
pyIRSF user's manual

the English version

Yasushi Nakajima

Edition History

2015-07-30 updated for pyIRSF-2.0
The cover and the edition history were added.
The description of recom.param was updated. New parameters norot and commethod were added.
sirius.py tune and sirpol.py tune were added.
'5.6 Some important remarks on obslog' and 6.6 were added

2015-06-05 The first edition for pyIRSF-2.0b

1. Introduction

The pyIRSF package is constructed for the data redcution of the rawdata obtained with IRSF +
SIRIUS / SIRPOL : dark subtraction, flat field correction, sky-bias subtraction, image registration
and recombination. There are also some scripts for rough photometry and photomretric and
astrometric (WCS) calibrations based on the 2MASS catalog.

1.1 requirments

OS Linux/UNIX including MacOSX

IRAF and PyRAF
The latest version of IRAF and PyRAF are recommended.

Python 2.7

C compiler

CFITSIO
The rawdata of SIRIUS/SIRPOL are compressed with the fpack program of CFITSIO. The
CFITSIO library is necessary to read the compressed data. No need to uncompress the
compressed rawdata before you run the pipeline.

matplotlib (optional)

1.2 How to install

1. Download the latest version of pyIRSF-XXX.tar.gz from
http://sourceforge.net/projects/irsfsoftware/
where XXX is a version (e.g., pyIRSF-2.0).

2. Unpack pyIRSF-XXX.tar.gz and you will find a directory, pyIRSF-XXX.

3. Execute make in the directory.
If you installed the CFITSIO library in directories other than /usr/local/lib and /usr/local/include,
edit the lines for LDFLAG and CFLAG in the Makefile.

4. If you use Ubuntu, modify the Makefile as following.
(before) COPTS = -O2
(after) COPTS = -O2 -Wl,--no-as-needed

5. Add the pyIRSF-XXX directory to your PATH in the .bashrc or something.

1.3 The rawdata files the SIRIUS standard directory structure

The name of SIRIUS raw data file is labeled
jyymmdd_nnnn.fits, hyymmdd_nnnn.fits, and kyymmdd_nnnn.fits
for the j, h, and k band, respectively. I describe them as [j|h|k]yymmdd_nnnn.fits all at once in
this document. Obviously, yymmdd is the date and nnnn is the file number of the day.
Each of the raw data file is usually compressed with the fpack program of CFITSIO and has an
extension of .fz or .ic.

The raw data files observed on yymmdd are contained in a directory yymmdd/rawdata (e.g.,
140306/rawdata). I call this as the SIRIUS standard directory structure.
The pyIRSF pipeline softwares assume this standard structure.

Besides that, the pyIRSF pipeline softwares assumes the followings.
1. There are not the other files than the SIRIUS rawdata files in the rawdata directory.
2. The extension is unified to one of .fits or .fits.fz or .fits.ic in a rawdata directory. However, a
contamination of less than 10% of the other extensions will be just ignored.

2. Contents of pyIRSF

sirius.py the pipeline software for SIRIUS

sirpol.py the pipeline software for SIRPOL

mklog.py to create an obslog file from a set of raw data of a day

mktwflatlist.py to select pairs of rawdata frames with adequate background levels and to create
a list of files from which flatfield images are created

twflatcom.py to create flatfield images from the list created with mktwflatlist.py

corrflat.py to correct the non-uniform component of twilight illumination to the flat fieldimages
created with twflatcom.py

imgrecom.py to register and combine frames which are already corrected for dark and sky
biases and flatfield with sirius.py. to combine frames that sirius.py failed combining or frames
from different nights.

polrecom.py sirpol version of imgrecom.py

sirphot.py to carry out rough aperture photometry

sirwcs2.py to carry out rough aperture photometry and rough photometric calibration by
comparing the 2MASS catalog and to transform (x, y) coordinate to (RA, DEC) coordinates for
each star. WCS is also embedded to the FITS files.

3. flatfield images

Flatfield images (multiplicative gain corrections) are derived from the measurements of the
rapidly dimming or brightening twilight sky by charting the relative change in intensity seen in
every pixel in response to the changing illumination level. The resulting pixel-by-pixel responsivity
images are normalized to have a median of unity. Finally, a flatfield image is created by taking a
median of a number of the normalized images, in order to achieve a higher S/N and to remove
bad signals accidentaly caputured in some frames.

3.1 Master flatfield images

There are built-in flatfield images in the pyIRSF package. I refere them as the master flatfield
images. These are used for the flatfield correction in the pipeline process when a user has not
prepared their flatfield images for the date. The master flatfield images were made from twilight
sky frames from 53 nights between 2000 April 25 and 2004 April 22 and a correction using a
comparison of the SIRIUS point source photometry with the 2MASS catalog.

When flatfield images are created, it is assumed that a distribution of pixel intensity difference
between a brighter and a fainter twilight sky is equivalent with a pixel intensity distribution yielded
by an observation of an uniform illumination. However, it is not the case for SIRIUS, probably,
due to stray light inside the camera. The amplitude of the non-uniformity can reach 5 percent or
more near the edge of the arrays. (When a demanded photometric accuracy is about 0.05 mag,
it is enough uniform though.) This has been estimated by comparing the dependency on the
array position of magnitude difference of several hundreds of thousand point sources between
the SIRIUS and 2MASS measurements. It is necessary to correct this component from flatfield
frames to attain a better photometric precision.

A "canonical" flatfield image for each band was made from twilight sky frames from the 53 nights.
Then frames from 79 nights between 2000 April 25 and 2004 April 22 were dark-subtracted,
flatfield corrected with the canonical flatfield images, and sky-bias subtracted. Magnitudes of the
point sources are measured with the aperture photometry in each frame. The magnitude zero
point was obtained by a regression of comparison with the 2MASS point sources in the same
field for each frame. Magnitude differences between the SIRIUS and 2MASS measurements
were obtained for all the point sources. The left of the following figure denotes the map of the

Left : Each dot denotes a magnitude difference, Dm,
between the SIRIUS and 2MASS measurements at
the array position. Red, orange, yellow, green, blue,
purple, grey, and black are assigned for Dm>0.06,
0.06>Dm>0.04, 0.04>Dm>0.02, 0.02> Dm>0.00,
0.00>Dm>-0.02, -0.02>Dm>-0.04, -0.04>Dm>-0.06,
-0.06>Dm, respectively.

right : A median smoothed map of the left one. The
interval of contours is 0.01 mag.

magnitude difference for the H band. Each dot represents the magnitude difference for a star
found at the array position. This indicates a clear pattern of the magnitude difference and the
array position. Similar results are obtained for the J and K band as well. Presumably, the arrays
are not illuminated uniformly but there is a contamination probably due to scattered light within
the camera. I consider that this pattern represents the deviation from the true flatfield correction
that would be obtained from the uniform illumination and this pattern can be used to correct the
"canonical" flatfield images. A correction image is made by taking a median in an apeture with
a radius of 40 pixels for each pixel for each band, which is shown in the right. The canonical
flatfield images are multiplied by the correction images to produce the master flatfield images.
The accuracy of the master flatfield images is estimated to be less than 2-3 percent.

See xxxx for the details.

3.2 To create your flatfield images

If you think the master flatfield images are not appropriate to your data reduction, you can make
your own flatfield images with mktwflist.py, twfcom.py, and corrflat.py in pyIRSF.

I recommend you to use as many data as possible, like 10 nights. It yields a higher S/N for the
flatfield images and bad frames suffering from cloud on the sky or condensation on the window
of SIRIUS can be removed statistically. The flatfield characteristic for SIRIUS is confirmed not to
change more than 1% at least in several months.

How to put file and directories

Make a working directory at the same level as the date directories.
 $ mkdir wrk

 $ ls

 $ 030211/ 030214/ 030219/ wrk/

Each of the date directores has a directory "rawdata" in accordance with the SIRIUS standard
directory structure. The "rawdata" directories have FITS files icluding rawdata. The FITS files
may be uncompressed ones, or cfitsio's fpack-compressed files with extension of "fits.fz", or
cfitsio's imcopy-compressed files with extension of "fits.ic". You do not need to uncompress
compressed files.

Then, move into the working directory and create a list to specify dates from which twilight sky
data are available. Just write dates line by line as shown in the following example.
 $ more dlist

 030211

 030214

 030219

You do not need to be too careful. Directories without twilight sky data are just ignored. The
mktwflist.py program examines the FITS header of every FITS file in the specified directories. A
FITS file having "OBJECT= twflat" is considered to be twilight flat data frame.

Basic processes

(1) Execute mktwflist.py in the working directory first, as shown in the following example.
 $ mktwflist.py dlist

A list specifying the date directories is given as the first argument.
If there is no twilight sky data at a specified date, a message like
￼ No flat frames taken on 030211

 is shown. At the end of the process, messages like the following will be displayed.
a total of 62 pairs are selected for j

a total of 59 pairs are selected for h

a total of 47 pairs are selected for k

Done

As the results, [j|h|k]flatlist.0, [j|h|k]flatlist, [j|h|k]backround.txt, mktwflist.param, will be created.

(2) Execute twflatcom.py
 $ twflatcom.py flat0302

You name the resultant flatfield frame by giving (a part of) it at the first argument. In the above
example, [j|h|k]flat0302.fits will be created.
The differential image created from a pair listed in each line of jflatlist, hflatlist, and kflatlist will
be normalized by the median of the pixel values, and all the normalized images are median-
combined into a flatfield frame.
Keyword NCOMBIME in the header of the flatfield frames denotes the number of differential
images used for combination.

(3) Run corrflat.py
 $ corrflat.py flat0302 nflat0302
Give the common part, excluding the extension, of the file names which are made by twflatcom.
py as the first argument, and the name of the final 'corrected' flatfield frames as the second
argument. In this example, [j|h|k]nflat0302.fits will be created from [j|h|k]flat0302.fits.

This program corrects the flatfield images obtained with twflatcom.py by removing the
contaminating component due to the non-uniform illumination. It is assumed that the non-uniform
component has not changed since the master flatfied frames were constructed.
The following calculation is carried out in corrflat.py.

nflat(x, y) = iflat(x, y) / cflat(x, y) * mflat(x, y)

Here, nflat(x, y), iflat(x, y), cflat(x,y) and mflat(x, y) are the pixel value distribution of the resultant
corrected flatfield, the flatfield obtained by twfcom.py, the canonical flatfield from which the
master flatfield was generated, and the master flatfield, respectively.

It is not confirmed yet if the correction process is legitimate for SIRPOL and observations with
the narrow band filters. Use it with a caution.

I f you are susp icous
about the correct ion
process, you may skip
this step and use the
flatfield images calculated
in the standard manner
with twflatcom.py.

Optional processes, a warning message, and the other outputs

(1) optional argumemts for mktwflist.py
-noexgap
not to exclude pairs of which differential image has the central gap more than 1%. See the details
in 3.3.

-skydiff=[float] (example : mktwflist.py dlist -skydiff=1000)
A pair of brighter and fainter twilight sky frames is selected so that the difference of the
background level is more than 2000 ADUs by default. You can change the threshold ADU with
this argument.

-maxgood=[float] (example : mktwflist.py dlist -maxgood=6500)
Frames with the median of the pixel values less than 6000 ADUs are adopted to make flatfield
images by default. You can change the threshold with this argument.

-keyword=[string] (example: mktwflist.py dlist -keyword=NB14twflat)
Frames with FITS keyword of 'twflat' are selected to make flatfield images by default. you can
change the keyword here.

-band=[string] (example: mktwflist.py dlist -band=j mktwflist.py dlist -band=h, k)
Text files necessary for the following processes are created for all the JHK bands by default. You
can specify an band or two bands here.

To see how to use the options, execute
$ mktwflist.py

without arguments. A quick list will be displayed.

(2) A warning message while mktwflist.py is running
The background level monotonically increases in the morning and decreases in the evening
while observing twilight sky frames when there is no cloud on the sky. When it does not, some of
the frames may have observed cloud in the field.
A message like
background level unstable at 030313 0010

appears on the terminal, when the background does not change monotonically in the J band.
The warning is also recorded in jbackground.txt with an asterisk, * , at the end of the lines for
unstable frames. The background level is affected also by OH and thermal emissions for the H
and K bands. Therefore, it does not always indicates the presence of cloud when the background
doesn't change monotonically in the H and K bands. So, the masseges are not displayed on the
terminal but recoreded in [h|k]background.txt.
This warning messege is recorded in mktwfwarning.txt as well. If there is not warning

d u r i n g t h e p r o c e s s ,
mktwf l i s t .py doe not
create mktwfwarning.txt.

(3) Output files from mktwflist.py
[j|h|k]flatlist are the input files to twfcom.py and [j|h|k]flatlist.0 are log files.
The following is an example of jflatlist.
$ more jflatlist

030129 0025 0036 3310.0 1254.0

030129 0026 0040 3001.0 928.0

030129 0027 0044 2724.0 720.0

030129 0914 0909 4712.0 2468.0

030129 0913 0907 4157.0 1912.0

030129 0912 0905 3651.0 1465.0

...

The first line denotes that the J band frames 0025 and 0036 on 030129, of which medians of
pixel values are 3310.0 and 1254.0, respectively, were selected as a pair to make a differential
image.

[j|h|k]flatlist.0 are similar, but they also include pairs of which differential image has the central
gap more than 1%. [j|h|k]flatlist are made by excluding such pairs from [j|h|k]flatlist.0. When you
add -noexgap as an option, mktwflist.py does not carry out the exclusion process and does not
create [j|h|k]flatlist.0.

mktwflist.param
Parameters used in mktwflist.py are recorded in it.

[j|h|k]background.txt
The median of pixel values are recorded for all the frames.

(4) options for twfcom.py
-band=[string] (example : twfcom.py flat0302 -band=j twfcom.py flat0302 -band=h,k)
Flatfield images are created for all the JHK bands by default. You can specify an band or two
bands here.

If you want to remove some pairs of frames, edit [j|h|k]flatlist before executing twfcom.py.
Delete the lines or add # at the beginning of the line.

3.3 Excluding differential images with a central vertical gap

The HAWAII array has a characteristc of reset anomally which results in a central gap of pixel
values between the 511st and 512nd columns in rawdata frames. When this pattern is stable,
there is no gap found in a dufferential image. However, it becomes unstable sometimes and
yields a differential image with the central vertical gap.

The algorithm to find the gap is the followings.

1. For a normalized differential image, the program calculate a pixel value difference between
adjacent pixels in the x direction, dI(i, j) = I(i+1, j) - I(i, j), for j from 1 to 1024 and for i from 413
to 612.
2. The median through the y direction, M(i), is calculated for every i in the range.
3. The madian and standard deviation, sigma, of M(i) are calculated. The median is around 0.
4. If M(511) is less than 0.01 or less than 3 sigma, there is no gap recognised in this differential
image.

The following figures are examples of M(i). The horizontal axis denotes i and the vertical M(i).

The upper shows no sign of the central gap, while the lower shows a clear sign of the central gap
about 4 %.

3.4 Eye inspection -- twflatview.py

An optional task "twflatview.py" helps you to remove bad-behaved pairs with eye inspection.
It sequentially displays differential images divided by the final median flat frame, which tells you
how each differential image deviates from the final one. (You need the matplotlib module for
python to use this.)

Input a list obtained by mktwflist.py and the flatfield image into twflatview.py .
 $ twflatview.py hflatlist hflat0302.fits

Then, you see a figure of the differential image divided by the final median flat frame for the first
pair. An example is the below.

You will see the figures sequantialy by typing the return key. The pair ID appears at the top. The
contour denotes the level smoothed by 16x16 pixel median. The thick contour denotes the level
of 1.00, while thin contours denote the other levels with the step of 0.01(=1%). Normally, you will
see only the thick contour as in the above example.

The following figure show clear deviated patterns with levels 2% or more. If you wish to remove
such pairs from flat frame combination, delete or comment out the corresponding lines in [j|h|k]
flatlist, then run twflatcom.py again.

4. Making an obslog file with mklog.py

The mklog.py program reads the keywords in the header of FITS files in the rawdata directory
and creates an obslog file which is a table of frame number, object name, exposure time,
dithering offset in RA and Dec directions, date, time, RA, Dec, and airmass.

mklog.py is executed in a working directory created at the same level as the rawdata directory of
a date and creates an obslog file in the same directory. See section 5 and 6 for actual usages of
mklog.py.

There are some options for mklog.py.

mklog.py -twflat -object=[string] -itime=[float] -help

-twflat : to make an obslog file without lines with object names starting with 'twflat'

-object=[string] : to make an obslog file with lines with object names starting with the string,
case insensitive, and lines for dark frames with the same exposure time as the specified object
frames.

-itime=[float] : to make an obslog file with lines with an exposure time equals to the value.

-help : to display the usages and examples.

5. SIRIUS data reduction

5.1 The simplest case

The flow of data reduction is like the following in the simplest case.

Here is an example.
When you reduce only 'omegaCen' in the data of 2001-1-2.
$ pwd

/data/010102

$ ls

rawdata/

There is 'rawdata' directory in '010102' directory in accordance with the SIRIUS standard
directory structure. The first thing to do is
(1) to make a working directory at the same level as the rawdata directory.
The name of the working directory can be anything. ('wrk' in this example.)
(2) to make an obslog file by executing 'mklog.py' in the working directory.
This is carrried out at a shell command line instead of IRAF nor PyRAF.
$ ls

rawdata/ wrk/

$ cd wrk

$ mklog.py

$ ls

obslog

create a working directory

make an obslog file

modify the obslog file

execute 'sirius.py para'

execute 'sirius.py set'

execute 'sirius.py run'

finish

mklog.py -object=omegaCen
is much easier here, actually.
The detail is found in section 4

All commands are carried
out at shell command lines.
IRAF is used just as a library.
PyRAF is an inter face to
connect IRAF and python.

'obslog' is a text file, which contains frame number, object name, exposure time, dithering offset
values, and etc. for each frame. mklog.py reads the header of rawdata FITS files to make this.
At this moment, we want to reduce only omegaCen, therefore, we need
(3) to modify the obslog file
with a text editor to remove unnecessary lines.
This night, 'omegaCen' and 'omegaCensky', a sky bias field for omegaCen, were observed with
an exposure time of 5 seconds for frames 0450-0458 and 0459-0467, respectively.
A set of 5 second dark frames were obtained for frames 0057-0067, which are necessary to
process the above set of 'omegaCen'.
The 'obslog' file will be like the below.

Note that a set of a target, 0450-0458 in this example, must be a neighbor of a set of a sky bias.
If the object name ends with 'sky', regardless of the lower or upper cases, the set is recognised
to be a set of a sky bias for the adjacent target set(s).
Now
(4) Execute 'sirius.py para'
in the working directory.
$ sirius.py para

yymmdd is 010102

the mastar flat frames are deployed

A message to confirm the date appears. What is the second message? Flat correction frames
were not prepared this time. sirius.py noticed that and declared to use the master flat frames for
the flat correction in the reduction.

$ ls
hmflat.fits@ jmflat.fits@ kmflat.fits@ obslog obslog~
recom.param sirius.param

[j|h|k]mflat.fits@ are symbolic links to the master flat frames in the pyIRSF package.
recom.param and sirius.param are files to adjust parameters for the pipeline. No need to edit
them this time.
(5) Execute 'sirius.py set'
in the working directory.
$ sirius.py set

Do the master flat frames
work properly? They work at
least for data of this period. I
will discuss it later.

If you want use your own
flatfield images, put them in
the working directory before
executing 'sirius.py para'

This will create necessary files for the following process.
(6) Execute 'sirius.py run'
in the working directory.
$ sirius.py run

This will start the pipeline process.
Messages will appear on the terminal.

 ... skip ...

(7) View the results.
After the pipeline process, the working directory is like the following.

The combined images are in o1.omegaCen directory.

[j|h|k]omegaCen.fits are averagedly combined images of frames after dark subtraction, flat
correction, sky bias subtraction, and image registration.

Let's take a look at one of the combined frames with ds9.
$ ds9 jomegaCen.fits

Select File > Display Headers to see the FITS header.
NAXIS1 and NAXIS2 are larger than 1024, because of dithering. Lines for OBJECT to HUMIDITY,
including UT/LT and airmass, are for the first frame of the set.

The last 4 lines include the output from the pipeline.
NCOMBINE : the number of frames combined
COMMETHO : the combine method used for iraf.imcombine, although this is fixed to 'average'.
COMAREA : A square area all the frames would have been combined, if all 1024 x 1024 pixels
were alive.
REJECT : the reject method used for iraf.imcombine

Another image is included in this FITS file.
$ ds9 jomegaCen.fits[1]

The pixel value denotes the number of frames with which the average was calculated after
rejection of bad pixels.
Notice that the magnitude zero point is different among the areas with different number of this
value when it is not a photometric night.

Besides the FITS files, text files are also stored in this resultant directory.
[j|h|k]quality.txt record the average of fwhm, ellipticity of stars and the median and standard
deviation of background level and etc. for each individual frames before combination which were
displayed on the terminal during the pipeline process.
jquality.txt obtained for this example is shown below.

fwhm, ellip : the average of fwhm and ellipticity of the detected stars on the frame. fwhm and
ellipticity are measured with the psfmeasure program of IRAF.
snum : the number of stars detected. The detection threshold of the daofind program of IRAF is
fixed through a set, which is determined so that the number of stars does not exceed 150 on the
first frame.
median, stddev : the median and standard deviation of the background.
good : If all the conditions specified in recom.param, e.g., the number of matched stars and the
fwhm value, are satisfied, it is set to be 1. If it is 1, the frame is included in the final combined
image. If it is 0, the frame is rejected.
matched : The number of stars matched between each frame and the first frame.
dmag : the difference of magnitude zero point between each frame and the first frame. This is
estimated by calculating the median of the magnitude difference of matched stars: magnitude (the
first frame) - magnitude(each frame).
xrms, yrms : the residuals of the coordinate transformation fit between each frame and the first
frame by the geomap program of IRAF. these are measured in pixels.
rot : the rotation degree relative to the first frame
dx, dy : deviation of the actual relative shift to the first frame from the dithering offset values.
These are measured in pixels.

yymmdd.ffiles, 010102.ffiles in this example, directory will be created in the working directory
after the pipeline process. There are dark subtracted, flat corrected and sky bias subtracted
frames in the directory. They are named as [j|h|k]fnnnn.fits, here nnnn is a 4-digit number. They
are ready for image registration and combination.
These frames are stored so that you are able to check the quality of each frames, or to redo the
image registration and combination with different parameters, or to carry out image registration
and combination of frames from different nights.

log directory will be found in the working directory, too. There are [j|h|k]skybg.list in the
directory. The medain of the background is recorded for each sky bias frame in these files.

5.2 To process multiple targets

Let's see an example of processing data of four different fields; NGC2024, NGC2024B,
NGC2024C, and NGC2024D on 2001-01-03. The flow is the same as the previous example.

(1) to make a working directory at the same level as the rawdata directory
(2) to make an obslog file by executing 'mklog.py' in the working directory
(3) to modify the obslog file
NGC2024, NGC2024sky, NGC2024B, NGC2024C, NGC2024Csky, and NGC2024 were
observed with an exposure time of 30 second for frames 0364 - 0418 in a row. A set of 30 second
dark frames were obtained for frames 0031-0040. Remove the rest from the obslog file.

Sets of frames were observed in an order of target, sky-bias, target, target, sky-bias, target.
Note that a set of a target must be a neighbor of a set of a sky bias, otherwise sirius.py set yields
an error message and you can't proceed further.

(4) Execute 'sirius.py para'
(5) Execute 'sirius.py set'
(6) Execute 'sirius.py run'
(7) View the results.
The working directory will be like below.

o[integer].[target name] directory will be created for each target, in which resultant files are
stored. o[integer] is an index to dinstinguish the target sets. The index is used so that one can
register and combine frames from different sets of the same target name separately.

mklog.py -object=NGC2024
is much easier here, as well.

5.3 To process a target observed with multiple sets

One often observes a target with many sets to increase a total integration time. These frames
are need to be registered and combined into one frame per band.

A field of CenA was observed with four sets on 2001-01-02.
(1) Make a working directory at the same level as the rawdata directory
(2) Make an obslog file by executing 'mklog.py' in the working directory
(3) Modify the obslog file

(4) Execute 'sirius.py para'
(5) Execute 'sirius.py set'
(6) Execute 'sirius.py run'
(7) View the results.
The working directory is like below.

There is only one resultant directory with a target name, o1.CenA1, in the working directory,
because the same field is observed for all CenA1, CenA2, and CenA3. pyIRSF automatically
recognises if the same field is observed for different sets based on RA, DEC, RA_OFF, and
DEC_OFF in the FITS header of each frame. RA_OFF and DEC_OFF are the offset from the
dithering center. If the dithering centers are within 10 arcsec, pyIRSF recognises them to be the
same field. Observed sets with the same field and exposure time are registered and combined
into a sigle image per band. The target name of the first set will be used in o[integer].[target
name].

You can change this default
value, 10 arcsec, in recom.
param.

You can also combine each
set separately by changing a
parameter in recom.param,
even if they have the same
field and exposure time.

5.4 Pairing of a target and a sky-bias set

pyIRSF makes a pair of a target set and a sky-bias set based on the obslog file. The median sky
from the sky-bias set is subtracted from each frame in the target set.
I explain the rules of the pairing.

a set of dithering observation

A set of dithering observation is defined as
a set of sequentially observed frames
1. with the same field (having the same dithering center within 10 arcsec)
2. with the same exposure time
3. with the same object name in the FITS header
4. among which the starting times of exposure are within 10 minutes for any seqential two frames
5. such that a frame with (RA_OFF, DEC_OFF) = (0, 0) is always at the first frame of a set.
6. in which no frame has the same (RA_OFF, DEC_OFF) as the others. If a frame having the
same (RA_OFF, DEC_OFF) as one of the previous frames appears in a set that satisfies the
above criteria, then the frame is the first frame of another new set.

The criterion 1 and 4 are changeable in recom.param.
The criterion 4 is adopted in order not to use sky-bias frames of which sky condition can be
different from that for the target frames.
The criterion 5 is adopted because sets of observation can be repeated with an identical object
name.
The criterion 6 is adopted so that the end of a set can be detected when the next set does not
start with (RA_OFF, DEC_OFF) = (0, 0). A set of frames does not start with (RA_OFF, DEC_
OFF) = (0, 0) when the first frame with (RA_OFF, DEC_OFF) = (0, 0) failed.

types of sets of observation

A set has a special meaning when its target name ends with one of the followings: sky, self,
map, std, cset, sset. I call them as a sky set, a self set, a map set, ... A sky set is a set of sky
bias observation and I will explain the others below. A set other than that is a set for pure target
observation, which I call an on-target set. The pairing rule depends on the type of sets.

on-target set
If a neighboring set is a sky set, the medain image of frames of the sky set is used for the sky-
bias subtraction for the on-target set. If the both neighbors are sky sets, the medain image of
frames from the both sets will be the sky-bias image.
The name of object for the neighboring sky set does not need to include the name of the on-
target set.
If there is no sky set neighboring to an on-target set, no sky bias frame can be created for the on-
taget set. Hence, the pipeline process cannot be carried out for the set.

If there is no sky set for any of on-target sets in the obslog file, 'sirius.py set' yields an
error message of 'No sky for xxx'. 'sirius.py run' cannot be executed while you recieve this
error message.
You need to modify the obslog file to add map or self after the object name so that the target set
is adequately paired with a sky bias set, or to delete the lines of the on-taget set if there is no
adequate sky set to be paired.

self set
The sky bias image is made from the set of itself. It is so called self sky.

map set
The sky bias image is made from the neighboring sets and the set of itself.

std set
This object name was used for standard stars. The sky bias image is made from the set of itself
as well as the self set.

cset, sset
These are used for the magellanic cloud survey observations. No explanation at the moment.

objectskylist

'sirius.py set' yields a text file 'objectskylist' in which results of the pairing of target and
sky bias sets are written.
An example of the objectskylist for CenA in 3.3 is shown below.

The first line denotes that a sky bias image for frames 0468-0476 in a set 'CenA1' is made
from frames 0477-0485. The second line denotes that a sky bias image for frames 0486-0494
is made from frames 0477-485 and 0495-0503. objectskylist is read in 'sirius.py run'
process to make sky bias images and sky bias subtraction.

to change the pairing of target and sky bias

You can change the pairing of target and sky bias by modifying the 'objectskylist' file. It is
denoted that a sky bias image for a set 'CenA3' is made from frames 0495-0503 and 0513-0521
in the 'objectskylist' above. If you want to use only a set of frames 0495-0503 to make the sky
bias image, modify the 'objectskylist' file as following.
':0513-0521' was removed from the third line. Then execute

sirius.py skyset
Then all the files related to sky-bias process will be updated.
Then, execute 'sirius.py run' .

5.5 Rules for the image registration and how to change it

By default, all frames from the sets with the same dithering center and exposure time in the
obslog file are to be combined to one image for each band by 'sirius.py run' process.
It does not matter if the object names are not the same. Besides that, by default, frames with
object name ending with 'sky' or 'std' are not combined. I describe how to change these rules.

By modifying dithsetlist
The 'sirius.py set' process makes a text file 'dithsetlist' denoting how to combine frames
based on the dithering center, exposure time, and object name.

Here is an example of the obslog file from 2001-01-02.

 The lines for dark were omitted.
The obslog file includes sets of a standard star, omegaCen, CenA1-A3 and theoir sky bias fields.
The same field was observed for CenA1, A2, and A3.
'sirius.py set' yields a dithsetlist file as below.

The first column denotes if the set is combined, 1, or not, 0. As described above, frames with
object name ending with 'sky' or 'std' are not combined by default.
The second column denotes an ID such that target sets with the same exposure time and field
are given the same ID. Because CenA1, CenA2, and CenA3 have the same exposure time
and field, ID of 4 is given to them. Object name, exposure time, and starting and ending frame

numbers are given in the column 3, 4, 5, 6, respectively.
If you execute 'sirius.py run' with this dithsetlist file, o1.omegaCen and o2.CenA1
directories will be created in which combine FITS images of [j|h|k]omegaCen.fits and [j|h|k]
CenA1.fits are created, respectively.

Now, let's modify the dithsetlist like following.

The first column for the third line, omegaCensky, was changed to 1, in order to combine the
frames. And that for the sixth line, CenA3, was changed to 2, in order to combine the frames
separately from those for CenA1 and CenA2.
After editing the dithsetlist file, execute 'sirius.py comset' .
Then, text files related to registration and recombination are updated.
Then, execute 'sirius.py run'.
The working directory will be like the following after the process.

If you want to combine each of CenA1, CenA2, and CenA3 separately, change the first column to
2 for their lines.

By modifying sirius.param

You can change the default rules by modifying the sirius.param file before executing 'sirius.
py set'.
Frames for the sky bias sets will be sky-bias-subtracted, registered and combine by changing
from 0 to 1 in
comsky 0 # combine sky frames? 0:no 1:yes

Target sets with the same exposure time and field are not combined into one image per band, if
you change from 1 to 0 in
allcom 1 # combine all the sets with the same field and itime? 0:no 1:yes

The other parameters in sirius.param will be explained later.

If you change an object name in the dithsetlist file, the corresponding name for the resultant
directory and FITS files will be changed accordingly. For example, if you change from CenA1 to
CenA in the dithsetlist and proceed the processes, you will obtain o2.CenA directory and [j|h|k]
CenA.fits in the directory.

5.6 Some important remarks on obslog

One of the most important points I described so far is that how you edit object names and how
you combine sets of observations determine the pipeline process. (It can be modified later by
editing objectskylist and dithsetlist, though.)

Followings are some important remarks on how to describe the obslog file. (These include some
repetition of what I described before.)

1. The lines are in the ascending order of the frame number.

2. No duplicated lines in the obslog file.

3. An on-target set must have at least one neighboring sky set.
If you have observed a sequence of sets like, target1 - target2 - target3 - sky, please execute the
pipeline separately for target1, target2 and target3 while making separate obslog files like
target1 - sky
target2 - sky
target3 - sky .
You may need to set dtime with a larger value in sirius.param for target1 and target2, because
they were observed much earlier than the sky set was observed. If you receive an error message
like 'No sky for target1' , please set dtime so that it includes the starting time of the first frame of
target1 set and that of the sky set. See 5.8 more for dtime and sirius.param.

4. The object name for the neighboring sky set does not need to include the name of the
on-target set.
The object name can even be just 'sky' for sky sets. The object name does not matter. If as long
as a sky set is the neighbor of an on-tagret set and the exposure time per frame is the same and
the starting time of the first frame for both the sky and the on-target sets are within an interval of
dtime, they are considered as a pair of target and sky.

5. By default, all frames from the sets with the same dithering center and exposure time
are combined to one image for each band. It does not matter if the object names are not
the same.
'with the same dithering center' technically means 'if the dithering centers are within fldrad
arcsec'. The value of fldrad is defined in sirius.param.
If you want to combine frames separately for each set, please set allcom in sirius.param to 0.

5.7 Preparation of flat correction images

The master flat images are used in the examples so far. The master flat images are, at least,
vaild for data from 2000 till 2004 and likely safe within 1% for dat till 2008.
You can also make your flat correction images with mktwflist.py, twfcom.py and corrflat.py
programs in pyIRSF. See the details for the section 5.

Put your flat correction images at the working directory before 'sirius.py para'.
'sirius.py para' recognises FITS files in the working directory as the flat correction files.

5.8 Tuning the pipeline process (1) ~ by editting sirius.param

You can tune the pipeline process by editting sirius.param file created by 'sirius.py para'.
You need to finish editting it before 'sirius.py set'.
The following is the sirius.param file with the default value for each parameter. Keyword and
value for each parameter are in the first and second columns followed by comments.

band : The pipeline processes all the JHK bands by default. You can specify one or two bands
to be processed in the lower cases; e.g, j, hk.

stop : The pipeline completes the whole process when this value is 0. When this is 1, the
pipeline quits just after the dark subtraction and flat correction processes. When this is 2, the
pipeline quits just after the sky bias subtration process.

crremove : No cosmic ray removal is done by default. When this value is 1, the min-max
rejection is applied for the imcombine of IRAF when combining the final images.

linear : No linearity correction is done by default. When this value is 1, the linearity correction is
applied to the raw data.

darkopt : When necessary sets of dark frames were not observed for a night, you need to
prepare averagedly combined FITS files for dark subtraction, e.g., [j|h|k]dark30.fits, made from
dark frames of another night. Copy the FITS files to the working directory after 'sirius.py
para'. Then change the value for darkopt to 1.

fix : Change this value to 1, when you reduce data observed without dithering, e.g., transits of
exo-planet.

comsky : By default, this value is set to be 0 and sky bias subtraction and registration and
recombination are not carried out for frames of sky bias sets. Change this to 1, when you want to
reduce the sky bias sets as well. The self sky is applied to the sky subtration.

allcom : By default, target sets with the same exposure time and field are combined into one
image per band. If you change this to 0, frames for each set are combined separately.

dtime : This valus is set to be 10 minutes by default. If the interval of the start of exposure
between a pair of seqentially obtained frames is longer than this, they will be separated to
different sets. Besides, if the interval between the start of exposure of the last frame of a target
set and that of the first frame of a sky bias set is longer than this value, they will not be paired for
the sky bias subtraction.

fldrad : The pipeline recognises that the same field is observed for two sets, when the dithering
center coordinates are within this limit. This valus is set to be 10 arcseconds by default.

cfitsio : Set this value to 0, when you don't have the cfitsio library installed in your computer and
have uncompressed FITS files in the rawdata directory. You don't need to uncompress FITS files
in the rawdata directory, if you have cfitsio installed.

keepd : Average combined dark images for dark subtraction are removed after the pipeline
process by default. If you set this to be 1, they will remain.

keeps : Sky bias images for sky bias subtraction are removed after the pipeline process by
default. If you set this to be 1, they will remain.

keepm : Bad pixel mask images are removed after the pipeline process by default. If you set this
to be 1, they will remain.

5.9 Tuning the pipeline process (2) ~ by editting recom.param

The recom.param file created by 'sirius.py para' contains parameters for image registration and
recombination. You need to finish editting it before 'sirius.py run'.

search : The pipeline uses the xyxymatch program of IRAF to match stars among two frames.
The pipeline tries first the tolarance algorithm in xyxymatch and sets the tolarance parameter
to be 5 pixels. The initial guess of shift values in the x and y directions are estimated from RA_
OFF and DEC_OFF values. This works in most cases, especially when processing a single set.
However, when you observe multiple sets of a field for a target, telescope pointing gradually
deviates from the initial one and RA_OFF and DEC_OFF become unreliable. Consequetly,
the macthing can fail with that algorithm and the parameter in such cases. The value set here
is applied to the tolarance value when the matching failed. However, the tolarance value can
be adjusted to a smaller value than the search value when the average stellar number density
is high, because a large tolarance value can lead to a faulse matching. When the tolerance
algorithm failed in the matching, the triangle algorithm will be applied. The algorithm of tuning the
tolerance parameter will be described somewhere else.

minsep : The separation parameter in the xyxymatch program of IRAF.

reject : The reject parameter in the imcombine program of IRAF. When cosmic rays affect your
combined images, try the minmax algorithm by setting this value to be 1.

ifwhm : an initial guess of fwhm for the daofind program in IRAF. The default value is 3.5 pixels.
When the seeing size is larger than 6 pixels, set an appropriate value here.

lstarnum : Frames with the number of matched stars less than this value will be not be
combined.

ufwhm : Frames with the average FWHM of the stars larger then this value will not be combined.

uellip : Frames with the average ellipticity of the stars larger then this value will not be combined.

urms : If either of xrms or yrms is larger than this value, the frame will not be combined.

mlim : Stars with magnitude errors larger than this value will not be used for the frame
registration.

theta : If the Y direction of the image does not match to the north, the image registrtion fails.
Give a degree measured counter clockwise from the north.

count : If you set this value to 0, an extended image will not be included in which the pixel value
denotes the number of frames with which the average was calculated after rejection of bad
pixels.

norot : The default value is 0. Rotation is taken into account when image registration registration.
If you set this value to 1, rotation is not taken into account and only shift transformation in the x-
and y- directions is calculated.

commethod : The defalt value is 0 and dithered images are combined with the average method
of iraf.imcombine. 1 for the median method.

5.10 Tuning the pipeline process (3) ~ sirius.py tune

You can adjust the parameters in sirius.param and recom.param from the comand line.
After sirius.py para, execute
sirius.py tune -parameter=xxx .
e.g., sirius.py tune -allcom=0
You can adjust any parameters in sirius.param and recom.param, while you can adjust only the
parameter band with sirius.py para, e.g., sirius.py para -band=j.

5.11 Summary of the flow

create a working directory

make an obslog file

modify the obslog file

execute ‘sirius.py para’

execute ‘sirius.py set’

execute ‘sirius.py run’

finish

flat correction FITS
files other than the master ones

necessary ?
create flat correction

FITS files

put them at the
working directory

yes

no

tuning the
parameters?

modify sirius.param/recom.param

yes

no

changing how to
make sky bias images and to

combine with targets?

modify the objectskylist file

execute ‘sirius.py skyset’

yes

no

changing how
to combine frames?

modify the dithsetlist file

execute ‘sirius.py comset’

yes

no

5.12 to execute only registration and recombination ~ imgrecom.py

You can redo the image registration and recombination processes by using imgrecom.py and
frames stored in yymmdd.ffiles directories, when you retry them with different parameters after
failure or you register and recombine frames of a feild observed in different nights.

Case 1 : to process frames from a night ~ the simplest case
In this example, there is a directory, 010102.ffiles, in a directory. There are FITS files after the
dark subtraction, flat correction and sky-bias subtraction processes only for a target, omegaCen,
of a field,i.e. the same dithering center, and an exposure time. The content of the 010102.ffiles
directory is shown below.

(1) Make a working directory
at the same directory as the yymmdd.ffiles directory.
 $ ls

 010102.ffiles/ wrk/
The name of the working directory can be anything.

(2) execute 'imgrecom.py para'
in the working directory and sirius.param and recom.param will be created. If necessary, edit the
parameters in these files. sirius.param is shorter than that created by 'sirius.py para', because
some of the parameters are not necessary for registration and recombination.

(3) execute 'imgrecom.py set'
in the working directory to make a text file, imgrecom.list.

The columns denotes field index, yymmdd.ffiles, frame number, ra_off, dec_off, set number,
object name, and exposure time. In this example, number in the first column is 1 for all the lines,
which indicates that these frames have the same field and exposure time. If you delete lines in
this file, the corresponing frame will not be combined.

(4) execute 'imgrecom.py run'
in the working directory. Similar messages as 'sirius.py run' appears on the terminal . This
creates combined FITS files and [j|h|k]quality.txt in the working directory.

Case2 : to process frames from a night ~ when yymmdd.ffiles contains multiple targes
imgrecom.py can process one field of a target at a time. However, it often happens that frames
for multple targets are included in a yymmdd.ffile directory. It is tedious to remove unnecessary
frames from a yymmdd.ffile directory. But you don't have to do that. You can specify a field to
combine with a command option of imgrecom.py.

In this example, there are frames for omegaCen and CenA in 010102.ffiles.
(1) Make a working directory
(2) execute 'imgrecom.py para' in the working directory
(3) execute 'imgrecom.py set'
yields a message this time.
 $ imgrecom.py set

 multiple fields are mixed in imgrecom.list.

The content of imgrecom.list is shown below.
The field index at the first column includes not only 1 but also 2 and 3 , which indicates that there

are frames for three fields.
(4) execute 'imgrecom.py run [field index]'
You can specify a field to regoster and combine by adding a field index at the end of the
command. In this example, if you want to register and combine omegaCen, execute
 $ imgrecom.py run 1

Then lines with the field index of 1 are extracted from the list and their frames are processed.

 Alternatively, you can remove the lines for the other fields than that you want to register and
combine from imgrecom.list by your hand, then execute just 'imgrecom.py run'.

Case 3 : to process frames from multiple nights
Here is an example to combine frames for a field of 30Dor from 050701 and 050703. They have
been processed with sirius.py and there are 050701.ffiles and 050703.ffiles somewhere.

(1) Make a working directory
(2) Create a symbolic link of each yymmdd.ffiles to the working directory
(or copy yymmdd.ffiles to the working directory)

(3) Make another working directory at the same directory as yymmdd.ffiles

 $ ls

 050701.ffiles@ 050703.ffiles@ mywrk/

(4) execute 'imgrecom.py para' in the working directory at the same level as yymmdd.ffiles,
'mywrk' this example .

(5) execute 'imgrecom.py set' in the same directory
An imgrecom.list file will be created.

There are frames with a exposure time of 30 second in 050701.ffiles in this example, which are
distinguished from frames with 5 second exposure time and a field index of 2 is assigned.
Even if there are frames with the same frame number, frames from different nights are
distinguished and you don't need to alter the file name by your hand.

(6) execute 'imgrecom.py run [field index]'
To combine frames for 30 dor with 5 second exposure time, execute
 $ imgrecom.py run 1

When there is only one number in the field index column, you can omit the option for the field
index in the command.

[other options]

imgrecom.py set -object=[string] -itime=[float]

-object=[string] : This option selects frames whose object name starting with the string to make
imgrecom.list. This is case insensitive. example : imgrecom.py set -object=M42

-itime=[float] : This option selects frames whose exposure time equals to the value to make
imgrecom.list. example : imgrecom.py set -itime=5

imgrecom.py para -band=[j|h|k]
You can specify a band to process. Alternatively, you can edit the first line in sirius.param after
executing 'imgrecom.py para' without the option.

6. SIRPOL data reduction

6.1 The simplest case

The flow of data reduction is like the following in the simplest case.

Master flatfield images for SIRPOL are not built-in in the pyIRSF package. If you execute 'sirpol.
py para' without any flatfield FITS files in the working directory, the master flatfield images
for SIRIUS will be linked to the working directory. These are not supposed to be used for the
SIRPOL data reductions, because the polarizer and the wave plates also affect the multiplicative
gain correction. However, the SIRPOL pipeline does not prevent the master flatfield images and
using the master flatfield images are an easy choice for quick look reductions.

Here is an example to reduce a linear polarimetry observation of M42 on 051226.
$ pwd

/data/051226/

$ ls

rawdata/

There is 'rawdata' directory in '051226' directory in accordance with the SIRIUS standard
directory structure. The first thing to do is
(1) to make a working directory at the same level as the rawdata directory.
The name of the working directory can be anything. ('wrk' in this example.)

create a working directory

make an obslog file

modify the obslog file

execute 'sirpol.py para'

execute 'sirpol.py set'

execute 'sirpol.py run'

finish

prepare flatfield images

Many parts in this section
a r e c o m m o n w i t h t h e
section 5 for SIRIUS. This
redundancy is not eliminated
so that SIRPOL users don't
have to read the section
5. However, repeating the
sections 5.4, 5.5, 5.6 and 5.8
is too redundant. Read these
sections when necessary.

(2) to make an obslog file by executing 'mklog.py' in the working directory.
This is carrried out at a shell command line instead of IRAF nor PyRAF.
$ ls

rawdata/ wrk/

$ cd wrk

$ mklog.py

$ ls

obslog

'obslog' is a text file, which contains frame number, object name, exposure time, dithering offset
values, and etc. for each frame. mklog.py reads the header of rawdata FITS files to make this.
At this moment, we want to reduce only M42 therefore, we need
(3) to modify the obslog file
with a text editor to remove unnecessary lines.
This night, 'M42_n1' and 'M42_n1sky', a sky bias field for M42_n1, were observed with an
exposure time of 10 seconds for frames 0291-0330 and 0331-0370, respectively.
A set of 10 second dark frames were obtained for frames 1491-1500, which are necessary to
process the above set of 'M42_n1'.
The 'obslog' file will be like the below.

Note that a set of a target, 0291-0330 in this example, must be a neighbor of a set of a sky bias.
If the object name ends with 'sky', regardless of the lower or upper cases, the set is recognised
to be a set of a sky bias for the adjacent target set(s). The same rule as SIRIUS is adopted for
SIRPOL. See the details for section 5.4.

(4) Prepare flatfield images and put them in the working directory.
Flatfield images for SIRPOL are available for some periods at the SIRPOL team web page:
http://esppro.mtk.nao.ac.jp/SIRPOL/calibration.html
In this example, I download [j|h|k]twfJan06.fits from the link and put them in the working directory.

All commands are carried
out at shell command lines.
IRAF is used just as a library.
PyRAF is an inter face to
connect IRAF and python.

mklog.py -object=M42_n1
does this automatically. See
the detailes in section 4.

Alternatively, you can make your own flatfield images from twilight sky data observed with
SIRPOL using mktwflist.py and twfcom.py. See the details for section 3.2.

(5) Execute 'sirpol.py para' in the working directory.
 $ ls

 htwfJan06.fits jtwfJan06.fits ktwfJan06.fits obslog

 $ sirpol.py para

 yymmdd is 051226

 user-parepared flat frames have been detected.

 twfname is twfJan06

 $ls

 htwfJan06.fits ktwfJan06.fits recom.param

 jtwfJan06.fits obslog sirpol.param

FITS frames in the working directory were recognised as flatfield images. If there are FITS files
in the working directory and their names starts with j, h, and k and they have a common part in
the file names other than the first letter and the extension, sirpol.para recognises them as flatfield
images. The common part is displayed as 'twfname is ... '.
recom.param and sirius.param are files to adjust parameters for the pipeline. No need to edit
them this time.

(6) Execute 'sirpol.py set' in the working directory.
$ sirpol.py set

This will create necessary files for the following process.

(7) Execute 'sirpol.py run' in the working directory.
This will start the pipeline process. Messages will appear on the terminal.

 ... skip ...

(8) View the results.
After the pipeline process, the working directory is like the following.

The combined images are in o1.M42_n1 directory.

They are averagedly combined images of frames after dark subtraction, flat correction, sky bias
subtraction, and image registration for
[j|h|k]i[object].fits : Stokes parameter I
[j|h|k]q[object].fits : Stokes parameter Q
[j|h|k]u[object].fits : Stokes parameter U
[j|h|k]a00[object].fits : wave plate angle of 0 degree
[j|h|k]a22[object].fits : wave plate angle of 22.5 degree
[j|h|k]a45[object].fits : wave plate angle of 45 degree
[j|h|k]a67[object].fits : wave plate angle of 67.5 degree
The combined I, Q, U images are not made from the combined 0, 22.5, 45, 67.5 degree images.
Differential images of i = [i(0) + i(45) + i(22.5) + i(67.5)] /2, q = i(0) - i(45) and u = i(22.5) - i(67.5)
are made for each cycle of wave plate rotation. The i, q and u images are averagedly combined
to make the final I, Q, and U images. Subtraction within each cycle mitigates the affects of
atmospheric variation on photometry and yields a better subtraction of sky-bias.

Let's take a look at one of the combined frames with ds9.
$ ds9 jiM42_n1.fits

Select File > Display Headers to see the FITS header.
NAXIS1 and NAXIS2 are larger than 1024, because of dithering. Lines for OBJECT to
HUMIDITY, including UT/LT and airmass, are for the first frame of the set.
The last 4 lines include the output from the pipeline.
NCOMBINE : the number of frames combined
COMMETHO : the combine method used for iraf.imcombine, although this is fixed to 'average'.
COMAREA : A square area all the frames would have been combined, if all 1024 x 1024 pixels
were alive.
REJECT : the reject method used for iraf.imcombine

Another image is included in this FITS file.
$ ds9 jiM42_n1.fits[1]

The pixel value denotes the number of frames with which the average was calculated after
rejection of bad pixels.
Notice that the magnitude zero point is different among the areas with different number of this
value when it is not a photometric night.

Besides the FITS files, text files are also stored in this resultant directory.
[j|h|k]quality.txt record the average of fwhm, ellipticity of stars and the median and standard
deviation of background level and etc. for each individual frames before combination which were
displayed on the terminal during the pipeline process.
fwhm, ellip : the average of fwhm and ellipticity of the detected stars on the frame. fwhm and
ellipticity are measured with the psfmeasure program of IRAF.
snum : the number of stars detected. The detection threshold of the daofind program of IRAF is

fixed through a set, which is determined so that the number of stars does not exceed 150 on the
first frame.
median, stddev : the median and standard deviation of the background.
good : If all the conditions specified in recom.param, e.g., the number of matched stars and the
fwhm value, are satisfied, it is set to be 1. If it is 1, the frame is included in the final combined
image. If it is 0, the frame is rejected.
matched : The number of stars matched between each frame and the first frame.
dmag : the difference of magnitude zero point between each frame and the first frame. This is
estimated by calculating the median of the magnitude difference of matched stars: magnitude (the
first frame) - magnitude(each frame).
xrms, yrms : the residuals of the coordinate transformation fit between each frame and the first
frame by the geomap program of IRAF. these are measured in pixels.
rot : the rotation degree relative to the first frame
dx, dy : deviation of the actual relative shift to the first frame from the dithering offset values.
These are measured in pixels.

yymmdd.ffiles, 051226.ffiles in this example, directory will be created in the working directory
after the pipeline process. There are dark subtracted, flat corrected and sky bias subtracted
frames in the directory. They are named as [j|h|k]fnnnn.fits, here nnnn is a 4-digit number. They
are ready for image registration and combination.
These frames are stored so that you are able to check the quality of each frames, or to redo the
image registration and combination with different parameters, or to carry out image registration
and combination of frames from different nights.

log directory will be found in the working directory, too. There are [j|h|k]skybg.list in the
directory. The medain of the background is recorded for each sky bias frame in these files.

6.2 To process multiple targets

Let's see an example of processing data of two targets; 30Dor_n1 and M1_1 on 2005-12-28.
The flow is the same as the previous example.
(1) Make a working directory at the same level as the rawdata directory.
(2) Make an obslog file by executing 'mklog.py' in the working directory.
(3) Modify the obslog file.
Delete lines other than those for 0121-0200, 30Dor_n1 and its sky bias field, 0201-0280, M1 and
its sky bias field, and 0983-0992, 20 second dark frames.

Sets of frames were observed in an order of target, sky-bias, target, target, sky-bias. Note
that a set of frames for a target must be a neighbor of a set of frames for a sky bias, otherwise
sirpol.py set yields an error message and you can't proceed further.

(4) Prepare flatfield images and put them in the working directory.
(5) Execute 'sirpol.py para'
(6) Execute 'sirpol.py set'
(7) Execute 'sirpol.py run'
(8) View the results.
The working directory will be like below.
o[integer].[target name] directory will be created for each target, in which resultant files are

stored. o[integer] is an index to dinstinguish the target sets. The index is used so that one can
register and combine frames from different sets of the same target name separately.

 ... skipping here ...

 ... skipping here ...

6.3 To process a target observed with multiple sets

One often observes a target with many sets to increase a total integration time. These frames
are need to be registered and combined into one frame per band.

Here is an example that a field of M42 was observed with four sets on 2005-12-26.
(1) Make a working directory at the same level as the rawdata directory
(2) Make an obslog file by executing 'mklog.py' in the working directory
(3) Modify the obslog file

(4) Prepare flatfield images and put them in the working directory.
(5) Execute 'sirpol.py para'
(6) Execute 'sirpol.py set'
(7) Execute 'sirpol.py run'
(8) View the results.

There is only one resultant directory with a target name, o1.M42_n1, in the working directory,
because the same field is observed for all M42_n1 ~ n9. pyIRSF automatically recognises if the
same field is observed for different sets based on RA, DEC, RA_OFF, and DEC_OFF in the FITS
header of each frame. RA_OFF and DEC_OFF are the offset from the dithering center. If the
dithering centers are within 10 arcsec, pyIRSF recognises them to be the same field. Observed
sets with the same field and exposure time are registered and combined into a sigle image per
band. The target name of the first set will be used in o[integer].[target name].

 ... skipping here ...

 ... skipping here ...

 ... skipping here ...

 ... skipping here ...

6.4 Pairing of a target and a sky-bias set

pyIRSF makes a pair of a target set and a sky-bias set based on the obslog file. The median sky
from the sky-bias set is subtracted from each frame in the target set.
The rules of the pairing is the same for SIRIUS and SIRPOL. Please refer the section 5.4 about
the rule and replace sirius.py with sirpol.py when using SIRPOL data.

6.5 Rules for the image registration and how to change it

By default, all frames from the sets with the same dithering center and exposure time in the
obslog file are to be combined to one image for each band by 'sirpol.py run' process. It
does not matter if the object names are not the same. Besides that, by default, frames with object
name ending with 'sky' or 'std' are not combined.
Again, the rules for the image registration is the same for SIRIUS and SIRPOL. Please refer the
section 5.5 about the rule and replace sirius.py with sirpol.py when using SIRPOL data.

6.6 Some important remarks on obslog

One of the most important points I described so far is that how you edit object names and how
you combine sets of observations determine the pipeline process. (It can be modified later by
editing objectskylist and dithsetlist, though.)

Some important remarks on how to describe the obslog file is described in 5.6.

6.6 Tuning the pipeline process (1) ~ by editting sirpol.param

You can tune the pipeline process by editting sirius.param file created by 'sirpol.py para'.
You need to finish editting it before 'sirpol.py set'.
The following is the sirpol.param file with the default value for each parameter. Keyword and
value for each parameter are in the first and second columns followed by comments.

band : The pipeline processes all the JHK bands by default. You can specify one or two bands to
be processed in the lower cases; e.g, j, hk.

stop : The pipeline completes the whole process when this value is 0. When this is 1, the
pipeline quits just after the dark subtraction and flat correction processes. When this is 2, the
pipeline quits just after the sky bias subtration process.

crremove : No cosmic ray removal is done by default. When this value is 1, the min-max
rejection is applied for the imcombine of IRAF when combining the final images.

linear : No linearity correction is done by default. When this value is 1, the linearity correction is
applied to the raw data.

darkopt : When necessary sets of dark frames were not observed for a night, you need to
prepare averagedly combined FITS files for dark subtraction, e.g., [j|h|k]dark30.fits, made from
dark frames of another night. Copy the FITS files to the working directory after 'sirpol.py
para'. Then change the value for darkopt to 1.

fix : Change this value to 1, when you reduce data observed without dithering, e.g., transits of
exo-planet.

comsky : By default, this value is set to be 0 and sky bias subtraction and registration and
recombination are not carried out for frames of sky bias sets. Change this to 1, when you want to
reduce the sky bias sets as well. The self sky is applied to the sky subtration.

Many parameters are
common with s ir ius.
param. polmode and
fiim~f135im are uniue in
sirpol.param.

allcom : By default, target sets with the same exposure time and field are combined into one
image per band. If you change this to 0, frames for each set are combined separately.

polmode : Select 1 for the linear polarimetry, 2 for the two points circulatr polarimetry, 3 for the
four points polarimetry

dtime : This valus is set to be 10 minutes by default. If the interval of the start of exposure
between a pair of seqentially obtained frames is longer than this, they will be separated to
different sets. Besides, if the interval between the start of exposure of the last frame of a target
set and that of the first frame of a sky bias set is longer than this value, they will not be paired for
the sky bias subtraction.

fldrad : The pipeline recognises that the same field is observed for two sets, when the dithering
center coordinates are within this limit. This valus is set to be 10 arcseconds by default.

cfitsio : Set this value to 0, when you don't have the cfitsio library installed in your computer and
have uncompressed FITS files in the rawdata directory. You don't need to uncompress FITS files
in the rawdata directory, if you have cfitsio installed.

fiim : Creating the combined I image ? 0 for No, 1 for Yes.
fqim : Creating the combined Q image ? 0 for No, 1 for Yes.
fuim : Creating the combined U image ? 0 for No, 1 for Yes.
fvim : Creating the combined V image ? 0 for No, 1 for Yes.
fpim : Creating the combined PI image ? 0 for No, 1 for Yes.
f00im : Creating the combined 0 degree image ? 0 for No, 1 for Yes.
f22im : Creating the combined 22.5 degree image ? 0 for No, 1 for Yes.
f45im : Creating the combined 45 degree image ? 0 for No, 1 for Yes.
f67im : Creating the combined 67.5 degree image ? 0 for No, 1 for Yes.
f90im : Creating the combined 90 degree image ? 0 for No, 1 for Yes.
f135im : Creating the combined 135 degree image ? 0 for No, 1 for Yes.

If your polarimetry mode is not relevant to the specified images, it will be just ignored. For
example, if you set fvim == 1 or f90im == 1 or f135im == 1 when your polarimetry mode is the
linear polarimetry, they are just ignored.

keepd : Average combined dark images for dark subtraction are removed after the pipeline
process by default. If you set this to be 1, they will remain.

keeps : Sky bias images for sky bias subtraction are removed after the pipeline process by
default. If you set this to be 1, they will remain.

keepm : Bad pixel mask images are removed after the pipeline process by default. If you set this
to be 1, they will remain.

6.7 Tuning the pipeline process (2) ~ by editting recom.param

The recom.param file created by 'sirpol.py para' contains parameters for image
registration and recombination. You need to finish editting it before 'sirpol.py run'.
Please refer the section 5.8 about how to set the parameters.

6.8 Tuning the pipeline process (3) ~ sirpol.py tune

You can adjust the parameters in sirpol.param and recom.param from the comand line.
After sirpol.py para, execute
sirpol.py tune -parameter=xxx .
e.g., sirpol.py tune -allcom=0
You can adjust any parameters in sirpol.param and recom.param, while you can adjust only the
parameter band with sirpol.py para, e.g., sirpol.py para -band=j.

6.9 to execute only registration and recombination ~ polrecom.py

You can redo the image registration and recombination processes by using polrecom.py and
frames stored in yymmdd.ffiles directories, when you retry them with different parameters after
failure or you register and recombine frames of a feild observed in different nights. How to use
polrecom.py is the same as imgrecom.py except that you need to replace imgrecom.py with
polrecom.py, imgrecom.list with polrecom.list, and sirius.py with sirpol.py in section 5.10.

6.9 Summary of the flow

create a working directory

make an obslog file

modify the obslog file

execute ‘sirpol.py para’

execute ‘sirpol.py set’

execute ‘sirpol.py run’

finish

flat correction FITS
files other than the master ones

necessary ?
create flat correction

FITS files

put them at the
working directory

yes

no

tuning the
parameters?

modify sirpol.param/recom.param

yes

no

changing how to
make sky bias images and to

combine with targets?

modify the objectskylist file

execute ‘sirpol.py skyset’

yes

no

changing how
to combine frames?

modify the dithsetlist file

execute ‘sirpol.py comset’

yes

no

7. Quick look photometry and wcs

7.1 sirphot.py

This carries out apeture photometry for combined FITS images created with pyIRSF programs.
This is a combination of daofind, apphot, and psfmeasure programs of IRAF. This is just a rough
photometry. Careful inspection of point source selection or technics like aperture correction are
not applied. Magnitude is not calibrated. Just a fixed typical zero magnitude value is applied for
each band's magnitude caliculation.

usage : sirphot.py [filename] -fwhm=[float] -thresh=[float] -aprad=[float]
$ sirphot.py jM42_n1.fits

This yields a text file jsirphot.txt containing x, y coordinates, magnitude and its error from iraf.
apphot, fwhm and ellipcitiy from iraf.psfmeasure for each point sources.

This does not process the three band's images at once. You need to repeat this for each band.

Options :
-ifwhm=[float] : This is the initial guess of stellar fwhm used in daofind. The default value is 3
pixels. When the size of fwhm is larger than 6, you may want to specify a rough value here.

-thresh=[float] : This value is used for iraf.daofind.datapars.threshold. The default value is 10.

-aprad=[float] : An aperture radius in pixels put into iraf.apphot.photpars.apertures. The
default values is the resultant fwhm obtained with iraf,psfmeasure.

INDEF is found for fwhm and ellipticity, column 5 and 6, for some lines. This happens when the
central coordinates obtained with iraf.psfmeasure is shifted from that obtained with iraf.apphot by
more than the fwhm value of the field, which implies the fwhm was not measured correctly for the
star and possibly it is not a star.

7.2 sirwcs2.py

This program carries out aperture photometry, by using sirphot.py, and compares the results with
the 2MASS catalog to transform the (x, y) coordinates to (RA, Dec) coordinates, and to calibrate
the J, H, Ks magnitudes roughly, and to put the wcs information into the combined image FITS
files.

This is also a quick look analisys. Be careful when you use this result for your paper.

usage : sirwcs2.py filename.fits -jhk -fwhm=[float] -thresh=[float] -aprad=[float]
-noget2mass
To use this, the computer needs to be connected to the internet.
 $ sirwcs2.py jM42_n1.fits

This will yeild [j|h|k]sirphotwcs.txt in the same directory.

The columns denote RA, Dec, magnitude and its error, and (x, y) coordinates.
A part of the 2MASS catalog corresponding to the field will be downloaded and be compared to
the photometry result by sirphot.py. Then RA and DEC will be calculated for each point sources
and the median of the magnitude diffrence of matched stars will be calculated to calibrate the
magnitude of all the stars listed.

Also, the FITS file will have wcs information in the header.

Options :
-fwhm=[float], -thresh=[float] , and -aprad=[float] are the same for sirphot.py.
-jhk : to process all the three bands at once. For example,
 $ sirwcs2.py jM42_n1.fits -jhk

-noget2mass : If you have already downloaded the 2MASS catalog for the field, 2mass.out, you
may want to use this option not to download it again. This is helpful when you redo the matching
with changing parameters like -fwhm or -thresh.

The former vers ion
s i rwcs .py used the
O P M p r o g r a m f o r
catalog matching. But
this version uses iraf.
ccxymatch. Also, some
algorithms have been
improved.

