
CSE367---Research Lab

1

Security System for Patient DB

Final report for CSE367

Fei Gao, Dan Wang and Jin Ma
Computer Science & Engineering

The University of Connecticut
Storrs, CT 06269-3155

{fgao, dwang, jinma}@engr.uconn.edu

05/08/2001

CSE367---Research Lab

2

ABSTRACT

With the development of middle technologies, people can take advantage of the resources

spread through out their organizations and collaborative organizations around the world. This

distributed resource environment makes the most of the available resources, at the mean time it

poses the issue of security when people access these valuable resources through network because

most middleware products do not have enough security. In this paper, a role-based access control

security model is discussed. The main idea in this model is a resource can not be accesses by any

user. An authenticated user can only access a resource based on the user’s role and each role has

specific privileges. This model is implemented in a CORBA-based distributed environment.

CSE367---Research Lab

3

Contents

1 INTRODUCTION TO CORBA.. 1

1.1 What is DRE? ..1

1.2 What is CORBA? ...1

1.3 How CORBA Works ...2

1.4 Advantages and Disadvantages..5

2 CORBA NAMING SERVICE ... 6

3 SECURITY IN DRE... 8

4 OVERVIEW OF THE SYSTEM .. 9

4.1 Components ...9

4.2 Overall Structure...10

5 SYSTEM FUNCTIONS ...11

5.1 Basic Functions --- Interaction between components ..11

5.2 Patient DB Server and GUI Client Access Security Server..12

5.3 New Functions of Security Server...14

5.4 New functions of Security Clients...15

5.5 New functions of Patient DB Server...15

5.6 New functions of Patient DB Client..18

5.7 Component Functionality..19

6 CONCLUSION AND FUTURE WORK..21

6.1 Problems encountered..21

6.2 Recommendations for improvements ...21

6.3 Suggestions for future work..21

APPENDIX A: USER MANUAL ...23

APPENDIX B: SYSTEM DEMO WITH SCREEN SHOTS...29

APPENDIX C: UML DIAGRAMS ..35

CSE367---Research Lab

1

1 Introduction to CORBA

1.1 What is DRE?

A distributed resource environment (DRE) provides an infrastructure for distributed

application components to interact with each other in a client/server paradigm. Distributed

components (servers, databases, etc.) are defined as resources that publish services for use by

clients.

1.2 What is CORBA?

Common Object Request Broker Architecture (CORBA) is the product of Object

Management Group (OMG). It defines a DRE that allows distributed applications to interoperate

with each other, application to application communication, regardless of whether they are written

in Java, C++, or other languages, or where these applications reside.

CORBA uses an object-oriented approach for creating software components that can be

reused and shared between applications. First, each service object presents each client object a

well-defined interface to encapsulate its inner details through well-known IDL (Interface

Definition Language), which reduces application complexity. Then, as the middleware, ORB

(Object Request Broker) connects a client application with the service objects it wants to use.

The client program does not need to know whether the service object, which it is in

communication with, resides on the same computer or on a remote computer. The client program

only needs to know the interface's name of the service object and understand how to use the

interface. The ORB takes care of the details of locating the object, routing the request, and

returning the result.

CSE367---Research Lab

2

1.3 How CORBA Works

There are a large number of scenarios where CORBA could be applied. For example: A

new printer can be connected to the network and announce its presence and capabilities. A client

can then just send “print” command without having to be specially configured to use this printer.

CORBA passes the request to this printer and then the printer executes the command. So how

does it work? How can a client use the printer without knowing where is the printer? (Here

where means the network address of the printer. Of course, the client knows the geographic

location of the printer). Let’s take a look at the magic.

1.3.1 Components

Basically, in a CORBA environment, there are three kinds of players (see Figure 1).

• Server, which provides services, such as a printer

• Client, which uses services, such as printing files

• CORBA Lookup Service, which connects the server and the client

1.3.2 Service Stub/Proxy and Skeleton

In order to know how CORBA works, first we need to know what are service stub/proxy

and skeleton. They are actually two objects created by server. When the client finds the service, a

stub object, not the real implementation object, is downloaded to the client; Afterwards, the

client uses it to communicate back to the service skeleton, which will pass the request to the real

CORBA Lookup Service

Server Client

Figure 1: Components in a CORBA environment

CSE367---Research Lab

3

service implementation. Finally, the running results are passed by the service skeleton to the

service stub in client side. The stub is part of the service that is visible to clients, but its function

is to pass method calls back to the server (see Figure 2).

1.3.3 Service Registration

Service is implemented, created and provided to the client by a server. A server can

provide several services, such as printing, scanning. Client can also provide services, in such

cases, client turns out to be a server. A server plays several roles as follows:

1. It implements and creates the service object, also generates service stub and skeleton.

2. It registers the service object with CORBA lookup services.

3. It executes the tasks and returns the result to the client

In order to register the service object with the CORBA lookup service, the server must

first find the lookup service. This is done as follows: the server broadcasts lookup message

around, if there already exists a CORBA lookup service, this CORBA lookup service responds to

the server by sending its proxy object, so-called registrar, back to the server. It is through this

registrar proxy that the server communicates with CORBA lookup service. After finding the

Figure 2: Service Stub/Proxy and Skeleton

Client Server

Service Stub

Service Stub

1. Download

2. Call/Return

Service Skeleton

Service Implementation

Message Passing

CSE367---Research Lab

4

lookup service, the server registers its service objects with the CORBA lookup service. This

involves uploading the service proxy and storing it on the CORBA lookup service (see Figure 3).

1.3.4 Client Lookup

The client on the other hand, goes through the same mechanism to get a registrar proxy

from the lookup service. But this time it does something different from the server, which is to

download the service stub from the CORBA lookup service and store it on the client (See Figure

4).

1.3.5 Final Structure

Finally, after service registration and client lookup, the final structure is shown in Figure

5. The client gets the service stub, which it uses to invoke remote methods located on the server

Client CORBA Lookup Service

Registrar Proxy

Service Stub

Registrar

Service Stub

Figure 4: Client Lookup

CORBA Lookup Service Server

Registrar Proxy

Service Object Registrar

Service Stub

Figure 3: Service Registration

Service Stub

CSE367---Research Lab

5

side. The server responds the client by sending the returning result of remote method invocation

back to the client.

1.4 Advantages and Disadvantages

Actually, there exist some other middle wares that have similar functions as CORBA,

such as JINI, RMI, DCOM, Servlet, etc. However, CORBA has its own advantages and

disadvantages depicted as follows.

Advantages

• In CORBA environment, the client and the server don’t need to know each other’s

location.

• It supports multi-language applications; the client can be written in Java, while the

server in C++.

• It supports multi-platform applications; the client can be run in UNIX, while the

server in NT.

• CORBA provides some other services, such as Naming Service, Event Service, etc

Disadvantages

• Its running speed is relatively slow.

• Its security mechanism is under development.

Server

 Service Object

CORBA Lookup Service

Registrar

Service Stub

Figure 5: Final Structure

Client

Registrar Proxy

Service Stub

Service Stub

Registrar Proxy

CSE367---Research Lab

6

2 CORBA Naming Service

After investigating the mechanism of CORBA architecture, let’s take look at one of the

CORBA services – CORBA Naming Service. CORBA Naming Service is like the telephone

yellow pages for objects. It relies on the CORBA main infrastructure but provides an efficient

way of managing and locating objects with their names.

Names are used-defined values that identify objects. The naming service maps these use-

defined names to object references. A name-to-object association is called a name binding. A

Naming Service maintains a database of bindings between names and object references. You can

reference a CORBA object using a sequence of names that form a hierarchical naming tree. In

the figure, each dark node is a naming context. An object’s name consists of a sequence of

components that form a compound name. Only the leaf nodes are bound to implementations of

objects (See Figure 6).

Each name component is a structure with two attributes: 1) identifier is the object’s name

string; 2) kind is a string in which you can put a descriptive attribute for your name. The Naming

Service does not interpret, assign or manage these attributes in any way. They are used by higher

Root Context

Security Server

DataBase Context

PDB Server UDB Server

= Name Context

 = Object Name

Figure 6: CORBA Objects Support Hierarchical

CSE367---Research Lab

7

levels of software.

Figure 7 shows a simplified view of the client/server naming interactions.

i) A server invokes bind to associate a logical name with an object reference.

ii) The Name Server adds this obj_ref/name binding to its namespace database.

iii) A client application invokes resolve to obtain an object reference with this name.

iv) The client uses the object reference to invoke methods on the target object.

So the Name Server serves both clients and servers. Servers export name/object bindings

to the Name Server; clients then find these objects.

The CORBA Naming Service will exemplify its importance when there are a large

number of objects in a distributed environment because what fundamental to CORBA is how to

locate and manage the objects in an effective and efficient way.

2
Name Server

ORB

NameSpace

<name_1, object_1>
<name_2, bject_2>

.

.
<name_n, object_n>

Client Server

ORB ORB

4. Invoke service

1. Bind (name, obj_ref)
3. Resolve (name)

Figure 7: How Server and Clients interact with Name Server

CSE367---Research Lab

8

3 Security in DRE

Middleware is software that enables seamless client/server interactions in a distributed

environment. It uses an object-oriented approach for creating software components that can be

reused and shared among applications. With the development of middleware, people can take

advantage of the distributed resources in local or global network area. The most commonly used

resources are Databases, application servers. These distributed resources provide people with a

cost-effective way to share information and service, at the meantime, they pose the problem of

security. In our point of view, The main issue of using a distributed resource is who can use it,

when the user can use it and where the user can use it and to what extent a user can use it.

In order to address the issue of security, a security system is a must for any distributed

resource. The purpose of the security system is to:

Protect resources. Only trusted user can use the resource within some limit and the user

can only access the resource from trusted IP addresses. Security system needs to authenticate the

user before the user can access resource. When an authenticated user accesses the resource, the

security system should also have control over the user’s access. A user can only access the

resource that the user is authorized to access. Figure 8 shows the basic structure of a client/server

application with a security system.

Protect user information. As user’s ID and password flow through network, they are

vulnerable to tampering, the security system needs to provide ways to protect user information.

Protect data privacy and integrity. As data is sent back and forth from and to the

resource server through network, it is under potential risk of being tampered or being altered.

The security system needs to provide a safer way to transfer important data through network.

In this paper, a role-based security system is discussed. It focuses on the protection of

CSE367---Research Lab

9

resource. The main idea in the model is only the authenticated user can use a resource. The user

can only use the resource based on the user’s role. This model is implemented in a CORBA-

based distributed environment.

4 Overview of the system

4.1 Components

This project consists of four major components: CORBA Lookup Service, Security

System, Resource, and Resource Client. CORBA Lookup Service is just like a bridge, through

which Security System, Resource and Client interact with one another over the network.

4.1.1 CORBA Lookup Service

CORBA Lookup Service connects all the other components so that they can

communicate with each other over the network.

Figure 8: Client/server application with security system. The resource here can be a Database. If the

client wants to access resource, he/she has to be authenticated by the security system, then sends request to

resource server. The resource server will check with security system to get authorization then access resource on

behalf of client’s request. Here resource, resource client, resource server and security system are all distributed

in the same or different networks.

2. Authenticate Security System

Resource Client

Resource Server

Resource

1. Register

3. Do something

4. Is OK?

5. Yes or No
6. If yes

CSE367---Research Lab

10

4.1.2 Security System

Security system consists of security server, security clients (including policy client and

enforcement client) and security database.

(a) Security Server: Provides security service to other components. It has an attached

security database that stores roles, users, etc.

(b) Security Database: Stores all the roles, users and other security data. Only

Security Server can update security database.

(c) Policy Client: Creates roles, grants resources to roles and designates IP to roles.

(d) Enforcement Client: Creates users and grants roles to users.

4.1.3 Resource ---Patient DB

The resource provides services for use by the client. In our project, Patient DB Server and

Patient Database provide a resource called “patient DB” to the client.

(a) Patient DB Server: Publishes its methods for client to invoke remotely. These

methods are about writing prescription, querying patients, and so on.

(b) Patient Database: Stores all the patient information data. Only Patient DB Server

can update Patient Database.

4.1.4 Resource Client---Patient DB Client

Patient DB GUI Client is the client, which provides a GUI for users to register, drop,

and query courses.

4.2 Overall Structure

This project combines CORBA with role-based access control to build a security system.

The overall structure is shown in Figure 7.

CSE367---Research Lab

11

5 System Functions

5.1 Basic Functions --- Interaction between components

Our security system for Patient DB is based on the original JINI security system for

University DB, therefore it has implemented the basic functions, such as negative privileges, IP

constraint (only supports * for now), time constraint---Token, 180-second time constraint for

each login and permission check. The basic functions is described as follows.

5.1.1 Security Clients Access Security Server

Figure 8 shows how security clients, Policy Client and Enforcement Client, access

Security Server.

Figure 7: Overall Structure

Resource

Patient DB
Server

Client

Patient DB
GUI client

CORBA
Lookup
Service

Patient
Database

Security System

Security
Server

Policy Client

Enforcement
Client

Security
Database

CSE367---Research Lab

12

1. Security Server registers with Visibroker Naming Service to publish its services.

2. Security clients (Policy Client and Enforcement Client) look for security services in

Visibroker Naming Service.

3. Visibroker Naming Service finds security services and returns the service stub to

security clients.

4. Security clients register with Security Server by inputting user ID and password.

5. Security Server generates a token for each security client.

6. Holding a valid token, security clients remotely invoke the methods provided by

security server to create roles, etc.

7. Security Server responds the invocations of each security client by modifying the

security database and returning the result to each security client.

5.1.2 Patient DB Server and GUI Client Access Security Server

Figure 9 shows how Patient DB Server and GUI Client access Security Server.

Security
Clients

Figure 8: Security Clients Access Security Server

Security Server

4. Register

5. Get Token

1. Register

Visibroker

Naming Service
2. Lookup Security

Server
3. Return Service

Proxy

6. Remote Method Invocation

CSE367---Research Lab

13

1. Security Server registers with Visibroker Naming Service to publish its services.

2. Patient DB Server looks for security services in Visibroker Naming Service.

3. Visibroker Naming Service finds security services and returns the service stub to

Patient DB Server.

4. Patient DB Server registers with Visibroker Naming Service to publish its services.

5. Patient DB Server registers itself and its methods with Security Server as a resource

by inputting user ID and password.

6. Security Server generates a token for Patient DB Server.

7. Patient DB GUI Client looks for security services and Patient DB services in

Visibroker Naming Service.

8. Visibroker Naming Service finds services and returns the service stubs to Patient DB

GUI Client.

9. Patient DB GUI Client registers with Security Server by inputting user ID and

password.

10. Security Server generates a token for Patient DB GUI Client.

Figure 9: Patient DB Server and GUI Client Access Security System

Patient DB GUI
Client

1. Register

10. Get a token

Patient DB Server

4. Register

14. Succeed

13. Permission OK

9. Register
8. Return Service Stubs

11. Remote Method
Invocation 12. Check Permission

5. Register
 Visibroker Naming Service

2. Lookup security services 3. Return service stub

7. Lookup services

6. Get a token

Security Server

CSE367---Research Lab

14

11. Holding a token, Patient DB GUI Client invokes remotely the methods provided by

Patient DB Server.

12. Holding its own token and current client’s token, Patient DB Server checks with

Security Server if current client has permission to invoke current method.

13. Security Server responds Patient DB Server with the result of permission check.

14. Patient DB Server responds the invocations of current client by modifying the

Patient database and returning the result to current client.

5.2 New Functions of Security Server

In order to make GUI friendlier, we added some query functions as follows:

/**
 * Query all available resources from availres table
 */
public java.lang.String[] queryAvailResources ();

/**
 * Query IDs of all available methods from availmethod table
 */
public java.lang.String[] queryAvailMethodIDs (java.lang.String arg0);

/**
 * Query names of all available methods from availmethod table
 */
public java.lang.String[] queryAvailMethodNames (java.lang.String arg0);

/**
 * Query descriptions of all available methods from availmethod table
 */
public java.lang.String[] queryAvailMethodDescs (java.lang.String arg0);

/**
 * Query all resources from res table
 */
public java.lang.String[] queryAllResources ();

/**
 * Query IDs of all methods from method table

CSE367---Research Lab

15

 */
public java.lang.String[] queryAllMethodIDs (java.lang.String arg0);

/**
 * Query names of all methods from method table
 */
public java.lang.String[] queryAllMethodNames (java.lang.String arg0);

/**
 * Query descriptions of all methods from method table
 */
public java.lang.String[] queryAllMethodDescs (java.lang.String arg0);

/**
 * Query all roles from role table
 */
public java.lang.String[] queryAllRoles ();
/**
 * Query all users from users table
 */
public java.lang.String[] queryAllUsers ();

/**
 * Query all tokens from token table
 */
public java.lang.String[] queryAllTokens ();

5.3 New functions of Security Clients

• We changed the appearances of all the panels, including layout, borders and so on.

• Drop down menus are added for selection of methods, resources, roles and users

5.4 New functions of Patient DB Server

We designed the architecture of Patient DB and methods depicted as follows.

5.4.1 Patient DB

table patient(
 patientID varchar2(10) not null,
 patientName varchar2(30) not null,
 primary key(patientID));

CSE367---Research Lab

16

table medicalHistory(
 histID integer not null,
 patientID varchar2(10) not null,
 userID varchar2(10) not null,
 diagnosis varchar2(100) not null,
 time date not null,
 primary key(histID));

table prescription(
 presID varchar2(10) not null,
 patientID varchar2(10) not null,
 userID varchar2(10) not null,
 description varchar2(100) not null,
 time date not null,
 primary key(presID));

table payment(
 paymentID varchar2(10) not null,
 patientID varchar2(10) not null,
 userID varchar2(10) not null,
 description varchar2(100) not null,
 time date not null,
 primary key(paymentID));

5.4.2 Methods of Patient DB Server

/**
 * ifHasRight(...) tells if a user has right for a method based on the methods' id
 */
public boolean ifHasRight (int token, int methodID);

/**
 * method 0, getPatientMedicalHistory(...)
 * query PDB medicalHistory table
 * returns the medical history of the queried patient
 * only doctors and nurses have the right to do so.
 */
public java.lang.String[][] getMedicalHistory (int token,
 java.lang.String patientID);

/**
 * Method 1, getDiagnosis(...)
 * Querys PDB medicalHistory table
 * Returns all the diagnosis of the queried patient
 * Only doctors and nurses have the right to do so.

CSE367---Research Lab

17

 */
public java.lang.String[][] getDiagnosis (int token,
 java.lang.String patientID);

/**

 * Method 2, getPrescription(...)
 * Querys PDB prescription table
 * Returns the prescription history of the queried patient
 * Only doctors and nurses have the right to do so.
 */

public java.lang.String[][] getPrescription (int token,
 java.lang.String patientID);

/**
 * Method 3, getPaymentMode(...)
 * Querys PDB payment table
 * Returns the payment history of the queried patient
 * Only accountants have right to do so
 */
public java.lang.String[][] getPaymentMode (int token,
 java.lang.String patientID);

/**
 * method 4 getPatientList(...)
 * get the patient list, which include the patient ID and patient name
 * returns the list of patients
 * only accountants have right
 */
public java.lang.String[][] getPatientList (int token,
 java.lang.String patientID);

/**
 * Method 5 writeDiagnosis(...)
 * Writes diagnosis for a patient into PDB medicalHistory table
 * Returns true if successfully done, false if faild
 * Only doctors have the right.
 */
public boolean writeDiagnosis (int token,
 java.lang.String userID,
 java.lang.String patientID,
 java.lang.String diagnosis,
 java.lang.String time);

/**

 * Method 6 writePrescription(...)
 * Writes prescription for a patient into PDB prescription table

CSE367---Research Lab

18

 * Returns true if successfully done, false if faild
 * Only doctors have the right.
 */
public boolean writePrescription (int token,
 java.lang.String userID,
 java.lang.String patientID,
 java.lang.String description,
 java.lang.String time);

/**
* Method 7 setPaymentMode(...)

 * Writes payment of a patient into PDB payment table
 * Returns true if successfully done, false if faild
 * Only accountants have the right.
 */

public boolean setPaymentMode (int token,
 java.lang.String userID,
 java.lang.String patientID,
 java.lang.String mode,
 java.lang.String time);
/**
 * Method 8, addPatient(...)
 * Adds a patient into PDB patient table
 * Returns true if successfully done, false if faild
 * Only accountants have the right
 */
public boolean addPatient (int token,
 java.lang.String patientID,
 java.lang.String patientName);

 /**
 * Method 9 removePatient(...)
 * Deletes a patient from PDB patient table
 * Returns true if successfully done, false if failed
 * Only accountants have the right.
 */
public boolean removePatient (int token,

java.lang.String patientID,
 java.lang.String patientName);

5.5 New functions of Patient DB Client

• We changed the appearances of all the panels, including layout, borders and so on.

• Menu items become disabled if current user doesn’t have right to perform the

CSE367---Research Lab

19

corresponding operations.

• Get roles of current user based on user ID and password when authenticating.

• Change role/user without restarting the system

5.6 Implementation of Component Functionality

In this project, we use Visibroker for Java 4.5 and its Naming Service as CORBA

Lookup service. And we use Oracle 8.1.7 as our database server, because they are both free. We

installed LINUX Mandrake 2.2.17-21 in a 2-processor DELL desktop and installed Visibroker

and Oracle in LINUX. Our JAVA-written server and client applications can run anywhere.

Basically, we run it under NT 4.0. The functionality of each components is described as follows.

5.6.1 Security Policy Client

♦ Register/unregistered Patient Database server and its methods, such as

getPatientMedicalHistory (token,patient_id),

getPatientPrescription(token,patient_id), AddPaitent (token,patient_id).

♦ Add time constrain on resource.

♦ Create/erase role, such as create doctor, nurse and accountant roles.

♦ Grant/revoke resource and methods to roles, such as granting doctor the privilege of

writePrescription (token, patient_id).

♦ Designate/revoke IP address to/from each role, so users can only access the resource

from certain IP addresses.

5.6.2 Security Enforcement Client

♦ Create/erase users

♦ Add time constraint to each user

CSE367---Research Lab

20

♦ Grant/revoke roles to/from each user.

♦ Grant/revoke negative resources/methods to/from users.

5.6.3 Security Server

♦ Verify the identity of a user.

♦ Check if Patient Database is still active.

♦ Check client’s request based on the client’s role and privileges, which includes the

time constrain check, IP address check, role-based resource check (Does the client’s

role has right to use the resource?), role-based method check (Does the client’s role

has right to use the method?)

5.6.4 Patient Database Server

♦ Listens to the client’s request such as query patient Database for medical history,

patient lists, and writes prescription for a patient into patient Database.

♦ Sends client’s role, IP address, request time, requested resource ID and method ID to

security server for permission check.

♦ Listens the check result from security server.

♦ Fulfills the client’s request if the server response is positive, it will query or update

the patient Database upon client’s request and sends result to client.

♦ Refuses the client’s request if the server response is negative.

5.6.5 Patient Database Client

♦ Provides the GUI to users to access Patient Database Server.

♦ Change user or role without exiting the system.

♦ Whether menu items are enabled depends on the privileges of current user.

CSE367---Research Lab

21

6 Conclusion and Future Work

Above all, we have presented what we have learned and done this semester. Our project,

which incorporates the security using the role-based access control approach into CORBA, has

proved that we can use CORBA to realize the role-based security.

6.1 Problems encountered

• Java class java.util.Vector is hard to transfer over network by Visibroker, so it is

changed to java.lang.String[] or java.lang.String[][].

• Use rebind() instead of bind() to bind Visibroker Naming Service

6.2 Recommendations for improvements

• Change Change User/Role menu item to two menu items: Change role and Relogin

• Remove User ID item from PDB Client Update Panel

• Change Time to Date in PDB Client Update Panel

• Change Date to drop down menu instead of typing in.

• Remove method number from drop down menu.

6.3 Suggestions for future work

• Use CORBA to realize current JINI version, since CORBA is much faster than JINI.

However, we only have 60-Day trial version Visibroker for Java 4.5.

• Try to use only one security server for PDB and UDB.

• Try to add service to (resource, method) pair. Currently version, the service is

ignored.

• Try to incorporate JINI and CORBA.

CSE367---Research Lab

22

• Try to use a common resource to test cooperation of JINI and CORBA.

CSE367---Research Lab

23

Appendix A: User Manual

1 Instruction on how to setup the system

1.1 Software Requirements

• OS: Linux, NT

• CORBA: Visibroker for JAVA 4.5

• JAVA 1.2.2 or higher

• Oracle 8.1.7

1.2 Hardware Requirements

• Pentium II or higher

• 64M RAM or higher

1.3 CORBA Installation

• Download Visibroker for JAVA 4.5 from http://www.borland.com

• Install Visibroker for JAVA 4.5 in Linux

1.4 JAVA Installation

• Download Java 1.3 from http://java.sun.com

• Install Java 1.3 in Linux and NT

1.5 Oracle Installation

• Download Oracle 8.1.7 from http://www.oracle.com

CSE367---Research Lab

24

• Install Oracle 8.1.7 in Linux

• Download Oracle driver for JAVA: classes12.zip

1.6 Security System Installation

• Security Server: classes/corbass/sserver/*.class and lib/classes12.zip

• Policy Client: classes/corbass/policy/*.class

• Enforcement Client: classes/corbass/policy/*.class

• Patient DB Server: classes/corbass/pdbserver/*.class and lib/classes12.zip

• Patient DB Client: classes/corbass/pdbclient/*.class

Note: all of above need classes/corbass/common/*.class

2 Instruction on how to run the system

2.1 Directory and File Specifications

• classes: all the class files

q corbass.common

q corbass.enforce

q corbass.pdbclient

q corbass.pdbserver

q corbass.ssever

q batch files for running the system

i) rp.bat: for running policy client

ii) re.bat: for running enforcement client

iii) ss.bat: for running security server

CSE367---Research Lab

25

iv) pdbc.bat: for running pdb client

v) pdbs.bat: for running pdb server

• lib: classes12.zip --- Oracle driver for JAVA

• src: Source Code

q corbass.common

q corbass.enforce

q corbass.oracle: SQL files for creating security and patient database

q corbass.pdbclient

q corbass.pdbserver

q corbass.ssever

2.2 Running Steps

o Start Oracle

o Create Patient DB and Security DB

o Start Visibroker OSAgent

o Start Visibroker Naming Service

o Start Security Server

o Start Patient DB Server

o Start all the other clients

2.3 Commands of running the system

2.3.1 Starting Oracle

o Login dachshund.engr.uconn.edu as root

o Run /etc/init.d/dbora

CSE367---Research Lab

26

o Run lsnrctl start

2.3.2 Creating Database

o Login dachshund.engr.uconn.edu as a normal user

o Run sqlplus

o Input id and password

o Run start security.sql

o Run start pdb.sql

o exit

2.3.3 Starting the Visibroker

o Login dachshund.engr.uconn.edu as a normal user

o Start OSAgent: osagent &

o Start Naming Service: vbj –VBJclasspath /home/local/vbroker/lib/vbjorb.jar

com.inprise.vbroker.naming.ExtFactory NameService &

2.3.4 Starting Security Server

In NT:

o ss

OR

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

-VBJclasspath ..\lib\classes12.zip corbass.sserver.SecurityServer

In Unix:

o vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

-VBJclasspath ..\lib\classes12.zip corbass.sserver.SecurityServer &

CSE367---Research Lab

27

2.3.5 Starting Security Patient DB Server

In NT:

o pdbs

OR

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService -

VBJclasspath ..\lib\classes12.zip corbass.pdbserver.PDBServer

In Unix:

o vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

-VBJclasspath ..\lib\classes12.zip corbass.pdbserver.PDBServer &

2.3.6 Starting Policy Client

In NT:

o rp

OR

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

corbass.policy.PolicyClient

In Unix:

o vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

corbass.policy.PolicyClient &

2.3.7 Starting Enforcement Client

In NT:

o re

OR

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

CSE367---Research Lab

28

corbass.enforce.EnforceClient

In Unix:

o vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

corbass.enforce.EnforceClient &

2.3.8 Starting Patient DB Client

In NT:

o pdbc

OR

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

corbass.pdbclient.PDBClient

In Unix:

o start vbj -DORBagentAddr=137.99.10.209 -DSVCnameroot=NameService

corbass.pdbclient.PDBClient &

CSE367---Research Lab

29

Appendix B: System Demo with Screen Shots

1. Security Server

2. Patient DB Server

3. Policy Client

3.1 Authentication Dialog

CSE367---Research Lab

30

3.2 Role Panel

3.3 Resource Panel

3.4 Role-Query window

CSE367---Research Lab

31

4. Enforcement Client

4.1 Authentication Dialog

4.2 User Panel

4.3 User-Query window

CSE367---Research Lab

32

5. Patient DB Client

5.1 Authentication window

5.2 Query Panel

CSE367---Research Lab

33

5.3 Update Panel

5.4 Add/Remove Panel

CSE367---Research Lab

34

5.5 Change User/Role

CSE367---Research Lab

35

Appendix C: UML Diagrams

1. Packages

CSE367---Research Lab

36

2. Package: corbass.policy

CSE367---Research Lab

37

3. Package: corbass.enforce

CSE367---Research Lab

38

4. Package: corbass.pdbclient

CSE367---Research Lab

39

5. Package: corbass.pdbserver

CSE367---Research Lab

40

6. Package:corbass.common

CSE367---Research Lab

41

7. Package:corbass.sserver

