

USERS MANUAL (version 1.4)
FOR FUEL FLOW METER TRD-500
07.11.2011

Sapsan Group
www.skontrol.ru
Chelyabinsk 2011

Content

Main technical characteristics of fuel flow meter TRD-500	3
Delivery in complete sets	
TRD-500 sensor installation	
Calibration of sensor TRD-500	5
General data on installation	5
General instructions on pipelines installation	7
Connection of TRD-500 to recorder	
Final inspection and functional check of TRD-500	10
Operation notes	
Manufacturer's warranty	

Main technical characteristics of fuel flow meter TRD-500

The fuel flow meter of differential type TRD-500 is designed for measurement of flowing fuel volume and delivery of electric impulses at installation in a fuel line of cars, tractors and other mobile and fixed machines and integral units (vehicles) according to the differential installation diagram. The fuel flow meter is nonrepairable item.

Table 1. Basic technical data of fuel flow meter

Measured fuel flow range	from 30 to 500 l/h.		
Number of measurement channels			
Number of measurement channels	2 (supply and return flow).		
	WITHOUT	WITH correction card	
	correction card	1/200	
Conformity of one output pulse «K1» with	1/(150 250)	1/200	
fuel volume, flowing through port «K1»,			
liters/pulse.			
Conformity of one output pulse «K2» with	1/(150 250)	1/200	
fuel volume, flowing through port «K2»,			
liters/pulse.			
Basic percentage error of fuel metering	± 1 %.		
Operating supply voltage	12/24V.		
Power supply voltage range, that provides	10-30 V.		
normal operation			
Useful current, no more	50 mA.		
Digital output	impulse, open collector.		
Ambient temperature, at which normal	1 From- 40 to + 65 0C.		
operation of fuel flow meter is provided			
Dimensions, mm, not above	67x73x100,5.		
Weight not above	0,5 kg		
Run time of fuel flow meter	twenty-four-hour		
Average time to failure, not less	12500 hours		
Ingress protection rating of fuel flow	IP68.		
meter, not less			

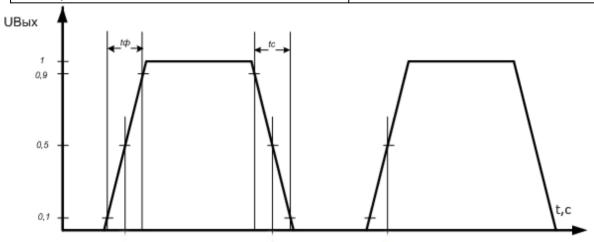


Fig. 1 Data on flow meter impulse response

Data on the precious materials content in fuel flow meter: No precious materials are used.

Delivery in complete sets

Name	Quantity	
TRD-500	1 piece.	
Wiring extender with interconnect plug *	1 piece.*	
Hose adapters **	4 pieces.**	
Joint washers **	4 pieces.**	
Certificate	1 piece.	
* Wire length is agreed when ordering		
** It is supplied in agreement with buyer		

TRD-500 sensor installation

TRD-500 is installed according to the differential installation scheme (see fig. 2). Thus the fuel system undergoes no modifications, except for insertion of two sections of TRD into a supply and return lines. The first section is installed between the fine filter and high-pressure fuel pump; the second one (back flow) is installed into return flow line after a connection point of return flow. Fuel consumption is determined as an indications difference of measurement chambers of supply and return flows.

TRD-500 is inappropriate for engines at which fuel flows from back flow line with some air (some engines with fuel injection pump assembly of high pressure). In such engines measurement accuracy of back flow can be essentially reduced because of the air. To define whether there is some air at back flow you should sink back flow hose in transparent capacity to the bottom and watch whether fuel comes out with bubbles and foam while capacity filling.

If there is a bypass valve on fuel injection pump output we recommend to unscrew it and to displace it to the output of the return flow chamber (see fig. 2). It will allow to increase pressure in the return flow chamber.

If there are air or foam bubbles, installation of additional fuel stabilizer (deaerator) in a return line between fuel injection pump and the return flow chamber is required. The example of installation of such stabilizer is shown on fig. 4. In this case it is not recommended to displace bypass valve.

The following things are necessary for installation: TRD-500, installation kit, a drill, a key set, a fuel-resistant hose, a knife to cut the hose, a bracket and self-tapping screws (bolts to fix the device to a bracket).

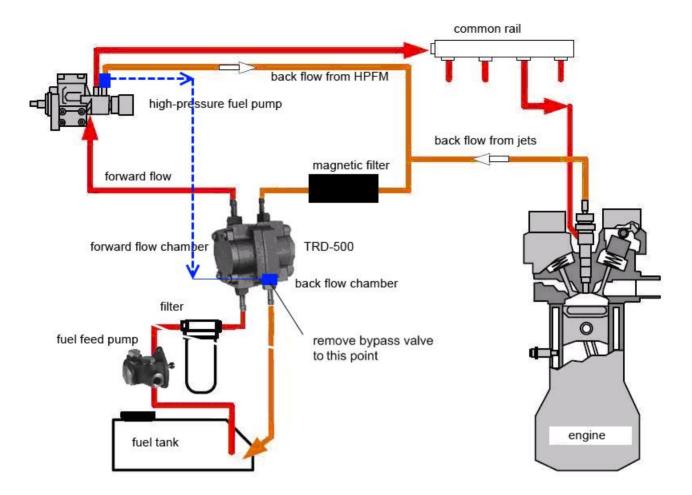


Fig. 2 Flow sheet for TRD-500.

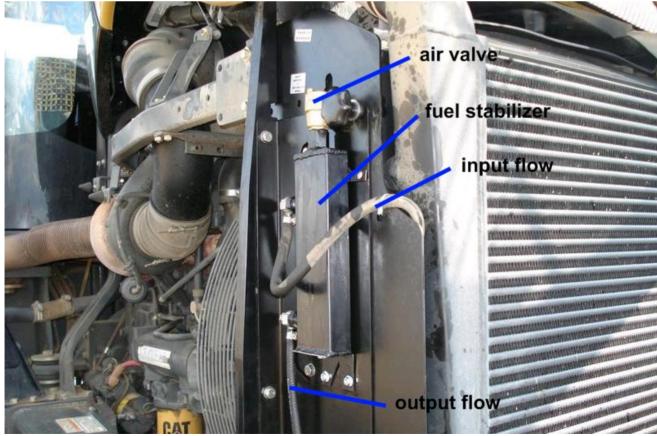


Fig. 3. a sample of back fuel flow stabilizer.

General data on installation

- 1. The content of a gaseous component in fuel lines isn't allowed.
- 2. Ingress of particles at installation isn't allowed.
- 3. It is required to install a fuel filter before the supply chamber and a magnetic trap for a metal dust before the return chamber (to catch metal dust of worn out parts of fuel injection pump assembly). If it is not possible to install TRD after the standard fine filter, install the sensor after the additional fine filter.
 - 4. It is recommended to seal up all fuel lines and electric connections.
 - 5. It is not recommended to use it in Common Rail systems with open type fuel-injectors.
- 6. It is necessary to subtract indications of the fuel supply pipe from the return pipe indications to found out fuel consumption.
- 7. To get the value of fuel consumption you should subtract indications of the fuel supply line from those of the return line.
- 8. A direction of fuel movement through flow meter chambers are marked by arrows on chambers. Return connection is not allowed.

9. Use only steel (not aluminum) fittings!

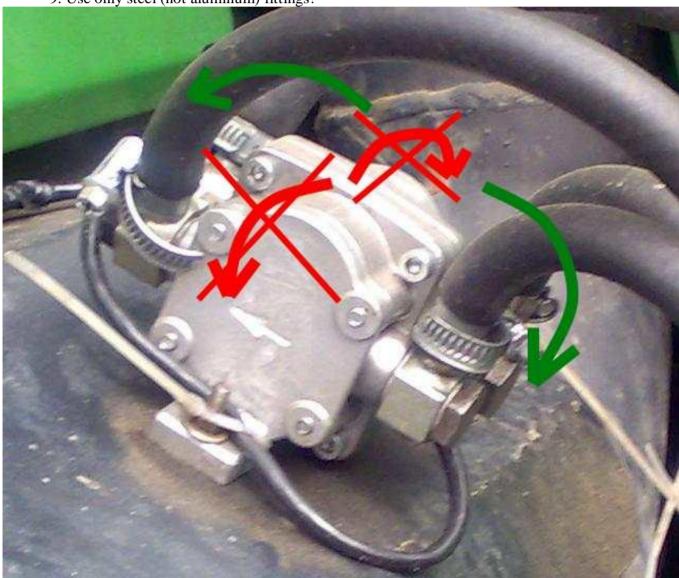


Fig. 4. Choice of the installation place.

General instructions on pipelines installation

- 1. Fuel lines should be laid on a vehicle in a reliably environment-proofed way and at break of their hermiticity there should be no fire danger (they should be laid under a collector/turbine not over them).
- 2. Protection of fuel lines from contact with sharp edges of integral units of the car and break stones flying out from under wheels should be provided;
- 3. Fuel lines should be a little bit longer to make up temperature changes of length;
- 4. It is not allowed to reduce internal profile of fuel lines at bending.
- 5. Fuel lines should be mounted on the vehicle with couplers (clamping devices) which don't damage a tube and allow temperature changes of fuel lines length.
- 6. It is not recommended to mount TRD on parts of vehicle that undergo a strong vibration and heating.
- 7. Keep flanges and TRD connection carvings clean! Don't touch their surface with dirty hands. At installation don't let dust and water ingress in a flow meter.

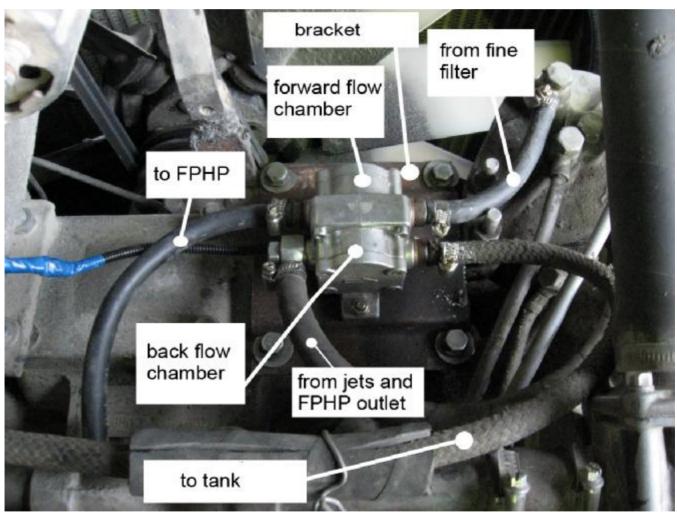


Fig. 5 An example of sensor installation on JAMZ engine

Connection of TRD-500 to terminal

Fig. 6 TRD-500 slot

Tab.2. Marking of wire and sensor socket:

1 ab.2. Wat king of wife and sensor socket.					
Contact	Contact use	Color of internal sensor		Color of wiring extender	
into split		wires			
1	"-" power	Brown		Brown	
2	"+" power	Red		Blue	
3	K1 (left chamber from wire)	Grey		Yellow green	
4	K2 (right chamber from wire)	Violet		Black	

Calibration of sensor TRD-500

Sensor TRD-500 has various coefficient values at various flow rates, viscosity and working temperatures of flowing fuel. 2 variants of flow meters are produced at present – one with coefficient adjustment through the built-in controller streamwise and one without it. At the same time real flow coefficients on the vehicles can differ from that of the factory ones because of different viscosity and temperature.

If you have a flowmeter with engraved serial number with engraved underlining it is a flowmeter of the first type, with flow factor modification by the built in controller. Such flowmeters were calibrated at normal temperature and viscosity in the manufacture and they give out exactly 200 impulses per liter in operating modes from 80 to 500 liters per hour. Basically such flowmeters can be installed without additional calibration. The calibration should be done only in case of discrepancy of the received data.

If you have a flowmeter with engraved serial number but without underlining it is a flowmeter of the second (old) type, without flow factor modification by the built in controller. Such flowmeters should be calibrated extra.

To increase the accuracy of measurement you need to calibrate the sensor on the car.

General installation sequence with system calibration:

- 1. Choose the place for installation proceeding from the convenience of a pipeline running and general data on TRD installation. (See section "General instructions on pipelines installation").
- 2. Fix the sensor on the car (on a bracket or integral unit of the car).
- 3. Install a magnetic filter on a return pipe.
- 4. Connect section of return flow measurement. Both sections are identical. Choose which section to install into supply line and which one into return line depending on the convenience of pipelines running.
- 5. Prepare supply and drain capacities, 10 liters in volume. Capacities should be calibrated and give a possibility to define fuel quantity with 100 ml accuracy. That will make possible system calibration with 1 % accuracy.

- 6. Disconnect supply and return pipes from a tank and direct them into supply and drain capacities. (See fig. 6). Do not let the air into supply hose at hoses displacement. If necessary pump over the fuel supply system.
- 7. Fill supply capacity and empty drain capacity.
- 8. Connect both chambers of the flow meter to the impulse counter. You may use the <u>Daily Scan</u> <u>computer</u> of SapsanVneshTrog production to count the impulses. You may also use the terminals that enable to see current values of the impulse counter (for example, <u>Autograph</u> terminal when it's connected to the AutoGRAPH_control.exe program). If you use the Daily Scan computer as the measuring tool you should do the following: temporarily set both coefficients equal to 1 and choose the fuel rate display mode at calibration.
 - a) Start the engine and set idle rpm. Note quantity of the spent fuel of supply capacity (1-2 glasses) and power on the terminal at this moment (that is start impulses counting). Note the time (with 1-2 seconds accuracy).
 - b) Let the vehicle to spend fuel from supply capacity.
 - c) At fuel use practically to the bottom stop the engine. Stop calculation of impulses and time.
 - d) Define quantity of the spent fuel from supply and drain capacities to within 100 ml.
 - e) Bring the data in the table.
 - f) Repeat procedure for other turns. (For a flow meter without correction card it is enough to receive coefficients for both chambers on two modes: idle rpm and at usual load, then calculate coefficient by formula from table 3. Enter the received coefficients into the monitoring program. For a flow meter with correction card you should better receive coefficients for both chambers on several modes (3-5 times), and then bring a curve into internal memory of flow meter (tab. 4)).
- 9. Return system back in a working condition.

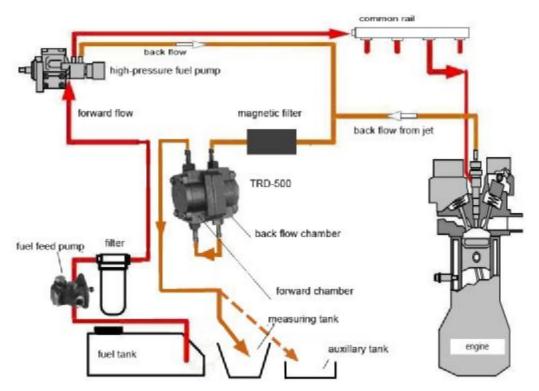


Fig. 7 Installation diagram of TRD-500 at calibration.

caru)						
	Supply c	Supply chamber		Return chamber		
	Flow coefficient k1=volume of spent fuel/quantity of pulses, ml/pulse	Flow rate Q1= volume of spent fuel/ sampling time I/h	Flow coefficient k2= volume of spent fuel/quantity of pulses, ml/pulse	Flow rate Q2= volume of spent fuel/ sampling time I/h		
at idle speed	k1xx=		k2xx=			
at load rpm	k1load=		k2load=			
Avarage flow coefficient	k1=0,25*k1xx+0,75 *k1 load=		k2=0,25*k2xx+0,75 *k2 loadp=			

Table. 3 Findings of fuel flow meter TRD-500 calibration (fuel flow meter WITHOUT correction card)

Final inspection and functional check of TRD-500

Wipe all new connections of fuel lines and check whether there is no fuel accumulation next to an exhaust system (muffler).

Take all tools, material rests, flooring and rags away from a vehicle. If it is necessary, close an engine department, lower a driver's cabin.

On engine operating indoors provide reliable removal of exhaust gases through exhaust ventilation.

Start the engine and set constant frequency of rotation idling.

Pay attention on the engine operation resistance. Check whether the engine reacts on a gas pedal and comes back to idling when you release it.

Instability of engine rpm points to problems in fuel line system (in additionally installed filter or bad pumping of fuel system).

On engine operating evaluate visually hermiticity of all fuel line connections.

Stop the engine and check whether there is no fuel leak and air drain in all union joints of fuel system, the sensor and the additional filter.

Fuel leaking in joining places of fuel lines isn't allowed.

Don't try to tight the joint places. Use new copper joint washers to tight it!

<u>Plugging fuel system leaks should be carried out only at dead engine! In no case try to tighten the joint places at engine running!</u>

If there is no fuel consumption indications (the consumption is equal to zero) it is recommended to check rotation of TRD mechanism through blowing it off by air. If necessary replace TRD.

Operation notes

ATTENTION! At work with a flow meter it is necessary to carry out following restrictions:

Do not apply power supply voltage exceeding +30 V on a flow meter;

Do not allow polarity violation of connected supply voltage.

Manufacturer's warranty

The manufacturer guarantees the conformity of a flow meter to requirements of the design documentation while meeting the requirements of installation, service rules, transportation and storage rules by customer. Guaranteed storage life is 2 years from the manufacturing date. As the manufacturing date the date specified on a flow meter (in the certificate) shall be taken.

Guarantee period is 24 months from the date of introduction into service, but no more than 30 months from the manufacturing date.

During a guarantee period the manufacturer undertakes the obligation to replace a flow meter for free in case of defects and failures occurrence.

The guarantee period is prolonged for the period from the claim submission to flow meter setting into operation after replacement.

The address of the manufacturer:

"Sapsanvneshtorg" Ltd, Tel. 8 (351) 247-75-58, 454081, Russia, Chelyabinsk, Rossiyskaya str., 194 www.skontrol.ru