Tutorial

FFT - fRISCy Fourier
transforms?

M R Smith

This is an applications tutorial oriented towards the practical use
of the discrete Fourier transform (DFT) implemented via the fast
Fourier transform (FFT) algorithm. The DFT plays an important
role in many areas of digital signal processing, including linear
filtering, convolution and spectral analysis. The first part of the
article is a practical industrial example and takes the reader
through the thought process an engineer might take as DFT
familiarity is gained. If standard software packages did not
provide the necessary performance, the engineerwould need to
port the application to specialized hardware. The second part of
the tutorial discusses the theoretical concepts behind the FFT
algorithm and a processor architecture suitable for high speed
FFT handling. Rather than examining the standard digital signal
processars (DSP} in this situation, the final section looks at how
the reduced instruction set (RISC) processors perform. The
Advanced Micro Devices scalar Am29050 and the super-scalar
Intel i860 processors are detailed, Comparison of the DSP and
RISC processors is given showing that the more generalized RISC
chips do well, although changes in certain aspects of the RISC
architecture would provide for considerable improvements in
performance.

Keywords: FFT, digital signal processing, RISC, Am29050
processor

Many digital signal processing (DSP) algorithms are now
available in application packages. The ‘standard’ engineer
(such as myself) would approach any new DSP problem
by starting with a quick glance in the user manual to get a
flavour of how to solve the problem and use the package.
Next would come testing with a few simple examples to
ensure that the concepts were understood. This would be
followed by more complex examples where the expected
‘results” were known and then the algorithm would be
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tried on the ‘real’ data. The success of this approach
depends on the expertise and judgement of the engineer.
These factors must be tempered by the following descrip-
tions of judgement’ and ‘experts’.

Good judgement is gained from experience.
Experience is gained from bad judgement.

An expert is made of two parts: ‘X' - a has-been, and
‘spurt’ — a drip* under pressure.

This tutorial examines the implementation of a major
digital signal processing technique, the discrete Fourier
transform (DFT). It is intended to provide a person
unfamiliar with using the DFT with the experience to
avoid any unnecessary pitfalls, The DFT plays an important
role in many areas of digital signal processing, including
linear filtering, correlation analysis and spectrum analysis.
A major reason for its importance is the existence of
efficient algorithms for computing the DFT and a thorough
understanding of the problems in its application.

The first part of the article is a practical industrial
example involving digital filtering to remove an unwanted
signal. This section discusses the importance of data
windowing and the trick of deliberate synchronous
sampling to avoid problems when using the efficient fast
Fourier transform (FFT) algorithm to calculate the DFT.
This section would be useful forthe engineer intending to
use the FFT algorithm from a standard package. (An
excellent source of algorithms and their theoretical
background can be found in the book by Press et al.’ A
diskette with (debugged) source code is available.)

If using a standard package did not provide the
required performance, the engineer would need a more
thorough understanding of the FFT algorithm and how
current processors match the required resources for this
algorithm. The second part of this tutorial provides a brief
analysis of the fast Fourier transform. The characteristics
needed for the efficient implementation of the FFT are
discussed in terms of chip architecture in general. The
architecture of specialized DSP chips (Texas Instrument

*Drip is a colloquialism for idiot.
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TMS32020, 32025 and 320307, Motorola DSP56001 and
DSP56002* and Analog Devices ADSP-2100 family®) and
anumber of RISC chips (the superscalar Intel i860 and the
scalar Advanced Micro Devices Am29050 RISCT) are
compared.

Since the FFT performance of DSP processors is well
documented in application notes, the final part of the
tutorial provides a detailed analysis of the ease (and
problems) of implementing DSP algorithms on RISC
chips. The RISC performances are compared to those of
the DSP processors.

The reason for examining the RISC chip in DSP
applications is that many systems already have a high
performance RISC as the main engine or a coprocessor.
What has to be taken into account to get maximum (DSP)
performance from these processors? In addition, there are
a number of low-end RISC processors appearing on the
market- the Intel RISC processori960SA and the Advanced
Micro Devices RISC Am29240 controller. Although not
yet up to the top-end DSP chips in terms of performance,
future variants of these chips, based around the same
RISC core, may be.

INDUSTRIAL APPLICATION OF THE DFT

in this section, we discuss a simple practical application
through the eyes of an engineer gaining greater familiarity
with using the DFT. The first part sets the scene of how the
data were gathered. The unwanted signal or ‘noise’ on the
data has a particular frequency characteristic. This suggests
that if the data were transformed into the frequency
domain using a DFT, this ‘noise’ would appear at one
particular location in the frequency spectrum. It could
then be ‘cut out’ (filtered) and the spectrum transformed
back into the original data domain. The resulting ‘noiseless’
data could then be analysed.

The problem

Beta Monitors and Controls Ltd. is a typical small
company servicing the oil and gas industry in Alberta,
Canada. One patticular problem they handle on a daily
basis is monitoring the performance of the heavy
reciprocating compressors used in the natural gas industry.
This analysis requires the determination of the com-
pressor’s effective input and exhaust strokes. This is
obtained by measuring the ‘pressure’ as a function of
‘crankshaft angle’ for a complete stroke. This crankshaft
angle is then converted by a non-linear transform to a
‘stroke volume’. The compressor's efficiency is determined
from the area under the pressure versus volume curve.

Experimental measurement technique

The pressure is obtained by attaching a transducer to the
compressor (Figure 7). The transducer’s output is fed

tTMS32020, TMS32025, TMS32030 are trademarks of Texas Instruments
Ltd,

#DSP56001 and DSP96002 are trademarks of Motorola Ltd.
SADSP-2100 is a trademark of Analog Devices.

1Am29050 and Am29240 are trademarks of Advanced Micro Devices Ltd.

Measurement of the pressure is obtained by attaching a
transducer to the heavy compressor cylinder (Figure courtesy of Beta
Monitors and Controls Ltd., Calgary, Alberta, Canada)

Figure 1

through a low-pass anti-aliasing analogue filter before
being digitized by an analogue-to-digital (A/D) converter,
The analogue filter is an important part of the measure-
ment system as it removes all frequency components
(such as high frequency random noise) greater than half
the digital sampling frequency. This ensures that the
digitized signal accurately represents the analogue signal
being converted? and avoids the problems of signal
‘aliasing’. Signal aliasing is when one signal appears, on
sampling, as another. Forexample a 7 kHz signal sampled
at an 8 kHz rate will be indistinguishable from a 1 kHz
signal sampled at the same rate. An unnecessary degradation
of the signal-to-naise ratio occurs if high frequency noise
is aliased on sampling.

Actual measurements are shown in Figure 2. Although
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Figure2  The pressure as a function of the crankshaft angle is

measured for a Natural Gas reciprocating compressor, There are data,
compressor-related pulsations and unwanted channel noise components

the basic curve is simple and has a high signal-to-noise
ratio, the measurements are distorted by important
(wanted) low frequency ‘compressor related pulsations’
and {(unwanted) high frequency noise components. The
unwanted noise arises from the transducer which is
attached to the cylinder via a small channel or pipe (see
Figure 7). Just as a bottle will whistle if you blow across the
top, this channel will resonate during the cylinder stroke,
appearing as rapid vibrations during one part of the
measured cycle. Even a 2% error in the measurement of
the compressor performance can mean under-production
{loss of profits} or overioad (premature failure of the
compressar). The problem is made mare difficult by the
non-linear transform from ‘angle’ to ‘volume’ which
distorts the noise oscillations.

The way to remove this noise is to transform the data
using the DFT into the frequency domain where its
frequency components can be identified and removed.
By inverse transforming the modified spectrum, it should
be possible to get the data without the noise component,
This data can be converted to ‘volume’ and analysed as
required.

Attempt 1 - Bull-at-the-gate approach

The scientific computer libraries and applications
packages typically include an efficientimplementation of
the DFT, the fast Fourier transform (FFT) algorithm, based
on a data length M that is a powerof 2 (M = 16, 32,.. .,
512, 1024 etc.). Since the pressure versus angle data have
a length of 360 points (1 cycle), it seems appropriate to
pad the data with zeros to size 512 and then apply the FFT.

Transforming the original data (Figure 2) produces a
spectrum (Figure 3) with the channel resonance frequency
components fairly evident above a background signal.
The frequency scale has been narmmalized (frequency/
DFT-points) so that spectra from different sized DFTs can
be compared. Large frequency components are displayed
so that the smaller components are more easily seen, The
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Figure3  The transform of the data from Figure 2, The noise or channel

resonance frequency components are indicated

noise frequency components can be zeroed (filtered out)
for normalized frequencies 0.12 to 0.16, and the modified
spectrum transformed back into the data domain for the
compressor analysis. It can be seen from the resulting data
(Figure 4) that the majority of the noise oscillations have
been removed by the filtering, but there are now different
distortions that were not there before,

There are many books that will explain the problems
during this simple filtering®; however, the following
argument outlines the underlying principles. The new
distortions can be understood at a number of levels,
Because of the finite amount of data, there are discon-
tinuities at its boundaries on padding with zeros*. These
‘sharp edges’ have frequency companents all across the
spectrum {the background signal of Figure 3). This means
that the data is no longer confined to the low frequencies.
When the noise frequency components are removed, so
is a significant part of the ‘spread-out’ data components.
On inverse transforming, the removed data components
mean that the filtered signal will be incomect, particularly
near the discontinuities. In addition, since the noise
components were also spread out, they are more difficult
to identify and (correctly) remove.

There is also a second, less obvious problem. If
discontinuities in the data lead to arange of frequencies in
the spectrum, then discontinuities in the spectrum will
lead to arange of original data values. When we removed
the noise frequency components by setting them to zero,
this created discontinuities in the spectrum which can
tead to additional distortions in the filtered data. Proper
application of the DFT can remove or reduce many of
these artifacts.

Attempt 2 - DFT with windowing

The previous section described the problems associated
with blindly applying the DFT. The difficuities are deeper

*To make the problem more obvious, the data’s DC offset was
deliberately increased.
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Figure 4  The original data is shown as the upper trace. When the data

is padded with zeros before filtering, the resulting filtered signal has new
distortions at its edges

and more complicated than what appears on the surface.
We ‘think’ we are trying to transform the signal shown in
Figure 2. However, when we use the DFT what we are
actually trying to do is to transform an infinitely long signal
of which we only know a small part. This subtie effect is
known as ‘windowing’ and has a very pronounced effect
on a signal’s spectrum. If we had an ‘infinite’ amount of
data taken from the compressor, there would be no
discontinuities and no distortions introduced when
calculating its spectrum.

figure 5 (top) shows an ‘infinitely-long’ complex
sinusoid and its spectrum, asingle spike. Figure 5 (middle)
shows a ‘windowed’ sinusoid and its (magnitude) spectrum.
It can be seen that the single spike has spread into a wide
centre lobe and there are a number of high side-lobes.
Every frequency component in the data shown in Figure 2
undergees a similar spreading. The discontinuities associ-
ated with the effective ‘rectangular’ sampling window
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Effect of windows on sinusoid
Figure 5

applied to get the ‘finite’ data record lead to a wide range
of frequency components - ‘spectral-leakage’. When we
filter the noise components, we will remove some of the
spread-out data frequency components. This will produce
distortion in the filtered signal when an inverse transform
is performed.

Windowing is a fundamental limitation to the DFT,
There is no way around it; the best that you can dois to
apply different windows to minimize distortion. The
secret is to modify the window on your data so that the
spectral leakage (side-lobes) of the window is reduced.
This means that you will be able to better discern small
signals (the channel resonance) in the presence of larger
signals (the frequency components associated with the
data edges). However, applying the window to reduce the
sidelobes must be balanced against the fact that each
spectral peak is widened, resulting in a loss of resolution.
An excellent paper on the properties of the DFT and
windows has been given by Harris*.

Applying the window to reduce distortions introduces
different distortions. By gathering additional data (say 2.5
cycles padded to 1024 points, Figure 6) it is possible to
minimize the effect of these new distortions. A window
with smoothly changing edges is applied to this extended
data before calculating the DFT. This window will allow
the noise frequency components to be more clearly
identified and filtered. The spectrum can then be inverse
transformed and the window removed.

Suppose that you have M data points, x(m); 0 <n < M,
which you intend to filter. The steps in generating the
filtered signal are:

xwlndowed(m) = X(m) X Wwindow(m); O < m < M (1)
X(f) = FT[xwindowed(m)]; 0 < m, f< M (2)

Xiitered (f) = X(f) X Fryeer(f) (3)
Xfiltered (m) = FT_1 [Xﬁlt_ered (f)] (4)
X corrected (M) = Xfiltered (M} Wwindow (m) (5)

First the windowed data points (Xyindowed (M) are
generated from the original data points using one of the
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(Top) An ‘infinitely-iong’ sinusoid and its spectrum; (middle) a ‘windowed’ sinusoid and its spectrum, Note how the windowing produces

‘spectral leakage'; (bottom) a ‘synchronously sampled’ sinusoid. Note how this spectrum appears not to have any ‘spectral leakage’
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Figure 6 By applying windowing techniques to a number of cycles of

data (top) before using the DFT it is possible to generate the filtered signal
(bottom), By throwing away the distorted ends, the analysis can be
performed on the undistorted centre cycle

filter window shapes (Window (M) suggested by Harris.
The windowed data is then transformed (FT{l) into the
frequency domain (X(f)), where the unwanted noise
components are removed using a band-stop filter ( Fgye, (f)).
The filtered frequency domain signal (Xsiereq (f) is inverse
transformed (FT (1) back to the data domain (X ered {m))
where the original window is removed to produce the
required signal (Xcomacted (M.

There are a number of popular windows, chosen
because they are simple to remember and because
applying any window is often better than none. A simple
window is given by:

2
F(m)=a0+a1cos(x;zm>; o<m<M (1)
where
ag=054; a;=—046 (2)

I prefer to use a slightly more complex window known
as the ‘Blackmann-Harris 3 term window":

F(m) = ag + -2 m | + a,cos _2112
= 7 .
dg T a1 COS 2 M m|;

0<m<M @)
where
ap = 0.44959; a;, = —~0.49364; a, = 005677 (4)

which was designed to have a reasonable main lobe width
and minimum side-lobe height.

[tshould also be remembered thatit is often important
to filter out the noise frequency components rather than
zeroing them out, again to avoid discontinuities. Suppose
that the spectrum X (f) has been evaluated using M points
and that the noise frequency components are centred
around location P with a bandwidth of B, then a suitable
bandstop filter with which to multiply the spectrum
would be:

F(fy=1, 0<f<P—-8/2

FFT-fRISCy Fourier transforms?; M R Smith

F(f) =1 —ay — a;cos (EB;Z (f—(B+ P)/Z))

~ a,¢c0s (% 2f- B+ P)/2)>;

P—-B/2<Kf<P+ Bf2
F(f)=1; P+B/2<f<M

Note that for most data the noise will have components
at two locations (P and at N — P}, because of the way the
DFT generates the data spectrum, so that two bandstop
filters must be applied. There is also some reasonable
argument to recommend (smoothly) removing all the
frequency components P—B/2<n<N—P+ B/2 as
these will mainly contain unwanted random noise.
However, if there are some valid high-frequency com-
ponents present in the data, then removing them will
degrade any sharp edges actually present in the data.

Figure 7 shows the un-windowed spectrum for 2.5
cycles of data padded with zero out to 1024 points. The
spreading of the DC components is very evident. By
comparison, in the widowed data spectrum, the channel
resonance and pulsations become very clear as the side-
lobes are removed. When the noise is removed, the
modified spectrum inverse transformed and the window
removed, the filtered signal shown in Figure 6 is obtained.

It might be assumed that multiplying by a window
Wyindow (M) and later dividing by the same window,
cancels out the effect of the window. This is not the case
because the frequency domain filtering changes the
window so that the division and multiplication effects no
longer cancel, Filtering in the frequency domain is
equivalent to performing a convolution on the data. The
simple 'non-widowed' filtering can be expressed as:

XSimp[e(m) = ZX(V) fbandstop (m—v) (5)

v

where fpangstop (M) is the (inverse) discrete Fourier transform
of the frequency domain notch filter. Windowing,

2500177
2000 Channel resonance
Pulsations )
3 15007
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Unwindowed
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Windowed
0l i . kY ; —
0 0.05 [oX] 0.15 Q2 0.25

Narmalized frequency
Specirum of 2.5 cycles padded 101024

Figure 7 The upper spectrum is from 2.5 cycles of data padded to
1024 points. Note the large background because of ‘spectral leakage’
from the main data components, The lower spectrum is obtained by
windowing the data before filtering
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applying the notch filter, and inverse windowing is
equivalent to:

Xcorrected (m) =

Z X(V) Wyindow (V) fbandstop (m - V)/Wwindow (m) (6)

v

which is not the same expression. Since 1/W.indow (M) is
very large near the edge of the window, the division
operation will amplify any noise on the data, leading to
possible distortion near the data edges. This means that it
is necessary to use a number of cycles of the data and
‘throw away’ the parts (near the edges) that remain
distorted.

Attempt 3 - DFT with deliberate synchronous
sampling

When Beta Monitors discussed with me their filtering
problems, they had already empirically attempted the
approaches suggested in Attempts 1 and 2. However,
they wanted more. They wanted to remove the windowing
problems but, at the same time, reduce the number of
points measured. Normally, this is not possible as a
fundamental DFT limitation is the window effects of some
form or another, You must simply decide which of the
distortions (resolution loss or side-lobes) you can best live
with in practice.

One way of reducing the effect of the window can be
taken for data of the form obtained by Beta Monitors. By
removing the large DC offset and shifting the start of the
sampling, it can be seen that the signal is ‘naturally’
windowed with very few edge discontinuities (Figure 8).
Filtering the spectrum produced by the naturally windowed
signal is also shown in Figure 8. Note that there are edge
effects still present, but they are less evident,

Most of the time, the data cannot be naturally
windowed and you must live with the effects. However,
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Filtered signal of | cycle naturally windowed
Figure 8  Less distortion arises from filtering a ‘naturally widowed’

signal obtained by removing the zero offset and adjusting the position of
the signal in the window

there is one very special and unusual situation where
something can be done. Fortunately for Beta Monitors,
their data could be manipulated into the required format.
Figure 5 (lower) shows a ‘windowed’ sine wave and its
spectrum obtained by usinga DFT. This spectrum appears
to contradict all that was said in the previous section,
Where are the side-lobes from the window?

When you are applying the DFT you do not calculate
the continuous spectrum as suggested in Figure 5 (top and
middle). Instead you determine only certain parts of that
continuous spectrum. The ‘windowing’ in Figure 5
{bottom) has been chosen so that a whole number of
cycles of the sinusoid are included in the sampling period,
called synchronous sampling. This has the effect that
when you apply the DFT you only sample the ‘spectral
leakage' at the central maximum and at all places where
the ‘leakage’ is zero (Figure 9). This means that if you can
achieve synchronous sampling, then it as if there was not
any leakage when using the DFT.

True synchronous sampling of all components of your
data is not something that can be readily achieved. It is
normally only done by mistake when students choose a
poor example for use with their spectral analysis programs
in DSP courses. By accidentally synchronously sampling,
their algorithms will appear to perform much better than
they would in real life. However, in the case of Beta
Monitor's data, both the data and the noise were
repeatable every 360 points as the fixed speed compressor
made one rotation. By performing a 720 point DFT rather
than a standard 1024 point DFT, it was possible to achieve
synchronous sampling and generate the spectrum shown
in Figure 70. The spectral components just jump out at
you. Itis now very easy to identify and remove the noise
frequency components without disturbing the main data
components and achieve ‘perfect filtering’. After inverse
transforming, the signal shown in Figure 17 was obtained.
A further improvement in the signal could be obtained by
adding two cycles to average out the effect of random
noise.
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Figure 9 When windowing a synchronously sampled signal, the wide
main lobe and the side-lobes are in fact present. However the ‘spectral
leakage’ signal is sampled only at the centre of the main lobe and at the
zero-crossing points between the side-lobes
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Figure 11 Thisfiltered data set was achieved by usinga 720 point DFT

on two data cycles

THEORY BEHIND THE FFT ALGORITHM

Before moving on to detail a suitable processor upon
which to implement the DFT efficiently, we need to
determine what the processor must handle. The basic
computational problem for the DFT is to compute the
(compiex number) spectrum X(f); 0 <f < M, given the
input sequence x(m); 0<m <M according to the
formula:

M-=1
X(f) = Z x(MWIT, 0<f<M )

m=Q
where
WIT = e 127m/M = cos (27fm/M) — jsin (2rfm/M) (8)

In general the data sequence x{(m) may also be complex
valued. The inverse DFT is given by:

FFT-fRISCy Fourier transforms?: M R Smith

x(m) —-ZX OWH, o<m<M 9)

Since these equations are basically equivalent, we shall
discuss only the DFT implementation.

A number of steps can be taken to speed the dlrect
implementation of the DFT. First the coefficients W {7 can
be pre-calculated and stored for reuse (in ROM or RAM).
The calculation time for all the sine and cosine values can
take almost as fong as the DFT calculation itself. If the
inputvalues x(m) are real, a further time saving of 2 can be
made using the DFT since half the spectrum can be derived
from the other half rather than being calculated.

X(f) =a;+jb; 0<KF<M/2
X(M~f)=a—jb O0<Ff<M/2

Despite all these ‘special’ fixes, basically the direct
implementation of the DFT is a real number-cruncher. For
each value of f, we require M complex multiplications (4M
real multiplications) and M —1 complex additions
(4M — 2real additions). This means that to compute all M
values of the DFT requires M? complex multiplications
and M2 - M complex additions. Take M = 1024 as a
realistic data size and you have over 4 million multipli-
cations and 4 million additions, which is alot of CPU time,
even with the current high-speed processors.

There are a number of ways around this problem,
based on a divide and conquer concept which leads to a
group of FFT algorithms. One such algorithm is the M
point decimation-in-frequency* radix 2 FFT.

Consider computing the DFT of the data sequence
x{m) with M = 2" points. These data can be splitinto odd
and even series;

Beven(m) = x(2m)
8odd(m) =x(2m +1); 0<mM/2
These series can be used in calculating the DFT of x(m).

M=1
Xt =">" xmwip, 0<f<m
m={
= Z x(MWIT + Z x(mWiP
m even m odd
(M/2) =1 (M/2) -1 )
= x(2n) W2nf+ n+1)Wf(2n+1
> a3
(M/2) -1
Z geven(n)wlfmz
n=0
M/72) =1
Z godd(”)wmlz
=Q

= Gever\(f) + vat Goga(F)

*DSP and gratuitous violence ~ the word ‘decimate’ comes from the
ancient Roman method of punishing mutinous legions of soldiers by
lining them up and killing every 10th soldier.
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Figure 12 The flow chart for an eight point Radix 2 FFT algorithm
where we have used the property that W# = Wy, . This
analysis means that the M-point DFT X(f) can be
calculated from the M/2-point DFTs Geyen (f) and Gogq ().
This does not seem much until you realize that geyen (m)
and gogq{m) can also be broken up into their odd and
even components, and these components into theirs.
This breaking up and calculating a higher DFT from a set of
other DFTs is demonstrated in Figure 12 for an eight-point
DFT.

The advantage of this approach can be seen by the fact
that calculating an M-point DFT from known M/2-point
DFTs requires only M/2 additional complex computations.

X(f) = Geyen(f) + Wiy Coaa(f); 0 <Ff< M/2
X(f+ M/2) = Geven(f) - W/fw Godd(f)

This operation is known as an FFT butterfly and, as can be
seen from Figure 12, forms the basis of the FFT calculation.
Calculating the M/2-point Geyen (f) and Gyyq4 (f) from their
M/4-point components takes a similar number of multipli-
cations. Thus by using this divide and conquer approach,
it is possible to calculate an M-point DFT using
(M/2)log,M complex multiplications rather than the M
required for the direct method.

The time saving that this new approach provides is
enormous as can be seen from Table 1, which compares
the number of complex multiplications for the direct and
Radix 2 DFT algorithms.

The speed improvements rapidly increase as the
number of points increases. The C-code forimplementing
this Radix 2 algorithm is given in Figure 73 (modified from
Reference 2). Breaking up the data into four components
(Radix 4) also provides some speed improvement, which
for 1024 points gives an additional 30% advantage.

The divide-and-conquer approach is most often used
for data numbers that are a power of 2, However, the

Table 1 Comparison of complex operations required for direct and
radix 2 DFT algorithms

Points Direct Radix 2 Speed
improvement

4 16 4 400%

32 1024 80 1280%

128 16384 448 2130%

1024 1048576 5120 20488%

approach is more general. For example, the 720 point FFT
needed for the Beta Monitor data discussed in the last
section might be obtained by decimating the data into
four groups of two, two groups of three and one group of
five*. For further information on Radix 2, 4, 8, split radix or
720 point FFT algorithms see References 2 and 3.

As can be seen from Figure 2, a disadvantage to this
approach to the FFT algorithm is that the results are stored
at alocation whose address is ‘bit-reversed’ to the correct
address. Thus the data value X(%011) is stored at location
%110. This requires a final pass through the data to sort
them into the correct order. As will be shown in the final
part of this tutorial, this plays an important role in the
efficient implementation of the FFT on RISC chips.

PROCESSOR ARCHITECTURE FOR THE FFT
ALGORITHM

A recent article® discusses in detail how DSP and RISC
chips handle various DSP algorithms. This article points
out that although the FFT is a specialized algorithm, it
makes a fairly good test-bed for investigating the archi-
tecture required in DSP applications. Examining the Radix 2
‘C-code’ shown in Figure 13 provides a good indication of
what the processor should handle in an efficient way:

e The algorithm is multiplication and addition intensive.

® The precision should be high to avoid round-off errors
as values are reused.

e There are many accesses to memory. These accesses
should not compete with instruction access to avoid
bottlenecks.

e The algorithm uses complex arithmetic.

JAEREA ARk
xr =-= array of real part of data
xi -- array of imag part of data
wr - array of precalculated cosine valuas for n points
wi - array of precalculated sine values for n points
m = log (n)
¥
AR AR R AN RN A ANk
DOFFT(xx, xi, wr, wi, n, m)
float xrl(), xi[], wrll, will;
int n, ms
{
int i, j, k, m, inc, ie, ia, ni, n2;
float xrt, xit, «, s;

n2 = nj

for (k = 0; k < m: Re+} { /* outer-loop */
nl = n2; n2 = n2 / 2; ie = n / nl;
ia = 1;

for (3 = 0; 3 < n2; j++) {
/* gine and cosine values */
¢ = wr(ial; s = wilia];
ia = ia + ie; /* next address offser */

for (i = 4; 1 «np i += nl) {

m= i + n2; /* offset */
xrt = xr[i) - xrim]: /* common */
xit = xifi] -xiiml;
xe[i} += xrlm]; /* upper */
xi[i] += xi[m]};

xrim] = ¢ * xrt + s * xit; /* lower */
®i[m] = ¢ * ®it - & * xrt;

}
}

Figure 13 The 'C-code’ for a simple three-loop non-custom N point
Radix 2 FFT algorithm

*On the basis of ‘if it ain’t broke, don't fix it’, if | had a very fast processor
and only had to do a 720 point DFT a very few times, | would be tempted
to simply code a straight DFT. That was the approach | took for this paper,
j also forgot to turn on the maths coprocessor and was really reminded
just how slow a 'slow DFT" algorithm is,
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e The algorithm has a number of loops, which should not
cause ‘dead-time’ in the calculations.

® There are many address calculations, which should not
compete with the data calculations for the use of the
arithmetic processor unit (APU) or the floating point
unit (FPU).

® There are a number of values that are reused. Rather
than storing these out to a slower external memory, it
should be possible to store these values in fast on-
board registers (or data cache).

® There are fixed coefficients associated with the
algorithm.

® Speed, speed and more speed.

The DSP processor is designed with this sort of problem
in mind - all the resources needed are provided on the
chip. Typically, DSP processors run at one instruction
every two clock cycles. In that time, they might perform
an arithmetic operation, read and store values to memory
and calculate various memory addresses. By comparison,
RISC chips are more highly pipelined and can complete
one instruction every clock cycle. When there is an
equivalent instruction (for example the highly pipelined
multiply and accumulate instruction or a basic add) this
gives the RISC processor the edge. It loses the edge when
many RISC instructions are needed to imitate a complex
DSP instruction. Depending on the algorithm and the
architecture of the particular chips, the DSP and RISC
processors come out fairly even in DSP applications®,

None of the processors on the market has true
‘complex arithmetic’ capability with data paths and ALUs
duplicated to simultaneously handle the real and imaginary
data values. Since complex arithmetic is not that common,
adding the additional resources to a single chip is not
worthwhile. This is the realm of expensive custom chip
fabrication, microprogrammable DSP parts® or multi-
processor systems.

Many DSP applications have extensive looping, This
can be handled by hardware zero overhead loop(s) (Texas
Instruments TMS320 DSP family and Motorola DSP96002).
On RISC processors, the faster instruction cycle, the
delayed branch and unfolding loops (straight line coding)
remove the majority of the delay problems with using
branches. This is particularly true for algorithms, such as
the FFT, where the loops are long,

Nor is there significant difference in the available
precision on the DSP and the RISC processors. For
example, the DSP56001 has a 24 bit wide on-chip
memory but uses 56 bits for‘sum-of-products’ operations
to avoid loss of precision. The 860 and Am29050
processors have 32 bit wide data buses and can use 64
bits for single cycle sum-of-products operations. Many of
the RISC and DSP chips now come with floating point
capability at no time penalty. Although not strictly
necessary, the availability of floating point makes DSP
algorithms easier to develop and can provide improved
accuracy in many applications.

There is one area in which the DSP chips appear to
have a significant advantage, and that is in the area of
address calculation, The FFT algorithm requires ‘bit
reversal’ addressing to correct the positions of the data in
memory, a standard DSP processor mode. This mode
must be implemented in software on the RISC chips.

FFT-fRISCy Fourier transforms?: M R Smith

However, as was pointed out to me at a recent DSP
seminar®, it is possible to avoid the overhead for bit-
reverse addressing by modifying the FFT algorithm so that
it does not do the calculation in place.

Auto-incrementing addressing modes are also standard
as part of the longer DSP processor instruction cycle, On
the Am29050 processor this must be done in software (at
the faster instruction cycle) or by taking advantage of this
processor’s ability to bring in bursts of data from memory
(see the section on ‘Efficient handling of the RISC's
pipelined FPU’). The super-scalar i860 RISC is almost a
CISC chip in some of its available addressing modes.

When comparing the capabilities of RISC and DSP
processors it is important to consider the possibility that
the processor is about to run out of resources, For
example the TMS532025 has sufficient data resources on
board to perform a 256 point complex FFT on-chip in
1.8 ms with a 50 MHz clock. The available resources are
insufficient for 1024 complex points, which takes 15 ms
rather than the 9 ms if the 256 point timing is simply
scaled’. The various processors have different break
points depending on the algotithm chosen®. The evaluation
is, however, difficult because of the different parallel
operations that are possible on the various chips, some of
the time.

There are as many solutions to the problem of instruction/
data fetch bus clashes as there are processors. The DSP
chips have on-chip memory while the RISC chips have
caches (i860), Harvard architecture and large register files
(Am29050). However, it is often possible to find a
(practical) number of points that will cause any particular
processor to run out of resources and reintroduce bus
clashes.

Many DSP chips conveniently have the FFT coefficients
{up to size M = 256 or 1024) stored ‘on-chip’. By contrast,
the RISC chips must fetch these coefficients from main
memory (ROM or RAM), Provided the fetching of these
coefficients can be done efficiently, there is no speed
penalty. Again there are problems of ‘running out of
resources’ if the appropriate number of points being
processed is sufficiently large on eithertype of processor.

Changes in the architecture of RISC and DSP chips can
be expected in the next couple of years as the fabricators
respond to the market and what they perceive as
advantages present in other chips. For example the
TMS32030 can perform a 1024 complex FFT in 3.23 ms
with a 33 MHz clock® compared to 1.58 ms with a
40 MHz clock for a DSP96002°. The advantage of the
DSP96002 is not just in clock speed. It has the capability
of simultaneously performing a floating point add and a
subtract on two registers. This is particularly appropriate
for the FFT algorithm, which is made up of many such
operations. The advantage that it gives the DSP96002 can
be seen from the fact that it performs an FFT butterfly in
four instructions compared to 7-30 instructions on the
other RISC and DSP processors. With this sort of
advantage, can it be long before the same feature is seen
on other chips?

The FFT implementation on the DSP processors is well
documented in the data books and will not be further
discussed here. In the next section, we shall examine in

*Analog Devices mini-DSP seminar, Calgary, January 1993,
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some detail the less familiar problems associated with
efficiently implementing the FFT on RISC chips.

EFFICIENT FFT IMPLEMENTATION ON THE
RISC PROCESSORS

One of the reasons that DSP processors perform so well in
DSP applications is that full use is made of their resources.
To get maximum performance out of a RISC processor a
similar programming technique must be taken. Although
in due time, good ‘DSP-intelligent’ C compilers will
become available for RISC processors, best DSP perfor-
mance is currently obtained in Assembler by a programmer
familiar with the chip’s architecture.

In terms of available instructions there is little major
difference between the scalar and super-scalar chip. Both
the scalar Am29050 and super-scalar i860 RISCs have an
integer and a floating point pipeline that can operate in
parallel. The major advantage of super-scalar chips is that
they can initiate (get started) both a floating point and an
integer operation at the same time. However, other
architectural features, such as the large floating point
register window on the Am29050 processor, can some-
times be used to avoid the necessity of issuing dual
instructions. The relative advantages depends on the DSP
algorithm, For example, in a real-time FIR application, the
scalar Am29050 processor outperformed the super-scalar
i860, and both RISCs outperformed the DSP chips'’.

The practical considerations of using RISC chips forthe
DFT algorithm could equally be explained using the i860
and the Am29050 processors. However, for a person
unfamiliar with FPU pipelining and RISC assembler
language code, the Am29050 processor has the more
user-fiendly assembly language'? and is the easier to
understand. The information on the i860 performance is
based on References 13 and 14, The Am29050 processor
FFT results are based on my own research in modelling
and spectral analysis in medical imaging® "' and the
use of the Am29050 processor in a fourth year computer
engineering course on comparative architecture which
discusses CISC, DSP and RISC architectures.

Efficient handling of the RISC’s pipelined FPU

The basic reasons that DSP and RISC chips perform so well
are associated with the pipelining of all the important
resources. However, there is an old saying ‘you don‘t get
something for nothing’. This FPU speed is available if and
only if the pipeline can be kept full. If you cannot tailor
your algorithm to keep the pipelines full, then you do not
get the speed. A 95 tap finite impulse filter (FIR) DSP
application'" is basically 95 multiply-and-accumulate
instructions one afterthe other and is fairly easy to custom
program for maximum performance. The FFT algorithm on
the other hand is a miscellaneous miss-modge of floating
point add (FADD), multiplication (FMUL), LOAD and
STORE instructions, which is far more difficult to code
efficiently.

The problems can be demonstrated by considering a
butterfly from a decimation-in-time FFT algorithm. Similar
problems will arise from the decimation-in-frequency FFT
discussed earlier,

The butterfly is given by:
C=A+ WB
D=A-WB

which must be splitinto the real and imaginary components
before being processed:

Cre = Are + WieBre = WimBim (10)
CGim = Aim + WeeBim + Wi Bie
D = Are + WieBre + Wi Bimy an

Dim = Aim = WeeBim — WinBe

The values A and B are the complexinput values to the
butterfly and W the complex Fourier multiplier. The
output values Cand D must be calculated and then stored
at the same memory address from which A and B were
obtained.

For the sake of initial simplicity we shall assume that all
the components of A, B and W are present in the RISC
registers. The Am29050 processor has 192 general-purpose
registers available and, more importantly, directly wired to
the pipelined FPU. The problems of efficiently getting the
information into those registers will be discussed later.

At first glance, calculation of the butterfly requires
a total of eight multiplications and eight additions/
subtractions. Since the Am29050 processor is capable of
initiating and completing a floating point operation every
cycle, it appears that the FFT butterfly would take 16 FPU
operations and therefore 16 cycles to complete. However
by rearranging the butterfly terms the number of instruc-
tions can be reduced to 10 instructions.

Tmpre = (W % Bre) — (Wi, * Biy)
Tmpim = (W * Bim) + (Wi, % Be)
Cre = Are + TMpye
D= A — Tmp,
Cim = Aim + TMPim
Dim = Aim = Tmpin,
which can be implemented in Am29050 RISC code as:

FMUL TR, WR, BR ; Tmpp = Wy %Be

FMUL T1, W1, BI T1 = Wi, #Bim
FMUL Ti, WR, B! Tmpim = Wie *Bim
FMUL T2, Wi, BI T2 = Wy, *Be
FADD TI, TI, T2 Tmpi,+= T2

FADD CR, AR, TR
FSUB DR, AR, TR
FADD Cl, Al, Ti
FSUB DI, Al, TI

Figure 14 shows the floating point unit architecture of
the Am29050 processor. The multiplier unitis made up of
a three-stage pipeline (MT, PS and RU). The adder unit is
also a three-stage pipeline (DN, AD and RU). Figure 15
shows the passage through the Am29050 FPU of the
register values used in the butterfly (based on staging
information provided in Reference 12). The fact that the
two pipelines overlap and that the steps are interdependent
means the butterfly is a mixture of very efficient pipeline
usage intermingled with stalls. These stalls are completely

Cre = A + TMPre
Die = Ae = TMpye
1 Cim = Ajm + Tmpim

FSUB TR, TR, T1 ; Tmp—~=T1
i Dim = Ajm — TMPim
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Figure 14  The floating point unit architecture of the Am29050
processor. © 1991 Advanced Micro Devices, Inc*

transparent to the programmer, but that does not make
the algorithm execute any faster. The 10 FPU instructions
take 15 cycles to complete. However, it is possible to fill
the stall positions with address calculations, memory
fetches or additional FPU instructions from another
butterfly. Although this example was for the Am29050
processor, a similar analysis holds for the Motorola scalar
MC88100 RISC processor’. The problem is slightly more
complicated for the MC88100 as the pipelines are deeper
(four and five steps) and there are only 32 registers.

By comparison with the 192 registers on the Am29050
processor, the 1860 has only a few floating point registers

*Advanced Micro Devices reserves the right to make changes in its
products without notice in order to improve design or performance
characteristics. This publication neither states norimplies any warranty of
any kind, including but not limited to implied warranties of merchant-
abitity or fitness for a particular application.

*MC887100 is a registered trademark of Motorala Ltd.
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(32). However, for the FFT algorithm, the dual instruction
capability of this processor allows integer operations
{such as memory fetches) to be peformed in parallel with
FPU operations. Does this give the super-scalar processor
an advantage over the scalar RISC processor? The general
answer is adefinite ‘maybe’ for many algorithms as itis not
always possible to find suitable parallel operations,
However, the FFT can be performed with great advantage
since the super-scalar dual instruction capability allows
floating point calculations to be moved into the stalls with
the integer operations (memory moves) occurring for
‘free’. In addition, although the Am29050 processor has
some capability of simultaneously performing FADD and
FMULT instructions, it does not have the depth of
instructions available on the super-scalar i860. Using all
the 1860 resources to overlap integer/floating point and
FADD/FMULT operations, a custom (ovedapped) FFT
butterfly effectively takes seven cycles'3.

Efficient management of the RISC's registers

The previous section showed how to efficiently handle
the Am29050 RISC FPU based on the assumption that the
necessary values for the FFT butterflies were stored in the
on-board registers. While the super-scalar i860 can bring
in four 32-bit registers at a time from the (limited) data
cache in parallel with floating point operations, this is not
the situation for the Am29050 and M(C88100 processors.
The i960SA and Am29240 processor variants suggested in
the introduction forlow end embedded DSP applications
are also scalar rather than super-scalar. The following
discussion explains how to handle the situation on the
Am29050 processor.

Consider again the butterfly equations (10} and (11).
Scalar RISC chips have essentially very simple memory
access instructions. The Am29050 processor has the
capability of a LOAD or a STORE of a register value using
the address stored in another register. For simplicity, we
shall assume that these instructions can be wiitten as:

LOAD RegValue, RegAddress ; RegValue = Memory[RegAddress]
STORE RegValue, RegAddress ; MemorylRegAddress] = RegValue

The actual Am29050 syntax is a little more complex as
the LOAD and STORE instructions are also used to

1

AD RU DRET Tr 4 TL 2
WrBr
wiBl WrBr
wrsl wiBi
TZTL wiBr WrBi
Trrl WiBr
Tira TrTl
TiT2
AxrTxr TiT2
AxTr AxTr
pEL 2 AxTr Ccr
AlTi Alrd Dr
ML el
Di

Passage of the register values through the Am29050 processor FPU during the execution of a single decimation-in-time FFT butterfly, The

transparent stalls (-s-) must be filled with other instructions to get maximum performance from the RISC
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communicate with coprocessors and various memory
spaces'?,
The real and imaginary components of A, B and W

would be stored in adjacent memory locations (complex.

array) since this is more efficient than the separate real and
imaginary components given earlier. It can be seen from
Figure 12 that the FFT memory accesses follow a very
definite pattern. We assume that the addresses for A, B
and W are stored in registers Aaddress etc, and the
increments needed to move onto the next butterfly
addresses are stored in registers Ainc etc.. It can be seen
that a basic requirement for efficient FFT implementation
on a RISC chip is either a multitude of registers (e.g.
Am29050 processor) or the ability to be able to reload the
registers on the fly {(e.g. i860).

A simple ‘bull-at-the-gate’ approach to fetching and
storing the values for the butterfly of Equations (10) and
(11) would generate code something like Listing 7. How
does this match up against the DSP processor with all the
necessary resources to handle DSP algorithms (particularly
the address calculations)? We can get a rough comparison
by supposing that the DSP chip takes the same 10 FPU
instructions as does the RISC chip operation and assume
it requires no additional cycles to handle the addressing.
On a RISC chip the same 10 FPU instructions plus
associated memory handling require 33 instructions. At
first sight, things do not look promising for the RISC chip
as it executes nearly 3.3 times more instructions.

Prepare to load the registers
ADD Atmp, Aaddress, 0
ADD Btmp, Baddress, 0
ADD Wt, Waddress, 0

LOAD Are, Atmp
ADD Atmp, Atmp, 4
LOAD Aim, Atmp
LOAD Bre, Btmp
ADD Btmp, Btmp, 4
LOAD 8im, Btmp
LOAD Wre, Wtmp
ADD Wtmp, Wtmp, 4
LOAD Wim, Wtmp

; make a copy of the starting addresses

i Ae = MIAtmp++]
i A = MIAtmp]

; Be=MI[Btmp++]
i B = MIBtmp)

; We = MIWtmp++]
1 Wy, = MI[Wtmp]

Now handle the butterfly calculations using the FPU

Prepare to store the results
ADD Atmp, Aaddress, 0
ADD Btmp, Baddress, 0

STORE Cre, Atmp
ADD Atmp, Atmp, 4
STORE Cim, Atmp
STORE Dre, Btmp
ADD Btmp, Btmp, 4
STORE Dim, Btmp

; make a copy of the starting addresses

; MIAtmp++1=C,
; MIAtmp++1 = C,

; M[Btmp++] =D,
; MIBtmp++] = Dy,

Prepare for next butterfly

ADD Aaddress, Aaddress, Ainc
ADD Baddress, Baddress, Binc
ADD Waddress, Waddress, Winc

Listing 1 Buli-at-gate approach to developing FFT algorithm for
Am29050 RISC processor

At second glance, things become more promising, DSP
chips run at one instruction every two clock cycles, RISC
at one instruction every clock cycle if the pipeline can be
kept full. The addressing instructions can be placed as
useful instructions in the RISC FPU pipeline stalls. Thus

the 10 instructions on the DSP take 20 clock cycles and
the 33 instructions on the RISC take 33 clock cycles. The
time required is now only off by a factor of 1.65.

The reason why the DSP chips perform well is that their
FFT implementation takes full advantage of the available
resources. A similar thing must be done to get the best
from the Am29050 RISC architecture. The major problem
with the address calculations is all the time manipulating
pointers using software. This has to be moved to hardware
to achieve any speed improvement.

The first problem to fix is the fact that it is necessary to
calculate the address for A, and G, despite the fact that
they are the same address. Let us use additional
temporary registers to store these calculated addresses
(see Listing 2). Since the same thing can be done forthe B
and D addresses, this reduces the addressing calculations
by six out of 23 cycles: performance is now down only by
1.35X.

LOAD Are, Aaddress
ADD Aimaddress, Aaddress, 4
LOAD Aim, Aimaddress

; A = MIAaddress]
; Ajaddress = Aaddress+4
; Am = MIA, address]

STORE Cre, Aaddress
STORE Cim, Aimaddress

; Ml Aaddress] = C,,
; MIA, address] = C;,

Listing 2  Reusing addresses stored in the large Am29050 register cuts
calculation time

The scalar Am29050 has a LOADM (load multiple)
instruction which will bring in adjacent locations of
memory into adjacent registers automatically. This is
nothing more than another name foran auto-incrementing
addressing mode. Thus the code to bring in the real and
imaginary parts of A (Listing 3) can be replaced by the
instructions shown in Listing 4*.

LOAD Are, Aaddress
ADD Aimaddress, Aaddress, 4
LOAD Aim, Aimaddress

; A = M[Aaddress]
; Ajnaddress = Aaddress+4 |
i Aim = M[A;,address]

Listing 3 One approach to bringing in real and imaginary data
components from memory to the Am29050 register window

LoadMemoryCounter 2
LOADM Are, Aaddress

; prepare to fetch 2 memory values
; A = M[Aaddress); A, = M Aaddress+4]

Listing 4  An alternative approach to bringing in data components into
the Am29050 registers

This looks like a further improvement to two cycles from
three, but is not. With the LOAD instruction it is possible
to bring in one register while anotheris used. The LOADM
instruction, however, makes more extensive use of all the
Am29050 processor resources and therefore stalls the
execution of other instructions for (COUNT — 1) cycles
while the data is brought in (an Am29050 processor
weakness in my opinion).

However, suppose that instead of bringing in enough
data to perform one butterfly, we take further advantage
of the 192 Am29050 registers and bring in and store
enough data to perform four butterflies. This means that
there will be only one LoadMemoryCounter and one
Adjust Aaddress calculation for all the A value fetches

*'LoadMemoryCounter value' is a macro for ‘mtsrim cnt, (value — 1)',
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during those butterflies, a considerable saving. The code
then becomes' as shown in Listing 5 1.

LoadMemoryCounter 8
LOADM Are, Aaddress
LoadMemoryCounter 8
LOADM Bre, Baddress

; Bring in 4 complex A numbers

; Bring in 4 complex B numbers

setn=90

rep 4

ADD Wreaddress, Wreaddress, Winc

LOADoffset (Wre + n), Wreaddress

ADD Wimaddress, Wimaddress, Winc

LOADoffsat (Wim + n), Wimaddress  ; Bringin the four complex W numbers
Setn=n+1

.endrep

**FPU usage*** ; Do 4 intermingled FFT butterflies

LoadMemoryCounter 8
STOREM Cre, Aaddress
LoadMemoryCounter 8
STOREM Dre, Baddress

; Output 4 complex C numbers

; Output 4 complex D numbers

ADD Aaddress, Aaddress, Ainc
ADD Baddress, Baddress, Binc

; Get ready for next butterfly set

Listing 5 An efficient approach to loading the Am29050 registers from
memory

This reduces the total time for four butterflies from 132
clock cycles to 94, or approximately 24 per butterfly. With
the fasterinstruction cycle of the Am29050, it is performing
within 1.2X of a DSP chip for the FFT algorithm: not bad
for a general purpose scalar RISC processor. It has been
shown® that for equivalent clock rates, the Am29050
handled DSP algorithms with between 50% and 200% of
the efficiency of a specialized DSP chip depending on the
algorithm chosen.

Taking the same FFT programming approach with the
i860 RISC processor would just make it curl up and die. its
registers are just not designed to be used the same way as
those of the Am29050 chip. The Am29050 processor has
192 registers attached to the FPU, the i860 only 32. A
different approach that makes use of the dual instruction
capability of the super-scalari860 must be taken. The i860
has the capability of overlapping the fetching of four
registers from a data cache over a 128 bit wide bus (an
integer operation) with the use of a different bank of
registers in conjunction with the FPU (a floating point
operation). By combining two butterflies, and making
good use of its ability to fetch four registers at a time and
its really convoluted (flexible) FPU architecture, this gives
an extremely efficient seven cycles per butterfly. This and
the faster instruction cycle gives the i860 a 2X performance
edge over most DSP chips for the FFT algorithm,

Full details on implementing the FFT algorithm on the
Am29050 processor are beyond the scope of this article,
Further information can be found in Reference 18.

How can you improve the DSP performance of
RISC chips?

in the previous section, we indicated that the RISC chips
can already give equivalent or better performance than

* L. OADoffset REG1, REG2' is a macro equivalent to ‘LOAD %%(&REG1+n),
REGC2".
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DSP chips in providing an efficient platform for imple-
menting the FFT algorithm. Table 2 provides details of the
FFT performance of anumber of integer and floating point
DSP and RISC processors.

The FFT algorithm is not just ‘butterflies’ in the FPU.
There are loop and bit-reverse addressing overheads to
be considered. The performance figures are gleaned from
the various processor data books with the timings scaled
up to the latest announced clock rates. The Am29050
timings are based on my own research using a 25 MHz
YARC card and an 8 MHz STEB board scaled up to a
40 MHz clock. The standalone STEB board is an inexpen-
sive evaluation board configured for single cycle memaory
but, to keep costs down, with overlapped instruction and
data buses so that Am29050 performance will be
degraded by bus conflicts. The PC processor YARC card
avoids the bus conflicts but uses multi-cycle data memory.

Comparison of the timings for the FFT on the DSP and
RISC ,processors is rather like comparing apples and
oranges. Some of the code is more custom than others
and the full details on the limitations or set up conditions
are not always obvious - so take the timings with a heavy
pinch of salt. If the timings differ by 10%, then there is
probably nothing much to choose between the chips in
terms of DSP performance. If the difference is more than
50% then perhaps the processor has something that will
very shortly be stolen and added to the other chips (orthe
conditions were non-obviously different),

In Reference 5 the (fictitious) DSP-oriented compre-
hensive reduced instruction set processor (the Smith’s
CRISP) was introduced. This is ascalar RISC because of the
cost associated with using the current super-scalar RISCs
in embedded DSP applications. It was essentially an
Am29050 processor, with its large register file, combined
with some elements from the i860. The major improve-
ment recognized was the need to have sufficient
resources to allow the memory and FPU pipelines to be
operated in parallel for more of the Am29050 processor
instructions. Improvements were also suggested in allowing
more instructions where the FADD and FMULT operations
were combined (4 /a i860). The FFT performance for the
CRISP was simulated and is given in Table 2.

if you read the literature on RISC and DSP chips, you
will notice that the inverse DFT takes longer than the
straight DFT. This is because the inverse DFT requires that
each data point be normalized by dividing by M, the
number of data points. Division takes a long time when
doing floating point numbers. What is needed is a fast
floating point divide by 2.0 equivalent to the integer shift
operations. This is available as an FSCALE instruction on
the DSP96002 and as a one or two cycle software operation
on the Am29050 and i860 processors'®. However, in
many applications the scale factoris justignored as being
irrevelant to the analysis.

Reference 5 suggested that there was one major flaw
with both the Am29050 and the 860 chips as DSP
processors made evident by the implementation of the
FFT algorithm. Neither of the architectures will support
bit-reversed memory addressing which is required in the
{ast pass of the FFT to correctly reorder the output values.
Done in software, this requires an additional 20% over-
head. It was suggested that the overhead be reduced by
adding an extemal address (bit reverse) generator. If you
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Table 2 Comparison of the timings for Radix 2 and Radix 4 FFT algorithms on a number of current DSP and RISC processors. Based on Reference 5
DspP RISC

TMS32025 TMS32030 DSP56001 DSP96002 ADSP2100 ADSP21000 i860 Am29050 CRISP

Type Integer FP integer FP Integer FP FPFP FP

Clock speed (MHz) 50 40 33 40 16.7 33.3 40 40 50

Instr. cycle (ns) 80 50 60 50 60 30 25 25 20

Radix 2

256 Complex (ms) 1.8 0.68 0.94 0.32 0.85 0.135 0.18 0.69 0.36

256 Bit rev. (ms) 0.22 0.79

1024 Complex {ms) 15.6 1.97 1.04 111 3.74

1024 Bit rev. {ms) 1.11 3.74

Radix 4

256 Complex (ms} 1.2 0.53 0.45 0.121 0.44 0.26

256 Bit rev. (ms) 0.54

1024 Complex (ms) 2.53 1.81 2.23 0.577 2.13 1.2

1024 Bit rev. (ms) 2.52

are in need forafix ‘now’, it would not be that difficult for
a fixed size FFT application to add a little external
hardware to ‘flip’ the effective address line positions at
the appropriate time during the final FFT pass.

However, it was recently pointed out to me that the
flaw was not in the processors but in the algorithm. There
are FFT algorithms other than the decimation-in-time/
frequency ones discussed here. This includes algorithms
that use extra memory (not-in-place FFT) and avoid the
necessity to perform bit-reverse addressing. These
algorithms seemto have dropped out of sight over the last
20 years. My next task will be to investigate both DSP and
RISC processors using these algorithms to determine if
anything is to be gained by revisiting them. After all, the
FFT algorithm was known to many authors over many
hundreds of years before Cooley and Tukey ‘discovered’
it!

CONCLUSION

In this applications otiented tutorial article, we have
covered a very wide range of topics associated with
implementing the discrete Fourier transform (DFT) using
the efficient fast Fourier transform (FFT) algorithm. (Make
sure you can explain the difference between the DFT and
the FFT, if you want to make a DSP expert happy.)

We first examined an industrial application of the DFT
and explained the importance of correctly handling the
data if the results were to mean anything. The theoretical
aspects of generating an efficient algorithm toimplement
the DFT were then discussed and a class of FFT algorithms
detailed. We examined the architectural features
required in a processor to handle the FFT algorithm and
discussed how the current crop of processors meet these
requirements.

This final section was dedicated to details of imple-
menting the FFT on a scalar (Am29050) and a super-scalar
(i860) RISC chip. It was shown that by taking into account
the architecture of the RISC chips, it was possible to get
FFT performance out of these chips approaching or better
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than current DSP chips. Methods for improving the DSP
performance of current RISC processors were indicated. It
has been stated in the literature® that the lack of a bit-
reversed addressing mode penalized the RISC chips as
this was a standard DSP processor capahility. However,
this is not a problem with the RISC processors but rather
with the choice of FFT algorithm. There are many FFT
algorithms that do not require a bit-reverse address
correction pass, although these have been ignored in the
literature formany years. By making properuse of the RISC
processor’s deep pipelined FPU, large register bank or
equivalent dual instruction capability and specialized
MMU functionality, it was quite obvious that FFT really
did stand for fRISCy Fourier transforms!
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NOTE ADDED IN PROOF

AMD has recently announced {June 1993) an integer RISC
microcontrolier, the Am29240, which has an on-board
single cycle hardware multiplier. This processor performs
the FFT algorithm in cycle times close to that of the
Am29050 floating point processor (preliminary results).
Integer RISC processors will be the subject of a future
article.
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