD
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GRADCDAC - ADC / DAC Interface

Overview

The block diagram shows a possible partitioning of the combined analogue-to-digital converter
(ADC) and digital-to-analogue converter (DAC) interface.

The combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC) inter-
face is assumed to operate in an AMBA bus system where an APB bus is present. The AMBA APB
bus is used for data access, control and status handling.

The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices.
The two interfaces are merged both at the pin/pad level as well as at the interface towards the AMBA
bus. The interface supports simultaneously one ADC device and one DAC device in parallel.

Address and data signals unused by the ADC and the DAC can be used for general purpose input out-
put, providing 0, 8, 16 or 24 channels.

The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready
signals. The timing is programmable. It also provides an 8-bit address output. The ADC conversion
can be initiated either via the AMBA interface or by internal or external triggers. An interrupt is gen-
erated when a conversion is completed.

The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is
programmable. It also provides an 8-bit address output. The DAC conversion is initiated via the
AMBA interface. An interrupt is generated when a conversion is completed.

. ADCDAC Df15:0] . DBH’I.’GJ’:
ADCDAC A[7:0] A[3:0] | ADBBT |rommsnsann .
DAC WR* CS*
AMBA )
AFEB ADC/DAC  DB[11:0]
- #
Interface A0
ADC C5* [
ADC RIC* RC* | AD774 .
- ADC STS STS
. ADC TRIG*

Figure 1. Block diagram of the GRADCDAC environment

3.1.1 Function

The core implements the following functions:
* ADC interface conversion:
. ready feed-back, or

. timed open-loop



*  DAC interface conversion:

. timed open-loop

*  General purpose input output:
. unused data bus, and

. unused address bus

»  Status and monitoring:

. on-going conversion
. completed conversion
. timed-out conversion

Note that it is not possible to perform ADC and DAC conversions simultaneously. On only one con-
version can be performed at a time.

3.1.2 Interfaces

The core provides the following external and internal interfaces:
*  Combined ADC/DAC interface

. programmable timing
. programmable signal polarity
. programmable conversion modes

. AMBA APB slave interface

The ADC interface is intended for amongst others the following devices:

Name: Width: Type:

AD574 12-bit R/C*, CE, CS*, RDY*, tri-state
AD674 12-bit R/C*, CE, CS*, RDY*, tri-state
AD774 12-bit R/C*, CE, CS*, RDY*, tri-state
AD670 8-bit R/W*, CE*, CS*, RDY, tri-state
AD571 10-bit Blank/Convert*, RDY*, tri-state
ADI1671 12-bit Encode, RDY*, non-tri-state
LTC1414 14-bit Convert*, RDY, non-tri-state

The DAC interface is intended for amongst others the following devices:

Name: Width: Type:

ADS561 10-bit Parallel-Data-in-Analogue-out
ADS565 12-bit Parallel-Data-in-Analogue-out
AD667 12-bit Parallel-Data-in-Analogue-out, CS*
AD767 12-bit Parallel-Data-in-Analogue-out, CS*

DACO08 8-bit Parallel-Data-in-Analogue-out
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Operation

3.2.1 Interfaces

The internal interface on the on-chip bus towards the core is a common AMBA APB slave for data
access, configuration and status monitoring, used by both the ADC interface and the DAC interface.

The ADC address output and the DAC address output signals are shared on the external interface.
The address signals are possible to use as general purpose input output channels. This is only realized
when the address signals are not used by either ADC or DAC.

The ADC data input and the DAC data output signals are shared on the external interface. The data
input and output signals are possible to use as general purpose input output channels. This is only
realized when the data signals are not used by either ADC or DAC.

Each general purpose input output channel shall be individually programmed as input or output. This
applies to both the address bus and the data bus. The default reset configuration for each general pur-
pose input output channel is as input. The default reset value each general purpose input output chan-
nel is logical zero.

Note that protection toward spurious pulse commands during power up shall be mitigated as far as
possible by means of I/O cell selection from the target technology.

3.2.2 Analogue to digital conversion

The ADC interface supports 8 and 16 bit wide input data.

The ADC interface provides an 8-bit address output, shared with the DAC interface. Note that the
address timing is independent of the acquisition timing.

The ADC interface shall provide the following control signals:
*  Chip Select

* Read/Convert

*+ Ready

The timing of the control signals is made up of two phases:

»  Start Conversion

* Read Result

The Start Conversion phase is initiated by one of the following sources, provided that no other con-
version is ongoing:

»  Event on one of three separate trigger inputs
*  Write access to the AMBA APB slave interface

Note that the trigger inputs can be connected to internal or external sources to the ASIC incorporating
the core. Note that any of the trigger inputs can be connected to a timer to facilitate cyclic acquisition.
The selection of the trigger source is programmable. The trigger inputs is programmable in terms of:

Rising edge or Falling edge. Triggering events are ignored if ADC or DAC conversion is in progress.

The transition between the two phases is controlled by the Ready signal. The Ready input signal is
programmable in terms of: Rising edge or Falling edge. The Ready input signaling is protected by
means of a programmable time-out period, to assure that every conversion terminates. It is also possi-
ble to perform an ADC conversion without the use of the Ready signal, by means of a programmable
conversion time duration. This can be seen as an open-loop conversion.

The Chip Select output signal is programmable in terms of:
*  Polarity

*  Number of assertions during a conversion, either
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*  Pulsed once during Start Conversion phase only,
*  Pulsed once during Start Conversion phase and once during Read Result phase, or

*  Asserted at the beginning of the Start Conversion phase and de-asserted at the end of the Read
Result phase

The duration of the asserted period is programmable, in terms of system clock periods, for the Chip
Select signal when pulsed in either of two phases.

The Read/Convert signal is de-asserted during the Start Conversion phase, and asserted during the
Read Result phase. The Read/Convert output signal is programmable in terms of: Polarity. The setup
timing from Read/Convert signal being asserted till the Chip Select signal is asserted is programma-
ble, in terms of system clock periods. Note that the programming of Chip Select and Read/Convert
timing is implemented as a common parameter.

At the end of the Read Result phase, an interrupt is generated, indicating that data is ready for readout
via the AMBA APB slave interface. The status of an on-going conversion is possible to read out via
the AMBA APB slave interface. The result of a conversion is read out via the AMBA APB slave
interface. Note that this is independent of what trigger started the conversion.

An ADC conversion is non-interruptible. It is possible to perform at least 1000 conversions per sec-
ond.

Start conversion Read result
ws WS ws WS
o TUU YUV UUUUUL
L L
CSs
RC
Trig f_
Rdy I
Data ]
Addr >< ><
Settings: RCPOL=0 Sample data
CSPOL=0
RDYPOL=1
TRIGPOL=1
RDYMODE=1
CSMODE=00
ADCWS=0

Figure 2. Analogue to digital conversion waveform, 0 wait states (WS)
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3.2.3 Digital to analogue conversion

The DAC interface supports 8 and 16 bit wide output data. The data output signal is driven during the
conversion and is placed in high impedance state after the conversion.

The DAC interface provides an 8-bit address output, shared with the ADC interface. Note that the
address timing is independent of the acquisition timing.

The DAC interface provides the following control signal: Write Strobe. Note that the Write Strobe
signal can also be used as a chip select signal. The Write Strobe output signal is programmable in
terms of: Polarity. The Write Strobe signal is asserted during the conversion. The duration of the
asserted period of the Write Strobe is programmable in terms of system clock periods.

At the end the conversion, an interrupt is generated. The status of an on-going conversion is possible
to read out via the AMBA APB slave interface. A DAC conversion is non-interruptible.

Conversion

WS WS ws
o fguyyuyuurbiiuutyuuyt
WR
Data

Addr >< ><

Settings: WRPOL=0
DACWS=0

Figure 3. Digital to analogue conversion waveform, 0 wait states (WS)

Operation

3.3.1 Interrupt

Two interrupts are implemented by the ADC/DAC interface:

Index: Name: Description:
0 ADC ADC conversion ready
1 DAC DAC conversion ready

The interrupts are configured by means of the pirg VHDL generic.

3.3.2 Reset

After a reset the values of the output signals are as follows:

Signal: Value after reset:
ADO.Aout[7:0] de-asserted
ADO.Aen[7:0] de-asserted

ADO.Dout[15:0] de-asserted
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3.4

ADO.Den[15:0] de-asserted

ADO.WR de-asserted (logical one)
ADO.CS de-asserted (logical one)
ADO.RC de-asserted (logical one)

3.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:
* ADILAIn[7:0]

* ADILDin[15:0]

« ADILRDY
*  ADITRIG[2:0]

Registers

The core is programmed through registers mapped into APB address space.

Table 14. GRADCDAC registers

APB address offset Register

16#000# Configuration Register
16#004# Status Register

16#010# ADC Data Input Register
16#014# DAC Data Output Register
16#020# Address Input Register
16#024# Address Output Register
16#028# Address Direction Register
16#030# Data Input Register
16#034# Data Output Register
16#038# Data Direction Register

34.1

Configuration Register [ADCONF] R/'W

Table 15. Configuration register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DACWS WR | DACDW
POL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADCWS RCP | CSMODE |CSP |[RD |RD |TRI | TRIG- ADCDW
OL OL |[YM |YP |GP | MODE
OD |[OL |OL
E
23-19: DACWS Number of DAC wait states, 0 to 31 [5 bits]
18: WRPOL  Polarity of DAC write strobe:
0b = active low
1b = active high
17-16: DACDW DAC data width
00b = none

01b =8 bit ADO.Dout[7:0]
10b=16bit ADO.Dout[15:0]
11b = none/spare
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ADCWS  Number of ADC wait states, 0 to 31 [5 bits]
RCPOL  Polarity of ADC read convert:
Ob = active low read
1b = active high read
CSMODE Mode of ADC chip select:
00b = asserted during conversion and read phases
01b = asserted during conversion phase
10b = asserted during read phase
11b = asserted continuously during both phases
CSPOL  Polarity of ADC chip select:0b = active low
1b = active high
RDYMODE:Mode of ADC ready:
Ob = unused, i.e. open-loop
1b = used, with time-out
RDYPOL Polarity of ADC ready:
Ob = falling edge
1b =rising edge
TRIGPOL Polarity of ADC triggers:
Ob = falling edge
1b =rising edge
TRIGMODEADC trigger source:
00b = none
01b = ADL.TRIG[0]
10b = ADL.TRIG[1]
11b = ADL.TRIG[2]
ADCDW ADC data width:
00b = none
01b = 8 bit ADIL.Din[7:0]
10b=16bit ADILDin[15:0]
11b = none/spare

The ADCDW field defines what part of ADI.Din[15:0] is read by the ADC.
The DACDW field defines what part of ADO.Dout[15:0] is written by the DAC.

Parts of the data input/output signals used neither by ADC nor by DAC are available for the general
purpose input output functionality.

Note that an ADC conversion can be initiated by means of a write access via the AMBA APB slave
interface, thus not requiring an explicit ADC trigger source setting.

The ADCONF.ADCWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the ADC control signals:

ADO.RC stable before ADO.CS period

ADO.CS asserted period, when pulsed

ADO.TRIG[2:0] event until ADO.CS asserted period

Time-out period for ADO.RDY: 2048 * (1+ADCONF.ADCWS)
Open-loop conversion timing: 512 * (1+ADCONF.ADCWS)

The ADCONF.DACWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the DAC control signals:

ADO.Dout[15:0] stable before ADO.WR period
ADO.WR asserted period
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*  ADO.Dout[15:0] stable after ADO.WR period

3.4.2 Status Register [ADSTAT]| R

Table 16. Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DA |DA |DA |AD |AD |AD |AD
CN |CR |CO |[CTO|CN |CR |[CO
o DY |N o DY |N

DACNO DAC conversion request rejected (due to ongoing DAC or ADC conversion)
DACRDY DAC conversion completed

DACON DAC conversion ongoing

ADCTO ADC conversion timeout

ADCNO  ADC conversion request rejected (due to ongoing ADC or DAC conversion)
ADCRDY ADC conversion completed

ADCON  ADC conversion ongoing

Sl A

When the register is read, the following sticky bit fields are cleared:

+  DACNO, DACRDY,

+ ADCTO, ADCNO, and ADCRDY.

Note that the status bits can be used for monitoring the progress of a conversion or to ascertain that the

interface is free for usage.

3.4.3 ADC Data Input Register [ADIN] R/'W

Table 17. ADC Data Input Register

31 16 15 0
ADCIN

15-0: ADCIN  ADC input data ADI.Din[15:0]

A write access to the register initiates an analogue to digital conversion, provided that no other ADC
or DAC conversion is ongoing (otherwise the request is rejected).

A read access that occurs before an ADC conversion has been completed returns the result from a pre-
vious conversion.

Note that any data can be written and that it cannot be read back, since not relevant to the initiation of
the conversion.

Note that only the part of ADI.Din[15:0] that is specified by means of bit ADCONF.ADCDW is used
by the ADC. The rest of the bits are read as zeros.

Note that only bits dwidth-1 to 0 are implemented.
3.44 DAC Data Output Register [ADOUT] R/'W

Table 18. DAC Data Output Register

31 16 15 0
DACOUT

15-0: DACOUT DAC output data ADO.Dout[15:0]
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A write access to the register initiates a digital to analogue conversion, provided that no other DAC or
ADC conversion is ongoing (otherwise the request is rejected).

Note that only the part of ADO.Dout[15:0] that is specified by means of ADCONF.DACDW is driven
by the DAC. The rest of the bits are not driven by the DAC during a conversion.

Note that only the part of ADO.Dout[15:0] which is specified by means of ADCONF.DACDW can be
read back, whilst the rest of the bits are read as zeros.

Note that only bits dwidth-1 to 0 are implemented.

3.4.5 Address Input Register [ADAIN] R

Table 19. Address Input Register

31 8 7 0
AIN

7-0: AIN Input address ADIL Ain[7:0]

All bits are cleared to 0 at reset.
Note that only bits awidth-1 to 0 are implemented.
3.4.6 Address Output Register [ADAOUT] R/'W

Table 20. Address Output Register

31 8 7 0
AOUT

7-0: AOUT Output address ADO.Aout[7:0]

All bits are cleared to 0 at reset.
Note that only bits awidth-1 to 0 are implemented.

3.4.7 Address Direction Register [ADADIR]| R/W

Table 21. Address Direction Register

31 8 7 0
ADIR

7-0: ADIR Direction: ADO.Aout[7:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to O at reset.
Note that only bits awidth-1 to 0 are implemented.

3.4.8 Data Input Register [ADDIN] R

Table 22. Data Input Register

31 16 15 0
DIN

15-0: DIN Input data ADIL.Din[15:0]
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3.5

All bits are cleared to 0 at reset.

Note that only the part of ADL.Din[15:0] not used by the ADC can be used as general purpose input
output, see ADCONF.ADCDW.

Note that only bits dwidth-1 to 0 are implemented.
3.4.9 Data Output Register [ADDOUT| R/'W

Table 23. Data Output Register

31 16 15 0
DOUT

15-0: DOUT Output data ADO.Dout[15:0]

All bits are cleared to 0 at reset.

Note that only the part of ADO.Dout[15:0] neither used by the DAC nor the ADC can be used as gen-
eral purpose input output, sce ADCONF.DACDW and ADCONF. ADCDW.

Note that only bits dwidth-1 to 0 are implemented.
3.4.10 Data Register [ADDDIR] R/W

Table 24. Data Direction Register

31 16 15 0
DDIR

15-0: DDIR Direction: ADO.Dout[15:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.

Note that only the part of ADO.Dout[15:0] not used by the DAC can be used as general purpose input
output, see ADCONF.DACDW.

Note that only bits dwidth-1 to 0 are implemented.

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x036. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.



Configuration options

Table 25 shows the configuration options of the core (VHDL generics).

Table 25. Configuration options
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ADO.Aen[7:0]

ADO.Dout[15:0]

ADO.Den[15:0]

ADO.WRDAC

ADO.CSADC

ADO.RCADC

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRADCDAC. 0 - NAHBIRQ-1 1
nchannel Number of input/outputs 1-32 24
npulse Number of pulses 1-32 8
invertpulse Invert pulse output when set 1-32 0
cntrwidth Pulse counter width 4to 32 20
oepol Output enable polarity 0,1 1
3.7 Signal descriptions
Table 26 shows the interface signals of the core (VHDL ports).
Table 26. Signal descriptions
Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
ADI ADI.Ain[7:0] Input Common Address input -
ADI.Din[15:0] ADC Data input
ADILRDY ADC Ready input
ADITRIG[2:0] ADC Trigger inputs
ADO ADO.Aout[7:0] Output Common Address output -

Common Address output enable

DAC Data output

DAC Data output enable

Write Strobe

Chip Select

Read/Convert

* see GRLIB IP Library User’s Manual

Note that the VHDL generic oepol is used for configuring the logical level of ADO.Den and ADO.Aen while asserted.
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3.8

3.9

Library dependencies

Table 27 shows the libraries used when instantiating the core (VHDL libraries).

Table 27. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals GRADCDAC component declaration
Instantiation

This example shows how the core can be instantiated.

TBD
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GRCE/GRCD - Basic Convolutional Encoder and Quicklook Decoder
The Basic Convolutional Encoder (GRCE) comprises a synchronous bit serial input and a synchro-
nous bit serial output. The output frequency is twice the input frequency.

The Basic Convolutional Quicklook Decoder (GRCD) comprises a synchronous bit serial input and a
synchronous bit serial output. The input frequency is twice the output frequency. The quicklook
decoder decodes the incoming bit stream without correcting for bit errors.

The GRCE / GRCD models are based on the Basic Convolutional Code specified by Consultative

Committee for Space Data Systems (CCSDS) and European Cooperation for Space Standardization
(ECSS).

[CCSDS] Telemetry Channel Coding, CCSDS 101.0-B-6, Issue 6, October 2002
[PSS] Telemetry Channel Coding Standard, ESA PSS-04-103, Issue 1, September 1989
[ECSS]  Space Engineering -Telemetry channel coding, ECSS-E-50-01

Protocol

The basic convolutional code is a rate 1/2, constraint-length 7 transparent code which is well suited
for channels with predominantly Gaussian noise:

Nomenclature: Convolutional code
Code rate: 1/2 bit per symbol.
Constraint length: 7 bits.

Connection vectors: ~ G1=1111001 (171 octal);
G2=1011011 (133 octal).
Symbol inversion: On output path of G2.

el

|NPLIT'rDLD_‘de*.D+DTDA HUT

Gz

NOTES:

1. = SINGLE BIT DELAY.

FOR EVERY INPUT BIT, TWO
SYMBOLS ARE GEMERATED BY
COMPLETION OF A CYCLE FOR
S1: POSITION 1, POSITION 2.

R

3. 5115 IN THE POSITION
SHOWM (1) FOR THE FIRST
SYMBOL ASSOCIATED WITH AN
INCOMING BIT.

=

® = MODULO-2 ADDER.

5.~ o = INVERTER.
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4.2

4.3

Configuration options

Table 28 shows the configuration options of the cores (VHDL generics).

Table 28. Configuration options

Generic name

Function

Allowed range

Default

syncreset

Synchronous reset when set, else asynchronous 0-1

0

Signal descriptions

Table 30 shows the interface signals of the Basic Convolutional Encoder (GRCE) core (VHDL ports).

Table 29. Signal descriptions - GRCE

Signal name

Field

Type

Function

Active

Rst N

N/A

Input

This active low input port synchronously resets
the model. The port is assumed to be deasserted
synchronously with the Cout system clock.

Low

Cin

N/A

Input

This input port is the bit clock for the data input
Din. The port is sampled on the rising Cout
edge. When Cin is sampled as asserted, a new bit
is present on the Din port.

Cin is assumed to have been generated from the
rising Cout edge, normally with a delay, and Din

is assumed to be stable after the falling Cin edge.

High

Din

N/A

Input

This input port is the serial data input for the
interface. Data are sampled on the rising Cout
edge when the Cin input is asserted. Input data
Din is thus qualified by the input bit clock Cin.
For each input data bit on Din, two bits are out-
put on Dout.

Cout

N/A

Output

This input port is the system clock for the model.
All registers are clocked on the rising Cout edge.
The port also acts as the bit clock for the data
output Dout.

Rising

Dout

N/A

Output

This output port is the serial data output for the
interface. The output is clocked out on the rising
Cout edge.
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4.5

Table 30 shows the interface signals of the GRCD core (VHDL ports).

Table 30. Signal descriptions - GRCD

27

Signal name

Field

Type

Function

Active

Rst N

N/A

Input

This active low input port synchronously resets
the model. The port is assumed to be deasserted
synchronously with the Cin system clock.

Low

Cin

N/A

Input

This input port is the system clock for the model.
All registers are clocked on the falling Cin edge.
The port also acts as the bit clock for the data
input Din.

Falling

Din

N/A

Input

This input port is the serial data input for the
interface. Data are sampled on the falling Cin
edge. For two input data bits on Din, one bit is
output on Dout.

Cout

N/A

Output

This output port is the output bit clock. The out-
put is clocked out on the falling Cin edge.

Dout

N/A

Output

This output port is the serial data output for the
interface. The output is clocked out on the falling
Cin edge. Dout is assumed to be sampled exter-
nally on the falling Cout edge.

Dlock

N/A

Output

This output port is asserted when the quick look
decoder is in lock and producing decoded data.
The output is clocked out on the falling Cin
edge.

High

Library depend

encies

Table 31 shows the libraries used when instantiating the cores (VHDL libraries).

Table 31. Library dependencies

Library Package Imported unit(s) Description

T™TC TMTC_Types Component Component declaration
Instantiation

The GRCE/ GRCD cores are fully synchronous designs based on a single clock strategy. All registers
in the cores are reset synchronously or asynchronously, controlled by the syncrst VHDL generic. The

reset input requires external synchronisation to avoid any setup and hold time violations.

This example shows how the cores can be instantiated.

library IEEE;

use IEEE.Std Logic_1164.all;

library TMTC;

component GRCE
port (

Rst_n:

Cin:

Din:

Cout:

Dout:
end component

component GRCD

in Std_ULogic;
in Std_ULogic;
in Std_ULogic;
in Std_ULogic;
out Std_ULogic) ;--

GRCE;

-- Synchronous reset

-- Input
-- Input

data clock
data

-- Output data clock

Output data
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port (
Rst_N:
Cin:
Din:
Cout:
Dout:
Dlock:

end component

in
in
in
out
out
out
GRCD;

Std_ULogic; --
Std_ULogic; --
Std_ULogic; --
Std_ULogic; --
Std_ULogic; --
Std_ULogic) ; --

Synchronous reset
Input data clock
Input data
Output data clock
Output data
Output locked
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GRCTM - CCSDS Time Manager

Overview

The CCSDS Time Manager (GRCTM) provides basic time keeping functions such an Elapsed Time
(ET) counter according to the Consultative Committee for Space Data Systems (CCSDS) Unseg-
mented Code specification, [CCSDS]. It comprises a Frequency Synthesizer (FS) by which a binary
frequency is generated to drive the ET counter. The GRCTM provides support for setting the incre-
ment rate of the ET counter as well as of the FS counter.

The GRCTM provides datation services that sample the ET counter value on external events. It also
provides generation of periodic pulses with cycle periods of less than one second. All services in the
GRCTM core are accessible via an AMBA AHB slave interface.

The GRCTM provides a service for sampling the ET counter value on the occurrence of the time
strobe generated by the Packet Telemetry Encoder (PTME), generating a Standard Spacecraft Time
Source Packet according to the ESA Packet Telemetry Standard, [PSS]. The Time Source Packet can
be read out via the AMBA AHB slave interface and is transmitted directly to a telemetry encoder via
a serial interface.

The GRCTM can act as a master and/or a slave in a time distribution system. As a master only, the
GRCTM distributes the ET to GRCTM slaves via a TimeWire (TW) interface. As a slave only, the
GRCTM receives the ET via the TimeWire interface. When acting as a master and slave, the GRCTM
receives the ET from a master GRCTM, but can also distribute the ET to other slaves.

ML CTM GRCTM
HRESETn
ET&FS

IRESETn .

Datation[0:2] Datation | | TwSlave Rs232Rx TWSlave  TimelWire
o Pulsesl07] Pulses | | TWMaster Rs232Tx TWiaster,,

TimeMode[0:3]  Time Packe
TimePkt
AHBOU AHB Slave | TimePkt Rs232Tx TimeBusy N”
TimeStrobe

Figure 4. Block diagram

5.1.1 Foreseen usage of the core

On-board time maintenance and distribution is to be handled through a master CCSDS Time Manager
(GRCTM) and one or more slave GRCTMs. Using a dedicated synchronisation line (TimeWire), the
slave time manager can be synchronised with the master GRCTM. The slave GRCTM can further dis-
tribute the time to the payload. The GRCTM slaves will thus be slaved to the master GRCTM, but
also act as masters for other modules. This isolates the master GRCTM from the payloads. The slave
GRCTM provides four datation register into which the Elapsed Time (ET) counter can be latched on
the occurrence of an external triggering event.

It is not possible to synchronise or set the ET counter in the master GRCTM. The ET counter can only
be cleared by means of hardware or software reset.
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5.2

5.1.2 Description of a general system using the core

The general approach to accurately maintaining on-board time is to have a central time reference mea-
suring the elapsed time from an arbitrary epoch and to distribute regularly this time information to on-
board applications by means of messages and synchronisation pulses. Another approach would be to
have a centralised time system, where each application that needs to time stamp data could request the
unit maintaining the central time reference to provide the relevant time information. Such an approach
would have several inherent drawbacks, e.g. in systems with many users, the accuracy of a time stamp
could be jeopardised due to long service latency and excessive bus traffic could degrade the overall
performance of the data handling system.

The purpose of the GRCTM is to provide a building block for such time distribution services by pro-
viding the means for CCSDS compliant time keeping and a set of basic user time services. Most time
distribution implementations have required support from the application processor to maintain syn-
chronisation between the central and the local time references. Protocols and formats for distributing
time information have differed between spacecraft and have sometimes only provided low resolution
or poor accuracy. The purpose of the GRCTM is to provide an accurate time coherence throughout the
spacecraft.

The correlation between the central time reference and ground has already been foreseen by providing
a time strobe from the Packet Telemetry encoder (PTME) core. The time strobe has a deterministic
relationship to the bit structure of the telemetry frame. This makes it possible to establish the time
relation between the assertion of this time strobe on-board and the reception of the relevant frame on
ground, taking into account the down link propagation delay. Each GRCTM instance maintains its
own copy of the central elapsed time reference with which on-board applications can time stamp their
data. This unbroken chain of time relationships on-board, and between the spacecraft and ground, pro-
vides a solution to the problem of knowing when an event took place on-board in any given space-
time frame.

The GRCTM is foreseen to be used both as a central elapsed time reference in the spacecraft data
management system, as well as the local elapsed time reference in an instrument or other subsystem.
By using standardised AMBA interfaces, the integration of the GRCTM should be simple for most
systems.

5.1.3 Functions not included

The GRCTM does not support alarm services.
The GRCTM does not support setting of an arbitrary epoch time.

Data formats

All Elapsed Time (ET) information handled by GRCTM is compliant with the CCSDS Unsegmented
Code defined in [CCSDS] and repeated hereafter.

5.2.1 Reference documents

[CCSDS] Time Code Formats, CCSDS 301.0-B-3, January 2002, www.ccsds.org
[PSS] Packet Telemetry Standard, ESA PSS-04-106, Issue 1, January 1988
5.2.2 CCSDS Unsegmented Code: Preamble Field (P-Field)

The time code preamble field (P-Field) may be either explicitly or implicitly conveyed. If it is implic-
itly conveyed (not present with T-Field), the code is not self-identified, and identification must be
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obtained by other means. As presently defined, the explicit representation of the P-Field is limited to
one octet whose format is described hereafter.

Table 32. CCSDS Unsegmented Code P-Field definition

Bit Value Interpretation
0 0 Extension flag
1-3 “001” 1958 January 1 epoch (Level 1) ! Time code identification
“010” Agency-defined epoch (Level 2) !
4-5 (number of octets of coarse time) - 1 Detail bits for information on the code
6-7 (number of octets of fine time)

1 For the Standard Spacecraft Time Source Packet defined in the ESA Packet Telemetry Standard, bits 1 to 3
must are set to 010y,

5.2.3 CCSDS Unsegmented Code: Time Field (T-Field)

For the unsegmented binary time codes described herein, the T-Field consists of a selected number of
contiguous time elements, each element being one octet in length. An element represents the state of 8
consecutive bits of a binary counter, cascaded with the adjacent counters, which rolls over at a modulo
of 256.

Table 33. CCSDS Unsegmented Code T-Field definition

CCSDS Unsegmented Code
Preamble Time Field

Field Coarse time Fine time

- “0000” 227 224 223 216 215 28 27 20 2-1 2_8 2_9 2_14 “00”

The basic time unit is the second. The T-Field consists of 28 bits of coarse time (seconds) and 14 bits
of fine time (sub seconds). The coarse time code elements are a count of the number of seconds
elapsed from the epoch. The 28 bits of coarse time results in a maximum ambiguity period of approx-
imately 8 years. Arbitrary epochs may be accommodated as a Level 2 code. The 14 bits of fine code
elements result in a resolution of 2-14 second (about 62 microseconds). This code is not UTC-based
and leap second corrections do not apply according to CCSDS.

5.2.4 Waveforms

Start Data Stop
I ]

r 1
~ lsedss] [ | | [ | |wse|swp|
~ lsedse] [ ] | [ | [mss|swp st

Start Data Parity Stop

I |
o qsedise] [ ] 1 [ ] [wmse[p [swf
“ Start‘ LSB‘ ‘ ‘ ‘ ‘ ‘ ‘MSB‘ P ‘ Stop StopL
“ Start Stop

Figure 5. Bit asynchronous protocol
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5.3

Active 1

Inactive

Width I 1
Period | |

Figure 6. Pulse generation waveform

Operation

The CCSDS Time Manager (GRCTM) synthesizable core can be configured for various purposes.
The different functions presented hereafter can be used to from a GRCTM to act as a master, slave, or
master and slave.

5.3.1 Elapsed Time (ET)

The local Elapsed Time (ET) counter is based on a default 28 bit coarse time field and a 14 bit fine
time field, complying to the CCSDS Unsegmented Code (CUC) T-Field. The width of the two time
fields is fixed. The counter implementing the ET is incremented on the system clock only when
enabled by the frequency synthesizer described below. The ET is incremented with a pre-calculated
increment value, which matches the synthesised frequency. The local ET is output in the CUC format,
P-Field and T-Field, to be used by an application embedding the GRCTM. The P-Field is static with
the Time Code Identifier is set to 010b.

5.3.2 Frequency Synthesizer (FS)

The binary frequency required to determine the ET counter increment is derived from the system
clock using a 32 bit frequency synthesizer. The frequency synthesizer is incremented with a pre-calcu-
lated increment value, which matches the available system clock frequency. The FS simply generates
a tick every time it wraps around, which makes the ET to step forward with the pre-calculated incre-
ment value. The output of the frequency synthesizer is used for enabling the increment of the local ET
as described above. The 32 bit wide FS causes a systematic drift of less than 1 second/day.

5.3.3 TimeWire Interface (TW)

The GRCTM provides two TimeWire (TW) interfaces, one for the master function and one for the
slave function. The TimeWire interface is used for distributing the Elapsed Time (ET) of a GRCTM
master to one or more GRCTM slaves. The information carried in the synchronisation message com-
prises the Elapsed Time Field, which is 4 bytes, and a synchronisation pulse which is sent as a
BREAK command. The synchronisation pulse is used for synchronising both the ET and the phase of
the Frequency Synthesiser (FS) and is done once every second.

The GRCTM slave automatically synchronizes its ET with that of the GRCTM master without requir-
ing any user support. A GRCTM that acts both as a master and a slave will be slaved to another master
via a slave TimeWire interface, and will simultaneously distribute its own ET to other GRCTM
slaves. The GRCTM slave will continue to work undisturbed in case a GRCTM master has failed. It is
also possible to disable the synchronisation by means of a register further to avoid failure propagation.
The TimeWire interface provides means for synchronising a GRCTM slave from a GRCTM that acts
both as a master and a slave, which being synchronised in turn from another GRCTM master.

The message is sent just before the synchronisation instance. A BREAK command is sent just after
the message to indicate the synchronisation pulse. The instance of the synchronisation actually
depends on the reception of the BREAK command and the time it takes to generate an internal pulse
in the receiver on which the previously sent message is latched into the ET counter of the slave. The
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baseline is to send the synchronisation message and pulse to coincide with the wrap around of the sub-
second bits in the ET. However, the time at which the message is sent out from the master is config-
urable by means of a generic (based on the fine part of the ET). An additional generic is provided for
the fine tuning of the message start. On the slave side, a generic is provided to set the fine part of the
ET at which the synchronisation pulse will occur. It is thus possible to synchronise the two units at
any arbitrary point in time, provided it is done once a second.

To tolerate large skew and drift differences between the clocks driving the master and the slave
GRCTM, a staged approach has been taken for the distribution of the synchronisation message and
the synchronisation pulse. The first GRCTM master in a time chain synchronises its GRCTM slaves
before it is time for these to act as masters and in turn send their synchronisation messages and pulses
to their slaves. This is done to avoid that the first GRCTM master will synchronise the GRCTM slaves
in such a way that no synchronisation messages are being sent out from these GRCTM due to clock
drift. Since the synchronisation only occurs once a second, the first GRCTM master in a time chain
has one second of time available to synchronise its GRCTM slaves before they synchronise their
slaves in turn.

The TimeWire interface is based on a bit asynchronous interface (RS232/422) with the following
specification:

* 115200 baud

* 1 start bit, 8 bit data, 1 or 2 stop bits (configured by generics)

*  odd parity is generated in transmitter, but ignored in the receiver (configured by generics)
*  no handshake

*  message delimiting via BREAK command (13 bits when sent)

»  synchronisation via BREAK command (13 bits when sent)

Table 34. TimeWire transmission protocol

CCSDS Unsegmented Code
Elapsed Time Coarse Time Field

Byte Number Register (ETCR) Coarse Part Comment

First “0000” & [27:24] 231 224

Second [23:16] 223 216

Third [15:8] 215 28

Fourth [7:0] 27 20

Fifth N/A [RS232 Break Command ] Used as synchronisation pattern

Note that it is not possible for the TimeWire to carry sub-second phase information due to the usage of
the above RS232/422 type of interface.

5.3.4 Datation

The GRCTM comprises three datation registers for the purpose of datation of user events relative the
ET counter. The datation is triggered by three external edge sensitive inputs (programmable rising or
falling edge).

A fourth datation register is provided for sampling the ET counter when generating a Standard Space-
craft Time Source Packet as described below.

Each of the three general datation services is automatically disabled after an occurrence and is not re-
enabled until the corresponding fine time register is read. The format of all four datation registers is
compliant to the CUC T-Field.

The ET counter can be accessed directly via the AMBA AHB interface. This can be used for direct
datation from software.



34

5.3.5 Interrupts

The GRCTM provides individual interrupt lines for the incoming datation inputs, the time strobe
input and the occurrence of the individual pulse outputs. The interrupt lines are asserted for at least
two system clock cycles and can be connected to an external interrupt controller. The interrupts indi-
cate that a new datation value can be read. The interrupts defined in table 35 are generated.

Table 35. Interrupts

Interrupt offset Interrupt name Description

L:st DRLO Datation Register 0 Latched
2:nd DRLI Datation Register 1 Latched
3id DRL2 Datation Register 2 Latched
4:th STL Spacecraft Time Register Latched
5:th PULSEO Pulse 0 interrupt

6:th PULSEI Pulse 1 interrupt

7:th PULSE2 Pulse 2 interrupt

8:th PULSE3 Pulse 3 interrupt

9:th PULSE4 Pulse 4 interrupt

10:th PULSES Pulse 5 interrupt

11:th PULSE6 Pulse 6 interrupt

12:th PULSE7? Pulse 7 interrupt

5.3.6 Pulses

The GRCTM provides eight external outputs used for clock pulse distribution. The timing of each
pulse output is individually derived from the Elapsed Time counter. It is possible to program for each
pulse output individually the following parameters:

*  periodicity pulse

*  width of pulse

*  polarity of pulse

*  enable/disable pulse generation (reset status is disabled)

The pulse has two parts, the active and the inactive part. The active part always starts the pulse, fol-
lowed by the inactive part. The polarity or logical level of the active part is programmable. The inac-
tive part takes the logical inversion of the active pulse, and is the default output from the generator
when the pulse is not issued or the overall generation is disabled. The leading edge of the active pulse
part is aligned with the 1 second transition of the Elapsed Time counter.

The periodicity of the pulse corresponds to one of the ET bits that can be selected in the range 27 to 2-
8 seconds, providing a range from 128 seconds to 3,91 ms, i.e. 0,0078 to 256 Hz frequency. See regis-
ter definition for details.

The width of the active part of the pulse corresponds to one of the ET bits that can be selected in the
range 26 to 2-9 seconds, providing a range from 64 seconds to 1,95 ms. See register definition for
details.

It is possible to generate a pulse that has a duty cycle of 50%. It is also possible to generate a pulse for
which the active part is as short as 2-9 seconds, and its period is as high as 27 seconds. The effective
duty cycle can be as low as 2-9/27 for the longest period, up to 50% for the shortest period of 2-8 sec-
onds =256 Hz. The duty cycle choice becomes more restricted as the frequency increases. Note that it
is only possible to reduce the duty cycle in one direction: 50%/50%, 25%/75% ... 1%/99%. The active
part of the pulse can thus never be more than 50% of the cycle. It should be noted that the active pulse
width must be at most 50% of the pulse period. This is a requirement on the software usage.
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The pulse outputs are guaranteed to be spike free. If the re-synchronisation of the GRCTM in slave
mode occurs within 0,5 ms of the expected synchronisation instance, the ongoing pulse output width
will be accurate to within 0,5 ms. Else, the pulse output will remain unchanged corresponding to up to
four times the expected output width.

If a pulse output is disabled by means of writing to the corresponding register (PDRx) (i.e. writing a
zero to the Pulse Enable bit (PE)), the pulse output will be immediately driven to the inversion of the
Pulse Level bit (PL), which corresponds to the level of the inactive part of the pulse. It is thus possible
to modify immediately the pulse output by disabling it using the PE bit and then changing the PL bit,
since the output will always drive the inversion of the PL bit while disabled.

5.3.7 Standard Spacecraft Time Source Packet

As mentioned above, the GRCTM comprises one datation register for sampling the ET counter when
generating a Standard Spacecraft Time Source Packet according to the ESA Packet Telemetry Stan-
dard, AD2, according to the following bit asynchronous protocol specification:

* 115200 baud

» 1 start bit, 8 bit data, 1 or 2 stop bits (configured by generics)

*  odd parity is generated (configured by generics)

*  no handshake

*  message delimiting via BREAK command (13 zero bits when sent)

The Spacecraft Time Coarse Register (STCR) and the Spacecraft Time Fine Register (STFR) are
available for readout of the datation time from the software. The software cannot block or initiate a
datation on these registers, since controlled from an external input pin. If multiple datation have
occurred since the registers were previously read, only the time at the first datation can be read from
the registers.

Table 36. Standard Spacecraft Time Source Packet

Octet number Name Value

0 Packet Header Octet 0 0x00

1 Packet Header Octet 1 0x00

2 Segment Flags & Sequence Count (0 to 5) 11y, & 14 bit counter
3 Sequence Count (6 to 13)

4 Packet Length (0 to 7) 0x00

5 Packet Length (8 to 15) 0x00

6 Data Field & Sample Rate (0 to 3) 0000b & sampling rate
7 P-Field 0x2F

8 T-Field (23! to 2%%)

9 T-Field (223 to 216)

10 T-Field (2" to 2%)

11 T-Field (27 to 2%)

12 T-Field 27! to 2°%)

13 T-Field (27 to 2716)

14 T-Field 2717 to 2724 Always all zero




36

Table 37. Time sample rate

Bit Rate (in frames) Bit Rate (in frames)
0000y, 1 0101, 32

0001, 2 0110, 64

0010, 4 0111, 128

0011, 8 1000, 256

0100, 16 others undefined

5.3.8 AMBA AHB slave interface

All time services, including the Elapsed Time counter in the embedded GRCTM core, are clocked by
the AMBA AHB clock HCLK. All input signals are assumed to be synchronous with the AMBA
AHB interface clock HCLK. No input signal synchronisation is performed in the core. All outputs are
synchronous with the AMBA AHB interface clock.

The AMBA AHB slave interface supports 32 bit wide data input and output. Since each access is a
word access, the two least significant address bits are assumed always to be zero. Only address bits
23:0 are decoded. Note that address bits 31:24 are not decoded and should thus be handled by the
AHB arbiter/decoder. The address input of the AHB slave interfaces is thus incompletely decoded.
Misaligned addressing is not supported. One wait state is introduced for read and write accesses.

When the CCSDS field is narrower than the AMBA data width, zeros are padded to the right. Re-
mapping between the opposing numbering conventions in the CCSDS and AMBA documentation is
performed automatically. For read accesses, unmapped bits are always driven to zero.

The interface provides direct access to the T-Field of the ET counter.

The AMBA AHB interface has been reduced in function to support only what is required for the
GRCTM. The following AMBA AHB features are constrained:

*  Only supports HSIZE=WORD, HRESP_ERROR generated otherwise

*  Only supports HMASTLOCK='0', HRESP_ERROR generated otherwise

*  Only supports HBURST=SINGLE and INCR, HRESP_ERROR generated otherwise
*  No HPROT decoding

*  No HSPLIT generated

*  No HRETRY generated

+ HRESP ERROR generated for unmapped addresses, and for write accesses to register without
any writeable bits

*  Only big-endianness is supported.
*  Frequency synthesis and time increment configuration

The increment values for the ET and FS counters depend on the implemented width of each counter
and the frequency of the available on the system clock.

5.3.9 Miscellaneous

The accuracy of the transmission or reception baud rate of the bit asynchronous serial interface is
dependent on the selected system frequency and baud rate. The number of system clock periods used
for sending or receiving a bit is directly proportional to the integer part of the division of the system
frequency with the baud rate.

The BREAK command received on the bit asynchronous serial interface is a sequence of logical zeros
that is at least one bit period longer than the normal byte frame, i.e. start bit, eight data bits, optional
parity, one or two stop bits. When transmitted, it is always 13 bits.
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5.3.10 Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:
*  The most significant bit of an array is located to the left, carrying index number zero.

*  An octet comprises eight bits.

Table 38. CCSDS n-bit field definition

CCSDS n-bit field

most significant least significant

0 1 ton-2 n-1

Convention according to AMBA specification, applying to the APB/AHB interfaces:

»  Signal names are in upper case, except for the following:

* A lower case 'n' in the name indicates that the signal is active low.

. Constant names are in upper case.

*  The least significant bit of an array is located to the right, carrying index number zero.

*  Big-endian support.

Table 39. AMBA n-bit field definition

AMBA n-bit field

most significant least significant

n-1 n-2 down to 1 0

General convention, applying to all other signals and interfaces:
*  Signal names are in mixed case.

* Anupper case ' N'suffix in the name indicates that the signal is active low.
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5.4  Registers

The core is programmed through registers mapped into AHB I/O address space.

Table 40. GRCTM registers

AHB address offset Register
0x00 Global Reset Register (GRR)
0x04 Global Control Register (GCR)
0x08 Global Status Register (GSR)
0x14 Preamble Field Register (PFR)
0x18 Elapsed Time Coarse Register (ETCR)
0x1C Elapsed Time Fine Register (ETFR)
0x20 Datation Coarse Register 0 (DCRO)
0x24 Datation Fine Register 0 (DFRO)
0x28 Datation Coarse Register 1 (DCR1)
0x2C Datation Fine Register 1 (DFR1)
0x30 Datation Coarse Register 2 (DCR2)
0x34 Datation Fine Register 2 (DFR2)
0x38 Spacecraft Time Datation Coarse Register (STCR)
0x3C Spacecraft Time Datation Fine Register (STFR)
0x40 Pulse Definition Register 0
0x44 Pulse Definition Register 1
0x48 Pulse Definition Register 2
0x4C Pulse Definition Register 3
0x50 Pulse Definition Register 4
0x54 Pulse Definition Register 5
0x58 Pulse Definition Register 6
0x5C Pulse Definition Register 7
0x60 Pending Interrupt Masked Status Register
0x64 Pending Interrupt Masked Register
0x68 Pending Interrupt Status Register
0x6C Pending Interrupt Register
0x70 Interrupt Mask Register
0x74 Pending Interrupt Clear Register
Table 41. Global Reset Register (GRR)
31 24 23 1 0
SEB \ RESERVED | SRST |
31:24 SEB (Security Byte):
Write: ‘0x55°= the write will have effect (the register will be updated).
Any other value= the write will have no effect on the register.
Read: All zero.
23: 1 RESERVED
Write: Don’t care.
Read: All zero.
0 System reset (SRST): [1]

Write: ‘1’= initiate reset,‘0’= do nothing
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Table 41. Global Reset Register (GRR)
Read: ‘1’= unsuccessful reset, ‘0’= successful reset

Power-up default: 0x00000000

Table 42. Global Control Register (GCR)

24 23 13 12 11 10 9 8 7 0
SEB ‘ RESERVED | DRE2 | DRET | DREO | - | SYNC | RESERVED
31:24 SEB (Security Byte):
Write: ‘0x55°= the write will have effect (the register will be updated).
Any other value= the write will have no effect on the register.
Read: All zero.
23:13 RESERVED
Write: Don’t care.
Read: All zero.
12 Datation Register2 Edge (DRE2)
Write/Read:  ‘0’= falling, ‘1’= rising
11 Datation Register] Edge (DRE1)
Write/Read:  ‘0’= falling, “1'= rising
10 Datation Register0 Edge (DREO)
Write/Read: ‘0= falling, ‘1’= rising
9 RESERVED
Write: Don’t care.
Read: All zero.
8 Synchronise slave (SYNC)
Write: ‘0’= disabled, ‘1’= enabled
Read: ‘0’= disabled, ‘1’= enabled
7: 0 RESERVED
Write: Don’t care.
Read: All zero.

Power-up default: 0x00001C00

Table 43. Global Status Register (GSR) [8]

4 3 2 1 0
RESERVED | STL | DRL2 | DRLT | DRLO |
31: 4 RESERVED
Write: Don’t care.
Read: All zero.
3 Spacecraft Time Register Latched (STL): [3]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value
2 Datation Register 2 Latched (DRL2): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value
1 Datation Register 1 Latched (DRL1): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value
0 Datation Register 0 Latched (DRLO): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value

Power-up default: 0x00000000
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Table 44. Preamble Field Register (PFR) [8]

31
RESERVED P-FIELD
31: 8 RESERVED
Write: Don’t care.
Read: All zero.
7: 0 Preamble Field (P-Field):
Write: Don’t care.
Read: Static P-Field
Power-up default: 0x0000002E
Table 45. Elapsed Time Coarse Register (ETCR) [8]
31
T-FIELD, COARSE
31:0 T-Field, coarse part [5]
Write: Don’t care.
Read: T-Field, coarse part
Power-up default: 0x00000000
Table 46. Elapsed Time Fine Register (ETFR) [8]
31 16 15
T-FIELD, FINE
31: 16 T-Field, fine part [5]
Write: Don’t care.
Read: T-Field, fine part
15:0 RESERVED
Write: Don’t care.
Read: All zero.
Power-up default: 0x00000000
Table 47. Datation Time Coarse Register 0 (DCRO) [8]
31
T-FIELD, COARSE
31:0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part
Power-up default: 0x00000000
Table 48. Datation Time Fine Register 0 (DFRO) [8]
31 16 15
T-FIELD, FINE
31: 16 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part
15:0 RESERVED
Write: Don’t care.
Read: All zero.

Power-up default: 0x00000000



Table 49. Datation Time Coarse Register 1 (DCR1) [8]
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31 0
T-FIELD, COARSE
31:0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part
Power-up default: 0x00000000
Table 50. Datation Time Fine Register 1 (DFR1) [8]
31 16 15 0
T-FIELD, FINE
31: 16 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part
15:0 RESERVED
Write: Don’t care.
Read: All zero.
Power-up default: 0x00000000
Table 51. Datation Time Coarse Register 2 (DCR2) [8]
31 0
T-FIELD, COARSE
31:0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part
Power-up default: 0x00000000
Table 52. Datation Time Fine Register 2 (DFR2) [8]
31 16 15 0
T-FIELD, FINE
31: 16 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part
15:0 RESERVED
Write: Don’t care.
Read: All zero.
Power-up default: 0x00000000
Table 53. Spacecraft Time Datation Coarse Register (STCR) [8]
31 0

T-FIELD, COARSE

31: 0 T-Field, coarse part [7]
Write: Don’t care.
Read: T-Field, coarse part

Power-up default: 0x00000000
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Table 54. Spacecraft Time Datation Fine Register (STFR) [8]

31 16 15 0
T-FIELD, FINE
31: 16 T-Field, fine part [7]
Write: Don’t care.
Read: T-Field, fine part
15:0 RESERVED
Write: Don’t care.
Read: All zero.
Power-up default: 0x00000000
Table 55. Pulse Definition Register 0 to 7 (PDRO to PDR?7)
31 24 23 20 19 16 15 11 10 9 2 1 0
RESERVED PP PW RESERVED  [PL| RESERVED PE| - |
31:24 RESERVED
Write: Don’t care.
Read: All zero.
23:20 Pulse Period (PP):
Write/Read:  '0000’ = 27 seconds
'0001" = 2 % seconds
'0010° = 2 % seconds
"1110' = 2 -7 seconds
111 = 2 -8 seconds
Period = 2 (7-PP)
Frequency = 2-(7-PP)
19: 16 Pulse Width (PW):
Write/Read:  '0000' = 2 6 seconds
'0001' = 2 5seconds
'0010’ = 2 4seconds
1110 = 2 8 seconds
1M1 = 29 seconds
Width = 2 (6-PW)
15: 11 RESERVED
Write: Don’t care.
Read: All zero.
10 Pulse Level (PL): Defines logical level of active part of pulse output.
Write/Read:  ‘0’= Low, ‘1’= High
9: 2 RESERVED
Write: Don’t care.
Read: All zero.
1 Pulse Enable (PE):
Write/Read:  ‘0’= disabled, ‘1°= enabled
0 RESERVED

Write: Don’t care.
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Table 55. Pulse Definition Register 0 to 7 (PDR0 to PDR7)
Read: All zero.

Power-up default: 0x00000400

Legend:

(1]

(8]

5.4.1

The global system reset caused by the SRST-bit in the GRR-register results in the following actions:
- Initiated by writing a ‘17, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset core.
Behaviour:
- Resets the complete core (all logic, buffers & register values)
(except for the ET and FS counters which continue running undisturbed)
- Behaviour is similar to a power-up.
- This reset shall not cause any spurious interrupts
{Note that the above actions require that the HRESET signal is fed back inverted to HRESETn}
The channel reset results in the following actions:
Not implemented in Global Configuration Register.

This bit is sticky which means that it remains asserted until the corresponding STFR register is read at which time the
bit is cleared. The corresponding registers should be read in the STCR — STFR order.

This bit is sticky which means that it remains asserted until the corresponding Defraud register is read at which point
the bit is cleared. The corresponding registers should be read in the DCRx — DFRx order.

When ETCR is read, the ETFR register is latched and are not released until ETFR has been read. The registers should
be read in the ETCR — ETFR order.

The coarse and fine time part of the register pair is latched on an external event and is released on reading the corre-
sponding fine time register. No new event is accepted until the corresponding fine time register has been read.

The coarse and fine time part of the register pair is latched on an external event. No new event is accepted until the cor-
responding fine time register has been read. This does not prevent datations to occur and Standard Spacecraft Time
Source Packet to be generated.

An AMBA AHB ERROR response is generated if a write access is attempted to a register which does not have any
writeable bits.

Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

Set up the software interrupt-handler to accept an interrupt from the module.
Read the Pending Interrupt Register to clear any spurious interrupts.

Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

Handle the interrupt, taking into account all causes of the interrupt.

Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
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5.5

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

*  Pending Interrupt Masked Status Register = [PIMSR] R
*  Pending Interrupt Masked Register [PIMR] R
*  Pending Interrupt Status Register [PISR] R
*  Pending Interrupt Register [PIR] R/W
*  Interrupt Mask Register [IMR] R/W
*  Pending Interrupt Clear Register [PICR] w
Table 56. Interrupt registers
31 12 11 4 3 2 1 0
- PULSE7 PULSEO STL DRL2 DRL1 DRLO
11 PULSE7 Pulse 7 interrupt
10: PULSE6 Pulse 6 interrupt
9: PULSES Pulse 5 interrupt
8: PULSE4 Pulse 4 interrupt
7: PULSE3 Pulse 3 interrupt
6: PULSE2 Pulse 2 interrupt
S: PULSE1 Pulse 1 interrupt
4: PULSEO Pulse 0 interrupt
3: STL Spacecraft Time Register Latched
2: DRL2 Datation Register 2 Latched
1: DRL1 Datation Register 1 Latched
0: DRLO Datation Register 0 Latched

All bits in all interrupt registers are reset to Ob after reset.

Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x033. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.



Configuration options

Table 57 shows the configuration options of the core (VHDL generics).

Table 57. Configuration options
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Generic Function Description Allowed range | Default
GRLIB AMBA plug&play settings
hindex AHB slave index Integer 0
hirq AHB slave interrupt Integer 0
singleirq Single interrupt Enable interrupt registers Integer 0
ioaddr 10 area address 0 - 16#FFF# 0
iomask 10 area mask 0 - 16#FFF# 16#FFF#
syncrst synchronous reset 0-1 0
Features settings
gMaster Master CTM support 0-1 0
gSlave Slave CTM support -1 0
gDatation Datation support 0-1 0
gPulse Pulse support 0-1 0
gTimePacket Time Packet support 0-1 0
Frequency synthesizer and Elapsed Time counter settings
gFrequency Frequency Defines the accuracy of the synthesized 2-32 32
Synthesizer reference time, the wider the synthesizer
the less drift is induced.
gETIncrement Increment of Defines with what value the Elapsed Time | Integer 1
ET counter counter is to be incremented each time
when the Frequency Synthesizer wraps
around. The highest resolution is when the
value is set to 1. The ET increment needs
to match the synthesized frequency.
gFSIncrement Increment of Defines the increment value of the Fre- Integer 2111062
FS counter quency Synthesizer which is added to the
counter every system clock cycle. It
defines the frequency of the synthesized
reference time. The synthesized frequency
needs to match the ET increment.
TimeWire settings
gTWStart ETF at msg start ET Fine at start of message [1] Integer 16#FFDCO0#
gTWAdjust Adjust phase of msg | System clock based tuning of message start | Integer 1636
gTWTransmit ETF at transmission | ET Fine at synchronisation (master) [1] Integer 16#000000#
gTWRecieve ETF at reception ET Fine at synchronisation (slave) [1] [2] | Integer 16#FFC000#
gDebug Debug when set Only used for TW settings adjustments. 0-1 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)
gSystemClock System frequency System clock frequency [Hz] Integer 33333333
gBaud Baud rate [Baud] Integer 115200
gOddParity Odd parity Odd parity generated, but not checked 0-1 0
gTwoStopBits Number of stop bits | O=one stop bit, 1=two stop bits 0-1 0
Legend:

(1]

(2]

For proper mitigation of spikes on the Pulses[0:7] outputs, only the leftmost bits should be set.

These generics are defined as 24 bit ET fine time values, thus 16#FFFCO00# corresponds to all the 14 implemented bits
being all-ones.
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5.7

Signal descriptions

Table 58 shows the interface signals of the core (VHDL ports).

Table 58. Signal descriptions

Signal name Field Type Function Description Active
HRESETn N/A Input Reset Resets the ET & FS inthe | Low
VHDL core. The signal is
assumed synchronous with
rising HCLK edge.
CRESETn N/A Input Reset Resets all logic but the ET | Low
& FS in the VHDL core.
The signal is assumed syn-
chronous with rising
HCLK edge.
HCLK N/A Input Clock -
CTMIN TWSLAVE Input TimeWire slave TimeWire input -
DATATION Datation input The inputs are sampled on | -
rising HCLK edge.
TIMEMODE Time rate select Selects the rate of the time | -
strobe periodicity
TIMESTROBE Time strobe input -
TIMEBUSY N Time packet busy Low
CTMOUT TWMASTER Output TimeWire master | TimeWire output
PULSES Pulse outputs The outputs are driven on | -
rising HCLK edge.
TIMEPKT Time packet data -
ELAPSEDTIME Elapsed Time “0000” & ET coarse [27:0] | -
& ET fine [-1:-14] & “00”
ELAPSEDSYNC Synchronisation -
AHBIN * Input AMB slave input signals -
AHBOUT * Output AHB slave output signals -
HIRQ(hirg+11) Interrupts PULSES(7) output Location on
HIRQ(hirg+10) PULSES(6) output HIRQ bus
; depends on
HIRQ(hirg+9) PULSES(5) output hirg generic.
HIRQ(hirq+8) PULSES(4) output If hirg=0, no
- i ill
HIRQ(hirq*7 PULSES(3 t Interrupt wi
Qhirg*+7) (3) outpu be generated.
HIRQ(hirg+6) PULSES(2) output £ sin
HIRQ(hirg+5) PULSES(1) output gleirg=1
HIRQ(hirg+4) PULSES(0) output only one
- common
HIRQ(hirg+3) STL interrupt will
HIRQ(hirg+2) DRL2 be generate
HIRQ(hirg+1) DRLI1 using hirg.
HIRQ(hirq+0) DRLO

* see GRLIB IP Library User’s Manual
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Library dependencies

Table 59 shows libraries used when instantiating the core (VHDL libraries).

Table 59. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC Types Signals, component Signals and component declaration
Instantiation

This example shows how the core can be instantiated.

library IEEE;

use IEEE.Std_Logic_1164.all;
library GRLIB;

use GRLIB.AMBA.all;

library TMTC;

use TMTC.TMTC_Types.all;

component GRCTM is

generic (
hindex: in Integer := 0;
hirqg: in Integer := 0;
ioaddr: in Integer := 0;
iomask: in Integer = 16H#EEEH;
syncrst: in Integer := 0;
gMaster: in Natural range 0 to 1 = 1; -- Master CTM support
gSlave: in Natural range 0 to 1 = 1; -- Slave CTM support
gDatation: in Natural range 0 to 1 = 1; -- Datation support
gPulse: in Natural range 0 to 1 = 1; -- Pulse support
gTimePacket: in Natural range 0 to 1 = 1; -- Time Packet support
gFrequency: in Positive := 32; -- Frequency Synthesize
gETIncrement: in Natural := 1; -- ET increment
gFSIncrement: in Natural := 2111062; -- FS increment
gTWStart: in Natural := 16#FFDCOO#; -- ETF at start of msg
gTWAdjust: in Natural := 1636; -- Adjust phase of msg
gTWTransmit : in Natural := 16#000000#; -- ETF at transmision
gTWRecieve: in Natural := 16#FFCO00#; -- ETF at reception
gSystemClock: in Natural := 33333333; -- System frequency [Hz]
gBaud: in Natural := 115200; -- Baud rate
gOddParity: in Natural range 0 to 1 = 0; -- 0dd parity
gTwoStopBits: in Natural range 0 to 1 = 0; -- Two stop bits
gDebug: in Natural range 0 to 1 = 0); -- Debug mode when set
port (
-- AMBA AHB system signals
HCLK: in Std_ULogic; -- System clock
HRESETn: in Std_ULogic; -- Synchronised reset
CRESETn: in Std_ULogic; -- Synchronised reset
-- AMBA AHB slave interface
AHBInN: in AHB Slv_In Type; -- AHB slave input
AHBOut : out AHB_Slv_Out_Type; -- AHB slave output

-- Time interfaces

CTMIn: in

CTMOut : out
end component GRCTM;

GRCTM_In Type;
GRCTM_Out_Type) ;
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5.10

Configuration tuning

The gFrequency generic defines the width of the Frequency Synthesiser (FS). The greater the width,
the smaller the drift induced. The gFSIncrement generic defines with what value the FS counter
should be incremented to obtain a synthesized frequency that matches the least significant bit of the
Elapsed Time (ET) counter, normally being 214 Hz. It is also possible to synthesize a frequency less
than 214 Hz, which will require the gETIncrement generic to have a higher value than the default 1.

The gETIncrement generic defines with what value the ET counter should be incremented. The speci-
fied value is added to the current ET counter value. The addition is done to the least significant bit in
the fine part of the ET counter, i.e. gETIncrement is multiplied with 2-14 before the addition. The
gETIncrement is normally set to 1, since the obtained synthesised frequency is normally 214 Hz. For
lower frequencies, the gETIncrement generic must be larger than 1. Note that the synthesized fre-
quency must always be a power of two.

The gTWStart generic defines at what time the transmission of the TimeWire message should start on
the TWMaster output. The gTWStart value corresponds to the ET counter fine part assuming 24 bit
resolution. E.g. 16#FFFCO00# corresponds to bit 2-1 to 2-14 being set. The gT WAdjust generic defines
the number of HCLK periods that should pass between the gTWStart time has occurred and the
TimeWire message should be sent. This allows for fine grained adjustment of the starting point for the
TimeWire message.

The gTWTransmit generic defines the ET fine part value that is transmitted virtually to the slave. Its
only consequence is to decide whether the ET coarse part to be sent in the TimeWire message should
be the same as the current ET in the master or be incremented by one second. The gTWRecieve
generic defines the ET fine part value that should be loaded into the ET at synchronisation. Normally
this will be 0 for slave only applications of the GRCTM.

When the gDebug generic is 1, the ET counter reset will be 0x000000 for the coarse part and
0xFF0000 for the fine part (assuming CUC 32 & 24 bit resolution). This achieves an ET synchronisa-
tion early in a simulation without the need to wait for a second of simulation time.

5.10.1 Master configuration

The master configuration is used for the source of the time chain and supports the following features:
*  Frequency Synthesizer (FS) and Elapsed Time (ET) counters

*  Master TimeWire interface

»  Datation by means of direct read out of the ET counter via AMBA AHB interface

The following register are available in this configuration: GRR, GCR, GSR, ETCR, ETFR.



Table 57 shows the master configuration.

Table 60. Master configuration
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Generic Function Default
Features settings

gMaster Master CTM support 1

gSlave Slave CTM support 0

gDatation Datation support 0

gPulse Pulse support 0
gTimePacket Time Packet support 0
Frequency synthesizer and Elapsed Time counter settings

gFrequency Frequency Synthesizer 32
gETIncrement Increment of ET counter 1
gFSIncrement Increment of FS counter 2111062
TimeWire settings

gTWStart ETF at msg start 16#FF9C00#
gTWAdjust Adjust phase of msg 1636
gTWTransmit ETF at transmission 16#FFCO00#
gTWRecieve ETF at reception 16#000000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)

gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity 0Odd parity 0
gTwoStopBits Number of stop bits 0
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5.10.2 Master/Slave configuration

The master/slave configuration is used for an intermediate unit in the time chain, and supports all fea-

tures.

All registers are available in this configuration.

Table 57 shows the master/slave configuration.

Table 61. Master/Slave configuration

Generic Function Default
Features settings

gMaster Master CTM support 1

gSlave Slave CTM support 1

gDatation Datation support 1

gPulse Pulse support 1
gTimePacket Time Packet support 1

Frequency synthesizer and Elapsed Time counter settings

gFrequency Frequency Synthesizer 32
gETIncrement Increment of ET counter 1
gFSIncrement Increment of FS counter 2111062
TimeWire settings

gTWStart ETF at msg start 16#FFDCO0#
gTWAdjust Adjust phase of msg 1636
gTWTransmit ETF at transmission 16#0000000#
gTWRecieve ETF at reception 16#FFCO000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)

gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity 0Odd parity 0
gTwoStopBits Number of stop bits 0
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5.10.3 Slave configuration

The slave configuration is used for a sink at the end of the time chain, e.g. in the payload, and supports
the following features:

*  Frequency Synthesizer (FS) and Elapsed Time (ET) counters
»  Slave TimeWire interface
»  Datation by means of direct read out of the ET counter via AMBA AHB interface

Note that the slave configuration can also support other features as required. Only those necessary for
proper operation have been listed above.

The following register are available in this configuration: GRR, GCR, GSR, ETCR, ETFR.

Table 57 shows the slave configuration.

Table 62. Slave configuration

Generic Function Default
Features settings

gMaster Master CTM support 0

gSlave Slave CTM support 1

gDatation Datation support 0

gPulse Pulse support 0
gTimePacket Time Packet support 0
Frequency synthesizer and Elapsed Time counter settings

gFrequency Frequency Synthesizer 32
gETIncrement Increment of ET counter 1
gFSIncrement Increment of FS counter 2111062
TimeWire settings

gTWStart ETF at msg start 16#000000#
gTWAdjust Adjust phase of msg 1636
gTWTransmit ETF at transmission 16#000000#
gTWRecieve ETF at reception 16#000000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)

gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity Odd parity 0
gTwoStopBits Number of stop bits 0
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6.1

GRFIFO - FIFO Interface

Overview

The FIFO interface is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing FIFO data in memory external to the
FIFO interface. This memory can be located on-chip or external to the chip.

The FIFO interface supports transmission and reception of blocks of data by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of data can be ongoing simultaneously.

After a data transfer has been set up via the AMBA APB interface, the DMA controller initiates a
burst of read accesses on the AMBA AHB bus to fetch data from memory that are performed by the
AHB master. The data are then written to the external FIFO. When a programmable amount of data
has been transmitted, the DMA controller issues an interrupt.

After reception has been set up via the AMBA APB interface, data are read from the external FIFO.
To store data to memory, the DMA controller initiates a burst of write accesses on the AMBA AHB
bus that are performed by the AHB master. When a programmable amount of data has been received,
the DMA controller issues an interrupt.

The block diagram shows a possible usage of the FIFO interface.

D[8:0]
< e e —
WR* _
RD* -
AMBA FIFO ATMEL |e—
aB €= |nterface |, FULL” M6720X
EMPTY*
< —
HALF*
< —
< N
4—
>  ATMEL
M6720X ,

Figure 7. Block diagram of the GRFIFO environment.

6.1.1 Function

The core implements the following functions:
»  data transmission to external FIFO

»  circular transmit buffer

»  direct memory access for transmitter

»  data reception from external FIFO

»  circular receive buffer for receiver

»  direct memory access
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. automatic 8- and 16-bit data width conversion

»  general purpose input output

6.1.2 Transmission

Data to be transferred via the FIFO interface are fetched via the AMBA AHB master interface from
on-chip or off-chip memory. This is performed by means of direct memory access (DMA), imple-
menting a circular transmit buffer in the memory. The transmit channel is programmable via the
AMBA APB slave interface, which is also used for the monitoring of the FIFO and DMA status.

The transmit channel is programmed in terms of a base address and size of the circular transmit buffer.
The outgoing data are stored in the circular transmit buffer by the system. A write address pointer reg-
ister is then set by the system to indicate the last byte written to the circular transmit buffer. An inter-
rupt address pointer register is used by the system to specify a location in the circular transmit buffer
from which a data read should cause an interrupt to be generated.

The FIFO interface automatically indicates with a read address pointer register the location of the last
fetched byte from the circular transmit buffer. Read accesses are performed as incremental bursts,
except when close to the location specified by the interrupt pointer register at which point the last
bytes might be fetched by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the transmit
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.

To handle the 8- and 16-bit FIFO data width, a 32-bit read access might carry less than four valid
bytes. In such a case, the remaining bytes are ignored. When additional data are available in the circu-
lar transmit buffer, the previously fetched bytes will be re-read together with the newly written bytes
to form the 32-bit data. Only the new bytes will be transmitted to the FIFO, not to transmit the same
byte more than once. The aforementioned write address pointer indicates what bytes are valid.

An interrupt is generated when the circular transmit buffer is empty. The status of the external FIFO is
observed via the AMBA APB slave interface, indicating Full Flag and Half-Full Flag.

6.1.3 Reception

Data received via the FIFO interface are stored via the AMBA AHB master interface to on-chip or
off-chip memory. This is performed by means of direct memory access (DMA), implementing a circu-
lar receive buffer in the memory. The receive channel is programmable via the AMBA APB slave
interface, which is also used for the monitoring of the FIFO and DMA status.

The receive channel is programmed in terms of a base address and size of the circular receive buffer.
The incoming data are stored in the circular receive buffer. The interface automatically indicates with
a write address pointer register the location of the last stored byte. A read address pointer register is
used by the system to indicate the last byte read from the circular receive buffer. An interrupt address
pointer register is used by the system to specify a location in the circular receive buffer to which a data
write should cause an interrupt to be generated.

Write accesses are performed as incremental bursts, except when close to the location specified by the
interrupt pointer register at which point the last bytes might be stored by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the receive
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.

To handle the 8- and 16-bit FIFO data width, a 32-bit write access might carry less than four valid
bytes. In such a case, the remaining bytes will all be zero. When additional data are received from the
FIFO interface, the previously stored bytes will be re-written together with the newly received bytes
to form the 32-bit data. In this way, the previously written bytes are never overwritten. The aforemen-
tioned write address pointer indicates what bytes are valid.
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6.2

An interrupt is generated when the circular receive buffer is full. If more FIFO data are available, they
will not be moved to the circular receive buffer. The status of the external FIFO is observed via the
AMBA APB slave interface, indicating Empty Flag and Half-Full Flag.

6.1.4 General purpose input output

Data input and output signals unused by the FIFO interface can be used as general purpose input out-
put, providing 0, 8 or 16 individually programmable channels.

6.1.5 Interfaces

The core provides the following external and internal interfaces:

*  FIFO interface

AMBA AHB master interface, with sideband signals as per [GLRIB] including:

. cachability information

. interrupt bus
. configuration information
. diagnostic information

*  AMBA APB slave interface, with sideband signals as per [GLRIB] including:
. interrupt bus
. configuration information

. diagnostic information

The interface is intended to be used with the following FIFO devices from ATMEL.:

Name: Type:

M67204H 4K x 9 FIFO ESA/SCC 9301/049, SMD/5962-89568

M67206H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

M672061H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177
Interface

The external interface supports one or more FIFO devices for data output (transmission) and/or one or
more FIFO devices for data input (reception). The external interface supports FIFO devices with 8-
and 16-bit data width. Note that one device is used when 8-bit and two devices are used when 16-bit
data width is needed. The data width is programmable. Note that this is performed commonly for both
directions.

The external interface supports one parity bit over every 8 data bits. Note that there can be up to two
parity bits in either direction. The parity is programmable in terms of odd or even parity. Note that odd
parity is defined as an odd number of logical ones in the data bits and parity bit. Note that even parity
is defined as an even number of logical ones in the data bits and parity bit. Parity is generated for write
accesses to the external FIFO devices. Parity is checked for read accesses from the external FIFO
devices and a parity failure results in an internal interrupt.

The external interface provides a Write Enable output signal. The external interface provides a Read
Enable output signal. The timing of the access towards the FIFO devices is programmable in terms of
wait states based on system clock periods.

The external interface provides an Empty Flag input signal, which is used for flow-control during the
reading of data from the external FIFO, not reading any data while the external FIFO is empty. Note
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that the Empty Flag is sampled at the end of the read access to determine if the FIFO is empty. To
determine when the FIFO is not empty, the Empty Flag is re-synchronized with Clk.

The external interface provides a Full Flag input signal, which is used for flow-control during the
writing of data to the external FIFO, not writing any data while the external FIFO is full. Note that the
Full Flag is sampled at the end of the write access to determine if the FIFO is full. To determine when
the FIFO is not full, the Full Flag is re-synchronized with Clk.

The external interface provides a Half-Full Flag input signal, which is used as status information only.

The data input and output signals are possible to use as general purpose input output channels. This
need is only realized when the data signals are not used by the FIFO interface. Each general purpose
input output channel is individually programmed as input or output. The default reset configuration
for each general purpose input output channel is as input. The default reset value each general purpose
input output channel is logical zero. Note that protection toward spurious pulse commands during
power up shall be mitigated as far as possible by means of I/O cell selection from the target technol-

ogy.

Waveforms

The following figures show read and write accesses to the FIFO with 0 and 4 wait states, respectively.

Write Write Read Read Write Write Read Read
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Figure 8. FIFO read and write access waveform, 0 wait states (WS)
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Figure 9. FIFO read and write access waveform, 4 wait states (WS)



6.4

57

Transmission

The transmit channel is defined by the following parameters:
*  base address

*  buffer size

*  write pointer

*  read pointer

The transmit channel can be enabled or disabled.

6.4.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

The size of the buffer is defined by the FifoTxSIZE.SIZE field, specifying the number of 64 byte
blocks that fit in the buffer.

E.g. FifoTxSIZE.SIZE = 1 means 64 bytes fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one word in the buffer
empty. This is to simplify wrap-around condition checking.

E.g. FifoTxSIZE.SIZE = 1 means that 60 bytes fit in the buffer at any given time.

6.4.2 Write and read pointers

The write pointer (FifoTxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoTxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of bytes available in the buffer
for transmission. The difference is calculated using the buffer size, specified by the FifoTxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

*  There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE=2 and
FifoTxRD.READ=0.

»  There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =0 and
FifoTxRD.READ =62.

*  There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =1 and
FifoTxRD.READ =63.

*  There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =5 and
FifoTxRD.READ =3.

When a byte has been successfully written to the FIFO, the read pointer (FifoTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer FifoTxXWR.WRITE and read pointer FifoTxRD.READ are equal, there are no bytes
available for transmission.

6.4.3 Location

The location of the circular buffer is defined by a base address (FifoTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.
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6.4.4 Transmission procedure

When the channel is enabled (FifoTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a transmission will be started. Note that the channel should not be enabled if a
potential difference between the write and read pointers could be created, to avoid the data transmis-
sion to start prematurely.

A data transmission will begin with a fetch of the data from the circular buffer to a local buffer in the
FIFO controller. After a successful fetch, a write access will be performed to the FIFO.

The read pointer (FifoTxRD.READ) is automatically incremented after a successful transmission,
taking wrap around effects of the circular buffer into account. If there is at least one byte available in
the circular buffer, a new fetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the TxError, TxEmpty and TxIrq which are issued on the unsuccessful trans-
mission of a byte due to an error condition on the AMBA bus, when all bytes have been transmitted
successfully and when a predefined number of bytes have been transmitted successfully.

Note that 32-bit wide read accesses past the address of the last byte or halfword available for trans-
mission can be performed as part of a burst operation, although no read accesses are made beyond the
circular buffer size.

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

6.4.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoTxADDR.ADDR) field.

While the channel is disabled, the read pointer (FifoTxRD.READ) can be changed to an arbitrary
value pointing to the first byte to be transmitted, and the write pointer (FifoTxWR.WRITE) can be
changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

6.4.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being fetched will result in a
TxError interrupt.

If the FifoCONF.ABORT bit is set to Ob, the channel causing the AHB error will re-try to read the
data being fetched from memory till successful.

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
data caused the AHB error. The interface will not start any new write accesses to the FIFO. Any ongo-
ing FIFO access will be completed and the FifoTxSTAT.TxOnGoing bit will be cleared. When the
channel is re-enabled, the fetch and transmission of data will resume at the position where it was dis-
abled, without losing any data.

6.4.7 Enable and disable

When an enabled transmit channel is disabled (FifoTxCTRL.ENABLE=0b), the interface will not
start any new read accesses to the circular buffer by means of DMA over the AMBA AHB bus. No
new write accesses to the FIFO will be started. Any ongoing FIFO access will be completed. If the
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data is written successfully, the read pointer (FifoTxRD.READ) is automatically incremented and the
FifoTxSTAT.TxOnGoing bit will be cleared. Any associated interrupts will be generated.

Any other fetched or pre-fetched data from the circular buffer which is temporarily stored in the local
buffer will be discarded, and will be fetched again when the transmit channel is re-enabled.

The progress of the any ongoing access can be observed via the FifoTxSTAT.TxOnGoing bit. The
FifoTxSTAT.TxOnGoing must be Ob before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the TxEmpty interrupt described
hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data transmission is started while the channel is not enabled.

6.4.8 Interrupts

During transmission several interrupts can be generated:

»  TxEmpty: Successful transmission of all data in buffer

+  Txlrq: Successful transmission of a predefined number of data
» TxError:  AHB access error during transmission

The TxEmpty and TxIrq interrupts are only generated as the result of a successful data transmission,
after the FifoTxRD.READ pointer has been incremented.

Reception

The receive channel is defined by the following parameters:
*  base address

*  buffer size

*  write pointer

*  read pointer

The receive channel can be enabled or disabled.

6.5.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

The size of the buffer is defined by the FifoRxSIZE.SIZE field, specifying the number 64 byte blocks
that fit in the buffer.

E.g. FifoRxSIZE.SIZE=1 means 64 bytes fit in the buffer.

Note however that it is not possible for the hardware to fill the buffer completely, leaving at least two
words in the buffer empty. This is to simplify wrap-around condition checking.

E.g. FifoRxSIZE.SIZE=1 means that 56 bytes fit in the buffer at any given time.

6.5.2 Write and read pointers
The write pointer (FifoRxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoRxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
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The difference between the write and the read pointers is the number of bytes available in the buffer
for reception. The difference is calculated using the buffer size, specified by the FifoRxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

*  There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =2 and
FifoRxRD.READ=0.

*  There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =0 and
FifoRxRD.READ=62.

»  There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =1 and
FifoRxRD.READ=63.

»  There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =5 and
FifoRxRD.READ=3.

When a byte has been successfully received and stored, the write pointer (FifoRxWR.WRITE) is
automatically incremented, taking wrap around effects of the circular buffer into account.

6.5.3 Location

The location of the circular buffer is defined by a base address (FifoRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

6.5.4 Reception procedure

When the channel is enabled (FifoRxCTRL.ENABLE=1), and there is space available for data in the
circular buffer (as defined by the write and read pointer), a read access will be started towards the
FIFO, and then an AMBA AHB store access will be started. The received data will be temporarily
stored in a local store-buffer in the FIFO controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the data reception to start prematurely

After a datum has been successfully stored the FIFO controller is ready to receive new data. The write
pointer (FifoRxWR.WRITE) is automatically incremented, taking wrap around effects of the circular
buffer into account.

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the RxError, RxParity, RxFull and RxIrq which are issued on the unsuccessful
reception of data due to an AMBA AHB error or parity error, when the buffer has been successfully
filled and when a predefined number of data have been received successfully.

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

6.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoRxADDR.ADDR) field.

While the channel is disabled, the write pointer (FifoRxWR.WRITE) can be changed to an arbitrary
value pointing to the first data to be received, and the read pointer (FifoRxRD.READ) can be changed
to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.
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6.5.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being stored will result in an
RxError interrupt.

If the FifoCONF.ABORT bit is set to Ob, the channel causing the AHB error will retry to store the
received data till successful

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoRx-
CTRL.ENABLE is cleared automatically to Ob). The write pointer can be used to determine which
address caused the AHB error. The interface will not start any new read accesses to the FIFO. Any
ongoing FIFO access will be completed and the data will be stored in the local receive buffer. The
FifoRxSTAT.ONGOING bit will be cleared. When the receive channel is re-enabled, the reception
and storage of data will resume at the position where it was disabled, without losing any data.

6.5.7 Enable and disable

When an enabled receive channel is disabled (FifoRxCTRL.ENABLE=0b), any ongoing data storage
on the AHB bus will not be aborted, and no new storage will be started. If the data is stored success-
fully, the write pointer (FifoRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated. The interface will not start any new read accesses to the FIFO. Any ongoing FIFO
access will be completed.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data reception is performed while the channel is not enabled.

The progress of the any ongoing access can be observed via the FifoRxSTAT.ONGOING bit. Note
that the there might be data left in the local store-buffer in the FIFO controller. This can be observed
via the FifoRxSTAT.RxByteCntr field. The data will not be lost if the channel is not reconfigured
before re-enabled.

To empty this data from the local store-buffer to the external memory, the channel needs to be ren-
abled. By setting the FifoRxIRQ.IRQ field to match the value of the FifoRxWR.WRITE field plus the
value of the FifoRxSTAT.RxByteCntr field, an emptying to the external memory is forced of any data
temporarily stored in the local store-buffer. Note however that additional data could be received in the
local store-buffer when the channel is re-enabled.

The FifoRxSTAT.ONGOING must be Ob before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers).

6.5.8 Interrupts

During reception several interrupts can be generated:

*  RxFull: Successful reception of all data possible to store in buffer
*+  Rxlrq: Successful reception of a predefined number of data

* RxError:  AHB access error during reception

*  RxParity: Parity error during reception

The RxFull and RxIrq interrupts are only generated as the result of a successful data reception, after
the FifoRxWR.WRITE pointer has been incremented.

Operation

6.6.1 Global reset and enable

When the FifoCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing data transfers will be aborted.
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6.6.2 Interrupt

Seven interrupts are implemented by the FIFO interface:

Index: Name: Description:
0 TxlIrq Successful transmission of block of data
1 TxEmpty  Circular transmission buffer empty
2 TxError AMBA AHB access error during transmission
3 RxlIrq Successful reception of block of data
4 RxFull Circular reception buffer full
5 RxError AMBA AHB access error during reception

6 RxParity  Parity error during reception

The interrupts are configured by means of the pirg VHDL generic. The setting of the singleirg VHDL
generic results in a single interrupt output, instead of multiple, configured by the means of the pirg
VHDL generic, and enables the read and write of the interrupt registers. When multiple interrupts are
implemented, each interrupt is generated as a one system clock period long active high output pulse.
When a single interrupt is implemented, it is generated as an active high level output.

6.6.3 Reset

After a reset the values of the output signals are as follows:

Signal: Value after reset:
FIFOO.WEn de-asserted
FIFOO.REn de-asserted

6.6.4 Asynchronous interfaces

The following input signals are synchronized to Clk:
*  FIFOLEFn
*  FIFOLFFn
*  FIFOLHFn



Registers
The core is programmed through registers mapped into APB address space.

Table 63. GRFIFO registers
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APB address offset Register

0x000 Configuration Register

0x004 Status Register

0x008 Control Register

0x020 Transmit Channel Control Register
0x024 Transmit Channel Status Register
0x028 Transmit Channel Address Register
0x02C Transmit Channel Size Register
0x030 Transmit Channel Write Register
0x034 Transmit Channel Read Register
0x038 Transmit Channel Interrupt Register
0x040 Receive Channel Control Register
0x044 Receive Channel Status Register
0x048 Receive Channel Address Register
0x04C Receive Channel Size Register
0x050 Receive Channel Write Register
0x054 Receive Channel Read Register
0x058 Receive Channel Interrupt Register
0x060 Data Input Register

0x064 Data Output Register

0x068 Data Direction Register

0x100 Pending Interrupt Masked Status Register
0x104 Pending Interrupt Masked Register
0x108 Pending Interrupt Status Register
0x10C Pending Interrupt Register

0x110 Interrupt Mask Register

0x114 Pending Interrupt Clear Register

6.7.1 Configuration Register [FifoCONF] R/W

Table 64. Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16

N N N I A I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Abo | DW Par- | WS

Field:  Description:

6: ABORT  Abort transfer on AHB ERROR
5-4: DwW Data width:
00b = none

01b = 8 bitFIFOO.Dout[7:0],
FIFOILDin[7:0]

10b = 16 bitFIFOO.Dout[15:0]
FIFOILDin[15:0]
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11b = spare/none

3: PARITY  Parity type:
0b = even
1b = odd
2-0: WS Number of wait states, 0 to 7

All bits are cleared to 0 at reset.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses on the affected channel will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the affected
channel is re-enabled setting the FifoTxCTRL.ENABLE or FifoRxCTRL.ENABLE bit, respectively.

Note that a wait states corresponds to an additional clock cycle added to the period when the read or
write strobe is asserted. The default asserted width is one clock period for the read or write strobe
when WS=0. Note that an idle gap of one clock cycle is always inserted between read and write
accesses, with neither the read nor the write strobe being asserted.

Note that an additional gap of one clock cycle with the read or write strobe de-asserted is inserted
between two accesses when WS is equal to or larger than 100D.

6.7.2  Status Register [FifoSTAT] R

Table 65. Status register

31 28 27 24 23 16
‘ TxChannels RxChannels ‘ - ‘
15 6 5 4 0
‘ - ‘ Singlelrq - ‘
31-28: TxChannels Number of TxChannels -1, 4-bit
27-24:  RxChannels Number of RxChannels -1, 4-bit
S: Singlelrq Single interrupt output and interrupt registers when set to 1

6.7.3 Control Register [FifoCTRL] R/'W

Table 66. Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese

1: RESET  Reset complete FIFO interface, all registers

All bits are cleared to 0 at reset.
Note that RESET is read back as 0b.
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6.7.4 Transmit Channel Control Register [FifoTxCTRL] R/'W

Table 67. Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ena
ble

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while fetching transmit data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing data writes to the FIFO are not aborted.

6.7.5 Transmit Channel Status Register [FifoTxSTAT| R

Table 68. Transmit Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxO TxIr | TXE | TxE | FF HF
nGo q mpt | rror
ing y

6: TxOnGoingAccess ongoing

4: TxIrq Successful transmission of block of data

3: TxEmpty Transmission buffer has been emptied

2: TxError AMB AHB access error during transmission
1: FF FIFO Full Flag

0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.
The following sticky status bits are cleared when the register has been read:

*  TxlIrq, TxEmpty and TxError.

6.7.6 Transmit Channel Address Register [FifoTxXADDR] R/W

Table 69. Transmit Channel Address Register

31 10 9 0
ADDR

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.
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6.7.7 Transmit Channel Size Register [FifoTxSIZE] R/'W

Table 70. Transmit Channel Size Register

31 17 16 6 5 0
SIZE
16-6: SIZE Size of circular buffer, in number of 64 bytes block

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE
values is undefined.

Note that only SIZE*64-4 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

6.7.8 Transmit Channel Write Register [FifoTxXWR] R/W

Table 71. Transmit Channel Write Register

31 16 15 0
WRITE

15-0: WRITE  Pointer to last written byte + 1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last byte
to transmit.

Note that it is not possible to fill the buffer. There is always one word position in buffer unused. Soft-
ware is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

6.7.9 Transmit Channel Read Register [FifoTxRD] R/'W

Table 72. Transmit Channel Read Register

31 16 15 0
READ

15-0: READ Pointer to last read byte + 1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte transmitted.

Note that the READ field can be used to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until completed.

Note that the LSB may be ignored for 16-bit wide FIFO devices.
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The field is implemented as relative to the buffer base address (scaled with the SIZE field).

6.7.10 Transmit Channel Interrupt Register [FifoTxIRQ] R/'W

Table 73. Transmit Channel Interrupt Register

31 16 15 0
IRQ
15-0: IRQ Pointer+1 to a byte address from which the read of transmitted data shall result in an interrupt

All bits are cleared to O at reset.

Note that this indicates that a programmed amount of data has been sent. Note that the LSB may be
ignored for 16-bit wide FIFO devices.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

6.7.11 Receive Channel Control Register [FifoRxCTRL] R/'W

Table 74. Receive Channel Control Register

31 2 1 0

Ena
ble

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while storing receive data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing data reads from the FIFO are not aborted.

6.7.12 Receive Channel Status Register [FifoRxSTAT] R

Table 75. Receive Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxByteCntr RxO | RxP | RxIr | RxF | RxE | EF | HF
nGo | arity | q ull rror
ing

10-8: RxByteCntrNumber of bytes in local buffer

6: RxOnGoingAccess ongoing

S: RxParity  Parity error during reception

4: RxIrq Successful reception of block of data

3: RxFull Reception buffer has been filled

2: RxError  AMB AHB access error during reception
1: EF FIFO Empty Flag

0: HF FIFO Half-Full Flag

All bits are cleared to O at reset.
The following sticky status bits are cleared when the register has been read:
*  RxParity, RxIrq, RxFull and RxError.

The circular buffer is considered as full when there are two words or less left in the buffer.
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6.7.13 Receive Channel Address Register [FifoRxADDR] R/'W

Table 76. Receive Channel Address Register

31 10 9

ADDR

31-10: ADDR Base address for circular buffer
All bits are cleared to 0 at reset.

6.7.14 Receive Channel Size Register [FifoRxSIZE] R/'W

Table 77. Receive Channel Size Register

31 17 16

SIZE

16-6: SIZE Size of circular buffer, in number of 64 byte blocks

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE

values 1s undefined.

Note that only SIZE*64-8 bytes can be stored simultaneously in the buffer. This is to simplify wrap-

around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-

width=16, making the SIZE field 11 bits wide.

6.7.15 Receive Channel Write Register [FifoRxWR] R/'W

Table 78. Receive Channel Write Register

31 16 15

WRITE

15-0: WRITE  Pointer to last written byte +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-

ing the position +1 of the last byte received.

Note that the WRITE field can be used to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This

should only be done while the transmit channel is not enabled.
Note that the LSB may be ignored for 16-bit wide FIFO devices.
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6.7.16 Receive Channel Read Register [FifoRxRD] R/'W

Table 79. Receive Channel Read Register

31 16 15 0
READ

15-0: READ Pointer to last read byte +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last byte that has been read out.

Note that it is not possible to fill the buffer. There is always one word position unused in the buffer.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices

6.7.17 Receive Channel Interrupt Register [FifoRxIRQ] R/W

Table 80. Receive Channel Interrupt Register

31 16 15 0
IRQ
15-0: IRQ Pointer+1 to a byte address to which the write of received data shall result in an interrupt

All bits are cleared to 0 at reset.

Note that this indicates that a programmed amount of data has been received.

The field is implemented as relative to the buffer base address (scaled with SIZE field).
Note that the LSB may be ignored for 16-bit wide FIFO devices.

Note that by setting the IRQ field to match the value of the Receive Channel Write Register. WRITE
field plus the value of the Receive Channel Status Register. RxByteCntr field, an emptying to the
external memory is forced of any data temporarily stored in the local buffer.

6.7.18 Data Input Register [FifoDIN] R

Table 81. Data Input Register

31 16 15 0
DIN
15-0: DIN Input data FIFOLDin[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOI.Din[15:0] not used by the FIFO can be used as general purpose input
output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.
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6.7.19 Data Output Register [FifoDOUT]| R/'W

Table 82. Data Output Register

31 16 15 0
DOUT
15-0: DOUT Output data FIFOO.Dout[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

6.7.20 Data Register [FifoDDIR] R/W

Table 83. Data Direction Register

31 16 15 0
DDIR
15-0: DDIR Direction: FIFOO.Dout[15:0]

Ob = input = high impedance,
1b = output = driven
All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

6.7.21 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

»  Set up the software interrupt-handler to accept an interrupt from the module.
*  Read the Pending Interrupt Register to clear any spurious interrupts.

* Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

*  When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

*  Handle the interrupt, taking into account all causes of the interrupt.
*  Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
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Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

*  Pending Interrupt Masked Status Register  [FifoPIMSR] R

*  Pending Interrupt Masked Register [FifoPIMR] R
*  Pending Interrupt Status Register [FifoPISR] R
*  Pending Interrupt Register [FifoPIR] R/W
*  Interrupt Mask Register [FifoIMR] R/W
*  Pending Interrupt Clear Register [FifoPICR] Y

Table 84. Interrupt registers

31 7 6 5 4 3 2 1 0
- RxParity RxError RxFull RxIrq TxError TxEmpty TxIrq

6: RxParity Parity error during reception
S: RxError AMBA AHB access error during reception
4: RxFull Circular reception buffer full
3: RxIrq Successful reception of block of data
2: TxError AMBA AHB access error during transmission
1: TxEmpty Circular transmission buffer empty
0: TxIrq Successful transmission of block of data

All bits in all interrupt registers are reset to Ob after reset.

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x035. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.
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6.9  Configuration options

Table 85 shows the configuration options of the core (VHDL generics).

Table 85. Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRFIFO. 0 - NAHBIRQ-1 0
dwidth Data width 16 16
ptrwidth Width of data pointers 4-16 12
singleirq Single interrupt output. A single interrupt is assigned to | 0, 1 0
the AMBA APB interrupt bus instead of multiple sepa-
rate ones. The single interrupt output is controlled by the
interrupt registers which are also enabled with this
VHDL generic.
oepol Output enable polarity 0,1 1
6.10 Signal descriptions
Table 86 shows the interface signals of the core (VHDL ports).
Table 86. Signal descriptions
Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
FIFOI DIN[31:0] Input Data input -
PIN[3:0] Parity input -
EFN Empty flag Low
FFN Full flag Low
HFN Half flag Low
FIFOO DOUTI[31:0] Output Data output -
DEN[31:0] Data output enable -
POUT[3:0] Parity output -
PEN[3:0] Parity output enable -
WEN Write enable Low
REN Read enable Low

* see GRLIB IP Library User’s Manual
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6.12

Library dependencies

Table 87 shows the libraries used when instantiating the core (VHDL libraries).

Table 87. Library dependencies
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Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GRLIB AMBA Signals, component DMA2AHB definitions

GAISLER MISC Signals, component Component declarations, signals.
Instantiation

This example shows how the core can be instantiated.

TBD
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7.1

GRHCAN - CAN controller

Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external
to the chip.

The CAN protocol is based on the ESA HurriCANe CAN Controller VHDL core.

The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.

After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the ESA HurriCANe CAN
Controller. When a programmable number of messages have been transmitted, the DMA controller
issues an interrupt.

After the reception has been set up via the AMBA APB interface, messages are received by the ESA
HurriCANe CAN Controller. To store messages to memory, the DMA controller initiates a burst of
write accesses on the AMBA AHB bus, which are performed by the AHB master. When a program-
mable number of messages have been received, the DMA controller issues an interrupt.

The CAN controller can detect a SYNC message and generate an interrupt, which is also available as
an output signal from the core. The SYNC message identifier is programmable via the AMBA APB
interface. The CAN controller supports the draft ECSS high-resolution time distribution protocol.
Separate synchronisation message interrupts are provided for this purpose.

The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface.

Note that it is not possible to receive a CAN message while transmitting one.

AMBA Redundant
AHB bus CAN bus
On-Chip | AHB J AHB HurriCANe Mux / I
Memory | slave master|| CAN Controller ||DeMux
I DMA
» Nominal
Controller CAN bus
AMBA
APB bus

Figure 10. Block diagram of the internal structure of the GRHCAN.

7.1.1 Function

The core implements the following functions:
*  CAN protocol
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*  Message transmission

*  Message filtering and reception
*  SYNC message reception

»  Status and monitoring

*  Interrupt generation

*  Redundancy selection

7.1.2 Interfaces

The core provides the following external and internal interfaces:
*  CAN interface
*  AMBA AHB master interface, with sideband signals as per [GRLIB] including:

. cacheability information
. interrupt bus

. configuration information
. diagnostic information

*+  AMBA APB slave interface, with sideband signals as per [GRLIB] including:

. interrupt bus
. configuration information
. diagnostic information

7.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:
*  ESA HurriCANe CAN Controller

*  Redundancy Multiplexer / De-multiplexer

*  Direct Memory Access controller

» AMBA APBslave

+ AMBA AHB master

Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).

The active pair (i.e. 0 or 1) is bselectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.

For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can
be enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface
drivers differs, thus the meaning of the enable output is undefined.

Redundancy is implemented by means of Selective Bus Access, as specified in [CANWG]. Note that
the active pair selection above provides means to meet this requirement.
Protocol

The CAN protocol is based on the ESA HurriCANe CAN bus controller VHDL core described in
[CANESA]. The CAN controller complies with [CANSTD], except for the overload frame genera-
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7.4

7.5

tion. Note that the ESA HurriCANe CAN bus controller VHDL core does not implement overload
frame generation. Version 5.1, dated 18 May 2005, has been used.

No other CAN protocol capabilities than those implement by the ESA HurriCANe CAN bus control-
ler VHDL core are provided.

The Remote Frame Response function implemented by the ESA HurriCANe CAN bus controller is
no implemented. The remote frame response is instead envisaged to be implemented by means of pro-
cessor support and software.

Note that there are three different CAN types generally defined:
*  2.0A, which considers 29 bit ID messages as an error

*  2.0B Passive, which ignores 29 bit ID messages

*  2.0B Active, which handles 11 and 29 bit ID messages
Only 2.0B Active is implemented.

Status and monitoring

The CAN interface incorporates the status and monitoring functionalities currently implemented by
the HurryAMBA core.

This includes:

»  Transmitter active indicator

*  Bus-Off condition indicator

»  Error-Passive condition indicator
*  Over-run indicator

»  8-bit Transmission error counter
*  8-bit Reception error counter

The status is available via a register and is also stored in a circular buffer for each received message.

Transmission

The transmit channel is defined by the following parameters:
*  base address

*  buffer size

*  write pointer

*  read pointer

The transmit channel can be enabled or disabled.

7.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.
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Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

7.5.2 Write and read pointers

The write pointer (CanTxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of CAN messages available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

» There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,
CanTxWR.WRITE=2 and CanTxRD.READ=0.

*  There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=0 and CanTxRD.READ =6.

*  There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=1 and CanTxRD.READ =7.

*  There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=5 and CanTxRD.READ =3.

When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

7.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

7.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.

A message transmission will begin with a fetch of the complete CAN message from the circular buffer
to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission request will
be forwarded to the HurriCANe codec. If there is at least an additional CAN message available in the
circular buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer in
the CAN controller will be performed. The CAN controller can thus hold two CAN messages for
transmission: one in the fetch buffer, which is fed to the HurriCANe codec, and one in the prefetch
buffer.

After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.
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If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message
for which the arbitration is lost will lead to the disabling of the channel (CanTxCTRL.ENABLE=0),
and the message will not be put up for re-arbitration.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued on the successful transmission
of a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Reg-
ister. MASK registers is successfully transmitted. Additional interrupts are provided to signal error
conditions on the CAN bus and AMBA bus.

7.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.

While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary
value pointing to the first message to be transmitted, and the write pointer (CanTxWR.WRITE) can
be changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

7.5.6 AMBA AHB error

Definition:

» amessage fetch occurs when no other messages is being transmitted

* amessage prefetch occurs when a previously fetched message is being transmitted
* the local fetch buffer holds the message being fetched

» the local prefetch buffer holds the message being prefetched

* the local fetch buffer holds the message being transmitted by the HurriCANe codec

* a successfully prefetched message is copied from the local prefetch buffer to the local fetch
buffer when that buffer is freed after a successful transmission.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched
will result in a TXAHBETr interrupt.

If the CanCONF.ABORT bit is set to Ob, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to read a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBEr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBEr.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched
will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
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fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for
the case above. If no AHB error occurs, prefetch will be allowed again.

7.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.

The progress of the any ongoing access can be observed via the CanTxCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be Ob before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Tx and TxLoss interrupts
described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-
configured and a higher priority message can be transmitted. Note that the single shot mode does not
require the channel to be disabled, but the progress should still be observed as above.

No message transmission is started while the channel is not enabled.

7.5.8 Interrupts

During transmission several interrupts can be generated:

+  TxLoss: Message arbitration lost for transmit (could be caused by
communcations error, as indicated by other interrupts as well)

*  TxErCntr: Error counter incremented for transmit

*+  TxSync: Synchronization message transmitted

«  Tx: Successful transmission of one message

*  TxEmpty: Successful transmission of all messages in buffer

+  Txlrq: Successful transmission of a predefined number of messages
»  TxAHBEr: AHB access error during transmission

+ Off: Bus-off condition

*  Pass: Error-passive condition

The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.

Reception

The receive channel is defined by the following parameters:
*  base address

*  Dbuffer size

*  write pointer

»  read pointer

The receive channel can be enabled or disabled.
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7.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

7.6.2 Write and read pointers

The write pointer (CanRxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the
CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

* There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE=2 and CanRxRD.READ=0.

» There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =0 and CanRxRD.READ=6.

* There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =1 and CanRxRD.READ=7.

* There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =5 and CanRxRD.READ=3.

When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.

The error behavior of the HurriCANe codec is according to the CAN standard, which applies to the
error counter, buss-off condition and error-passive condition.

7.6.3 Location

The location of the circular buffer is defined by a base address (CanRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

7.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message
in the circular buffer (as defined by the write and read pointer), as soon as a message is received by
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the HurriCANe codec, an AMBA AHB store access will be started. The received message will be
temporarily stored in a local store-buffer in the CAN controller. Note that the channel should not be
enabled until the write and read pointers are configured, to avoid the message reception to start pre-
maturely

After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxWR.WRITE) is automatically incremented, taking wrap around effects of
the circular buffer into account.

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrq which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of mes-
sages have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter.

The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register. MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

7.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.

While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

7.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RxAHBETrr interrupt.

If the CanCONF.ABORT bit is set to Ob, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanRx-
CTRL.ENABLE is cleared automatically to Ob). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBEr.

7.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note
that only complete messages can be received from the HurriCANe codec. If the message is stored suc-
cessfully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated inter-
rupts will be generated.

The progress of the any ongoing access can be observed via the CanRxCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be Ob before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Rx and RxMiss interrupts
described hereafter.
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1.7

7.8

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

No message reception is performed while the channel is not enabled

7.6.8 Interrupts

During reception several interrupts can be generated:
*+  RxMiss: Message filtered away for receive

. RxXErrCntr: Error counter incremented for receive

*  RxSync: Synchronization message received

+ Rx: Successful reception of one message

*  RxFull: Successful reception of all messages possible to store in buffer
*+ Rxlrq: Successful reception of a predefined number of messages

*  RxAHBErr: AHB access error during reception

+ OR: Over-run during reception
* OFF: Bus-off condition
+ PASS: Error-passive condition

The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message recep-
tion, after the CanRxWR.WRITE pointer has been incremented.

The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
Note that the last message stored which fills the circular buffer will not generate an OR interrupt. The
overrun is also reported with the CanSTAT.OR bit, which is cleared when reading the register.

The error behavior of the HurriCANe codec is according to the CAN standard, which applies to the
error counter, buss-off condition and error-passive condition.

Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.

When the CanCTRL.ENABLE bit is cleared to Ob, the HurriCANe core is reset and the configuration
bits CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may
be modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by
only sending recessive bits. Note that the HurriCANe core requires that 10 recessive bits are received
before any reception or transmission can be initiated. This can be caused either by no unit sending on
the CAN bus, or by random bits in message transfers.

Interrupt

Three interrupts are implemented by the CAN interface:

Index: Name: Description:

0 IRQ Common output from interrupt handler
1 TxSYNC  Synchronization message transmitted
2 RxSYNC  Synchronization message received

The interrupts are configured by means of the pirg VHDL generic.



7.9  Registers

The core is programmed through registers mapped into APB address space.

Table 88. GRHCAN registers
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APB address offset Register

16#000# Configuration Register

16#004# Status Register

16#008# Control Register

16#018# SYNC Mask Filter Register
16#01C# SYNC Code Filter Register
16#100# Pending Interrupt Masked Status Register
16#104# Pending Interrupt Masked Register
16#108# Pending Interrupt Status Register
16#10C# Pending Interrupt Register

16#110# Interrupt Mask Register

16#114# Pending Interrupt Clear Register
16#200# Transmit Channel Control Register
16#204# Transmit Channel Address Register
16#208# Transmit Channel Size Register
16#20C# Transmit Channel Write Register
16#210# Transmit Channel Read Register
16#214# Transmit Channel Interrupt Register
16#300# Receive Channel Control Register
16#304# Receive Channel Address Register
16#308# Receive Channel Size Register
16#30C# Receive Channel Write Register
16#310# Receive Channel Read Register
16#314# Receive Channel Interrupt Register
16#318# Receive Channel Mask Register
16#31C# Receive Channel Code Register

7.9.1 Configuration Register [CanCONF| R/'W

Table 89. Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SCALER PS1 PS2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSJ BPR Sile | Sele | Ena | Ena | Abo
nt ctio |ble |ble |rt
n 1 0

31-24:  SCALER

23-20: PS1
19-16: PS2
14-12: RSJ
9:8: BPR

Prescaler setting, 8-bit: system clock / (SCALER +1)
Phase Segment 1, 4-bit: (valid range 1 to 15)

Phase Segment 2, 4-bit: (valid range 2 to 8)
ReSynchronization Jumps, 3-bit: (valid range 1 to 4)
Baud rate, 2-bit:

00b = system clock / (SCALER +1) / 1

01b = system clock / (SCALER +1) / 2

10b = system clock / (SCALER +1) /4
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11b = system clock / (SCALER +1) /8
4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECTIONSelection receiver input and transmitter output:
Select receive input 0 as active when 0b,
Select receive input 1 as active when 1b
Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

2: ENABLE1 Set value of output 1 enable
1: ENABLEO Set value of output 0 enable
0: ABORT  Abort transfer on AHB ERROR

All bits are cleared to 0 at reset.

Note that constraints on PS1, PS2 and RSJ are defined as:

e PS1+1>=PS2

« PS2 >=RSJ

Note that CAN standard TSEG]1 is defined by PS1+1.

Note that CAN standard TSEG?2 is defined by PS2.

Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:
system clock / (SCALER+1) / BPR

where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8.

Note that the resulting bit rate is:
system clock / (SCALER+1) / BPR * (1+ PS1+1 + PS2)

where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.

Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.

7.9.2 Status Register [CanSTAT] R

Table 90. Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R N O O I I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RxErrCntr Acti | AH |OR | Off | Pass
ve B
Err

23-16:  TxErrCntr Transmission error counter, 8-bit

15-8: RxErrCntr Reception error counter, 8-bit

4: ACTIVE Transmission ongoing

3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception

1: OFF Bus-off condition

0: PASS Error-passive condition

All bits are cleared to 0 at reset.
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The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full.

The OR and AHBETr status bits are cleared when the register has been read.
Note that TxErrCntr and RXxErrCntr are defined according to CAN protocol.

Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the Can-
CONF.ABORT bit is set to 1b.

7.9.3 Control Register [CanCTRL] R/'W

Table 91. Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese | Ena
t ble

1: RESET  Reset complete core when 1
0: ENABLE Enable HurriCANe controller, when 1. Reset HurriCANe controller, when 0

All bits are cleared to O at reset.
Note that RESET is read back as 0b.

Note that ENABLE should be cleared to Ob while other settings are modified, ensuring that the Hurri-
CANe core is properly synchronized.

Note that when ENABLE is cleared to Ob, the CAN interface is in sleep mode, only outputting reces-
sive bits.

Note that the HurriCANe core requires that 10 recessive bits be received before receive and transmit
operations can begin.

7.9.4 SYNC Code Filter Register [CanCODE] R/W

Table 92. SYNC Code Filter Register

3130 29 28 0
L [ [ [swe

28-0: SYNC Message Identifier

All bits are cleared to 0 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
7.9.5 SYNC Mask Filter Register [CanMASK] R/W

Table 93. SYNC Mask Filter Register

3130 29 28 0
‘ ‘ ‘ ‘MASK

28-0: MASK  Message Identifier

All bits are set to 1 at reset.
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Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
A RxSYNC message ID is matched when:
((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) =0
A TxSYNC message ID is matched when:
((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) =0

7.9.6 Transmit Channel Control Register [CanTxCTRL] R/W

Table 94. Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sin- | Ong | Ena
gle |oing | ble

2: SINGLE Single shot mode
1: ONGOING Transmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to Ob) if the
arbitration on the CAN bus is lost.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing message transmission is not aborted, unless
the CAN arbitration is lost.

Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that config-
uration of the channel is not safe.

7.9.7 Transmit Channel Address Register [CanTxADDR] R/W

Table 95. Transmit Channel Address Register

31 10 9 0
ADDR

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

7.9.8 Transmit Channel Size Register [CanTxSIZE] R/'W

Table 96. Transmit Channel Size Register

31 21 20 6 5 0
SIZE

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
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Note that each message occupies four 32-bit words.
Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

7.9.9 Transmit Channel Write Register [CanTxWR] R/'W

Table 97. Transmit Channel Write Register

31 20 19 4 3 0
WRITE

19-4: WRITE  Pointer to last written message +1

All bits are cleared to O at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

7.9.10 Transmit Channel Read Register [CanTxRD] R/W

Table 98. Transmit Channel Read Register

31 20 19 4 3 0
READ

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.

Note that the READ field can be use to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.

When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this indicates that all messages in the buffer have been
transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).
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7.9.11 Transmit Channel Interrupt Register [CanTxIRQ] R/W

Table 99. Transmit Channel Interrupt Register

31 20 19 4 3 0
IRQ
19-4: 1IRQ Interrupt is generated when CanTxRD.READ=IRQ, as a consequence of a message transmission

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

7.9.12 Receive Channel Control Register [CanRxCTRL] R/'W

Table 100.Receive Channel Control Register

31 2 1 0
OnG | Ena
oing | ble

1: ONGOINGReception ongoing (read-only)
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing message reception is not aborted

Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

7.9.13 Receive Channel Address Register [CanRxADDR] R/W

Table 101.Receive Channel Address Register

31 10 9 0
ADDR

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

7.9.14 Receive Channel Size Register [CanRxSIZE] R/'W

Table 102.Receive Channel Size Register

31 21 20 6 5 0
SIZE

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.
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Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

7.9.15 Receive Channel Write Register [CanRxWR] R/W

Table 103.Receive Channel Write Register

31 20 19 4 3 0
WRITE

19-4: WRITE  Pointer to last written message +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.

Note that the WRITE field can be use to read out the progress of a transfer.

Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

7.9.16 Receive Channel Read Register [CanRxRD] R/W

Table 104.Receive Channel Read Register

31 20 19 4 3 0
READ

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last message that has been read out.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

7.9.17 Receive Channel Interrupt Register [CanRxIRQ] R/W

Table 105.Receive Channel Interrupt Register

31 20 19 4 3 0
IRQ
19-4: IRQ Interrupt is generated when CanRxWR.WRITE=IRQ), as a consequence of a message reception

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been received.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).
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7.9.18 Receive Channel Mask Register [CanRxMASK] R/'W

Table 106.Receive Channel Mask Register

31 30 29 28 0
Y
28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between the received message

ID and the CanRxCODE.AC field

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

7.9.19 Receive Channel Code Register [CanRxCODE] R/W

Table 107.Receive Channel Code Register

31 30 29 28 0
L[ Jac
28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to Oat reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
A message ID is matched when:

((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) =0

7.9.20 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

*  Set up the software interrupt-handler to accept an interrupt from the module.
*  Read the Pending Interrupt Register to clear any spurious interrupts.

» Initialise the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

*  When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

*  Handle the interrupt, taking into account all causes of the interrupt.
*  Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
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Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

*  Pending Interrupt Masked Status Register =~ [CanPIMSR] R

*  Pending Interrupt Masked Register [CanPIMR] R
*  Pending Interrupt Status Register [CanPISR] R
*  Pending Interrupt Register [CanPIR] R/W
*  Interrupt Mask Register [CanIMR] R/W
*  Pending Interrupt Clear Register [CanPICR] W

Table 108.Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Loss

o
oo
~
(=)
(9]
EEN
W
N8}
—
S

15 14 13 12 11 10
Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx OR | Off | Pass

Miss | ErT | Err | Syn | Syn Emp | Full [IRQ [IRQ |AH | AH
Cntr | Cntr | c c ty B B
Err | Err
16: TxLoss Message arbitration lost during transmission (could be caused by
communcations error, as indicated by other interrupts as well)
15: RxMiss Message filtered away during reception
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all messages in buffer
7: RxFull Successful reception of all messages possible to store in buffer
6: TxIRQ Successful transmission of a predefined number of messages
S: RxIRQ Successful reception of a predefined number of messages
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits in all interrupt registers are reset to Ob after reset.
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Note that the TxAHBE:T interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

Note that the RXAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

7.10 Memory mapping

The CAN message is represented in memory as shown in table 109.

Table 109.CAN message representation in memory.

AHB addr
0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IDE | RT |bID elD
R
5 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0
| eID |
0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| DLC | | ] | TxExCaw |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RxErrCntr Ahb | OR | Off | Pass
Err
0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ Byte 0 (first transmitted) ‘ Byte 1 ‘
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ Byte 2 ‘ Byte 3 ‘
0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ Byte 4 ’ Byte 5 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ Byte 6 ‘ Byte 7 (last transmitted) ‘
Values: Levels according to CAN standard: 1b is recessive,

Ob is dominant
Legend: Naming and number in according to CAN standard

IDE Identifier Extension: 1b for Extended Format,
0b for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

0b for Data Frame
bID Base Identifier
elD Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte

0010b 2 bytes
0011b 3 bytes
0100b 4 bytes
0101b 5 bytes
0110b 6 bytes

0111b 7 bytes
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1000b 8 bytes
OTHERS illegal

TxErrCntr Transmission Error Counter

RxErrCntr Reception Error Counter

AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b

OFF Bus Off mode when 1b

PASS Error Passive mode when 1b

Byte 00to 07  Transmit/Receive data, Byte 00 first Byte 07 last

7.11 Vendor and device identifiers

The module has vendor identfier 0x01 (Gaisler Research) and device identfier 0x034. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

7.12  Configuration options
Table 110 shows the configuration options of the core (VHDL generics).

Table 110.Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRHCAN. 0 - NAHBIRQ-1 0
txchannels Number of transmit channels 1-16 1
rxchannels Number of receive channels 1-16 1
ptrwidth Width of message pointers 1-16 16
7.13  Signal descriptions
Table 111 shows the interface signals of the core (VHDL ports).
Table 111.Signal descriptions
Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
CANI Rx[1:0] Input Receive lines -
CANO Tx[1:0] Output Transmit lines -
En[1:0] Transmit enables -

* see GRLIB IP Library User’s Manual
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7.14

7.15

Library dependencies

Table 112 shows the libraries used when instantiating the core (VHDL libraries).

Table 112.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CAN Signals, component GRHCAN component declarations,
GRHCAN signals.
Instantiation

This example shows how the core can be instantiated.

TBD
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95
GRPULSE - General Purpose Input Output

Overview

The General Purpose Input Output interface is assumed to operate in an AMBA bus system where the
APB bus is present. The AMBA APB bus is used for control and status handling.

The General Purpose Input Output interface provides a configurable number of channels. Each chan-
nel is individually programmed as input or output. Additionally, a configurable number of the chan-
nels are also programmable as pulse command outputs. The default reset configuration for each
channel is as input. The default reset value each channel is logical zero.

The pulse command outputs have a common counter for establishing the pulse command length. The
pulse command length defines the logical one (active) part of the pulse. It is possible to select which
of the channels shall generate a pulse command. The pulse command outputs are generated simulta-
neously in phase with each other, and with the same length (or duration). It is not possible to generate
pulse commands out of phase with each other.

Each channel can generate a separate internal interrupt. Each interrupt is individually programmed as
enabled or disabled, as active high or active low level sensitive, or as rising edge or falling edge sensi-
tive.

8.1.1 Function

The core implements the following functions:
*  Input

*  Output

*  Output pulse commands

*  Input interrupts

»  Status and monitoring

8.1.2 Interfaces

The core provides the following external and internal interfaces:

»  Discrete input and output interface

*+  AMBA APB slave interface, with sideband signals as per [GRLIB] including:
. interrupt bus

. configuration information

. diagnostic information
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8.2  Registers

The core is programmed through registers mapped into APB address space.

Table 113.GRPULSE registers

APB address offset Register

16#000# Input Register

16#004# Output Register

16#008# Direction Register
16#00C# Interrupt Mask Register
16#010# Interrupt Polarity Register
16#014# Interrupt Edge Register
16#018# Pulse Register

16#01C# Pulse Counter Register

8.2.1 Input Register [GpioIN] R
Table 114.Input Register

31 30 29 28 27 26 25 24 23

N N N D N N E

23-0: IN Input Data

Note that only bits nchannel-1 to 0 are implemented.

8.2.2  Output Register [GpioOUT] R/W

Table 115.0utput Register

31 30 29 28 27 26 25 24 23

L [ [ [ [ Jour

23-0: OouT Output Data

All bits are cleared to 0 at reset.

Note that only bits nchannel-1 to 0 are implemented.

8.2.3 Direction Register [GpioDIR] R/'W

Table 116.Direction Register

31 30 29 28 27 26 25 24 23

N N N I I =T

23-0: DIR Direction:
Ob=input,
Ib=output

All bits are cleared to O at reset.

Note that only bits nchannel-1 to 0 are implemented.
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8.2.4 Pulse Register [GpioPULSE] R/'W

Table 117.Pulse Register

3130 29 28 27 26 25 24 23 0
L [ [ [ [ [eose

23-0: PULSE  Pulse enable:
Ob=output,
1b=pulse command output

All bits are cleared to 0 at reset.
Only channels configured as outputs are possible to enable as command pulse outputs.

Note that only bits npulse-1 to 0 are implemented.

8.2.5 Pulse Counter Register [GpioCNTR] R/W

Table 118.Pulse Counter Register

31030 29 28 27 26 25 24 23 0
LT [ ] Jem

23-0: CNTR Pulse counter value

All bits are cleared to 0 at reset.
The pulse counter is decremented each clock period, and does not wrap after reaching zero.

Command pulse channels, with the corresponding output data and pulse enable bits set, are (asserted)
while the pulse counter is greater than zero.

Setting CNTR to 0 does not give a pulse.

Setting CNTR to 1 does give a pulse with of 1 CIk period.
Setting CNTR to 255 does give a pulse with of 255 Clk periods.
Note that only bits cntrwidth-1 to 0 need be implemented.

8.2.6 Interrupt Mask Register [GpioMASK] R/'W

Table 119.Interrupt Mask Register

31 24 23 16 15 0
MASK

23-16: MASK Interrupt enable, Ob=disable, 1b=enable

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

8.2.7 Interrupt Polarity Register [GpioPOL] R/'W

Table 120.Interrupt Polarity Register

31 24 23 16 15 0
POL

23-16:  POL Interrupt polarity, Ob=active low or falling edge, 1b=active high or rising edge
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8.3

8.4

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

8.2.8 Interrupt Edge Register [GpioEDGE] R/W

Table 121.Interrupt Edge Register

31 24 23 16 15 0
EDGE

23-16:  EDGE Interrupt edge or level, Ob=level, 1b=edge

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

Operation

8.3.1 Interrupt

Two interrupts are implemented by the interface:

Index: Name: Description:
0 PULSE Pulse command completed
31:0 IRQ Filtered input interrupt

The PULSE interrupt is configured by means of the pirg VHDL generic.

The IRQ interrupts are configured by means of the imask and ioffset VHDL generics, where imask
enables individually the input interrupts, and ioffset adds an offset to the resulting index on the inter-
rupt bus.

8.3.2 Reset

After a reset the values of the output signals are as follows:

Signal: Value after reset:
GPIOO.Dout[31:0] de-asserted
GPIOO.OEn[31:0] de-asserted

8.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:
*  GPIOLDin[31:0]

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x037. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.



8.5

8.6

8.7
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Configuration options

Table 122 shows the configuration options of the core (VHDL generics).

Table 122.Configuration options
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Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRPULSE. 0 - NAHBIRQ-1 1
nchannel Number of input/outputs 1-32 24
npulse Number of pulses 1-32 8
imask Interrupt mask 0 - 16#FFFFFFFF# 16#FF00#
ioffset Interrupt offset 0-32 8
invertpulse Invert pulse output when set 1-32 0
cntrwidth Pulse counter width 4to 32 20
oepol Output enable polarity 0,1 1

Signal descriptions

Table 123 shows the interface signals of the core (VHDL ports).

Table 123.Signal descriptions
Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPIOI * Input -
GPIOO * Output -

* see GRLIB IP Library User’s Manual

Library dependencies

Table 124 shows the libraries used when instantiating the core (VHDL libraries).

Table 124.Library dependencies

This example shows how the core can be instantiated.

TBD

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals GPIO signals

TMTC TMTC_Types Component GRPULSE component declaration
Instantiation
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9.1

GRPW - PacketWire Interface

The PacketWire to AMBA AHB Interface (GRPW) comprises a bi-directional PacketWire link and an
AMBA AHB master interface. The purpose of the interface is to allow read and write accesses on an
AMBA AHB bus to be initiated from the PacketWire interface. The protocol allows single or multiple
reads per command, each command specifying a read or write access, the number of word transfers
and the starting address. For a write access, word oriented data is transmitted to the interface, and for
read accesses word oriented data is received from the interface.

GRPW
» RxPW [
Bi-Directional AMBA
PacketWire AHB AMBA AHB
Interface Protocol Master Master Interface
< TXPW [

Figure 11. Block diagram

In a typical application, the PacketWire interface would be used as a remote control interface of a Sys-
tem-On-a-Chip device based around the AMBA AHB bus. An example could be a Packet Telemetry
and Telecommand device which can be controlled remotely from a processor board via a PacketWire
link. The link would provide both the capability to read and write registers, and to make block trans-
fers to and from the target device and its memories.

This interface is based on the de facto standard PacketWire interface used by the European Space
Agency (ESA). At the time of writing there were no relevant documents available from the European
Cooperation for Space Standardization (ECSS).

Operation

9.1.1 Protocol

The communication protocol is based on the protocol used in the LEON processor. Commands are
sent to the interface as messages over the bi-directional PacketWire interface. The protocol allows
read and write accesses, as shown in table 125. For each command, the number of 32-bit words to be
transferred are specified, ranging from 1 to 64 words. For each command access, a 32-bit starting byte
address is specified.

All transfers are assumed to be word aligned, effectively ignoring the two least significant bits of the
address, assuming them to be both zero. There are no restrictions on the address, allowing a wrap
around at the end of the address space during a transfer. The start address can thus be set to any posi-
tion in the address space. The address is automatically incremented by 4 after each word access during
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a transfer. The address and data bit numbering in table 125 correspond to the AMBA AHB bit num-
bering conventions.

Table 125.Protocol on PacketWire side

Control Address Data
first word second word last word

Cmd Write
Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 n-4 n-3 n-2 n-1
Send 11y |Length-1 | 31:24 [ 23:16 | 15:8 | 7:0 | 31:24 | 23:16 | 15:8 |7:0 |31:24 [ 23:16|15:8 | 7:0 31:24 | 23:16 | 15:8 | 7:0
Byte 0 1 2 3 4 5 6 7 n-4 n-3 n-2 n-1
Receive
Cmd Read
octet o o2 s Jafs Je |7 s Jo o [n i [ [n4 |03 [n2 [0
Send 10y, | Length-1 | 31:24 | 23:16 | 15:8 | 7:0
Byte 0 1 2 3 4 5 6 7 n-4 n-3 n-2 n-1
Receive 31:24 | 23:16 | 15:8 | 7:0 31:24 | 23:16 | 15:8 | 7:0 31:24 | 23:16 | 15:8 | 7:0

9.1.2 Bi-directional PacketWire interface

The bi-directional PacketWire interface comprises two PacketWire links, one in each direction, the
PacketWire input link and the PacketWire output link. Each link comprises three ports for transmit-
ting the message delimiter, the bit clock and the serial bit data. Each link also comprises an additional
port for busy signalling, indicating when the receiver is ready to receive the next octet.

The interface accepts and generates the waveform format shown in figure 12.

DelimiterA _ L
Clock UUUUUUUUUL

Data [of1]ofsfefslelrlol ]o]s]  [efr]ofr]2]s]4]s]e]7]

Figure 12. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The input message delim-
iter port is used to delimit messages (commands). It should be asserted while a message is being input,
and deasserted in between. In addition, the message delimiter port should define the octet boundaries
in the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.

The maximum receiving input baud rate is defined as twice the frequency of the system clock input
(facLk)- The maximum receiving throughput is limited by the AMBA AHB system into which this
core is integrated. There is no lower limit for the input baud rate in the receiver. Note however that
there are constraints on the input baud rate related to the automatic baud rate detection, as described
hereafter.

The output baud rate is automatically adjusted to the incoming baud rate, provided that the incoming
baud rate is less than half the frequency of the system clock input (fycp k). The lower limit for the
input baud rate detection is fyycp g/512. If the input baud rate is less than this limit, the output baud
rate will equal fyycp /512. The input baud rate is determined by measuring the width of the logical
one phase of the input bit clock.
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The handshaking between the PacketWire links and the interface is implemented with busy ports, one
in each direction. When a message is sent, the busy signal on the PacketWire input link will be
asserted as soon as the first data bit is detected, it will then be deasserted as soon as the interface is
ready to receive the next octet. This gives the transmitter ample time to stop transmitting after the
completion of the first octet and wait for the busy signal deassertion before starting the transmission
of the next octet. The handshaking is continued through out the message. At the end of message, the
busy signal will be asserted until the completion of the message. For a write command, the busy sig-
nal will be deasserted after the completion of the AMBA AHB write access of the last word. For a
read command, the busy signal will be deasserted after the completion of the AMBA AHB read
access of the last word and its transmission on the PacketWire output link. It is therefore not possible
for the external transmitter to send a new command until the previous has been completed.

Illegal commands are prevented from being executed. An illegal command is defined as a control
octet for which the two most significant bits are neither 11, nor 10;,. No accesses to the AMBA AHB
bus will be performed and no response will be generated on the PacketWire link for a read command.
A new command will be accepted as soon as the input message delimiter has been deasserted and a
new command is transmitted.

A command can be aborted by prematurely deasserting the message delimiter on the PacketWire input
link. This can be done at any point of the message, e.g. during the control octet, during the address or
during the data transfer for write accesses. An aborted message will immediately terminate the access
on the AMBA AHB bus. Note that it is not possible to predict whether or not the last word write
access to the AMBA AHB bus has been completed or not in the case the message is aborted.

It is not possible to determine whether or not an access has been successfully completed on the
AMBA AHB bus. For read accesses, a data response will be generated on the PacketWire output link
independently of whether the AMBA AHB access was terminated with an OKAY or ERROR.

In the case an AMBA AHB access is not terminated because of indefinite RETRY or SPLIT responses,
the command will not be completed and the busy port on the PacketWire input link will not be deas-
serted. This locked state can be observed by monitoring the response on the PacketWire input link, for
which the busy signal will not be deasserted. For read accesses, this locked state can also determine if
no data is received on the PacketWire output link. To overcome this locked stated, the message delim-
iter should be firstly deasserted on the PacketWire input linked. The message delimiter should then be
asserted and a new control octet should then be transmitted, even though the busy port is asserted on
the PacketWire input link. This action will abort any AMBA AHB accesses and restore the state of the
interface. The newly started message should then be completed using the handshake method previ-
ously described. Note that it is not possible to determine at what time instant the abort will occur, pos-
sibly ruining the on going access. This is however acceptable considering being a recovery from a
locked state.

9.1.3 AMBA AHB master interface

The AMBA AHB master interface has been reduced in functionality to support only what is required
for the core. The following AMBA AHB features are constrained:

»  only generates HSIZE = HSIZE WORD

*  only generates HLOCK = 0y,

*  only generates HPROT = 0000,

*  only generates HBURST = HBURST SINGLE
* never generates HTRANS = HTRANS BUSY

* both HRESP = HRESP OKAY and HRESP = HRESP ERROR are treated as a successfully
completed access

*  both HRESP = HRESP RETRY and HRESP = HRESP SPLIT will result in a rescheduling the
previous access until terminated with HRESP OKAY or HRESP ERROR
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*  only big-endianness is supported

The interface can act as a default AHB master generating idle accesses when required. It only imple-
ments a single word access at a time, without bursts, to reduce complexity for retry and split handling,
and not requiring the 1024 byte boundary imposed by the AMBA specification on burst transfers to be
taken into account.

9.1.4 Advanced Microcontroller Bus Architecture

Convention according to the Advanced Microcontroller Bus Architecture (AMBA) Specification,
applying to the AHB and APB interfaces:

*  Signal and port names are in upper case, except for the following:
* Alower case 'n' in the name indicates that the signal or port is active low.
+  Constant names are in upper case.

*  The least significant bit of an array is located to the right, carrying index number zero.

Table 126. AMBA n-bit field definition

AMBA n-bit field

most significant least significant

n-1 n-2 down to 1 0

9.1.5 Consultative Committee for Space Data Systems

Convention according to the Consultative Committee for Space Data Systems (CCSDS) recommen-
dations, applying to all relevant structures:

»  The most significant bit of an array is located to the left, carrying index number zero, and is trans-
mitted first.

*  An octet comprises eight bits.
General convention, applying to signals, ports and interfaces:
»  Signal or port names are in mixed case.

*  Anupper case' N suffix in the name indicates that the signal or port is active low.

Table 127.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 ton-2 n-1

Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x032. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options
Table 128 shows the configuration options of the core (VHDL generics).

Table 128.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0

syncreset Synchronous reset when set, else asynchronous 0-1 0




104

9.4

9.5

Signal descriptions

Table 129 shows the interface signals of the core (VHDL ports).

Table 129.Signal descriptions

Signal name Field Type Function | Comment Active
HRESETn N/A Input Reset Low
HCLK N/A Input Clock -

PWI VALID Input Delimiter | This input port is the message High

delimiter for the input interface. It
should be deasserted between mes-
sages

CLOCK Bit clock This input port is the PacketWire | Rising
bit clock. The receiver registers are
clocked on the rising PWI.Clk
edge.

DATA Data This input port is the serial data -
input for the interface. Data are
sampled on the rising PWI.Clk
edge when PWI.Valid is asserted.

BUSY N Not ready | This input port indicates whether | Low
for octet the receiver is ready to receive one
octet. The input is considered as
asynchronous.
PWO VALID Output Delimiter | This output port is the packet High

delimiter for the output interface. It
is deasserted between packets. The
output is clocked out on the rising

HCLK edge.

CLOCK Bit clock This output port is the PackeWire | Rising
output bit clock. The output is
clocked out on the rising HCLK
edge.

DATA Data This output port is the serial data -
output for the interface. The output
is clocked out on the rising HCLK

edge.
BUSY N Not ready | This port indicates whether the Low
for octet receiver is ready to receive one
octet. The output is clocked out on
the rising HCLK edge.
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Library dependencies
Table 130 shows the libraries used when instantiating the core (VHDL libraries).

Table 130.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

T™TC TMTC_Types Signals, component Component declaration
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Instantiation

The core is an almost fully synchronous design based on a single system clock strategy. The asynchro-
nous part is related to the PacketWire (PW) input interface, for which the receiving shift register is
implemented as a separate clock domain. All signals going between clock domains are clocked twice
before being used to reduce the risk for metastability.

All registers in the core are reset asynchronously. The reset input can be asserted asynchronously, but
requires synchronous deassertion to avoid any recovery time violations.

The PWI. Valid input should be deasserted for at least 4 HCLK clock periods between messages. The
PWI.Data input is clocked into a receiving shift register on the rising PWI.Clk edge. The PWI.Clk
input should have a 50% duty cycle.

The PWI.Busy N should be asserted as soon as possible by the receiver, allowing the transmitter to
halt the transmission between octets. The input is synchronised using two registers clocked on the ris-
ing HCLK edge.

This example shows how the core can be instantiated.

library IEEE;

use IEEE.Std Logic_1164.all;
library GRLIB;

use GRLIB.AMBA.all;

library TMTC;

use TMTC.TMTC Types.all;

component GRPW is

generic (
hindex: in Integer := 0);
port (
-- AMBA AHB System Signals
HCLK: in Std_ULogic; -- system clock
HRESETn: in Std_ULogic; -- synchronised reset
-- AMBA AHB Master Interface
AHBOut : out AHB_Mst_Out_Type;
AHBIn: in AHB_Mst_In Type;
-- PacketWire interface
PWI: in GRPW_In Type;
PWO: out GRPW_Out_Type) ;

end component GRPW;
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10

10.1

10.2

PW2APB - PacketWire receiver to AMBA APB Interface

Overview

The PacketWire to AMBA APB Interface implements the PacketWire protocol used by the Packet
Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.

The core provides the following external and internal interfaces:
»  Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)
*  AMBA APB slave interface, with sideband signals as per [GRLIB]

The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:

*  Valid and abort signalling from PacketWire interface
*  Data overrun

Data is received on the PacketWire interface and read via the AMBA APB slave interface. It is possi-
ble to receive and read out one octet at a time.The packet delimiter and abort signals are observable
via the control register, together with busy, ready and overrun signals. The baud rate is detected auto-
matically and read via a configuration register.

PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 13.

Delimiter J o I_
cok __ JUUUUUUUUUULL  JUDUUUUUHHL

Data [o]1]2]s]a]s]e]7]o]1]2]s] [e[7]o]1]2]s]a]s]e]7]

Figure 13. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter port should define the octet boundaries in
the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.

The maximum receiving input baud rate is defined as twice the frequency of the system clock input
(fcL)- The maximum receiving throughput is limited by the AMBA system into which this core is
integrated. There is no lower limit for the input baud rate in the receiver.

The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message. At the end of message, the busy signal will be asserted until
the completion of the message.
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10.3 Registers

The core is programmed through registers mapped into APB address space.

Table 131. PW2APB registers

APB address offset Register

16#000# Control Register
16#004# Configuration Register
16#008# Data Reception Register

Table 132. Control Register

31 7 6 5 4 3 2 1 0
RESERVED | OV |READY| BUSY | VALID [ABORT| SIZE |
31:7 RESERVED
Write: Don’t care.
Read: All zero.
6 ov
Write: Don’t care.
Read: Data input overrun, clear on read
5 READY
Read/Write:  Interface ready to receive a packet
4 BUSY
Write: Don’t care.
Read: Interface has received an octet, ready for read out
3 VALID
Write: Don’t care.
Read: Packet delimiter when asserted (only affects output signal)
2 ABORT
Write: Don’t care.
Read: Abort current packet when asserted (only affects output signal)
1: 0 SIZE Reception size and order (left to right):
Read/: 00 = 8 bit: 7:0

Power-up default: 0x00000000

Table 133. Configuration Register

31 8 7 0
RESERVED BAUD
31: 8 RESERVED
Write: Don’t care.
Read: All zero.
7: 0 BAUD System clock division factor
Read: 0x00 = divide by 1

0xFF = divide by 256
Power-up default: 0x00000000

Table 134. Data Reception Register
31 8 7 0
RESERVED OCTET
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31: 8

RESERVED
Write:
Read:

OCTET
Write:
Read:

Power-up default: 0x00000000

10.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x03C. For descrip-

Table 134. Data Reception Register

Don’t care.
All zero.

Last octet to be transmitted, any SIZE value
All zero.

tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

10.5 Configuration options

Table 135 shows the configuration options of the core (VHDL generics).

Table 135.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
syncrst Only synchronous reset 0,1 1
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Table 136 shows the interface signals of the core (VHDL ports).

Table 136.Signal descriptions
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Signal name

Field

Type Function

Active

RSTN

N/A

Input Reset

Low

CLK

N/A

Input Clock

APBI

*

Input APB slave input signals

APBO

*

Output

APB slave output signals

PWO

BUSY N

READY

Input Not ready for octet | This input port indicates

whether the receiver is
ready to receive one octet.
The input is considered as
asynchronous.

Low

Ready for packet

This input port indicates
whether the receiver is
ready to receive one
packet. The input is con-
sidered as asynchronous.

High

PWI

VALID

CLK

DATA

ABORT

Output Delimiter

This output port is the
packet delimiter for the
output interface. It is deas-
serted between packets.
The output is clocked out
on the rising CLK edge.

High

Bit clock

This output port is the
PacketWire output bit
clock. The output is
clocked out on the rising
CLK edge.

Rising

Data

This output port is the
serial data output for the
interface. The output is
clocked out on the rising
CLK edge.

Abort

The output is clocked out
on the rising CLK edge.

High

* see GRLIB IP Library User’s Manual

Library dependencies

Table 137 shows the libraries used when instantiating the core (VHDL libraries).

Table 137.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC_Types Signals, component Component declarations, signals.
Instantiation

This example shows how the core can be instantiated.

TBD
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11.1

11.2

APB2PW - AMBA APB to PacketWire Transmitter Interface

Overview

The AMBA APB to PacketWire Interface implements the PacketWire protocol used by the Packet
Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.

The core provides the following external and internal interfaces:

»  Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)

*  AMBA APB slave interface, with sideband signals as per [GRLIB]

The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:

*  Busy and ready signalling from PacketWire interface

Data are transferred to the PacketWire interface by writing to the AMBA APB slave interface. It is
possible to transfer one, two or four bytes at a time, following the AMBA big-endian convention
regarding send order. Data are output serially on the PacketWire interface.The packet delimiter and
abort signals are controlled, together with the data size, through the control register. The progress of
the interface can be monitored via the AMBA APB slave interface, through the control register. The
baud rate is set via a configuration register.

PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 14.

Delimiter 4 L
Clock UUUUUUUUUL

Data [of1]o]sfefselzlol ]o]s]  [efr]ofr]2][s]4]s]e]7]

Figure 14. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter port should define the octet boundaries in
the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.

The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message. At the end of message, the busy signal will be asserted until
the completion of the message.
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11.3  Registers

The core is programmed through registers mapped into APB address space.

Table 138. APB2PW registers

APB address offset Register

16#000# Control Register

16#004# Configuration Register
16#008# Data Transmission Register

Table 139. Control Register

31 6 5 4 3 2 1 0
RESERVED [READY | BUSY | VALID |ABORT| SIZE |
31: 6 RESERVED
Write: Don’t care.
Read: All zero.
5 READY
Write: Don’t care.
Read: Interface ready to receive a packet
4 BUSY
Write: Don’t care.
Read: Interface busy with octet
3 VALID
Read/Write: ~ Packet delimiter when asserted (only affects output signal)
2 ABORT
Read/Write:  Abort current packet when asserted (only affects output signal)
I: 0 SIZE Transfer size and order (left to right):
Read/write: 00 = 8 bit: 7:0
01 = 16 bit: 15:8, 7:0
10 = 24 bit: 23:16, 15:8, 7:0
11 = 32 bit: 31:24, 23:16, 15:8, 7:0

Power-up default: 0x00000000

Table 140. Configuration Register

31 8 7 0
RESERVED BAUD
31: 8 RESERVED
Write: Don’t care.
Read: All zero.
7: 0 BAUD System clock division factor

Read/write:  0x00 = divide by 1
0xFF = divide by 256
Power-up default: 0x00000000

Table 141. Data Transmission Register
31 24 23 16 15 8 7 0

FIRST OCTET SECOND OCTET THIRD OCTET LAST OCTET

31: 24 FIRST OCTET



112

11.4

11.5

23:16

15: 8

Table 141. Data Transmission Register

Write: First octet to be transmitted, if SIZE=11
Read: All zero.
SECOND OCTET
Write: Second octet to be transmitted
Read: All zero.
THIRD OCTET
Write: First octet to be transmitted
Read: All zero.
LAST OCTET
Write: Last octet to be transmitted, any SIZE value
Read: All zero.

Power-up default: 0x00000000

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x03B. For descrip-

tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options

Table 142 shows the configuration options of the core (VHDL generics).

Table 142.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
syncrst Only synchronous reset 0,1 1
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Table 143 shows the interface signals of the core (VHDL ports).

Table 143.Signal descriptions
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Signal name

Field

Type

Function

Active

RSTN

N/A

Input

Reset

Low

CLK

N/A

Input

Clock

APBI

*

Input

APB slave input signals

APBO

*

Output

APB slave output signals

PWI

BUSY N

READY

Input

Not ready for octet

This input port indicates
whether the receiver is
ready to receive one octet.
The input is considered as
asynchronous.

Low

Ready for packet

This input port indicates
whether the receiver is
ready to receive one
packet. The input is con-
sidered as asynchronous.

High

PWO

VALID

CLK

DATA

ABORT

Output

Delimiter

This output port is the
packet delimiter for the
output interface. It is deas-
serted between packets.
The output is clocked out
on the rising CLK edge.

High

Bit clock

This output port is the
PacketWire output bit
clock. The output is
clocked out on the rising
CLK edge.

Rising

Data

This output port is the
serial data output for the
interface. The output is
clocked out on the rising
CLK edge.

Abort

The output is clocked out
on the rising CLK edge.

High

* see GRLIB IP Library User’s Manual

Library dependencies

Table 144 shows the libraries used when instantiating the core (VHDL libraries).

Table 144.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC_Types Signals, component Component declarations, signals.
Instantiation

This example shows how the core can be instantiated.

TBD
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12

12.1

GRTM - CCSDS Telemetry Encoder

Overview

The CCSDS/ECSS/PSS Telemetry Encoder implements part of the Data Link Layer, covering the
Protocol Sub-layer and the Frame Synchronization and Coding Sub-layer and part of the Physical
Layer of the packet telemetry encoder protocol.

The operation of the Telemetry Encoder is highly programmable by means of control registers. The
design of the Telemetry Encoder is highly configurable by means of VHDL generics.

The Telemetry Encoder comprises several encoders and modulators implementing the Consultative
Committee for Space Data Systems (CCSDS) recommendations, European Cooperation on Space
Standardization (ECSS) and the European Space Agency (ESA) Procedures, Standards and Specifica-
tions (PSS) for telemetry and channel coding. The Telemetry Encoder comprises the following:

»  Packet Telemetry and/or Advanced Orbiting Systems (AOS) Encoder
*  Reed-Solomon Encoder

»  Turbo Encoder (future option)

*  Pseudo-Randomiser (PSR)

*  Non-Return-to-Zero Mark encoder (NRZ)

*  Convolutional Encoder (CE)

»  Split-Phase Level modulator (SP)

*  Sub-Carrier modulator (SC)

*  Clock Divider (CD)

! Virtual Channel -
N I 0 Generation . %
ot Idle Frame | 3
' Lo Generation | =
Q ! AMBA ' e}
I \ . Master Channel .8
< [° T AHB B DMA ¥ FIFO o Generation , §
< , Master ! . °
g ' b a ! -
= ' ' "VI_Master Channel Mux_|<" g
. Virtual Channel & Master Channel . R =
: Frame Services L ‘AII Frame Generation H Insert Zone ‘ : ‘g

@ T T

% ! " A 4 \
< : AMBA . ' | Attached Sync Mark '8
g , APB - .
< ! Slave : Iy
System clock domain \ | Reed-Solomon '@
A 2 e I E’
Pseudo-Randomiser : ?
O

Octet clock domain :

— Transponder
_Convolunonal clock domain ' &
&
Clock |[' 8
Divider 2
GRTM : o

Telemetry output
Figure 15. Block diagram
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12.2 References

12.2.1 Documents

[C131] CCSDS 131.0-B-1 TM Synchronization and Channel Coding
[C132] CCSDS 132.0-B-1 TM Space Data Link Protocol

[C133] CCSDS 133.0-B-1 Space Packet Protocol

[C732] CCSDS 732.0-B-2 AOS Space Data Link Protocol

[ECSS01] ECSS-E-50-01A Space engineering - Space data links - Telemetry synchronization and
channel coding

[ECSS03] ECSS-E-50-03A Space engineering - Space data links - Telemetry transfer frame protocol
[ECSS05] ECSS-E-50-05A Space engineering - Radio frequency and modulation

[PPS103] ESA PSS-04-103 Telemetry channel coding standard

[PPS105] ESA PSS-04-105 Radio frequency and modulation standard

[PPS106] ESA PSS-04-106 Packet telemetry standard

12.2.2 Acronyms and abbreviations

AOS Advanced Orbiting Systems

ASM Attached Synchronization Marker

CCSDS  Consultative Committee for Space Data Systems
CLCW  Command Link Control Word

CRC Cyclic Redundancy Code

DMA Direct Memory Access

ECSS European Cooperation for Space Standardization
ESA European Space Agency

FECF Frame Error Control Field

FHEC Frame Header Error Control

FHP First Header Pointer

GF Galois Field

LFSR Linear Feedback Shift Register
MC Master Channel

NRZ Non Return to Zero
OCF Operational Control Field

PSR Pseudo Randomiser

PSS Procedures, Standards and Specifications
RS Reed-Solomon

SP Split-Phase

TE Turbo Encoder

™ Telemetry

VC Virtual Channel
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12.3

Layers

12.3.1 Introduction

The Packet Telemetry (or simply Telemetry or TM) and Advanced Orbiting System (AOS) standards
are similar in their format, with only some minor variations. The AOS part covered here is the down-
link or transmitter, not the uplink or receiver.

The relationship between these standards and the Open Systems Interconnection (OSI) reference
model is such that the OSI Data Link Layer corresponds to two separate layer, namely the Data Link
Protocol Sub-layer and Synchronization and Channel Coding Sub-Layer. The OSI Data Link Layer is
covered here.

The OSI Physical Layer is also covered here to some extended, as specified in [ECSS05] and
[PPS105].

The OSI Network Layer or higher layers are not covered here.

12.3.2 Data Link Protocol Sub-layer

The Data Link Protocol Sub-layer differs somewhat between TM and AOS. Differences are pointed
out where needed in the subsequent descriptions.

The following functionality is not implemented in the core:

»  Packet Processing

»  Bitstream Processing (applies to AOS only)

The following functionality is implemented in the core:

*  Virtual Channel Generation (for Idle Frame generation only)

»  Virtual Channel Multiplexing (for Idle Frame generation only)

*  Master Channel Generation (applies to Packet Telemetry only)
*  Master Channel Multiplexing (including Idle Frame generation)

. All Frame Generation

12.3.3 Synchronization and Channel Coding Sub-Layer
The Synchronization and Channel Coding Sub-Layer does not differ between TM and AOS.

The following functionality is implemented in the core:
»  Attached Synchronization Marker

*  Reed-Solomon coding

*  Turbo coding (future option)

*  Pseudo-Randomiser

*  Convolutional coding

12.3.4 Physical Layer
The Physical Layer does not differ between TM and AOS.

The following functionality is implemented in the core:
*  Non-Return-to-Zero modulation
»  Split-Phase modulation

. Sub-Carrier modulation
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Data Link Protocol Sub-Layer

12.4.1 Physical Channel

The configuration of a Physical Channel covers the following parameters:
*  Transfer Frame Length (in number of octets)
*  Transfer Frame Version Number

Note that there are other parameters that need to be configured for a Physical Channel, as listed in sec-
tion 12.4.8, covering the All Frame Generation functionality.

The Transfer Frame Length can be programmed by means of the DMA length register.

The Transfer Frame Version Number can be programmed by means of a register, and can take one of
two legal values: 00b for Telemetry and 01b for AOS.

12.4.2 Virtual Channel Frame Service

The Virtual Channel Frame Service is implemented by means of a DMA interface, providing the user
with a means for inserting Transfer Frames into the Telemetry Encoder. Transfer Frames are automat-
ically fetched from memory, for which the user configures a descriptor table with descriptors that
point to each individual Transfer Frame. For each individual Transfer Frame the descriptor also pro-
vides means for bypassing functions in the Telemetry Encoder. This includes the following:

*  Virtual Channel Counter generation can be enabled in the Virtual Channel Generation function
(this function is normally only used for Idle Frame generation but can be used for the Virtual
Channel Frame Service when sharing a Virtual Channel)

*  Master Channel Counter generation can be bypassed in the Master Channel Generation function
(TM only)

»  Frame Secondary Header (FSH) generation can be bypassed in the Master Channel Generation
function (TM only)

*  Operational Control Field (OCF) generation can be bypassed in the Master Channel Generation
function (TM only)

*  Frame Error Header Control (FECH) generation can be bypassed in the All Frame Generation
function (AOS only)

» Insert Zone (IZ) generation can be bypassed in the All Frame Generation function (AOS only)

*  Frame Error Control Field (FECF) generation can be bypassed in the All Frame Generation func-
tion

* A Time Strobe can be generated for the Transfer Frame.

Note that the above features can only be bypassed for each Transfer Frame, the overall enabling of the
features is done for the corresponding functions in the Telemetry Encoder, as described in the subse-
quent sections.

The detailed operation of the DMA interface is described in section 12.8.

12.4.3 Virtual Channel Generation

The Virtual Channel Generation function is used to generate the Virtual Channel Counter for Idle
Frames as described hereafter. The function can however also be enabled for any Transfer Frame
inserted via the Virtual Channel Frame Service described above, allowing a Virtual Channel to be
shared between the two services. In this case the Virtual Channel Counter, the Extended Virtual Chan-
nel Counter (only for TM, as defined for ECSS and PSS, including the complete Transfer Frame Sec-
ondary Header) and the Virtual Channel Counter Cycle (only for AOS) fields will be inserted and
incremented automatically when enabled as described hereafter.
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12.4.4 Virtual Channel Multiplexing

The Virtual Channel Multiplexing Function is used to multiplex Transfer Frames of different Virtual
Channels of a Master Channel. Virtual Channel Multiplexing in the core is performed between two
sources: Transfer Frames provided through the Virtual Channel Frame Service and Idle Frames. Note
that multiplexing between different Virtual Channels is assumed to be done as part of the Virtual
Channel Frame Service outside the core.

The Virtual Channel Frame Service user interface is described above. The Idle Frame generation is
described hereafter.

Idle Frame generation can be enabled and disabled by means of a register. The Spacecraft ID to be
used for Idle Frames is programmable by means of a register. The Virtual Channel ID to be used for
Idle Frames is programmable by means of a register.

Master Channel Counter generation for Idle Frames can be enabled and disabled by means of a regis-
ter (only for TM). Note that it is also possible to generate the Master Channel Counter field as part of
the Master Channel Generation function described in the next section. When Master Channel Counter
generation is enabled for Idle Frames, then the generation in the Master Channel Generation function
is bypassed.

The Virtual Channel Counter generation for Idle Frames is always enabled (both for TM and AOS)
and generated in the Virtual Channel Generation function described above.

Extended Virtual Channel Counter generation for Idle Frames can be enabled and disabled by means
of a register (only for TM, as defined for ECSS and PSS). This includes the complete Transfer Frame
Secondary Header.

Virtual Channel Counter Cycle generation for Idle Frames can be enabled and disabled by means of a
register (only for AOS).

If Frame Secondary Header generation is enabled in the Master Channel Generation function
described in the next section, it can be bypassed for Idle Frames, programmable by means of a regis-
ter. This allows VC_FSH or MC_FSH realization.

If Operation Control Field generation is enabled in the Master Channel Generation function described
in the next section, it can be bypassed for Idle Frames, programmable by means of a register. This
allows VC_OCF or MC_OCEF realization.

12.4.5 Master Channel Generation

The Master Channel Counter can be generated for all frames on a master channel (only for TM). It can
be can be enabled and disabled by means of a register. The generation can also be bypassed for Idle
Frames or Transfer Frames provided via the DMA interface.

The Frame Secondary Header (FSH) can be generated from a 128-bit register (only for TM). This can
be done for all frames on an master channel (MC_FSH) or be bypassed for Idle Frames or Transfer
Frames provided via the DMA interface, effectively implementing FSH on a per virtual channel basis
(VC_FSH). The FSH length is programmable by means of a register.

The Operational Control Field (OCF) can be generated from a 32-bit register. This can be done for all
frames on an master channel (MC OCF) or be bypassed for Idle Frames or Transfer Frames provided
via the DMA interface, effectively implementing OCF on a per virtual channel basis (VC_OCF).

12.4.6 Master Channel Frame Service

The Master Channel Frame Service user interface is equivalent to the previously described Virtual
Channel Frame Service user interface, using the same DMA interface. The interface can thus be used
for inserting both Master Channel Transfer Frame and Virtual Channel Transfer Frames.
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12.4.7 Master Channel Multiplexing

The Master Channel Multiplexing Function is used to multiplex Transfer Frames of different Master
Channels of a Physical Channel. Master Channel Multiplexing is performed between three sources:
Master Channel Generation Service, Master Channel Frame Service and Idle Frames.

Bypassing all the functionality of the Master Channel Generation functionality described above effec-
tively establishes the master channel frame service. The same holds for the Idle Frame generation
described above, allowing the core to generate Idle Frame on the level of the Physical Channel.

12.4.8 All Frame Generation

The All Frame Generation functionality operates on all transfer frames of a Physical Channel. Each of
the individual functions can be bypassed for each frame coming from the DMA interface or idle frame
generation functionality.

The Frame Header Error Control (FHEC) generation can be enabled and disabled by means of a regis-
ter (AOS only).

The Insert Zone can be generated from a 128-bit register (only for AOS). This can be done for all
frames on an physical channel (MC_FSH) or be bypassed for Idle Frames or Transfer Frames pro-
vided via the DMA interface. The Insert Zone length is programmable by means of a register. Note
that the Insert Zone and Frame Secondary Header functionality share the same resources, since they
cannot be used simultaneously for a Physical Channel.

Frame Error Control Field (FECF) generation can be enabled and disabled by means of a register.

Synchronization and Channel Coding Sub-Layer

12.5.1 Attached Synchronization Marker

The 32-bit Attached Synchronization Marker is placed in front of each Transfer Frame as per [C131]
and [ECSS03].

An alternative Attached Synchronization Marker for embedded data streams can also be used, its
enabling and bit pattern being programmable via a configuration register.

12.5.2 Reed-Solomon Encoder

The CCSDS recommendation [C131] and ECSS standard [ECSS03] specify Reed-Solomon codes,
one (255, 223) code and one (255, 239) code. The ESA PSS standard [PSS013] only specifies the
former code. Although the definition style differs between the documents, the (255, 223) code is the
same in all three documents. The definition used in this document is based on the PSS standard
[PSS013].

The Reed-Solomon Encoder implements both codes.

The Reed-Solomon encoder is compliant with the coding algorithms in [C131] and [ECSS03]:
*  there are 8 bits per symbol;

*  there are 255 symbols per codeword;

* the encoding is systematic:

+  for E=8 or (255, 239), the first 239 symbols transmitted are information symbols, and the last 16
symbols transmitted are check symbols;

» for E=16 or (255, 223), the first 223 symbols transmitted are information symbols, and the last 32
symbols transmitted are check symbols;

» the E=8 code can correct up to 8 symbol errors per codeword;

» the E=16 code can correct up to 16 symbol errors per codeword;
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» the field polynomial is

Sosa(X) = P R e e ap |

* the code generator polynomial for E=8 is

135 16
gesa('x) = H (x_l_al) = ngXI
i=120 ji=0

for which the highest power of x is transmitted first;

»  the code generator polynomial for E=16 is

143

32
Zesa®) = J] xta) = Y g-¥
ji=0

i=112

for which the highest power of x is transmitted first;

* interleaving is supported for depth / = {1 to 8}, where information symbols are encoded as /

codewords with symbol numbers i + j*/ belonging to codeword i {where 0 <i</and 0 <j <
255};

»  shortened codeword lengths are supported;

» the input and output data from the encoder are in the representation specified by the following

transformation matrix T,g,, where i, is transferred first

00110111
01011111
10000111
00001001
00111111
00101011
01111001
01111011

|:10 L3y 51 17:| = |:(l7 Og O5 Oy O3 Oy Oy QO} X

« the following matrix T, specifying the reverse transformation

11101101
01011111
00010111

_ 01011010
[0(7&6%0(40(30(2&1ao}—[1011121314151617J>< 10001000

01010110

00000011
10011000

»  the Reed-Solomon output is non-return-to-zero level encoded.

The Reed-Solomon Encoder encodes a bit stream from preceding encoders and the resulting symbol
stream is output to subsequent encoder and modulators. The encoder generates codeblocks by receiv-
ing information symbols from the preceding encoders which are transmitted unmodified while calcu-
lating the corresponding check symbols which in turn are transmitted after the information symbols.
The check symbol calculation is disabled during reception and transmission of unmodified data not
related to the encoding. The calculation is independent of any previous codeblock and is perform cor-
rectly on the reception of the first information symbol after a reset.
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Each information symbol corresponds to an 8 bit symbol. The symbol is fed to a binary network in
which parallel multiplication with the coefficients of a generator polynomial is performed. The prod-
ucts are added to the values contained in the check symbol memory and the sum is then fed back to
the check symbol memory while shifted one step. This addition is performed octet wise per symbol.
This cycle is repeated until all information symbols have been received. The contents of the check
symbol memory are then output from the encoder. The encoder is based on a parallel architecture,
including parallel multiplier and adder.

The encoder can be configured at compile time to support only the E=16 (255, 223) code, only the
E=8 (255, 239) code, or both. This is done with the reed VHDL generic. Only the selected coding
schemes are implemented. The choice between the E=16 and E=8 coding can be performed during
operation by means of a configuration register.

The maximum number of supported interleave depths I, is selected at compile time with the reed-
depth VHDL generic, the range being 1 to 8. For a specific instantiation of the encoder, the choice of
any interleave depth ranging from 1 to the chosen I,,,, is supported during operation. The area of the
encoder is minimized, i.e. logic required for a greater interleave depth than I, is not unnecessarily
included.

The interleave depth is chosen during operation by means of a configuration register.

12.5.3 Pseudo-Randomiser

The Pseudo-Randomiser (PSR) generates a bit sequence according to [C131] and [ECSS03] which is
xor-ed with the data output of preceding encoders. This function allows the required bit transition
density to be obtained on a channel in order to permit the receiver on ground to maintain bit synchro-
nisation.

The polynomial for the Pseudo-Randomiser is h (x) = x3+x"+x>+x>+1 and is implemented as a
Fibonacci version (many-to-one implementation) of a Linear Feedback Shift Register (LFSR). The
registers of the LFSR are initialized to all ones between Transfer Frames. The Attached Synchroniza-
tion Marker (ASM) is not effected by the encoding.

data out

data in

initialise to all zero

Figure 16. Pseudo-randomiser

12.5.4 Convolutional Encoder

The Convolutional Encoder (CE) implements two convolutional encoding schemes. The ESA PSS
standard [PPS103] specifies a basic convolutional code without puncturing. This basic convolutional
code is also specified in the CCSDS recommendation [C131] and ECSS standard [ECSS03], which in
addition specifies a punctured convolutional code.

The basic convolutional code has a code rate of 1/2, a constraint length of 7, and the connection vec-
tors G1 = 1111001}, (171 octal) and G2 = 1011011}, (133 octal) with symbol inversion on output path,
where G1 is associated with the first symbol output.

The punctured convolutional code has a code rate of 1/2 which is punctured to 2/3, 3/4, 5/6 or 7/8, a
constraint length of 7, and the connection vectors G1 = 1111001, (171 octal) and G2 = 10110114, (133
octal) without any symbol inversion. The puncturing and output sequences are defined in [C131]. The
encoder also supports rate 1/2 unpunctured coding with aforementioned connection vectors and no
symbol inversion.
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g D data out G1
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4>} b l data out G1
> D T data out G2

Figure 18. Punctured convolutional encoder

12.6 Physical Layer

12.6.1 Non-Return-to-Zero Mark encoder

The Non-Return-to-Zero Mark encoder (NRZ) encodes differentially a bit stream from preceding
encoders according to [ECSS05]. The waveform is shown in figure 19

Both data and the Attached Synchronization Marker (ASM) are affected by the coding. When the
encoder is not enabled, the bit stream is by default non-return-to-zero level encoded.

Symbol: 1t 0o o0 1 0o 1 1 0

NRZ-L : :
wow e

Figure 19. NRZ-L and NRZ-M waveform

12.6.2 Split-Phase Level modulator

The Split-Phase Level modulator (SP) modulates a bit stream from preceding encoders according to
[ECSSO05]. The waveform is shown in figure 20.

Both data and the Attached Synchronization Marker (ASM) are effected by the modulator. The modu-
lator will increase the output bit rate with a factor of two.

SP-L

Figure 20. SP-L waveform



123

12.6.3 Sub-Carrier modulator

The Sub-Carrier modulator (SC) modulates a bit stream from preceding encoders according to
[ECSSO05], which is Binary Phase Shift Key modulation (BPSK) or Phase Shift Key Square.

The sub-carrier modulation frequency is programmable. The symbol rate clock be divided to a degree
216 The divider can be configured during operation to divide the symbol rate clock frequency from 1/
1 to 1/2'6. The phase of the sub-carrier is programmable, selecting which phase 0° or 180° should cor-
respond to a logical one on the input.

12.6.4 Clock Divider

The Clock Divider (CD) provides clock enable signals for the telemetry and channel encoding chain.
The clock enable signals are used for controlling the bit rates of the different encoder and modulators.

The source for the bit rate frequency is the dedicated bit rate clock input. The bit rate clock input can
be divided to a degree 213, The divider can be configured during operation to divide the bit rate clock
frequency from 1/1 to 1/213. In addition, the Sub-Carrier modulator can divide the above resulting
clock frequency from 1/1 to 1/215. The divider in the sub-carrier modulator can be used without
enabling actual sub-carrier modulation, allowing division up to 1/230.

The bit rate frequency is based on the output frequency of the last encoder in a coding chain, except
for the sub-carrier modulator. No actual clock division is performed, since clock enable signals are
used. No clock multiplexing is performed in the core.

The Clock Divider (CD) supports clock rate increases for the following encoders and rates:
*  Convolutional Encoder (CE), 1/2, 2/3, 3/4, 5/6 and 7/8;

»  Split-Phase Level modulator (SP-L), rate 1/2;

*  Sub-Carrier modulator (SC), rate 1/2 to 1213,

The resulting symbol rate and telemetry rate are depended on what encoders and modulators are
enabled. The following variables are used in the tables hereafter: f'= input bit frequency, n = SYM-
BOLRATE+1 (GRTM physical layer register field +1), and m = SUBRATE+1 (physical layer register
field +1), ¢ = convolutional coding rate {1/2, 2/3, 3/4, 5/6, 7/8) (see CERATE field in GRTM coding
sub-layer register).

Table 145.Data rates without sub-carrier modulation (SUB=0)

Coding & Telemetry Convolutional |Split-Phase |Sub-carrier |Output symbol |Output clock
Modulation rate rate rate frequency rate frequency

- f/n/m - - - f/n/m f/n/m

CE f/n/m*c f/n/m - - f/n/m f/n/m
SP-L f/n/m/2 - f/n/m - f/n/m f/n/m

CE + SP-L f/n/m/2%*c f/n/m/2 f/n/m - f/n/m f/n/m

For n =1, no output symbol clock is generated, i.e. SYMBOLRATE register field equals 0.

m should be an even number, i.e. SUBRATE register field should be uneven and > 0 to generate an output symbol clock with 50% duty cycle.

If m > 1 then also » must be > 1, i.e. if SUBRATE register field is > 0 then SYMBOLRATE register field must be > 0.

Table 146.Data rates with sub-carrier modulation (SUB=1)

Coding & Telemetry Convolutional |Split-Phase |Sub-carrier |Outputsymbol |Qutput clock
Modulation rate rate rate frequency rate ! frequency
SC f/n/m - - f/n/2 f/n f/n

CE +SC f/n/m*c f/n/m - f/n/2 f/n f/n

SP-L+ SC f/n/m/2 - f/n/m f/n/2 f/n f/n
CE+SP-L+SC |f/n/m/2%*c¢ f/n/m/2 f/n/m f/n/2 f/n f/n
n=1orm=1 are invalid settings for sub-carrier modulation, i.e SYMBOLRATE and SUBRATE register fields must be > 0.

m must be an even number, i.e. SUBRATE register field must be uneven and > 0.

m defines number of sub-carrier phases per input bit from preceding encoder or modulator.

Note 1: The output symbol rate for sub-carrier modulation corresponds to the rate of phases, not the frequency. Sub-carrier frequency is half the symbol rate.
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12.7

Connectivity

The output from the Packet Telemetry and AOS encoder can be connected to:
*  Reed-Solomon encoder

*  Pseudo-Randomiser

*  Non-Return-to-Zero Mark encoder

. Convolutional encoder

Split-Phase Level modulator

. Sub-Carrier modulator

The input to the Reed-Solomon encoder can be connected to:

*  Packet Telemetry and AOS encoder

The output from the Reed-Solomon encoder can be connected to:
*  Pseudo-Randomiser

*  Non-Return-to-Zero Mark modulator

*  Convolutional encoder

*  Split-Phase Level modulator

. Sub-Carrier modulator

The input to the Pseudo-Randomiser (PSR) can be connected to:

*  Packet Telemetry and AOS encoder

*  Reed-Solomon encoder

The output from the Pseudo-Randomiser (PSR) can be connected to:
*  Non-Return-to-Zero Mark modulator

*  Convolutional encoder

»  Split-Phase Level modulator

. Sub-Carrier modulator

The input to the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:

*  Packet Telemetry and AOS encoder

*  Reed-Solomon encoder

*  Pseudo-Randomiser

The output from the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:
*  Convolutional encoder

»  Split-Phase Level modulator

. Sub-Carrier modulator

The input to the Convolutional Encoder (CE) can be connected to:
*  Packet Telemetry and AOS encoder

. Reed-Solomon encoder
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*  Pseudo-Randomiser

*  Non-Return-to-Zero Mark encoder

The output from the Convolutional Encoder (CE) can be connected to:
*  Split-Phase Level modulator

. Sub-Carrier modulator

The input to the Split-Phase Level modulator (SP) can be connected to:

»  Packet Telemetry and AOS encoder

*  Reed-Solomon encoder

*  Pseudo-Randomiser

*  Non-Return-to-Zero Mark encoder

*  Convolutional encoder

The output from the Split-Phase Level modulator (SP) can be connected to:

. Sub-Carrier modulator

The input to the Sub-Carrier modulator (SC) can be connected to:
»  Packet Telemetry and AOS encoder

*  Reed-Solomon encoder

*  Pseudo-Randomiser

*  Non-Return-to-Zero Mark encode

. Convolutional encoder

Split-Phase Level modulator
Operation

12.8.1 Introduction

The DMA interface provides a means for the user to insert Transfer Frames in the Packet Telemetry
and AOS Encoder. Depending on which functions are enabled in the encoder, the various fields of the
Transfer Frame are overwritten by the encoder. It is also possible to bypass some of these functions
for each Transfer Frame by means of the control bits in the descriptor associated to each Transfer
Frame. The DMA interface allows the implementation of Virtual Channel Frame Service and Master
Channel Frame Service, or a mixture of both, depending on what functions are enabled or bypassed.

12.8.2 Descriptor setup

The transmitter DMA interface is used for transmitting transfer frames on the downlink. The trans-
mission is done using descriptors located in memory.

A single descriptor is shown in table 147 and 148. The number of bytes to be sent is set globally for
all transfer frames in the length field in register DMA length register. The the address field of the
descriptor should point to the start of the transfer frame. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the transfer frame has been sent
(this requires that the transmitter interrupt enable bit in the control register is also set). The interrupt
will be generated regardless of whether the transfer frame was transmitted successfully or not. The
wrap (WR) bit is also a control bit that should be set before transmission and it will be explained later
in this section.
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Table 147. GRTM transmit descriptor word 0 (address offset 0x0)

31 16 15 14 13 10 9 8 7 6 5 4 3 2 1 0
RESERVED | UE | Ts [ 0000 | VCE | MCB | FSHB | OCFB [FHECB| 1zB |FECFB| IE | WR | EN |
31: 16 RESERVED
15 Underrun Error (UE) - underrun occurred while transmitting frame (status bit only)
14 Time Strobe (TS) - generate a time strobe for this frame
13: 10 RESERVED
9 Virtual Channel Counter Enable (VCE) - enable virtual channel counter generation (using the Idle

Frame virtual channel counter)

Master Channel Counter Bypass (MCB) - bypass master channel counter generation (TM only)
Frame Secondary Header Bypass (FSHB) - bypass frame secondary header generation (TM only)
Operational Control Field Bypass (OCFB) - bypass operational control field generation

Frame Error Header Control Bypass (FECHB) - bypass frame error header control generation (AOS)
Insert Zone Bypass (IZB) - bypass insert zone generation (AOS)

Frame Error Control Field Bypass (FECFB) - bypass frame error control field generation

N W kA LN O ®

Interrupt Enable (IE) - an interrupt will be generated when the frame from this descriptor has been
sent provided that the transmitter interrupt enable bit in the control register is set. The interrupt is
generated regardless if the frame was transmitted successfully or if it terminated with an error.

1 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

0 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

Table 148. GRTM transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS ‘ RES ‘

31:2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

12.8.3 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the transmitter descriptor pointer register. The
address must be aligned to a 1 kByte boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the core, the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kByte boundary
has been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors
can be set to make the pointer wrap back to zero before the 1 kByte boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the DMA control register.
This tells the core that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set.
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12.8.4 Descriptor handling after transmission

When a transmission of a frame has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the frame was completely
transmitted. The other bits in the first descriptor word are set to zero after transmission while the sec-
ond word is left untouched. The enable bit should be used as the indicator when a descriptor can be
used again, which is when it has been cleared by the core.

There are multiple bits in the DMA status register that hold transmission status.

The Transmitter Interrupt (TT) bit is set each time a DMA transmission of a transfer frame ended suc-
cessfully. Maskable with the Interrupt Enable (IE) bit.

The Transmitter Error (TE) bit is set each time an DMA transmission of a transfer frame ended with
an underrun error. Maskable by the Interrupt Enable (IE) bit.

The Transmitter AMBA error (TA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or when reading transfer frame data. Any active transmissions were aborted and
the DMA channel was disabled. The DMA channel can be activated again by setting the transmit
enable register. Not maskable.

The Transfer Frame Sent (TFS) bit is set whenever a transfer frame has been sent, independently if it
was sent via the DMA interface or generated by the core. Maskable by the Transfer Frame Interrupt
Enable (TFIE) bit.

The Transfer Frame Failure (TFF) bit is set whenever a transfer frame has failed for other reasons,
such as when Idle Frame generation is not enabled and no user Transfer Frame is ready for transmis-
sion, independently if it was sent via the DMA interface or generated by the core. Maskable by the
Transfer Frame Interrupt Enable (TFIE) bit.

Registers
The core is programmed through registers mapped into APB address space.

Table 149.GRTM registers

APB address offset Register

0x00 GRTM DMA Control register

0x04 GRTM DMA Status register

0x08 GRTM DMA Length register

0x0C GRTM DMA Descriptor Pointer register
0x10 GRTM DMA Configuration register
0x80 GRTM Control register

0x84 GRTM Status register (unused)

0x88 GRTM Configuration register

0x90 GRTM Physical Layer register

0x94 GRTM Coding Sub-Layer register

0x98 GRTM Attached Synchronization Marker
0xA0 GRTM All Frames Generation register
0xA4 GRTM Master Frame Generation register
0xA8 GRTM Idle Frame Generation register
0xCO GRTM FSH/Insert Zone register 0

0xC4 GRTM FSH/Insert Zone register 1

0xC8 GRTM FSH/Insert Zone register 2

0xCC GRTM FSH/Insert Zone register 3

0xDO0 GRTM Operational Control Field register
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Table 150. GRTM DMA control register

31 6 5 4 3 2 1 0
RESERVED [TXRDY| TFIE | RST |TXRST| IE | EN |

31:5 RESERVED

5 Transmitter Ready (TXRDY) - telemetry transmitter ready for operation after setting the TE bit in
GRTM control register

4 Transfer Frame Interrupt Enable (TFIE) - enable telemetry frame interrupt
Reset (RST) - reset DMA and telemetry transmitter

2 Reset Transmitter (TXRST) - reset telemetry transmitter

Note that this bit must be cleared after core reset to enable programming of the telemetry transmitter.
Interrupt Enable (IE) - enable DMA interrupt
0 Enable (EN) - enable DMA transfers

Table 151. GRTM DMA status register
31 5 4 3 2 1 0

RESERVED ‘TFS ‘ TFF ] TA ‘ Tl ‘ TE ‘

1:5 RESERVED
Transfer Frame Sent (TFS) - telemetry frame interrupt, cleared by writing a logical 1
Transfer Frame Failure (TFF) - telemetry transmitter failure, cleared by writing a logical 1
Transmitter AMBA Error (TE) - DMA AMBA AHB error, cleared by writing a logical 1
Transmitter Interrupt (TT) - DMA interrupt, cleared by writing a logical 1

S = N W bW

Transmitter Error (TE) - DMA transmitter underrun, cleared by writing a logical 1

Table 152. GRTM DMA length register

31 27 26 16 15 11 10 0
RESERVED LIMIT-1 RESERVED LENGTH-1
31:27 RESERVED
26: 16 Transfer Limit (LIMIT)- length-1 of data to be fetched by DMA before transfer starts
(Note: LIMIT must be equal to or larger than BLOCKSIZE*2 for LENGTH > BLOCKSIZE)
15: 11 RESERVED
10: 0 Transfer Length (LENGTH) - length-1 of data to be transferred by DMA

Table 153. GRTM DMA descriptor pointer register

31 10 9 3 2 0
BASE INDEX “000”
31: 10 Descriptor base (BASE) - base address of descriptor table
9: 3 Descriptor index (INDEX) - index of active descriptor in descriptor table
2: 0 Reserved - fixed to “00”

Table 154. GRTM DMA configuration register (read-only)
31 16 15 0

FIFOSZ BLOCKSZ

31: 16 FIFO size (FIFOSZ) - size of FIFO memory in number of bytes (read-only)
15: 0 Block size (BLOCKSZ) - size of block in number of bytes (read-only)
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Table 155. GRTM control register

1 0
RESERVED | EN |
31:1 RESERVED
0: Transmitter Enable (EN) - enables telemetry transmitter (should be done after the complete configu-

ration of the telemetry transmitter, including the LENGTH field in the GRTM DMA length register)

Table 156. GRTM configuration register (read-only)

21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

RESERVED A|lF|IT | M|F| I |E|O|F|A RS RS TE| P | N |[CE|SP|SC

EHHEEEH R
C E F|M
31:21 RESERVED
20 Advanced Orbiting Systems (AOS) - AOS transfer frame generation implemented
19 Frame Header Error Control (FHEC) - frame header error control implemented, only if AOS also set
18 Insert Zone (IZ) - insert zone implemented, only if AOS also set
17 Master Channel Generation (MCG) - master channel counter generation implemented
16 Frame Secondary Header (FSH) - frame secondary header implemented
15 Idle Frame Generation (IDLE) - idle frame generation implemented
14 Extended VC Cntr (EVC) - extended virtual channel counter implemented (ECSS)
13 Operational Control Field (OCF) - CLCW implemented
12 Frame Error Control Field (FECF) - transfer frame CRC implemented
11 Alternative ASM (AASM) - alternative attached synchronization marker implemented
10: 9 Reed-Solomon (RS) - reed-solomon encoder implemented, “01” E=16, “10” E=8, “11” E=16 & 8
8 6 Reed-Solomon Depth (RSDEPTH) - reed-solomon interleave depth -1 implemented
5 Turbo Encoder (TE) - turbo encoder implemented (reserved)
4 Pseudo-Randomiser (PSR) - pseudo-Randomiser implemented
3 Non-Return-to-Zero (NRZ) - non-return-to-zero - mark encoding implemented
2 Convolutional Encoding (CE) - convolutional encoding implemented
1 Split-Phase Level (SP) - split-phase level modulation implemented
0 Sub Carrier (SC) - sub carrier modulation implemented
Table 157. GRTM physical layer register
30 16 15 14 0
SYMBOLRATE | SCF | SUBRATE

31 Symbol Fall (SF) - symbol clock has a falling edge at start of symbol bit
30: 16 Symbol Rate (SYMBOLRATE) - symbol rate division factor - 1
15 Sub Carrier Fall (SCF) -sub carrier output start with a falling edge for logical 1

14: 0 Sub Carrier Rate (SUBRATE) - sub carrier division factor - 1
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Table 158. GRTM coding sub-layer register

31 19 18 17 16 15 14 12 11 10 8 7 6 5 4 1 0
RESERVED CSEL | A |RS| RSDEPTH | R |RESERVED| P | N |CE CE SP|SC
: 3 28] |
M

31: 19 RESERVED

18: 17 Clock Selection (CSEL) - selection of external telemetry clock source (application specific)

16 Alternative ASM (AASM) - alternative attached synchronization marker enable. When enabled the
value from the GRTM Attached Synchronization Marker register is used, else the standardized ASM
value 0x1ACFFCI1D is used

15 Reed-Solomon (RS) - reed-solomon encoder enable

14: 12 Reed-Solomon Depth (RSDEPTH) - reed-solomon interleave depth -1

11 Reed-Solomon Rate (RS8) - ‘0” E=16, ‘1” E=8

10: 8 RESERVED

7 Pseudo-Randomiser (PSR) - pseudo-Randomiser enable

6 Non-Return-to-Zero (NRZ) - non-return-to-zero - mark encoding enable

5 Convolutional Encoding (CE) - convolutional encoding enable

4: 2 Convolutional Encoding Rate (CERATE): “00-" rate 1/2, no puncturing

“01-" rate 1/2, punctured
“100” rate 2/3, punctured
“101” rate 3/4, punctured
“110” rate 5/6, punctured
“111”7 rate 7/8, punctured
Split-Phase Level (SP) - split-phase level modulation enable
0 Sub Carrier (SC) - sub carrier modulation enable
Table 159. GRTM attached synchronization marker register
31 0
ASM
31:0 Attached Synchronization Marker (ASM) - pattern for alternative ASM, (bit 31 MSB sent first, bit 0
LSB sent last) (The reset value is the standardized alternative ASM value 0x352EF853.)
Table 160. GRTM all frames generation register
31 22 21 17 16 15 14 13 12 11 10 0
RESERVED FSH/IZLENGTH |12 | F | F | VER - LENGTH-1
:
F|C

31:22 RESERVED

21: 17 Frame Secondary Header (TM) / Insert Zone (AOS) (FSH / IZ LENGTH) - length in bytes

16 Insert Zone (IZ) - insert zone enabled, only with AOS

15 Frame Error Control Field (FECF) - transfer frame CRC enabled

14 Frame Header Error Control (FHEC) - frame header error control enabled, only with AOS

13:12 Version (VER) - Transfer Frame Version - “00” Packet Telemetry, “01” AOS

11 RESERVED

10: 0 Frame Length (LENGTH) - Transfer Frame length-1 in number of bytes (read-only)
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31 24 23 4 3 2 0
MCCNTR RESERVED | MC | FSH | OCF | ow |
31:24 Master Channel Counter (MCCNTR) - master channel counter (diagnostic read-only)
23:4 RESERVED
3 Master Channel (MC) - enable master channel counter generation (TM only)
2 Frame Secondary Header (FSH) - enable MC_FSH for master channel (TM only)
1 Operation Control Field (OCF) - enable MC_OCF for master channel
0 Over Write OCF (OW) - overwrite OCF bits 16 and 17 when set
Table 162. GRTM idle frame generation register
31 24 23 22 21 20 19 18 17 16 15 10 9 0
MCCNTR RESER|ID| O | E | F | V |MC VCID SCID
VED |[LE|C |V |S|C
F/IC|/H|C
31:24 Master Channel Counter (MCCNTR) - idle frame master channel counter (diagnostic read-only)
23:22 RESERVED
21 Idle Frames (IDLE) - enable idle frame generation
20 Operation Control Field (OCF) - enable OCF for idle frames
19 Extended Virtual Channel Counter (EVC) - enable extended virtual channel counter generation for
idle frames (TM only, ECSS)
18 Frame Secondary Header (FSH) - enable FSH for idle frames (TM only)
17 Virtual Channel Counter Cycle (VCC) - enable virtual channel counter cycle generation for idle
frames (AOS only)
16 Master Channel (MC) - enable separate master channel counter generation for idle frames (TM only)
15: 10 Virtual Channel Identifier (VCID) - virtual channel identifier for idle frames
9: 0 Spacecraft Identifier (SCID) - spacecraft identifier for idle frames
Table 163. GRTM FSH /1Z register 0, MSB
31 0
DATA
31: 0 FSH / Insert Zone Data (DATA) - data (bit 31 MSB sent first)
Table 164. GRTM FSH / IZ register 1
31 0
DATA
31: 0 FSH / Insert Zone Data (DATA) - data
Table 165. GRTM FSH / 1Z register 2
31 0
DATA
31: 0 FSH / Insert Zone Data (DATA) - data
Table 166. GRTM FSH / 1Z register 3, LSB
31 0
DATA
31: 0 FSH / Insert Zone Data (DATA) - data (bit 0 LSB sent last)
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31

Table 167. GRTM OCEF register

CLCW

31: 0

Operational Control Field (OCF) - CLCW data (bit 31 MSB, bit 0 LSB)

Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x030. For description of

vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options

Table 168 shows the configuration options of the core (VHDL generics).

Table 168.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0

ft Enable fault-tolerance against SEU errors 0-2 0
blocksize Block size (in number of bytes) 16to 512 512
fifosize FIFO size (in number of bytes) 32 to 4096 4096
nsync Level of synchronization 1-2 2
resync Resynchronization of internal constants 0-1 0
altasm Alternative Attached Synchronization Marker 0-1 1
ao0s Advanced Orbiting System (AOS) 0-1 1
fhec Frame Header Error Control, AOS only 0-1 1
insertzone Insert Zone, AOS only 0-1 1
megf Master Channel Generation Function 0-1 1

fsh Frame Secondary Header 0-1 1
idle Idle Frame Generation 0-1 1
idleextvcentr Extended Virtual Channel Counter, Idle Frames 0-1 1
ocf Operation Control Field 0-1 1
fecf Frame Error Control Field 0-1 1
reed Reed-Solomon, 1- E=16,2 - E=8,3 - E=8 & 16 0-3 3
reeddepth Reed-Solomon Interleave Depth, maximum 1-8 8
turbo Reserved 0 0
pseudo Pseudo-Randomiser encoding 0-1 1
mark Non-Return-to-Zero Mark modulation 0-1 1
conv Convolutional coding 0-1 1
split Split-Phase Level modulation 0-1 1
sub Sub-Carrier modulation 0-1 1
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Signal descriptions

Table 169 shows the interface signals of the core (VHDL ports).

Table 169.Signal descriptions
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Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
™I bitlock Input Bit Lock High
rfavail RF Available High
T™O TIME Output Time strobe High
SYNC ASM indicator High
FRAME Frame indicator High
SERIAL Serial bit data High
CLOCK Serial bit data clock High
DATA [0:7] Parallel data, octet High
STROBE Parallel data strobe High
CLKSEL[0:1] External clock selection -
TCLK N/A Input Transponder clock -
OCLKO N/A Output Octet clock output -
OCLKI N/A Input Octet clock input -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Library dependencies

Table 170 shows the libraries used when instantiating the core (VHDL libraries).

Table 170.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC TYPES Signals, component Component declaration
Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std logic 1164.all;

-- TBD
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13.1

GRTC - Telecommand Decoder

Overview

The Telecommand Decoder (GRTC) is compliant with the Packet Telecommand protocol and specifi-
cation defined by [PSS-04-107] and [PSS-04-151]. The decoder is also compatible with the CCSDS
recommendations stated in [CCSDS-201.0], [CCSDS-202.0], [CCSDS-202.1] and [CCSDS-203.0].
The Telecommand Decoder (GRTC) only implements the Coding Layer (CL).

In the Coding Layer (CL), the telecommand decoder receives bit streams on multiple channel inputs.
The streams are assumed to have been generated in accordance with the Physical Layer specifications.
In the Coding Layer, the decoder searches all input streams simultaneously until a start sequence is
detected. Only one of the channel inputs is selected for further reception. The selected stream is bit-
error corrected and the resulting corrected information is passed to the user. The corrected information
received in the CL is transfer by means of Direct Memory Access (DMA) to the on-board processor.

The Command Link Control Word (CLCW) and the Frame Analysis Report (FAR) can be read and
written as registers via the AMBA AHB bus. Parts of the two registers are generated by the Coding
Layer (CL). The CLCW is automatically transmitted to the Telemetry Encoder (TM) for transmission
to the ground. Note that most parts of the CLCW and FAR are not produced by the Telecommand
Decoder (GRTC) hardware portion. This is instead done by the software portion of the decoder.
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Figure 21. Block diagram

13.1.1 Concept

A telecommand decoder in this concept is mainly implemented by software in the on-board processor.
The supporting hardware in the GRTC core implements the Coding Layer, which includes synchroni-
sation pattern detection, channel selection, codeblock decoding, Direct Memory Access (DMA) capa-
bility and buffering of corrected codeblocks. The hardware also provides a register via which the
Command Link Control Word (CLCW) is made available to a Telemetry Encoder. The CLCW is to be
generated by the software.

The GRTC has been split into several clock domains to facilitate higher bit rates and partitioning. The
two resulting sub-cores have been named Telecommand Channel Layer (TCC) and the Telecommand
Interface (TCI). Note that TCI is called AHB2TCI. A complete CCSDS packet telecommand decoder
can be realized at software level according to the latest available standards, staring from the Transfer
Layer.
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Figure 22. Block diagram

13.1.2 Functions and options

The Telecommand Decoder (GRTC) only implements the Coding Layer of the Packet Telecommand
Decoder standard [PSS-04-107]. All other layers are to be implemented in software, e.g. Authentica-

tion Unit (AU). The Command Pulse Distribution Unit (CPDU) is not implemented.
The following functions of the GRTC are programmable by means of registers:

*  Pseudo-De-Randomisation

*  Non-Return-to-Zero — Mark decoding

The following functions of the GRTC are pin configurable:

*  Polarity of RF Available and Bit Lock inputs

»  Edge selection for input channel clock
Data formats

13.2.1 Reference documents

[PSS-04-107]  Packet Telecommand Standard, PSS-04-107, Issue 2, January 1992
[PSS-04-151]  Telecommand Decoder Standard, PSS-04-151, Issue 1, September 1993
[CCSDS-201.0] Telecommand — Part 1 — Channel Service, CCSDS 201.0-B-3, June 2000
[CCSDS-202.0] Telecommand — Part 2 — Data Routing Service, CCSDS 202.0-B-3, June 2001
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[CCSDS-202.1] Telecommand — Part 2.1 — Command Operation Procedures, CCSDS 202.1-B-2,
June 2001

[CCSDS-203.0] Telecommand — Part 3 — Data Management Service, CCSDS 203.0-B-2, June 2001

13.2.2 Waveforms
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Figure 23. Bit asynchronous protocol
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Figure 24. Telecommand input protocol

Coding Layer (CL)

The Coding Layer synchronises the incoming bit stream and provides an error correction capability
for the Command Link Transmission Unit (CLTU). The Coding Layer receives a dirty bit stream
together with control information on whether the physical channel is active or inactive for the multi-
ple input channels.

The bit stream is assumed to be NRZ-L encoded, as the standards specify for the Physical Layer. As
an option, it can also be NRZ-M encoded. There are no assumptions made regarding the periodicity or
continuity of the input clock signal while an input channel is inactive. The most significant bit (Bit 0
according to [PSS-04-107]) is received first.

Searching for the Start Sequence, the Coding Layer finds the beginning of a CLTU and decodes the
subsequent codeblocks. As long as no errors are detected, or errors are detected and corrected, the
Coding Layer passes clean blocks of data to the Transfer Layer which is implemented in software.
When a codeblock with an uncorrectable error is encountered, it is considered as the Tail Sequence, its
contents are discarded and the Coding Layer returns to the Start Sequence search mode.

The Coding Layer also provides status information for the FAR, and it is possible to enable an
optional de-randomiser according to [CCSDS-201.0].
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13.3.1 Synchronisation and selection of input channel

Synchronisation is performed by means of bit-by-bit search for a Start Sequence on the channel
inputs. The detection of the Start Sequence is tolerant to a single bit error anywhere in the Start
Sequence pattern. The Coding Layer searches both for the specified pattern as well as the inverted
pattern. When an inverted Start Sequence pattern is detected, the subsequent bit-stream is inverted till
the detection of the Tail Sequence.

The detection is accomplished by a simultaneous search on all active channels. The first input channel
where the Start Sequence is found is selected for the CLTU decoding. The selection mechanism is
restarted on any of the following events:

*  The input channel active signal is de-asserted, or

* aTail Sequence is detected, or

* aCodeblock rejection is detected, or

* anabandoned CLTU is detected, or the clock time-out expires.

As a protection mechanism in case of input failure, a clock time-out is provided for all selection
modes. The clock time-out expires when no edge on the bit clock input of the selected input channel
in decode mode has been detected for a specified period. When the clock time-out has expired, the
input channel in question is ignored (i.e. considered inactive) until its active signal is de-asserted
(configurable with gTimeoutMask=1).

13.3.2 Codeblock decoding

The received Codeblocks are decoded using the standard (63,56) modified BCH code. Any single bit
error in a received Codeblock is corrected. A Codeblock is rejected as a Tail Sequence if more than
one bit error is detected. Information regarding Count of Single Error Corrections and Count of
Accept Codeblocks is provided to the FAR. Information regarding Selected Channel Input is provided
via a register.

13.3.3 De-Randomiser

In order to maintain bit synchronisation with the received telecommand signal, the incoming signal
must have a minimum bit transition density. If a sufficient bit transition density is not ensured for the
channel by other methods, the randomiser is required. Its use is optional otherwise. The presence or
absence of randomisation is fixed for a physical channel and is managed (i.e., its presence or absence
is not signalled but must be known a priori by the spacecraft and ground system). A random sequence
is exclusively OR-ed with the input data to increase the frequency of bit transitions. On the receiving
end, the same random sequence is exclusively OR-ed with the decoded data, restoring the original
data form. At the receiving end, the de-randomisation is applied to the successfully decoded data. The
de-randomiser remains in the “all-ones” state until the Start Sequence has been detected. The pattern
is exclusively OR-ed, bit by bit, to the successfully decoded data (after the Error Control Bits have
been removed). The de-randomiser is reset to the “all-ones” state following a failure of the decoder to
successfully decode a codeblock or other loss of input channel.

13.3.4 Non-Return-to-Zero — Mark

An optional Non-Return-to-Zero — Mark decoder can be enabled by means of a register.

13.3.5 Design specifics

The coding layer is supporting 1 to 8 channel inputs, although PSS requires at least 4.
A codeblock is fixed to 56 information bits (as per CCSDS/ECSS).
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The CCSDS/ECSS (1024 octets) or PSS (256 octets) standard maximum frame lengths are supported,
being programmable via bit PSS in the GCR register. The former allows more than 37 codeblocks to
be received.

The Frame Analysis Report (FAR) interface supports 8 bit CAC field, as well as the 6 bit CAC field
specified in ESA PSS-04-151- When the PSS bit is cleared to '0', the two most significant bits of the
CAC will spill over into the "LEGAL/ILLEGAL" FRAME QUALIFIER field in the FAR. These bits
will however be all-zero when PSS compatible frame lengths are received or the PSS bit is set to '1".
The saturation is done at 6 bits when PSS bit is set to '1' and at 8 bits when PSS bit is cleared to '0'.

The Pseudo-Randomiser decoder is included (as per CCSDS/ECSYS)), its usage being input signal pro-
grammable.

The Physical Layer input can be NRZ-L or NRZ-M modulated, allowing for polarity ambiguity. NRZ-
L/M selection is programmable. This is an extension to ECSS: Non-Return to Zero - Mark decoder
added, with its internal state reset to zero when channel is deactivated.

Note: If input clock disappears, it will also affect the codeblock acquired immediately before the
codeblock just being decoded (accepted by ESA PSS-04-151).

In state S1, all active inputs are searched for start sequence, there is no priority search, only round
robin search. The search for the start sequence is sequential over all inputs: maximum input frequency
= system frequency /(gIn+2)

The ESA PSS-04-151 specified CASE-1 and CASE-2 actions are implemented according to afore-
mentioned specification, not leading to aborted frames.

Extended E2 handling is implemented:
* E2b Channel Deactivation - selected input becomes inactive in S3
* E2c¢ Channel Deactivation - too many codeblocks received in S3

* E2d Channel Deactivation - selected input is timed-out in S3
(design choice being: S3 => S1, abandoned frame)

13.3.6 Direct Memory Access (DMA)

This interface provides Direct Memory Access (DMA) capability between the AMBA bus and the
Coding Layer. The DMA operation is programmed via an AHB slave interface.

The DMA interface is an element in a communication concept that contains several levels of buffer-
ing. The first level is performed in the Coding Layer where a complete codeblock is received and kept
until it can be corrected and sent to the next level of the decoding chain. This is done by inserting each
correct information octet of the codeblock in an on-chip local First-In-First-Out (FIFO) memory
which is used for providing improved burst capabilities. The data is then transfered from the FIFO to
a system level ring buffer in the user memory (e.g. SRAM located in on-board processor board) which
is accessed by means of DMA.

The following storage elements can thus be found in this design:
The shift and hold registers in the Coding Layer

The local FIFO (parallel; 32-bit; 4 words deep)

The system ring buffer (SRAM; 32-bit; 1 to 256 kByte deep).

Transmission

The transmission of data from the Coding Layer to the system buffer is described hereafter.

The serial data is received and shifted in a shift register in the Coding Layer when the reception is
enabled. After correction, the information content of the shift register is put into a hold register.
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When space is available in the peripheral FIFO, the content of the hold register is transferred to the
FIFO. The FIFO is of 32-bit width and the byte must thus be placed on the next free byte location in
the word.

When the FIFO is filled for 50%, a request is done to transfer the available data towards the system
level buffer.

If the system level ring buffer isn’t full, the data is transported from the FIFO, via the AHB master
interface towards the main processor and stored in e.g. SRAM. If no place is available in the system
level ring buffer, the data is held in the FIFO.

When the GRTC keeps receiving data, the FIFO will fill up and when it reaches 100% of data, and the
hold and shift registers are full, a receiver overrun interrupt will be generated
(IRQ_RX OVERRUN). All new incoming data is rejected until space is available in the peripheral
FIFO.

When the receiving data stream is stopped (e.g. when a complete data block is received), and some
bytes are still in the peripheral FIFO, then these bytes will be transmitted to the system level ring
buffer automatically. Received bytes in the shift and hold register are always directly transferred to
the peripheral FIFO.

The FIFO is automatically emptied when a CLTU is either ready or has been abandoned. The reason
for the latter can be codeblock error, time out etc. as described in CLTU decoding state diagram.

The operational state machine is shown in figure 25.
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13.4.1 Data formatting

When in the decode state, each candidate codeblock is decoded in single error correction mode as
described hereafter.

13.4.2 CLTU Decoder State Diagram

Fomm + tomm - + Fom - +
| | | | | |
| Sl | | S2 |<-=—-E4----- | S3 |
| INACTIVE |----- El---->| ACTIVE |----- E3---->| DECODE |
| |<----E2a----| |<----E2c----| |
| | Fomm s + | |
| |<==—=———mm— E2b----—-—————————- | |
| |<==—=———mm— E2d------—————————- | |
Fomm + Fom - +

Note that the diagram has been improved with explicit handling of different E2 possibilities listed
below.

State Definition:
S1  Inactive
S2  Search
S3  Decode
Event Definition:
El1  Channel Activation
E2a Channel Deactivation - all inputs are inactive
E2b Channel Deactivation - selected becomes inactive (CB=0 -> frame abandoned)
E2c¢ Channel Deactivation - too many codeblocks received (all -> frame abandoned)
E2d Channel Deactivation - selected is timed-out (all -> frame abandoned)
E3  Start Sequence Found
E4  Codeblock Rejection (CB=0 -> frame abandoned)

13.4.3 Nominal

A: When the first “Candidate Codeblock™ (i.e. “Candidate Codeblock™ 0, which follows Event 3
(E3):START SEQUENCE FOUND) is found to be error free, or if it contained an error which has
been corrected, its information octets are transferred to the remote ring buffer as shown in Table 3.1.
At the same time, a “Start of Candidate Frame” flag is written to bit 0 or 16, indicating the beginning
of a transfer of a block of octets that make up a “Candidate Frame”. There are two cases that are han-
dled differently as described in the next sections.
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Table 171.Data format

Bit[31............ 24] Bit[23............ 16] Bit[15.............. 8] Bit[7................0]
0x40000000 information octet0 0x01 information octetl1 0x00
0x40000004 information octet2 0x00 information octet3 0x00
0x40000008 information octet4 0x00 end of frame 0x02
0x400000xx information octet6 0x01 information octet7 0x00
0x400000xx information octet8 0x00 abandoned frame 0x03

Legend: Bit [17:16] or [1:0]:

“00”" = continuing octet

“01” = Start of Candidate Frame
“10” = End of Candidate Frame
“11” = Candidate Frame Abandoned

13.4.4 CASE1

When an Event 4 — (E4): CODEBLOCK REJECTION - occurs for any of the 37 possible “Candidate
Codeblocks” that can follow Codeblock 0 (possibly the tail sequence), the decoder returns to the
SEARCH state (S2), with the following actions:

The codeblock is abandoned (erased)
No information octets are transferred to the remote ring buffer

An “End of Candidate Frame” flag is written, indicating the end of the transfer of a block of
octets that make up a “Candidate Frame”.

13.4.5 CASE2

When an Event 2 — (E2): CHANNEL DEACTIVATION — occurs which affects any of the 37 possible
“Candidate Codeblocks” that can follow Codeblock 0, the decoder returns to the INACTIVE state
(S1), with the following actions:

The codeblock is abandoned (erased)
No information octets are transferred to the remote ring buffer

An “End of Candidate Frame” flag is written, indicating the end of the transfer of a block of
octets that make up a “Candidate Frame”

13.4.6 Abandoned

B: When an Event 4 (E4), or an Event 2 (E2), occurs which affects the first candidate codeblock
0, the CLTU shall be abandoned. No candidate frame octets have been transferred.

C: If and when more than 37 Codeblocks have been accepted in one CLTU, the decoder returns
to the SEARCH state (S2). The CLTU is effectively aborted and this is will be reported to the
software by writing the “Candidate Frame Abandoned flag” to bit 1 or 17, indicating to the soft-
ware to erase the “Candidate frame”.
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Relationship between buffers and FIFOs

The conversion from the peripheral data width (8 bit for the coding layer receiver), to 32 bit system
word width, is done in the peripheral FIFO.

All access towards the system ring buffer are 32-bit aligned. When the amount of received bytes is
odd or not 32-bit aligned, the FIFO will keep track of this and automatically solve this problem. For
the reception data path, the 32 bit aligned accesses could result in incomplete words being written to
the ring buffer. This means that some bytes aren’t correct (because not yet received), but this is no
problem due to the fact that the hardware write pointer (rx_w_ptr) always points to the last, correct,
data byte.

The local FIFO ensures that DMA transfer on the AMBA AHB bus can be made by means of 2-word
bursts. If the FIFO is not yet filled and no new data is being received this shall generate a combination
of single accesses to the AMBA AHB bus if the last access was indicating an end of frame or an aban-
doned frame.

If the last single access is not 32-bit aligned, this shall generate a 32-bit access anyhow, but the
receive-write-pointer shall only be incremented with the correct number of bytes. Also in case the pre-
vious access was not 32-bit aligned, then the start address to write to will also not be 32-bit aligned.
Here the previous 32-bit access will be repeated including the bytes that were previously missing, in
order to fill-up the 32-bit remote memory-controller without gaps between the bytes.

The receive-write-pointer shall be incremented according to the number of bytes being written to the
remote memory controller.

13.5.1 Buffer full

The receiving buffer is full when the hardware has filled the complete buffer space while the software
didn’t read it out. Due to hardware implementation and safety, the buffer can’t be filled completely
without interaction of the software side. A space (offset) between the software read pointer (rx_r_ptr)
and the hardware write pointer (rx_w_ptr) is used as safety buffer. When the write pointer (rx_w_ptr)
would enter this region (due to a write request from the receiver), a buffer full signal is generated and
all hardware writes to the buffer are suppressed. The offset is currently hard coded to 8 bytes.

Warning: If the software wants to receive a complete 1kbyte block (when RXLEN = (), then it must
read out at least 8 bytes of data from the buffer. In this case, the hardware can write the 1024 bytes
without being stopped by the rx buffer full signal.

rx_w_ptr (HW)

OFFSET =
8 bytes

vy 1X_r_ptr (SW)

rx buffer full condition

Figure 26. Buffer full situation



144

13.6

13.5.2 Buffer full interrupt

The buffer full interrupt is given when the difference between the hardware write pointer (rx_w_ptr)
and the software read pointer (rx_r_ptr) is less than 1/8 of the buffer size. The way it works is the
same as with the buffer full situation, only is the interrupt active when the security zone is entered.
The buffer full interrupt is active for 1 system clock cycle. When the software reads out data from the
buffer, the security zone shifts together with the read pointer (rx_r_ptr) pointer. Each time the hard-
ware write pointer (rx_w_ptr) enters the security zone, a single interrupt is given.

rx buffer full IRQ is given
when the hardware
pointer enters the
security zone

rx_w_ptr (HW) _

OFFSET =
256 bytes

vy rX_r_ptr (SW)

rx buffer full IRQ condition

Figure 27. Buffer full interrupt (buffers size is 2kbyte in this example)

Command Link Control Word interface (CLCW)

The Command Link Control Word (CLCW) is inserted in the Telemetry Transfer Frame by the Telem-
etry Encoder (TM) when the Operation Control Field (OPCF) is present. The CLCW is created by the
software part of the telecommand decoder. The telecommand decoder hardware provides two regis-
ters for this purpose which can be accessed via the AMBA AHB bus. Note that bit 16 (No RF Avail-
able) and 17 (No Bit Lock) of the CLCW are not possible to write by software. The information
carried in these bits is based on discrete inputs.

Two PacketAsynchronous interfaces (PA) are used for the transmission of the CLCW from the tele-
command decoder. The protocol is fixed to 115200 baud, 1 start bit, 8 data bits, 1 or 2 stop bits (con-
figured by generics), with a BREAK command for message delimiting (sending 13 bits of logical
Zero).
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The CLCWs are automatically transferred over the PA interface after reset, on each write access to the
CLCW register and on each change of the bit 16 (No RF Available) and 17 (No Bit Lock).

Table 172.CLCW transmission protocol

Byte CLCWR
Number | register bits | CLCW contents
First [31:24] Control Word Type CLCW Status | COP In Effect
Version Field
Number
Second [23:16] Virtual Channel Reserved Field
Identifier
Third [15:8] No RF No Bit Lock Wait Retransmit | Farm B | Report
Available Lock Out Counter | Type
Fourth [7:0] Report Value
Fifth N/A [RS232 Break Command]

Configuration Interface (AMBA AHB slave)

The AMBA AHB slave interface supports 32 bit wide data input and output. Since each access is a
word access, the two least significant address bits are assumed always to be zero, address bits 23:0 are
decoded. Note that address bits 31:24 are not decoded and should thus be handled by the AHB arbiter/
decoder. The address input of the AHB slave interfaces is thus incompletely decoded. Misaligned
addressing is not supported. For read accesses, unmapped bits are always driven to zero.

The AMBA AHB slave interface has been reduced in function to support only what is required for the
TC. The following AMBA AHB features are constrained:

*  Only supports HSIZE=WORD, HRESP_ERROR generated otherwise

*  Only supports HMASTLOCK='0', HRESP_ERROR generated otherwise

*  Only support HBURST=SINGLE or INCR, HRESP_ERROR generated otherwise
*  No HPROT decoding

*  No HSPLIT generated

»  HRETRY is generated if a register is inaccessible due to an ongoing reset.

+ HRESP ERROR is generated for unmapped addresses, and for write accesses to register without
any writeable bits

*  Only big-endianness is supported.

During a channel reset the RRP and RWP registers are temporary unavailable. The duration of this
reset-inactivity is 8 HCLK clock periods and the AHB-slave generates a HRETRY response during
this period if an access is made to these registers.

If the channel reset is initiated by or during a burst-access the reset will execute correctly but a part of
the burst could be answered with a HRETRY response. It is therefore not recommended to initiate
write bursts to the register.

GRTC has interrupt outputs, that are asserted for at least two clock periods on the occurrence of one of
the following events:

*  ‘CLTU stored’ (generated when CLTU has been stored towards the AMBA bus, also issued for
abandoned CLTUs)

*  ‘Receive buffer full’ (generated when the buffer has less than 1/8 free) (note that this interrupt is
issued on a static state of the buffer, and can thus be re-issued immediately after the correspond-
ing register has been read out by software, it should be masked in the interrupt controller to avoid
an immediate second interrupt).
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»  ‘Receiver overrun’ (generated when received data is dropped due to a reception overrun)

*  ‘CLTU ready’ (note that this interrupt is also issued for abandoned CLTUs)
*  FAR interrupt ‘Status Survey Data’

*  CLCW interrupt ‘Bit Lock’

*  CLCW interrupt ‘RF Available’

13.7.1 Miscellaneous

The accuracy of the transmission or reception baud rate of the bit asynchronous serial interface is
dependent on the selected system frequency and baud rate. The number of system clock periods used
for sending or receiving a bit is directly proportional to the integer part of the division of the system

frequency with the baud rate.

The BREAK command received on the bit asynchronous serial interface is a sequence of logical zeros
that is at least one bit period longer than the normal byte frame, i.e. start bit, eight data bits, optional

parity, one or two stop bits. When transmitted, it is always 13 bits.

Interrupts

The core generates the interrupts defined in table 173.

Table 173.Interrupts

Interrupt offset Interrupt name Description

1:st RFA RF Available changed

2:nd BLO Bit Lock changed

3:rd FAR FAR available

4:th CR CLTU ready/aborted

5:th RBF Output buffer full

6:th ov Input data overrun

7:th CS CLTU stored
Miscellaneous

13.9.1 Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:

*  The most significant bit of an array is located to the left, carrying index number zero.

*  An octet comprises eight bits.

Table 174.CCSDS n-bit field definition

CCSDS n-bit field

most significant

least significant

0

1ton-2

n-1

Convention according to AMBA specification, applying to the APB/AHB interfaces:

*  Signal names are in upper case, except for the following:

+  Alower case 'n' in the name indicates that the signal is active low.

+  Constant names are in upper case.

*  The least significant bit of an array is located to the right, carrying index number zero.
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*  Big-endian support.

Table 175.AMBA n-bit field definition

AMBA n-bit field

most significant least significant

n-1

n-2 down to 1 0

General convention, applying to all other signals and interfaces:

*  Signal names are in mixed case.

* Anupper case ' N'suffix in the name indicates that the signal is active low.

13.9.2 Performance

The uplink bit rate is supported in the range of 1 kbits/s to 1 Mbits/s.
The bit rate is set to 115200 bit/s for the PacketAsynchronous (PA) interfaces.

Registers

The core is programmed through registers mapped into AHB 1/O address space.

Table 176.GRTC registers

AHB address offset Register
0x00 Global Reset Register (GRR)
0x04 Global Control Register (GCR)
0x08 Physical Interface Mask Register (PMR)
0x0C Spacecraft Identifier Register (SIR)
0x10 Frame Acceptance Report Register (FAR)
0x14 CLCW Register 1 (CLCWR1)
0x18 CLCW Register 2 (CLCWR?2)
0x1C Physical Interface Register (PHIR)
0x20 Control Register (COR)
0x24 Status Register (STR)
0x28 Address Space Register (ASR)
0x2C Receive Read Pointer Register (RRP)
0x30 Receive Write Pointer Register (RWP)
0x60 Pending Interrupt Masked Status Register (PIMSR)
0x64 Pending Interrupt Masked Register (PIMR)
0x68 Pending Interrupt Status Register (PISR)
0x6C Pending Interrupt Register (PIR)
0x70 Interrupt Mask Register (IMR)
0x74 Pending Interrupt Clear Register (PICR)
Table 177. Global Reset Register (GRR)
31 24 23 1 0
SEB ‘ RESERVED | SRST |
31:24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
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Table 177. Global Reset Register (GRR)

Read: All zero.
23: 1 RESERVED
Write: Don’t care.
Read: All zero.
0 System reset (SRST): [1]
Write: ‘1’= initiate reset,‘0’= do nothing
Read: ‘1’= unsuccessful reset, ‘0’= successful reset

Power-up default: 0x00000000

Table 178. Global Control Register (GCR)

31 24 23 13 12 11 10 9
SEB ‘ RESERVED | PSS |NRZM | PSR | RESERVED
31:24 SEB (Security Byte):
Write: ‘0x55°= the write will have effect (the register will be updated).
Any other value= the write will have no effect on the register.
Read: All zero.
23:13 RESERVED
Write: Don’t care.
Read: All zero.
12 PSS (ESA/PSS enable) 1]
Write/Read:  ‘0’= disable, ‘1’= enable
11 NRZM (Non-Return-to-Zero Mark Decoder enable)
Write/Read:  ‘0’= disable, ‘1°’= enable
10 PSR (Pseudo-De-Randomiser enable)
Write/Read:  ‘0’= disable, ‘1’= enable
9: 0 RESERVED
Write: Don’t care.
Read: All zero.

Power-up default: 0x00001000, The default value depends on the TCC_PSS, TCC Mark, TCC Pseudo inputs.

Table 179. Physical Interface Mask Register (PMR)

31 8 7
RESERVED \ MASK
31: 8 RESERVED
Write: Don’t care.
Read: All zero.
7: 0 RESERVED
Write: Mask TC input when set, bit 0 correponds to TC input 0
Read: Current mask

Power-up default: 0x00000000

Table 180. Spacecraft Identifier Register (SIR) [7]

31 10 9
RESERVED \ SCID
31: 10 RESERVED
Write: Don’t care.
Read: All zero.

9: 0 SCID (Spacecraft Identifier)
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Table 180. Spacecraft Identifier Register (SIR) (7]
Write: Don’t care.

Read: Bit[9]=MSB, Bit[0]=LSB
Power-up default: Depends on SCID input configuration.

Table 181. Frame Acceptance Report Register (FAR) 7]

31 30 25 24 19 18 16 15 14 13 11 10 0
‘ SSD ‘ RESERVED ‘ CAC ‘ CSEC ‘RESERVED‘ SCl ‘ RESERVED
31 SSD (Status of Survey Data) (see [PSS-04-151])
Write: Don’t care.
Read: Automatically cleared to 0 when any other field is updated by the coding layer.
Automatically set to 1 upon a read.
30: 25 RESERVED
Write: Don’t care.
Read: All zero.
24: 19 CAC (Count of Accept Codeblocks) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer. 2!
18: 16 CSEC (Count of Single Error Corrections) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer.
15: 14 RESERVED
Write: Don’t care.
Read: All zero.
13: 11 SCI (Selected Channel Input) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer.
10: 0 RESERVED
Write: Don’t care.
Read: All zero.

Power-up default: 0x00003800

Table 182. CLCW Register (CLCWRx) (see [PSS-04-107])

31 30 29 28 26 25 24 23 18 17 16 15 14 13 12 1N 10 9 8 7 0
CWTY [VNUM | STAF | CIE | VCI  |RESERVED NRFA [ NBLO | LOUT | WAIT | RTMI | FBCO |RTYPE| RVAL
31 CWTY (Control Word Type)
30: 29 VNUM (CLCW Version Number)
28:26 STAF (Status Fields)
25:24 CIE (COP In Effect)
23:18 VCI (Virtual Channel Identifier)
17: 16 Reserved (PSS/ECSS requires “00)
15 NRFA (No RF Available)
Write: Don’t care.
Read: Based on discrete inputs.
14 NBLO (No Bit Lock)
Write: Don’t care.
Read: Based on discrete inputs.
13 LOUT (Lock Out)

12 WAIT (Wait)
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Table 182. CLCW Register (CLCWRXx) (see [PSS-04-107])

11 RTMI (Retransmit)

10: 9 FBCO (FARM-B Counter)
8 RTYPE (Report Type)

7: 0 RVAL (Report Value)

Power-up default: 0x00000000

Table 183. Physical Interface Register (PHIR) (7]

31 16 15 8 7 0
RESERVED RFA ‘ BLO
31: 16 RESERVED
Write: Don’t care.
Read: All zero.
15:8 RFA (RF Available) (3!
Only implemented inputs are taken into account. All other bits are zero.
Write: Don’t care.
Read: Bit[8] = input 0, Bit[15] = input 7
70 BLO (Bit Lock) [
Only implemented inputs are taken into account. All other bits are zero.
Write: Don’t care.
Read: Bit[0] = input 0, Bit[7] = input 7

Power-up default: Depends on inputs.

Table 184. Control Register (COR)

31 24 23 10 9 8 1 0
SEB ‘ RESERVED | CRST | RESERVED | RE |
31:24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).
Any other value= the write will have no effect on the register.
Read: All zero.
23: 10 RESERVED
Write: Don’t care.
Read: All zero.
9 CRST (Channel reset) (4]
Write: ‘1’= initiate channel reset,‘0’= do nothing
Read: ‘1’= unsuccessful reset, ‘0’= successful reset
8 1 RESERVED
Write: Don’t care.
Read: All zero.
0 RE (Receiver Enable)

The TCActive input of the receiver are masked when the RE bit is disabled.
Read/Write:  ‘0’= disabled, ‘1°= enabled
Power-up default: 0x00000000

Table 185. Status Register (STR) [7]
31 11 10 9 8 7 6 5 4 3 1 0

RESERVED \ RBF ‘RESERVED‘ RFF ‘F{ESERVED’ ov ‘RESEF{VED‘ CR \

31: 11 RESERVED



Table 185. Status Register (STR) []

Write: Don’t care.

Read: All zero.
10 RBF (RX BUFFER Full)

Write: Don’t care.

Read: ‘0’ = Buffer not full,

‘1’= Buffer full (this bit is set if the buffer has less then 1/8 of free space)

9: 8 RESERVED

Write: Don’t care.

Read: All zero.
7 RFF (RX FIFO Full)

Write: Don’t care.

Read: ‘0’ = FIFO not full, ‘1’ = FIFO full
6: 5 RESERVED

Write: Don’t care.

Read: All zero.
4 OV (Overrun) !

Write: Don’t care.

Read: ‘0’=nominal, ‘1°= data lost
31 RESERVED

Write: Don’t care.

Read: All zero.
0 CR (CLTU Ready) [5]
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There is a worst case delay from the CR bit being asserted, until the data has actually been trans-

ferred from the receiver FIFO to the ring buffer. This depends on the PCI load etc.
Write: Don’t care.
Read: ‘1’=new CLTU in ring buffer. ‘0’=no new CLTU in ring buffer.
Power-up default: 0x00000000

Table 186. Address Space Register (ASR) (8]

31 10 9 8 7 0
BUFST |RESERVED| RXLEN
31: 10 BUFST (Buffer Start Address)
22-bit address pointer
This pointer contains the start address of the allocated buffer space for this channel.
Register has to be initialized by software before DMA capability can be enabled.
9: 8 RESERVED
Write: Don’t care.
Read: All zero.
7: 0 RXLEN (RX buffer length)
Number of 1kB-blocks reserved for the RX buffer.
(Min.  1kByte = 0x00, Max. 256kByte = 0xFF)
Power-up default: 0x00000000
Table 187. Receive Read Pointer Register (RRP) 6] [91010]
31 24 23 0
RxRd Ptr Upper RxRd Ptr Lower
31: 24 10-bit upper address pointer

Write: Don’t care.
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Table 187. Receive Read Pointer Register (RRP) 6] [91010]
Read: This pointer = ASR[31..24].

23:0 24-bit lower address pointer.

This pointer contains the current RX read address. This register is to be incremented with the actual
amount of bytes read.

Power-up default: 0x00000000

Table 188. Receive Write Pointer Register (RWP) 161091

31 24 23 0
RxWr Ptr Upper RxWr Ptr Lower
31:24 10-bit upper address pointer
Write: Don’t care.
Read: This pointer = ASR[31..24].
23:0 24-bit lower address pointer.

This pointer contains the current RX write address. This register is incremented with the actual
amount of bytes written.

Power-up default: 0x00000000

Legend:
[1] The global system reset caused by the SRST-bit in the GRR-register results in the following actions:
- Initiated by writing a ‘17, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset core.
- Resets the complete core (all logic, buffers & register values)
- Behaviour is similar to a power-up. {Note that the above actions require that the HRESET signal is fed back
inverted to HRESETn, and the CRESET signal is fed back inverted to CRESETn}
[2] The FAR register supports the CCSDS/ECSS standard frame lengths (1024 octets), requiring an 8 bit CAC field
instead of the 6 bits specified for PSS. The two most significant bits of the CAC will thus spill over into
the "LEGAL/ILLEGAL" FRAME QUALIFIER field, Bit [26:25]. This is only the case when the PSS bit is set to '0".
[3] Only inputs 0 trough 2 are implemented in the TTM.
[4] The channel reset caused by the CRST-bit in the COR-register results in the following actions:
- Initiated by writing a ‘17, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.
- All other bit’s in the COR are neglected (not looked at) when the CRST-bit is set during a write, meaning that
the value of these bits has no impact on the register-value after the reset.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset channel.
- Resets the complete channel (all logic, buffers & register values)
- Except the ASR-register of that channel which remains it’s value.
- All read- and write-pointers are automatically re-initialized and point to the start of the ASR-address.
- All registers of the channel (except the ones described above) get their power-up value.
- This reset shall not cause any spurious interrupts.
{Note that the above actions require that the CRESET signal is fed back inverted to CRESETn}
[5] These bits are sticky bits which means that they remain present until the register is read and
that they are cleared automatically by reading the register.
[6] The value of the pointers depends on the content of the corresponding Address Space Register (ASR).

During a system reset, a channel reset or a change of the ASR register, the pointers are recalculated



153

based on the values in the ASR register.

The software has to take care (when programming the ASR register) that the pointers never have to cross a

16MByte boundary (because this would cause an overflow of the 24-bit pointers).

It is not possible to write an out of range value to the RRP register. Such access will be ignored with an HERROR.
[71 An AMBA AHB ERROR response is generated if a write access is attempted to a register without any writeable bits.
[8] The channel reset caused by a write to the ASR-register results in the following actions:

- Initiated by writing an updated value into the ASR-register.

- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.

- Could of course lead to data-corruption coming/going from/to the reset channel.

- Resets the complete channel (all logic & buffers) but not all register values, only the following:

- COR-register, TE & RE bits get their power-up value, other bits remain their value.

- STR-register, all bits get their power-up value

- Other registers remain their value

- Updates the ASR-register of that channel with the written value

- All read- and write-pointers are automatically re-initialized and point to the start of the ASR-address.

- This reset shall not cause any spurious interrupts
[91 During a channel reset the register is temporarily unavailable and HRETRY response is generated if accessed.
[10] It is not possible to write an out of range value to the RRP register. Such access will be ignored without an error.

[11] The PSS bit usage is only supported if the gPSS generic is set on the TCC module.

13.10.1 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

»  Set up the software interrupt-handler to accept an interrupt from the module.

»  Read the Pending Interrupt Register to clear any spurious interrupts.

» Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

*  When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

*  Handle the interrupt, taking into account all causes of the interrupt.

*  Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
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13.11

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask

Register, but without clearing the contents.

The interrupt registers comprise the following:

*  Pending Interrupt Masked Status Register [PIMSR] R
*  Pending Interrupt Masked Register [PIMR] R
*  Pending Interrupt Status Register [PISR] R
*  Pending Interrupt Register [PIR] R/W
*  Interrupt Mask Register [IMR] R/W
*  Pending Interrupt Clear Register [PICR] W
Table 189.Interrupt registers
31 7 6 5 4 3 2 1 0
- CS oV RBF CR FAR BLO RFA
6: CS CLTU stored
5: ov Input data overrun
4: RBF Output buffer full
3: CR CLTU ready/aborted
2: FAR FAR available
1: BLO Bit Lock changed
0: RFA RF Available Changed

All bits in all interrupt registers are reset to 0b after reset.

Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x031. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
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13.12 Configuration options

Table 190.Configuration options

155

Generic Function Description Allowed range | Default
GRLIB AMBA plug&play settings

hindex AHB slave index Integer 0

hirq AHB slave interrupt Integer 0
singleirq Single interrupt Enable interrupt registers Integer 0
inputmask Maskable input Integer 0
ioaddr 10 area address 0 - 16#FFF# 0
iomask IO area mask 0 - 16#FFF# 16#FFF#
syncrst synchronous reset 0-1 0
Features settings

gln Number of channels | Number of TC channels 1-8 3

gPSS PSS support enable | Enables PSS support 0-1 1
gTimeoutMask Time out mask Enables masking of input on time out 0-1 0
gTimeout Time out period 2"n clock periods 24
gRFAvailable Number of RF inputs | Minimum 1 1-8 3
gBitLock Number of TC inputs | Minimum 1 1-8

gDepth FIFO depth words (2°x) 4
Asynchronous bit serial interface settings (CLCW interface)

gSystemClock System frequency [Hz] Integer 33333333
gBaud Baud rate [Baud] Integer 115200
gOddParity Odd parity Odd parity generated, but not checked 0-1 0
gTwoStopBits Number of stop bits | 0=one stop bit, 1=two stop bits 0-1 0




13.13 Signal descriptions

Table 191 shows the interface signals of the core (VHDL ports).

Table 191.Signal descriptions

Signal name | Field Type Function Description Active
HRESETn N/A Input Reset Low
HCLK N/A Input Clock -
TCIN TCC_SCID Input Spacecraft Identity | 0 is MSB, 9 is LSB -
TCACTIVE Active Indicate that sub-carrier lock is -
achieved (or bit lock). Enable for
the clock and data.
TCCLK Bit clock Serve as the serial data input bit -
clocks.
TCDATA Data Serve as the serial data input. Data | -
are sampled on the TCCLK clock
edges when the corresponding
TCActive input is asserted.
TCC_HIGH Active high setting | 1=active high delimiter, O=active | -
low
TCC_RISE Rising clock edge | 1=rising, O=falling -
PSEUDO Pseudo-Deran- 1=enabled, 0=disabled -
domiser
MARK NRZ-M decoder 1=NRZ-M, 0=NRZ-L -
PSS PSS/ECSS mode 1=ESA PSS, 256 octet, fill bit aug- | -
ment
0=ECSS, 1024 octet, no fill bit
augment
RFAVAILPOS RF Available Active high=1 / low=0, used for -
polarity CLCW
BITLOCKPOS Bit Lock polarity | Active high=1/low=0, -
used for CLCW
CLCWRFAVAIL- RF Available Used for CLCW -
ABLE
CLCWBITLOCK Bit Lock Used for CLCW -
TCOUT CLCWIDATA Output CLCW Data Bit serial asynchronous data for -
CLCW 1 interface.
CLCW2DATA CLCW Data Bit serial asynchronous data for -
CLCW 2 interface.
AHBSIN * Input AMB slave input signals -
AHBSOUT | * Output AHB slave output signals -
HIRQ(hirg+6) Interrupts CLTU stored Location
HIRQ(hirg+5) (If singleirg=1 Input data overrun En HIRQ
us
HIRQ(hirg+4 only one common | &y ¢o¢ buffer full
X - ) interrupt will be P dépends on
HIRQ(hirg+3) generate using CLTU ready/aborted hirq -
HIRQ(hirq+2) hirq.) FAR available generic. I
hirg=0, no
HIRQ(hirg+1) Bit Lock changed interrupt
HIRQ(hirg+0) RF Available changed will be
generated.
AHBMIN * Input AMB master input signals -
AHBMOUT | * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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Table 192 shows libraries used when instantiating the core (VHDL libraries).

Table 192.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC Types Signals, component Signals and component declaration
Instantiation

This example shows how the core can be instantiated.

library IEEE;
use
library GRLIB;
use
library TMTC;
use

component GRTC is

GRLIB.AMBA.all;

TMTC.TMTC_Types.all;

IEEE.Std Logic_1164.all;

generic (
hmstndx: in Integer
hslvndx: in Integer
iocaddr: in Integer
iomask: in Integer
hirg: in Integer
syncrst: in Integer
gIn: in Integer range 1 to 8
gPSS: in Integer range 0 to 1
gTimeoutMask: in Integer range 0 to 1
gTimeout : in Integer
gSystemClock: in Natural := 333333333;
gBaud: in Natural := 115200;
gOddParity: in Natural := 0;
gTwoStopBits: in Natural := 0;
gRFAvailable: in Natural range 1 to 8
gBitLock: in Natural range 1 to 8
gDepth: in Natural := 4);

port (
-- AMBA AHB system signals
HCLK: in Std_ULogic;
HRESETn: in Std_ULogic;
-- AMBA AHB slave Interface
AHBSIn: in AHB_Slv_In Type;
AHBSOut : out AHB_Slv_Out_Type;

-- AMBA AHB master Interface

AHBMIn:
AHBMOut :

-- Telecommand

TCIn:
TCOut :

in AHB Mst In Type;
out AHB_Mst_Out_Type;
interfaces

in GRTC_In_ Type;

out GRTC_Out_Type) ;

end component GRTC;

0;

0;

0;

16#EELH;

0;

0; synchronous reset
3; number of inputs
0; enable PSS support
0; timeout mask
24; timeout 2”*n

Hz

Baud rate setting

0dd parity

Stop bit selection
3; No. of RF inputs

No. of BL inputs
words (27x)

System clock
Synchronised reset

AHB
AHB

slave input
slave output

AHB
AHB

master input
master output
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14

14.1

14.2

GRTIMER - General Purpose Timer Unit

Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). Number of
timers is configurable through the ntimers VHDL generic in the range 1 to 7. Prescaler width is con-
figured through the sbits VHDL generic. Timer width is configured through the #bits VHDL generic.
The timer unit acts a slave on AMBA APB bus. The unit implements one 16 bit prescaler and 3 decre-
menting 32 bit timer(s). The unit is capable of asserting interrupt on timer(s) underflow. Interrupt is
configurable to be common for the whole unit or separate for each timer.

timer 1 reload

timer 2 reload

prescaler reload timer n reload

timer 1 value —— pirq

prescaler value

timer 2 value [——— pirg+1

tick

»| timernvalue ——» pirg+2

Figure 28. General Purpose Timer Unit block diagram

Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated. Timers
share the decrementer to save area.

The operation of each timers is controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable
bit.

The timer unit can be configured to generate common interrupt through a VHDL generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. If configured
to signal interrupt for each timer the timer unit will signal an interrupt on appropriate line when a
timer underflows (if the interrupt enable bit for the current timer is set). The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing “0’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the number of
implemented timers.

By setting the chain bit in the control register timer 7 can be chained with preceding timer n-1. Decre-
menting timer # will start when timer #-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register.

Each timers can to latch its value to dedicated registers on an event detected on the AMBA APB side-
band interrupt bus signal. A dedicated mask register is provided to filter the interrupts.
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Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on number of implemented timers.

Table 193.GRTIMER unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Timer latch configuration register
0x10 Timer 1 counter value register
0x14 Timer 1 reload value register
0x18 Timer 1 control register

0x1C Timer 1 latch register

0xn0 Timer n counter value register
0xn4 Timer n reload value register
0xn8 Timer n control register

0xnC Timer n latch register

Figures 29 to 34 shows the layout of the timer unit registers.

31 sbits sbits-1 0
“000...0” SCALER Value

Figure 29. Scaler value

31 sbits sbits-1 0
“000...0” SCALER Reload Value

Figure 30. Scaler reload value

. 1 109 8§ 7 3 2 0
“000...0” | EL| EE|DF| sI | IRQ ‘ TIMERS ‘

Figure 31. GRTIMER Configuration register

[31:12] - Reserved.
[11] Enable latching (EL). If set, on the next matching interrupt, the latches will be loaded with the corresponding timer
values. The bit is then automatically cleared, not to load a timer value until set again.

[10] Enable external clock source (EE). If set the prescaler is clocked from the external clock source.

[9] Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT freezes the timer
unit.

[8] Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, otherwise ‘0’. Read-
only.

[7:3] APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ, otherwise timer

nwill drive APB Interrupt IRQ+# (has to be less the MAXIRQ). Read-only.
[2:0] Number of implemented timers. Read-only.
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31 nbits nbits-1 0
“000...0” TIMER COUNTER VALUE

Figure 32. Timer counter value registers

[31:nbits] Reserved. Always reads as ‘000...0°
[nbits-1:0] Timer Counter value. Decremented by 1 for each prescaler tick.

31 nbits nbits-1 0
“000...0” TIMER RELOAD VALUE

Figure 33. Timer reload value registers

[31:nbits] Reserved. Always reads as ‘000...0°
[nbits-1:0] Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to load bit in the
timers control register.

31 7 6 5 4 3 2 1 0
“000...0” ‘DH‘ CH‘ P ‘IE ]LD] RS ‘ EN‘

Figure 34. Timer control registers

[31:7]  Reserved. Always reads as ‘000...0°

[6] Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a system is in debug
mode). Read-only.

[5] Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when timer (n-1)
underflows.

[4] Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1’ until cleared by writing ‘0’ to this bit.

[3] Interrupt Enable (IE): If set the timer signals interrupt when it underflows.

[2] Load (LD): Load value from the timer reload register to the timer counter value register.

[1] Restart (RS): If set the value from the timer reload register is loaded to the timer counter value register and
decrementing the timer is restarted.

[0] Enable (EN): Enable the timer.

31 0
SELECT

Figure 35. Timer latch configuration register

[31:0] Specifies what bits of the AMBA APB interrupt bus shall cause the Timer Latch Register to latch the timer values.

31 nbits nbits-1 0
“000...0” LTCV

Figure 36. Timer latch register

[31:nbits] Reserved. Always reads as ‘000...0°
[nbits-1:0] Latched Timer Counter Value (LTCV). Value latch from corresponding timer.
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The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x038. For descrip-

Vendor and device identifiers

tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

14.5

Configuration options

Table 194 shows the configuration options of the core (VHDL generics).

Table 194.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used to | 0 to NAPBMAX-1 0
access the timer unit
paddr The 12-bit MSB APB address 0 to 4095 0
pmask The APB address mask 0 to 4095 4095
nbits Defines the number of bits in the timers 1to 32 32
ntimers Defines the number of timers in the unit 1to7 1
pirq Defines which APB interrupt the timers will generate 0 to MAXIRQ-1
sepirq If set to 1, each timer will drive an individual interrupt 0 to MAXIRQ-1
lin.e, starting wi'th interrupt irq. If set to 0, all timers will (Note: ntimers + irg must
drive the same interrupt line (irg). be less than MAXIRQ)
sbits Defines the number of bits in the scaler 1to 32 16
wdog Watchdog reset value. When set to a non-zero value, the | ¢ o 27its _ | 0
last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.
glatch Enable timer latch Oto1l
gextclk Enable external timer clock input Oto1l
14.6  Signal descriptions
Table 195 shows the interface signals of the core (VHDL ports).
Table 195.Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPTI DHALT Input Freeze timers High
EXTCLK Input Use as alternative clock -
GPTO TICK[1:7] Output Timer ticks High
WDOG Output Watchdog output. Equivalent to interrupt pend- | High
ing bit of last timer.
WDOGN Output Watchdog output Equivalent to interrupt pending | Low
bit of last timer.

* see GRLIB IP Library User’s Manual
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14.7

14.8

Library dependencies

Table 196 shows the libraries used when instantiating the core (VHDL libraries)

Table 196.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals Signal definitions

TMTC TMTC_Types Component Component declaration
Instantiation

This example shows how the core can be instantiated.

TBD
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GRVERSION - Version and Revision information register

Overview

The GRVERSION provides a register containing a 16 bit version field and a 16 bit revision field. The
values for the two fields are taken from two corresponding VHDL generics. The register is available
via the AMBA APB bus.

Registers

The core is programmed through registers mapped into APB address space.

Table 197. GRVERSION registers

APB address offset Register
16#000# Configuration Register

15.2.1 Configuration Register (R)

Table 198.Configuration Register

31 16 15 0
VERSION REVISION

31-16:  VERSION Version number
15-0:  REVISIONRevision number

Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x03A. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options

Table 199 shows the configuration options of the core (VHDL generics).

Table 199.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
versionnr Version number 0-2716-1 0
revisionnr Revision number 0-2716-1 0
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15.5 Signal descriptions

15.6

15.7

Table 200 shows the interface signals of the core (VHDL ports).

Table 200.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

Library dependencies

Table 201 shows the libraries used when instantiating the core (VHDL libraries).

Table 201.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

TMTC TMTC_Types Component GRVERSION component declaration
Instantiation

This example shows how the core can be instantiated.

TBD
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