
Generic Functional Logic Programs∗

Technical Report SIC-03-10, 2010

Francisco J. López-Fraguas, Enrique Martin-Martin, Juan Rodríguez-Hortalá
Dpto. de Sistemas Informáticos y Computación

Facultad de Informática, Universidad Complutense de Madrid
fraguas@sip.ucm.es, emartinm@fdi.ucm.es, juanrh@fdi.ucm.es

ABSTRACT
In this paper we provide functional logic programs with
generic programming capabilities. This is achieved by a
remarkably simple extension of Damas-Milner type system.
The most important aspect is a new notion of well-typed pro-
grams, which is liberal enough as to allow generic program-
ming, but also restrictive enough as to ensure type safety
for reductions, as we formally prove. We give an extense
collection of examples showing the possibilities of our pro-
posal, with one distinguished case of study addressing how
to use our generic functions to implement type classes. We
show that our approach compares favorably with the tradi-
tional dictionary-based approach to type classes implemen-
tation. Not only we overcome a known problem of interfer-
ence of dictionaries with the semantics of non-determinism
adopted by standard functional-logic languages, but also the
resulting translated code is simpler and exhibits better per-
formance than the code using dictionaries. Although our
proposal has been devised with functional logic programs in
mind, and at the formal level (for instance, to prove sub-
ject reduction) we rely on operational calculus proposed for
those languages, our approach is also applicable to a pure
functional setting, as many of our examples (in particular,
the type classes case study) show.

Keywords
Functional logic programming, generic functions, type-indexed
functions, existential types, type classes

1. INTRODUCTION
Functional logic programming. Modern functional
logic languages [11] like Curry [12] or Toy [22] have a strong
resemblance to lazy functional languages like Haskell [30].
A remarkable difference is that functional logic programs
(FLP, in short) can be non-confluent, giving raise to non-
deterministic functions, for which a call-time choice seman-
tics [9] is adopted.

In the HO-CRWL approach to FLP [7], followed by the
Toy system, programs can use HO-patterns (essentially, par-
tial applications of symbols to other patterns) in left hand
sides of function definitions. This corresponds to an inten-
sional view of functions, i.e., different descriptions of the
same ’extensional’ function can be distinguished by the se-

∗This work has been partially supported by the Spanish
projects TIN2008-06622-C03-01, S2009TIC-1465 and UCM-
BSCH-GR58/08-910502

mantics. This is not an exoticism; it is known [21] that ex-
tensionality is not a valid principle within the combination
of HO, non-determinism and call-time choice. Still, some
people do not like HO-patterns in left-hand sides, one of the
reasons being that they cause some bad interferences with
types. Some works [8, 20] have addressed that problem, and
this paper does further contributions to overcome it.

All those aspects of FLP will play a role in the paper,
and in Section 3 we use a formal setting according to that.
However, most of the paper can be read from a ‘standard’
functional programming perspective —where it offers also
hopefully interesting novelties— leaving aside the specifici-
ties of FLP.

Types, FLP and genericity. FLP languages are typed
languages adopting classical Damas-Milner types [5]. How-
ever, their treatment of types is very simple, far away from
the impressive set of possibilities offered, e.g., for Haskell:
type and constructor classes, existential types, GADTs, ge-
neric programming, arbitrary-rank polymorphism, . . . Some
exceptions to this fact are some preliminary proposals for
type classes in FLP [27, 23], where in particular a technical
treatment of the type system is absent.

The term generic programming is not used in the liter-
ature in a unique sense. With it, we refer generically to
any situation in which a program piece (maybe something
as simple as a function name) serves for a family of types
instead of a single concrete type.

Parametric polymorphism as provided by Damas-Milner
system is probably the main contribution to genericity in
the functional programming setting. However, in a sense it is
‘too generic’ and leaves out many functions which are generic
by nature, like equality. Type classes [33] were invented to
deal with those situations. Some further developments of the
idea of generic programming (e.g. [14]) are based on type
classes, while others (e.g. [15]) have preferred to use simpler
extensions of Damas-Milner system, such as GADTs [4, 32]
(see also [6] for a survey on generic functional programming).

Our paper aims at providing also FLP with abilities for
generic programming. Noticeably, our solution is applicable
also in a pure FP setting. The following example should
serve to illustrate the main points.

An introductory example. Consider a program that
manipulates several constructor data types: Peano natural
numbers given by the constructors z, s1, booleans and poly-

1We follow syntactic conventions of some functional logic
languages where function and constructor names are lower-
cased, and variables are uppercased.

1

morphic lists. Programming a function size to compute the
number of constructor occurrences in its argument is an easy
task in a type-free language with functional syntax:

size true → s z size false → s z
size z → s z size (s X) → s (size X)
size [] → s z size (X:Xs) → s (add (size X) (size Xs))

assuming a natural definition for add. However, as far as
bool, nat and [α] are different types, this program would be
rejected as ill-typed in a language using Damas-Milner sys-
tem, since we obtain contradictory types for different rules
of size. This is a typical case where one wants some support
for genericity. Type classes certainly solve the problem if
you define a class Sizeable and declare bool,nat and [α] as
instances of it. A price to pay is that the running program
is not the program above, but the result of adding hidden
dictionaries. GADT-based solutions would add an explicit
representation of types to the encoding of size converting
it into a so-called type-indexed function. GADTs are also
supported by our system (see Section 3.3 and 4.1), but the
interesting point is that our approach allows also a simpler
solution: the program above becomes well-typed in our sys-
tem simply by declaring size to have the type ∀α.α → nat,
of which each rule of size gives a more concrete instance.
Moreover, the well-typedness criterion requires only a quite
simple additional check over usual type inference for expres-
sions.

‘Simple’ does not mean ‘naive’. Imposing the type of each
function rule to be an instance of the declared type is a too
weak requirement, leading easily to type unsafety. As an
example, consider the rule f X→ not X with the assumptions
f : ∀α.α → bool, not : bool → bool. The type of the rule is
bool→ bool, which is an instance of the type declared for f .
However, that rule does not preserve subject reduction: the
expression f z is well-typed according to f ’s declared type,
but reduces to the ill-typed expression not z. Our notion of
well-typedness, roughly explained, requires also that right-
hand sides of rules do not restrict the types of variables more
than left-hand sides, a condition that is violated in the rule
for f above. Definition 3.1 states that with precision, and
allows us to prove type safety (subject reduction + progress)
for our system.

Contributions. We can identify a few of them:

• A novel (even in the FP setting) notion of well-typed
program that induces a simple and direct way of program-
ming type-indexed and generic functions is presented in Sec-
tion 3.1. It is based on simple calculi for what essentially
is Damas-Milner type derivation and inference (for expres-
sions, not for programs). The approach supports also exis-
tential types and GADTs.

• At the formal level, we prove that well-typed programs
enjoy subject reduction, an essential property for a type sys-
tem. By introducing failure rules (a side contribution of our
work) to the formal operational calculus, we also are able to
ensure the progress property of well-typed programs (Sec-
tion 3.4).

• We give a significant collection of examples showing the
interest of the proposal in Section 4. As distinguished case
study, in Section 4.4 we show how to use our generic func-
tions to implement type classes in a way that can com-
pete in simplicity and performance —we give experimen-
tal data— with the traditional dictionary-based approach
to type classes implementation. Moreover, it overcomes a

known problem of interference of dictionaries with call-time
choice semantics.

• Our well-typedness criterion goes far beyond the solutions
given in previous works [8, 20] to type-unsoundness prob-
lems of the use of HO-patterns in function definitions. We
can type equality, solving known problems of opaque decom-
position [8] (Section 4.3) and, most remarkably, we can type
the apply function appearing in the HO-to-FO translation
used in standard FLP implementations (Section 4.2).

2. PRELIMINARIES
We assume a signature Σ = DC ∪FS, where DC and FS

are two disjoint sets of data constructor and function sym-
bols resp., all them with associated arity. We write DCn

(resp FSn) for the set of constructor (function) symbols
of arity n, and if a symbol h is in DCn or FSn we write
ar(h) = n. We consider an special constructor fail ∈ DC0

to represent pattern matching failure in programs. We also
assume a denumerable set DV of data variables X. Fig-
ure 1 shows the syntax of patterns ∈ Pat and expressions
∈ Exp. We split the set of patterns in two: first order pat-
terns FOPat 3 fot ::= X | c t1 . . . tn where ar(c) = n, and
higher order patterns HOPat = PatrFOPat, i.e., patterns
containing some partial application of a symbol of the sig-
nature. Expressions c e1 . . . en are called junk if n > ar(c)
and c 6= fail, and expressions f e1 . . . en are called active
if n ≥ ar(f). fv(e) is the set of variables in e which are
not bound by any let expression and is defined in the usual
way (notice that since our let expressions do not support re-
cursive definitions the bindings of the variable only affect e2:
fv(let X = e1 in e2) = fv(e1)∪(fv(e2)r{X}). We say that
an expression e is ground if fv(e) = ∅. A one-hole context C
is an expression with exactly one hole. A data substitution θ
is a finite mapping from data variables to patterns: [Xn/tn].
Substitution application over data variables and expressions
is defined in the usual way. The empty substitution is writ-
ten as id. A program rule r is defined as f t → e where
the set of patterns t is linear (there is not repetition of vari-
ables) and fv(e) ⊆

S
ti∈t var(ti). Therefore, extra variables

are not considered in this paper. The constructor fail is not
supposed to occur in the rules, although it does not produce
any technical problem. A program P is a set of program
rules: {r1, . . . , rn}(n ≥ 0).

For the types we assume a denumerable set T V of type
variables α and a countable alphabet T C =

S
n∈N T C

n of
type constructors C. As before, if C ∈ T Cn then we write
ar(C) = n. Figure 1 shows the syntax of simple types and
type-schemes. The set of free type variables (ftv) of a sim-
ple type τ is var(τ), and for type-schemes ftv(∀αn.τ) =
ftv(τ)r{αn}. We say a type-scheme σ is closed if ftv(σ) =
∅. A set of assumptions A is {sn : σn}, where si ∈ DC ∪
FS ∪ DV. We only consider coherent sets of assumptions
wrt. CS:

Definition 2.1 (Coherence of A wrt. CS). A set
of assumptions A is coherent wrt. a set of constructor sym-
bols CS if for every constructor symbol c in CS different
from fail, c ∈ CSn implies A(c) = ∀α.τ1 → . . . → τn →
(C τ ′1 . . . τ

′
m) with ar(C) = m; and A(fail) = ∀α.α.

Therefore the assumptions for constructors are related
with their arity. On the other hand the assumption for
fail, together with the rules of the type system presented

2

Data variables X,Y, Z, . . .
Type variables α, β, γ, . . .

Data constructors c
Type constructors C
Function symbols f

Expressions e ::= X | c | f | e e
| let X = e in e

Patterns t ::= X
| c t1 . . . tn if n ≤ ar(c)
| f t1 . . . tn if n < ar(f)

Symbol s ::= X | c | f
Non variable symbol h ::= c | f

Simple Types τ ::= α
| C τ1 . . . τn if ar(C) = n
| τ → τ

Type Schemes σ ::= τ | ∀α.τ

Assumptions A ::= {s1 : σ1, . . . , sn : σn}
Program rule r ::= f t→ e (t linear)
Program P ::= {r1, . . . , rn}
Data substitution θ ::= [Xn/tn]

Type substitution π ::= [αn/τn]

Figure 1: Syntax of expressions and programs

in Section 3.2, allow fail to appear at any place of a well-
typed expression. The union of sets of assumptions is de-
noted by ⊕: A ⊕ A′ contains all the assumptions in A′
and the assumptions in A over symbols not appearing in
A′. For sets of assumptions ftv({sn : σn}) =

Sn
i=1 ftv(σi).

Notice that type-schemes for data constructors may be ex-
istential, i.e., they can be of the form ∀αn.τ → τ ′ where
(
S
τi∈τ ftv(τi)) r ftv(τ ′) 6= ∅. If (s : σ) ∈ A we write

A(s) = σ. A type substitution π is a finite mapping from

type variables to simple types [αn/τn]. Application of type
substitutions to simple types is defined in the natural way,
and for type-schemes consists in applying the substitution
only to their free variables. This notion is extended to set
of assumptions in the obvious way. We will say σ is an in-
stance of σ′ if σ = σ′π for some π. A simple type τ ′ is a
generic instance of σ = ∀αn.τ if τ ′ = τ [αn/τn] for some τn,
and we write it σ � τ ′. Finally, τ ′ is a variant of σ ≡ ∀αn.τ
(σ �var τ ′) if τ ′ = τ [αn/βn] and βn are fresh type variables.

3. FORMAL SETUP

3.1 Semantics
As the operational semantics of our functional logic pro-

grams we have chosen let-rewriting[21], a simple and high
level notion of reduction step devised to express the seman-
tics of call-time choice, inspired by [2].We have extended it
for this paper with two more rules for managing failure of
pattern matching (Figure 2), an aspect that can be inter-
esting in its own. The new rule (Ffail) generates a pattern
matching failure when no program rule can be used to re-
duce an expression. Notice the use of unification instead
of simple pattern matching to check that the variables of
the expression will not be able to match the patterns in
the rule. This allows us to perform this failure test locally
without having to consider the possible bindings for the free
variables in the expression caused by the surrounding con-

text. Otherwise, these should be checked in an additional
condition for (Contx). Consider for instance the program
P1 = {true ∧X → X, false ∧X → false} and the expres-
sion let Y = true in (Y ∧ true). The application Y ∧ true
unifies with the function rule left-hand side true ∧X, so no
failure is generated. If we use pattern matching as condition,
a failure is incorrectly generated since neither true ∧X nor
false∧X match with Y ∧ true. Using unification in (Ffail)
can contribute also to early detection of failures. Consider
the program P2 = {f true false → true, g → g} and the
expression let Y = g in f Y Y . Since f Y Y does not unify
with f true false, (Ffail) detects a failure, while other op-
erational approaches to failure in FLP [31] would lead to
a divergence. Notice that, in presence of non-determinism,
call-time choice semantics is essential for (Ffail) to be sound.
Finally, rule (FailP) is used to propagate the pattern match-
ing failure when it is applied to other expression.

Notice that since let-rewriting is lazy, the occurrence of a
pattern matching failure in a subexpression does not always
force the whole expression to be reduced to fail.

3.2 Type system and type inference
Both derivation and inference rules are based on those

presented in [20, 25] Our type derivation rules for expres-
sions (Figure 3-a) correspond to the well-known variation of
Damas-Milner’s [5] type system with syntax-directed rules.
Gen(τ,A) is the closure or generalization of τ wrt. A, which
generalizes all the type variables of τ that do not appear
free in A. Formally: Gen(τ,A) = ∀αn.τ where {αn} =
ftv(τ) r ftv(A).

The type inference algorithm � (Figure 3-b) follows the
same ideas that W[5]. We have given the type inference
a relational style to show the similarities with the typing
rules. But in essence, the inference rules represent an algo-
rithm which fails if any of the rules cannot be applied. This
algorithm accepts a set of assumptions A and an expression
e, and returns a simple type τ and a type substitution π.
Intuitively, τ is the “most general” type which can be given
to e, and π the “most general” substitution we have to apply
to A in order to be able to derive any type for e.

3.3 Well-typed programs
In the functional setting, the problem of checking if a pro-

gram is well-typed is reduced to checking that an expression
has a valid type, because programs can be written as a chain
of let expressions defining the functions accompanied with
a goal expression to evaluate. Doing that in our formalism
would not preserve call-time choice semantics and, further-
more, we do not consider λ-abstractions. Therefore we need
an explicit definition of how to check that a program is well-
typed. The following definition is the main contribution of
this paper, and it is based on type inference for expressions:

Definition 3.1 (Well-typed program wrt. A).
The program rule f t1 . . . tm → e is well-typed wrt. a set of
assumptions A (wtA(f t1 . . . tm → e)) iff:

• A ⊕ {Xn : αn} � f t1 . . . tm : τL|πL

• A ⊕ {Xn : βn} � e : τR|πR

• ∃π.(τR, βnπR)π = (τL, αnπL)

• AπL = A, AπR = A, Aπ = A

3

(Fapp) f t1θ . . . tnθ →lf rθ, if (f t1 . . . tn → r) ∈ P
(Ffail) f t1 . . . tn →lf fail, if @(f t′1 . . . t

′
n → r) ∈ P such that f t′1 . . . t

′
n and f t1 . . . tn unify

(FailP) fail e →lf fail

(LetIn) e1 e2 →lf let X = e2 in e1 X, if e2 is junk, active, variable application or let rooted, for X fresh.

(Bind) let X = t in e →lf e[X/t]

(Elim) let X = e1 in e2 →lf e2, if X 6∈ fv(e2)

(Flat) let X = (let Y = e1 in e2) in e3 →lf let Y = e1 in (let X = e2 in e3) , if Y 6∈ fv(e3)

(LetAp) (let X = e1 in e2) e3 →lf let X = e1 in e2 e3, if X 6∈ fv(e3)

(Contx) C[e]→lf C[e′], if C 6= [], e→lf e′ using any of the previous rules

Figure 2: Higher order let-rewriting relation with pattern matching failure →lf

[ID]
A ` s : τ

if A(s) � τ

[APP]

A ` e1 : τ1 → τ
A ` e2 : τ1

A ` e1 e2 : τ

[LET]

A ` e1 : τX
A⊕ {X : Gen(τX ,A)} ` e2 : τ

A ` let X = e1 in e2 : τ

[iID] A � s : τ |id if A(s) �var τ

[iAPP]
A � e1 : τ1|π1

Aπ1 � e2 : τ2|π2

A � e1 e2 : απ|π1π2π
if

α fresh type variable ∧
π = mgu(τ1π2, τ2 → α)

[iLET]
A � e1 : τX |πX

A⊕ {X : Gen(τX ,AπX)} � e2 : τ |π
A � let X = e1 in e2 : τ |πXπ

a) Type derivation rules b) Type inference rules

Figure 3: Type system

where {Xn} = var(f t1 . . . tn) and {αn}, {βn} are fresh
type variables. A program P is well-typed wrt. A (written
wtA(P)) iff all its rules are well-typed.

The first two points check that both right and left hand
sides of the rule can have a valid type assigning some types
for the variables. Furthermore, it obtains the most general
types for those variables in both sides. The third point is
the most important. It checks that the type inferred for the
right-hand side and the variables appearing in it are more
general than the inferred for the left-hand side. This fact
guarantees the subject reduction property (i.e., that an ex-
pression resulting after a reduction step can have the same
type as the original one) when applying a program rule.
Moreover, this point ensures a correct management of both
skolem constructors [18] and opaque variables [20], intro-
duced either by the presence of existentially qualified con-
structors or higher order patterns. Finally, the last point
guarantees that the set of assumptions is not modified nei-
ther by the type inference nor the matching substitution.

Example 3.1 (Well and ill-typed rules). Let us con-

sider the following assumptions and program:

A ≡ { z : nat, s : nat→ nat, true : bool, false : bool,
cons : ∀α.α→ [α]→ [α], rnat : repr nat

snd : ∀α, β.α→ β → β,
cast : ∀α, β.(α→ α)→ β,
eq : ∀α→ α→ bool,
show : ∀α.repr α→ α→ [char],
showNat : nat→ [char]
force : ∀α.(α→ α)→ [nat] }

P ≡ { snd X Y → Y, cast (snd X)→ X,
eq (s X) z → false,
show rnat X → showNat X,
force (snd X)→ cons z X }

The rule of snd is trivially well-typed. The rule for cast is
not well-typed since the tuple (τL, αnπL) inferred for the left-
hand side is (γ, δ), which is not matched by the tuple (η, η)
inferred as (τR, βnπR) for the right-hand side. This shows
the problem of existential type variables which “escape” from
the scope. If that rule were well-typed then subject reduc-
tion could not be granted anymore—e.g. consider the step
cast (snd true) →lf true, where the type nat can be as-
signed to cast (snd true) but true can only have type bool.

The rule eq is well-typed because the tuple inferred for the
right-hand side, (bool, γ), matches the one inferred for the
left-hand side, (bool, nat). In the rule for show the inference
obtains ([char], nat) for the left-hand side and ([char], nat)
for the right-hand side, so it is well-typed. Finally, the rule
for force is not well-typed because the tuple ([nat], γ) in-

4

ferred for the left-hand side is not an instance of the tuple
([nat], [nat]) inferred in the right-hand side. This shows the
problem of a existential type variable (rigid variable) which
has a concrete type in the right hand side.

Notice that the last point of the definition holds trivially
in all the rules because A is closed.

The examples of well-typed rules, together with the fact
that well typedness for programs simply proceeds rule by
rule, suggest the capabilities of our notion for type-indexed
functions already described in Example 3.1 and further ex-
ploited in Section 4. The examples of ill-typed rules show a
good control of existential types that could come either from
HO patterns (like snd X) or the assumptions for constructor
symbols.

The definition of well-typed rule is simple and can be im-
plemented easily. The first two points use the algorithm
of type inference for expressions, while the third is just a
matching. The last point, which seems harder, requires to
calculate the intersection between the domain of three dif-
ferent substitutions and the free type variables of a set of
assumptions. However, as we will see in Section 5, this
point is trivial when type-checking real programs because
the assumptions will be closed.

The definition of well-typed rule assumes that a type as-
sumption is given for each function, otherwise the inference
of the left-hand side fails. This implies that this definition
cannot be used as a type inference mechanism for the types
of the functions, but as a type checking method. It is not a
major weakness, since explicit type declarations are manda-
tory in the presence of polymorphic recursion [17] and other
common extensions of the type system like arbitrary-rank
polymorphism [28, 16] or GADTs [4, 32]. Moreover, pro-
grammers do include type annotations for functions in or-
der to document programs. In any case, type checking for
generic functions and usual type inference can be combined
in real programs, as discussed in Section 5.

Another point making type inference for functions difficult
is that functions, unlike expressions, do not have principal
types. Consider the following rule:

not true→ false

Possible types for the not function are ∀α.α → α, ∀α.α →
bool and bool→ bool, but none of them is more general than
the others.

In [20] other definition of well-typed programs based on
type derivations is proposed (we write wtoldA (P) for that).
We have proved that programs accepted there are also ac-
cepted in the type system proposed in this paper:

Theorem 3.1. If wtoldA (P) then wtA(P)

This result is specially relevant taking into account that
the type system from [20] is equivalent to Damas-Milner’s
system for programs not containing higher order patterns.
We remark that all the examples in Section 4 are rejected
as ill-typed by the type system in [20]. Therefore, the type
system proposed here is a strict and useful generalization.

3.4 Properties of the type system
Our type system is more general than the classical Damas-

Milner type system or the type system in [20, 25]. How-
ever, it still has the needed properties demanded to type

systems: subject reduction and progress. The following the-
orem shows that if an expression e with type τ is rewritten
to other expression e′ in one step, then e′ has also type τ .

Theorem 3.2 (Subject Reduction). If wtA(P), A `
e : τ and P ` e→lf e′, then A ` e′ : τ .

Theorem 3.3 states that well-typed ground expressions are
not“stuck”wrt. a well-typed program, i.e., they are patterns
or we can perform a let-rewriting step.

Theorem 3.3 (Progress). If wtA(P), e is ground and
A ` e : τ then either e is a pattern or ∃e′. P ` e→lf e′.

The following result is a straightforward combination of
the two previous theorems.

Theorem 3.4 (Type Safety). Assume wtA(P), e is
ground and A ` e : τ . Then one of the two following condi-
tions holds:

a) e is a pattern.
b) E = {e′|P ` e→lf e′} 6= ∅ and for every e′ ∈ E,
A ` e′ : τ .

4. EXAMPLES
In this section there are some examples showing the flex-

ibility achieved by our type system. They are written in
two parts: a set of assumptions A over constructors and
functions and a set of program rules P. In the examples we
consider an initial set of assumptions:

Abasic ≡ { true : bool, false : bool,
z : nat, s : nat→ nat,
pair : ∀α, β.α→ β → pair α β
∧,∨ : bool→ bool→ bool,
snd : ∀α, β.α→ β → β,
nil : ∀α.[α], cons : ∀α.α→ [α]→ [α] }

4.1 Type-indexed functions
Type-indexed functions (in the sense appeared in [15])

are functions that have a particular definition for each type
in a certain family. The function size of Section 1 was
an example of such a function. A similar example is given
in Figure 4-a, containing the code for an equality function
which only operates with booleans, natural numbers and
pairs.

An interesing point is that we do not need a type repre-
sentation as an extra argument of this function as we would
need in a system using GADTs[4, 15]. In these systems
the pattern matching on the GADT induces a type refine-
ment, allowing the rule to have a more specific type than
the type of the function. In our case this flexibility resides
in the notion of well-typed rule. Then a type representation
is not necessary because the two arguments of every rule
already fix the type of the left-hand side and its variables
to be more specific (or the same) than the inferred in the
right-hand side. The absence of extra arguments provides
simplicity to rules and programs, since extra arguments im-
ply that all functions using eq direct or indirectly must be
extended to accept and pass these arguments. In contrast,
our rules for eq (extended to cover all constructed types)
are the standard rules defining strict equality that one can
find in FLP papers (see e.g. [11]), but that cannot be writ-
ten directly in existing systems like Curry or Toy, because

5

A ≡ Abasic ⊕ {eq : ∀α.α→ α→ bool}
P ≡ { eq true true→ true,

eq true false→ false,
eq false true→ false,
eq false false→ true,

eq z z → true,
eq z (s X)→ false,
eq (s X) z → false,
eq (s X) (s Y)→ eq X Y,

eq (pair X1 Y1) (pair X2 Y2)→
(eq X1 X2) ∧ (eq Y1 Y2) }

a) Original program

A ≡ Abasic ⊕ { eq : ∀α.repr α→ α→ α→ bool,
rbool : repr bool, rnat : repr nat,
rpair : ∀α, β.repr α→ repr β → repr (pair α β)}

P ≡ { eq rbool true true→ true,
eq rbool true false→ false,
eq rbool false true→ false,
eq rbool false false→ true,

eq rnat z z → true,
eq rnat z (s X)→ false,
eq rnat (s X) z → false,
eq rnat (s X) (s Y)→ eq rnat X Y,

eq (rpair Ra Rb) (pair X1 Y1) (pair X2 Y2)→
(eq Ra X1 X2) ∧ (eq Rb Y1 Y2) }

b) Equality using GADTs

Figure 4: Type-indexed equality

they are ill-typed according to Damas-Milner types. We
stress also the fact that the program of Figure 4-a) would
be rejected by systems supporting GADTs [4, 32], while the
encoding of equality using GADTs as type representations
in Figure 4-b) is accepted by our type system.

Another interesting point is that we can handle equality
in a quite fine way, much more flexible than in Curry or
Toy, where equality is a built-in that proceeds structurally
as in Figure 4-a). With our proposed type system program-
mers can define structural equality as in 4-a) for some types,
choose another behavior for others, and omitting the rules
for the cases they do not want to handle. Moreover, the
type system protects against unsafe definitions, as we ex-
plain now: it is known [8] that in the presence of higher
order patterns2 structural equality can lead to the problem
of opaque decomposition. For example, consider the snd
function defined by the rule snd X Y → Y and with type
∀α, β.α→ β → β. In this situation eq (snd z) (snd true) is
well-typed, but after a decomposition step using the struc-
tural equality we obtain eq z true, which is ill-typed. Dif-
ferent solutions have been proposed [8], but all of them need
fully type-annotated expressions at run time, which penal-
izes efficiency. With the proposed type system that over-
loading at run time is not necessary since this problem of

2This situation also appears with first order patterns con-
taining data constructors with existential types.

opaque decomposition is handled statically at compile time:
we simply cannot write equality rules leading to opaque de-
composition, because they are rejected by our system. This
happens with the rule eq (snd X) (snd Y) → eq X Y ,
which will produce the previous problematic step. It is re-
jected because the inferred type for the right-hand side and
its variables X and Y is (bool, γ, γ), which is more more spe-
cific than the inferred in the left-hand side (bool, α, β). This
is a good example of how our system combines flexibility
with control. Our next section pursues that idea.

4.2 Existential types, opacity and HO patterns
Existential types [26, 18] appear when type variables in

the type of a constructor do not occur in the final type. For
example the constructor key : ∀α.α → (α → nat) → key
has an existential type, since α does not appear in the final
type key. This type is called existential because it can be
viewed as (∃α.α → (α → nat)) → key. In practice, this
means that a key constructor contains a value of some type
and a function from that type to natural numbers, but we
cannot know exactly what type it is.

In functional logic languages, higher order patterns can
introduce the same opacity than existentially quantified con-
structors. A prototypical example is snd X. Here we know
that X has some type, but we cannot know anything about
it from the type β → β of the expression. A type system
managing the opacity appearing in higher order patterns is
proposed in [20]. In that paper a distinction is made be-
tween opaque and transparent variables. Then, only trans-
parent variables (those whose type is univocally fixed by
the type of the pattern that contains them) are allowed in
right-hand sides. Therefore a rule as g (snd X) → snd X
is rejected, since X is opaque in the pattern snd X and ap-
pears in the right hand side. The system we propose in this
paper generalizes [20], accepting functions which were re-
jected by the type system of those papers. As an example,
the previous rule for g is well-typed wrt. the assumption
g : ∀α, β.(α → α) → (β → β). This is desirable, since the
rule is the identity over snd X and it will not generate any
error at run time despite the opacity.

Figure 5 shows a stack, a typical example using existen-
tial types borrowed from [18]. The constructor stack has an
existential type because the type of its first argument does
not appear in the final type. This first argument is the con-
crete implementation of the stack, and the other arguments
are functions that push an element in the stack, remove the
last element and ask for the last element. We do not know
anything about the implementation of the stack, but we are
sure that the contained functions operate correctly with that
implementation. Therefore we can write the functions push,
pop and top, which extract the respective function and apply
it to the implementation. We can create stacks with differ-
ent implementations, but these functions will work for all
the stacks. Notice that all the rules (except makeListStack)
are ill-typed in [20]. This example shows how using existen-
tial types we can create first-class abstract data types that
can be passed and returned by functions. Therefore at run-
time we can mix stacks with different implementations, crate
copies of stacks with different implementations or add new
implementations. As far as we know, this kind of flexibility
cannot be easily achieved using modules.

Another remarkable example is given by the well-known
translation to first order usually used as a stage of the com-

6

stack : ∀α, β.β → (α→ β → β)→
(β → β)→ (β → α)→ stack α

push : ∀α.α→ stack α→ stack α
pop : ∀α.stack α→ stack α
top : ∀α.stack α→ α
makeListStack : ∀α.stack α

push X (stack R Push Pop Top)→ stack (Push X R) Push Pop Top
pop (stack R Push Pop Top)→ stack (Pop R) Push Pop Top
top (stack R Push Pop Top)→ Top R
makeListStack → stack nil cons tail head

Figure 5: Module stack as a first-class citizen using existential types

A ≡ Abasic ⊕ { length : [A]→ nat
append : [A]→ [A]→ [A]
add : nat→ nat→ nat
@ : ∀α, β.(α→ β)→ α→ β }

P ≡ { s @ X → s X
cons @ X → cons X
(cons X) @ Y → cons X Y
length @ X → length X
append @ X → append X
(append X) @ Y → append X Y
snd @ X → snd X
(snd X) @ Y → snd X Y }

Figure 6: Translation HO-to-FO

pilation of functional logic programs (see e.g. [21, 1]).
In short, this translation introduces a new function symbol

@, adds calls to @ in some points in the program, and adds
appropriate rules for evaluating it. It is this latter aspect
which is interesting here, since the rules are not Damas-
Milner typeable. Fig. 6 contains the @-rules for a concrete
example involving the data constructors z, s, nil, cons and
the functions length, append and snd with the usual types.
These rules use HO-patterns, which is a cause of rejection in
most systems. Even if HO patterns were allowed, the rules
for @ would be rejected by a Damas-Milner type system, no
matter if extended to support existential types or GADTs.
However using Definition 3.1 they are all well-typed, pro-
vided we declare @ to have the type @ : ∀α, β.(α → β) →
α → β. As a consequence of all this, the @-introduction
stage of the FLP compilation process can be considered as
a source to source transformation, instead of a hard-wired
step.

4.3 Generic functions
According to a strict view of genericity, the functions size

and eq in Sections 1 and 4.1 are not truly generic . We have a
definition for each type, instead of one ‘canonical’ definition
to be used by each concrete type. However we can achieve
this by introducing a ‘universal’ data type over which we
define the function (we develop the idea for size), and then
use it for concrete types via a conversion function.

This can be done by using GADTs to represent uniformly
the applicative structure of expressions (for instance, the
spines of [15]), by defining size over that uniform represen-
tations, and then applying it to concrete types via conver-
sion functions. But again, we can also offer a similar but
simpler alternative. A uniform, universal representation of
constructed data can be achieved with a standard data type

data univ = c nat [univ]

where the first argument of c is for numbering constructors,
and the second is the list of arguments of a constructor ap-
plication. A universal size can be then defined as:

usize (c Xs) → s (foldr add z (map usize Xs))

using some functions of Haskell’s prelude. Now, a generic
size can be defined as size → usize · toU , where toU is a
conversion function with declared type toU : ∀α.α→ univ

toU true → c z [] toU false → c (s z) []
toU z → c (s2 z) [] toU (s X) → c (s3 z) [toU X]
toU [] → c (s4 z) [] toU (X:Xs) → c (s5 z) [toU X,toU Xs]

(si abbreviates iterated s’s). It is in this toU function where
we use the specific features of our system. It is interesting
also to remark that in our system the truly generic rule
size → usize · toU can coexist with the type-indexed rules
for size of Section 1. This might be useful in practice: one
can give specific, more efficient definitions for some concrete
types, and a generic default case via toU conversion for other
types 3

Admittedly, the type univ has less representation power
than the spines of [15], that could be a better option in more
complex situations. But notice that since spines are based
on GADTs, they are also supported by us.

4.4 Type Classes
Type classes [33, 10] are, according to some authors, ‘the

most beloved feature of Haskell’. They provide a clean, mod-
ular and elegant way of writing overloaded functions. Type
classes are usually implemented by means of dictionary pass-
ing: every overloaded function receives a dictionary at run
time which contains the concrete function to execute. In
this section we expose a new translation of type classes us-
ing type-indexed functions and type witnesses. This trans-
lation is interesting for a number of reasons. First, it obtains
a gain in efficiency over the usual translation using dictio-
naries [33, 10], fact that we have measured experimentally.
Second, it also solves a problem of excess of sharing that
appears in functional logic languages when using dictionar-
ies: the evaluation of expressions in translated programs
may lose expected values. Finally the translation is simpler,
which makes the implementation easier and also results in
smaller and more understable translated programs.

4.4.1 Translation to type-indexed functions
The classical translation of type classes using dictionaries

[33, 10] has been used for years in functional systems like
Haskell, and several optimizations have been developed [3,

3For this to be really practical in FLP systems, where there
is not a ‘first-fit’ policy for pattern matching in case of over-
lapping rules, a specific syntactic construction for ‘default
rule’ would be needed.

7

29]. Here we show a different translation that takes advan-
tage of the flexibility provided by our type system and uses
type-indexed functions and type witnesees instead of dictio-
naries. Consider the following simple program for searching
in a sorted list. Notice that we have used Haskell syntax for
the original program with type classes, and our syntax for
the translated programs.

class Eq a where

eq :: a -> a -> Bool

class Eq a => Ord a where

less :: a -> a -> Bool

data Nat = Z | S Nat

instance Eq Nat where

eq Z Z = True

eq Z (S x) = False

eq (S x) Z = False

eq (S x) (S y) = eq x y

instance Ord Nat where

less Z Z = False

less Z (S x) = True

less (S x) Z = False

less (S x) (S y) = less x y

search :: Ord a => a -> [a] -> Bool

search x [] = False

search x (y:ys) = (eq x y) ||

(less y x && search x ys)

There are only two type classes: Eq and Ord, being Ord a
subclass of Eq. Both classes Eq and Ord contain only one
function, eq and less respectively. The function search

takes an element (in the Ord class) and a sorted list, and
returns whether the given element is in the list or not using
the overloaded functions eq and less. We assume that an
usual type inference algorithm supporting type-classes [33,
10] has inferred the types of functions and expressions in the
program, types that we will use in both translations.

Fig. 7-a) shows the usual translation of this program us-
ing dictionaries. First, every class declaration generates a
dictionary type (dictEq and dictOrd) containing the mem-
ber functions and the dictionaries of its direct superclasses.
Every member function (eq and less) is converted into a pro-
jecting function which extracts the concrete implementation
from the dictionary. Functions to extract superclass dic-
tionaries from subclass dictionaries (getEqfromOrd) are also
needed. Every instance generates concrete implementations
of the member functions (eqNat and lessNat) with the suit-
able type, as well as particular dictionaries (dictEqNat and
dictOrdNat) containing that functions and the concrete dic-
tionaries of its superclasses. Finally, every function (search)
is extended appending as many dictionaries as class restric-
tions appears in the context of its type and placing that
dictionaries as arguments of the overloaded functions.

The alternative translation using type-indexed functions
and type witnesses appears in Figure 7-b). This translation
is simpler, generating a program approximately as long as
the original one. The steps are:

1. Each data type is extended with a type witness for that
type. The type witness of the data type C αn is #C with

type ∀αn.αn → C αn. In the example program, the wit-
ness generated for nat is simply #nat of type nat. We use
the special symbol # to be sure that the constructor #C
cannot appear in the program, and to provide homogeneity
to the names of the type witnesses. Type witnesses are a
way of representing types as values which follows the same
idea of type representations [4, 15]. For example, type wit-
nesses of [bool] and pair bool nat would be #list #bool and
#pair #bool #nat respectively.

2. Member functions are extended with an extra argu-
ment representing the type witness. In the example, both
eq and less functions of types ∀α.Eq α⇒ α→ α→ bool and
∀α.Ord α ⇒ α → α → bool are extended to ∀α.α → α →
α→ bool. The new first argument is the type witness of the
elements to compare. Like in the translation using dictionar-
ies, each occurrence of an overloaded function in the right-
hand side must be completed with the corresponding type
witness. In the example, the rule eq (S x) (S y) = eq x y

is extended to eq #nat (s X) (s Y)→ eq #nat X Y .
3. Normal functions using overloaded functions in its

right-hand side must also be completed. For every type with
a class constraint in the context of the type, we need to add
a type witness as an argument. Besides, it is also necessary
to place the type witness as arguments of the overloaded
functions. As an example, the original rule

search x (y:ys) = (eq x y) ||

(less y x && search x ys)

is extended to

search Witness X (cons Y Y s)→
(eq Witness X Y) ∨
(less Witness Y X ∧ search Witness X Y s)

Since the type of search is Ord a => a -> [a] -> Bool we
need to add a type witness as the first argument Witness.
Then this type witness is passed to the overloaded functions,
namely eq, less and search.

4. As in the translation using dictionaries, goals are ex-
tended introducing the concrete type witnesses. For example
the goal search Z [S Z, S Z] is translated to search #nat
z [s z, s z].

Although in Section 4.1 we show how our type system
allows writing type-indexed functions without extra param-
eters, in the translation of type classes we have included
them. The reason is that type witness are sometimes nec-
essary: when the type variable with the class constraint ap-
pears only on the result type, and when the rules do not use
constructors in the left-hand side. As an example of the first
situation consider the following program:

class Gen a where instance Gen Nat where

gen :: Bool -> a gen False = Z

gen True = S Z

If we do not use a type witness, the translated rules of gen
in the instance Gen Nat are gen false→ z and gen true→
s z. They are ill-typed wrt. the type gen : ∀α.bool → α,
because the type inferred for the right-hand side (nat) is
more specific than the type inferred for the left-hand side
(α). When we introduce the type witness #nat to the rules
we obtain gen #nat false → z and gen #nat true → s z,
and the type gen : ∀α.α → bool → α. Here, type witness
forces both sides to have type nat, making the rules well-
typed.

8

Aa ≡ Abasic ⊕ {dictEq : ∀α.(α→ α→ bool)→ dictEq α,dictOrd : ∀α.dictEq α→ (α→ α→ bool)→ dictOrd α,
eq : ∀α.dictEq α→ (α→ α→ bool), less : ∀α.dictOrd α→ (α→ α→ bool),getEqfromOrd : ∀α.dictOrd α→ dictEq α,
eqNat : nat→ nat→ bool, lessNat : nat→ nat→ bool,
dictEqNat : dictEq nat,dictOrdNat : dictOrd nat, search : ∀α.dictOrd α→ α→ [α]→ bool}

Pa ≡ {eq (dictEq X)→ X, less (dictOrd X Y)→ Y, getEqFromOrd (dictOrd X Y)→ X,
eqNat z z → true, eqNat z (s X)→ false, eqNat (s X) z → false, eqNat (s X) (s Y)→ eqNat X Y,
lessNat z z → false, lessNat z (s X)→ true, lessNat (s X) z → false, lessNat (s X) (s Y)→ lessNat X Y,
dictEqNat→ dictEq eqNat, dictOrdNat→ dictOrd dictEqNat lessNat,
search Dict X nil→ false,
search Dict X (cons Y Y s)→ (eq (getEqFromOrd Dict) X Y) ∨ (less Dict Y X ∧ search Dict X Y s)}

Ab ≡ Abasic ⊕ {eq : ∀α.α→ α→ α→ bool, less : ∀α.α→ α→ α→ bool,#nat : nat, search : ∀α.α→ α→ [α]→ bool}

Pb ≡ {eq #nat z z → true, eq #nat z (s X)→ false, eq #nat (s X) z → false, eq #nat (s X) (s Y)→ eq #nat X Y,
less #nat z → false, less #nat (s X)→ true, less #nat (s X) z → false, less #nat (s X) (s Y)→ less #nat X Y,
search Witness X nil→ false,
search Witness X (cons Y Y s)→ (eq Witness X Y) ∨ (less Witness Y X ∧ search Witness X Y s)}

Figure 7: Translation using dictionaries (Aa,Pa), and with type-indexed functions and type witnesses (Ab,Pb)

As an example of the second situation consider the trans-
lation in Figure 7-b). It is well-typed if we drop the type
witnesses, since the constructors in the left-hand side force
the variables to have a more specific type than in the right-
hand side. For example in the rule eq (s X) (s Y)→ eq X Y ,
the variables X and Y have type nat in the left-hand side
(because of the s constructor) but they are inferred a type α
(a fresh type variable) in the right-hand side. But the pro-
grammer could have written the instance of Eq in a slightly
different way:

instance Eq Nat where

eq = eqNat

being eqNat a function that calculates the equality of nat-
urals. The resulting program without type witnesses would
be rejected because the rule eq → eqNat is ill-typed wrt. the
assumption eq : ∀α.α→ α→ bool as the right-hand side has
a more specific type (nat→ nat→ bool) than the left-hand
side (α → α → bool). Using a type witness the rule will
be eq #nat → eqNat, which now is well-typed since both
sides have type nat → nat → bool wrt. the assumption
eq : ∀α.α→ α→ α→ bool.

The possibility of a translation using type representa-
tions instead of dictionaries was already mentioned in [4],
although it was not further developed. In the next two sub-
sections we will show that this translation generates more
efficient programs and also solves a problem of excess of
sharing in FLP when using the common translation of dic-
tionaries.

4.4.2 Efficiency
The structure of type witnesses depend on the data type,

unlike dictionaries, whose structure depends on the type
class: they contain the member functions and the dictionar-
ies of the direct superclasses. It is difficult to compare their
size because it is highly program dependent. Programs with
many nested type classes and many member function will
require big dictionaries even for basic data, while programs
with few classes and member functions will need big type
witnesses if the overloaded functions are applied to complex
data.

With dictionaries, member functions must be extracted
before applying them, and it can mean traversing a chain of
superclasses dictionaries 4. Another point in favor is that we
need less type witnesses than dictionaries. Consider a func-
tion with type f :: (Eq a, Show a) => a -> Bool. In
the common translation, we introduce a dictionary for every
class constraint in the type of the function. Therefore this
function needs two extra paremeteres: f : ∀α.dictEq α →
dictShow α→ α→ bool. However, only one type witness is
necessary, since both class contraints Eq a and Show a affect
the same type a: f : ∀α.α→ α→ bool.

We have measured the real gain in efficiency obtained
using type witnesses and type-indexed functions instead of
handwritten dictionaries and built-in type classes over dif-
ferent systems. Translated programs using dictionaries are
valid in all the systems since they only need a Damas-Milner
type system. Programs using type witnesses and type-indexed
functions require an implementation with our proposed type
system. None of the tested systems support it, so we have
followed two solutions. For TOY 2.3.1 we have used an spe-
cial version disabling type checking. This does not distort
the measures since once compiled, programs do not carry
any type information at run time, so compiled programs are
the same regardless of the chosen type system. For the rest
of the systems (GHC 6.10.4, Hugs Sept. 2006 and PAKCS
1.9.1(7) [13]) we have included all the data constructors in-
side the same universal data type. Thus, only one instance
for each type class is needed and all the rules fit inside, mak-
ing the program well-typed.

We have measured the speedup in programs with differ-
ent levels of subclasses (Figure 8). The obtained speedup
grows almost linearly with the subclass depth in all the cases
except in GHC using handwritten dictionaries. In general
terms the translation using type witnesses performs faster,
with an speedup ranging from 1–1.3 using one subclass to
1.5–2.5 when nine subclasses are used. The only exception
is in GHCi using the built-in type classes, where the trans-
lation using type witnesses runs about a 10% slower for
one subclass, although for higher subclass depth the time

4Although this problem can be solved flattening the dictio-
nary structure [3]

9

1 2 3 4 5 6 7 8 9

Subclass Depth

0,5

1,0

1,5

2,0

2,5

3,0
S

p
e
e
d

u
p

1

2

3

TOY handwritten dictionaries
PAKCS handwritten dictionaries
GHCi built-in type classes
GHCi handwritten dictionaries
GHC built-in type classes
GHC handwritten dictionaries
Hugs built-in type classes
Hugs handwritten dictionaries

Figure 8: Speedup of the translation over different
systems

used in both translation is the same. Detailed results and
source programs can be found in http://gpd.sip.ucm.es/

enrique/publications/genericFLP/speedup.zip.
As Figure 8 shows, in all the Haskell systems the ob-

tained speedup is greater when compared to handwritten
dictionaries than when compared to built-in type classes.
This motivates us to think that these systems do not use
the usual dictionary-based translation but a more sophis-
ticated, optimized one. However, our proposed translation
using type witnesses can compete in efficiency with this opti-
mized translation (being the only exception GHCi when few
subclasses are used). On the other hand, the translation us-
ing type witnesses obtains an interesting gain in efficiency
compared to handwritten dictionaries, where the translation
was performed manually by us following the specifications
from [33, 10]. These facts encourage us to use type witnesses
instead of dictionaries when implementing type classes in
FLP languages, since the obtained efficiency is comparable
or even better to the one obtained with the dictionary tech-
nique in either cases. Moreover, our proposed translation
solves a particular problem of type classes in FLP, as we
will see in the next section.

4.4.3 Problems with dictionaries in FLP
Apart from a gain in efficiency, the translation using type

witnesses and type-indexed functions also solves a problem
of undesired sharing that appears with type classes and non-
determinism if dictionaries are used. This problem, which
affects type classes with member functions without argu-
ments, was pointed out in [24], as we explain now. Consider
the following code:

class Arb a where instance Arb Bool where

arb :: a arb = True

arb = False

arbP2 :: (Arb a, Arb b) => (a,b)

arbP2 = (arb,arb)

arbL2 :: Arb a => [a]

arbL2 = [arb,arb]

The expression arbP2::(Bool,Bool) is translated into arbP2
dictArbBool dictArbBool whose evaluation generates pre-
cisely the values (true, true), (true, false), (false, true),
and (false, false). However, the expression arbL2::[Bool]

is translated into arbL2 dictArbBool which generates only
the values [true, true] and [false, false]. The reason is that
call-time choice semantics imposes that the arguments of
a function must be evaluated to a pattern before applying
them. The following reduction using let-rewriting shows the
problem:

arbL2 dictArbBool

→lf
(LetIn) let D = dictArbBool in arbL2 D

→lf
(Fapp) let D = dictArbBool in [arb D, arb D]

→lf
(Fapp) let D = dictArb arbBool in [arb D, arb D]

→lf
(LetIn,Flat) let B = arbBool in

let D = dictArb B in [arb D, arb D]

→lf
(Bind) let B = arbBool in

[arb dictArb B, arb dictArb B]

→lf
(Fapp,Fapp) let B = arbBool in [B,B]

Notice that we cannot apply (Bind) with D bound to
dictArb arbBool because that is not a pattern, as arbBool is
a function totally applied. Hence we introduce a new bind-
ing for arbBool so after some let flattening the (Bind) step
becomes enabled, and we can continue evaluating the two
copies of arb dictArb B. We end up with a let in which is
obvious that the two elements of the resulting list will share
its value.

Using type witnesses we solve this problem:

A ≡ { arb : ∀α.α→ α,
arbP2 : ∀α, β.α→ β → (α, β),
arbL2 : ∀α.α→ [α] }

P ≡ { arb #bool→ true, arb #bool→ false,
arbP2 WitA WitB → (arb WitA, arb WitB),
arbL2 Wit→ [arb Wit, arb Wit] }

The evaluation of arbP2::(Bool,Bool) (i.e., arbP2 #bool #
bool) obtains the same values as before. However, the evalu-
ation of arbL2::[Bool] (i.e., arbL2 #bool) obtains the four
expected values: [true, true], [true, false], [false, true] and
[false, false]. The following reduction shows the difference:

arbL2 #bool

→lf
(Fapp) [arb #bool, arb #bool]

→lf
(Fapp) [true, arb #bool]

→lf
(Fapp) [true, false]

5. PRACTICAL ISSUES
As we have seen, the proposed type system accepts more

functions than usual Damas-Milner type system or the sys-
tem in [20]. And this relaxation allows us to write type-
indexed functions, programs with GADTs, generic functions
or programs with existential types. However, the program-
mer may want to write functions with the usual Damas-
Milner type and let the compiler to infer it. We propose to
combine the type system presented here and that of [20]
—that is equivalent to Damas-Milner for Haskell 98 like
programs—, allowing the programmer to choose between
them by means of annotations. Functions annotated with

10

http://gpd.sip.ucm.es/enrique/publications/genericFLP/speedup.zip
http://gpd.sip.ucm.es/enrique/publications/genericFLP/speedup.zip

@relaxed will be treated by the type system proposed here,
therefore their type must be provided and it will be checked.
Otherwise, they will be treated with the usual type system
and their type will be inferred if not provided. This is simi-
lar to what it is done with GADTs, which are used to allow
some program rules to have a more specific type than the
type for the function they define. Instead of using GADT
arguments to propagate this liberal typing to the arguments
with which they share some type variable—as we did in the
eq example from Sect. 4.1—, we specify this behaviour by
means of these annotations, which affect to each function ar-
gument. Therefore it is easier to define functions for which
we want a liberal behaviour for several independent argu-
ments.

The combination is based in B [20], a procedure that given
a set of assumptions and a program, calculates a type sub-
stitution π that makes the program well-typed (wrt. the
notion in that paper). Theorem 3.1 assures that well-typed
programs using the definition in [20] are also well-typed with
the definition used in this paper, so we can use B to infer
usual types for functions and these types will make the pro-
gram well-typed. The global procedure works stratifically
in each strongly connected component of the dependency
graph in a topological order. If the functions in the compo-
nent do not have annotations, B is used to infer the types of
the whole block, and then they are generalized. Otherwise,
the rules are checked using Definition 3.1. Notice that pro-
ceeding this way, the initial assumptions when type-checking
a block of relaxed functions will be closed. Therefore the
last point of the definition will hold trivially. For simplic-
ity we assume that all the functions in a strongly connected
component will have the annotation @relaxed or not, i.e.,
combinations of relaxed and usual functions are not allowed
in the components.

The following example shows the method in a very simple
program:

Example 5.1. Program with annotations

@relaxed

eq :: A -> A -> bool

eq false false = true

eq false true = true

eq z z = true

eq z (s X) = false

isFalse X = (eq X false)

isFalse depends on eq but not viceversa. Therefore each
one forms a strongly connected component. eq will be first
treated. Since it has a @relaxed annotation its type will be
checked using Definition 3.1. The rules of eq are well-typed
wrt. ∀α.α→ α→ bool, so isFalse will be treated next. As it
does not have any annotation, the usual method will be used,
inferring the type bool→ bool.

Apart from functions, in this paper data constructor are
also relaxed since they can have any type provided it is co-
herent with CS. For them, we propose a syntax similar to
GADTs where the type of each one is given explicitly by the
programmer.

6. CONCLUSIONS
Starting from a simple type system, essentially Damas-

Milners’s one, we have proposed a new notion of well-typed

program that exhibits interesting properties. Let us give a
short final summary and discussion of pros and cons of our
proposal, some of them discussed more thoroughly before.

In the positive side: it is simple (needs only a check for
each program rule); gives support to existential types and
GADTs; opens new possibilities to genericity (f.i., the nat-
ural rules for equality and ‘apply’ are well-typed); has good
properties (type safety); allows implementing type classes
with good performance and respecting call-time-choice se-
mantics; avoids unsafe uses of HO-patterns.

One negative aspect is that types must be declared for
functions (but this is not so unusual; moreover see Section
5). Another point yet not discussed is the following: relaxing
the well-typedness condition has the risk of accepting some
expressions than one might prefer to detect and reject at
compile time. This problem is always present in typed lan-
guages. For instance, in Haskell 98 the expression head [] is
well-typed, but its evaluation fails and produces a run-time
error. Being more liberal when typing a program, we have
more opportunities for such situations. Consider, for in-
stance, our initial example of the function size with declared
type ∀α.α→ nat. Any expression size e, for any well-typed
e, is itself well-typed, even if e’s type is not considered in
the definition of size, for instance, a functional type. We
remark, however, that the case is a bit odder but, at least in
our setting, not that different from head [] : in both cases,
the evaluation will fail since there is no applicable rule (and
notice that in our system there could be rules for size e,
even for functional e’s, thanks to HO-patterns). Moreover,
failed evaluation in FLP should not be seen as errors, rather
as useless branches in a possibly non-deterministic compu-
tation space. Would type classes or GADTs do any better?
Type classes impose more control: size e is only accepted if
e has a type in the class Sizeable. There is a burden here:
you need a class for each generic function, or at least for
each range of types for which a generic function exists; as
a consequence, the number of class instance declarations for
a given type can be very high. GADTs are in the middle
way. At a first sight, it seems that the types to which size
can be applied are perfectly controlled because only repre-
sentable types are permitted. The problem, as with classes,
comes when considering other functions that are generic but
for other ranges of types. Now, there are two options: ei-
ther you enlarge the family of representable functions, facing
up again the possibility of applying size to unwanted argu-
ments, or you introduce a family of distinct representation
types, which is a programming overhead somehow against
genericity!

Anyway, this discussion lead us to the conclusion that our
approach should not be regarded as opposed to type classes
or GADTs, but rather as a complementary means. We find
suggestive to think of the following scenario for our system
TOY in the next future: type classes are added to the system
and implemented through our generic functions; ordinary
Damas-Milner typing and generic typing can be freely mixed
using annotations as described in Section 5; the programmer
can choose the feature —ordinary types, classes, GADTs or
our more direct generic functions– that best fits his needs of
genericity and/or control in each specific situation.

Apart from the implementation work, to realize that vi-
sion will require further developments of our present work:

• A formal specification of the translation of type classes into
our generic functions following the ideas sketched in Section

11

4.4. It should cover also constructor classes and multipa-
rameter type classes.

• Despite of the lack of principal types, some work on type
inference can be done, in the spirit of [32].

• Combining our genericity with the existence of modules
could require adopting open types and functions [19].

• Narrowing, which poses specific problems to types, should
be also considered.

7. REFERENCES
[1] S. Antoy and A. P. Tolmach. Typed higher-order

narrowing without higher-order strategies. In Proc.
FLOPS’99, 335–353. Springer LNCS 1722, 1999.

[2] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky,
and P. Wadler. A Call-by-need Lambda Calculus. In
Proc. POPL’95, 233–246. ACM, 1995.

[3] L. Augustsson. Implementing haskell overloading. In
Proc. FPCA’93, 65–73. ACM, 1993.

[4] J. Cheney and R. Hinze. First-class phantom types.
Technical report, Cornell University, July 2003.

[5] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Proc. POPL’82, 207–212.
ACM, 1982.

[6] A. Gerdes. Comparing generic programming libraries.
Master’s thesis, Dep. Computer Science, Open
University, 2007.

[7] J. González-Moreno, M. Hortalá-González, and
M. Rodŕıguez-Artalejo. A higher order rewriting logic
for functional logic programming. In Proc. ICLP’97,
153–167. MIT Press, 1997.

[8] J. C. Gonzalez-Moreno, M. T. Hortala-Gonzalez, and
M. Rodriguez-Artalejo. Polymorphic types in
functional logic programming. Journal of Functional
and Logic Programming, 2001(1), July 2001.

[9] J. C. González-Moreno, T. Hortalá-González,
F. López-Fraguas, and M. Rodŕıguez-Artalejo. An
approach to declarative programming based on a
rewriting logic. Journal of Logic Programming,
40(1):47–87, 1999.

[10] C. V. Hall, K. Hammond, S. L. Peyton Jones, and
P. L. Wadler. Type classes in haskell. ACM TOPLAS,
18(2):109–138, 1996.

[11] M. Hanus. Multi-paradigm declarative languages. In
Proc. ICLP’07, 45–75. Springer LNCS 4670, 2007.

[12] M. Hanus (ed.). Curry: An integrated functional logic
language (version 0.8.2), March 2006. Available at
http://www.informatik.uni-kiel.de/~curry/report.html.

[13] M. Hanus (ed.). PAKCS 1.8.1, The Portland Aachen
Kiel Curry System, User manual, 2007. http:
//www.informatik.uni-kiel.de/~pakcs/Manual.pdf.

[14] R. Hinze. Generics for the masses. Journal of
Functional Programming, 16(4-5):451–483, 2006.

[15] R. Hinze and A. Löh. Generic programming, now! In
Lecture notes for the Spring School on
Datatype-Generic Programming 2006, 150–208.
Springer LNCS 4719, 2007.

[16] S. P. Jones, D. Vytiniotis, S. Weirich, and M. Shields.
Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17(1):1–82, 2007.

[17] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type
reconstruction in the presence of polymorphic

recursion. ACM TOPLAS, 15(2):290–311, 1993.

[18] K. Läufer and M. Odersky. Polymorphic type
inference and abstract data types. ACM TOPLAS,
16(5):1411–1430, 1994.

[19] A. Löh and R. Hinze. Open data types and open
functions. In Proc. PPDP’06, 133–144. ACM, 2006.

[20] F. J. López-Fraguas, E. Martin-Martin, and
J. Rodŕıguez-Hortalá. Advances in type systems for
functional logic programming. In Pre-proc. WFLP’09,
157–171, June 2009.

[21] F. López-Fraguas, J. Rodŕıguez-Hortalá, and
J. Sánchez-Hernández. Rewriting and call-time choice:
the HO case. In Proc. FLOPS’08, 147–162. Springer
LNCS 4989, 2008.

[22] F. López-Fraguas and J. Sánchez-Hernández. T OY: A
multiparadigm declarative system. In Proc. RTA’99,
244–247. Springer LNCS 1631, 1999.

[23] W. Lux. Adding haskell-style overloading to curry. In
Workshop of Working Group 2.1.4 of the German
Computing Science Association GI, 2008.

[24] W. Lux. Type-classes and call-time choice vs. run-time
choice - Post to the Curry mailing list.
http://www.informatik.uni-kiel.de/~curry/

/listarchive/0790.html, August 2009.

[25] E. Martin-Martin. Advances in type systems for
functional logic programming. Master’s thesis,
Universidad Complutense de Madrid, July 2009.
Available at http://gpd.sip.ucm.es/enrique/

publications/master/masterThesis.pdf.

[26] J. C. Mitchell and G. D. Plotkin. Abstract types have
existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, 1988.

[27] J. J. Moreno-Navarro, J. Mariño, A. del Pozo-Pietro,

Á. Herranz-Nieva, and J. Garćıa-Mart́ın. Adding type
classes to functional-logic languages. In Proc.
APPIA-GULP-PRODE’96, 427–438, 1996.

[28] M. Odersky and K. Läufer. Putting type annotations
to work. In Proc. POPL’96, 54–67. ACM, 1996

[29] J. Peterson and M. Jones. Implementing type classes.
In Proc. PLDI’93, 227–236. ACM, 1993.

[30] S. Peyton Jones. Haskell 98 Language and Libraries.
The Revised Report. Cambridge Univ. Press, 2003.

[31] J. Sánchez-Hernández. Constructive failure in
functional-logic programming: From theory to
implementation. Journal of Universal Computer
Science, 12(11):1574–1593, 2006.

[32] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and
D. Vytiniotis. Complete and decidable type inference
for GADTs. In Proc. ICFP’09, 341–352. ACM, 2009.

[33] P. Wadler and S. Blott. How to make ad-hoc
polymorphism less ad hoc. In Proc. POPL’89, 60–76.
ACM, 1989.

12

http://www.informatik.uni-kiel.de/~pakcs/Manual.pdf
http://www.informatik.uni-kiel.de/~pakcs/Manual.pdf
http://www.informatik.uni-kiel.de/~curry//listarchive/0790.html
http://www.informatik.uni-kiel.de/~curry//listarchive/0790.html
http://gpd.sip.ucm.es/enrique/publications/master/masterThesis.pdf
http://gpd.sip.ucm.es/enrique/publications/master/masterThesis.pdf

APPENDIX
A. MEASUREMENT OF THE SPEEDUP

For each system and subclass depth we have performed
100 speedup measurements. The mean of these speedups is
the value which appears in Figure 8. For interpreted sys-
tems we have activated the corresponding flag to print the
elapsed time after each expression evaluation. Hugs does not
print any time information but the number of reductions, so
we have used that information to calculate the speedup. Al-
though it is not a real speedup, we consider that it shows
faithfully the gain in efficiency obtained. For GHC, we have
used the system command time to measure the time con-
sumption of the compiled binary executable. These exe-
cutables have been generated using the -O2 option to enable
optimizations.

Detailed results and source programs can be found in
http://gpd.sip.ucm.es/enrique/publications/genericFLP/

speedup.zip.

B. PROOFS AND AUXILIARY RESULTS
We first present some notions used in the proofs.
a) For any type substitution π its domain is defined as

dom(π) = {α | απ 6= α}; and the variable range of π isS
α∈dom(π) ftv(απ)

b) Provided the domains of two type substitutions π1 and
π2 are disjoints, the simultaneous composition (π1 + π2) is
defined as:

α(π1 + π2) =


απ1 if α ∈ dom(π1)
απ2 otherwise

c) If A is a set of type variables, the restriction of a
substitution π to A (π|A) is defined as:

α(π|A) =


απ if α ∈ A
α otherwise

We use π|rA as an abbreviation of π|T VrA

B.1 Auxiliary results
Theorem B.1 shows that the type and substitution found

by the inference are correct, i.e., we can build a type deriva-
tion for the same type if we apply the substitution to the
assumptions.

Theorem B.1 (Soundness of �). A � e : τ |π =⇒
Aπ ` e : τ

Theorem B.2 expresses the completeness of the inference
process. If we can derive a type for an expression applying a
substitution to the assumptions, then inference will succeed
and will find a type and a substitution which are the most
general ones.

Theorem B.2 (Completeness of � wrt. `). If Aπ′ `
e : τ ′ then ∃τ, π, π′′. A � e : τ |π ∧Aππ′′ = Aπ′ ∧ τπ′′ = τ ′.

The following theorem shows some useful properties of the
typing relation `, used in the proofs.

Theorem B.3 (Properties of the typing relation).

a) If A ` e : τ then Aπ ` e : τπ, for any π

b) Let s be a symbol not appearing in e. Then A ` e :
τ ⇐⇒ A⊕ {s : σs} ` e : τ .

c) If A⊕ {X : τx} ` e : τ and A⊕ {X : τx} ` e′ : τx then
A⊕ {X : τx} ` e[X/e′] : τ .

Proof. The proof of Theorems B.1, B.2 and B.3 appears
in [25].

Remark B.1. If A⊕{Xn : τn} ` e : τ and A⊕{Xn : αn} �
e : τ ′|π then we can assume that Aπ = A.

B.2 Proof of Theorem 3.1

Proof. In [20] and this paper the definition of well-typed
program proceeds rule by rule, so we only have to prove
that if wtoldA (f t1 . . . tn → e) then wtA(f t1 . . . tn → e). For
the sake of conciseness we will consider functions with just
one argument: f t → e. Since patterns are linear (all the
variables are different) the proof for functions with more
arguments follows the same ideas.

From wtoldA (f t→ e) we know that A `• λt.e : τ ′t → τ ′e,
being τ ′t → τ ′e a variant of A(f). Then we have a type
derivation of the form:

[Λ]

A⊕ {Xn : τn} ` t : τ ′t
A⊕ {Xn : τn} ` e : τ ′e

A ` λt.e : τ ′t → τ ′e

and we know that critV arA(λt.e) = ∅, i.e., that opaqueV arA(t)∩
fv(e)) = ∅. We want to prove that:

a) A⊕ {Xn : αn} � f t : τL|πL

b) A⊕ {Xn : βn} � e : τR|πR

c) ∃π.(τR, βnπR)π = (τL, αnπL)

d) AπL = A, AπR = A, Aπ = A

By the type derivation of t and Theorem B.2 we obtain the
type inference

A⊕ {Xn : αn} � t : τt|πt

and there exists a type substitution π′′t such that τtπ
′′
t = τ ′t

and (A ⊕ {Xn : αn})πtπ′′t = A ⊕ {Xn : τn}, i.e., Aπtπ′′t =
A and αiπtπ

′′
t = τi. Moreover, from critV arA(λt.e) =

∅ we know that for every data variable Xi ∈ fv(e) then
ftv(αiπt) ⊆ ftv(τt). Then we can build the type inference
for the application f t:

[iΛ]

A⊕ {Xn : αn} � f : τ ′t → τ ′e|id
(A⊕ {Xn : αn})id � t : τt|πt

a) A⊕ {Xn : αn} � f t : γπg|πtπg

By Remark B.1 we are sure that Aπt = A. Since τ ′t → τ ′e
is a variant of A(f) we know that it contains only free type
variables in A or fresh variables, so (τ ′t → τ ′e)πt = τ ′t → τ ′e.
In order to complete the type inference we need to create
a unifier πu for (τ ′t → τ ′e)πt and τt → γ, being γ a fresh
type variable. Notice that by Theorem B.2 we know that
Aπtπ′′t = A and by Remark B.1 Aπt = A, so Aπ′′t = A.
Since τ ′t → τ ′e contains only type variables which are free in
A or fresh type variables generated during the inference, π′′t
will not affect it. Defining πu as π′′t |ftv(τt) + [γ/τ ′e] we have

13

http://gpd.sip.ucm.es/enrique/publications/genericFLP/speedup.zip
http://gpd.sip.ucm.es/enrique/publications/genericFLP/speedup.zip

an unifier, since:

(τ ′t → τ ′e)πtπu πt does not affect τ ′
t → τ ′

e

= (τ ′t → τ ′e)πu γ /∈ ftv(τ ′
t → τ ′

e)

= (τ ′t → τ ′e)π
′′
t |ftv(τt) π′′

t |ftv(τt) does not affect τ ′
t → τ ′

e

= τ ′t → τ ′e definition of πu

= τ ′t → γπu Theorem B.2: τtπ
′′
t = τ ′

t

= τtπ
′′
t |ftv(τt) → γπu γ /∈ ftv(τt)

= τtπu → γπu application of substitution

= (τt → γ)πu

Moreover, it is clear that πu is a most general unifier of
(τ ′t → τ ′e)πt and τt → γ, so πg ≡ π′′t |ftv(τt) + [γ/τ ′e].

By Theorem B.2 and the type derivation for e we obtain
the type inference:

b)A⊕ {Xn : βn} � e : τe|πe

and there exists a type substitution π′′e such that τeπ
′′
e = τ ′e

and (A⊕{Xn : βn})πeπ′′e = A⊕{Xn : τn}, i.e., Aπeπ′′e = A
and βiπeπ

′′
e = τi. By Remark B.1 we also know that Aπe =

A, so Aπ′′e = A.
To prove c) we need to find a type substitution π such that

(τe, βnπe)π = (γπg, αnπtπg). Let I be the set containing the
indexes of the data variables in t which appear in fv(e) and
N its complement. We can define the substitution π as the
simultaneous composition:

π ≡ π′′e |r{βi|i∈N} + {βi/αiπtπg|i ∈ N}

This substitution is well defined because the domains of the
two substitutions are disjoint. The first component is the
substitution π′′e restricted to the variables which appear in
its domain but not in {βi|i ∈ N}, while the domain of the
second component contains only the variables {βi|i ∈ N}.
Notice that the data variables in {Xi|i ∈ N} do not occur
in fv(e) so they are not involved in the type inference for
e. Therefore the type variables in {βi|i ∈ N} do not appear
in ftv(τe), dom(πe) or vRan(πe). With this substitution π
the equality (τe, βnπe)π = (γπg, αnπtπg) holds because:

• Since τeπ
′′
e = τ ′e and the type variables in {βi|i ∈ N} do

not occur in ftv(τe) we know that τeπ = τeπ
′′
e |r{βi|i∈N} =

τeπ
′′
e = τ ′e = γπg.

• We know that the variables in {Xi|i ∈ I} cannot be
opaque in t, so ftv(αiπt) ⊆ ftv(τt) for every i ∈ I
and αiπtπg = αiπtπ

′′
t |ftv(τt) = τi for those variables.

Since the type variables {βi|i ∈ N} do not occur in
vRan(πe) then βiπeπ = βiπeπ

′′
e |r{βi|i∈N} = βiπeπ

′′
e =

τi = αiπtπg for every i ∈ I.

• Since the type variables {βi|i ∈ N} do not occur in
dom(πe) then βiπeπ = βiπ = αiπtπg for every i ∈ N .

Finally we have to prove that d) Aπtπg = A, Aπe = A
and Aπ = A. For the first case we already know that Aπt =
A and Aπ′′t = A. Since πg is defined as π′′t |ftv(τt) + [γ/τ ′e]
and γ is a fresh type variable not appearing in ftv(A) then
Aπtπg = Aπg = Aπ′′t |ftv(τt) = A. For the second case,
Aπe = A holds using Remark B.1. For the last case we
know that Aπ′′e = A. Since π is defined as π′′e |r{βi|i∈N} +
{βi/αiπtπg|i ∈ N} and no type variable βi appears in ftv(A)
(they are fresh type variables) then Aπ = Aπ′′e = A.

B.3 Proof of Subject Reduction: Theorem 3.2
Proof. We proceed by case distinction over the rule of

the let-rewriting relation →lf (Figure 2) used to reduce e
to e′.

(Fapp) If we reduce an expression e using the (Fapp) rule
is because e has the form f t1θ . . . tnθ (being f t1 . . . tm → r
a rule in P) and e′ is rθ. In this case we want to prove that
A ` rθ : τ . Since wtA(P) then wtA(f t1 . . . tm → e), and by
the definition of well-typed rule (Definition 3.1) we have:

(A) A⊕ {Xn : αn} � f t1 . . . tm : τL|πL
(B) A⊕ {Xn : βn} � r : τR|πR
(C) ∃π. (τR, βnπR)π = (τL, αnπL)

(D) AπL = A, AπR = A and Aπ = A.

By the premises we have the derivation

(E)A ` f t1θ . . . tmθ : τ

where θ = [Xn/t′n]. Since the type derivation (E) exists,
then there exists also a type derivation for each pattern t′i:
(F) A ` t′i : τi.

If we replace every pattern t′i in the type derivation (E) by
their associated variable Xi and we add the assumptions
{Xn : τn} to A, we obtain the type derivation:

(G)A⊕ {Xn : τn} ` f t1 . . . tm : τ

By (A) and (G) and Theorem B.2 we have (H) ∃π1. (A ⊕
{Xn : αn})πLπ1 = A⊕ {Xn : τn} and τLπ1 = τ . Therefore
AπLπ1 = A and αiπLπ1 = τi for each i.

By (B) and the soundness of the inference (Theorem B.1):

(I)AπR ⊕ {Xn : βnπR} ` r : τR

Using the fact that type derivations are closed under substi-
tutions (Theorem B.3-a) we can add the substitution π of
(C) to (I), obtaining:

(J)AπRπ ⊕ {Xn : βnπRπ} ` r : τRπ

By (J) y (C) we have that (K) AπRπ⊕{Xn : αnπL} ` r : τL

Using the closure under substitutions of type derivations
(Theorem B.3-a) we can add the substitution π1 of (H) to
(K):

(L)AπRππ1 ⊕ {Xn : αnπLπ1} ` r : τLπ1

By (L) and (H) we have (M) AπRππ1 ⊕ {Xn : τn} ` r : τ

By AπL = A (D) and AπLπ1 = A (H) we know that (N)
Aπ1 = A.

From (D) and (N) follows (O)AπRππ1 = Aππ1 = Aπ1 = A.

By (O) and (M) we have (P) A⊕ {Xn : τn} ` r : τ

Using Theorem B.3-b) we can add the type assumptions
{Xn : τn} to the type derivations in (F), obtaining (Q) A⊕
{Xn : τn} ` t′i : τi.

By Theorem B.3-c) we can replace the data variables Xn in
(P) by expressions of the same type. We use the patterns
t′n in (Q):

(R)A⊕ {Xn : τn} ` rθ : τ

14

Finally, the data variables Xn do not appear in rθ, so by
Theorem B.3-b) we can erase that assumptions in (R):

(S)A ` rθ : τ

(Ffail) and (FailP) Straightforward since in both cases
e′ is fail. A type derivation A ` fail : τ is possible for any
τ since A contains the assumption fail : ∀α.α.

The rest of the cases are the same as the proof in [25]

B.4 Theorem 3.3: Progress
For the proof of Progress we will need a result stating that

junk expressions cannot have a valid type wrt. any coherent
set of assumptions A.

Lemma B.1. If e is a junk expression wrt. a set of con-
structor symbols CS then there are not any A and type τ
such that A is coherent with CS and A ` e : τ .

Proof. If e is junk then it has the form c t1 . . . tn with
c ∈ CSm and n > m. Since application is left associative
we can rewrite this expression as (c t1 . . . tm) tm+1 . . . tn. In
the type derivation of e appears a subderivation of the form:

[LETm]

A ` (c t1 . . . tm) : τ1 → τ
A ` tm+1 : τ1

A ` (c t1 . . . tm) tm+1 : τ

A is coherent with CS, so any possible type derived for the
symbol c has the form τ ′1 → . . .→ τ ′m → (C τ ′′1 . . . τ

′′
k). Then

after m applications of the [APP] rule the type derived for
c t1 . . . tm is C τ ′′1 . . . τ

′′
k . This type is not a functional one as

we expected (τ1 → τ), so we have found a contradiction.

Using the previous result we can now prove the Progress.

Proof of Progress: Theorem 3.3
Proof. By induction over the structure of e
Base case

X) This cannot happen because e is ground.

c ∈ CSn) Then c is a pattern, regardless of its arity n. This
case covers e ≡ fail.

f ∈ FSn) Depending on n there are two cases:

• n > 0) Then f is a partially applied function sym-
bols, so it is a pattern.

• n = 0) If there is a rule (f → r) ∈ P then we
can apply rule (Fapp), so P ` s →lf r. Otherwise
there is not any rule (l → r) ∈ P such that l and
f unify, so we can apply the rule for the matching
failure (Ffail) obtaining P ` s→lf fail.

Inductive Step

e1 e2) From the premises we know that there is a type deriva-
tion:

[APP]

A ` e1 : τ1 → τ
A ` e2 : τ1
A ` e1 e2 : τ

Both e1 and e2 are well-typed and ground. If e1 is not a
pattern, by the Induction Hypothesis we have P ` e1 →lf

e′1 and using the (Contx) rule we obtain P ` e1 e2 →lf

e′1 e2. If e2 is not a pattern we can apply the same reasoning.
Therefore we only have to treat the case when both e1 and
e2 are patterns. We make a distinction over the structure of
the pattern e1:

• X) This cannot happen because e1 is ground.

• c t1 . . . tn with c ∈ CSm and n ≤ m) Depending on m
and n we distinguish two cases:

– n < m) Then e1 e2 is c t1 . . . tn e2 with n+ 1 ≤ m,
which is a pattern.

– n = m)

∗ If c = fail then m = n = 0, so we have the
expression fail e2. In this case we can apply
rule (FailP), so P ` fail e2 →lf fail.

∗ Otherwise e1 e2 is c t1 . . . tn e2 with n+1 > m,
which is junk. This cannot happen because A
is coherent and A ` e1 e2 : τ , and Lemma
B.1 states that junk expressions cannot be well-
typed wrt. a coherent set of assumptions.

• f t1 . . . tn with c ∈ FSm and n < m) Depending on m
and n we distinguish two cases:

– n + 1 < m) Then e1 e2 is f t1 . . . tn e2 which is a
partially applied function symbol, i.e., a pattern.

– n+ 1 = m) Then e1 e2 is f t1 . . . tn e2. If there is a
rule (l → r) ∈ P such that lθ = f t1 . . . tn e2 then
we can apply rule (Fapp), so P ` e1 e2 →lf rθ. If
such a rule does not exist, then there is not any rule
(l′ → r′) ∈ P such that l′ and f t1 . . . tn e2 unify.
Notice that since f t1 . . . tn e2 is ground it does not
have variables, so in this case pattern matching and
unification are equivalent. Therefore we can apply
the rule for the matching failure (Ffail) obtaining
P ` e1 e2 →lf fail.

let X = e1 in e2) From the premises we know that there is a
type derivation:

[LET]

A ` e1 : τX
A⊕ {X : Gen(τX ,A)} ` e2 : τ

A ` let X = e1 in e2 : τ

There are two case whether e1 is a pattern or not:

• e1 is a pattern) Then we can use the (Bind) rule, ob-
taining P ` let X = e1 in e2 →lf e2[X/e1].

• e1 is not a pattern) Since let X = e1 in e2 is ground
we know that e1 is ground (notice that this does not
force e2 to be ground). Moreover, A ` e1 : τt, so by the
Induction Hypothesis we can rewrite e1 to some e′1: P `
e1 →lf e′1. Using the (Contx) rule we can transform
this local step into a step in the whole expression: P `
let X = e1 in e2 →lf let X = e′1 in e2.

15

	Introduction
	Preliminaries
	Formal setup
	Semantics
	Type system and type inference
	Well-typed programs
	Properties of the type system

	Examples
	Type-indexed functions
	Existential types, opacity and HO patterns
	Generic functions
	Type Classes
	Translation to type-indexed functions
	Efficiency
	Problems with dictionaries in FLP

	Practical issues
	Conclusions
	References
	Measurement of the speedup
	Proofs and auxiliary results
	Auxiliary results
	Proof of Theorem 3.1
	Proof of Subject Reduction: Theorem 3.2
	Theorem 3.3: Progress

