«® Creative Systems
Engineering

Creative Systems
Engineering

PWR ERR LINK DATAWLANUSB SD

e g
N NN NN N LN NN

Develop'ment Platform

User Manual
Rev 2.0

<@ Creative Systems
Engineering

AMRG User Manual Page 2/ 26 August 2013

@ Creative Systems
Engineering

Table Of Contents

Paragraph Page
L I O 1516 O 1 [] I 5
SYSTEM OVERVIEW.o 5
2.1 Hardware OVEIVIEW.........uuuuuiiiieeeiieiiiiiiiea e e ettt e e e e e e e ee et e e e e e e e eeeesannn s 5

P22 I I (0Tl Qo [= o | > o R 5
2.1.2Board DESCHPLONcceiiiiiiiiiiiiiieieeeeee e 6
2. 1.3 EQUIPMENT OVEIVIEW ...uuuiiiieeeieeiiiiii e e e e e e et e e e e e e e e e e e e e e e e e enaaan s 7
2.1 4 Add-0N DOAIASo 8
FZ ST 1811] 01 PP 9

3 N L D 0 = V1= 10

4 DEVELOPMENT ENVIRONMENT AND TOOLCHAINcuuutiiiiiiiiiiiiiiiiiiiinniinainnnns 10
o R o o [od F= L 0LV Y1 PR 10
4.2 Firmware Compilationoooiuiiiiiiiiii e 10

o Y [Yo [1T = 4[] I 10
4.3 FIrSTDOOL....coiiiiiiiiiie 12
2 R ST Tolo] [o I o T T | AU 13
I I Y B Y/ =TT [T o T o | PP 13
4.6 USB and NAND SUPPOIT...cciiiiiiiiiiiiiiiiiiieeeeeeeeee ettt 13
AN - (V7= BT U] o] o Lo] T 13
4.8 Available Software (links to OpPenWIt).........ccovvviiiiiiiiiiiiiiiiiieeeeeeeee 16
4.9 Creating PACKAGESuuiii e e et e et e e e e e e e e e 16
4.10 BuildPackage variables.............cooiiiiiiiiiiiiiiiii e 17
4.11 BuildPackage defiNeS........ccoooiiiiiiiiiiii e 18
4.12 DePENENCY TYPES ..coiiiiiiiiiiiiiiiieie ittt ettt e e e eeeees 19
4.13 Adding configuration OPLIONSciiiiiiiiiiiece e e 20
4.14 Creating packages for kernel modules.............cccccvvviiiiiiiiiiiiiiiiiiiiiieeeeeee 22
N R o= 1ol = Vo [o = ST =T (o = RSP 25

List of Tables

Table Page

Table 1: AMRG DOOt MOUE JUMPETScoeiieieeeeee e 9

Table 2: LED Management ValUEScoooeiiiiiiiieee e 13

AMRG User

Manual Page 3/ 26 August 2013

<@ Creative Systems
Engineering

List of Figures

Figure Page
Figure 1 AMRG DIOCK QIaQIramceeviiiiiiiiiiiiiiiiiiiee ettt 5
Figure 2: AMRG BOArd TOP VIEWuiiie et e et s e e ettt e e e e e e e e ettt s s e e e e e e eanaanaeaeeaes 6
T T8I T T | ARV =Y S PSS 7
FIQUIE 4: REAI VIBW ...ceiiiii i e ettt e e e e e e ettt e e e e e e e e e ettt e e e e e e e e e aes b b e s e eeaeeessseannaaaeaaes 7
Figure 5: Side view With RS-232 CONNECION.........oiiiiiiiiiiiiiiiiiiieiieeeeeeee ettt 8
Figure 6: ADSL Front End Add-On DOArd............cooiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 8
Figure 7: ADSL MOAUIE CONNECIOIS.ccciiiiiiiiiee e e e e et e e e e e e e e araa e e aeeaes 8
Figure 8: WiFi card in the MiNIPCl CONNECIONccciiiiiiiiiii e 9
Figure 9: Boot mode jumpers placed for UART DOOLooiiiiiiiiiiiicie e 9

AMRG User Manual Page 4/ 26 August 2013

@ Creative Systems
Engineering

1 INTRODUCTION

CSE’s AMRG is an integrated gateway development platform, featuring ADSL2/2+ interface, five
Ethernet ports, USB 2.0 port and WiFi module.
This document presents the features and procedures that allow the AMRG to be used for
applications development.

2 SYSTEM OVERVIEW

2.1 HARDWARE OVERVIEW

2.1.1 Block diagram

Ub Mosty

4+ 1-Port R)-45 Connector Device ADSL Port
PJ-G*J—‘#Ji*J—Q*U%% use
+5V
ADM69961 ADSL2+CPE LIF PoviscModile +3.3V
S-Port Switch Module 12VOC/IN +3.3v-1
L Uss 2.0 WAN
ALM UART
—) Aam UART Canzol
Danube
EJTAG Clock 36MHz Crystal
pa Mini-PCI Socket
PCI/EBU
DDR SDRAM SDRAM PCI/EBY ciiy
NOR Flash
NAND Flash
sPl
SP1 Flash & sp1 |
EEPROM AT25040 M
|, PCM MII_1 Ethemet
e EE
UART
l SD Card]I(SDIO I l GPIO I | LED I
GPIO
N
Shift Register
Led Module :[
[0O0O0000000000]
Figure 1 AMRG block diagram
AMRG User Manual Page 5/ 26 August 2013

Creative Systems
9 Engineering

2.1.2 Board Description

e :; VI%i fepbe

UL/

(9 | 5 6 S |) T

Figure 2: AMRG Board Top view

Danube ADSL2+ controller IC

DDR SDRAM

a. NOR Flash, b. NAND Flash

Samurai Ethernet controller IC
Gateway Ethernet ports

Peripheral USB Host port

Peripheral SD card slot

a. UART transceiver (2V1) or UART to USB converter, b. UART console connector (2V2)
Mini PCI extension

10.Reset button

11.Power jack and On/Off button
12.12VDC power in and hold-up capacitors

© © N o g A~ w NP

13.5V_A linear regulator and choke
14.3.3V_BT switching regulator and choke

AMRG User Manual Page 6/ 26 August 2013

<@ Creative Systems
Engineering

15.3.3V switching regulator and choke

16.USB 5V_IN switching regulator and choke

17.Danube 1.5V transistor based regulator

18.Danube and DDR SDRAM 2.5V transistor based regulator
19.Control signals Shift registers

20.Front panel LEDs

21.ADSL Hybrid circuit add-on board connectors - Change

2.1.3 Equipment Overview

Creative Systems
Engineering

Figure 3: Front view
Power LED
Error LED
ADSL Link LED
LAN Data LED
Wireless LAN LED
USB LED
SD card LED (optional)
User defined LEDs

Reset button

© ©® N o g~ DR

PORT4

PORTS

-

-

oviN PORT1 PORT2 PORT3
ON OFF , /g
HINE ?ﬁ _m_/ _m_/ Lﬂm

®

Figure 4: Rear view
ADSL line connector
On/Off button

Power input

A w D P

Ethernet connectors

AMRG User Manual Page 7/ 26

August 2013

<@ Creative Systems
Engineering

5. USB host connector

Figure 5: Side view with RS-232 connector

2.1.4 Add-on boards
2.1.4.1 ADSL Front End

Figure 6: ADSL Front End Add-On board

The ADSL Front End circuits of the AMRG 2V0 are provided as an add-on module that is attached
to the main board with two SMD connectors

Figure 7: ADSL module connectors

AMRG User Manual Page 8/ 26 August 2013

<@ Creative Systems
Engineering

2.1.4.2 WiFi board

The AMRG 2V0 is provided with a Winstron CM9 miniPCI WiFi card featuring the Atheros chipset.
The miniPCI connector can be used to host a variety of WiFi cards, according to the user’s needs.

Figure 8: WiFi card in the miniPCI connector

2.1.5 Jumpers

The AMRG 2V0 main board provides the capability to alter the boot mode of the processor via two
dedicated jumpers (BS1 and BS2):

Figure 9: Boot mode jumpers placed for UART boot

The available options are:

Position Boot function
BS1 and BS2 placed as in Figure 9 Boot from UART
BS1 and BS2 removed Boot from Flash

Table 1: AMRG boot mode jumpers

AMRG User Manual Page 9/ 26 August 2013

@ Creative Systems
Engineering

3 LINUX KERNEL

The device comes with kernel Version 2.6.30

4 DEVELOPMENT ENVIRONMENT AND TOOLCHAIN

4.1 TOOLCHAIN OVERVIEW

AMRG is based on the Lantiq Danube PSB50702 V1.3 processor. The networking processor
implemented in Danube is a MIPS24KeC core.

The Ethernet controller is Lantig Samurai ADM6996I.

The toolchain that is used for compiling and building the firmware consists of the following
packages:

GCC4.3.3
Binutils 2.19.1
uClibc 0.9.30.1
e Linux Kernel 2.6.30.10
The bootloader of the board is based on u-boot-2009.11.
The CPU is Big Endian.

4.2 FIRMWARE COMPILATION

The full image (bootloader, kernel and applications) deployed on AMRG is built by use of the
OpenWRT development environment (https://openwrt.org) since the hardware configuration of the
board is supported by the distribution. This eases the building and installation of the toolchain as
well as the configuration of the operating system of the board.

The complete SW package as used in the AMRG 2V0 is available from support@creativese.eu
The version of the OpenWRT distribution that has been used is Backfire (10.03.1-RC5, r27450).

In the sequel, the setup and build instructions along with any modifications that were performed
will be presented.

The environment of OpenWRT is available via svn:
svn checkout svn://svn.openwrt.org/openwrt/branches/backfire -r 27450
Initial configuration:
make menuconfig
and select:
Target System (Infineon Mips)
Target Profile (Atheros WiFi (default))
Boot loaders --> U-boot Lantiq --> Enable RAM boot image
execute make to have the toolchain compiled.

4.2.1 Modifications

Once the toolchain has been compiled the sources for the kenrel and applications have been
downloaded as well. Navigate to backfire/package/uboot-lantiq folder, and replace in file
backfire/package/uboot-lantig/patches/100-ifx_targets.patch:

AMRG User Manual Page 10/ 26 August 2013

https://openwrt.org/
mailto:support@creativese.eu

@ Creative Systems
Engineering

DDR=$(subst DDR,,$(filter DDR%,$(subst _, ,$@))); \}
with
DDR=111M;\

In file backfire/package/uboot-lantig/files/include/configs/ifx-common.h (line 61) the environment
variables of u-boot should be reefined as follows:

#define CONFIG_EXTRA_ENV_SETTINGS \
"bootcmd=run flash_flash\0"\
"bootdelay=5\0"\
"baudrate=115200\0"\
"loads_echo \0"\
"preboot=echo;echo Type \"run flash_nfs\" to mount root filesystem over NFS;echo\0"\
"ram_addr=0x80500000\0"\
"kernel_addr=0xb0050000\0"\
"mtdparts=mtdparts=ifx-nor:256k(uboot)ro,64k(uboot_env)ro,64k(kernel),-(rootfs)\0"\
"flashargs=setenv bootargs rootfstype=squashfs,jffs2\0"\
"nfsargs=setenv bootargs root=/dev/nfs rw nfsroot=${serverip}.${rootpath} \0"\

"addip=setenv bootargs ${bootargs}
ip=${ipaddr}.${serverip}:${gatewayip}:${netmask}.${hostname}:${netdev}:off\0"\
"addmisc=setenv bootargs ${bootargs} init=/etc/preinit console=ttyS1,115200
ethaddr=%${ethaddr} ${mtdparts)\0"\

"flash_flash=run flashargs addip addmisc;bootm ${kernel_addr}\0"\
"flash_nfs=run nfsargs addip addmisc;bootm ${kernel_addr}\0"\
"net_flash=run load_kernel flashargs addip addmisc;bootm ${ram_addr}\0"\
"net_nfs="run load_kernel nfsargs addip addmisc;bootm ${ram_addr}\0"\
"load_kernel=tftp ${ram_addr} ${tftppath}openwrt-ifxmips-ulmage\0"\

"update_uboot=tftp 0x80500000 ${tftppath}u-boot.bin;era 0xb0O000000 +${filesize};cp.b
0x80500000 0xb0000000 ${filesize\0"\

"update_openwrt=tftp ${ram_addr} ${tftppath}openwrt-ifxmips-squashfs.image;era
${kernel_addr} +${filesize};cp.b ${ram_addr} ${kernel_addr} ${filesize}\0"\

"ethact=Ig_cpe_eth\0"\
"ethaddr=X:X:X:X:X:X\0"\
"rootpath=/opt/export/fs\0"\
"filesize=30000\0"\
"fileaddr=80500000\0"\
"ipaddr=X.X.X.X\0"\
"serverip=X.X.X.X\0"\
"stdin=serial\0"\
"stdout=serial\0"\
"stderr=serial\0"}

Pay attention so that proper values for ethaddr, ipaddr, serverip are assigned.

In file build_dir/linux-ifxmips/linux-2.6.30.10/drivers/net/phy/adm6996.c, in the init function prefer
the following settings:

[* initialize port and vlan settings */
w16(pdev, adm_portcfg[0], 0x840F);
w16(pdev, adm_portcfg[1], 0x840F);

AMRG User Manual Page 11/ 26 August 2013

@ Creative Systems
Engineering

w16(pdev, adm_portcfg[2], 0x840F);
w16(pdev, adm_portcfg[3], 0x840F);
w16(pdev, adm_portcfg[4], 0x840F);
w16(pdev, adm_portcfg[5], 0x840F);
w16(pdev, adm_portcfg[5]+8, OXFF00);
instead of:
for (i=0; i< ADM_PHY_PORTS; i++) {
w16(pdev, adm_portcfg[i], ADM_PORTCFG_INIT |
ADM_PORTCFG_PVID((i == ADM_WAN_PORT) ? 1: 0));
}
w16(pdev, adm_portcfg[5], ADM_PORTCFG_CPU);

}

In file backfire/build_dir/linux-ifxmips/linux-2.6.30.10/drivers/mtd/chips/cfi_cmdset _0002.c apply
the following modification as indicated by the following diff output.

1367c1367

< int z, words;

> int z, words, y
1405,1406¢1405,1410

<

< map_write(map, datum, adr + z);
> #ifdef CONFIG_IFXMIPS

>y = adr+z,

>yh=2;

> #endif

> map_write(map, datum, y);

> //map_write(map, datum, adr + 2);

4.3 FIRST BOOT

Select UART Boot as indicated by the jumper settings in Figure 9.

e Connect the USB-to-serial cable on the 9-pin connector

o Open (gtkterm, cutecom) /dev/ttyUSBO at 115200-8n1 from Linux Host

e Power-up

e Send as raw file the ram bootloader located at
backfire/bin/ifxmips/uboot-lantig/easy50712_DDR166M/u-boot.asc

e Install a tftp server on a Linux host and make available the file
backfire/bin/ifxmips/uboot-lantig/easy50712_DDR166M/u-boot.bin

e From the u-boot environment execute (assuming that IP addresses for both linux host and
board are properly set)

e protect off all
e run update_uboot

AMRG User Manual Page 12/ 26 August 2013

@ Creative Systems
Engineering

4.4 SECOND BOOT

Select flash-boot by removing the jumpers BS1 and BS2
o Power-up
e Press enter to interrupt boot process enter the u-boot environment
¢ Make available via tftp the file located at bin/ifxmips/openwrt-ifxmips-squashfs.image
e Execute: run update-openwrt
e Once the process complete execute: boot

4.5 LED MANAGEMENT

LEDs can be set on and off in Kernel mode by use of the functions exposed in:

#include <asm/mach-ifxmips/ifxmips_led.h>

void ifxmips_led_set(unsigned int led);
void ifxmips_led_clear(unsigned int led);

The argument in this functions is a 2 bytes value.

The following table indicates the values that can be safely used in the above functions and the
labels of the associated LEDs.

Value LED Label
0x0001 4
0x0002 SD
0x0004 USB
0x0008 3
0x1000
0x2000
0x4000 ERR
0x8000 WLAN

Table 2: LED management values

The remaining LEDs (PWR, LINK, DATA) are already managed by the aDSL firmware and the
power circuit and therefore it is advised that no intervention is attempted.

4.6 USB AND NAND SuPPORT
USB and NAND drivers can be provided by CSE upon request.

4.7 JAVA SUPPORT

A version of PhoneME Java can be built and used on AMRG. The source is available via svn
(account can be created at http://java.net/projects/phoneme):

AMRG User Manual Page 13/ 26 August 2013

@ Creative Systems
Engineering

svn co https://svn.java.net/svn/phoneme~svn/components/cdc/trunk cdc
svn co https://svn.java.net/svn/phoneme~svn/components/tools/trunk tools

create a script (build.sh) containing in the parent folder of the cdc and tools replacing the path
prefix according to the toolchain location:

#!/bin/sh

make -C cdc/build/linux-mips-openwrt/ -f GNUmakefile \
J2ME_CLASSLIB=foundation \

CVM_JIT=true \

CVM_OPTIMIZED=true \

CVM_PRELOAD_LIB=true\
CVM_BUILD_SUBDIR_NAME=cdc-fp \
JDK_HOME={path to your java installation} \

CVM_TARGET_TOOLS_PREFIX={path-to-}/backfire/staging_dir/toolchain-mips_r2_gcc-
4.3.3+cs_uClibc-0.9.30.1/usr/bin/mips-openwrt-lin

Apply the following changes to file cdc/linux/javavm/runtime/globals_md.c

--- src/linux/javavm/runtime/globals_md.c (revision 20547)
+++ src/linux/javavm/runtime/globals_md.c (working copy)
@@ -185,11 +185,16 @@
linuxNetlnit();
- sigignore(SIGPIPE);
+// sigignore(SIGPIPE);
+ struct sigaction ignore_action;
+ ignore_action.sa_handler = SIG_IGN;
+ ignore_action.sa_flags = SA_RESTART,;
+ sigaction(SIGPIPE, &ignore_action, NULL);
#ifdef _ VFP_FP__
/* TODO: Needed for armboard5. Should be moved to ARM specific code. */
- sigignore(SIGFPE);
+ //sigignore(SIGFPE);
+ sigaction(SIGFPE, &ignore_action, NULL);
#endif
{
Execute the build.sh script in the same folder.
Create a folder under backfire/packages (in the OpenWRT dev folder):
mkdir backfire/package/phoneme
create the following folder/files tree in backfire/packages/phoneme
o backfire/package/phonemeffiles/usr
o backfire/package/phonemeffiles/usr/java
o backfire/package/phonemeffiles/usr/java/cdc
o backfire/package/phonemeffiles/usr/java/cdc/testclasses.zip
o backfire/package/phonemeffiles/usr/java/cdc/democlasses.jar
¢ backfire/package/phonemeffiles/usr/java/cdc/bin
o backfire/package/phonemeffiles/usr/java/cdc/bin/cvm

AMRG User Manual Page 14/ 26 August 2013

@ Creative Systems
Engineering

o backfire/package/phonemeffiles/usr/java/cdc/lib
from the files located at the output folder of the phoneME compilation:
cdc/build/linux-mips-openwrt/cdc-fp
Create a Makefile in backfire/packages/phoneme containing:
#
Copyright (C) 2006-2010 OpenWrt.org
#
This is free software, licensed under the GNU General Public License v2.
See /LICENSE for more information.
#
include $(TOPDIR)/rules.mk
PKG_NAME:=phoneme
PKG_VERSION:=1.1.2
PKG_RELEASE:=4
#PKG_BUILD_DIR:=$(BUILD_DIR)/$(PKG_NAME)
include $(INCLUDE_DIR)/package.mk
define Package/phoneme
SUBMENU:=Java
SECTION:=lang
CATEGORY:=Languages
TITLE:=A compact Java Virtual Machine
DEPENDS:=+libpthread
endef
define Package/phoneME/description
phoneME is an open source project based on Java Micro Edition (Java ME) \
technology. phoneME Advanced is a phoneME project based on Java ME CDC \
technology targeting resource-constrained devices like smartphones, \
set-top boxes and office equipment. See https://phoneme.dev.java.net \
and http://java.sun.com/products/cdc
endef
define Build/Compile
endef
define Package/phoneme/install
$(INSTALL_DIR) $(1)/usr/java/cdc
$(CP) files/usr/java/cdc $(1)/usr/java
endef
$(eval $(call BuildPackage,phoneme))

In this way the pre-built phoneME can be selected from menuconfig so that it can be included

in the next image. Otherwise an ipk package can be created by executing: make

package/phoneme/install, that will result in a file
bin/ifxmips/packages/phoneme_1.1.2-4_ifxmips.ipk

that can be uploaded and installed independently on the board by the opkg manager.

However, since the JVM is a relatively large file, it is suggested that the NAND flash is used for

storing the JVM executable (cvm).

AMRG User Manual Page 15/ 26 August 2013

@ Creative Systems
Engineering

4.8 AVAILABLE SOFTWARE (LINKS TO OPENWRT)

The operating system and the applications on the MRG can be configured via the make
menuconfig console of the OpenWRT environment. There is a default configuration containing a
wide range of the usual Linux utilities, tools and libraries. Additional packages can be selected to
be built as part of an upgrade image or independently and the packages to be installed via the
opkg manager.

Moreover, custom software can be compiled and prepared for distribution and installation via the
package cross compilation option of the OpenWRT environment:

http://wiki.openwrt.org/doc/packages).

4.9 CREATING PACKAGES

A typical package directory contains two things:
e package/Makefile
e package/patches

The patches directory is optional and typically contains bug fixes or optimizations to reduce the
size of the executable.

The package makefile is the important item because it provides the steps actually needed to
download and compile the package.

Here for example, is package/bridge/Makefile:
include $(TOPDIR)/rules.mk

PKG_NAME:=bridge
PKG_VERSION:=1.0.6
PKG_RELEASE:=1

PKG_BUILD_DIR:=$(BUILD_DIR)/bridge-utils-$(PKG_VERSION)
PKG_SOURCE:=bridge-utils-$(PKG_VERSION).tar.gz
PKG_SOURCE_URL:=@SF/bridge
PKG_MD5SUM:=9b7dc52656f5cbec846a7ba3299f73bd
PKG_CAT:=zcat

include $(INCLUDE_DIR)/package.mk

define Package/bridge
SECTION:=base
CATEGORY:=Network
DEFAULT:=y
TITLE:=Ethernet bridging configuration utility

#DESCRIPTION:=This variable is obsolete. use the Package/name/description define
instead!

URL:=http://bridge.sourceforge.net/
endef

AMRG User Manual Page 16 / 26 August 2013

@ Creative Systems
Engineering

define Package/bridge/description

Ethernet bridging configuration utility

Manage ethernet bridging; a way to connect networks together to
form a larger network.

endef

define Build/Configure
$(call Build/Configure/Default,--with-linux-headers=$(LINUX_DIR))
endef

define Package/bridge/install

$(INSTALL_DIR) $(1)/usr/sbin

$(INSTALL_BIN) $(PKG_BUILD_DIR)/brctl/brctl $(1)/usr/sbin/
endef

$(eval $(call BuildPackage,bridge))

4.10 BUILDPACKAGE VARIABLES

¢ PKG_NAME - The name of the package, as seen via menuconfig and ipkg
o PKG_VERSION - The upstream version number that we're downloading

o PKG_RELEASE - The version of this package Makefile

e PKG_BUILD_DIR - Where to compile the package

e PKG_SOURCE - The filename of the original sources

o PKG_SOURCE_URL - Where to download the sources from

¢ PKG_MD5SUM - A checksum to validate the download

e PKG_CAT - How to decompress the sources (zcat, bzcat, unzip)

o PKG_BUILD_DEPENDS - Packages that need to be built before this package, but are not
required at runtime. Uses the same syntax as DEPENDS below.

e PKG_INSTALL - Setting it to "1" will call the package's original "make install" with prefix set
to PKG_INSTALL_DIR

o PKG_INSTALL_DIR - Where "make install" copies the compiled files

The PKG_* variables define where to download the package from; @SF is a special keyword for
downloading packages from sourceforge. The md5sum is used to verify the package was
downloaded correctly and PKG_BUILD_DIR defines where to find the package after the sources
are uncompressed into $(BUILD_DIR). PKG_INSTALL_DIR defines where the files will be copied
after calling "make install" (set with the PKG_INSTALL variable).

"BuildPackage" is a macro setup by the earlier include statements. BuildPackage only takes one
argument directly — the name of the package to be built, in this case "bridge". All other information
is taken from the define blocks. This is a way of providing a level of verbosity, it's inherently clear
what the DESCRIPTION variable in Package/bridge is, which wouldn't be the case if we passed
this information directly as the Nth argument to BuildPackage.

AMRG User Manual Page 17 / 26 August 2013

@ Creative Systems
Engineering

4.11 BUILDPACKAGE DEFINES

Package/

matches the argument passed to buildroot, this describes the package the menuconfig and ipkg
entries. Within Package/ one can define the following variables:

e SECTION - The type of package (currently unused)

e CATEGORY - Which menu it appears in menuconfig

e TITLE - A short description of the package

e DESCRIPTION - (deprecated) A long description of the package
e URL - Where to find the original software

e MAINTAINER - (optional) Who to contact concerning the package

o DEPENDS - (optional) Which packages must be built/installed before this package. See “es
Dependency Types” below for the syntax.

Package/conffiles (optional)
A list of config files installed by this package, one file per line.

Package/description
A free text description of the package

Build/Prepare (optional)
A set of commands to unpack and patch the sources. You may safely leave this undefined.

Build/Configure (optional)

You can leave this undefined if the source doesn't use configure or has a normal config script,
otherwise you can put your own commands here or use "$(call Build/Configure/Default,)" as
above to pass in additional arguments for a standard configure script.

Build/Compile (optional)
How to compile the source; in most cases you should leave this undefined.
Package/install

A set of commands to copy files out of the compiled source and into the ipkg which is represented
by the $(1) directory.

Package/preinst

The actual text of the script which is to be executed before installation. Don’t forget to include the
#!/bin/sh. If you need to abort installation have the script return false.

Package/postinst

The actual text of the script which is to be executed after installation. Don’t forget to include the
#!/bin/sh.

Package/prerm

The actual text of the script which is to be executed before removal. Don’t forget to include the
#l/bin/sh. If you need to abort removal have the script return false.

AMRG User Manual Page 18/ 26 August 2013

@ Creative Systems
Engineering

Package/postrm
The actual text of the script which is to be executed after removal. Don’t forget to include the

#!/bin/sh.

4.12 DEPENDENCY TYPES

Various types of dependencies can be specified, which require a bit of explanation for their

differences.

Type Description

+<foo> Package will depend on package <foo> and will select it when selected.

<foo> Package will depend on package <foo> and will be invisible until <foo> is
selected.

@FOO Package depends on the config symbol CONFIG_FOO and will be invisible
unless CONFIG_FOO is set. This usually used for depending on certain Linux
versions or targets, e.g. @TARGET _foo will make a package only available for
target foo. You can also use boolean expressions for complex dependencies, e.g.
@('TARGET_foo&&!TARGET _bar) will make the package unavailable for foo and
bar.

+FOO:<bar> | Package will depend on <bar> if CONFIG_FOO is set, and will select <bar> when
it is selected itself. The typical use case would be if there compile time options for
this package toggling features that depend on external libraries. Note that the +
replaces the @.

@FOO:<bar> | Package will depend on <bar> if CONFIG_FOO is set, and will be invisible until

<bar> is selected when CONFIG_FOO is set.

Some typical config symbols for (conditional) dependencies are:

Symbol Description
TARGET_<foo> Target <foo> is selected
TARGET_<foo>_<bar> If the target <foo> has subtargets, subtarget <foo> is selected. If

not, profile <foo> is selected. This is in addition to
TARGET_<foo>

TARGET_<foo>_<bar>_<baz> | Target <foo> with subtarget <bar> and profile <baz> is selected.

LINUX_3 X Linux version used is 3.x

LINUX 2 6 X Linux version used is 2.6.x.* (:1: only used for backfire and
earlier)

LINUX 2 4 Linux version is 2.4 (only used in backfire and earlier, and only
for target brcm-2.4)

USE_UCLIBC, USE_GLIBC, | To (not) depend on a certain libc

USE_EGLIBC

BROKEN Package doesn't build or work, and should only be visible if
"Show broken targets/packages" is selected. Prevents the
package from failing builds by accidentally selecting it

IPV6 IPv6 support in packages is selected

AMRG User Manual Page 19/ 26 August 2013

@ Creative Systems
Engineering

NOTES

All variables in your pre/post install/removal scripts should have double ($$) instead of a single ($)
string characters. This will inform "make" to not interpret the value as a variable, but rather just
ignore the string and replace the double $$ by a single $.

After you've created your package Makefile, the new package will automatically show in the menu
the next time you run "make menuconfig" and if selected will be built automatically the next time
"make" is run.

DESCRIPTION is obsolete, use Package/PKG_NAME/description.
4.13 ADDING CONFIGURATION OPTIONS

If you would like configure your package installation/compilation in the menuconfig you can do the
following: Add MENU:=1 to your package definition like this:

define Package/mjpg-streamer
SECTION:=multimedia
CATEGORY:=Multimedia
TITLE:=MJPG-streamer
DEPENDS:=@!LINUX_2 4 +libpthread-stubs +jpeg
URL:=http://mjpg-streamer.wiki.sourceforge.net/
MENU:=1

endef

Create a config key in the Makefile:
define Package/mjpg-streamer/config
source "$(SOURCE)/Config.in"
endef

Create a Config.in file directory where the Makefile is located with the content like this:
Mjpg-streamer configuration
menu "Configuration"
depends on PACKAGE_mjpg-streamer

config MJIPEG_STREAMER_AUTOSTART
bool "Autostart enabled"
default n

menu "Input plugins”
depends on PACKAGE_mjpg-streamer
config MJPEG_STREAMER_INPUT_FILE
bool "File input plugin®
help
You can stream pictures from jpg files on the filesystem
default n

AMRG User Manual Page 20/ 26 August 2013

@ Creative Systems
Engineering

config MJIPEG_STREAMER_INPUT_UVC
bool "UVC input plugin”
help
You can stream pictures from an Universal Video Class compatible webcamera
defaulty

config MJIPEG_STREAMER_FPS
depends MJPEG_STREAMER_INPUT_UVC
int "Maximum FPS"
default 15

config MJIPEG_STREAMER_PICT_HEIGHT
depends MJPEG_STREAMER_INPUT_UVC
int "Picture height"
default 640

config MJIPEG_STREAMER_PICT_WIDTH
depends MJPEG_STREAMER_INPUT_UVC
int "Picture width"
default 480

config MJIPEG_STREAMER_DEVICE
depends MJPEG_STREAMER_INPUT_UVC
string "Device"
default /dev/videoO

config MJPEG_STREAMER_INPUT_GSPCA
bool "GSPCA input plugin”
help

You can stream pictures from a gspca supported webcamera Note this module is
deprecated, use the UVVC plugin instead

default n
endmenu
endmenu

Above you can see examples for various type config parameters.

And finally you can check your configuration parameters in your Makefile in the following way:
(Note that you can reference to the parameters value with it name prefixed with CONFIG_)

ifeq (3(CONFIG_MJPEG_STREAMER_INPUT_UVC).y)
$(CP) $(PKG_BUILD_DIR)/input_uvc.so $(1)/usr/lib
endif

AMRG User Manual Page 21 /26 August 2013

@ Creative Systems
Engineering

4.14 CREATING PACKAGES FOR KERNEL MODULES

One can also add kernel modules which are not part of the linux source distribution. In this case, a
kernel module appears in the package/ directory, just as any other package does. The
package/Makefile uses KernelPackage/xxx definitions in place of Package/xxx

For example, here is package/madwifi/Makefile:

#

Copyright (C) 2006 OpenWTrt.org

#

This is free software, licensed under the GNU General Public License v2.
See /LICENSE for more information.

#

$1d$

include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/kernel.mk

PKG_NAME:=madwifi
PKG_VERSION:=0.9.2
PKG_RELEASE:=1

PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.bz2
PKG_SOURCE_URL:=@SF/$(PKG_NAME)
PKG_MD5SUM:=a75baacbe07085ddc5cb28e1fb43edbb
PKG_CAT:=bzcat

PKG_BUILD_DIR:=$(KERNEL_BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION)
include $(INCLUDE_DIR)/package.mk
RATE_CONTROL:=sample

ifeq ($(ARCH),mips)
HAL_TARGET:=mips-be-elf

endif

ifeq ($(ARCH),mipsel)
HAL_TARGET:=mips-le-elf

endif

ifeq ($(ARCH),i386)
HAL_TARGET:=i386-elf

endif

ifeq ($(ARCH),armeb)
HAL_TARGET:=xscale-be-elf

AMRG User Manual Page 22/ 26 August 2013

@ Creative Systems
Engineering

endif

ifeq ($(ARCH),powerpc)
HAL_TARGET:=powerpc-be-elf

endif

BUS:=PCI

ifneq ($(CONFIG_LINUX_2_4_ AR531X),)
BUS:=AHB

endif

ifneq ($(CONFIG_LINUX_2_6_ARUBA),)
BUS:=PCI AHB# no suitable HAL for AHB yet.

endif

BUS_ MODULES:=

ifeq ($(findstring AHB,$(BUS)),AHB)
BUS_MODULES+=$(PKG_BUILD_DIR)/ath/ath_ahb.$(LINUX_KMOD_SUFFIX)

endif

ifeq ($(findstring PCI,$(BUS)),PCI)
BUS_MODULES+=$(PKG_BUILD_DIR)/ath/ath_pci.$(LINUX_KMOD_SUFFIX)

endif

MADWIFI_AUTOLOAD:=\
wlan \
wlan_scan_ap \
wlan_scan_sta\
ath_hal\

ath_rate_ $(RATE_CONTROL) \
wlan_acl \
wlan_ccmp \
wlan_tkip \
wlan_wep \
wlan_xauth

ifeq ($(findstring AHB,$(BUS)),AHB)
MADWIFI_AUTOLOAD += ath_ahb

endif

ifeq ($(findstring PCI,$(BUS)),PCI)
MADWIFI_AUTOLOAD += ath_pci

endif

define KernelPackage/madwifi
SUBMENU:=Wireless Drivers

DEFAULT:=y if LINUX_2 6 _BRCM | LINUX_2 6 ARUBA | LINUX_ 2 4 AR531X |
LINUX_2 6_XSCALE, m if ALL

AMRG User Manual Page 23 /26 August 2013

@ Creative Systems
Engineering

TITLE:=Driver for Atheros wireless chipsets
DESCRIPTION:=\

This package contains a driver for Atheros 802.11a/b/g chipsets.
URL:=http://madwifi.org/
VERSION:=$(LINUX_VERSION)+$(PKG_VERSION)-$(BOARD)-$(PKG_RELEASE)
FILES:=\

$(PKG_BUILD_DIR)/ath/ath_hal.$(LINUX_KMOD_SUFFIX) \
$(BUS_MODULES) \

$(PKG_BUILD_DIR)/ath_rate/$(RATE_CONTROL)/ath_rate_$(RATE_CONTROL).$(LINU
X_KMOD_SUFFIX) \

$(PKG_BUILD_DIR)/net80211/wlan*.$(LINUX_KMOD_SUFFIX)
AUTOLOAD:=%(call AutoLoad,50,$(MADWIFI_AUTOLOAD))
endef

MADWIFI_MAKEOPTS= -C $(PKG_BUILD_DIR) \
PATH="$(TARGET_PATH)"\
ARCH="$(LINUX_KARCH)" \
CROSS_COMPILE="$(TARGET_CROSS)" \
TARGET="$(HAL_TARGET)" \
TOOLPREFIX="$(KERNEL_CROSS)" \
TOOLPATH="$(KERNEL_CROSS)" \
KERNELPATH="$(LINUX_DIR)"\
LDOPTS=""\
ATH_RATE="ath_rate/$(RATE_CONTROL)" \
DOMULTI=1

ifeq ($(findstring AHB,$(BUS)),AHB)
define Build/Compile/ahb

$(MAKE) $(MADWIFI_MAKEOPTS) BUS="AHB" all
endef

endif

ifeq ($(findstring PCI,$(BUS)),PCI)
define Build/Compile/pci

$(MAKE) $(MADWIFI_MAKEOPTS) BUS="PCI" all
endef

endif

define Build/Compile
$(call Build/Compile/ahb)
$(call Build/Compile/pci)
endef

AMRG User Manual Page 24 / 26 August 2013

@ Creative Systems
Engineering

define Build/InstallDev

$(INSTALL_DIR) $(STAGING_DIR)/usr/include/madwifi

$(CP) $(PKG_BUILD_DIR)/include $(STAGING_DIR)/usr/include/madwifi/
$(INSTALL_DIR) $(STAGING_DIR)/usr/include/madwifi/net80211

$(CP) $(PKG_BUILD_DIR)/net80211/*.h $(STAGING_DIR)/usr/include/madwifi/net80211/
endef

define KernelPackage/madwifi/install
$(INSTALL_DIR) $(1)/etc/init.d
$(INSTALL_DIR) $(1)/lib/modules/$(LINUX_VERSION)
$(INSTALL_DIR) $(1)/usr/sbin
$(INSTALL_BIN) ./files/madwifi.init $(1)/etc/init.d/madwifi

$(CP)
$(PKG_BUILD_DIR)/tools/{madwifi_multi,80211debug,80211stats,athchans,athctrl,athdeb
ug,athkey,athstats,wlanconfig} $(1)/usr/sbin/

endef
$(eval $(call KernelPackage,madwifi))

INSTALL_DIR, INSTALL_BIN, INSTALL_DATA are used for creating a directory, copying an
executable, or a data file. +x is set on the target file for INSTALL_BIN, independent of its mode on
the host.

Package/<name>/install:

A set of commands to copy files out of the compiled source and into the ipkg which is represented
by the $(1) directory. Note that there are currently 4 defined install macros:

INSTALL_DIR
install -d -m0755
INSTALL BIN
install -m0755
INSTALL_DATA
install -m0644
INSTALL CONF
install -m0600

4.15 PACKAGING A SERVICE

If you want to install a service, (something that should start/stop at boot time, that has a
/etc/init.d/blah script), you should make sure that the init.d script can be run on the host. At image
build time, all init.d scripts found are run on the host, looking for the START=20/STOP=99 lines.

This is what installs the symlinks in /etc/rc.d, so they are only created when you rebuild the entire
image. If you want the symlinks to be created when a package is installed, such as via opkg, you
should add a postinstall script which runs

/etc/init.d/foo enable

AMRG User Manual Page 25/ 26 August 2013

<@ Creative Systems
Engineering

if $IPKG_INSTROOT is empty. when $IPKG_INSTROOT is defined, you run within the
buildroot, if it is empty you run on the target.

Example makefile snippet to install/remove symlinks.

define Package/mrelay/postinst

#!/bin/sh

check if we are on real system

if [-z "$${IPKG_INSTROOT}"]; then
echo "Enabling rc.d symlink for mrelay"”
/etc/init.d/mrelay enable

fi

exit 0

endef

define Package/mrelay/prerm

#!/bin/sh

check if we are on real system

if [-z "$${IPKG_INSTROOT}"]; then
echo "Removing rc.d symlink for mrelay"
/etc/init.d/mrelay disable

fi

exit 0

endef

Very basic example of a suitable init.d script

#!/bin/sh /etc/rc.common

START=80
APP=mrelay
PID_FILE=/var/run/$APP.pid

start() {
start-stop-daemon -S -x $APP -p $PID_FILE -m -b

}

stop() {
start-stop-daemon -K -n $APP -p $PID_FILE -s TERM
rm -rf $PID_FILE

}

Creative Systems Engineering Ltd

45, Agiou Meletiou Str., 11257 Athens, Greece

Tel: (+30) 210 8836433, Fax: (+30) 210 8836431

www.creativese.eu, info@creativese.eu, sales@creativese.eu, support@creativese.eu

AMRG User Manual Page 26 / 26 August 2013

http://www.creativese.eu/
mailto:info@creativese.eu
mailto:sales@creativese.eu
mailto:support@creativese.eu

