
RV 3.12: Reference Manual

Tweak Software http://www.tweaksoftware.com

September 28, 2011

http://www.tweaksoftware.com

Contents

1 Overview 3
1.1 The Big Picture . 3
1.2 Drawing . 4
1.3 Menus . 4
1.4 Interfacing with the Environment . 4
1.5 Setting and Getting the Image Processing Graph State . 5

1.5.1 Addressing Properties . 6
1.5.2 User Defined Properties . 6

1.6 Getting Information From Images . 9

2 Python 10
2.1 Calling Mu From Python . 10
2.2 Calling Python From Mu . 11

3 Event Handling 12
3.1 Binding an Event . 14
3.2 Keyboard Events . 14
3.3 Pointer (Mouse) Events . 15
3.4 The Render Event . 16
3.5 Remote Networking Events . 17
3.6 Internal Events . 17

3.6.1 File Changed Event . 17
3.6.2 Incoming Source Path Event . 17
3.6.3 Missing Images . 19

4 Using Qt in Mu 20
4.1 Signals and Slots . 21
4.2 Inheriting from Qt Classes . 22

5 Modes and Widgets 24
5.1 Outline of a Mode . 25
5.2 Outline of a Widget . 26

6 Package System 27
6.1 rvpkg Command Line Tool . 27

6.1.1 Getting a List of Available Packages . 27
6.1.2 Getting Information About the Environment . 28
6.1.3 Getting Information About a Package . 28
6.1.4 Adding a Package to a Support Area . 28
6.1.5 Removing a Package from a Support Area . 28
6.1.6 Installing and Uninstalling Available Packages . 29
6.1.7 Combining Add and Install for Automated Installation 29
6.1.8 Overrideing Default Optional Package Load Behavior 29

1

CONTENTS

6.2 Package File Contents . 29
6.3 PACKAGE Format . 29
6.4 Package Management Configuration Files . 32
6.5 Developing a New Package . 32

6.5.1 Older Package Files (.zip) . 33
6.5.2 Using the Mode Manager While Developing . 33
6.5.3 Using -debug mu . 33
6.5.4 The Mu API Documentation Browser . 33

6.6 Loading Versus Installing and User Override . 34
6.6.1 Optional Packages . 34

7 A Simple Package 35
7.1 How Menus Work . 37
7.2 A Menu in MyStuffMode . 38
7.3 Finishing up . 40

8 The Custom Matte Package 41
8.1 Creating the Package . 41
8.2 The Custom Matte File . 41
8.3 Parsing the Matte File . 41
8.4 The CustomMattesMode Constructor . 44
8.5 Rendering the Matte . 47
8.6 The Finished custom mattes.mu File . 49

9 Automated Color and Viewing Management 52
9.1 The new-source Event . 53
9.2 The default new-source behavior . 53
9.3 Breakdown of sourceSetup() in the source_setup Package 54
9.4 Setting up 3D and Channel LUTs . 55
9.5 Building a Package For Color Management . 55

10 Network Communication 57
10.1 Example Code . 57

10.1.1 Using rvshell . 57
10.1.2 Using rvNetwork.py . 58

10.2 TwkQtChat Library . 58
10.3 The Protocol . 59

10.3.1 Standard Messages . 59
10.3.2 Data Messages . 62

11 Webkit JavaScript Integration 64
11.1 Executing Mu or Python from JavaScript . 64
11.2 Getting Event Call Backs in JavaScript . 64
11.3 Using the webview Example Package . 66

12 Hierarchical Preferences 68

13 Node Reference 69

2

Chapter 1

Overview

RV comes with the source code to its user interface. The code is written in a language called Mu which is not
difficult to learn if you know Python, MEL, or most other computer languages used for computer graphics.
As of 3.12, RV can also use Python in a nearly interchangable manner.

If you are completely unfamiliar with programming, you may still glean information about how to cus-
tomize RV in this manual; but the more complex tasks like creating a special overlay or slate for RVIO
or adding a new heads-up widget to RV might be difficult to understand without help from someone more
experienced.

This manual does not assume you know Mu to start with, so you can dive right in. For Python, some
assumptions are made. The chapters are organized with specific tasks in mind.

The reference chapters contain detailed information about various internals that you can modify from
the UI.

Using the RV file format (.rv) is detailed in the User Manual.

1.1 The Big Picture

RV is two different pieces of software: the core (written in C++) and the interface (written in Mu and
Python). The core handles the following things:

• Image, Movie, and Audio I/O

• Caching Images and Audio

• Tracking Dependencies Among Image and Audio Operations

• Basic Image Processing in Software

• Rendering Images

• Feeding Audio to Audio Output Devices

The interface — which is available to be modified — is concerned with the following:

• Handling User Events

• Rendering Additional Information and Heads-up Widgets

• Setting and Getting State in the Image Processing Graph

• Interfacing to the Environ

• ment

• Handling User Defined Setup of Incoming Movies/Images/Audio

3

CHAPTER 1. OVERVIEW

• High Level Features

RVIO shares almost everything with RV including the UI code (if you want it to). However it will not launch
a GUI so its UI is normally non-existent. RVIO does have additional hooks for modification at the user
level: overlays and leaders. Overlays are Mu scripts which allow you to render additional visual information
on top of rendered images before RVIO writes them out. Leaders are scripts which generate frames from
scratch (there is nothing rendered under them) and are mainly there to generate customized flexible slates
automatically.

1.2 Drawing

In RV’s user interface code or RVIO’s leader and overlays its possible draw on top of rendered frames. This
is done using the industry standard API OpenGL. There are Mu modules which implement OpenGL 1.1
functions including the GLU library. In addition, there is a module which makes it easy to render true
type fonts as textures (so you can scale, rotate, and composite characters as images). For Python there is
PyOpenGL and related modules.

Mu has a number of OpenGL friendly data types include native support for 2D and 3D vectors and
dependently typed matrices (e.g., float[4,4], float[3,3], float[4,3], etc). The Mu GL modules take the native
types as input and return them from functions, but you can use normal GL documentation and man pages
when programming Mu GL. In this manual, we assume you are already familiar with OpenGL. There are
many resources available to learn it in a number of different programming languages. Any of those will
suffice to understand it.

1.3 Menus

The menu bar in an RV session window is completely controlled (and created) by the UI. There are a number
of ways you can add menus or override and replace the existing menu structure.

Adding one or more custom menus to RV is a common customization. This manual contains examples of
varying complexity to show how to do this. It is possible to create static menus (pre-defined with a known
set of menu items) or dynamic menus (menus that are populated when RV is initialized based on external
information, like environment variables).

1.4 Interfacing with the Environment

One of the most important customizations you can make to RV is making it aware of the environment its
running in.

For example, it is common practice in big post-production companies (primarily using Linux) to provide
environment variables that indicate a show, shot and sequence that an artist is currently working on. A user
might have two shell windows open: one in the environment of shot “A” and one in shot “B”. Starting RV in
the shot “A” environment might cause it to show different menus or automatically select a particular display
LUT. These types of facility-context-dependent customizations can save artists a lot of time and in some
cases relieve them from having to make decisions about color or finding the default location of certain files.

Following sections of this manual show a number of ways that you can customize RV for facility-wide use
as well as personal use. We highly recommend facility-wide customizing because some institutional decisions
can be hard coded there — especially those concerning how color should be managed.

Note that the use of Python in RV is nearly identical to Mu so other than the libraries and syntax, the
mechanisms used to control RV are the same in the two languages.

Here’s an example in Mu of how to get environment variables from the operating system with default
values when the variable is not defined. This will work on all platforms:

\: show_environment (void;)
{

use system; // this is where getenv() lives

4

CHAPTER 1. OVERVIEW

let shot = getenv("SHOT", "noshot"), // defaults to noshot
show = getenv("SHOW", "noshow"); // defaults to noshow

print("SHOT = %s, SHOW = %s\n" % (shot, show));
}

Listing 1.1: Example Use of Environment Variables

Its also possible to open a process stream to an external program and read its output. This example calls
the unix ls command on a file (or directory) that is passed into the function and returns the output as a
string. On windows you would need to use an appropriate command path and arguments for that platform.
This example is fairly advanced:

\: get_ls_output (string; string file_to_ls)
{

use io; // this is where the streams live

let cmd = process("/bin/ls", ["-al", file_to_ls], int64.max);
istream lsout = cmd.out();
cmd.close_in();

osstream result; // osstream is an output string stream

while (true)
{

let line = read_line(lsout, ’\n’);
if (line == "") break;
print(result, "%s\n" % line);

}

cmd.close();
return string(result);

}

Listing 1.2: Example Use of Process Stream

1.5 Setting and Getting the Image Processing Graph State

The UI needs to communicate with the core part of RV. This is done in two ways: by calling special command
functions (commands) which act directly on the core (e.g. play() causes it to start playing), or by setting
variables in the underlying image processing graph which control how images will be rendered.

Inside each session there is a directed acyclic graph (DAG) which determines how images and audio will
be evaluated for display. The DAG is composed of nodes which are themselves collections of properties.

A node is something that produces images and/or audio as output from images and audio inputs (or
no inputs in some cases). An example from RV is the color node; the color node takes images as input
and produces images that are copies of the input images with the hue, saturation, exposure, and contrast
potentially changed.

A property is a state variable. The node’s properties as a whole determine how the node will change its
inputs to produce its outputs. You can think of a node’s properties as parameters that change its behavior.

RV’s session file format (.rv file) stores all of the nodes associated with a session including each node’s
properties. So the DAG contains the complete state of an RV session. When you load an .rv file into RV,
you create a new DAG based on the contents of the file. Therefore, to change anything in RV that affects
how an image looks, you must change a property in some node in its DAG.

5

CHAPTER 1. OVERVIEW

There are a few commands which RV provides to get and set properties: setIntProperty(), getIntProperty(),
setFloatProperty(), getFloatProperty(), setStringProperty(), and getStringProperty().
These are available in both Mu and Python.

Finally, there is one last thing to know about properties: they are arrays of values. So a property may
contain zero values (its empty) or one value or an array of values. The get and set functions above all deal
with arrays of numbers even when a property only has a single value.

1.5.1 Addressing Properties

A full property name has three parts: the node name, the component name, and the property name. These
are concatenated together with dots like nodename.componentname.propertyname. Each property has its
own type which can be set and retrieved with one of the set or get functions. You must use the correct get
or set function to access the property. For example, to set the display gamma, which is part of the “display”
node, you need to use setFloatProperty() like so in Mu:

setFloatProperty("display.color.gamma", float[] {2.2, 2.2, 2.2}, true)

or in Python:

setFloatProperty("display.color.gamma", [2.2, 2.2, 2.2], True)

In this case the value is being set to 2.2.
In an RV session, some node names will vary per the source(s) being displayed and some will not. Figure

1.1 shows a pipeline diagram for one possible configuration and indicates which are per-source (duplicated)
and which are not.

At any point in time, a subset of the graph is active. For example if you have three sources in a session
and RV is in sequence mode, at any given frame only one source branch will be active. There is a second
way to address nodes in RV: by their types. This is done by putting a hash (#) in front of the type name.
Addressing by node type will affect all of the currently active nodes of the given type. For example, a
property in the color node is exposure which can be addressed directly like this in Mu:

color.color.exposure

or using the type name like this:

#RVColor.color.exposure

When the type name syntax is used, and you use one of the set or get functions on the property, only
nodes that are currently active will be considered. So in this case, if we were to set the exposure using
type-addressing:

setFloatProperty("#RVColor.color.exposure", float[] {2.0, 2.0, 2.0}, true)

or in Pythion:

setFloatProperty("#RVColor.color.exposure", [2.0, 2.0, 2.0], True)

It would affect any node of type RVColor that is currently active. In sequence mode (i.e. the default
case), only one RVColor node is usually active at a time (the one belonging to the source being viewed at the
current frame). In stack mode, the RVColor nodes for all of the sources could be active. In that case, they
will all have their exposure set. In the UI, properties are almost exclusively addressed in this manner so that
making changes affects the currently visible sources only. See figure 1.2 for a diagrammatic explanation.

Chapter 13 has all the details about each node type.

1.5.2 User Defined Properties

Its possible to add your own properties when creating an RV file from scratch or from the user interface
code. The newProperty() function docs.

Why would you want to do this? There are a few reasons to add a user defined property:

1. You wish to save something in a session file that was created interactively by the user.

6

CHAPTER 1. OVERVIEW

sequenceGroup000001

RVSequenceGroup

sequence

RVSequence

sourceGroup000000

RVSource

source

RVCacheLUT
cacheLUT

RVFormat

format

RVChannelMap

channelMap

RVHistogram

histogram

RVTransform2D

transform2D

RVCache
cache

color

RVColor

RVPaint

paint

RVSourceGroup

sourceGroup000001

RVSource

source

RVCacheLUT
cacheLUT

RVFormat

format

RVChannelMap

channelMap

RVHistogram

histogram

RVTransform2D

transform2D

RVCache
cache

color

RVColor

RVPaint

paint

RVSourceGroup

RVPaint

paint

RVRetime

retime

RVRetime

retime

RVPaint

paint

= Optional Node

displayGroup000001

RVDisplayGroup

soundtrack

RVSoundTrack

brush

RVBrush

stereo

RVDisplayStereo

displayTransform

RVDispTransform2D

display

RVDisplayRVLookLUT

look

RVLookLUT

look

Figure 1.1: Conceptual diagram of RV Image and Audio Processing Graph for a session with a single
sequence. Nodes are shown with both the type name in bold and the instance name underneath. Blue nodes
are duplicated per-source in this session configuration and the instance names are numbered.

7

CHAPTER 1. OVERVIEW

Figure 1.2: Active Nodes in the Image Processing Graph. The active nodes are those nodes which contribute
to the rendered view at any given frame. In this configuration, when the sequence is active, there is only
one source branch active at any given frame (the yellow nodes). By addressing nodes using their type name,
you can affect only active nodes with that type.

8

CHAPTER 1. OVERVIEW

Command Description
sourceAtPixel Given a point in the view, returns a structure with information about

the source(s) underneath the point.

sourcesRendered Returns information about all sources rendered in the current view

(even those that may have been culled).

sourceLayers Given the name of a source, returns the layers in the source.

sourceGeometry Given the name of a source, returns the geometry (bounding box) of

that source.

sourceMedia Given the name of a source, returns the a list of its media files.

sourcePixelValue Given the name of a source and a coordinate in the image, returns an

RGBA pixel value at that coordinate. This function may convert

chroma image pixels to Rec709 primary RGB in the process.

sourceAttributes Given the name of a source and optionally the name a particular media

file in the source, returns an array of tuples which contain attribute

names and values.

sourceStructure Given the name of a source and optionally the name a particular media

file in the source, returns information about image size, bit depth,

number of channels, underlying data type, and number of planes in the

image.

sourceDisplayChannelNames Given the name of a source, returns an array of channel names current

being displayed.

Table 1.1: Command Functions for Querying Displayed Images

2. You’re generating session files from outside RV and you want to include additional information (e.g.
production tracking, annotations) which you’d like to have available when RV plays the session file.

Some of the packages that come with RV show how to implement functionality for the above.

1.6 Getting Information From Images

RV’s UI often needs to take actions that depend on the context. Usually the context is the current image
being displayed. Table 1.1 shows the most useful command functions for getting information about displayed
images.

For example, when automating color management, the color space of the image or the origin of the image
may be required to determine the best way to view the image (e.g., for a certain kind of DPX file you might
want to use a particular display or file LUT). The color space is often stored as image attribute. In some
cases, image attributes are misleading–for example, a well known 3D software package renders images with
incorrect information about pixel aspect ratio—usually other information in the image attributes coupled
with the file name and origin are enough to make a good guess.

9

Chapter 2

Python

As of RV 3.12 you can use Python in RV in conjunction with Mu or in place of it. Its even possible to call
Python commands from Mu and vice versa. So in answer to the question: which language should I use to
customize RV? The answer is whichever you like. At this point we recommend using Python.

There are some slight differences that need to be noted when translating code between the two languages:
In Python the modules names required by RV are the same as in Mu. As of this writing, these are

commands, rvtypes, and rvui. However, the Python modules all live in the rv package. So while in Mu
you can:

use commands

or

require commands

to make the commands visible in the current namespace. In Python you need to include the package
name:

from rv.commands import *

or

import rv.commands

Pythonistas will know how all the permutations of the above.

2.1 Calling Mu From Python

Its possible to call Mu code from Python, but in practice you will probably not need to do this unless you
need to interface with existing packages written in Mu.

To call a Mu function from Python, you need to import the MuSymbol type from the pymu module. In
this example, the play function is imported and called F on the Python side. F is then exectued:

from pymu import MuSymbol
F = MuSymbol("commands.play")
F()

If the Mu function has arguments you supply them when calling. Return values are automatically
converted between languages. The conversions are indicated in .

from pymu import MuSymbol
F = MuSymbol("commands.isPlaying")
G = MuSymbol("commands.setWindowTitle")
if F() == True:

G("PLAYING")

10

CHAPTER 2. PYTHON

Python Type Converts to Mu Type Converts To Python Type

Str or Unicode string Unicode string Normal byte strings and unicode strings are

both converted to Mu’s unicode string. Mu

strings always convert to unicode Python

strings.

Int int, short, or byte Int

Long int64 Long

Float foat or half or double Float Mu double values may lose precision. Python

float values may lose precision if passed to a Mu

function that takes a half.

Bool bool Bool

(Float, Float) vector float[2] (Float, Float) Vectors are represented as tuples in Python

(Float, Float, Float) vector float[3] (Float, Float, Float)

(Float, Float, Float, Float) vector float[4] (Float, Float, Float, Float)

Tuple tuple Tuple Tuple elements each convert independently

List type[] or type[N] List Arrays (Lists) convert back and forth

Dictionary Class Dictionary Class labels become dictionary keys

Table 2.1: Mu-Python Value Conversion

Once a MuSymbol object has been created, the overhead to call it is minimal. All of the Mu commands
module is imported on start up or reimplemented as native CPython in the Python rv.commands module so
you will not need to create MuSymbol objects yourself; just import rv.commands and use the pre-existing
ones.

When a Mu function parameter takes a class instance, a Python dictionary can be passed in. When a
Mu function returns a class, a dictionary will be returned. Python dictionaries should have string keys which
have the same names as the Mu class fields and corresponding values of the correct types.

For example, the Mu class Foo { int a; float b; } as instantiated as Foo(1, 2.0) will be
converted to the Python dictionary {’a’ : 1, ’b’ : 2.0} and vice versa.

2.2 Calling Python From Mu

In order to call Python objects from Mu you need to use the MuPy module. This implements a small subset
of the CPython API. You can see documentation for this module in the Mu Command API Browser under
the Help menu.

11

Chapter 3

Event Handling

Aside from rendering, the most important function of the UI is to handle events. An event can be triggered
by any of the following:

• The mouse pointer moved or a button on the mouse was pressed

• A key on the keyboard was pressed or released

• The window needs to be re-rendered

• A file being watched was changed

• The user became active or inactive

• A supported device (like the apple remote control) did something

• An internal event like a new source or session being created has occurred

Each specific event has a name may also have extra data associated with it in the form of an event object. To
see the name of an event (at least for keyboard and mouse pointer events) you can select the Help→Describe...
which will let you interactively see the event name as you hit keys or move the mouse. You can also use
Help→Describe Key.. to see what a specific key is bound to by pressing it.

Table 3.1 shows the basic event type prefixes.
When an event is generated in RV, the application will look for a matching event name in its bindings.

The bindings are tables of functions which are assigned to certain event names. The tables form a stack
which can be pushed and popped. Once a matching binding is found, RV will execute the function.

When receiving an event, all of the relevant information is in the Event object. This object has a number
of methods which return information depending on the kind of event.

Event Prefix Description
key-down Key is being pressed on the keyboard
key-up Key is being released on the keyboard
pointer The mouse moved, button was pressed, or the pointer entered (or left) the window
dragdrop Something was dragged onto the window (file icon, etc)
render The window needs updating
user The user’s state changed (active or inactive, etc)
remote A network event

Table 3.1: Event Prefixes for Basic Device Events

12

CHAPTER 3. EVENT HANDLING

Method Events Description

pointer (Vec2;) pointer-*

dragdrop-*

Returns the location of the pointer relative to the

view.

relativePointer (Vec2;) pointer-*

dragdrop-*

Returns the location of the pointer relative to the

current widget or view if there is none.

reference (Vec2;) pointer-*

dragdrop-*

Returns the location of initial button mouse down

during dragging.

domain (Vec2;) pointer-*

render-*

dragdrop-*

Returns the size of the view.

subDomain (Vec2;) pointer-*

render-*

dragdrop-*

Returns the size of the current widget if there is one.

relativePointer() is positioned in the subDomain().

buttons (int;) pointer-*

dragdrop-*

Returns an int or’d from the symbols: Button1,

Button2, and Button3.

modifiers (int;) pointer-*

key-*

dragdrop-*

Returns an int or’d from the symbols: None,

Shift, Control, Alt, Meta, Super,

CapLock, NumLock, ScrollLock.

key (int;) key-* Returns the ”keysym” value for the key as an int

name (string;) any Returns the name of the event

contents (string;) internal
events

dragdrop-*

Returns the string content of the event if it has any.

This is normally the case with internal events like

new-source, new-session, etc. Pointer, key, and other

device events do not have a contents() and will throw

if its called on them. Drag and drop events return the

data associated with them. Some render events have

contents() indicating the type of render occuring.

sender (string;) any Returns the name of the sender

contentType (int;) dragdrop-* Returns an int describing the contents() of a drag

and drop event. One of: UnknownObject,

BadObject, FileObject, URLObject,

TextObject.

timeStamp (float;) any Returns a float value in seconds indicating when the

event occured

reject (void;) any Calling this function will cause the event to be send

to the next binding found in the event table stack.

Not calling this function stops the propagation of the

event.

setReturnContents (void; string) internal

events

Events which have a contents may also have return

content. This is used by the remote network events

which can have a response.

Table 3.2: Event Object Methods. Python methods have the same names and return the same value types.

13

CHAPTER 3. EVENT HANDLING

3.1 Binding an Event

In Mu (or Python) you can bind an event using any of the bind() functions. The most basic version of
bind() takes the name of the event and a function to call when the event occurs as arguments. The function
argument (which is called when the event occurs) should take an Event object as an argument and return
nothing (void). Here’s a function that prints hello in the console every time the “j” key is pressed:1

\: my_event_function (void; Event event)
{

print("Hello!\n");
}

bind("key-down--j", my_event_function);

or in Python:

def my_event_function (event):
print "Hello!"

bind("default", "global", "key-down--j", my_event_function);

There are more complicated bind() functions to address binding functions in specific event tables (the
Python example above is using the most general of these). Currently RV’s user interface has one default
global event table an couple of other tables which implement the parameter edit mode and help modes.

Many events provide additional information in the event object. Our example above doesn’t even use the
event object, but we can change it to print out the key that was pressed by changing the function like so:

\: my_event_function (void; Event event)
{

let c = char(event.key());
print("Key pressed = %c\n" % c);

}

or in Python:

def my_event_function (event):
c = event.key()
print "Key pressed = %s\n" % c

In this case, the Event object’s key() function is being called to retrieve the key pressed. To use the
return value as a key it must be cast to a char. In Mu, the char type holds a single unicode character. In
Python a string is used.

See the section on the Event class to find out how to retrieve information from it. At this point we have
not talked about where you would bind an event; that will be addressed in the customization sections.

3.2 Keyboard Events

There are two keyboard events: key-down and key-up. Normally the key-down events are bound to
functions. The key-up events are necessary only in special cases.

The specific form for key down events is key-down--something where something uniquely identifies
both the key pressed and any modifiers that were active at the time.

So if the “a” key was pressed the event would be called: key-down--a. If the control key were held
down while hitting the “a” key the event would be called key-down--control--a.

1If this is the first time you’ve seen this syntax, its defining a Mu function. The first two characters \: indicate a function
definition follows. The name comes next. The arguments and return type are contained in the parenthesis. The first identifier
is the return type followed by a semicolon, followed by an argument list.

E.g, \: add (int; int a, int b) { return a + b; }

14

CHAPTER 3. EVENT HANDLING

There are five modifiers that may appear in the event name: alt, caplock, control, meta, numlock,
scrolllock, and shift in that order. The shift modifier is a bit different than the others. If a key is
pressed with the shift modifier down and it would result in a different character being generated, then the
shift modifier will not appear in the event and instead the result key will. This may sound complicated but
these examples should explain it:

For control + shift + A the event name would be key-down--control--A. For the “*” key
(shift + 8 on American keyboards) the event would be key-down--*. Notice that the shift modifier does
not appear in any of these. However, if you hold down shift and hit enter on most keyboards you will get
key-down--shift--enter since there is no character associated with that key sequence.

Some keys may have a special name (like enter above). These will typically be spelled out. For example
pressing the “home” key on most keyboards will result in the event key-down--home. The only way to
make sure you have the correct event name for keys is to start RV and use the Help→Describe... facility
to see the true name. Sometimes keyboards will label a key and produce an unexpected event. There will
be some keyboards which will not produce an event all for some keys or will produce a unicode character
sequence (which you can see via the help mechanism).

3.3 Pointer (Mouse) Events

The mouse (called pointer from here on) can produce events when it is moved, one of its buttons is pressed,
an attached scroll wheel is rotated, or the pointer enters or leaves the window.

The basic pointer events are move, enter, leave, wheelup, wheeldown, push, drag, and release.
All but enter and leave will also indicate any keyboard modifiers that are being pressed along with any
buttons on the mouse that are being held down. The buttons are numbered 1 through 5. For example if you
hold down the left mouse button and movie the mouse the events generated are:

pointer-1--push
pointer-1--drag
pointer-1--drag
...
pointer-1-release

Pointer events involving buttons and modifiers always come in there parts: push, drag and release. So for
example if you press the left mouse, move the mouse, press the shift key, move the mouse, release everything
you get:

pointer-1--push
pointer-1--drag
pointer-1--drag
...
pointer-1-release
pointer-1--shift--push
pointer-1--shift--drag
pointer-1--shift--drag
...
pointer-1--shift--release

Notice how the first group without the shift is released before starting the second group with the shift
even though you never released the mouse button. For any combination of buttons and modifiers, there will
be a push-drag-release sequence that is cleanly terminated.

It is also possible to hold multiple mouse buttons and modifiers down at the same time. When multiple
buttons are held (for example, button 1 and 2) they are simply both included (like the modifiers) so for
buttons 1 and 2 the name would be pointer-1-2--push to start the sequence.

The mouse wheel behaves more like a button: when the wheel moves you get only a wheelup or
wheeldown event indicating which direction the wheel was rotated. The buttons and modifiers will be
applied to the event name if they are held down. Usually the motion of the wheel on a mouse will not be

15

CHAPTER 3. EVENT HANDLING

smooth and the event will be emitted whenever the wheel “clicks”. However, this is completely a function of
the hardware so you may need to experiment with any particular mouse.

There are three more pointer events that can be generated. When the mouse moves with no modi-
fiers or buttons held down it will generate the event pointer--move. When the pointer enters the view
pointer--enter is generated and when it leaves pointer--leave. Something to keep in mind: when
the pointer leaves the view and the device is no longer in focus on the RV window, any modifiers or buttons
the user presses will not be known to RV and will not generate events. When the pointer returns to the view
it may have modifiers that became active when out-of-focus. Since RV cannot know about these modifiers
and track them in a consistent manner (at least on X Windows) RV will assume they do not exist.

Pointer events have additional information associated with them like the coordinates of the pointer or
where a push was made. These will be discussed later.

3.4 The Render Event

The UI will get a render event whenever it needs to be updated. When handling the render event, a GL
context is set up and you can call any GL function to draw to the screen. The event supplies additional
information about the view so you can set up a projection.

At the time the render event occurs, RV has already rendered whatever images need to be displayed. The
UI is then called in order to add additional visual objects like an on-screen widget or annotation.

Here’s a render function that draws a red polygon in the middle of the view right on top of your image.

\: my_render (void; Event event)
{

let domain = event.domain(),
w = domain.x,
h = domain.y,
margin = 100;

use gl;
use glu;

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, w, 0, h);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Big red polygon
glColor(Color(1,0,0,1));
glBegin(GL_POLYGON);
glVertex(margin, margin);
glVertex(w-margin, margin);
glVertex(w-margin, h-margin);
glVertex(margin, h-margin);
glEnd();

}

Listing 3.1: Example Render Function

Note that for Python, you will need to use the PyOpenGL module or bind the symbols in the gl Mu
module manually in order to draw in the render event.

The UI code already has a function called render() bound the render event; so this function basically
disables existing UI rendering.

16

CHAPTER 3. EVENT HANDLING

3.5 Remote Networking Events

RV’s networking generates a number of events indicating the status of the network. In addition, once a
connection has been established, the UI may generate sent to remote programs, or remote programs may
send events to RV. These are typically uniquely named events which are specific to the application that is
generating and receiving them.

For example the sync mechanism generates a number of events which are all named remote-sync-something.

3.6 Internal Events

Some events will originate from RV itself. These include things like new-source or new-session which
include information about what changed. The most useful of these is new-source which can be used to
manage color and other image settings between the time a file is loaded and the time it is first displayed. (See
Color Management Section). Other internal events are functional, but are placeholders which will become
useful with future features.

The current internal events are listed in table 3.3.

3.6.1 File Changed Event

It is possible to watch a file from the UI. If the watched file changes in any way (modified, deleted, moved,
etc) a file-changed event will be generated. The event object will contain the name of the watched file that
changed. A function bound to file-changed might look something like this:

\: my_file_changed (void; Event event)
{

let file = event.contents();
print("%s changed on disk\n" % file);

}

In order to have a file-changed event generated, you must first have called the command function
watchFile().

3.6.2 Incoming Source Path Event

This event is sent when the user has selected a file or sequence to load from the UI or command line. The
event contains the name of the file or sequence. A function bound to this event can change the file or sequence
that RV actually loads by setting the return contents of the event. For example, you can cause RV to check
and see if a single file is part of a larger sequence and if so load the whole sequence like so:

\: load_whole_sequence (void; Event event)
{

let file = event.contents(),
(seq,frame) = sequenceOfFile(event.contents());

if (seq != "") event.setReturnContent(seq);
}

bind("incoming-source-path", load_whole_sequence);

or in Python:

def load_whole_sequence (event):
{

file = event.contents();
(seq,frame) = rv.commands.sequenceOfFile(event.contents());

17

CHAPTER 3. EVENT HANDLING

Event Event.(data/contents) Description

render Main view render

layout Main view layout used to handle view margin changes

new-session A new session was created or loaded into RV

new-source nodename;;RVSource;;filename A new source node was added

source-modified nodename;;RVSource;;filename An existing source was changed

media-relocated nodename;;oldmedia;;newmedia A movie, image sequence, audio file was swapped out

source-media-set nodename;;tag

before-session-read filename Session file is about to be read

after-session-read filename Session file was read

before-session-write filename Session file is about to be written

after-session-write filename Session file was just written

before-session-write-copy filename A copy of the session is about to be written

after-session-write-copy filename A copy of a session was just written

before-session-deletion The session is about to be deleted

before-graph-view-change nodename The current view node is about to change.

after-graph-view-change nodename The current view node changed.

new-node nodename A new view node was created.

before-progressive-loading Loading will start

after-progressive-loading Loading is complete

graph-layer-change DEPRECATED use after-graph-view-change

frame-changed The current frame changed

fps-changed Playback FPS changed

play-start Playback started

play-stop Playback stopped

incoming-source-path infilename;;tag A file was selected by the user for loading.

missing-image An image could not be loaded for rendering

cache-mode-changed buffer or region or off Caching mode changed

view-size-changed The viewing area size changed

new-in-point frame The in point changed

new-out-point frame The out point changed

before-source-delete nodename Source node will be deleted

after-source-delete nodename Source node was deleted

before-node-delete nodename View node will be deleted

after-node-delete nodename View node was deleted

after-clear-session The session was just cleared

after-preferences-write Preferences file was written by the Preferences GUI

state-initialized Mu/Python init files read

realtime-play-mode Playback mode changed to realtime

play-all-frames-mode Playback mode changed to play-all-frames

before-play-start Play mode will start

mark-frame frame Frame was marked

unmark-frame frame Frame was unmarked

pixel-block Event.data() A block of pixels was received from a remote connection

graph-state-change A property in the image processing graph changed

graph-node-inputs-changed nodename Inputs of a top-level node added/removed/re-ordered

range-changed The time range changed

narrowed-range-changed The narrowed time range changed

margins-changed left right top bottom View margins changed

view-resized old-w new-w | old-h new-h Main view changed size

preferences-show Pref dialog will be shown

preferences-hide Pref dialog was hidden

remote-eval code Request to evaluate external Mu code

py-remote-eval code Request to evaluate external Python code

remote-network-start Remote networking started

remote-network-stop Remote networking stopped

remote-connection-start contact-name A new remote connection has been made

remote-connection-stop contact-name A remote connection has died

remote-contact-error contact-name A remote connection error occured while being established

Table 3.3: Internal Events

18

CHAPTER 3. EVENT HANDLING

if seq != "":
event.setReturnContent(seq);

}

bind("default", "global", "incoming-source-path", load_whole_sequence, "Doc string");

3.6.3 Missing Images

Sometimes an image is not available on disk when RV tries to read. This is often the case when looking at an
image sequence while a render or composite is ongoing. By default, RV will find a nearby frame to represent
the missing frame if possible. The missing-image event will be sent once for each image which was expected
but not found. The function bound to this event can render information on on the screen indicating that
the original image was missing. The default binding display a message in the feedback area.

The missing-image event contains the domain in which rendering can occur (the window width and
height) as well as a string of the form “frame;source” which can be obtained by calling the contents()
function on the event object.

The default binding looks like this:

\: missingImage (void; Event event)
{

let contents = event.contents(),
parts = contents.split(";"),
media = io.path.basename(sourceMedia(parts[1])._0);

displayFeedback("MISSING: frame %s of %s"
% (parts[0], media), 1, drawXGlyph);

}

bind("missing-image", missingImage);

19

Chapter 4

Using Qt in Mu

Since version 3.8 RV has had limited Qt bindings in Mu. In 3.10 the number of available Qt classes has been
greatly expanded. You can browse the Qt and other Mu modules with the documentation browser.

Using Qt in Mu is similar to using it in C++. Each Qt class is presented as a Mu class which you can
either use directly or inherit from if need be. However, there are some major differences that need to be
observed:

• Not all Qt classes are wrapped in Mu. Its a good idea to look in the documentation browser to see if
a class is available yet.

• Property names in C++ do not always match those in Mu. Mu collects Qt properties at runtime in
order to provide limited supported for unknown classes. So the set and get functions for the properties
are generated at that time. Usually these names match the C++ names, but sometimes there are
differences. In general, the Mu function to get a property called foo will be called foo(). The Mu
function to set the foo property will be called setFoo(). 1

• Templated classes in Qt are not available in Mu. Usually these are handled by dynamic array types or
something analogous to the Qt class. In the case of template member functions (like QWidget::findChild<>)
there may be an equivalent Mu version that operates slightly differently (like the Mu version QWidget.findChild).

• The QString class is not wrapped (yet). Instead, the native Mu string can be used anywhere a function
takes a QString.

• You cannot control widget destruction. If you loose a reference to a QObject it will eventually be
finalized (destroyed), but at an unknown time.

• Some classes cannot be inherited from. You can inherit from any QObject, QPainter, or QLayoutItem
derived class except QWebFrame and QNetworkReply.

• The signal slot mechanism is slightly different in Mu than C++. It is currently not possible to make
a new Qt signal, and slots do not need to be declared in a special way (but they do need to have
the correct signatures to be connected). In addition, you are not required to create a QObject class
to receive a signal in Mu. You can also connect a signal directly to a regular function if desired (as
opposed to class member functions in C++).

• Threading is not yet available. The QThread class cannot be used in Mu yet.

• Default parameter values are not yet translated into Mu. This means that you must supply all arguments
– even default arguments – when calling a Qt function in Mu.

• Abstract Qt classes can be instantiated. However, you can’t really do anything with them.

• Protected member functions are public.
1A good example of this is the QWidget property visible. In C++ the get function is isVisible() whereas the Mu

function is called visible().

20

CHAPTER 4. USING QT IN MU

4.1 Signals and Slots

Possibly the biggest difference between the Mu and C++ Qt API is how signals and slots are handled. This
discussion will assume knowledge of the C++ mechanism. See the Qt documentation if you don’t know what
signals and slots are.

Jumping right in, here is an example hello world MuQt program. This can be run from the mu-interp
binary:

use qt;

\: clicked (void; bool checked)
{

print("OK BYE\n");
QCoreApplication.exit(0);

}

\: main ()
{

let app = QApplication(string[] {"hello.mu"}),
window = QWidget(nil, Qt.Window),
button = QPushButton("MuQt: HELLO WORLD!", window);

connect(button, QPushButton.clicked, clicked);

window.setSize(QSize(200, 50));
window.show();
window.raise();
QApplication.exec();

}

main();

The main thing to notice in this example is the connect() function. A similar C++ version of this
would look like this:

connect(button, SIGNAL(clicked(bool)), SLOT(myclickslot(bool)));

where myclickslot would be a slot function declared in a class. In Mu its not necessary to create
a class to recieve a signal. In addition the SIGNAL and SLOT syntax is also unnecessary. However, it is
necessary to exactly specify which signal is being referred to by passing its Mu function object directly. In
this case QPushButton.clicked. The signal must be a function on the class of the first argument of
connect().

In Mu, any function which matches the signal’s signature can be used to receive the signal. The downside
of this is that some functions like sender() are not available in Mu. However this is easily overcome with
partial application. In the above case, if we need to know who sent the signal in our clicked function, we can
change its signature to accept the sender and partially apply it in the connect call like so:

\: clicked (void; bool checked, QPushButton sender)
{

// do something with sender
}

\: main ()
{

...

connect(button, QPushButton.clicked, clicked(,button));

21

CHAPTER 4. USING QT IN MU

}

And of course additional information can be passed into the clicked function by applying more arguments.
Its also possible to connect a signal to a class method in Mu if the method signature matches. Partial

application can be used in that case as well. This is frequently the case when writing a mode which uses Qt
interface.

4.2 Inheriting from Qt Classes

Its possible to inherit directly from the Qt classes in Mu and override methods. Virtual functions in the
C++ version of Qt are translated as class methods in Mu. Non-virtual functions are regular functions in the
scope of the class. In practice this means that the Mu Qt class usage is very similar to the C++ usage.

The following example shows how to create a new widget type that implements a drop target. Drag and
drop is one aspect of Qt that requires inheritance (in C++ and Mu):

use qt;

class: MyWidget : QWidget
{

method: MyWidget (MyWidget; QObject parent, int windowFlags)
{

// REQUIRED: call base constructor to build Qt native object
QWidget.QWidget(this, parent, windowFlags);
setAcceptDrops(true);

}

method: dragEnterEvent (void; QDragEnterEvent event)
{

print("drop enter\n");
event.acceptProposedAction();

}

method: dropEvent (void; QDropEvent event)
{

print("drop\n");
let mimeData = event.mimeData(),

formats = mimeData.formats();

print("--formats--\n");
for_each (f; formats) print("%s\n" % f);

if (mimeData.hasUrls())
{

print("--urls--\n");
for_each (u; event.mimeData().urls())

print("%s\n" % u.toString(QUrl.None));
}

if (mimeData.hasText())
{

print("--text--\n");
print("%s\n" % mimeData.text());

}

event.acceptProposedAction();

22

CHAPTER 4. USING QT IN MU

}
}

Things to note in this example: the names of the drag and drop methods matter. These are same names
as used in C++. If you browser the documentation of a Qt class in Mu these will be the class methods.
Only class methods can be overriden.

23

Chapter 5

Modes and Widgets

The user interface layer can augment the display and event handling in a number of different ways. For
display, at the lowest level its possible to intercept the render event in which case you override all drawing.
Similarily for event handling you can bind functions in the global event table possibly overwriting existing
bindings and thus replace their functions.

At a higher level, both display and event handling can be done via Modes and Widgets. A Mode is a
class which manages an event table independent of the global event table and a collection of functions which
are bound in that table. In addition the mode can have a render function which is automatically called at
the right time to augment existing rendering instead of replacing it. The UI has code which manages modes
so that they may be loaded externally only when needed and automatically turned on and off.

Modes are further classified as being minor or major. The only difference between them is that a major
mode will always get precedence over any minor mode when processing events and there can be only a single
major mode active at a time. There can be many minor modes active at once. Most extensions are created
by creating a minor mode. RV currently has a single basic major mode.

Figure 5.1: Event Propagation. Red and Green modes process the event. On the left the Red mode rejects
the event allowing it to continue. On the right Red mode does not reject the event stopping the propagation.

By using a mode to implement a new feature or replace or augment an existing feature in RV you can
keep your extensions seperate from the portion of the UI that ships with RV. In other words, you never need
to touch the shipped code and your code will remain isolated.

A further refinement of a mode is a widget. Widgets are minor modes which operate in a constrainted
region of the screen. When the pointer is in the region, the widget will receive events. When the pointer is
outside the region it will not. Like a regular mode, a widget has a render function which can draw anywhere
on the screen, but usually is constrainted to its input region. For example, the image info box is a widget as
is the color inspector.

Multiple modes and widgets may be active at the same time.

24

CHAPTER 5. MODES AND WIDGETS

5.1 Outline of a Mode

In order to create a new mode you need to create a module for it and derive your mode class from the
MinorMode class in the rvtypes module. The basic outline which we’ll put in a file called new_mode.mu
looks like this:

use rvtypes;

module: new_mode {

class: NewMode : MinorMode
{

method: NewMode (NewMode;)
{

init ("new-mode",
[global bindings ...],
[local bindings ...],
Menu(...));

}
}

\: createMode (Mode;)
{

return NewMode();
}

} // end of new_mode module

The function createMode() is used by the mode manager to create your mode without knowing any-
thing about it. It should be declared in the scope of the module (not your class) and simply create your
mode object and initialize it if that’s necessary.

When creating a mode its necessary to call the init() function from within your constructor method.
This function takes at least three arguments and as many as six. Chapter 7 goes into detail about the
structure in more detail. Its declared like this in rvtypes.mu:

method: init (void;
string name,
BindingList globalBindings,
BindingList overrideBindings,
Menu menu = nil,
string sortKey = nil,
int ordering = 0)

The name of the mode is meant to be human readable. The globalBindings argument is a list of
binding tuples which are applied on top of the existing global bindings. When the mode becomes inactive
these bindings will go away. While the mode is active the underlying bindings are not accessible.

The overrideBindings argument is similar, but its bindings are layered over the global bindings and
any other modes which are on. This means that the underlying global (or other mode) bindings can still
be activated. In your event function you can reject an event which will cause rv to pass it on to bindings
underneath yours. This technique allows you to augment an existing binding instead of replacing it.

The menu argument allows you to pass in a menu structure which is merged into the main menu bar.
This makes it possible to add new menus and menu items to the existing menus.

Finally the sortKey and ordering arguments allow fine control over the order in which events are considered
when multiple modes are active. Normally the name of the mode is used as the sorting key. By supplying a
non-nil value you can use another string instead of the name. In the case that two modes have the same key
the order is considered as well.

Again, see chapter 7 for more detailed information.

25

CHAPTER 5. MODES AND WIDGETS

5.2 Outline of a Widget

A Widget looks just like a MinorMode declaration except you will derive from Widget instead of MinorMode
and the base class init() function is simpler. In addition, you’ll need to have a render() method (which
is optional for regular modes).

use rvtypes;

module: new_widget {

class: NewWidget : Widget
{

method: NewWidget (NewWidget;)
{

init ("new-widget",
[local bindings ...]);

}

method: render (void; Event event)
{

...
updateBounds(min_point, max_point);
...

}
}

\: createMode (Mode;)
{

return NewWidget();
}

} // end of new_widget module

In the outline above, the function updateBounds() is called in the render() method. updateBounds()
informs the UI about the bounding box of your widget. This function must be called by the widget at some
point. If your widget can be interactively or procedurally moved, you will probably want to may want to call
it in your render() function as shown (it does not hurt to call it often). The min_point and max_point
arguments are Vec2 types.

26

Chapter 6

Package System

With previous versions of RV we recommend directly hacking the UI code or setting up ad hoc locations in
the MU_MODULE_PATH to place files.

For RV 3.6 or newer, we recommend using the new package system instead. The documentation in older
versions of the reference manual is still valid, but we will no longer be using those examples. There are
hardly any limitations to using the package system so no additional features are lost.

6.1 rvpkg Command Line Tool

The rvpkg command line tool makes it possible to manage packages from the shell. If you use rvpkg you
do not need to use RV’s preferences UI to install/uninstall add/remove packages from the file system. We
recommend using this tool instead of manually editing files to prevent the necessity of keeping abreast of
how all the state is stored in new versions.

The rvpkg tool can perform a superset of the functions available in RV’s packages preference user
interface.

Note: many of the below commands, including install, uninstall, and remove will look for the
designated packages in the paths in the RV SUPPORT PATH environment variable. If the package you want
to operate on is not in a path listed there, that path can be added on the command line with the -include
option.

6.1.1 Getting a List of Available Packages

shell> rvpkg -list

-include directory include directory as if part of RV_SUPPORT_PATH
-env show RV_SUPPORT_PATH include app areas
-only directory use directory as sole content of RV_SUPPORT_PATH
-add directory add packages to specified support directory
-remove remove packages (by name, rvpkg name, or full path to rvpkg)
-install install packages (by name, rvpkg name, or full path to rvpkg)
-uninstall uninstall packages (by name, rvpkg name, or full path to rvpkg)
-optin make installed optional packages opt-in by default for all users
-list list installed packages
-info detailed info about packages (by name, rvpkg name, or full path to rvpkg)
-force Assume answer is ’y’ to any confirmations – don’t be interactive

Table 6.1: rvpkg Options

27

CHAPTER 6. PACKAGE SYSTEM

Lists all packages that are available in the RV_SUPPORT_PATH directories. Typical output from rvpkg
looks like this:

I L - 1.7 "Annotation" /SupportPath/Packages/annotate-1.7.rvpkg
I L - 1.1 "Documentation Browser" /SupportPath/Packages/doc_browser-1.1.rvpkg
I - O 1.1 "Export Cuts" /SupportPath/Packages/export_cuts-1.1.rvpkg
I - O 1.3 "Missing Frame Bling" /SupportPath/Packages/missing_frame_bling-1.3.rvpkg
I - O 1.4 "OS Dependent Path Conversion" /SupportPath/Packages/os_dependent_path_conversion_mode-1.4.rvpkg
I - O 1.1 "Nuke Integration" /SupportPath/Packages/rvnuke-1.1.rvpkg
I - O 1.2 "Sequence From File" /SupportPath/Packages/sequence_from_file-1.2.rvpkg
I L - 1.3 "Session Manager" /SupportPath/Packages/session_manager-1.3.rvpkg
I L - 2.2 "RV Color/Image Management" /SupportPath/Packages/source_setup-2.2.rvpkg
I L - 1.3 "Window Title" /SupportPath/Packages/window_title-1.3.rvpkg

The first three columns indicate installation status (I), load status (L), and whether or not the package
is optional (O).

If you want to include a support path directory that is not in RV_SUPPORT_PATH, you can include it
like this:

shell> rvpkg -list -include /path/to/other/support/area

To limit the list to a single support area:

shell> rvpkg -list -only /path/to/area

The -include and -only arguments may be applied to other options as well.
6.1.2 Getting Information About the Environment

You can see the entire support path list with the command:

shell> rvpkg -env

This will show alternate version package areas constructed from the RV_SUPPORT_PATH environment
variable to which packages maybe added, removed, installed and uninstalled. The list may differ based on
the platform.

6.1.3 Getting Information About a Package

shell> rvpkg -info /path/to/file.rvpkg

This will result in output like:
Name: Window Title
Version: 1.3
Installed: YES
Loadable: YES
Directory:
Author: Tweak Software
Organization: Tweak Software
Contact: an actual email address
URL: http://www.tweaksoftware.com
Requires:
RV-Version: 3.9.11
Hidden: YES
System: YES
Optional: NO
Writable: YES
Dir-Writable: YES
Modes: window_title
Files: window_title.mu

6.1.4 Adding a Package to a Support Area

shell> rvpkg -add /path/to/area /path/to/file1.rvpkg /path/to/file2.rvpkg

You can add multiple packages at the same time.
Remember that adding a package makes it become available for installation, it does not install it.

6.1.5 Removing a Package from a Support Area

shell> rvpkg -remove /path/to/area/Packages/file1.rvpkg

Unlike adding, the package in this case is the one in the support area’s Packages directory. You can
remove multiple packages at the same time.

If the package is installed rvpkg will interactively ask for confirmation to uninstall it first. You can
override that by using -force as the first argument:

28

CHAPTER 6. PACKAGE SYSTEM

shell> rvpkg -force -remove /path/to/area/Packages/file1.rvpkg

6.1.6 Installing and Uninstalling Available Packages

shell> rvpkg -install /path/to/area/Packages/file1.rvpkg
shell> rvpkg -uninstall /path/to/area/Packages/file1.rvpkg

If files are missing when uninstalling rvpkg may complain. This can happen if multiple versions where
somehow installed into the same area.
6.1.7 Combining Add and Install for Automated Installation

If you’re using rvpkg from an automated installation script you will want to use the -force option to
prevent the need for interaction. rvpkg will assume the answer to any questions it might ask is ”yes”. This
will probably be the most common usage:

shell> rvpkg -force -install -add /path/to/area /path/to/some/file1.rvpkg

Multiple packages can be specified with this command. All of the packages are installed into /path/to/area.
To force uninstall followed by removal:

shell> rvpkg -force -remove /path/to/area/Packages/file1.rvpkg

The -uninstall option is unnecessary in this case.

6.1.8 Overrideing Default Optional Package Load Behavior

If you want optional packages to be loaded by default for all users, you can do the following:

shell> rvpkg -optin /path/to/area/Packages/file1.rvpkg

In this case, rvkpg will rewrite the rvload2 file associated with the support area to indicate the package
is no longer optional. The user can still unload the package if they want, but it will be loaded by default
after running the command.

6.2 Package File Contents

A package file is zip file with at least one special file called PACKAGE along with .mu, .so, .dylib, and
support files (plain text, images, icons, etc) which implement the actual package.

Creating a package requires the zip binary. The zip binary is usually part of the default install on each
of the OSes that RV runs on.

When a package is installed, RV will place all of its contents into subdirectories in one of the RV_SUPPORT_PATH
locations. If the RV_SUPPORT_PATH is not defined in the environment, it is assumed to have the value of
RV_HOME/plugins followed by the home directory support area (which varies with each OS: see the user
manual for more info). Files contained in one zip file will all be under the same support path directory; they
will not be installed distributed over more than one support path location.

The install locations of files in the zip file is described in a filed called PACKAGE which must be present in
the zip file. The minimum package file contains two files: PACKAGE and one other file that will be installed.
A package zip file must reside in the subdirectory called Packages in one of the support path locations in
order to be installed. When the user adds a package in the RV package manager, this is where the file is
copied to.

6.3 PACKAGE Format

The PACKAGE file is a YAML file (See http://www.yaml.org/) providing information about how the package
is used and installed as well as user documentation. Every package must have a PACKAGE file with an
accurate description of its contents.

The top level of the file may contain the following fields:

29

http://www.yaml.org/

CHAPTER 6. PACKAGE SYSTEM

Field Value Type Required Description

package string • The name of the package in human readable form

author string The name of the author/creator of the package

organization string The name of the organization (company) the author

created the package for

contact email address The email contact of the author/support person

version version number • The package version

url URL Web location for the package where updates, additional

documentation resides

rv version number • The minimum version of RV which this package is

compatible with

requires zip file name list Any other packages (as zip file names) which are required

in order to install/load this package

icon PNG file name The name of an file with an icon for this package

imageio file list List of files in package which implement Image I/O

movieio file list List of files in package which implement Movie I/O

hidden boolean Either ”true” or ”false” indicating whether package should

be visible by default in the package manager

system boolean Either ”true” or ”false” indicating whether the package was

pre-installed with RV and cannot be removed/uninstalled

optional boolean Either ”true” or ”false” indicating whether the package

should appear loaded by default. If true the package is

not loaded by default after it is installed. Typically this is

used only for packages that are pre-installed. (Added in

3.10.9)

modes YAML list List of modes implemented in the package

files YAML list List non-mode file handling information

description HTML 1.0 string • HTML documentation of the package for user viewing in

the package manager

Table 6.2: Top level fields of PACKAGE file.

Each element of the modes list describes one Mu module which is implemented as either a .mu file or
a .so file. Files implementing modes are assumed to be Mu module files and will be placed in the Mu
subdirectory of the support path location. The other fields are used to optionally create a menu item and/or
a short cut key either of which will toggle the mode on/off. The load field indicates when the mode should be
loaded: if the value is ”lazy” the mode will be loaded the first time it is activated, if the value is ”immediate”
the mode will be loaded on start up.

Field Value Type Required Description

file string • The name of the file which implements the mode

menu string If defined, the string which will appear in a menu item to

indicate the status (on/off) of the mode

shortcut string If defined and menu is defined the shortcut for the menu

item

event string Optional event name used to toggle mode on/off

load string • Either immediate or delay indicating when the mode

should be loaded

icon PNG image file Icon representing the mode

requires mode file name list Names of other mode files required to be active for this

mode to be active

Table 6.3: Mode Fields

As an example, the package window_title-1.0.rvpkg has a relatively simple PACKAGE file shown

30

CHAPTER 6. PACKAGE SYSTEM

in listing 6.1.

package: Window Title
author: Tweak Software
organization: Tweak Software
contact: some email address of the usual form
version: 1.0
url: http://www.tweaksoftware.com
rv: 3.6
requires: ’’

modes:
- file: window_title

load: immediate

description: |

<p> This package sets the window title to something that indicates the
currently viewed media.
</p>

<h2>How It Works</h2>

<p> The events play-start, play-stop, and frame-changed, are bound to
functions which call setWindowTitle(). </p>

Listing 6.1: PACKAGE File

When the package zip file contains additional support files (which are not specified as modes) the package
manager will try to install them in locations according to the file type. However, you can also directly specify
where the additional files go relative to the support path root directory.

Field Value Type Required Description

file string • The name of the file in the package zip file

location string • Location to install file in relative to the support path

root. This can contain the variable $PACKAGE to

specify special package directories. E.g.

SupportFiles/$PACKAGE is the support directory for the

package.

Table 6.4: File Fields

For example if you package contains icon files for user interface, they can be forced into the support files
area of the package like this:

files:
- file: myicon.tif

location: SupportFiles/$PACKAGE

Listing 6.2: Specify Auxillary File Location

31

CHAPTER 6. PACKAGE SYSTEM

6.4 Package Management Configuration Files

There are two files which the package manager creates and uses: rvload2 (previous releases had a file called
rvload) in the Mu subdirectory and rvinstall in the Packages subdirectory. rvload2 is used on start
up to load package modes and create stubs in menus or events for toggling the modes on/off if they are lazy
loaded. rvinstall lists the currently known package zip files with a possible an asterix in front of each file
that is installed. The rvinstall file in used only by the package manager in the preferences to keep track
of which packages are which.

The rvload2 file has a one line entry for each mode that it knows about. This file is automatically
generated by the package manager when the user installs a package with modes in it. The first line of the
file indicates the version number of the rvload2 file itself (so we can change it in the future) followed by
the one line descriptions.

For example, this is the contents of rvload2 after installing the window title package:

3
window_title,window_title.zip,nil,nil,nil,true,true,false

The fields are:

1. The mode name (as it appears in a require statement in Mu)

2. The name of the package zip file the mode originally comes from

3. An optional menu item name

4. An optional menu shortcut/accelerator if the menu item exists

5. An optional event to bind mode toggling to

6. A boolean indicating whether the mode should be loaded immediately or not

7. A boolean indicating whether the mode should be activated immediately

8. A boolean indicating whether the mode is optional so it should not be loaded by default unless the
user opts-in.1

Each field is separated by a comma and there should be no extra whitespace on the line. The rvinstall

file is much simpler: it contains a single zip file name on each line and an asterix next to any file which is
current known to be installed. For example:

crop.zip
layer_select.zip
metadata_info.zip
sequence_from_file.zip

*window_title.zip

In this case, five modes would appear in the package manager UI, but only the window title package is
actually installed. The zip files should exist in the same directory that rvinstall lives in.

6.5 Developing a New Package

In order to start a new package there is a chicken and egg problem which needs to be overcome: the package
system wants to have a package file to install.

The best way to start is to create a source directory somewhere (like your source code repository) where
you can build the zip file form its contents. Create a file called PACKAGE in that directory by copying and
pasting from either this manual (listing 6.1) or from another package you know works and edit the file to
reflect what you will be doing (i.e. give it a name, etc).

1Added in 3.10.9. The rvload2 file version was also bumped up to version 3.

32

CHAPTER 6. PACKAGE SYSTEM

If you are writing a Mu module implementing a mode or widget (which is also a mode) then create the
.mu file in that directory also.

You can at that point use zip to create the package like so:

shell> zip new_package-0.0.rvpkg PACKAGE the_new_mode.mu

This will create the new_package-0.0.rvpkg file. At this point you’re ready to install your package
that doesn’t do anything. Open RV’s preferences and in the package manager UI add the zip file and install
it (preferably in your home directory so its visible only to you while you implement it).

Once you’ve done this, the rvload2 and rvinstall files will have been either created or updated
automatically. You can then start hacking on the installed version of your Mu file (not the one in the
directory you created the zip file in). Once you have it working the way you want copy it back to your
source directory and create the final zip file for distribution and delete the one that was added by RV into
the Packages directory.

6.5.1 Older Package Files (.zip)

RV version 3.6 used the extension .zip for its package files. This still works, but newer versions prefer
the extension .rvpkg along with a preceeding version indicator. So a new style package will look like:
rvpackagename-X.Y.rvpkg where X.Y is the package version number that appears in the PACKAGE file.
New style package files are required to have the version in the file name.

6.5.2 Using the Mode Manager While Developing

Its possible to delay making an actual package file when starting developement on individual modes. You
can force RV to load your mode (assuming its in the MU_MODULE_PATH someplace) like so:

shell> rv -flags ModeManagerLoad=my_new_mode

where my_new_mode is the name of the .mu file with the mode in it (without the extension).
You can get verbose information on what’s being loaded and why (or why not by setting the verbose

flag):

shell> rv -flags ModeManagerVerbose

The flags can be combined on the command line.

shell> rv -flags ModeManagerVerbose ModeManagerLoad=my_new_mode

If your package is installed already and you want to force it to be loaded (this overrides the user prefer-
ences) then:

shell> rv -flags ModeManagerPreload=my_already_installed_mode

similarily, if you want to force a mode not to be loaded:

shell> rv -flags ModeManagerReject=my_already_installed_mode

6.5.3 Using -debug mu

Normally, RV will compile Mu files to conserve space in memory. Unfortunately, that means loosing a
lot of information like source locations when exceptions are thrown. You can tell RV to allow debugging
information by adding -debug mu to the end of the RV command line. This will consume more memory
but report source file information when displaying a stack trace.

6.5.4 The Mu API Documentation Browser

The Mu modules are documented dynamically by the documentation browser. This is available under RV’s
help menu ”Mu API Documentation Browser”.

33

CHAPTER 6. PACKAGE SYSTEM

6.6 Loading Versus Installing and User Override

The package manager allows eash user to individually install and uninstall packages in support directories
that they have permission in. For directories that the user does not have permission in the package manager
maintains a separate list of packages which can be excluded by the user.

For example, there may be a package installed facility wide owned by an administrator. The support
directory with facility wide packages only allows read permission for normal users. Packages that were
installed and loaded by the administrator will be automatically loaded by all users.

In order to allow a user to override the loading of system packages, the package manager keeps a list of
packages not to load. This is kept in the user’s preferences file (see user manual for location details). In the
package manager UI the ”load” column indicates the user status for loading each package in his/her path.

6.6.1 Optional Packages

The load status of optional packages are also kept in the user’s preferences, however these packages use a
different preference variable to determine whether or not they should be loaded. By default optional packages
are not loaded when installed. A package is made optional by setting the “optional” value in the PACKAGE
file to true.

34

Chapter 7

A Simple Package

This first example will show how to create a package that defines some key bindings and creates a custom
personal menu. You will not need to edit a .rvrc.mu file to do this as in previous versions.

We’ll be creating a package intended to keep all our personal customizations. To start with we’ll need to
make a Mu module that implements a new mode. At first won’t do anything at all: just load at start up.
Put the following in to a file called mystuff.mu.

use rvtypes;
use extra_commands;
use commands;

module: mystuff {

class: MyStuffMode : MinorMode
{

method: MyStuffMode (MyStuffMode;)
{

init("mystuff-mode",
nil,
nil,
nil);

}
}

\: createMode (Mode;)
{

return MyStuffMode();
}

} // end module

Now we need to create a PACKAGE file in the same directory before we can create the package zip file. It
should look like this:

Assuming both files are in the same directory, we create the zip file using this command from the shell:

shell> zip mystuff-1.0.rvpkg PACKAGE mystuff.mu

The file mystuff-1.0.rvpkg should have been created. Now start RV, open the preferences package
pane and add the mystuff-1.0.rvpkg package. You should now be able to install it. Make sure the
package is both installed and loaded in your home directory’s RV support directory so its private to you.

At this point, we’ll edit the installed Mu file directly so we can see results faster. When we have something
we like, we’ll copy it back to the original mystuff.mu and make the rvpkg file again with the new code. Be

35

CHAPTER 7. A SIMPLE PACKAGE

package: My Stuff
author: M. VFX Artiste
version: 1.0
rv: 3.6
requires: ’’

modes:
- file: mystuff

load: immediate

description: |
<p>M. VFX Artiste’s Personal RV Customizations</p>

careful not to uninstall the mystuff package while we’re working on it or our changes will be lost. Alternately,
for the more paranoid (and wiser), we could edit the file elsewhere and simply copy it onto the installed file.

To start with let’s add two functions on the “<” and “>” keys to speed up and slow down the playback
by increasing and decreasing the FPS. There are two main this we need to do: add two method to the class
which implement speeding up and slowing down, and bind those functions to the keys.

First let’s add the new methods after the class constructor MyStuffMode() along with two global
bindings to the “<” and “>” keys. The class definition should now look like this:

1 ...
2
3 class: MyStuffMode : MinorMode
4 {
5 method: MyStuffMode (MyStuffMode;)
6 {
7 init("mystuff-mode",
8 [("key-down-->", faster, "speed up fps"),
9 ("key-down--<", slower, "slow down fps")],

10 nil,
11 nil);
12 }
13
14 method: faster (void; Event event)
15 {
16 setFPS(fps() * 1.5);
17 displayFeedback("%g fps" % fps());
18 }
19
20 method: slower (void; Event event)
21 {
22 setFPS(fps() * 1.0/1.5);
23 displayFeedback("%g fps" % fps());
24 }
25 }

The bindings are created by passing a list of tuples to the init function. Each tuple contains three
elements: the event name to bind to, the function to call when it is activated, and a single line description
of what it does. In Mu a tuple is formed by putting parenthesis around comma separated elements. A list
is formed by enclosing its elements in square brackets. So a list of tuples will have the form:

36

CHAPTER 7. A SIMPLE PACKAGE

[(...), (...), ...]

Where the “...” means “and so on”. The first tuple in our list of bindings is:

(key-down-->, faster, speed up fps)

So the event in this case is key-down--> which means the point at which the > key is pressed. The
symbol faster is refering to the method we declared at line 14. So faster will be called whenever the key
is pressed. Similarily we bind slower (from line 20) to key-down--<.

("key-down--<", slower, "slow down fps")

And to put them in a list requires enclose the two of them in square brackets:

[("key-down-->", faster, "speed up fps"),
("key-down--<", slower, "slow down fps")]

To add more bindings you create more methods to bind and add additional tuples to the list.
The python version of above looks like this:

from rv.rvtypes import *
from rv.commands import *
from rv.extra_commands import *

class PyMyStuffMode(MinorMode):

def __init__(self):
MinorMode.__init__(self)
self.init("py-mystuff-mode",

[("key-down-->", self.faster, "speed up fps"),
("key-down--<", self.slower, "slow down fps")],

None,
None)

def faster(self, event):
setFPS(fps() * 1.5)
displayFeedback("%g fps" % fps(), 2.0);

def slower(self, event):
setFPS(fps() * 1.0/1.5)
displayFeedback("%g fps" % fps(), 2.0);

def createMode():
return PyMyStuffMode()

7.1 How Menus Work

Adding a menu is fairly straightforward if you understand how to create a MenuItem. There are different
types of MenuItems: items that you can select in the menu and cause something to happen, or items
that are themselves menus (sub-menu). The first type is constructed using this constructor (shown here in
prototype form) for Mu:

MenuItem(string label,
(void;Event) actionHook,
string key,
(int;) stateHook);

37

CHAPTER 7. A SIMPLE PACKAGE

or in Python this is specified as a tuple:

("label", actionHook, "key", stateHook)

The actionHook and stateHook arguments need some explaination. The other two (the label and
key) are easier: the label is the text that appears in the menu item and the key is a hot key for the menu
item.

The actionHook is the purpose of the menu item–it is a function or method which will be called when
the menu item is activated. This is just like the method we used with bind() — it takes an Event object.
If actionHook is nil, than the menu item won’t do anything when the user selects it.

The stateHook provides a way to check whether the menu item should be enabled (or greyed out)–it
is a function or method that returns an int. In fact, it is really returning one of the following symbolic
constants: NeutralMenuState, UncheckMenuState, CheckedMenuState, MixedStateMenuState,
or DisabledMenuState. If the value of stateHook is nil, the menu item is assumed to always be
enabled, but not checked or in any other state.

A sub-menu MenuItem can be create using this constructor in Mu:

MenuItem(string label,
MenuItem[] subMenu);

or a tuple of two elements in Python:

("label", subMenu)

The subMenu is an array of MenuItems in Mu or a list of menu item tuples in Python.
Usually we’ll be defining a whole menu — which is an array of MenuItems. So we can use the array

initialization syntax to do something like this:

let myMenu = MenuItem {"My Menu", Menu {
{"Menu Item", menuItemFunc, nil, menuItemState},
{"Other Menu Item", menuItemFunc2, nil, menuItemState2}

}}

Finally you can create a sub-menu by nesting more MenuItem constructors in the subMenu.

MenuItem myMenu = {"My Menu", Menu {
{"Menu Item", menuItemFunc, nil, menuItemState},
{"Other Menu Item", menuItemFunc2, nil, menuItemState2},
{"Sub-Menu", Menu {

{"First Sub-Menu Item", submenuItemFunc1, nil, submenu1State}
}}

}};

in Python this looks like:

("My Menu", [
("Menu Item", menuItemFunc, None, menuItemState),
("Other Menu Item", menuItemFunc2, None, menuItemState2)])

You’ll see this on a bigger scale in the rvui module where most the menu bar is declared in one large
constructor call.

7.2 A Menu in MyStuffMode

Now back to our mode. Let’s say we want to put our faster and slower functions on menu items in the menu
bar. The fourth argument to the init() function in our constructor takes a menu representing the menu bar.
You only define menus which you want to either modify or create. The contents of our main menu will be
merged into the menu bar.

By merge into we mean that the menus with the same name will share their contents. So for example
if we add the File menu in our mode, RV will not create a second File menu on the menu bar; it will add

38

CHAPTER 7. A SIMPLE PACKAGE

the contents of our File menu to the existing one. On the other hand if we call our menu MyStuff RV will
create a brand new menu for us (since presumably MyStuff doesn’t already exist). This algorithm is applied
recursively so sub-menus with the same name will also be merged, and so on.

So let’s add a new menu called MyStuff with two items in it to control the FPS. In this example, we’re
only showing the actual init() call from mystuff.mu:

init("mystuff-mode",
[("key-down-->", faster, "speed up fps"),

("key-down--<", slower, "slow down fps")],
nil,
Menu {

{"MyStuff", Menu {
{"Increase FPS", faster, nil},
{"Decrease FPS", slower, nil}

}
}

});

Normally RV will place the new menu (called “MyStuff”) just before the Windows menu.
If we wanted to use menu accelerators instead of (or in addition to) the regular event bindings we add

those in the menu item constructor. For example, if we wanted to also use the keys - and = for slower and
faster we could do this:

init("mystuff-mode",
[("key-down-->", faster, "speed up fps"),

("key-down--<", slower, "slow down fps")],
nil,
Menu {

{"MyStuff", Menu {
{"Increase FPS", faster, "="},
{"Decrease FPS", slower, "-"}

}
}

});

The advantage of using the event bindings instead of the accelerator keys is that they can be overriden
and mapped and unmapped by other modes and “chained” together. Of course we could also use > and <
for the menu accelerator keys as well (or instead of using the event bindings).

The Python version of the script might look like this:

from rv.rvtypes import *
from rv.commands import *
from rv.extra_commands import *

class PyMyStuffMode(MinorMode):

def __init__(self):
MinorMode.__init__(self)
self.init("py-mystuff-mode",

[("key-down-->", self.faster, "speed up fps"),
("key-down--<", self.slower, "slow down fps")],

None,
[("MyStuff",

[("Increase FPS", self.faster, "=", None),
("Decrease FPS", self.slower, "-", None)])])

def faster(self, event):

39

CHAPTER 7. A SIMPLE PACKAGE

setFPS(fps() * 1.5)
displayFeedback("%g fps" % fps(), 2.0);

def slower(self, event):
setFPS(fps() * 1.0/1.5)
displayFeedback("%g fps" % fps(), 2.0);

def createMode():
return PyMyStuffMode()

7.3 Finishing up

Finally, we’ll create the final rvpkg package by copying mystuff.mu back to our tempory directory with
the PACKAGES file where we originally made the rvpkg file.

Next start RV and uninstall and remove the mystuff package so it no longer appears in the package
manager UI. Once you’ve done this recreate the rvpkg file from scratch with the new mystuff.mu file and
the PACKAGES file:

shell> zip mystuff-1.0.rvpkg PACKAGES mystuff.mu

or if you’re using python:

shell> zip mystuff-1.0.rvpkg PACKAGES mystuff.py

You can now add the latest mysuff-1.0.rvpkg file back to RV and use it. In the future add personal
customizations directly to this package and you’ll always have a single file you can install to customize RV.

40

Chapter 8

The Custom Matte Package

Now that we’ve tried the simple stuff, let’s do something useful. 1 RV has a number of settings for viewing
mattes. These are basically regions of the frame that are darkened or completely blackened to simulate what
an audience will see when the movie is projected. The size and shape of the matte is an artistic decision and
sometimes a unique matte will be required.

You can find various common mattes already built into RV under the View menu.
In this example we’ll create a package that reads a file when RV starts to get a list of matte geometry

and names. We’ll make a custom menu out of these which will set some state in the UI. We’ll also use the
mode render function to draw the mattes.

To start with, we’ll assume that the path to the file containing the mattes is located in an environment
variable called RV_CUSTOM_MATTE_DEFINITIONS. We’ll get the value of that variable, open and parse the
file, and create a data struct holding all of the information about the mattes.

8.1 Creating the Package

Use the same method described in Chapter 7 to begin working on the package. If you haven’t read that
chapter please do so first. A completed version of the package created in this chapter is included in the RV
distribution. So using that as reference is a good idea.

8.2 The Custom Matte File

The file will be a very simple comma separated value (CSV) file. Each line will start with the name of the
custom matte followed by four floating point values indicating the distances to each edge as a percentage of
the frame width and height and some text to render under the matte line. So each line will look something
like this:

Matte Name, left, right, bottom, top, text

8.3 Parsing the Matte File

Before we actually parse the file, we should decide what we want when we’re done. In this case we’re
going to make our own data structure to hold the information in each line of the file. We’ll call this a
MatteDescription. Here’s a simple way to define the type:

class: MatteDescription
{

string name;

1Previous versions of this manual presented a different approach which still works in RV 3.6, but is no longer the preferred
method.

41

CHAPTER 8. THE CUSTOM MATTE PACKAGE

float left;
float right;
float bottom;
float top;
string text;

}

We don’t need to define any special constructors because Mu supplies a few default ones. One of
them is a function that takes one argument for each field. We’ll be using that to create instances of
MatteDescription.

Next we’ll write a method2 for our mode that does the parsing and returns a dynamic array of MatteDescriptions.

1 method: parseMatteFile (MatteDescription[]; string filename)
2 {
3 use io;
4
5 if (!path.exists(filename)) return nil;
6
7 let file = ifstream(filename),
8 everything = read_all(file),
9 lines = everything.split("\n\r");

10
11 file.close();
12
13 MatteDescription[] mattes;
14
15 for_each (line; lines)
16 {
17 let tokens = line.split(",");
18
19 if (!tokens.empty())
20 {
21 mattes.push_back(MatteDescription(tokens[0],
22 float(tokens[1]),
23 float(tokens[2]),
24 float(tokens[3]),
25 float(tokens[4]),
26 tokens[5]));
27 }
28 }
29
30 return mattes;
31 }

Listing 8.1: Parsing the Custom Matte File

There are a number of things to note in this function. First of all, in order to do file I/O in Mu we need
the io module. Line 3 loads the module and puts all of its symbols in the current namespace. We could
have used require instead of use, but functions like the ifstream constructor would need to be written
io.ifstream(...).

In line 5 we check to see if the file actually exists and if not simply return nil. So the caller of this
function will have to check if anything was parsed and do something intelligent if not.

The let section at line 7 declares three variables. The file variable is a newly created ifstream (input
file stream). The next line reads the entire file as a string and assigns it to the variable everything.
Finally, everything is split into an array of lines which is assigned to lines.

2If you are unfamiliar with object oriented programing you can substitute the word function for method. This manual will
sometimes refer to a method as a function. It will never refer to a non-method function as a method.

42

CHAPTER 8. THE CUSTOM MATTE PACKAGE

At this point we don’t need the file any more so its closed on line 11.
Line 13 creates an empty dynamic array of MatteDescription objects to be filled in.
The for_each loop iterates over the lines variable. Each time through the loop, the next element in

lines is assigned to the variable line. The line is split over commas since that’s how defined the fields of
each line.

If there are no tokens after splitting the line, that means the line is empty and we ignore it. Otherwise,
a new MatteDescription is created using the split line and appended to the end of the mattes array.

Finally, the function returns whatever MatteDesriptions it managed to parse.
But wait, we’ll need something to read our environment variable. The easiest thing to do is make a

method that gets the environment variable and calls our new parse function on the file it finds. We’ll be
calling this instead of our parseMatteFile() function. If we want to change how it looks for the file later,
we can change it without touching our parsing function:

method: findAndParseMatteFile (MenuDescription[];)
{

use system;
return parseMatteFile(getenv("RV_CUSTOM_MATTE_DEFINITIONS"));

}

The method findAndParseMatteFile() is a one liner: just call our other function with the result of
the environment variable look up. The getenv() function is in the system module so we had to use it.

We’ll need two “use” lines first thing at the top of the module definition. These lines import the system
and io modules and their namespaces. These imports are available to all functions in the module. So we
no longer need to have them inside each function. To use this module in some other code you can either use
require or use. The only difference is how you call the functions:

require customMattes;
let mattes = customMattes.findAndParseMatteFile();
// --or--
use customMattes;
let mattes = findAndParseMatteFile();

Note that use actually does two things: first it loads the module if its not already loaded (just like
require does) and then it uses the module’s namespace. The use of the namespace lasts through the end
of the current scope (the next end curly brace). So if we wanted to, we could put the use line at the top of
the file and it would be in effect for everything in the file.

Finally, we’ll add some member variables to our mode to hold the MatteDescription objects we parsed.
At this point the custom_mattes.mu file looks like this:

module: custom_mattes {
use rvtypes;
use io;
use commands;
use extra_commands;
use system;

class: CustomMatteMinorMode : MinorMode
{

class: MatteDescription
{

string name;
float left;
float right;
float bottom;
float top;
string text;

}

43

CHAPTER 8. THE CUSTOM MATTE PACKAGE

MatteDescription _currentMatte;
MatteDescription[] _mattes;

method: parseMatteFile (MatteDescription[]; string filename)
{

... see above ...
}

method: findAndParseMatteFile (MatteDescription[];)
{

... see above ...
}

method: CustomMatteMinorMode (CustomMatteMinorMode;)
{

_mattes = findAndParseMatteFile();

this.init("custom-mattes",
nil,
nil,
nil);

}
}

\: createMode (Mode;)
{

return CustomMatteMinorMode();
}

} // end module

8.4 The CustomMattesMode Constructor

The mode constructor needs to do three things: call the file parsing function, do something sensible if the
matte file parsing fails, and build a menu with the items found in the matte file.

The parsing is simply calling findAndParseMatteFile(). If an error occurs, the function will throw.
So we need to enclose it in a try block and report an error and continue if it fails.

1 method: CustomMatteMinorMode (CustomMatteMinorMode;)
2 {
3 MenuItem matteMenu = nil;
4
5 try
6 {
7 _mattes = findAndParseMatteFile();
8
9 let matteItems = Menu();

10
11 matteItems.push_back(... menu item for no matte ...);
12
13 for_each (m; _mattes)
14 {

44

CHAPTER 8. THE CUSTOM MATTE PACKAGE

15 matteItems.push_back(... menu item for matte ...);
16 }
17
18 if (!matteItems.empty())
19 {
20 matteMenu =
21 MenuItem("View",
22 Menu(MenuItem("_", nil),
23 MenuItem("Custom Mattes",
24 matteItems)));
25 }
26
27 }
28 catch (...)
29 {
30 _mattes = nil;
31 }
32
33 init("Custom Matte",
34 nil,
35 nil,
36 Menu(matteMenu));
37 }

Listing 8.2: Mode Constructor Outline

Line 7 calls the parser function we created ealier. If the function fails, it will throw and control resume
at line 28.

A menu array is created at line 9 which is subsequently filled with an option to draw nothing (line ??).
Each of the matte items read from the file are then added to the Menu in the for_each loop at line 13.
Finally the View menu is created with a Custom Mattes sub-menu to hold the items (line 20)

In chapter 7 menus are created with methods to call when the user selects them. However, we have to do
something a bit more complex in this example: each method needs to know about a particular matte to make
it current, but we don’t know about the mattes until the file is parsed. The solution is to somehow associate
each call to a method with its matte. In this example we’ll use a technique called partial application3 to
wrap each function call with its matte.

The _currentMatte variable in the mode indicates which matte will be rendered. The menu item
method will need to set this to an incoming matte:

method: selectMatte (void; Event event, MatteDescription m)
{

_currentMatte = m;
redraw();

}

Notice that we didn’t say which matte to set it to. The function just sets the value to whatever its
argument is. Since this function is going to be called when the menu item is selected it needs to be an event
function (a function which takes an Event as an argument and returns nothing). In the case where we want
no matte drawn, we’ll pass in nil.

The menu state function (which will put a check mark next to the current matte) has a similar problem.
In this case we’ll use a mechanism with similar results: a closure4. We’ll create a method which returns a
function given a matte. The returned function will be our menu state function. This sounds complicated,
but its simple in use:

3One kind of partial application which may be illuminating is called currying and is described here: http://en.wikipedia.
org/wiki/Currying

4http://en.wikipedia.org/wiki/Closure (computer science)

45

http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Closure_(computer_science)

CHAPTER 8. THE CUSTOM MATTE PACKAGE

1 method: currentMatteState ((int;); MatteDescription m)
2 {
3 \: (int;)
4 {
5 return if this._currentMatte eq m
6 then CheckedMenuState
7 else UncheckedMenuState;
8 };
9 }

The thing to note here is that the parameter m (line 1) passed into currentMatteState() is being used
inside the anonymous function that it returns. The m inside the anonymous function (line 5)is known as a free
variable. The value of this variable at the time that currentMatteState() is called becomes wrapped up
with the returned function. One way to think about this is that each time you call currentMatteState()
with a new value for m, it will return a different anonymous function where the internal m (line 5) is replaced
the value of currentMatteState()’s m.

So how do we build the menus? In listing 8.2 the for each loop at line 13 will create a menu item and
push it onto the menu. Here’s how we’ll do it:

1 for_each (m; _mattes)
2 {
3 matteItems.push_back(MenuItem(m.name,
4 selectMatte(,m),
5 nil,
6 currentMatteState(m)));
7 }

The call to selectMatte() at line 4 performs the partial application we talked about above. Notice that
the first argument to the function is missing. For the menu state function we call currentMatteState()
at line 6 resulting in a unique anonymous function for our matte.

For the case with no matte we do the same thing, but use nil in place of a matte:

matteItems.push_back(MenuItem("No Matte",
selectMatte(,nil),
nil,
currentMatteState(nil)));

So the full mode constructor function now looks like this:

method: CustomMatteMinorMode (CustomMatteMinorMode;)
{

MenuItem matteMenu = nil;

try
{

_mattes = findAndParseMatteFile();

let matteItems = Menu();

matteItems.push_back(MenuItem("No Matte",
selectMatte(,nil),
nil,
currentMatteState(nil)));

for_each (m; _mattes)
{

matteItems.push_back(MenuItem(m.name,

46

CHAPTER 8. THE CUSTOM MATTE PACKAGE

selectMatte(,m),
nil,
currentMatteState(m)));

}

if (!matteItems.empty())
{

matteMenu = MenuItem("View",
Menu(MenuItem("_", nil),

MenuItem("Custom Mattes", matteItems)));
}

}
catch (...)
{

_mattes = nil;
}

init("Custom Matte",
nil,
nil,
Menu(matteMenu));

}

8.5 Rendering the Matte

In addition to parsing the matte file, we also need to draw the mattes. The basic idea will be to grey or
black out large sections of the underlying image.

1 method: render (void; Event event)
2 {
3 if (_currentMatte eq nil) return;
4
5 \: sort (Vec2[]; Vec2[] array)
6 {
7 // only handles flipping not flopping right now
8 if (array[0].y < array[2].y)
9 return Vec2[] {array[3], array[2], array[1], array[0]}

10 else
11 return array;
12 }
13
14 State state = data();
15 setupProjection(event.domain().x, event.domain().y);
16
17 glEnable(GL_BLEND);
18 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
19
20 gltext.size(20.0);
21 gltext.color(Color(1,1,1,1) * .5);
22
23 let {_, l, r, b, t, text} = _currentMatte;
24
25 let bounds = gltext.bounds(text),

47

CHAPTER 8. THE CUSTOM MATTE PACKAGE

26 th = bounds[1] + bounds[3];
27
28 Color c = state.config.matteColor;
29 c.w = state.matteOpacity;
30
31 glColor(c);
32
33 for_each (ri; sourcesRendered())
34 {
35 let g = sort(sourceGeometry(ri.name)),
36 w = g[2].x - g[0].x,
37 h = g[2].y - g[0].y,
38 a = w / h,
39 x0 = g[0].x + l * w,
40 x1 = g[2].x - r * w,
41 y0 = g[0].y + t * h,
42 y1 = g[2].y - b * h;
43
44 glBegin(GL_QUADS);
45
46 // Top
47 glVertex(g[0]);
48 glVertex(g[1]);
49 glVertex(g[1].x, y0);
50 glVertex(g[0].x, y0);
51
52 // Bottom
53 glVertex(g[3].x, y1);
54 glVertex(g[2].x, y1);
55 glVertex(g[2]);
56 glVertex(g[3]);
57
58 // Left
59 glVertex(g[0].x, y0);
60 glVertex(x0, y0);
61 glVertex(x0, y1);
62 glVertex(g[0].x, y1);
63
64 // Right
65 glVertex(g[1].x, y0);
66 glVertex(x1, y0);
67 glVertex(x1, y1);
68 glVertex(g[1].x, y1);
69
70 glEnd();
71
72 gltext.writeAt(x0, y1 - th - 5, text);
73 }
74
75 glDisable(GL_BLEND);
76 }

There are a few things we haven’t seen before in there. First of all, its getting some crucial information
what was rendered. In this case we want to loop over all of the images which have been draw by the renderer.
The function sourcesRendered() returns an array of type RenderedSourceInfo, one for each image.

48

CHAPTER 8. THE CUSTOM MATTE PACKAGE

In this case, we’re only interested in the name of each source so we can call the command sourceGeometry()
in line 35. sourceGeometry() returns a Vec2[] of the four corners of the image in the view space. Be-
cause not all images have the same orientation (origin on top or bottom, etc) the results are sorted in an
order that makes drawing easiest. This is done by calling a small utility function sort() which is declared
inside the render() method.

8.6 The Finished custom mattes.mu File

module: custom_mattes {
use gl;
use glu;
use rvtypes;
use io;
use commands;
use extra_commands;
use glyph;
use system;

class: CustomMatteMinorMode : MinorMode
{

class: MatteDescription
{

string name;
float left;
float right;
float bottom;
float top;
string text;

}

MatteDescription _currentMatte;
MatteDescription[] _mattes;

method: parseMatteFile (MatteDescription[]; string filename)
{

if (!path.exists(filename)) return nil;

let file = ifstream(filename),
everything = read_all(file),
lines = everything.split("\n\r");

file.close();

MatteDescription[] mattes;

for_each (line; lines)
{

let tokens = line.split(",");

if (!tokens.empty())
{

//
// This will throw if we don’t have enough tokens. So the
// called of the parseMatteFile() function should make sure
// to catch.
//

mattes.push_back(MatteDescription(tokens[0],
float(tokens[1]),
float(tokens[2]),
float(tokens[3]),
float(tokens[4]),
tokens[5]));

}
}

return mattes;
}

method: findAndParseMatteFile (MatteDescription[];)
{

return parseMatteFile(getenv("RV_CUSTOM_MATTE_DEFINITIONS"));
}

method: selectMatte (void; Event event, MatteDescription m)
{

49

CHAPTER 8. THE CUSTOM MATTE PACKAGE

_currentMatte = m;
redraw();

}

method: currentMatteState ((int;); MatteDescription m)
{

\: (int;)
{

return if this._currentMatte eq m
then CheckedMenuState
else UncheckedMenuState;

};
}

method: CustomMatteMinorMode (CustomMatteMinorMode;)
{

MenuItem matteMenu = nil;

try
{

//_mattes = findAndParseMatteFile();
_mattes = parseMatteFile("/Users/jimh/mattes");

let matteItems = Menu();

matteItems.push_back(MenuItem("No Matte",
selectMatte(,nil),
nil,
currentMatteState(nil)));

for_each (m; _mattes)
{

matteItems.push_back(MenuItem(m.name,
selectMatte(,m),
nil,
currentMatteState(m)));

}

if (!matteItems.empty())
{

matteMenu = MenuItem("View",
Menu(MenuItem("_", nil),

MenuItem("Custom Mattes",
matteItems)));

}

}
catch (...)
{

_mattes = nil;
}

init("Custom Matte",
nil,
nil,
Menu(matteMenu));

}

method: render (void; Event event)
{

if (_currentMatte eq nil) return;

\: sort (Vec2[]; Vec2[] array)
{

// only handles flipping not flopping right now
if array[0].y < array[2].y

then Vec2[] { array[3], array[2], array[1], array[0] }
else array;

}

State state = data();
setupProjection(event.domain().x, event.domain().y);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

gltext.size(20.0);
gltext.color(Color(1,1,1,1) * .5);

let {_, l, r, b, t, text} = _currentMatte;

50

CHAPTER 8. THE CUSTOM MATTE PACKAGE

let bounds = gltext.bounds(text),
th = bounds[1] + bounds[3];

Color c = state.config.matteColor;
c.w = state.matteOpacity;

glColor(c);

for_each (ri; sourcesRendered())
{

let g = sort(sourceGeometry(ri.name)),
w = g[2].x - g[0].x,
h = g[2].y - g[0].y,
a = w / h,
x0 = g[0].x + l * w,
x1 = g[2].x - r * w,
y0 = g[0].y + t * h,
y1 = g[2].y - b * h;

glBegin(GL_QUADS);

// Top
glVertex(g[0]);
glVertex(g[1]);
glVertex(g[1].x, y0);
glVertex(g[0].x, y0);

// Bottom
glVertex(g[3].x, y1);
glVertex(g[2].x, y1);
glVertex(g[2]);
glVertex(g[3]);

// Left
glVertex(g[0].x, y0);
glVertex(x0, y0);
glVertex(x0, y1);
glVertex(g[0].x, y1);

// Right
glVertex(g[1].x, y0);
glVertex(x1, y0);
glVertex(x1, y1);
glVertex(g[1].x, y1);

glEnd();

gltext.writeAt(x0, y1 - th - 5, text);
}

glDisable(GL_BLEND);
}

}

\: createMode (Mode;)
{

return CustomMatteMinorMode();
}

} // end module

51

Chapter 9

Automated Color and Viewing
Management

Color management in RV can be broken into three separate issues:

• Determination of the input color space

• Deciding whether the input color space should be converted to the linear working space and with what
transform

• Displaying the working color space on a particular device possibly in a manner which simulates another
device (e.g, film look on an LCD monitor).

Each of the above corresponds to a set of features in RV which can be automated:

• Examining particular image attributes its often possible to determine color space. Some images may
use a naming convention or may be located in a particular place on a file system which indicates its
color space. Its even possible that a separate file or program needs to be executed to get the actual
color space.

• Input spaces can be transformed to working spaces using the built in transforms like sRGB, gamma,
or Kodak log space to linear space. If RV does not have a built-in transform for the color space, a file
LUT (one per input source) may be used to interpolate independant channel functions using a channel
LUT or a general function of R G and B channels using a 3D LUT.

• Ideally RV will have a fixed set of display transform which map a linear space to a display. This makes
it possible to load multiple sets of images with differing color spaces, transform them to a common
linear working space, and display them using a global display transform. RV has built-in transform for
sRGB and gamma and can also use a channel or 3D LUT if a custom function is needed.

In addition to the color issues there are a few others which might need to be detected and/or corrected:

• Unrecorded or incorrect pixel aspect ratios (e.g., DPX files with inaccurate headers)

• Special mattes which should be used with particular images

• Incorrect frame numbers

• Incorrect fps

• Specific production information which is not located in the image (e.g., shot information, tracking
information)

RV lets you customize all of the above for your facility and workflow by hooking into the user interface
code. The most important method of doing so is using special events generated by RV internally and setting
internal state at that time.

52

CHAPTER 9. AUTOMATED COLOR AND VIEWING MANAGEMENT

9.1 The new-source Event

The new-source event is generated whenever a file is first added to a session. By binding a function to this
event, its possible to configure any color space or other image dependant aspects of RV at the time the file is
added. This can save a considerable amount of time and headache when a large nunber of people are using
RV in differing circumstances.

See the sections below for information about creating a package which binds new-source to do color
management.

9.2 The default new-source behavior

By default RV binds its own color management function located in the source_setup.mu file called
sourceSetup(). This is part of the source_setup system package introduced in version 3.10.

Its a good idea to override or augment this package for use in production environments. For example,
you may want to have certain default color behavior for technical directors using movie files which differs
from how a coordinator might view them (the coordinator may be looking at movies in sRGB space instead
of with a film simulation for example).

RV’s default color management package does not account for the user, but it does try to use good defaults
for incoming file formats. Here’s the complete behavior shown as a set of heuristics applied in order:

1. If the incoming image is a TIFF file and it has no color space attribute assume its linear

2. If the image is JPEG or a quicktime movie file (.mov) and there is no color space attribute assume its
in sRGB space

3. If there is an embedded ICC profile and that profile is for sRGB space use RV’s internal sRGB space
transform instead (because RV does not yet handle embedded ICC profiles)

4. If the image is TIFF and it was created by ifftoany, assume the pixel aspect ratio is incorrect and fix it

5. If the image is JPEG, has no pixel aspect ratio attribute and no densisty attribute and looks like it
comes from Maya, fix the pixel aspect ratio

6. Use the proper built-in conversion for the color space indicated in the color space attribute of the image

7. Use the sRGB display transform if any color space was successfully determined for the input image(s)

From the user’s point of view, the following situations will occur:

• A DPX or Cineon is loaded which is determined to be in Log space — turn on the built in log to linear
converter

• A JPEG or Quicktime movie file is determined to be in sRGB space or if no space is specified assumed
to be in sRGB space — apply the built-in sRGB to linear converter

• An EXR is loaded — assume its linear

• A TIFF file with no color space indication is assumed to be linear, if it does have a color space use
that.

• A PNG file with no color space is assumed linear, otherwise use the color space attribute in the file

• Any file with a pixel aspect ratio attribute will be assumed to be correct (unless its determined to have
come from Maya)

• The monitor’s “gamma” will be accounted for automatically (because RV assumes the monitor is an
sRGB device)

53

CHAPTER 9. AUTOMATED COLOR AND VIEWING MANAGEMENT

9.3 Breakdown of sourceSetup() in the source_setup Package

The source_setup system package defines the default sourceSetup() function. This is where RV’s
default color management comes from. The function starts by parsing the event contents (which contains
the name of the file, the type of source node, and the source node name) as well as setting up the regular
expressions used later in the function:1

1 let args = event.contents().split(";;"),
2 source = args[0],
3 colorNode = associatedNode("#RVColor", source),
4 tformNode = associatedNode("#RVTransform2D", source),
5 type = args[1],
6 file = args[2],
7 ext = io.path.extension(file),
8 dpxRE = regex("dpx|DPX"),
9 exrRE = regex("((s|e)xr)|((S|E)XR)"),

10 jpgRE = regex("jpe?g|JPE?G"),
11 tifRE = regex("tiff?|TIFF?"),
12 movRE = regex("mov|MOV|avi|AVI|mp4|MP4");

The event.contents() function returns a string which might look something like this:

source000;;RVSource;;/path/to/file.mov

The split() function is used to create a dynamic array of strings which are then assigned to source,
type, and file. The source node name is then used to find associated nodes (the color and transform
nodes associated with the source node). The regular expressions are used to identify the file type from its
extension.

The next section of the function iterates over the image attributes and caches the ones we’re interested
in. The most important of these is teh Colorspace attribute which is set by the file readers when the image
color space is known.

1 for_each (a; sourceAttributes(source, file))
2 {
3 let (name, val) = a;
4
5 if (name == "Colorspace/ICC Profile Name") ICCProfileName = val;
6 else if (name == "Colorspace") Colorspace = val;
7 else if (name == "JPEG/PixelAspect") JPEGPixelAspect = val;
8 else if (name == "JPEG/Density") JPEGDensity = val;
9 else if (name == "TIFF/ImageDescription") TIFFImageDescription = val;

10 }

The function sourceAttributes() returns the image attributes for a given file in a source. In this
case we’re passing in the source and file which caused the event. The return value of the function is a
dynamic array of tuples of type (string,string) where the first element is the name of the attribute and
the second is a string representation of the value. Each iteration through the loop, the next tuple is assign
to the variable a and this is then used to assign name and val.

The variables ICCProfileName, Colorspace, JPEGPixelAspect, etc, are all variable of type string
which are defined earlier in the function.

Before getting to the meat of the function, there are two helper functions declared: setPixelAspect()
and setFileColorSpace(). These are declared directly in the scope of the sourceSetup() function
so they may only be used inside of it. In addition these functions reference variables in the enclosing scope
for convenience.

The next major section of the function matches the file name against the regular expressions that were
declared at the beginning and against the values of some of the attribtues that were cached.

1 if (tifRE.match(file) && Colorspace == "")
2 {
3 Colorspace = "Linear";
4 }

1The actual sourceSetup() function in source_setup.mu may differ from what is described here since it is constantly
being refined.

54

CHAPTER 9. AUTOMATED COLOR AND VIEWING MANAGEMENT

5 else if ((jpgRE.match(file) || movRE.match(file)) && Colorspace == "")
6 {
7 Colorspace = "sRGB";
8 }
9

10 if (ICCProfileName != "")
11 {
12 if (regex.match("sRGB", ICCProfileName)) Colorspace = "sRGB";
13 }
14
15 if (TIFFImageDescription == "Image converted using ifftoany")
16 {
17 setPixelAspect(1);
18 }
19
20 if (JPEGPixelAspect != "" && JPEGDensity != "")
21 {
22 let (w, h, bits, ch, flt, pl) = sourceImageStructure(source, file);
23
24 let attrPA = float(JPEGPixelAspect),
25 imagePA = float(w) / float(h),
26 testDiff = attrPA - 1.0 / imagePA;
27
28 if (math.abs(testDiff) < .0001)
29 {
30 setPixelAspect(1);
31 }
32 }

At this point in the function the color space of the input image will be known or assumed to be linear.
Finally, we try to set the color space (which will result in the image pixels being converted to the linear
working space). If this succeeds, use sRGB display as the default.

1 if (setFileColorSpace(Colorspace))
2 {
3 setIntProperty("display.color.sRGB", int[] {1});
4 }

9.4 Setting up 3D and Channel LUTs

The default new-source event function does not set up any non-built-in transforms. When you need to
automatically apply a LUT, as a file, look, or a display LUT, you need to do the following:

readLUT(file, nodeName);
setIntProperty(%s.lut.active" % nodeName, int[] {1});
updateLUT();

The nodeName will be “display” (or “#RVDisplayColor” to refer to it by type) for the display LUT. For
a file or look LUT, you use the associated node name for the color node — in the default sourceSetup()
function this would be the colorNode variable. The file parameter to readLUT() will be the name of
the LUT file on disk and can be any of the LUT types that RV reads.

9.5 Building a Package For Color Management

As of RV 3.6 the recommend way to handle all event bindings is via a package. In version 3.10 the color
management was made a system package. To customize color management you can either create a new
package from scratch as described here, or copy, rename, and hack the existing source setup package.

The use of new-source is no different from any other event. By creating a package you can override
the existing behavior or modify it. It also makes it possible to have layers of color management packages
which (assuming they don’t contradict each other) can collectively create a desired behavior.

55

CHAPTER 9. AUTOMATED COLOR AND VIEWING MANAGEMENT

1 module: custom_color_management {
2 use rvtypes;
3 use commands;
4 use extra_commands;
5 use system;
6 use source_setup;
7
8 class: CustomColorManagementMode : MinorMode
9 {

10 method: newSource (void; Event event)
11 {
12 // do work on the new source here
13 event.reject();
14 }
15
16 method: CustomColorManagementMode (CustomColorManagementMode;)
17 {
18 init("Custom Color Management",
19 nil,
20 [("new-source", newSource, "Color Setup")],
21 nil);
22 }
23 }
24
25 \: createMode (Mode;)
26 {
27 return CustomColorManagementMode();
28 }
29
30 } // end module

There are two things to note in here: the first is that pass our event binding in as the third argument of
init() at line 20 as opposed to the second. The second argument binds events in the global event table
whereas the third argument uses the local mode table. This keeps the existing global binding available.

The second thing to note is that our newSource() method has two choices: it can eat the event so
no other function bound to it can process it or it can allow it to continue. To allow other functions bound
to new-source to get the event the reject() function of the event must be called in newSource() as
seen at line 13. Unless our mode is intended to completely override the behavior of the default source setup
function its probably best to reject the event and allow others to process it.

The example code above for the custom color management package is included with RV.

56

Chapter 10

Network Communication

RV can communicate with multiple external programs via its network protocol. The mechanism is designed
to function like a ”chat” client. Once a connection is established, messages can be sent and received including
arbitrary binary data.

There are a number of applications which this enables:

• Controlling RV remotely. E.g., a program which takes input from a dial and button board or a
mobile device and converts the input into commands to start/stop playback or scrubbing in RV.

• Synchronizing RV sessions across a network. This is how RV’s sync mode is implemented: each
RV serves as a controller for the other.

• Monitoring a Running RV. For VFX theater dailies the RV session driving the dailies could be
monitored by an external program. This program could then indicate to others in the facility when
their shots are coming up.

• A Display Driver for a Renderer. Renders like Pixar’s RenderMan have a plug-in called a display
driver which is normally used to write out rendered frames as files. Frequently this type of plug-in is
also used to send pixels to an external frame buffer (like RV) to monitor the renderer’s progress in real
time. Its possible to write a display driver that talks to RV using the network protocol and send it
pixels as they are rendered. A more advanced version might receive feedback from RV (e.g. a selected
rectangle on the image) in order to recommend areas the renderer should render sooner.

Any number of network connections can be estabilished simultaneously, so for example its possible to have a
synchronized RV session with a remote RV and drive it with an external hardware device at the same time.

10.1 Example Code

There are two working examples that come with RV: the rvshell program and pyNetwork.py python example.
The rvshell program uses a C++ library included with the distribution called TwkQtChat which you

can use to make interfacing easier — especially if your program will use Qt. We highly recommend using
this library since this is code which RV uses internally so it will always be up-to-date. The library is only
dependent on the QtCore and QtNetwork modules.

The pyNetwork example implements the network protocol using only python native code. You can use
it directly in python programs.

10.1.1 Using rvshell

To use rvshell, start RV from the command line with the network started and a default port of 45000 (to
make sure it doesn’t interfere with existing RV sessions):

shell> rv -network -networkPort 45000

57

CHAPTER 10. NETWORK COMMUNICATION

Next start the rvshell program program from a different shell:

shell> rvshell user localhost 45000

Assuming all went well, this will start rvshell connected to the running RV. There are three things you
can experiment with using rvhell: a very simple controller interface, a script editor to send portions of script
or messages to RV manually, and a display driver simulator that sends stereo frames to RV.

Start by loading a sequence of images or a quicktime movie into RV. In rvshell switch to the ”Playback
Control” tab. You should be able to play, stop, change frames and toggle full screen mode using the buttons
on the interface. This example sends simple Mu commands to RV to control it. The feedback section of the
interface shows the RETURN message send back from RV. This shows whatever result was obtained from
the command.

The ”Raw Event” section of the interface lets you assemble event messages to send to RV manually. The
default event message type is remote-eval which will cause the message data to be treated like a Mu
script to execute. There is also a remote-pyeval event which does the same with Python (in which case
you should type in Python code instead of Mu code). Messages sent this way to RV are translated into UI
events. In order for the interface code to respond to the event something must have bound a function to the
event type. By default RV can handle remote-eval and remote-pyeval events, but you can add new
ones yourself.

When RV receieves a remote-eval event it executes the code and looks for a return value. If a
return value exists, it converts it to a string and sends it back. So using remote-eval its possible to
querry RV’s current state. For example if you load an image into RV and then send it the command
renderedImages() it will return a Mu struct as a string with information about the rendered image.
Similarily, sending a remote-pyeval with the same command will return a Python dictionary as a string
with the same information.

The last tab ”Pixels” can be used to emulate a display driver. Load a JPEG image into rvshell’s viewer
(don’t try something over 2k — rvshell is using Qt’s image reader). Set the number of tiles you want to send
in X and Y, for example 10 in each. In RV clear the session. In rvshell hit the Send Image button. rvshell
will create a new stereo image source in RV and send the image one tile at a time to it. The left eye will be
the original image and the right eye will be its inverse. Try View→Stereo→Side by Side to see the results.

10.1.2 Using rvNetwork.py

document here

10.2 TwkQtChat Library

The TwkQtChat library is composed of three classes: Client, Connection, and Server.

sendMessage Generic method to send a standard UTF-8 text message to a specific contact

sendData Generic method to send a data message to a specific contact

broadcastMessage Send a standard UTF-8 message to all contacts

sendEvent Send an EVENT or RETURNEVENT message to a contact (calls sendMessage)

broadcastEvent Send an EVENT or RETURNEVENT message to all contacts

connectTo Initiate a connection to a specific contact

hasConnection Query connection status to a contact

disconnectFrom Force the shutdown of connection

waitForMessage Block until a message is received from a specific contact

waitForSend Block until a message is actually sent

signOff Send a DISCONNECT message to a contact to shutdown gracefully

online Returns true of the Server is running and listening on the port

Table 10.1: Important Client Member Functions

58

CHAPTER 10. NETWORK COMMUNICATION

newMessage A new message has been received on an existing connection

newData A new data message has been received on an existing connection

newContact A new contact (and associated connection) has been established

contactLeft A previously established connection has been shutdown

requestConnection A remote program is requesting a connection

connectionFailed An attempted connection failed

contactError An error occured on an existing connection

Table 10.2: Client Signals

A single Client instance is required to represent your process and to manage the Connections and Server
instances. The Connection and Server classes are derived from the Qt QTcpSocket and QTcpServer classes
which do the lower level work. Once the Client instance exists you can get pointer to the Server and existing
Connections to directly manipulate them or connect their signals to slots in other QObject derived classes
if needed.

The application should start by creating a Client instance with its contact name (usually a user name),
application name, and port on which to create the server. The Client class uses standard Qt signals and
slots to communicate with other code. Its not necessary to inherit from it.

The most important functions on the Client class are list in table 10.1.

10.3 The Protocol

There are two types of messages that RV can receive and send over its network socket: a standard message
and a data message. Data messages can send arbitrary binary data while standard messages are used to
send UTF-8 string data.

The greeting is used only once on initial contact. The standard message is used in most cases. The data
message is used primarily to send binary files or blocks of pixels to/from RV.

10.3.1 Standard Messages

RV recognizes these types of standard messages:

MESSAGE The string payload is subdivided into multiple parts the first of which indicates the sub-type of

the message. The rest of the message is interpreted according to its sub-type.

GREETING Sent by RV to a synced RV when negotiating the initial contact.

NEWGREETING Sent by external controlling programs to RV during initial contact.

PINGPONGCONTROL Used to negotiate whether or not RV and the connected process should exchange PING and

PONG messages on a regular basis.

PING Query the state of the other end of the connection — i.e. check and see if the other process is

still alive and functioning.

PONG Returned when a PING message is received to indicate state.

Table 10.3: Message Types

When an application first connects to RV over its TCP port, a greeting message is exchanged. This
consists of an UTF-8 byte string composed of:

59

CHAPTER 10. NETWORK COMMUNICATION

The string ”NEWGREETING” 1st word

The UTF-8 value 32 (space) -

A UTF-8 integer composed of the characters [0-9] with

the value N + M + 1 indicating the number of bytes

remaining in the message

2nd word

The UTF-8 value 32 (space) -

Contact name UTF-8 string (non-whitespace) N bytes

The UTF-8 value 32 (space) 1 byte

Application name UTF-8 string (non-whitespace) M bytes

Table 10.4: Greeting Message

In response, the application should receive a NEWGREETING message back. At this point the applica-
tion will be connected to RV.

A standard message is a single UTF-8 string which has the form:

The string ”MESSAGE” 1st word

The UTF-8 value 32 (space) -

A UTF-8 integer composed of the characters [0-9] the

value of which is N indicating the size of the remaining

message

2nd word

The UTF-8 value 32 (space) -

The message payload (remaining UTF-8 string) N bytes

Table 10.5: Standard Message

When RV receives a standard message (MESSAGE type) it will assume the payload is a UTF-8 string
and try to interpret it. The first word of the string is considered the sub-message type and is used to decide
how to respond:

EVENT Send the rest of the payload as a UI event (see below)

RETURNEVENT Same as EVENT but will result in a response RETURN message

RETURN The message is a response to a recently received RETURNEVENT message

DISCONNECT The connection should be disconnected

Table 10.6: Sub-Message Types

The EVENT and RETURNEVENT messages are the most common. When RV receives an EVENT or
RETURNEVENT message it will translate it into a user interface event. The additional part of the string
(after EVENT) is composed of:

EVENT or RETURNEVENT UTF-8 string identifying the message as an EVENT or

RETURNEVENT message.

space character -

non-whitespace-event-name The event that will be sent to the UI as a string event

(e.g. remote-eval). This can be obtained from the event

by calling event.name()in Mu or Python

space character -

UTF-8 string The string event contents. Retrievable with

event.contents() in Mu or Python.

Table 10.7: EVENT Messages

60

CHAPTER 10. NETWORK COMMUNICATION

For example the full contents of an EVENT message might look like:

MESSAGE 34 EVENT my-event-name red green blue

The first word indicates a standard message. The next word (34) indicates the lenth of the rest of the
data. EVENT is the message sub-type which further specifies that the next word (my-event-name) is the
event to send to the UI with the rest of the string (red green blue) as the event contents.

If a UI function that receives the event sets the return value and the message was a RETURNEVENT,
then a RETURN will be sent back. A RETURN will have a single string that is the return value. An
EVENT message will not result in a RETURN message.

RETURN UTF-8 string identifying the message as an RETURN

message.

space character -

UTF-8 string The string event returnContents(). This is the value

set by setReturnContents() on the event object in Mu

or Python.

Table 10.8: RETURN Message

Generally, when a RETURNEVENT is sent to your application, a RETURN should be sent back because
the other side may be blocked waiting. Its ok to send an empty RETURN. Normally, RV will not send
EVENT or RETURNEVENT messages to other non-RV applications. However, its possible that this could
happen while connected to an RV that is also engaged in a sync session with another RV.

Finally a DISCONNECT message comes with no additional data and signals that the connection should
be closed.

Ping and Pong Messages

There are three lower level messages used to keep the status of the connection up to date. This scheme relies
on each side of the connection returning a PONG message if it ever receives a PING message whenever ping
pong messages are active.

Whether or not its active is controlled by sending the PINGPONGCONTROL message: when received,
if the payload is the UTF-8 value ”1” then PING messages should be expected and responded to. If the value
is ”0” then responding to a PING message is not mandatory.

For some applications especially those that require a lot of computation (e.g. a display driver for a
renderer) it can be a good to shut down the ping pong notification. When off, both sides of the connection
should assume the other side is busy but not dead in the absence of network activity.

Message Description Full message value

PINGPONGCONTROL A payload value of ”1” indicates that PING and PONG

messages should be used

PINGPONGCONTROL 1 (1 or

0)

PING The payload is always the character ”p”. Should result in

a PONG response

PING 1 p

PONG The payload is always ”p”. Should be sent in response to

a PING message

PONG 1 p

Table 10.9: PING and PONG Messages

61

CHAPTER 10. NETWORK COMMUNICATION

10.3.2 Data Messages

The data messages come it two types: PIXELTILE and DATAEVENT. These take the form:

PIXELTILE(parameters) -or- DATAEVENT(parameters) 1st word

space character -

A UTF-8 integer composed of the characters [0-9] the

value of which is N indicating the size of the remaining

message

2nd word

space character -

Data of size N N bytes

Table 10.10: PIXELTILE and DATAEVENT

The PIXELTILE message is used to send a block of pixels to or from RV. When received by RV the
PIXELTILE message is translated into a pixel-block event (unless another event name is specified)
which is sent to the user interface. This message takes a number of parameters which should have no
whitespace characters and seperated by commas (”,”):

w Width of data in pixels.

h Height of the data in pixels.1

x The horizontal offset of the pixel block relative to the

image origin

y The vertical offset of the pixel block relative to the image

origin

f The frame number

event-name Alternate event name (instead of pixel-block). RV will

only recognize pixel-block event by default. You can bind

to other events however.

media The name of the media associated with data.

layer The name of the layer associated with the meda. This is

analogous to an EXR layer

view The name of the view associated with the media. This is

analogous to an EXR view

Table 10.11: PIXELTILE Message

For example, the PIXELTILE header to the data message might appear as:

PIXELTILE(media=out.9.exr,layer=diffuse,view=left,w=16,h=16,x=160,y=240,f=9)

Which would be parsed and used to fill fields in the Event type. This data becomes available to Mu and
Python functions binding to the event. By default the Event object is sent to the insertCreatePixelBlock()
function which fins the image source associated with the meda and inserts the data into the correct layer
and view of the image. Each of the keywords in the PIXELTILE header is optional.

The DATAEVENT message is similar to the PIXELTILE but is intended to be implemented by the user.
The message header takes at least three parameters which are ordered (no keywords like PIXELTILE). RV
will use only the first three parameters:

event-name RV will send a raw data event with this name

target Required but not currently used

content type string An arbitrary string indicating the type of the content.

This is available to the UI from the

Event.contentType() function.

Table 10.12: DATAEVENT Message

62

CHAPTER 10. NETWORK COMMUNICATION

For example, the DATAEVENT header might appear as:

DATAEVENT(my-data-event,unused,special-data)

Which would be sent to the user interface as a my-data-event with the content type ”special-data”. The
content type is retrievable with Event.contentType(). The data payload is available via Event.dataContents()
method.

63

Chapter 11

Webkit JavaScript Integration

RV can communicate with JavaScript running in a QWebView widget. This makes it possible to serve custom
RV-aware web pages which can interact with a running RV. JavaScript running in the web page can execute
arbitrary Mu script strings as well as receive events from RV.

You can experiment with this using the example webview package included with RV.
If you are not familiar with Qt’s webkit integration this page can be helpful: http://doc.qt.nokia.com/4.

7/qtwebkit-bridge.html.

11.1 Executing Mu or Python from JavaScript

RV exports a JavaScript object called rvsession to the Javascript runtime environment. Two of the func-
tions in that namespace are evaluate() and pyevaluate(). By calling evaluate() or pyevaluate()
you can execute arbitrary Mu or Python code in the running RV to control it. If the executed code returns
a value, the value will be converted to a string and returned by the (py)evaluate() functions.

As an example, here is some html which demonstates creating a link in a web page which causes RV to
start playing when pressed:

<script type="text/javascript">
function play () { rvsession.evaluate("play()"); }
</script>

<p>Play</p>

If inlining the Mu or Python code in each call back becomes onerous you can upload function definitions
and even whole classes all in one evaluate call and then call the defined functions later. For complex
applications this may be the most sane way to handle call back evaluation.

11.2 Getting Event Call Backs in JavaScript

RV generates events which can be converted into call backs in JavaScript. This differs slightly from how
events are handled in Mu and Python.

64

http://doc.qt.nokia.com/4.7/qtwebkit-bridge.html
http://doc.qt.nokia.com/4.7/qtwebkit-bridge.html

CHAPTER 11. WEBKIT JAVASCRIPT INTEGRATION

Signal Events

eventString Any internal RV event and events generated by the

command sendInternalEvent() command in Mu or

Python

eventKey Any key- event (e.g. key-down--a)

eventPointer Any pointer- event (e.g. pointer-1--push) or tablet

event (e.g. stylus-pen--push)

eventDragDrop Any dragdrop- event

Table 11.1: JavaScript Signals Produced by Events

The rvsession object contains signal objects which you can connect by supplying a call back function.
In addition you need to supply the name of one or more events as a regular expression which will be matched
against incoming events. For example:

function callback_string (name, contents, sender)
{

var x = name + " " + contents + " " + sender;
rvsession.evaluate("print(\"callback_string " + x + "\\n\");");

}

rvsession.eventString.connect(callback_string);
rvsession.bindToRegex("new-source");

connects the function callback_string() to the eventString signal object and binds to the
new-source RV event. For each event the proper signal object type must be used. For example pointer
events are not handled by eventString but by the eventPointer signal. There are four signals avail-
able: eventString, eventKey, eventPointer, and eventDragDrop. See tables describing which
events generate which signals and what the signal call back arguments should be.

In the above example, any time media is loaded into RV the callback_string() function will be
called. Note that there is a single callback for each type of event. In particular if you want to handle both
the ”new-source” and the ”frame-changed” events, your eventString handler must handle both (it can
distinguish between them using the ”name” parameter passed to the handler. To bind the handler to both
events you can call ”bindToRegex” multiple times, or specify both events in a regular expression:

rvsession.bindToRegex("new-source|frame-changed");

The format of this regular expression is specified here: http://doc.qt.nokia.com/4.7/qregexp.html

Argument Description

eventName The name of the RV event. For example ”new-source”

contents A string containing the event contents if it has any

senderName Name of the sender if it has one

Table 11.2: eventString Signal Arguments

Argument Description

eventName The name of the RV event. For example ”new-source”

key An integer reprenting the key symbol

modifiers An integer the low order five bits of which indicate the

keyboard modifier state

Table 11.3: eventKey Signal Arguments

65

http://doc.qt.nokia.com/4.7/qregexp.html

CHAPTER 11. WEBKIT JAVASCRIPT INTEGRATION

Argument Description

eventName The name of the RV event. For example ”new-source”

x The horizonital position of the mouse as an integer

y The veritical position of the mouse as an integer

w The width of the event domain as an integer

h The height of the event domain as an integer

startX The starting horizontal position of a mouse down event

startY The starting vertical position of a mouse down event

buttonStates An integer the lower order five bits of which indicate the

mouse button states

activationTime The relative time at which button activation occured or 0

for regular pointer events

Table 11.4: eventPointer Signal Arguments

Argument Description

eventName The name of the RV event. For example ”new-source”

x The horizonital position of the mouse as an integer

y The veritical position of the mouse as an integer

w The width of the event domain as an integer

h The height of the event domain as an integer

startX The starting horizontal position of a mouse down event

startY The starting vertical position of a mouse down event

buttonStates An integer the lower order five bits of which indicate the

mouse button states

dragDropType A string the value of which will be one of ”enter”, ”leave”,

”move”, or ”release”

contentType A string the value of which will be one of ”file”, ”url”, or

”text”

stringContent The contents of the drag and drop event as a string

Table 11.5: eventDragDrop Signal Arguments

11.3 Using the webview Example Package

This package creates one or more docked QWebView instances, configurable from the command line as
described below. JavaScript code running in the webviews can execute arbitrary Mu code in RV by calling
the rvsession.evaluate() function. This package is intended as an example.

These command-line options should be passed to RV after the -flags option. The webview options
below are shown with their default values, and all of them can apply to any of four webviews in the Left,
Right, Top, and Bottom dock locations.

shell> rv -flags ModeManagerPreload=webview

The above forces the load of the webview package which will display an example web page. Additional
arguments can be supplied to load specific web pages into additional panes. While this will just show
the sample html/javascript file that comes with the package in a webview docked on the right. To see
what’s happening in this example, bring up the Session Manager so you can see the Sources appearing and
disappearing, or switch to the defaultLayout view. Note that you can play while reconfiguring the session
with the javascript checkboxes.

The following additional arguments can be passed via the -flags mechanism. In the below, POS
should be replaced by one of Left, Right, Bottom, or Top.

ModeManagerPreload=webview Force loading of the webview package. The package should not be

66

CHAPTER 11. WEBKIT JAVASCRIPT INTEGRATION

loaded by default but does need to be installed. This causes rv to treat the package as if it were loaded
by the user.

webviewUrlPOS=URL A webview pane will be created at POS and the URL will be loaded into it.

webviewTitlePOS=string Set the title of the webview pane to string.

webviewShowTitlePOS=true or false A value of true will show and false will remove the title bar from
the webview pane.

webviewShowProgressPOS=true or false Show a progress bar while loading for the web pane.

webviewSizePOS=integer Set the width (for right and left panes) or height (for top and bottom panes)
of the web pane.

An example using all of the above:

shell> rv -flags ModeManagerPreload=webview \
webviewUrlRight=file:///foo.html \
webviewShowTitleRight=false \
webviewShowProgressRight=false \
webviewSizeRight=200 \
webviewUrlBottom=file:///bar.html \
webviewShowTitleBottom=false \
webviewShowProgressBottom=false \
webviewSizeBottom=300

67

Chapter 12

Hierarchical Preferences

Each RV user has a Preferences file where her personal rv settings are stored. Most preferences are viewed
and edited with the Preferences dialog (accessed via the RV menu), but preferences can also be program-
matically read and written from custom code via the readSetting and writeSetting Mu commands.
The preferences files a stored in different places on different platforms.

Platform Location
Mac OS X $HOME/Library/Preferences/com.tweaksoftware.RV.plist

Linux $HOME/.config/TweakSoftware/RV.conf
Windows XP $HOME/Application Data/TweakSoftware/RV.ini

WIindows Vista/7 ˜$HOME/AppData/Roaming/TweakSoftware/RV.ini

Initial values of preferences can be overridden on a site-wide or show-wide basis by setting the environment
variable RV PREFS OVERRIDE PATH to point to one or more paths that contain files of the name and type
listed in the above table. Each of these overriding preferences file can provide default values for one or more
preferences. A value from one of these overriding files will override the users’s preference only if the user’s
preferences file has no value for this preference yet.

In the simplest case, if you want to provide overriding initial values for all preferences, you should

1. Delete your preferences file.

2. Start RV, go to the Preferences dialog, and adjust any preferences you want.

3. Close the dialog and exit RV.

4. Copy your preferences file into the RV PREFS OVERRIDE PATH.

If you want to override at several levels (say per-site and per-show), you can add preferences files to any
number of directories in the PATH, but you’ll have to edit them so that each only contains the preferences
you want to override with that file. Preferences files found in directories earlier in the path will override
those found in later directories.

Note that this system only provides the ability to override initial settings for the preferences. Nothing
prevents the user from changing those settings after initialization.

It’s also possible to create show/site/whatever-specific preferences files that always clobber the user’s
personal preferences. This mechanism is exactly analogous to the above, except that the name of the
environment variable that holds paths to clobbering prefs files is RV PREFS CLOBBER PATH. Again, the
user can freely change any ”live”values managed in the Preferences dialog, but in the next run, the clobbering
preferences will again take precedence. Note that a value from a clobbering file (at any level) will take
precedence over a value from an overriding file (at any level).

68

Chapter 13

Node Reference

This chapter has a section for each type of node in RV’s image processing graph. The properties and
descriptions listed here are the default properties.

RVSourceGroup

The source group contains a single chain of nodes the leaf of which is an RVFileSource or RVImageSource.
It has a single property.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.

RVSequenceGroup

The sequence group contains a chain of nodes for each of its inputs. The input chains are connected to a
single RVSequence node which controls timing and switching between the inputs.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.
timing.retimeInputs int 1 Retime all inputs to the output fps if 1 otherwise play

back their frames one at a time at the output fps.

RVStackGroup

The stack group contains a chain of nodes for each of its inputs. The input chains are connected to a single
RVStack node which controls compositing of the inputs as well as basic timing offsets.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.
timing.retimeInputs int 1 Retime all inputs to the output fps if 1 otherwise play

back their frames one at a time at the output fps.

RVSwitchGroup

The switch group changes it behavior depending on which of its inputs is ”active”. It contains a single Switch
node to which all of its inputs are connected.

69

CHAPTER 13. NODE REFERENCE

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.

RVRetimeGroup

The source group contains a single chain of nodes the leaf of which is an RVFileSource or RVImageSource.
It has a single property.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.

RVLayoutGroup

The source group contains a single chain of nodes the leaf of which is an RVFileSource or RVImageSource.
It has a single property.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.
timing.retimeInputs int 1 Retime all inputs to the output fps if 1 otherwise play

back their frames one at a time at the output fps.

RVFolderGroup

The folder group contains either a SwitchGroup or LayoutGroup which determines how it is displayed.

Name Type Size Description
ui.name string 1 This is a user specified name which appears in the user

interface.
mode.viewType string 1 Either ”switch” or ”layout”. Determines how the folder is

displayed.

RVAdapter

This node has no properties.

RVFileSource

The source node controls file I/O and organize the source media into layers (in the RV sense). It has basic
controls needed to mix the layers together.

70

CHAPTER 13. NODE REFERENCE

Name Type Size Description
media.movie string > 1 The movie, image, audio files and image sequence names.

Each name is a layer in the source.There is typically at
least one value in this property

group.fps float 1 Overrides the fps found in any movie or image file or if
none is found overrides the default fps of 24.

group.volume float 1 Relative volume. This can be any positive number or 0.
group.audioOffset float 1 Audio offset in seconds. All audio layers will be offset.
group.rangeOffset int 1 Shifts the start and end frame numbers of all image

media in the source.
group.balance float 1 Range of [-1,1]. A value of 0 means the audio volume is

the same for both the left and right channels.
group.crossover float 1 Range of [0, 1]. 0 means no cross over, 1 means swap the

channels.
group.noMovieAudio int 1 Do not use audio tracks in movies files
cut.in int 1 The preferred start frame of the sequence/movie file
cut.out int 1 The preferred end frame of the sequence/movie file
request.readAllChannels int 1 If the value is 1 and the image format can read multiple

channels, it is requested to read all channels in the
current image layer and view.

request.imageLayerSelection string Any Any values are considered image layer names. These are
passed to the image readers with the request that only
these layers be read from the file.

request.imageViewSelection string Any Any values are considered image view names. These are
passed to the image readers with the request that only
these views be read from the file.

request.stereoViews string 0 or 2 If there are values in this property, they will be passed to
the image reader when in stereo viewing mode as
requested view names for the left and right eyes.

71

CHAPTER 13. NODE REFERENCE

RVFormat

Property Type Size Description
geometry.xfit int 1 Used by RVIO. Forces the resolution to a specific width
geometry.yfit int 1 Used by RVIO. Forces the resolution to a specific height
geometry.scale float 1 Multiplier on incoming resolution. E.g., 0.5 when applied

to 2048x1556 results in a 1024x768 image.
geometry.resampleMethod string 1 Method to use when resampling. The possible values are

area, cubic, and linear,
crop.active int 1 If non-0 cropping is active
crop.xmin int 1 Minimum X value of crop in pixel space
crop.ymin int 1 Minimum Y value of crop in pixel space
crop.xmax int 1 Maximum X value of crop in pixel space
crop.ymax int 1 Maximum Y value of crop in pixel space
uncrop.active int 1 In non-0 uncrop region is used
uncrop.x int 1 X offset of input image into uncropped image space
uncrop.y int 1 Y offset of input image into uncropped image space
uncrop.width int 1 Width of uncropped image space
uncrop.height int 1 Height of uncropped image space
color.maxBitDepth int 1 One of 8, 16, or 32 indicating the maximum allowed bit

depth (for either float or integer pixels)
color.allowFloatingPoint int 1 If non-0 floating point images will be allowed on the GPU

otherwise, the image will be converted to integer of the
same bit depth (or the maximum bit depth).

RVChannelMap

Property Type Size Description
format.channels string >= 0 An array of channel names. If the property is empty the image

will pass though the node unchanged. Otherwise, only those
channels appearing in the property array will be output. The
channel order will be the same as the order in the property.

RVHistogram

The histogram node computes a channel histogram and stores each one as a separate image attribute

Property Type Size Description
node.active int 1 non-0 means the node is active and will compute a histogram
histogram.size int 1 Number of histogram buckets per channel. Defaults to 100.

RVCache

The RVCache node has no external properties.

RVTransform2D

The 2D transform node controls the image transformations. This node is usually evaluated on the GPU.

72

CHAPTER 13. NODE REFERENCE

Property Type Size Description
transform.flip int 1 non-0 means flip the image (vertically)
transform.flop int 1 non-0 means flop the image (horizontally)
transform.rotate float 1 Rotate the image in degrees about its center.
pixel.aspectRatio float 1 If non-0 set the pixel aspect ratio. Otherwise use the pixel aspect

ratio reported by the incoming image.
transform.translate float[2] 1 Translation in 2D in NDC space
transform.scale float[2] 1 Scale in X and Y dimensions in NDC space
stencil.visibleBox float 4 Four floats indicating the left, right, top, and bottom in NDC

space of a stencil box.

RVColor

The color node has a large number of color controls. This node is usually evaluated on the GPU, except
when normalize is 1.

73

CHAPTER 13. NODE REFERENCE

Property Type Size Description

color.alphaType int 1 By default (0), uses the alpha type reported by the incoming

image. Otherwise, 1 means the alpha is premultiplied, 0

means the incoming alpha is unpremultiplied.

color.normalize int 1 Non-0 means to normalize the incoming pixels to [0,1]

color.logtype int 1 The default (0), means no log to linear transform, 1 uses the

cineon transform (see cineon.whiteCodeValue and

cineon.blackCodeValue below) and 1 means use the Viper

camera log to linear transform.

color.invert int 1 If non-0, invert the image color using the inversion matrix

(See User’s Manual)

color.sRGB2linear int 1 If the value is non-0, convert the incoming pixels from sRGB

space to linear space

color.Rec709ToLinear int 1 If the value is non-0, convert the incoming pixels using the

inverse of the Rec709 transfer function

color.gamma float[3] 1 Apply a gamma to the incoming image. The default is [1.0,

1.0, 1.0]. The three values are applied to R G and B channels

independently.

color.lut Not currently used

color.offset float[3] 1 Color bias added to incoming color channels. Default = 0 (not

bias). Each component is applied to R G B independently.

color.exposure float[3] 1 Relative exposure in stops. Default = [0, 0, 0], See user’s

manual for more information on this. Each component is

applied to R G and B independently.

color.contrast float[3] 1 Contrast applied per channel (see User’s Manual)

color.saturation float 1 Relative saturation (see User’s Manual)

color.hue float 1 Hue rotation in radians (see User’s Manual)

color.active int 1 If 0, do not apply any color transforms. Disables the node.

color.ignoreChromaticities int 1 If non-0, ignore any non-Rec 709 chromaticities reported by

the incoming image.

CDL.slope float[3] 1 Color Decision List per-channel slope control

CDL.offset float[3] 1 Color Decision List per-channel offset control

CDL.power float[3] 1 Color Decision List per-channel power control

CDL.saturation float[3] 1 Color Decision List saturation control

luminanceLUT.lut float div 3 Luminance LUT to be applied to incoming image. Contains R

G B triples one after another. The LUT resolution

luminanceLUT.max float 1 A scale on the output of the Luminance LUT

luminanceLUT.size int 1 The size of the luminance LUT

luminanceLUT.type string 1 Only acceptable value is currently “Luminance”

luminanceLUT.active int 1 If non-0, luminance LUT should be applied

cineon.whiteCodeValue int 1 Value used in cineon log to linear conversion. Default is 685

cineon.blackCodeValue int 1 Value used in cineon log to linear conversion. Default is 95

luminanceLUT:output.size int 1 Output Luminance lut size

luminanceLUT:output.lut float div 3 Output resampled luminance LUT

matrix:output.RGBA float 16 Output color matrix

lut.lut float div 3 Contains either a 3D or a channel file LUT

lut.prelut float div 3 Contains a channel pre-LUT

lut.inMatrix float 16 Input color matrix

lut.scale float 1 LUT output scale factor
lut.offset float 1 LUT output offset
lut.max float 1 A scaling value on the output of the channel LUT

lut.name string 1 Placeholder used for annotation

lut.file string 1 Name of LUT file to read when RV session is loaded

lut.size int 1 or 3 With 1 size value, the file LUT is a channel LUT of the

specified size, if there are 3 values the file LUT is a 3D LUT

with the dimensions indicated

lut.active int 1 If non-0 the file LUT is active

lut:output.size int 1 or 3 The resampled LUT output size

lut:output.lut float div 3 The resampled output LUT

74

CHAPTER 13. NODE REFERENCE

RVLookLUT and RVCacheLUT

The RVCacheLUT is applied in software before the image is cached and before any software resolution and
bit depth changes. The look LUT is applied just before the display LUT but is per-source.

Property Type Size Description
lut.lut float div 3 Contains either a 3D or a channel look LUT
lut.prelut float div 3 Contains a channel pre-LUT
lut.inMatrix float 16 Input color matrix
lut.scale float 1 LUT output scale factor
lut.offset float 1 LUT output offset
lut.max float 1 A scaling value on the output of the channel LUT
lut.name string 1 Placeholder used for annotation
lut.file string 1 Name of LUT file to read when RV session is loaded
lut.size int 1 or 3 With 1 size value, the look LUT is a channel LUT of the specified

size, if there are 3 values the look LUT is a 3D LUT with the
dimensions indicated

lut.active int 1 If non-0 the look LUT is active
lut:output.size int 1 or 3 The resampled LUT output size
lut:output.lut float div 3 The resampled output LUT

RVSequence

Information about how to create a working EDL can be found in the User’s Manual. All of the properties
in the edl component should be the same size.

Property Type Size Description
edl.frame int N The global frame number which starts each cut
edl.source int N The source input number of each cut
edl.in int N The source relative in frame for each cut
edl.out int N The source relative out frame for each cut
edl.inc int N Frame increment relative to the local source frame

DEPRECATED
edl.action string N Currently, “play” should be the used here in all cases, except the

last edit which should be “end”. DEPRECATED
output.fps float 1 Output FPS for the sequence. Input nodes may be retimed to

this FPS.
output.size int[2] 1 The virtual output size of the sequence. This may not match the

input sizes.
output.interactiveSize int 1 If 1 then adjust the virtual output size automatically to the

window size for framing.
output.autoSize int 1 Figure out a good size automatically from the input sizes if 1.

Otherwise use output.size.
mode.useCutInfo int 1 Use cut information on the inputs to determine EDL timing.
mode.autoEDL int 1 If non-0, automatically concatenate new sources to the existing

EDL, otherwise do not modify the EDL

75

CHAPTER 13. NODE REFERENCE

RVStack

Property Type Size Description
output.fps float 1 Output FPS for the stack. Input nodes may be retimed to this

FPS.
output.size int[2] 1 The virtual output size of the stack. This may not match the

input sizes.
output.autosize int 1 Figure out a good size automatically from the input sizes if 1.

Otherwise use output.size.
output.chosenAudioInput string 1 Name of input which becomes the audio output of the stack. If

the value is .all. then all inputs are mixed. If the value is
.first. then the first input is used.

composite.type string 1 The compositing operation to perform on the inputs. Valid values
are: over, add, difference, -difference, and replace

mode.useCutInfo int 1 Use cut information on the inputs to determine EDL timing.
mode.alignStartFrames int 1 If 1 offset all inputs so they start at same frame as the first input.

RVSwitch

Property Type Size Description
output.fps float 1 Output FPS for the switch. This is normally determined by the

active input.
output.size int[2] 1 The virtual output size of the stack. This is normally determined

by the active input.
output.autosize int 1 Figure out a good size automatically from the input sizes if 1.

Otherwise use output.size.
output.input string 1 Name of the active input node.
mode.useCutInfo int 1 Use cut information on the inputs to determine EDL timing.
mode.alignStartFrames int 1 If 1 offset all inputs so they start at same frame as the first input.

RVSoundTrack

Property Type Size Description
audio.volume float 1 Global audio volume
audio.balance float 1 [-1,1] left/right channel balance
audio.offset float 1 Globl audio offset in seconds
audio.mute int 1 If non-0 audio is muted

RVStereo

Property Type Size Description
stereo.swap int 1 If non-0 swap the left and right eyes
stereo.relativeOffset float 1 Offset distance between eyes, default = 0. Both eyes are offset.
stereo.rightOffset float 1 Offset distance between eyes, default = 0. Only right eye is offset.
rightTransform.flip int 1 If non-0 flip the right eye
rightTransform.flop int 1 If non-0 flop the right eye
rightTransform.rotate float 1 Right eye rotation in radians
rightTransform.translate float[2] 1 independent 2D translation applied only to right eye (on top of

offsets)

76

CHAPTER 13. NODE REFERENCE

RVDisplayStereo

Property Type Size Description
stereo.type string 1

RVRetime

Property Type Size Description
visual.scale float 1
visual.offset float 1
audio.scale float 1
audio.offset float 1
output.fps float 1

RVComposite

This node has been deprecated in version 3.10. The RVStack node subsumes it.

RVDispTransform2D

Property Type Size Description
transform.translate float[2] 1 Viewing translation
transform.scale float[2] 1 Viewing scale

77

CHAPTER 13. NODE REFERENCE

RVDisplay

Property Type Size Description
color.channelOrder string 1 A four character string containing any of the characters

[RGBA10]. The order allows permutation of the normal R G B
and A channels as well as filling any channel with 1 or 0.

color.channelFlood int 1 If 0 pass the channels through as they are. When the value is 1,
2, 3, or 4, the R G B or A channels are used to flood the R G and
B channels. When the value is 5, the luminance of each pixel is
computed and displayed as a gray scale image.

color.gamma float 1 A single gamma value applied to all channels, default = 1.0
color.sRGB int 1 If non-0 a linear to sRGB space transform occurs
color.Rec709 int 1 If non-0 the Rec709 transfer function is applied
color.brightness float 1 In relative stops, the final pixel values are brightened or dimmed

according to this value. Occurs after all color space transforms.
color.outOfRange int 1 If non-0 pass pixels through an out of range filter. Channel values

in the (0,1] are set to 0.5, channel values [-inf,0] are set to 0 and
channel values (1,inf] are set to 1.0.

color.active int 1 If 0 deactivate the display node
lut.lut float div 3 Contains either a 3D or a channel display LUT
lut.prelut float div 3 Contains a channel pre-LUT
lut.scale float 1 LUT output scale factor
lut.offset float 1 LUT output offset
lut.inMatrix float 16 Input color matrix
lut.max float 1 A scaling value on the output of the channel LUT
lut.name string 1 Placeholder used for annotation
lut.file string 1 Name of LUT file to read when RV session is loaded
lut.size int 1 or 3 With 1 size value, the display LUT is a channel LUT of the

specified size, if there are 3 values the display LUT is a 3D LUT
with the dimensions indicated

lut.active int 1 If non-0 the display LUT is active
lut:output.size int 1 or 3 The resampled LUT output size
lut:output.lut float div 3 The resampled output LUT

78

	1 Overview
	1.1 The Big Picture
	1.2 Drawing
	1.3 Menus
	1.4 Interfacing with the Environment
	1.5 Setting and Getting the Image Processing Graph State
	1.5.1 Addressing Properties
	1.5.2 User Defined Properties

	1.6 Getting Information From Images

	2 Python
	2.1 Calling Mu From Python
	2.2 Calling Python From Mu

	3 Event Handling
	3.1 Binding an Event
	3.2 Keyboard Events
	3.3 Pointer (Mouse) Events
	3.4 The Render Event
	3.5 Remote Networking Events
	3.6 Internal Events
	3.6.1 File Changed Event
	3.6.2 Incoming Source Path Event
	3.6.3 Missing Images

	4 Using Qt in Mu
	4.1 Signals and Slots
	4.2 Inheriting from Qt Classes

	5 Modes and Widgets
	5.1 Outline of a Mode
	5.2 Outline of a Widget

	6 Package System
	6.1 rvpkg Command Line Tool
	6.1.1 Getting a List of Available Packages
	6.1.2 Getting Information About the Environment
	6.1.3 Getting Information About a Package
	6.1.4 Adding a Package to a Support Area
	6.1.5 Removing a Package from a Support Area
	6.1.6 Installing and Uninstalling Available Packages
	6.1.7 Combining Add and Install for Automated Installation
	6.1.8 Overrideing Default Optional Package Load Behavior

	6.2 Package File Contents
	6.3 PACKAGE Format
	6.4 Package Management Configuration Files
	6.5 Developing a New Package
	6.5.1 Older Package Files (.zip)
	6.5.2 Using the Mode Manager While Developing
	6.5.3 Using -debug mu
	6.5.4 The Mu API Documentation Browser

	6.6 Loading Versus Installing and User Override
	6.6.1 Optional Packages

	7 A Simple Package
	7.1 How Menus Work
	7.2 A Menu in MyStuffMode
	7.3 Finishing up

	8 The Custom Matte Package
	8.1 Creating the Package
	8.2 The Custom Matte File
	8.3 Parsing the Matte File
	8.4 The CustomMattesMode Constructor
	8.5 Rendering the Matte
	8.6 The Finished custom_mattes.mu File

	9 Automated Color and Viewing Management
	9.1 The new-source Event
	9.2 The default new-source behavior
	9.3 Breakdown of sourceSetup() in the source_setup Package
	9.4 Setting up 3D and Channel LUTs
	9.5 Building a Package For Color Management

	10 Network Communication
	10.1 Example Code
	10.1.1 Using rvshell
	10.1.2 Using rvNetwork.py

	10.2 TwkQtChat Library
	10.3 The Protocol
	10.3.1 Standard Messages
	10.3.2 Data Messages

	11 Webkit JavaScript Integration
	11.1 Executing Mu or Python from JavaScript
	11.2 Getting Event Call Backs in JavaScript
	11.3 Using the webview Example Package

	12 Hierarchical Preferences
	13 Node Reference

