
Tunneled TLS for
Multi-Factor Authentication

Darko Kirovski and Christopher A. Meek
Microsoft Research, Redmond, WA, USA

Contact: darkok@microsoft.com

Technical Report MSR-TR-2009-50
April 2009

Microsoft Research
One Microsoft Way Redmond, WA 98052, USA

http://research.microsoft.com



1

Tunneled TLS for Multi-Factor Authentication
Darko Kirovski and Christopher A. Meek

Microsoft Research, One Microsoft Way, Redmond, WA 98052

Abstract—When logging onto a remote server from a distrusted
terminal, one can leak secrets such as passwords and account data
to various forms of malware. To address this problem, we take
an existing approach of using a trusted personal device as the
interface available to users for entering their login credentials. In
our proposal, such a device would send the credentials to a server
using a tunneled TLS session routed via a distrusted terminal.
The tunneling would be done within an existing TLS session
established between the terminal’s browser and the server. Upon
validating the credentials, the server would enable the terminal
to access the user account. Consequently, the terminal would
never see in plain-text the login credentials. We show that the
proposed protocol resists arbitrary key-loggers, phishing agents,
cross-site scripting, and invasive virtual machines. As a powerful
and surprising application, if the distrusted terminal is at a point-
of-sale, the trusted device could use our protocol to execute a
payment with it. The user experience for this payment engine is
similar to a payment with a traditional credit card.

I. INTRODUCTION

According to a market research report, a surprising 9%
of US online consumers have experienced identity theft [1].
Those who fall prey are not online novices: 52% purchased
goods online in the past three months; they have an above
average online tenure of 5.6 years; and 69% are technology
optimists [1]. Another report estimates that roughly half of
the US consumers online are extremely concerned (5, on a
1-5 scale) about computer malware, online identity theft, and
interception of personal data; as a consequence more than 75%
of all US consumers chose to deploy free, 24% paid, and 1%
no software for malware protection [2]. This does not resolve
fear as, for example, roughly one third of US online consumers
chose not to use online banking from fear of identity theft;
security as a top competitive differentiator is used by 43% of
banks to attract the remainder of the online population [3].
The consequences are:
• direct – identity theft results in billions of dollars worth

of damage to the world economy [4], and
• indirect – the threat of identity theft limits consumers’

engagement in the online economy, thus, hurting the IT
industry as well as numerous businesses that have found
a more efficient way to conduct business by going online,
e.g., banking, insurance, financial services, etc.

Phishing and key-loggers are simple and popular identity
theft methods. Most tools that aim at addressing this problem
by detecting such malware, do suffer from being detected
themselves and then, circumvented. In addition, some of the
available software for protection from malware, is malware
itself. The core of the problem lies in the ease of collapsing
the circle of trust between the user, the remote server that
offers service of interest to the user at cost, and the IT
infrastructure that connects them. In this paper, we look at

multi-factor authentication as one way to address this problem
and opportunistically seek for novel applications – mostly
aiming at points-of-sale.

A. The Problem

Informally, the problem statement is simple. A remote
server hosting a user account wants to authenticate that a client
who is logging under the user’s name, is indeed controlled
exclusively by the user herself/himself. It is rather difficult to
formalize this simple problem description within the existing
computing milieux.

The research community has tried to resolve the problem
of user authentication from a fully distrusted computer using
a broad set of methodologies based upon multi-factor authen-
tication (MFA). MFA1 approaches rely upon at least two of
the following three authentication paradigms:
• “what I know” – the most commonly deployed mecha-

nism, a password, suffers from the following issues: it is
easy to intercept, thus, opens doors to a range of attacks
from key-logging to shoulder-surfing, and even modest
entropy implies a memorization challenge, i.e., passwords
are prone to directory attacks [5].

• “what I have” – the user proves to the remote server dur-
ing authentication that he/she is in possession of a trusted
device, i.e., its secrets. This method is used predominantly
as an amplifier of trust during authentication. Apart from
inadequate security protocols, the only problem related
to this authentication paradigm, is the fact that it cannot
be used exclusively, i.e., anyone who has access to the
device, could impersonate the users whose secrets are
stored on it.

• “what I am” – scan of user’s biometric traits is used as
a discriminator during authentication [6]. This method
is plagued by many issues: human assistance during
verification is necessary because it is rather easy to fool
the measurement equipment [7], poor practical error rates
[6], cost, privacy, and inconvenience at use.

Considering the strengths of individual authentication
paradigms, most proposals rely upon passwords and authen-
tication hardware. The body of research work that introduces
protocols that leverage upon these two approaches is fairly
diverse and we review it in Section V. We recognize several
crucial objectives:
(i) secure login – the initiative for migrating the input of

user credentials from the distrusted terminal, c, onto a
personal trusted device, p, with an objective that c never
observes these credentials in plain-text, [8] and

1A solid informal survey of standard MFA techniques can be found on
Wikipedia: http://en.wikipedia.org/wiki/Two-factor authentication.

http://en.wikipedia.org/wiki/Two-factor_authentication
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(ii) write confirmation – faced with the threat of transaction
generators (TG) [9] and cross-site scripting (XSS) attacks
[10], the server, s, would seek a confirmation for each
“write” to the user’s account state via p [11]. Instead of
relying on stolen credentials, a TG simply waits for the
user to login to her account and then issue transactions
on behalf of the user [9]. Cross-site scripting (XSS) is a
type of computer security vulnerability typically found in
web applications which allow code injection by malicious
web users into the web pages viewed by other users.
An exploited cross-site scripting vulnerability can be
used by attackers to bypass access controls such as the
same origin policy. In recent years XSS surpassed buffer
overflows to become the most common of all publicly
reported security vulnerabilities [12].

(iii) secure logoff – a periodic ping from the trusted device
[13] as well as an explicit logoff signal issued by the user
from p are two system actions that can ensure s about
the proper lifetime of a secure session. Since XSS attacks
rely on the existence of established secure sessions at
victim’s computer, enabling secure logoff is as important
as enabling the secure login.

(trusted 

personal) 

Device

(distrusted) 

Terminal

Server

adversary

Account

Fig. 1. Parties of interest in multi-factor authentication: a server s hosting
a user account, a terminal c assumed to be fully under the control of the
adversary, and a trusted device p in the hands of the account owner.

B. The Contribution

We address (i–iii) by proposing an authentication system
based upon a simple tunneled TLS2 connection from p to s.
The simplicity of the proposed protocol as well as the fact
that it addresses effectively several challenging and important
problems in authentication, represent the key contribution of
this work.

In our protocol, first c authenticates s using a standard
PKI-based TLS connection [14]. Next, c connects to p using
a local wired or wireless near-field communication channel
such as BlueTooth. We do not require that this connection
is authenticated and/or private, hence cumbersome trusted
pairing protocols are avoided. Then, s initiates a separate
TLS connection tunneled via c into p in order to achieve
the MFA objective: obtain a password, a device identifier,
and/or a biometric template from the user. As a consequence,
c never observes in plain-text the authentication credentials.
Upon validating the credentials, s grants c access to the user

2We refer to the Transport Layer Security protocol and its predecessor,
the Secure Sockets Layer, as means of authentication via a public key
infrastructure.

account so that all “writes” to the account state (i.e., stock
purchase, money transfer, sending an email, etc.) are confirmed
by a user action executed on p. Finally, p periodically (e.g.,
say every 30 seconds [13]) sends a “ping” signal to s over the
tunneled TLS to assure of the continuous proximity between
c and p. The user can logoff by either walking out on c at
which point the proximity between c and p is broken or by
specifically sending a “logoff” signal from p to s, again, via
the tunneled TLS.

The connectivity of the parties of interest in our protocol is
illustrated using Figure 1. Section II reviews the construction
and properties of the proposed protocol in detail.

We assume a broad threat model where among other as-
sumptions we consider:

• A virtual machine (VM) fully controlled by the adver-
sary, is executing all operations on c, i.e., the VM can
manipulate the data and control flows of client’s browser
or any other resource at will.

• A “ghost” user-interface is available to the malicious
party who is in control of c. The adversary can render an
instance of an on-going https:// session on a “ghost”
display – a display hidden from the user, possibly being
rendered on another computer, and under the full control
of the malicious party.

Within our objectives and considering the above security
assumptions further detailed in Section III, we formally veri-
fied the proposed protocol using a publicly available, off-the-
shelf package, AVISPA [15]. In a brute-force simulation of
considered adversarial scenarios, the verifier did not find a
single vulnerability. Section IV details this effort as the main
experimental result.

C. Preliminary Discussion

Server change. A server must be cognizant of the fact
that a specific secure session is launched from a terminal
which the user does not trust; hence, the server in its own
as well as in the interest of the user, should restrict display
of identifying data on such a terminal (e.g., account number,
birthdate) as well as ask for a confirmation for each crucial
“write” to user’s account. Although most related work has
pursued authentication systems which do not pose demand
for server-side alterations (see Section V), we stress that this
objective is flawed as servers must address the fact that all
data sent to and from the browser that resides in c, is assumed
public. To that extent, we anticipate that reliable MFA would
require changes to s and thus, propose a protocol that also
asks for additional, minor steps from s.

Choice of trusted device. We acknowledge that the design
of the trusted personal device, p, could be realized so to reach
different security vs. cost configurations. The top end would
be represented by an intrusion-proof tamper-resistant dedicated
personal device with a full user I/O interface (e.g., keyboard
and display similar to a mobile phone) and a Web browser with
minimal HTML parsing/rendering capabilities (e.g., scripting
and dynamic content disabled). One of the least expensive
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Step Server s Terminal c Device p User

I Ksc = TLS(K−1
s , cert(s, Ks)) Ksc = TLS(Kt) visits https://www.s.com

all further communication between s↔ c is tunneled via this TLS channel from c
II m1 = EKsc (html)→ c html = DKsc (m1) checks “login via p” –

html = login page with “login via p” option display html installs device discovery app at c
III pairs with p pairs with c controls pairing UI at p and c

IV Ksp = TLS(K−1
s , cert(s, Ks)) Ksp = TLS(Kt) visits https://www.s.com

all TLS messaging between s↔ p is passed through the s↔ c tunnel on its way to/from p. from p
all further messaging between s↔ p is tunneled via the s↔ p TLS channel.

skip the s↔ p TLS channel is always tunneled via the s↔ c TLS channel
V on its way from/to c to/from s.
VI m2 = EKsp ({html, x})→ p {html, x} = DKsp (m2) visits https://www.s.com

html = form to enter username, pwd display html from p, enters credentials
x = challenge r = f(x, h(pwd), ID) pwd = password

r = DKsp (m3) m3 = EKsp (r)→ s

if f−1(r) = {x, h(password), ID)}
then m4 = EKsc (html)→ c html = DKsc (m4)
html = page with account info display html accesses account at s from c

TABLE I
DESCRIPTION OF THE TUNNELED TLS PROTOCOL. STEP V WAS INTENTIONALLY SKIPPED. FUNCTIONS f AND f−1 REPRESENT RESPONSE AND
VERIFICATION FUNCTIONS TO A CHALLENGE x RESPECTIVELY. FUNCTIONS DK() AND EK() DECRYPT AND ENCRYPT RESPECTIVELY USING A

SYMMETRIC KEY K . A PUBLIC-PRIVATE KEY-PAIR IS REPRESENTED AS Kx AND K−1
x RESPECTIVELY. FUNCTION TLS() EXECUTES ALL STEPS OF THE

TLS PROTOCOL WITH SERVER-AUTH ONLY. FUNCTION cert(s, Ks) REPRESENTS A CERTIFICATE FOR s’S PUBLIC KEY ISSUED BY A TRUSTED
AUTHORITY WITH A PUBLIC KEY Kt . FINALLY, ID REPRESENTS THE SECRET DEVICE ID UNIQUE TO p.

solutions is a full software implementation on a smartphone3

with Bluetooth. We consider the last solution rather appealing
and in Section II-D pay special attention to an implementation
of our protocol on such a device.

Application. The research community has been enamored
with authentication solutions that particularly apply to Internet
cafés (ICs) (see Section V). Such an objective could not be
more restricting considering the fact that there exist roughly
3-4 million ICs worldwide compared to tens of millions of
points-of-sale that literally drive the entire world economy.
Later, in Section IV-C, we emphasize the benefits and draw-
backs of our proposal with respect to a list of applications.

II. TUNNELED TLS

In this section, we provide the objectives and details of the
proposed authentication protocol.

A. Preliminaries

ENTITIES. We consider the following entities:
s denotes a server which manages a database of user

accounts. It uses a standard certificate-based public key
infrastructure to authenticate itself to an arbitrary client.

c denotes a client computing platform (personal computer,
terminal, or even virtual machine) which is not trusted
by its users. The assumption is that the full user interface
(e.g., keyboard, mouse, display) could be intercepted, al-
tered, and stored by a malicious party who has unlimited
access to c (e.g., via a Trojan virus or otherwise).

p denotes a personal computing device such as a mobile
phone, trusted by the user. This device can establish a
connection to any c via a common public wireless or
wired communication protocol such as Bluetooth or USB.

3See Wikipedia entry, http://en.wikipedia.org/wiki/Smartphone, for infor-
mal definition.

We assume that the incoming networking stack into p is
built to be robust to intrusion attacks. Hence, we assume
that the existence of a relevant data-sniffing mechanism
on p is unlikely. Section II-D discusses these assumptions
in detail.

DEVICE PAIRING. A wireless connection between c and p
is of particular importance due to its convenience. We assume
that the pairing protocol between c and p which initiates their
wireless communication, does not guarantee to p that it has
connected to a specific physical unit c. We also assume that
c is previously unknown to p, i.e., they have never had a
mutual connection. The fact that security is not imposed during
the pairing process simplifies this step as cumbersome trusted
pairing protocols are not required.

OBJECTIVE. A user wants to log onto her account at s so
that:

a) access is granted from/to a specific physical terminal c,
b) s authenticates the user by using the “what I have?”

(device p) and “what I know?” (account password)
authentication paradigms,

c) the credentials that answer the authentication questions
are never communicated in plaintext via c – clearly, they
are entered using p,

d) a session between s and c is alive as long as the user
continuously demonstrates that she can answer “what I
have?” to s, and

e) all critical actions with the account are verified by an
action from p.

Since we assume that the system I/O at c could be inter-
cepted, recorded and/or modified by a malicious party, the best
that the account user could hope for is that the adversary:

i) cannot gain access to login credentials, thus cannot access
the account at a later time,

ii) cannot initiate or interfere with critical actions during

https://www.s.com
https://www.s.com
https://www.s.com
http://en.wikipedia.org/wiki/Smartphone
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a s ./ c session. Note that editing the system I/O in
real-time, i.e., terminal screen, is an attack possibility,
although difficult – that should not have serious conse-
quences as all critical actions (cash transfers, payments,
stock transactions) with the account are verified via p.

A question arises: if p is a trusted platform, why not
access the account entirely from p? Mobile computing devices
commonly do not have user interface options that enable
comfortable data display and entry – thus, combining the
convenience of the desktop user interface with the trust associ-
ated with personal computing devices, makes this and similar
proposals appealing, secure, and ubiquitous. We review several
design choices for p in Subsection II-D.

B. The Protocol

Let’s assume the scenario of logging onto a banking account
A using a public computer, c, located at a university comput-
ing center. The owner of the account also has a mobile phone,
p, at her disposal. By following a standard login procedure,
login credentials for A would be exposed to a key-logger
installed on c. Here is the proposed remedy – its steps are
illustrated in Table I-B.
Step I – TLS handshake s ./ c w/ server-only auth.
Using c’s Web browser4, the user would establish a TLS5

session (https://...) with the provider of the service A,
s. Here, only c would verify the authenticity of s using stan-
dard public-key cryptography, not the other way around. An
established TLS connection assumes a successful symmetric
key exchange. The exchanged master secret, Ksc, is used for
encrypted communication between s and c. Details of TLS
can be found in [16] with a formal verification in [17].
Step II – Login choice. Then, s would provide a Web page to
c with a log-in fill-out form (username: and password:)
as well as a user-interface to select the type of login: “Web-
only” or “via p” that the user can check/select to log via a
Bluetooth enabled device. An example is presented in Figure
2(left).
Step III – c ./ p device discovery. In the latter case (which
is of interest here), a small application installed on c (by s
or some other not necessarily trusted source, such as an OS
manufacturer, credit card company, or phone manufacturer)
would seek for neighboring Bluetooth devices. The user would
then select c and p as pairing choices on p and c respectively.
An example of an interface that would enable the selection of
a specific p on c is presented in Figure 2(left).

Bluetooth does not offer any cryptographic guarantees that
two specific units are connected directly. Fortunately, in our
setup such a guarantee is not required. From c’s perspective,
the “correct” identity of p is not important because c only
serves as a user interface to the account that p’s credentials
can access. From p’s perspective, connecting to the “correct”
c is important because of usability issues, but irrelevant for

4In the remainder of this article, when we refer to c, we mean c’s Web
browser unless otherwise stated.

5Details of the Transport Layer Security (TLS) protocol and its predecessor,
Secure Sockets Layer (SSL) protocol can be found at: http://en.wikipedia.org/
wiki/Secure Sockets Layer.

security as we already assume in our threat model that the
adversary has full access to c. We address the convenience of
a “correct” connection to a specific c in step V of our protocol.
Step IV – Tunneled TLS handshake s ./ p w/ server-only
auth. Once c and p are connected, p would use the c ./ p
communication channel to initiate a new TLS handshake
tunneled6 via the existing s ./ c TLS session. In other
words, all the TLS messaging between s and p would be
encrypted/decrypted using Ksc as c relays/receives it to/from
s. By using tunneling, we ensure that all attacks on our
protocol must involve full control over c. We assume that
p holds a “correct” public key of the trusted authority who
signed s’s certificate used in the TLS handshake.

Similar to step I, p would authenticate s but not otherwise.
The result of the TLS handshake, a session master secret, Ksp,
would be used for encrypted communication between s and
p. Similar to the s ./ p handshake, all further communication
between s and p already encrypted with Ksp would be
additionally encrypted with Ksc.
Step V – Verifying c ./ p. Before accessing A, p wants
to ensure that it is connected to the “correct” c. This is a
mere convenience feature as the user does not want to connect
accidentally to “incorrect” terminals in the computer center.
Since all data displayed on c is considered public, at this
point the user understands that her actions with accessing the
account could be seen by others. It is the responsibility of s
to anonymize the presented account data in such a way that a
malicious observer cannot figure out the identity of p’s owner.

The key idea behind assuring the owner of p that her device
is connected to the “correct” c, is in showing that some secret
data or user action is shared on the user interfaces of both c
and p. This could be achieved using several mechanisms, e.g.:
V.1 p would generate a large random number r, send it to

s and display it on p. Then, s could display r on c and
ask the user to confirm that c and p both show r. The
confirmation must be made on p’s user interface.

Step VI – Login. Now, s sends a Web page to p, asking the
user to provide the login credentials: the username and the
password. After entering the data, p sends out the information
tagged with its identifier id(p), e.g., a random long number
that s associates with A. This number is stored with p and s
when the account is open and/or p registered with s by the
user. The purpose of id(p) is to impose a limitation that A
is accessed only by devices approved by the user and s; they
could associate several devices with A. The s ↔ id(p) ↔ p
association procedure is detailed later in this section.

Login credentials (username, password, and id(p)) could be
sent over the encrypted p ./ s TLS channel using an arbitrary
password authentication protocol including weak ones such as
a hash of the plain-text password. In the formal verification
of the proposed protocol we used a variant of the Secure
Remote Password (SRP) protocol, SRP-6, detailed in [18],
[19]. Another elegant way to implement the verification of
credentials is via a challenge/response scheme, where s would
send a challenge random number x to p, p would compute a

6See Wikipedia entry: http://en.wikipedia.org/wiki/Tunneling protocol for
an informal description of tunneled protocols.

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Tunneling_protocol
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Fig. 2. (left) An example of a user interface offered by the server to authenticate a user using a locally accessible, personal, and trusted mobile device.
(right) An example of how the server upon authentication marks account numbers to prevent data sniffing.

response r = f(id(p), x, h(password)), where x represents a
random nonce, h() represents a cryptographic hash function
such as SHA-256 that operates over the concatenation of its
arguments, and f() is a response function such as h() or a
public-key signing function such as RSA with id(p) being
used as the private key.

Once s receives r, since it has access to x, h(password)
and id(p) (in case f = h) or id−1(p) (in case f is a public-
key signature), i.e., the public key that corresponds to id(p),
it can validate the authenticity of the credentials by verifying
against r.

If s positively authenticates the information sent from p, it
would allow c access to A. As a precautionary action, s should
present only limited content about A on c for this logon case
specifically. The primary objective is to prevent a potential
data sniffing agent at c to obtain crucial information about A
such as the account number and the username. An example of
a Web page that avoids presenting crucial account information
is presented in Figure 2(right).

Finally, it is important to stress that all data sent between s
and p is encrypted with Ksp. That way, c cannot fool p into
revealing its credentials to a third party or c. Only a party
who owns the private key correspondent to s’s certificate will
be able to read this cipher-text. This cipher-text is additionally
encrypted with Ksc on its way from c to s.
Post-auth step VII.a – Write confirmation. Once c starts
accessing information about A at s, under the assumption that
the entire I/O to c is controlled by the adversary, there exists a
demand to verify all critical “data writes” (i.e., cash transfers,
stock transactions, etc.) into A initiated from c. This is done
by asking for explicit approval from p for each critical “write”
into A initiated by c.
Post-auth step VII.b – Read validation. In addition, as we
assume that c is in control of a “ghost” display, it could fool
the owner of p into an action by presenting false information

on its terminal, i.e., false stock price or missing credit card
transaction. To that extent we allow the user to ask for specific
(parts of) Web pages presented on c to be forwarded by s to
p for content verification. Such requests could be handled by
a simple AJAX script7 augmented into a Web page served by
s onto c.

Post-auth step VII.c – Continuous “What I have?”. Finally,
in order to prevent the adversary from browsing data on A
when p loses power or connection to c, s would continuously
ping p to resume the session with c. This way, p can logout
from a current session by ceasing to respond to pings from s.
One simple implementation of a ping could be a challenge to p
to encrypt a counter using Ksp. The counter would increment
after each challenge and start from a large random value set by
s during the initial TLS handshake in step IV. An alternative
method for logging off is a specific “log-off” signal sent to
s by p – this approach achieves an instant termination of the
s ./ c TLS connection.

The described protocol I-VI+VII.a-c is specifically con-
structed to address the objectives presented in Subsection II-A.
Key steps of the protocol (all but step V) are illustrated in
Figure 3. Note that although c and p communicate over a
“non-secure” BlueTooth connection (E0 used in Bluetooth has
been proven vulnerable to several attacks [20]), the platform
still achieves its objective. The protocol proposed in this
section could be used for numerous other applications such
as a universal payment method without any e-cash stored
on p, coupons, etc. Other commonly used devices such as
PocketPCs, mobile music players, etc., could be used to
provide these functionalities.

7See Wikipedia entry for Asynchronous JavaScript and XML at: http://en.
wikipedia.org/wiki/AJAX.

http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
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Fig. 3. Block diagram of protocol steps: c and s start with a TLS handshake, then c and p discover each other, next p starts a TLS handshake with s that
gets tunneled via c ./ s, finally, p sends the login credentials so that only s can read them. Post-authentication signals among the protocol entities include:
“device alive”, i.e., a continuous “what I have,” signal that assures s that p is still connected to c, and “A ← data” command sent by c to s via c ./ s which
initiates a “write confirmation” signal from s to p via p ./ s; s would execute “A ← data” only if p responds affirmatively.

C. Enrollment and Revocation

It is important to describe how s enrolls p to access A.
This can be done in several ways: (i) when the user accesses
A from a trusted computer, then s could either generate id(p)
and send it to p for permanent storage or p could generate
id(p), store it locally, and register it with s; id() could also
be a permanent number hardwired to each device, (ii) p could
disclose/receive its id(p) during an SMS or other type of
data communication with s where the user would authenticate
herself to s by demonstrating knowledge of A.

With certain risks, p could be enrolled from a distrusted
terminal. Then, s would accept a login via p that is based
upon the username and its password only (i.e., a regular login)
to get to a point where registration of id(p) is performed. This
is an action that should be avoided as it can be done from any
p. For example, a shoulder-surfed password would turn any
device into a valid p.

Device revocation via an 1-800 phone call or other form
of direct connection to s, would entail removing id(p) from
the list of devices allowed to access A. The user would be
given an opportunity to register a new device using a trusted
computer or a timed (say during a phone call to a service
center) device registration via a distrusted computer.

D. Design Choices for p

The proposed functionality can be programmed into the
mobile phone or onto a smart card (SIM card) used to transfer
account features from one mobile phone to another. Compared
to general purpose computing platforms, it is arguable whether

mobile devices offer better or worse security with respect to
viral malware. We review certain design parameters for mobile
devices that could be advantageous.

• All or most of the software on a mobile phone is
controlled by the service provider. This feature typically
redirects the responsibility for virus protection from the
owner of the device to its service provider.

• On most mobile phones the real-time hardware stack
that handles the voice communication is isolated from
the general-purpose programmable unit. The latter hosts
the general-purpose OS and resident applications. These
“hidden” computing resources offer an inexpensive alter-
native to smart cards for incorporating security features
that adversaries cannot access with malware installed on
the programmable unit.

• It is relatively easy to implement a non-programmable,
and tamper-resistant operational mode on a mobile phone.

• The system design of a mobile phone is self-contained
and allows deployment of more radical intrusion man-
agement platforms such as randomized instruction sets
[21] or intrusion prevention via code signing [22].

• Finally, it is more difficult to write robust malware for
mobile phones as software development kits available
for most embedded OSs do not offer full support to all
features of the underlying OS. This development hurdle
has kept the list of attacks on mobile phones relatively
short [23].

Considering the above arguments, one could expect that a
mobile phone should achieve better intrusion robustness com-
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pared to a general purpose computer, however at additional
design costs. Certainly the design strategy for a mobile phone
used for MFA should emphasize intrusion prevention as a
premier design criterion. Historically, the critical entry points
for malware on mobile devices have been Bluetooth, SMS
messaging, and e-mail [23].

Finally, the option to use a dedicated hardware device that
offers tamper-resistance and custom-built intrusion prevention
is certainly real. However, due to the strong recent trend
for convergence of most mobile applications (portable MP3
player, digital camera, GPS, WiFi, etc.) onto a single device,
our objective to fit the functionality of the proposed protocol
onto a mobile phone is appealing.

III. THE THREAT MODEL

In this section, we consider several threats and address them
informally in our security analysis.
Case 1. Loss of p and the account password. Since the
authentication system is based upon the “What I have?” (p)
and “What I know?” (password) authentication principles, it is
just to acknowledge that if the user loses p to a malicious party
m who knows her password, then m will have full access to
user’s account A in a classic case of identity theft. Typically,
m will be able to impersonate the user until she notifies s of
her loss of p. All two-factor authentication systems are prone
to this attack (see Section V).
Case 2. Intrusion into p. This is a special case of the previous
attack, where the adversary penetrates p with an arbitrary
program that enables full visibility of its internal storage. To
prevent this attack, the construction of p must be such that
software resident on p should not be able to read id(p) into p’s
general purpose registers – reads and writes of id(p) requested
by s should be done using a hardware-only mechanism. That
way, intrusion into p via a Trojan virus would equal to
password leakage.

In a more complicated version of this attack, if the malicious
code installed on p takes control over its user interface, i.e., it
could both read from and write to the variables that constitute
the user interface, this code could launch arbitrary malicious
actions from p on behalf of the user. Such an attack should
demand great sophistication of the malicious party and is
unlikely on most modern mobile phones as their operating
systems are custom built and difficult to reverse engineer.
Case 3. Phishing p. A traditional phishing attack onto p via
the c ./ p connection is not possible by construction. When p
is registered with s, our protocol establishes a device identifier,
id(p), and stores it at p along with the id(p)↔ s association.
At a later time, only a TLS protocol with s and no other entity
is allowed to access id(p), thus, any phishing attempt from c
will be outward rejected by p.
Case 4. Ghost display would probably be the most realistic
and unnerving attack to the user. Here, the adversary m would
have a virtual display resolution twice as large as c’s display.
One half of the virtual display would be connected to c’s
screen, the other half to another machine cm controlled by m;
cm would also have a parallel user input augmented into c’s
I/O. This attack is relatively easy to do by running a malicious
virtual machine on c.

When the user logs onto s via c, m would open another
browser window in the part of the virtual display that’s visible
only to cm and use the parallel I/O to browse the data from
A at will. Since every write generated by m would need to be
confirmed by the user via p, it is unlikely that m could perform
any writes into A’s state. By realizing that such an attack
is a possibility, s could offer viewing only part of the data
related to A over a tunneled TLS connection that minimizes
the damage that a “ghost display” attack could cause.
Case 5. cm ./ p. The case when the user mistakenly connects
p to a malicious computer cm instead of a desired physical
unit c, is equivalent in the worst-case to the consequences
of the “ghost display” attack. Still, the user is more likely to
detect the cm ./ p attack as the expected Web pages from
s will not appear on c although p would show a successful
tunneled TLS connection with s. The user would prevent m
from browsing her data by instantly disconnecting p from s.

Finally, note that all realistic threats in this system pose
substantially less danger to the user identity compared to state-
of-the-art in modern detection-based anti-virus, anti-phishing,
and anti-key-logger technologies. Compared to authentica-
tion technologies such as SecurID, we point the Reader to
the fact that our system addresses a novel problem where
we do not focus on providing token-based one-time strong
passwords; instead, we focus on fulfilling a small set of
security requirements to enable a personal mobile device as
an enabling technology to making an https://... or some
other type of a login session secure on a fully distrusted client
computer/terminal. Due to the wireless nature of the c ./ p
connectivity, our protocol is designed to be robust to man-in-
the-middle attacks as opposed to SecurID [24]. Compared to
the most related work by Mannan and van Oorschot [11], we
do extend their threat model to handle “ghost” displays and
we offer a significantly simpler protocol that can be handled
by traditional TLS handshakes only. We also introduce several
additional functionalities that aim at limiting a malicious party
who is in control of c to read user’s account state only at times
when p and s are connected, i.e., p responds to s’s pings over
the tunneled TLS channel.

IV. REDUCTION TO PRACTICE

A. Formal Verification via AVISPA

In order to formally verify the security of the proposed
protocol, we first described it using the High Level Protocol
Specification Language [25] which included a description of
TLS and SRP adopted from [26]. Descriptions of the adver-
sarial scenarios were more demanding compared to standard
two-party protocols because our protocol encompassed four
entities including the intruder – this additional complexity con-
tributed to uncharacteristically long and resource consuming
verification efforts. Next, we verified the protocol specification
using the Automated Validation of Internet Security Protocols
and Applications analysis tool (AVISPA) [15], [26]. AVISPA is
positioned as an industrial-strength technology for the analysis
of large-scale Internet security-sensitive protocols and appli-
cations. The ofmc theorem prover attached to AVISPA [27]
reported a search time of 36.7 seconds, 18207 visited nodes
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and a search depth of 15 plies. The alternative cl-atse
theorem prover [28], also part of the AVISPA distribution,
reported analyzing 6092736 states within a space of reachable
699886 states in 156.3 seconds. Both theorem provers found
no attacks on the protocol.8

B. Implementation

Implementation of the proposed protocol is straightforward
as it involves only existing building blocks. TLS-auth can be
executed with a variety of public-key cryptosystems such as
RSA or elliptic curves which all yield different computational
costs at s, c, and p. At the server, each TLS handshake costs
approximately one (expensive, if RSA is used) private public-
key operation, and at the client each TLS handshake costs
approximately two (inexpensive) public operations.

TABLE II
PERFORMANCE OF BASIC PUBLIC-KEY ROUTINES ON A 13MHZ ARM

PROCESSOR. WE DISPLAY THE REQUIRED MEMORY FOOTPRINT FOR THE
CODE, STACK AND HEAP FOR EACH OF THE ROUTINES AND THE NUMBER

OF CYCLES REQUIRED TO EXECUTE IT. ALL PERFORMANCE NUMBERS
ARE FOR PETER MONTGOMERY’S IMPLEMENTATION OF RSA (1024-BIT)

AND ECC (WTLS 163-BIT CURVE #3).

Code size Stack Heap Cycles
EC-DH 15KB 1.5KB 1.2KB 2.7M = 150ms

EC-DSA SignVer 16KB 1.5KB 1.2KB 5.4M= 300ms
RSA PubEnc 10KB 0.7KB 4.5KB 3.8M= 210ms
RSA PrivDec 20KB 0.8KB 6.5KB 198M= 11s

We present the performance of basic public-key routines on
an outdated 13MHz9 ARM TDMI720T processor in Table II.
We display the required memory footprint for the code, stack
and heap for each of the routines and the number of cycles
required to execute it. All performance numbers are for Peter
Montgomery’s implementation of RSA (1024-bit) and ECC
(ECDH and ECDSA considered over WTLS 163-bit curve #3).

One can notice that the proposed protocol doubles the
computational cost on the server as two TLS sessions are
required per login. Still, in most applications crypto-related
computations per TLS session are dwarfed by overall compu-
tation costs of an average TLS session, hence such an overhead
is acceptable considering the benefit of MFA.

C. Applications

In order to evaluate the applicability of our protocol, we
outline its disadvantages regardless of comparisons to similar
technologies. Our platform induces several changes:
• server-side – a slight change to the server is required so

that it can handle the tunneled TLS protocol. The fact that
the server receives a signal that a specific terminal is not
trusted when a user connects via a trusted device, calls for
an action to reduce read access to identifying data with
the user account. This stresses the point that the server
side is likely to change opportunistically rather than due
to a necessity to accommodate our protocol.

8For anonymity, we did not include access to the protocol specification for
the AVISPA verifier. The final version will certainly include such a pointer.

9CPUs in current smartphones are commonly clocked in excess of 400MHz.

• terminal-side – in order to perform the tunneling, the
terminal needs two components. First, it needs to install a
browser plug-in, e.g., similar to Adobe Flash or Microsoft
SilverLight. Second, the terminal must be able to connect
to p using a wired or wireless connection. In case Blue-
tooth is used, the terminal would also have to be armed
with a Bluetooth transceiver. As opposed to most modern
smartphones that do have Bluetooth, many terminals are
not equipped with it. Upcoming standards such as the
Wireless USB10 aim at facilitating this scenario.

• trusted-device – has to install an application, reminiscent
of a stripped down Web browser to handle the user
interface to our protocol. Similarly to the server-side, we
believe that consumers are likely to act opportunistically
rather than due to a necessity.

s c p
c = personal computer X X X
c = public terminal X ◦ X
c = point-of-sale X X X

TABLE III
EASE OF USAGE AND DEPLOYMENT OF THE PROPOSED PROTOCOL WITH
RESPECT TO A GRID OF POTENTIAL APPLICATION TARGETS VS. SYSTEM

COMPONENTS THAT DEMAND ALTERATIONS TO OPERATE THE PROTOCOL.
SYMBOL X DENOTES CONVENIENT DEPLOYMENT. SYMBOL ◦ DENOTES

LIKELY DIFFICULTIES IN USAGE.

It is important to evaluate how the burden on c imposed by
our protocol, would resonate in the main application domains.
We identify three main settings for c and illustrate their fit
with respect to our protocol in Table III:
• personal computers – include home, office, mobile

computing devices with full I/O. These devices are under
the control of one or a few users who are not likely to
find installation of a browser plug-in difficult. Similarly,
those who appreciate the value of MFA, are likely to
support their authentication mechanisms with a Bluetooth
transceiver (costs less than US$5). We point the Reader
to the fact that the cardinality of this setting is in the
order of 109 machines worldwide.

• public terminals – located at public computing centers
and Internet cafés could be under a ban on installing any
browser plug-ins because of fears for system security. In
such a setting, our platform would not gain ground. The
cardinality of this setting is in the order of 107 machines
worldwide.

• points-of-sale – could use our protocol to run transactions
against their customer’s mobile phones. Here, s would
represent a bank or a credit card company, c a cash
register at, say a supermarket, and p would represent a
customer’s mobile phone. Instead of typing in a password,
a PIN could facilitate the data entry at the consumer’s
side. The consumer would approve of a transaction after
browsing through a downloaded shopping cart and agree-
ing to the price with an entry of a PIN. The cost of this
transaction for both the merchant as well as the credit card
company would be significantly lower than when running
a transaction via a dedicated communication channel.

10See http://en.wikipedia.org/wiki/Wireless USB for more details.

http://en.wikipedia.org/wiki/Wireless_USB
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In addition, this payment mechanism offers a significant
advantage over credit cards because of the impossibility
of skimming. Although the cardinality of this setting is in
the order of 108 locations, points-of-sale drive virtually
the entire world economy. Thus, the applicability of our
scheme to this scenario is of particular importance.11

Finally, the type of applications that would benefit from
our platform include various financial services (e.g., credit
card companies, banks, investment brokers, etc.), account man-
agement for on-line bill-payments, vaults for health records,
government agencies, storage and application services for
cloud computing, personal communication systems such as e-
mail or instant messaging, etc. Note that the system that we
propose does not establish user identities – our protocol solely
enables authentication with substantially improved security
especially against nowadays most common attacks such as
cross-site scripting, key-loggers, and phishing.

V. RELATED WORK

In light of an industry- and government-driven demand
for secure authentication, several schemes that utilize various
approaches, have been proposed to date. For example, the US
federal banking regulators have concluded that the basic user
ID and password are not sufficient to protect against fraud
and issued guidelines for banks to implement multi-factor
authentication to mitigate risks in online banking [29].

Password-Authenticated Key-Exchange

The first successful password-authenticated key-agreement
method was the Encrypted Key Exchange (EKE) protocol
[30]. Although several of the first methods were flawed, the
surviving and enhanced forms of EKE effectively amplified
a shared password into a shared key, which could then be
used for encryption and/or message authentication. The first
provably-secure PAKE protocols were given in [31] and [32].
These protocols were proven secure in the so-called random
oracle model; the first protocols proven secure under standard
assumptions were [33] and [34]. In our work, we rely on a tra-
ditional PKI/TLS-based key exchange, thus we do not review
and compare our work to non-PKI, password-authenticated
key-exchange protocols.

One-Time Password Systems

RSA’s security key-fob, SecurID, is a dedicated device
that uses token-based authentication to enable strong one-
time passwords [13], [24]. SecurID consists of a token – a
piece of hardware (e.g., USB attachment) or software (e.g.,
a “soft token” for a cell-phone) – assigned to a computer
user that generates an authentication code at fixed intervals12

using a built-in clock and the card’s factory-encoded random
key (known as the “seed”). The seed is different for each
token, and is loaded into the SecurID server. The token

11We do not review the related work in mobile payment mechanisms,
because most methods in use are touch-less, RFID-based and as such, prone
to skimming.

12Usually 30 or 60 seconds.

hardware is designed to be tamper-resistant to deter its reverse
engineering. The seed is the secret key used to generate one-
time passwords. A user authenticating to a network resource
needs to enter both a personal identification number and the
number being displayed at that moment on their token. The
server, which also has a real-time clock and a database of
valid cards with the associated seeds, computes what number
the token is supposed to be showing at that moment, checks it
against what the user entered, and makes the decision to allow
or deny access. SecurID is prone to the man-in-the-middle
attack [35], [36], [37] as experienced by the Citibank in July
2006 [38]. Passwords generated by time-based generators may
face time synchronization issues between a client device and
the server [39]. An alternative that does not use tokens, has
been deployed in Telcordia’s S/KEY13, a one-time password
system based upon Lamport’s authentication protocol [40].

Most of the vulnerabilities of traditional one-time password
systems could be resolved by using a PKI-based protocol
that authenticates the remote server as a starting point to
a successful user-server hand-shake. Since we follow this
authentication paradigm we do not compare our protocol to
one-time passwords.

A. Two-factor Authentication

Researchers have proposed several schemes that use a
trusted personal device such as a mobile phone to improve
the security of Web surfing. Balfanz and Felten introduced
the splitting trust paradigm that partitions an application (e-
mail client in their case) between a trusted portable device and
a distrusted PC [8]. An application installed on a hand-held
computer would prompt the user to selectively approve the
process of digitally signing and sending a message to a server.
Although not tailored for MFA objectives, their work was the
first to use a general purpose portable device as a source of
trust. Parno et al. proposed an anti-phishing technology [41]
based on server certificates resident on the client.

Jackson et al. introduced the notion of a transaction gen-
erator (TG) where instead of relying on stolen credentials, a
TG simply waits for the user to log in to his account and then
issue transactions on behalf of the user. The authors discuss
rootkit-like methods that allow TGs to hide their tracks,
and explore a number of mitigation techniques, including
transaction confirmation [9].

The most related research is that of Mannan and van
Oorschot [11] who introduced a protocol which cryptographi-
cally separates a user’s long-term secret input from c; c would
perform most computations but would have access only to
temporary secrets. The user’s password would be input through
p; p would provide user’s long-term secrets to a c only after
encrypting them using a pre-installed, “correct” public key of
s. We expand upon this protocol by proposing a tunneled TLS
channel between p and s that could be used for verification
of connectivity between p, c, and s in addition to sending
credentials. Thus, we provide better protection from “ghost”
user interfaces (i.e., transaction generators) for both “reads”
and “writes” to the server-managed account state.

13Alternatively known as OPIE or OTP.
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Wu et al. were the first to propose a proxy-based authen-
tication scheme that employed a trusted proxy server which
stored user’s credentials [42]. In their informal proposal, a user
would use a distrusted machine to send an access request and
her username to the trusted proxy which would respond with a
random session name. The same session name is then sent to
the users mobile phone as an SMS message. The user would
compare the displayed session names and accept the session
on the mobile phone if there were a match. The proxy would
use the stored credentials to login to the desired server. One
effective constructive protocol for proxy-based authentication
has been proposed by Florencio and Herley [43]. Proxy-based
schemes leave a lot to be desired as they require users to
trust the proxy, i.e., a sophisticated intrusion into the proxy
would reveal users’ passwords, and their system cost is linearly
proportional to the traffic exhibited over the proxy. Our and
related protocols [11] do not suffer from these problems –
however, proxy-based authentication could be set up so that
the server application is intact [43].

Finally, we review some benefits that our scheme introduces
compared to related work. A third party such as a proxy
does not participate in our protocol, thus, the user does not
need to trust anyone else but c and to a certain extent, p.
To run the protocol, the trusted device does not need to be
connected to a global data network via SMS, WiFi, or other
data channels. Thus, our protocol is robust to outage of the
voice and/or data wireless service. The users in our scheme do
not need to type long dynamic passwords onto their personal
devices – they also do not need to carry with them at all times
print-outs of lists of viable one-time passwords. We allow the
protocol to run via the set of functionalities included in most
generic smart-phones which greatly facilitates implementation
efforts. Loss of the trusted device is not a threat to security
as long as the corresponding passwords are not compromised
otherwise – the device itself does not store any passwords.
Our threat model assumes that the adversary has full access
to the distrusted terminal. And, last but not least, our protocol
can use any public communication channel between c and p
such as Bluetooth.

VI. SUMMARY

We propose a simple TLS-based protocol that enables
an off-the-shelf smartphone to assist a password-based user
authentication from a fully distrusted terminal. The set of
appealing applications includes a mobile payment platform
that is robust to skimming and loss of the payment device,
while being convenient for use. In the general computing
milieux, our protocol prevents phishing, key-loggers, cross-
site scripting, invasive virtual machines, and transactional
generators from achieving their objectives.
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