

FUJITSU Electronic Devices
User's Manual

F2MC-16LX STARTER KIT

USER'S MANUAL

 © Fujitsu

Revision History

Date Description

Jun 27, 2005 Edition 1.0: Initial release

© Fujitsu

Precautions
- The contents of this document are subject to change without notice.

- The general information of operation and samples of application circuits described in this

document are mere examples of standard operation and use of semiconductor devices. They are

not intended to guarantee the device operation in actual equipment. The customer who

incorporates the operation or sample circuit described in this document in the customer's system

should design the system on the customer's own responsibility. Fujitsu will not assume

responsibility for damages resulting from the use of the information described in this document.

- The general information of operation, circuit diagrams, and other technical information described

in this document are not intended to grant the customer any license for the intellectual property

rights, such as patents and copyrights, and other rights held by Fujitsu or a third party. Also, the

information is not intended to guarantee the customer to practice any intellectual property or other

rights held by third parties. Fujitsu will not assume responsibility for infringement of any

intellectual property or other rights of third parties arising from the use of the information or

circuit diagrams.

- If any products described in this document represent goods or technologies subject to certain

restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the

prior authorization by Japanese government according to the law is required for export of those

products from Japan.

Copyright© 2005 FUJITSU LIMITED Aｌｌ rights reserved

 © Fujitsu

Contents

Preface... 1

1 Setting Up of Starter Kit .. 2
1.1 Setting Up of Personal Computer .. 8

1.1.1 Installing of USB driver ... 9
1.1.2 Installing of integrated development environment "SOFTUNE"

(limited-function version) ... 10
1.1.3 Installing of demonstration version (trial version) of ACCEMIC MDE 16
1.1.4 Setting up of evaluation board and connecting of board to the personal

computer.. 21
1.1.5 Starting and setting up of SOFTUNE ... 23
1.1.6 Starting and setting up of ACCEMIC MDE ... 26
1.1.7 Terminating of ACCEMIC MDE.. 37
1.1.8 Terminating of SOFTUNE ... 37
1.1.9 Board operation without ACCEMIC MDE .. 38

2 “Let's try to turn on the LED!”... 40
2.1 What is an LED?.. 40
2.2 How can the LED emit light? .. 41
2.3 How to turn on an LED by microcomputer ... 42
2.4 How to create and execute a program to turn on the LED... 44

2.4.1 Outline of program to be created .. 45
2.4.2 Creating and executing of program .. 45

2.5 How to create and execute a program to make the LED blinking 46
2.5.1 Outline of the program to be created .. 46
2.5.2 Creating and executing of program .. 47

3 “Let's try to control the LED by switch operation!” .. 49
3.1 How the microcomputer detects switch operation ... 49
3.2 How to create and execute a program to control LEDs by switch operation 51

3.2.1 Outline of program to be created .. 51
3.2.2 Creating and executing of program .. 52

4 “Let's try to sound a buzzer!” .. 54
4.1 Devices used for buzzer ... 54

© Fujitsu

4.1.1 Crystalline characteristics of piezoelectric device.. 55
4.1.2 Piezoelectric characteristics.. 55
4.1.3 Principle of piezoelectric device... 56

4.2 Microcomputer and piezoelectric buzzer ... 56
4.2.1 Self-excited and separately excited vibrations.. 57
4.2.2 Pulse wave generated by the microcomputer ... 57

4.3 How to sound the buzzer by PPG .. 57
4.3.1 Setting of L-level and H-level duration .. 58
4.3.2 PPG count clock ... 58

4.4 How to create and execute a program to sound the buzzer .. 58
4.4.1 Outline of the program to be created .. 59
4.4.2 Creating and executing of program .. 60
4.4.3 Changing the tone of a buzzer sound.. 62

5 “Let's try to control the LED by interrupt.” ... 63
5.1 What is an interrupt? .. 63
5.2 How to detect a switch operation by interrupts.. 64
5.3 How to create and execute a program to control the LED by switch Input

operation ... 65
5.3.1 Outline of the program to be created .. 65
5.3.2 Creating and executing of program .. 67

6 “Let's blink the LED by using a timer interrupt.” .. 69
6.1 What is a timer? ... 69
6.2 How to create and execute a program to control the LED blinking by using a

timer interrupt ... 70
6.2.1 Outline of the program to be created .. 70
6.2.2 Creation and execution of the program... 72

7 “Let's use the A/D converter.”.. 74
7.1 Analog and Digital ... 74

7.1.1 Outline of A/D converter .. 75
7.1.2 Scheme of volume tab .. 76

7.2 How to create and execute a program to display potental.. 76
7.2.1 Outline of program to be created .. 76
7.2.2 Creation and execution of the program... 80

8 “Let's use the temperature sensor.” .. 82
8.1 What is a temperature sensor? ... 82
8.2 How to detect temperatures by using "temperature sensor"....................................... 83

 © Fujitsu

8.3 How to create and execute a program to display temperature 85
8.3.1 Outline of the program to be created .. 85
8.3.2 Creation and execution of the program... 88

A Appendix (Program Creation Procedure)... 90
A.1 Program Creation Procedure.. 90
A.2 Program Building Procedure.. 94
A.3 Program Execution Method ... 96

B Appendix (Method To Write/Read Values in Registers) .. 97
B.1 About the Method To Write/Read Values in Registers... 97

C Appendix (Method To Change the Include Path)... 98
C.1 About the Method To Change the Include Path ... 98

© Fujitsu -1-

Preface

Thank you for your purchase of this Starter Kit.

The Starter Kit is intended for first-time users of microcomputers. The Starter Kit is designed in

such a way that even beginners who have neither any actual experience with microcomputers nor

any knowledge about what microcomputers do and how they are used can easily learn about

microcomputers.

The Starter Kit includes a flash microcomputer and application development tools in order to

enable a user with some knowledge of C language to modify sample programs and make the

microcomputer actually perform various operations. This User's Manual gives detailed

descriptions of how to control LED operations and buzzer sounds using the microcomputer.

Even users with no knowledge about programming languages will be able to comfortably learn in

an enjoyable way about microcomputers provided they have an introductory reference book on the

C language handy.

This User's Manual has been established incorporating various recommendations of employees

who had only been engaged in microcomputer-related work for one to three years and had had

only little prior knowledge of microcomputers to begin with. Therefore, this User's Manual has

been written specifically for questions that beginners of microcomputers usually have.

The Starter Kit can be effectively used as a tool for training about electronic circuits or as

introductory education for embedded-software developers in classes at universities, technical

colleges, and industrial high schools, as well as in new-employee education programs at

corporations.

-2- © Fujitsu

1 Setting Up of Starter Kit
Before setting up the Starter Kit, make sure that all the components and equipment listed in Table

1.1 are ready for use.

You should install the software on your personal computer before connecting the evaluation board

to the personal computer.

The Starter Kit software is available in two versions: A CD-ROM version and a download version

(the download version is not delivered on CD-ROM).

Table 1.1 List of components and necessary equipment

No. Item Qty Specification Remarks

1 Board 1 Evaluation board equipped with Fujitsu F2MC-16LX Series

MB90F387 Microcomputer

See Figure 1.1.

2 USB cable 1 USB Accessory

3 Installation

CD-ROM

(1) CD-ROM for installing SOFTUNE, ACCEMIC MDE, and

sample programs

Related manuals are contained on the CD-ROM.

・User's Manual: jouet_bleu_start_kit_manual_E.pdf

・USB Driver Installation Manual:

USB_driver_installation_manual_E.pdf

・MB90385 Series Hardware Manual: MB90385_HM_E.pdf

・MB90385 Series Data Sheet: MB90385_DS_E.pdf

・Set of SOFTUNE-related manuals:

SOFTUNE¥ MANUAL folder

CD-ROM version

only

The download

version has the

same contents.

4 Personal

computer

1 Personal computer on which Windows XP/Me/2000/98 can

operate normally

USB2.0 port necessary

About 200 megabytes of free space necessary on the hard

disk

To be prepared by

the user

© Fujitsu -3-

Figure 1.1 Board

(3)Reset switch

(4)MODE switch

(5)LED

(8)Temperature
 sensor

(9)Buzzer

(13) Oscillator for
main microcomputer

(6) Test switch

(1)Target device

(7) A/D test VR (14) Oscillator for USB

(10) USB host connecter
(2) Target device expansion pin (CN1)

(11)USB communication
microcomputer

(2)Target device expansion pin（CN2）

(12)
USB communication
microcomputer
expansion pin

-4- © Fujitsu

Figure 1.2 is a circuit diagram for the evaluation board.

Figure 1.2 Evaluation board circuit diagram

© Fujitsu -5-

Table 1.2 lists the parts of the evaluation board.

No Item Specification Function

(1) Target device MB90F387S Main microcomputer (MB90F387S) on this board

(2)
Target device

expansion pin
26PINX2 I/O expansion pin of the main microcomputer

(3) Reset switch A push switch Pressing this switch resets the main microcomputer.

(4) MODE switch A slide switch
It switches the operation mode of the main

microcomputer (MB90F387S).

(5) LED lamp
5 LED lamps (1 red

and 4 green lamps)

LED lamps that are connected to the general-purpose

I/O pin

(6) Test switch 2 push switches
Push switches for tests that are connected to the

general-purpose I/O pin

(7) A/D test VR Slide VR A slide VR that is connected to the A/D converter input

(8) Temperature sensor Thermistor
A temperature sensor that is connected to the A/D

converter input

(9) Buzzer Buzzer

Kyocera's separate-excitation type piezo alarm with a

case (KBS-13DB-4P-2)

It is connected to the PPG timer output pin.

(10) USB host connecter MIN-B
A USB pin to connect the evaluation board and the host

PC

(11)

USB

communication

microcomputer

MB90F334

A USB communication microcomputer to connect the

main microcomputer (MB90F387S) and the host PC

It contains the USB communication firmware that has

been developed by Interface Co., Ltd.

(12)

USB

communication

microcomputer

expansion pin

2 14-pins
An expansion pin of the USB communication

microcomputer

(13)
Oscillator for main

microcomputer
CX-5FD (4MHz)

Kyocera's crystal oscillator (CX-5FD)

It is an oscillator for the main microcomputer.

(14)

Oscillator for USB

communication

microcomputer

CX-5FD(6MHz)

Kyocera's crystal oscillator (CX-5FD)

It is an oscillator for the USB communication

microcomputer.

Table 1.2 Evaluation board parts

-6- © Fujitsu

Figure 1.3shows the system configuration.

Prepare a personal computer by yourself.

Figure 1.3 System configuration

Connect the board to the personal computer by using the accessory USB cable.

Supply power to the board by USB bus power system.

Be sure to connect the USB cable directly to the personal computer. Do not connect the USB

cable via a USB hub.

Connect the evaluation

board to the personal

computer using the

accessory USB cable.

(Use the USB bus power as

the power supply.)

Microcontroller

evaluation board

© Fujitsu -7-

Table 1.3 shows the assignment of functions to the pins of MB90F387 microcomputer.

Table 1.3 Function assignments to the pins of F2MC-16LX Series MB90F387 Microcomputer

Pin-No. Function Connection destination Logic Remarks

3 P50/AN0 VR ANALOG Division of power supply voltage: 0

to 100%

4 P51/AN1 TEMP.SENSOR ANALOG 1/2VCC@25°C

17 P25/INT5 SW1 Negative

logic

L level when the switch is pressed

19 P27/INT7 SW2 Negative

logic

L level when the switch is pressed

20 MD2 MODE -- --

21 MD1 PULL-UP -- --

22 MD0 MODE -- --

23 RST RESET Negative

logic

On when the output is L level

29 P10/IN0 LED1 Negative

logic

On when the output is L level

30 P11/IN1 LED2 Negative

logic

On when the output is L level

31 P12/IN2 LED3 Negative

logic

On when the output is L level

32 P13/IN3 LED4 Negative

logic

On when the output is L level

33 P14/IN4 LED5 Negative

logic

On when the output is L level

36 P17/PPG3 BUZZER Rectangular

wave

Initially at L level, C coupling, bias R

37 P40/SIN1 RS232C -- --

39 P42/SOT1 RS232C -- --

42 P30/SOT0 PULL-DOWN(50 kΩ) -- --

43 P31/SCK0 PULL-DOWN(50 kΩ) -- --

-8- © Fujitsu

1.1 Setting Up of Personal Computer

This section describes how to install the software required to operate the Starter Kit on the

personal computer. (Be sure to perform the software installation operation before connecting

the board to the personal computer.)

Take the following steps to set up the personal computer:

① Installing the USB driver (See the separately provided "USB Driver Installation

Manual.")

② Installing the integrated development environment "SOFTUNE" (limited-function

version) (See Item 1.1.2.)

③ Installing the demonstration version of ACCEMIC MDE (See Item 1.1.3.)

④ Connecting the evaluation board to the personal computer (See Item 1.1.4.)

⑤ Starting and setting up SOFTUNE (See Item 1.1.5.)

⑥ Starting and setting up ACCEMIC MDS (See Item 1.1.6.)

⑦ Terminating ACCEMIC MDE (See Item 1.1.7.)

⑧ Terminating SOFTUNE (See Item 1.1.8.)

© Fujitsu -9-

1.1.1 Installing of USB driver

Install the USB driver according to the content of the "USB Driver Installation

Manual".

-10- © Fujitsu

1.1.2 Installing of integrated development environment "SOFTUNE" (limited-function

version)

Install SOFTUNE (limited-function version).

The limited-function version of SOFTUNE is subject to the limitation on the

program size that can be debugged to 32 kilobytes. The limited-function version

cannot be used to create a program over 32 kB.

① Insert the CD-ROM into the CD-ROM drive. When using the download

version, download the software for F2MC-16LX Starter Kit (Jouet Bleu), and

open the folder where the files are decompressed.

② Double-click on the Setup.exe icon in the \\jouet_bleu \SOFTUNE folder to

start installation.

③ Follow the instructions on the screen to perform installation.

Click 'OK.'

© Fujitsu -11-

Click 'Next >.'

Click 'Next >.'

-12- © Fujitsu

If you accept the agreement, click 'Yes.'

(If you refuse the agreement, you cannot install SOFTUNE.)

Click 'Next >.'

© Fujitsu -13-

Click 'Next >.'

(Do not change the installation-destination folder here.)

Click 'Next >.'

-14- © Fujitsu

Click 'Next >.'

The installation is executed.

© Fujitsu -15-

Click 'Finish.'

The installation of SOFTUNE (limited-function version) is completed.

Proceed to the installation of the demonstration version of ACCEMIC MDE.

-16- © Fujitsu

1.1.3 Installing of demonstration version (trial version) of ACCEMIC MDE

Install the demonstration version (trial version) of ACCEMIC MDE.

The trial version of ACCEMIC MDE is subject to a limitation on the size of the

program that can be debugged to 12 kB. The trial version cannot be used to create

a program over 12 kB.

① Insert the CD-ROM into the CD-ROM drive. When using the download

version, download the software for F2MC-16LX Starter Kit (jouet bleu), and

open the folder where the files are decompressed.

② Double-click the MDE_16LX_DEMO_V22ST_STARTERKIT.exe icon in the

\\jouet_bleu\MDE_16LX_DEMO_V22ST_STARTERKIT folder to start

installation.

③ Follow the instructions on the screen to perform the installation.

Click 'Next >.'

© Fujitsu -17-

If you accept the agreement, click 'Yes.'

(If you refuse the agreement, you cannot install ACCEMIC MDE.)

Click 'Next >.'

-18- © Fujitsu

Click 'Next >.'

(Do not change the installation-destination folder here.)

Click 'Next >.'

© Fujitsu -19-

Click 'Next >.'

The installation is executed.

-20- © Fujitsu

When the installation is completed, click 'Finish >.'

Installation of the demonstration version of ACCEMIC MDE is completed.

Proceed to the setup of the evaluation board and its connection to the personal

computer.

© Fujitsu -21-

1.1.4 Setting up of evaluation board and connecting of board to the personal computer

After the installation of SOFTUNE and ACCEMIC MDE, perform switch setting

on the evaluation board and connect the board to the personal computer.

On the evaluation board, set the MODE selector to PROG.

MODE selector Operation mode

PROG Flash memory serial write mode

→ Used to write a program to the microcomputer

RUN Single chip mode

→ Used to actually run the program written to the microcomputer

Confirm that the MODE selector is set to PROG.

Next, perform the cable connection.

Set the MODE selector to

PROG.

-22- © Fujitsu

Connect the USB port of the evaluation board to a USB port of the personal

computer using the accessory USB cable. Do not connect the USB cable via a

USB hub, but connect it directly between the board and personal computer.

The power of the evaluation board is supplied from the USB power supply (USB

bus power).

Figure 1.4 Connection of the evaluation board and personal computer

After installing SOFTUNE

and ACCEMIC MDE,

connect the board and

personal computer using the

USB cable.

Connect the USB cable to a USB port of the personal computer.

For the location of USB port, refer to the manual for the personal computer.

USB port

© Fujitsu -23-

1.1.5 Starting and setting up of SOFTUNE

Preparation Before the operation described below, copy the sample programs to

the hard disk of the personal computer.

Uncompress the Fujitsu_starter_kit.zip file included in the CD-ROM

or among the downloaded files in an arbitrary directory.

Start SOFTUNE (limited-function version).

From the Start menu of Windows, select Programs (P) and Softune V3, in this order,

and then click on FFMC-16 Family Softune Workbench (trial version) to start.

Open the workspace file for sample programs.

Select Open Workspace (R)... from the File (F) menu.

-24- © Fujitsu

In this step, the workspace file to execute a sample program is opened. (No

sample program is executed when the workspace file is opened.)

Open the Start_kit.wsp file located in the Fujitsu_starter_kit folder.

The project window displays the opened workspace.

© Fujitsu -25-

Make the settings for the active project.

Multiple projects can be stored in one workspace file.

The sample programs include already created projects, including LED.prj, Input.prj,

and Buzzer.prj.

Since program debugging is performed in units of projects, you should specify the

project to be debugged as an active project.

Select a project to be debugged and click the right mouse button.

A submenu appears. Select Set active project from the submenu. The project

name in the list is displayed in boldface, and debugging of the project is enabled.

-26- © Fujitsu

1.1.6 Starting and setting up of ACCEMIC MDE

Use the Start_kit.wsp workspace file opened in the previous step to start ACCEMIC

MDE.

Confirm that the current active project of SOFTUNE is special.prj. Select Build

(B) from the Project (P) menu to execute a build operation.

When the build operation is executed, the output screen of SOFTUNE displays the

messages below.

Build operation started...

--------------------Configuration: special.prj - Debug--------------------

start905s.asm

monitor16LX.asm

_FFMC16.C

…

PPG_01_int.c

Linked...

*** I0312L: 0 warnings were output after S.C.F check.

D: ¥jouet_bleu¥fujitsu_starter_kit¥special¥Debug¥ABS¥apecial.abs

No error was found. Confirm that no error was found.

© Fujitsu -27-

If an error is detected as shown below in the build operation, perform the software

installation again from the initial step as described in Item 1.1.2. When

reinstalling the software, be sure not to change the installation directory that is

displayed on the screen.

Build operation started...

-------------------- Configuration: special.prj - Debug--------------------

start905s.asm

monitor16LX.asm

_FFMC16.C

*** D:¥jouet_bleu¥Fujitsu_start_kit¥special¥_ffmc16.c(9) E4038P: #include: File "_ffmc16.h" is

not found.

…

main.c

*** D:¥jouet_bleu¥Fujitsu_start_kit¥special¥main.c(17) E4038P: #include: File "_ffmc16.h" is not

found.

monitor16LX.asm

Error was found. Example of error detection

-28- © Fujitsu

Subsequently, ACCEMIC MDE starts automatically.

Input the COM port number that is confirmed after the USB driver is installed.

If you need to correct settings in the 'Select Processor dialog box' because you made

an incorrect "Type" setting or for other reasons, select 'Communication...' from the

Preferences menu to display the 'Select Processor dialog box.'

If the COM port number is unknown, use the following procedure to check the

COM port number to which the board is connected.

[Procedure for checking the COM port number]

First, click the right side of a mouse on the "My Computer", and click on

"Property(R)."

© Fujitsu -29-

When the Property window of the system appears, click "Hardware," and then click

"Device manager (D)."

When the Device manager window appears, check the indication of "INTERFACE

USB to RS232C Converter Virtual COM Port(COMx)" under the "Port (COM and

LPT." The "(COMx)" part indicates the COM port number.

[Note] If the assigned COM port number is 5 or higher, ACCEMIC MDE cannot be

used. Change the PC settings so that 4 or lower number is assigned to the port.

-30- © Fujitsu

Click 'OK.' (With this trial version, the OK input will take effect 10 seconds later.)

Make the settings of the target microcomputer.

When you use ACCEMIC MDE for the first time, you should download the monitor

debugger kernel. (You need not make these settings again unless you change the

target microcomputer.)

Here, select Fujitsu for "Manufacturer" and MB90F387 for "Type," and then click

'Next >.'

If you need to correct settings in the 'Select Processor dialog box' because you made

an incorrect "Type" setting or for other reasons, select 'Processor...' from the

Preferences menu to display the 'Select Processor dialog box.'

© Fujitsu -31-

When the target microcomputer is the MB90F387, select FPT-48P-M26 for

"Package" and Not used for "PLL factor." Do not change other parameters from

their defaults.

[Note] Use either "Not used" or "1" for the PLL setting. Note that the operations

are not guaranteed if any other value is entered.

After the setup, press "Download Kernel."

When ACCEMIC MDE is used for the first time, it is required to download the

monitor debugger kernel only once.

When the following information is displayed, reconfirm that the MODE selector is

set to the "PROG" side, press the RESET switch on the board, then press

"OK."

When you click OK after pressing the 'RESET' switch on the board, downloading

starts.

If the above switch operation is not performed in correct order, ACCEMIC

MDE will not start. If you fail to perform switch operation correctly, resume

the operation from the step described in Item 1.1.6.

-32- © Fujitsu

When downloading ends, the next information item appears. With the next

Information dialog box displayed, do not click OK immediately but perform

necessary switch operations on the board.

When this dialog box is

displayed, do not click

OK immediately, but

perform switch

operations on the board.

Reconfirm that the MODE

selector is set to the "PROG"

side.

Press the 'RESET' switch.

© Fujitsu -33-

When you click 'OK' in the Information dialog box after pressing the 'RESET'

switch on the board, ACCEMIC MDE starts.

Now, click 'OK.'

Set the MODE selector to RUN.

Press the 'RESET' switch.

-34- © Fujitsu

The ACCEMIC MDE window opens.

Execute the program of the sample project "special.prj."

Select "Run" under "Start."

The LEDs 1 to 5 on the board are shifted leftward respectively at one-second

interval.

It also has the functions listed in Table 1-4.

When the program is executed,

the LEDs 1 to 5 on the

evaluation board are shifted

leftward respectively at

one-second interval.

© Fujitsu -35-

Table 1-4 Board operations at the special.prj execution

Switch control Board operation

SW1 normal

press

The LED shift direction is changed.

Shift direction: Left shiftÎRight shiftÎLeft shiftÎRight shift-

- - - -

SW2 normal

press

The shift speed is changed.

Shift speed: 1 secondÎ0.5 secondsÎ0.25 secondsÎ0.125

secondsÎ1 seconds- - -

SW1 long press It controls on and off of the buzzer.

Volume

adjustment

It can adjust the volume of the buzzer while buzzer sounds.

 SW2 SW1 Volume

-36- © Fujitsu

Stop the program as follows:

Select Stop from the Start menu to stop the sample program.

Reset the program as follows:

Select Restart from the Start menu. The program is reset.

© Fujitsu -37-

1.1.7 Terminating of ACCEMIC MDE

To terminate ACCEMIC MDE, select 'Exit' from the File menu.

The ACCEMIC MDE window closes.

1.1.8 Terminating of SOFTUNE

After terminating ACCEMIC MDE, terminate SOFTUNE as follows:

Select 'Exit' from the File menu to terminate SOFTUNE.

The SOFTUNE window closes.

Described above are the basic operation procedures using sample programs to start

debugging.

-38- © Fujitsu

1.1.9 Board operation without ACCEMIC MDE

This Starter Kit can operate the generated program on the board without using

ACCEMIC MDE. The procedure is described below.

First, start the program to be operated on ACCEMIC MDE. The procedure for

operation is described in Item 1.1.6. Confirm that the program runs on ACCEMIC

MDE normally. Then, stop the program, and select "Automatic Start" under

"Tools" in the menu. Then, the following window appears.

Then, put a checkmark on "Automatic start after reset," and press "OK."

It starts erasing the Flash memory and writing the program. It takes several tens

of seconds to complete the writing. Wait for a while. When the program writing

ends, the progress bar disappears.

© Fujitsu -39-

After the writing ends, stop ACCEMIC MDE and SFTUNE. Then, press the

"RESET" button on the board while the USB cable is connected. The same

operations as confirmed on ACCEMIC MDE are available.

Described above are the basic operation procedures by using the sample programs to

start debugging.

Next, let's try to control LED lighting!

-40- © Fujitsu

2 “Let's try to turn on the LED!”
LEDs appear everywhere in our everyday lives -- for example, the LEDs indicating the power-on

status of a laptop personal computer, digital camera, washing machine, air conditioner, or rice

cooker, the LEDs display indicating train departure times at a railroad station, and in traffic signals

using LEDs, which have now become widespread. This chapter explains how to control the port

output of the microcomputer to turn on an LED on the board.

2.1 What is an LED?

A light-emitting diode (LED) is a semiconductor device that emits light when an electric

current passes through it. The LED is represented by the symbol as shown in Figure 2.1.

An LED has two electrodes: anode and cathode. When a voltage is applied across the LED

so that the anode is at a positive potential with respect to the cathode, a current flows and the

LED emits light. In the circuit shown in Figure 2.1, the LED goes on (emits light) when the

switch (SW) is turned on and goes off when the switch is turned off. The brightness of the

LED is controlled through the adjustment of flowing current by changing the resistance. As

the current becomes larger, the emitted light becomes brighter. An LED can emit light in red,

orange, yellow, green, or blue. Since the three primary colors (blue, green, and red) of light

can be produced by combinations of the five colors, a full-color can be displayed by LEDs.

LED

Anode

Cathode
SW

Figure 2.1 LED

Compared with an incandescent lamp, the LED has lower power consumption, longer

operating life, and shorter response time. So, the LED is used in lighting equipment,

backlight for liquid-crystal display monitor, traffic signals, tail lamps of cars, and displays.

The board has red of LED3 and green of LEDs1, 2, 4, and 5 as shown in Figure 2.2.

© Fujitsu -41-

Figure 2.2 LEDs mounted on the board

2.2 How can the LED emit light?

The LED has a pn-junction structure, which is the most fundamental structure of

semiconductor devices. As shown in Figure 2.3, the pn-junction structure consists of a

p-type semiconductor containing many electron holes and an n-type semiconductor containing

many electrons that are joined to each other.

p type n type

-

-

- -

-

-

-

-

-

-+

+

+ +

+

+

+

+

+

+
Light

emission

pn-junction surface

+ electrode - electrode

Figure 2.3 pn-junction structure

When a voltage is applied across the pn-junction structure so that the n-type semiconductor is

at a negative potential with respect to the p-type semiconductor, electrons move from the

n-type semiconductor to the p-type semiconductor , electron holes move in the reverse

direction, and thereby a current flows. Then, some of electron holes and electrons collide

with each other and are combined together. When an electron hole and an electron are

combined together, they lose their energy partially, and the lost energy is emitted in the form

of light. The color of emitted light depends on the material of the semiconductor. Table 2.1

shows examples of semiconductor materials and corresponding colors of emitted light.

-42- © Fujitsu

Table 2.1 Examples of semiconductor materials and colors of emitted light

Semiconductor material Color of emitted light

ZnCdSe Blue

ZnTeSe Green

AlGaAs Red

2.3 How to turn on an LED by microcomputer

Figure 2.1 showed an example of circuit in which an LED is turned on and off by turning on

and off a switch. This section explains how to control the switch using a

microcomputer.Figure 2.4shows the connection of LEDs to the microcomputer on the board.

Figure 2.5 shows a conceptual diagram of the connection. In the case of (a) in Figure 2.5,

the signal output from pin P10 is at the high level. Therefore, no current flows through the

LED and the LED is off. In the case of (b) in Figure 2.5, the signal output from pin P10 is at

the low level. Therefore, a current flows through the LED, and the LED goes on. The

switch in the microcomputer can be operated by a program that controls the microcomputer.

Figure 2.4 Actual circuit diagram

© Fujitsu -43-

Pin P10

Microcomputer

Pin P10

Microcomputer

(a) LED is off. (b) LED is on.

LED LED
On Off

Figure 2.5 Example of circuit to turn on/off an LED (with a conceptual diagram of the internal circuit of

microcomputer)

The output settings of pins P10 to P14 are controlled by using the internal registers of the

microcomputer. The pins P10 to P14 are controlled by the PDR1 and DDR1 registers as

shown in Figure 2.6. To use a port for output, write the value (0 [low] or 1 [high]) to be

output to the PDR1 register bit corresponding to the pin, and 1 to the DDR1 register bit

corresponding to the pin.

Registers are the memory areas to control microcomputer operation and retain microcomputer

operation status. Writing data to, and reading data from registers enables you to control the

CPU and peripheral functions of the microcomputer. Here, the term peripheral functions

means the functions of the I-O ports, timers, and A/D converter incorporated in the

microcomputer.

PDR1 register

（IO_PDR1.byte）

 7 6 5 4 3 2 1 0

DDR1 register

（IO_DDR1.byte）

 7 6 5 4 3 2 1 0

P17 P16 P15 P14 P13 P12 P11 P10

 Input setting (DDR1 bit0 = 0) Output setting (DDR1 bit0 = 1)
When 0 is read Î Low-level input When 0 is written Î Low-level output PDR1 bit0
When 1 is read Î High-level input When 1 is written Î High-level output

P17 P16 P15 P14 P13 P12 P11 P10

- For input setting, this register is used to check the input level

of each pin (value read from the bit corresponding to each

pin: 0 [low-level input] or 1 [high-level input]).

- For output setting, this register is used to set the output level

of each pin (value written to the bit corresponding to each

pin: 0 [low-level output] or 1 [high-level output]).

- This register is used to specify whether each port (pin) is

used for input or output (value written to the bit

corresponding to each pin: 0 [input] or 1 [output]).

Pin name

Pin name

Example of P10 setting

bit

bit

Figure 2.6 Explanation of registers to control the output from P10 to P14

-44- © Fujitsu

The internal switch of microcomputer as shown in Figure 2.5 actually consists of a p-channel

type transistor and an n-channel type transistor as shown in Figure 2.7. The pin outputs a

low-level signal when the n-channel type transistor is in the on state; the pin outputs a

high-level signal when the p-channel type transistor is in the on state. You can switch the

output level of each port by setting the relevant value in the PDR1 register of the

microcomputer. In the example shown in Figure 2.7, '0' is written to the bit 0 of PDR1to set

pin P10 for low-level output, and '1' is written to the bit 1 of PDR1 to set pin P11 for

high-level output. With these settings, LED0 is turned on, and LED1 is turned off.

Pin P11

Pin P10

Microcomputer LED0

LED1

DDR1 bit0=1

1

Input

Output

DDR1 bit1=1

1

Input

Output

n-channel type
transistor ON

PDR1 bit1=1

On

Off

0

0

PDR1 bit0=0

p-channel type
transistor ON

Figure 2.7 LED on/off control by rewriting the PDR1 register (with a conceptual diagram of the

internal circuit of microcomputer)

On the board, the LEDs are connected to pins P10 to P14. Therefore, the five pins are set to

the output mode for controlling the LEDs. When the microcomputer is reset, all bits of DDR

are reset to 0 (initial value), which means the ports are set to the input mode. In this status,

to use a pin as an output port, be sure to write '1' to the bit corresponding to the pin.

2.4 How to create and execute a program to turn on the LED

This section explain how to create a program that actually controls a microcomputer pin to

turn on an LED.

© Fujitsu -45-

2.4.1 Outline of program to be created

Here, you will create a program that outputs a low-level signal from pin P14 of the

microcomputer to turn on LED5. Figure 2.8 shows the flow of the program. In the

flow, a value is set in the PDR1 register first, and then output setting is made using the

DDR1 register. For port output, be sure to set the output level in the PDR1 register

before the output setting using the DDR1 register. The setting operation should be

performed in this order because the initial value that is applied after the microcomputer is

reset is not defined for the PDR1 register (to set the output level).

Figure 2.8 Flow of the program to turn on the LED

2.4.2 Creating and executing of program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" stored in ”sample.prj”, and input the program

portion enclosed by dotted line in Figure 2.9. Use the files other than "main.c" without

modification. After the input of the program, build the program according to the

procedure described in Appendix A.2. If an error message is output, check that the

content of the input program is exactly the same as the description shown in Figure 2.9.

When the build operation ends successfully, ACCEMIC MDE starts automatically.

After the ACCEMIC MDE window appears, execute the program and check its operation.

For how to execute the program, see Appendix B.1. While the program is executed,

you can see that LED5 goes on on the board.

Set LED5 to on.
Set P14 output level to low (PDR1.bit4=0).

Set P14 to output mode
(DDR1.bit4=1)

Infinite loop

(1)

(2)

(3)

START

-46- © Fujitsu

Figure 2.9 Program to turn on the LED

Descriptions ”IO_XXX.byte” and ”IO_YYY.bit” included in the above program code are

the convenient formats of description defined in the I-O header file. For further

information, see Appendix B.1.

2.5 How to create and execute a program to make the LED blinking

This section explains how to create a program that makes the LED be blinking.

2.5.1 Outline of the program to be created

Here, you will create a program that switches the output from pin P14 of the

microcomputer between the low and high levels repeatedly to make LED5 turn on and

off repeatedly. While 0 and 1 are written alternately to the bit 4 of the PDR1 register ,

LED5 is blinking as shown below.

LED5 is on. (LED1 to LED4 are off.) Î LED5 is off. (LED1 to LED4 are off)

Figure 2.10 shows the flow of the program. The only difference of this program from

the LED lighting program shown in Figure 2.8 is that this program has additional steps

of LED off and LED on/off time count processing. The LED on/off time count

processing is described by the for-statement as shown below to enable you to visually

confirm the on/off operation of the LED. You can vary the on/off time by changing

the currently set value (30000).

- On/off time count for(i=0;i<30000;i++);

void main(void)
{
 IO_PDR1.byte=0xEF;

 IO_DDR1.byte=0x1F;

 while(1);

}

(1) LED5 on setting (P14=Low, P10 to P13=High)

(2) P10 to P14 output setting

(3) Infinite loop

On Off

Program to be added

© Fujitsu -47-

Figure 2.10 Flow of the program to make LED5 blinking

2.5.2 Creating and executing of program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" stored in ”sample.prj”, and input the program

portion (after "while (1)") enclosed by dotted line in Figure 2.11 to the LED lighting

program created in Section 2.4.2. Use the files other than "main.c" without modification.

After the input of the program, build the program according to the procedure described in

Appendix A.2. If an error message is output, check that the content of the input program

is exactly the same as the description shown in Figure 2.11. When the build operation

ends successfully, ACCEMIC MDE starts automatically.

After the ACCEMIC MDE window appears, execute the program and check its operation.

For how to execute the program, see Appendix A.3. While the program is executed, you

can see that LED5 goes on on the board.

Set LED5 to on.
Set P14 output level to low (PDR1.bit4=0).

Set P14 to output mode
(DDR1.bit4=1)

START

Set LED5 to off.
Set P14 output level to high (PDR1.bit4=1).

no

yes

Count reached 30000?

Set LED5 to on.
Set P14 output level to low (PDR1.bit4=0).

no

Count reached 30000?

yes

(1)

(2)

(3)

(4)

(5)

(6)

-48- © Fujitsu

Figure 2.11 Program to make LED5 blinking

void main(void)
{
 IO_PDR1.byte=0xEF;

 IO_DDR1.byte=0x1F;

 while(1)
 {
 int i;

 for(i=0;i<30000;i++);

 IO_PDR1.byte=0xFF;

 for(i=0;i<30000;i++);

 IO_PDR1.byte=0xEF;
 }
}

(1) LED5 on setting (P14=Low, P10 to P13 =High)

(2) P10 to P14 output setting

(6) LED5 on setting (P14=Low, P10 to P13=High)

(3) LED5 on time count

(4) LED5 off setting (P10 to P14 =High)

(5) LED5 off time count

Program to be added

© Fujitsu -49-

3 “Let's try to control the LED by switch operation!”
This chapter explains how to control LEDs by operating the push switches on the board and how

to create a program that controls LEDs based on switch operations.

3.1 How the microcomputer detects switch operation

The board of the Starter Kit has two switches (SWs) as shown in Figure 3.1. The switches

are connected to pins P25 and P27 of the microcomputer. The following explains how the

microcomputer detects your operation of these switches.

Figure 3.1 Switches on the Starter Kit board

Figure 3.2 shows a conceptual diagram of the connection of SW1 on the board. On the board,

SW1 is connected to pin P25, which is a general I-O port of the microcomputer. While SW1

is released (off state), the voltage applied to pin P25 of the microcomputer is Vcc (5 V), which

is the high-level input. When SW1 is pressed (on state), the input to pin P25 becomes the

low level because the voltage at pin P25 becomes GND. Thus, the input status at pin P25 of

the microcomputer changes depending on the state of SW1. The same mechanism applies to

SW2, except that SW2 is connected to pin P27, which is a general I-O port of the

microcomputer. Therefore, the input status at pin P27 changes when SW2 is operated.

Figure 3.2 Connection of SW1 to microcomputer pin (conceptual diagram)

GND GND

SW1

Pin P25

PDR2 register

Microcomputer

■When SW1 is off

SW1

Vcc

Pin P25

PDR2 register

Microcomputer

■When SW1 is on

Vcc

SW2SW1

-50- © Fujitsu

The change of pin status can be detected by a program running on the microcomputer The

microcomputer of the Starter Kit can determine the status of pins P25 and P27 from the

corresponding values in an I-O port register (PDR2). Register values can be read using

instructions of a microcomputer program. In other words, the microcomputer can determine

the operation state of a switch by reading the corresponding value from PDR2 by the program.

Let us explain some specifications of PDR2. PDR2 is the 8-bit register that indicates the

status of port 2 pins (P20 to P27). Figure 3.3 shows the association of the pins at port 2 with

the bits of PDR2. When a pin is at the high level, the corresponding bit is 1; when the pin is

at the low level, the bit is 0. Therefore, the status of pin P25, or the operation state of SW1,

can be known when the value of the bit 5 of PDR2 is read. Similarly, the operation state of

SW2 can be known when the bit 7 of PDR2 is read.

Figure 3.3 Outline of PDR2 and DDR2 registers (conceptual diagram)

When using port 2 pins, you must specify whether they are used for input or they are used for

output. DDR2 is the 8-bit register to switch the signal direction (between input and output)

of each pin at port 2. The association of the bits of DDR2 with the pins at port 2 is as shown in

Figure 3.3. To use a pin for output, 1 should be written to the corresponding bit of DDR2; to

use the pin for input, 0 should be written to the corresponding bit of DDR2. Here, P25 and

P27 are used as input pins to input signals from SW1 and SW2. Therefore, 0 should be

written to the bits 5 and 7 of DDR2.

The above explanation can be summarized into the following processes to detect the switch

state by a microcomputer program:

(1) Write '0' to DDR2 bits 5 and 7, and set port 2 pins P25 and P27 to input mode.

(2) Read the values of PDR2 bits 5 and 7.

P25

Inside of

Port 2 pins P20 P21 P22 P23 P24 P26
P27

SW2

SW1

*PDR value
High : 1， Low : 0

DDR2

Bit 0 1 2 3 4 5 6 7

PDR2

Bit 0 1 2 3 4 5 6 7

© Fujitsu -51-

- When the read value is '0,' the switch can be determined to be in the on state.

- When the read value is '1,' the switch can be determined to be in the off state.

3.2 How to create and execute a program to control LEDs by switch operation

This section explains how to create a program to detect the switch operation state. The

program also controls LED operation to enable you to visually know that the switch operation

state is detected. The program applies the method of turning on the LED described in the

previous chapter.

3.2.1 Outline of program to be created

The operation of the program to be created is as described below. Figure 3.4 is the flow

of the program that performs the operation.

(1) When SW1 is pressed, LED1 is turned on.

(2) While SW1 is in the on state, LED1 is kept lighting.

(3) When SW1 is released (set to off), LED1 is turned off.

(4) Similarly, LED2 is turned on and off according to the SW2 state.

Figure 3.4 Flow of program

(5)(4)

START

Set output pins for LED1 and LED2
(PDR1.bit0=1, PDR1.bit1=1)

Set input pins for SW1 and SW2
(DDR2.bit5=0, DDR2.bit7=0)

Set LED1 to on (PDR1.bit0 = 0) Set LED1 to off (PDR1.bit0 = 1)

SW1 input state?
PDR2.bit5 = 0

PDR2.bit5 = 1

------------- (1)

------------- (2)

(3)

(8)(7)
Set LED2 to on (PDR1.bit1 = 0) Set LED2 to off (PDR1.bit1 = 1)

SW2 input state?
PDR2.bit7 = 0

PDR2.bit7 = 1(6)

-52- © Fujitsu

This program first sets the output pins for the LEDs, and then sets the input pins for the

switches. The necessity of these settings was explained in the previous section. The

program subsequently reads the value of the bit 5 of PDR2 to detect the state of SW1.

The program turns on or off LED1 according to the read value. To turn on and off

LED1, the program writes 0 or 1, respectively, to the bit 0 of PDR1. Also for SW2, the

program performs the similar processing and controls LED2.

3.2.2 Creating and executing of program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" stored in ”sample.prj”, and input the program

portion enclosed by dotted line in Figure 3.5. Use the files other than "main.c" without

modification. After the input of the program, build the program according to the

procedure described in Appendix A.2. If an error message is output, check that the

content of the input program is exactly the same as the description shown in Figure 3.5.

When the build operation ends successfully, ACCEMIC MDE starts automatically.

After the ACCEMIC MDE window appears, execute the program and check its operation.

For how to execute the program, see Appendix A.3. After executing the program, press

SW1 or SW2. If LED1 or LED2 goes on, the program operation is correct.

Figure 3.5 Sample program code (main routine)

void main(void)
{

__set_il(7);

__EI();

IO_PDR1.byte = 0x00;
IO_DDR1.byte = 0x1F;

IO_DDR2.byte = 0x00;

while(1)
{

if(IO_PDR2.bit.P25==1){
IO_PDR1.bit.P10 = 1;

}
else{

IO_PDR1.bit.P10 = 0;
}

if(IO_PDR2.bit.P25==1){

IO_PDR1.bit.P10 = 1;
}
else{

IO_PDR1.bit.P10 = 0;
}

}

}

(1) Port 1(LED control) output setting

(2) Port 2 （SW input） input setting

(3) SW1 input state？
(4) LED1 on

(5) LED1 off

(6) SW2 input state？
(7) LED2 on

(8) LED2 off

Program code added

© Fujitsu -53-

Descriptions ”IO_XXX.byte” and ”IO_YYY.bit” included in the above program code are

the convenient formats of description defined in the I-O header file. For further

information, see Appendix B.1.

-54- © Fujitsu

4 “Let's try to sound a buzzer!”
Our daily life is full of sounds. Many of them are not natural sounds but artificial sounds that

give us signals, draw our attention to something, and give us information. The loud sound of the

alarm clock wakes us up every morning. The cooking timer buzzer sounds to let us know when

to stop boiling eggs for our favorite softness of yolk. We are surrounded and given much

information by artificial sounds varied in loudness and tone, including those of microwave ovens,

level crossing alarms, and automobile horns.

Microcomputers are often used to produce these artificial sounds. A microcomputer can be used

to control the timing, tone, and pitch of a sound. This chapter explains how to control a buzzer

sound simply by using microcomputer functions.

4.1 Devices used for buzzer

Before explaining the mechanism of a buzzer, this section describes the piezoelectric device

that is used for a buzzer.

A piezoelectric device is a circuit element that uses a piezoelectric effect. The piezoelectric

device incorporates a substance characterized by the piezoelectric effect (which causes a

voltage when an impact or pressure is applied) or the inverse piezoelectric effect (which

causes a crystalline distortion when a voltage is applied).

A quartz oscillator is a familiar example of piezoelectric device that uses the piezoelectric

characteristics. The buzzer to be controlled by the microcomputer of the Starter Kit

incorporates this piezoelectric device. Piezoelectric devices are also used for piezoelectric

loudspeakers, crystal earphones, vibration sensors, and microphones.

© Fujitsu -55-

4.1.1 Crystalline characteristics of piezoelectric device

A piezoelectric device uses a substance that has a polarization characteristic.

Some crystals have an electrical deflection as an inherent characteristic. This

characteristic is called "polarization," and the crystal having this characteristic is called a

"polarized crystal." More specifically, the polarized crystal contains polarized molecules

as shown in Figure 4.1.

In the figure, the direction of polarization is represented by the green arrow indicating the

direction from the positive (+) pole to the negative (-) pole.

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

＋ ー＋ ー

+ ー

Figure 4.1 Polarization of molecules and crystal

4.1.2 Piezoelectric characteristics

As shown in Figure 4.2, a crystal sometimes has a characteristic that expands the crystal

when a voltage is applied in the direction of polarization (direction of green arrow). This

characteristic is called the piezoelectric effect. When a piezoelectric crystal is given a

voltage in the reverse direction of polarization (reverse direction of green arrow), the

crystal contracts.

++++++++++

++++++++++

++++++++++++++++

++++++++++++++++

Expansion Contraction

Figure 4.2 Piezoelectric crystal

-56- © Fujitsu

4.1.3 Principle of piezoelectric device

When an AC voltage is applied across a piezoelectric crystal, the crystal contracts or

expands alternately each time the direction of current is reversed as shown in Figure 4.3.

The cycle of contraction and expansion changes when the frequency of AC voltage is

varied. This characteristic can be used to vibrate the crystal at various frequencies. If

the vibrational energy of the crystal is large, the crystal can generate an aerial vibration,

which makes a sound. Piezoelectric buzzers use this principle.

 ++++++++++

++++++++++

++++++++++++++++

++++++++++++++++

Expansion Contraction

Figure 4.3 Principle of piezoelectric device

4.2 Microcomputer and piezoelectric buzzer

A piezoelectric buzzer uses a piezoelectric device as described above. To produce a sound

from the piezoelectric buzzer, you should apply a changing voltage, e.g., AC or pulse voltage,

to the buzzer. Here, let's sound a piezoelectric buzzer by using a pulse wave (pulse voltage)

output from the microcomputer.

Vibration

Pulse input

Figure 4.4 Buzzer using a piezoelectric device

© Fujitsu -57-

4.2.1 Self-excited and separately excited vibrations

Buzzers are classified into two types. One type, called a self-excited buzzer, generates

only one sound by the self-resonance of the crystal when a voltage is applied. The other

type, called a separately excited buzzer, generates different kinds of sound according to

the frequency of applied voltage. The self-excited buzzer can generate only one kind of

buzzer sound based on the self-resonant frequency of the crystal. The separately excited

buzzer can generate the buzzer sound that varies depending on the frequency of applied

voltage. Therefore, the separately excited buzzer enables to vary the sound in a wide

range of frequencies.

The board of the Starter Kit has a built-in buzzer, the KBS-13BB-4P-2 made by Kyocera

Corporation. Since this buzzer is of separately excited type, it can be used to produce

various tone colors of sound in principle.

Figure 4.5 buzzer

4.2.2 Pulse wave generated by the microcomputer

The microcomputer can output a pulse wave in several ways. The basic method to

output a pulse wave is to use a built-in timer and the setting of H-level and L-level widths.

The microcomputer has different built-in timers that can be used for different purposes.

Here, use the programmable pulse generator (PPG) timer, which is convenient for pulse

output, to output a simple pulse wave for sounding the buzzer.

4.3 How to sound the buzzer by PPG

The programmable pulse generator (PPG) enables you to obtain the output of various widths

of pulse from the microcomputer through programming. You can basically output a pulse

wave from the microcomputer when you make the following settings on the PPG timer:

¾ Setting of L-level and H-level duration

¾ Setting of PPG count clock

buzzer

-58- © Fujitsu

The following sections sequentially explain how to use the PPG timer:

4.3.1 Setting of L-level and H-level duration

L-level duration H-level duration

Figure 4.6 Cycle of pulse and L-level and H-level duration

To output a pulse wave based on the PPG timer, you should set the duration of L-level and

H-level signals as the counts by the PPG timer. For example, when you specify 300 as

the count of L-level duration and 500 as the count of H-level duration, the PPG outputs

the L-level signal while the PPG timer counts 300 and the H-level signal while the PPG

timer counts 500 alternately from the PPG output pin. The counting by the PPG timer is

called "PPG counting."

4.3.2 PPG count clock

To output a pulse wave based on the PPG timer, you should also set the speed of PPG

counting. The PPG count per second (that is, the frequency of PPG counting) is called

the "PPG count clock."

The PPG count clock is set on the basis of the CPU clock (internal operating frequency)

of the microcomputer. In details, the PPG count clock is set to the divide-by-1,

divide-by-2, divide-by-4, divide-by-8, or divide-by-16 (whole, one half, one quarter,...)

frequency of the CPU clock.

When the PPG count clock is set, the cycle of pulse set in Item 4.3.1 is determined.

4.4 How to create and execute a program to sound the buzzer

Here, let's create a program to actually control the operation of the PPG timer in the

microcomputer and sound the buzzer.

© Fujitsu -59-

START

Perform initial setting.

Enable PPG output pin.

Set PPG count clock.

Set pulse duration.

Set L-level duration count.

Set H-level duration count.

Start operation.

Enable PPG operation.

Infinite loop

----- (1)

-----(2)

-----(3)

-----(4)

-----(5)

-----(6)

4.4.1 Outline of the program to be created

Figure 4.7 Flow of program to sound the buzzer

The following describes the detailed method of PPG setting:

Let's try to make the settings of L-level duration, H-level duration, and PPG count clock

as described in Items 4.3.1 and 4.3.2. To make these settings, write values to the

registers dedicated to PPG setting in the microcomputer. Writing a value to a register is

a programmed operation in by which the value is set in the register according to an

instruction.

Here, try to make settings for the output of a 4 kHz pulse wave as an example. To make

the setting easier, specify an equal count for L-level and H-level duration, and specify the

PPG count clock same as the internal CPU operating frequency. The CPU operating

frequency is 2 MHz. Therefore, the counts of L-level and H-level duration should be 250

as shown in Table 4.1.

In addition to the above pulse information, you should make settings to enable PPG pin

output and PPG operation. Table 4.1 shows all the necessary register settings.

-60- © Fujitsu

Table 4.1 Register settings

Register for setting （bit）
Setting item

Register name

Value to be set （meaning of

setting）

PRLL （bits 0 to 7）
L-level duration

PPG reload register （L）

0xFA

（Count: 250）

PRLH （bits 0 to 7）
H-level duration

PPG reload register （R）

0xFA

（Count: 250）

PPG （bits 0 to 7）
PPG count clock

PPG count clock selection register

0x00

（Same as internal operating

frequency）

PPGC （bit 13）
Enabling PPG pin

output
PPG operation mode control

register

0 （disabling）

1 （enabling）

PPGC （bit 15）
Enabling PPG

operation
PPG operation mode control

register

0 （disabling）

1 （enabling）

4.4.2 Creating and executing of program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" stored in ”sample.prj”, and input the program

portion enclosed by dotted line in the figure below. Use the files other than "main.c"

without modification. After the input of the program, build the program according to the

procedure described in Appendix A.2. If an error message is output, check that the

content of the input program is exactly the same as the description shown in the figure

below. When the build operation ends successfully, ACCEMIC MDE starts

automatically.

After the ACCEMIC MDE window appears, execute the program and check its operation.

For how to execute the program, see Appendix A.3.

The PPG count clock is set to 2 MHz, equal to the CPU operating frequency. The pulse

duration count is set to 0xFA (250) for both L and H levels. Therefore, the total count of

a cycle is 500, and the pulse wave at 4 kHz will be output. The pulse frequency is

calculated as follows:

2 MHz ÷ 500 (count) = 4 kHz

© Fujitsu -61-

Table 4.2 Correspondence of counts and pulse frequencies (with operating frequency at 2 MHz)

Count per cycle (L-level duration +

H-level duration)
Pulse frequency

125 16 kHz

250 8 kHz

500 4 kHz

1000 2 kHz

After the PPG pulse output is started by the program and the buzzer starts sounding, the

buzzer sound cannot be stopped even when the stop button on the ACCEMIC screen is

clicked. This is because the PPG timer continues operation and pulse output is not

stopped even when the CPU stops. To stop the buzzer, press the stop button and then

reset the microcomputer.

Figure 4.8 Program to sound the buzzer

Descriptions ”IO_XXX.byte” and ”IO_YYY.bit” included in the above program code are

the convenient formats of description defined in the I-O header file. For further

information, see Appendix B.1.

void main(void){

__set_il(7);

__EI();

IO_PPGC23.bit.PE1=0x01;

 IO_PPG23.byte=0x00;

 IO_PRL23.byte.PRLL3=0xFA;

 IO_PRL23.byte.PRLH3=0xFA;

 IO_PPGC23.bit.PEN1=0x01;

 while(1);

}

(1) Enabling PPG pin output

(2) PPG count clock setting

(3) PPG timer count for L-level

(4) PPG timer count for H-level

(5) Enabling PPG

(6) Infinite loop
Program code added

-62- © Fujitsu

4.4.3 Changing the tone of a buzzer sound

Try to vary the setting of pulse duration to check how the buzzer sound changes. Our

audible frequencies are said to range from 20 Hz to 20 kHz. Try to confirm the range of

audible frequencies by changing the buzzer sound. Also, the buzzer sound will change

when the PPG count clock is varied. Try to find the reason for the change.

© Fujitsu -63-

5 “Let's try to control the LED by interrupt.”
A method to detect the switch operation state was described in Chapter 3. There are also other

methods to detect switch operation than the one described in Chapter 3. One of the other

methods is to use an external interrupt input. This chapter explains how to detect switch

operation by using an external interrupt input.

5.1 What is an interrupt?

Let's begin with a brief explanation of interrupts. The word "interrupt" is popularly used in

daily life, and the meaning of the word is similar when the word is used in the world of

microcomputers. Imagine that you are studying at home on the day before an examination

day. You need to focus on study but are disturbed by a telephone call from a friend or an

unexpected visitor. The telephone call and visitor are interrupts. The microcomputer

terminology names the events like the telephone call and visitor as "interrupt factors" and the

handling of such events as "interrupt processing." Of course, the interrupts in the world of

microcomputers are not telephone calls and visitors but the on/off operation of a switch,

reception of communication data, generation of a timer event, and other various events typical

for microcomputers.

Figure 5.1 Cases of interrupt

In the field of microcomputer and embedded system, using interrupts in programs is generally

regarded as an efficient programming method. In the real word, you cannot predict when

you will receive telephone calls and visitors. You cannot focus on study if you have to often

look at the telephone or get the door to check to see if there is a visitor. Therefore, you

usually keep concentrating on study and interrupt it only when you receive a telephone call or

visitor actually; this is more efficient.

The microcomputer is provided with a mechanism that notifies the microcomputer program of

a switch on/off operation, communication data reception, timer event, or the like

-64- © Fujitsu

(corresponding to the telephone call or visitor in the real world) when the event occurs. This

mechanism is the interrupt. A program can be efficient when it uses interrupts. The sample

program described in Chapter 3 uses a procedure for checking the on/off state of the switches

cyclically. However, an interrupt is used in the program, the microcomputer can be notified

of a switch on/off operation by the interrupt when the operation occurs. Therefore, the

processing to cyclically check the on/off state of the switches can be eliminated, and the

efficiency of the program can be increased thereby. This chapter explains how to detect

switch operation by using an interrupt and how to create the program for the operation.

5.2 How to detect a switch operation by interrupts

As described in Chapter 3, the board of the Starter Kit has two switches that are connected to

pins P25 and P27 of the microcomputer. Pins P25 and P27 connecting the switches were

used as input ports in the program example described in Chapter 3. These pins can be used

also as external interrupt input pins (INT5 and INT7). The following describes how to detect

switch operation (pressing of a switch) by using an external interrupt input.

Figure 5.2 shows an outline of SW1 connection circuit on the board of the Starter Kit. SW1

is connected to pin INT5 of the microcomputer as shown in Figure 5.2. While SW1 is

released (in the off state), the voltage at pin INT5 of the microcomputer is Vcc (5 V), and the

signal input to pin INT7 is at the high level. When SW1 is pressed (in the on state), the

voltage at pin INT5 becomes the GND level, and the signal input to pin IN5 changes from the

high level to the low level. When SW1 is released subsequently, the signal input to pin INT5

changes from the low level to the high level. When the external interrupt function of pin

INT5 of the microcomputer is used, an interrupt can be generated when the pin status is

changed. In short, this mechanism enables the microcomputer to be informed of switch

operation by the interrupt. SW2 can be handled in a similar way to handle SW1. Because

SW2 is connected to pin INT7 of the microcomputer, an external interrupt is generated at pin

INT7 when SW2 is operated.

Figure 5.2 Connection of SW1 to microcomputer pin (conceptual diagram)

GND

SW1

Vcc

Pin INT5
(pin P25)

Microcomputer

Starter Kit board

ELVR

ENIR
EIRR

© Fujitsu -65-

Explained next is the procedure for using pin INT5 as an external interrupt pin. To use pin

INT5 for the input of external interrupt, you should set the I-O direction of the pin to input by

using the port 2 register "DDR2." Handling of DDR2 was described in Chapter 3. Write '0'

to the bit 5 of DDR2. You should also set necessary values in external interrupt registers

"EIRR," "ENIR," and "ELVR" for using pin INT5 as the external interrupt input pin. EIRR

is an 8-bit register that indicates external interrupt factors. ENIR is an 8-bit register that

enables and disables external interrupts. ELVR is a 16-bit register that specifies the

conditions for external interrupt detection.

Assume the processing to detect the SW1 operation from the off state to the on state by using

an interrupt. When SW1 is pressed, the signal input to pin INT5 changes from the high level

to the low level (as described before). When values are set in external interrupt registers in

steps (1) to (4) below, the external interrupt function enables the microcomputer to detect the

change (falling edge) of the signal input to pin INT5 from the high level to the low level. In

this way, the on operation of SW1 can be detected as the generation of an interrupt.

(1) Write '0' to the bit 5 of both EIRR and ENIR (to disable the external interrupt via

INT5)

(2) Write '1' to the bits 10 and 11 of ELVR (to generate an external interrupt when a

falling edge is detected)

(3) Write '0' to the bit 13 of both EIRR and ENIR (to clear the INT5 interrupt factor)

(4) Write '1' to the bit 5 of both EIRR and ENIR (to enable the external interrupt via

INT5)

5.3 How to create and execute a program to control the LED by switch Input operation

This section explains how to create a program to detect switch operation by an external

interrupt. The program is also designed to operate an LED to enable you to visually see the

detection of switch operation. The program incorporates the method to turn on an LED

explained in Chapter 2.

5.3.1 Outline of the program to be created

Let's create a program to better understand the operation of interrupt processing. This

program will be very similar in contents to the LED control program created in Chapter

2, except that this program will have an additional portion to process the interrupt

generated by switch operation. The main operation by the program is as described

-66- © Fujitsu

below. Figure 5.3 shows the flow of the program.

(1) When the program starts, LED1 starts blinking.

(2) When SW1 is pressed, LED3 goes on.

(3) Each time SW1 is pressed, LED3 goes off and on alternately.

The main processing by the program begins with the setting of LED output and switch

input pins. This setting was described in Chapter 3. Next, the program makes the

settings related to the external interrupt and enables the external interrupt. Then, the

program makes LED1 be blinking. Blinking of LED1 continues until the stop or reset

button is pressed on the ACCEMIC screen. When SW1 is pressed after the external

interrupt is enabled, an INT5 interrupt is generated, and an interrupt routine is called.

The interrupt routine clears the interrupt factor and switches LED3 between on and off

states. In summary, this program makes LED1 blinking processing usually as the main

processing, and switches LED3 between the on and off states only when the interrupt is

generated by switch operation.

 - - - (1)

 - - - (2)

 - - - (3)

 - - - (4)

(5)

 - - - (6)

Figure 5.3 Flow of the program

- - - (7)

- - - (8)

Clear external interrupt factor
(ENRR.bit5 = 0)

Start of external interrupt processing

End of external interrupt processing

Turn on or off LED3
(PDR1.bit2 = !(PDR1.bit2))

Interrupt generated by SW1
Start of main processing

Set output pins for LED1 and LED3
(PDR1.bit0 = 0，DDR1.bit0 = 1,
PDR1.bit2 = 0，DDR1.bit2 = 1)

Set input pin for SW１
(DDR2.bit5 = 0)

Turn on or off LED1
(PDR1.bit0 = !(PDR1.bit0))

3000 counted?

Enable interrupt.
（ENIR.bit5 = 1）

Set external interrupt of SW1
(ENIR.bit5 = 0,

ELVR.bit10 = 1, ELVR.bit11 = 1,
ENRR.bit5 = 0)

© Fujitsu -67-

5.3.2 Creating and executing of program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" stored in ”sample.prj”, and input the program

portions enclosed by dotted line in Figure 5.4 and Figure 5.5. Use the files other than

"main.c" without modification. After the input of the program, build the program

according to the procedure described in Appendix A.2. If an error message is output,

check that the content of the input program is correct. When the build operation ends

successfully, ACCEMIC MDE starts automatically.

After the ACCEMIC MDE window appears, execute the program and check its operation.

For how to execute the program, see Appendix A.3. After the program starts normally,

check LED1. LED1 is blinking when the program is operating normally. Also, press

SW1 to check for normal interrupt operation. The interrupt operation is normal if LED3

goes on and off alternately each time SW1 is pressed.

Figure 5.4 Sample program code (main routine)

voi main(void)
{

__set_il(7);

__EI();

IO_PDR1.byte = 0x00;
IO_DDR1.byte = 0x1F;

IO_DDR2.byte = 0x00;

IO_ICR06.byte=0x00
IO_ENIR.bit.EN5=0;
IO_ELVA.word=0x0800;
IO_ENRR.bit.ER5=0;

IO_ENIR.bit.EN5=1;

while(1)
{

for(i=0;i<30000;i++);

IO_PDR1.bit.P10 = ~ IO_PDR1.bit.P10;

}
}

(1) Port 1（LED control) output setting

(5) LED on/off time count

(6) LED state change

(3) Interrupt-related processing
Setting to use external interrupt

（INT5）

(4) Enabling interrupt

Program code added

(2) Port 2 (switch input) input setting

-68- © Fujitsu

Figure 5.5 Sample program code (interrupt routine)

The ext_int function is called when the external interrupt (INT5) is generated. If you

program the above operation without using this sample project, you should register the

interrupt routine in the vector table so that the ext_int function will be called when the

external interrupt (INT5) is generated. You need not perform the registration when you

use this sample project in which the interrupt routine has already been registered.

Descriptions ”IO_XXX.byte” and ”IO_YYY.bit” included in the above program code are

the convenient formats of description defined in the I-O header file. For further

information, see Appendix B.1.

__interrupt void ext_int(void)
{
 IO_EIRR.bit.ER4=0x0;
 IO_PDR1.bit.P12=~IO_PDR1.bit.P12;
}

(7) Interrupt factor clearance
(8) LED on/off switching

Program code added

© Fujitsu -69-

6 “Let's blink the LED by using a timer interrupt.”
The procedure for controlling the LED blinking is described in Item 2.5 in Chapter2. There are

some other methods to control the LED blinking other than the method described in Chapter 2.

One of them is the method using a "timer interrupt." This chapter describes the method to control

the LED blinking by using a 16-bit reload timer.

6.1 What is a timer?

Let's begin with a brief explanation of the "timer." The word "timer" is often heard in daily

life, such as a recording timer of VCR, a start timer or sleep timer of the audio system, a

kitchen timer for cooking, or the timer function of an alarm clock. The function of the timer

contained in the microcomputer is the same as those timers. Let's take the alarm clock timer

as an example to explain the timer function. Most of the people set the alarm clock timer for

a certain time and wake up at the sound of the alarm every morning. What would happen if

there was no alarm timer function? People would be bothered about the time to wake up

once the dawn breaks and could not keep relaxing and sleeping. People can re-realize that

the timer function of the alarm clock allows us to sleep tight until the time to get up.

The microcomputer has the timer interrupt function that performs as an alarm timer function.

In this case, the timer interrupt is used for the LED-on time count and the LED-off time count.

Because the LED blinking control described in Item 2.5 in Chapter2 counts the LED-on time

and LED-off time by executing the CPU instruction, the CPU is always required to perform

the processing for controlling the LED blinking. Figure 6-1 LED blinking processing

without using the timer interrupt shows the LED blinking processing without using the

timer interrupt. This figure shows that the CPU must always control the LED and there is no

time for other processing.

CPU processing
LED-on time count

LED-on LED-off LED-on LED-off

LED-off time count LED-on time count

ON/OFF switching ON/OFF switching ON/OFF switching

Figure 6-1 LED blinking processing without using the timer interrupt

When a timer is used, the timer can take the processing of counting the LED-on and -off

time that is described in Figure 6-1 so that the CPU does not have to count the LED-on and

-off time. The CPU can perform processing other than the LED blinking control accordingly.

-70- © Fujitsu

Figure 6-2 shows the LED blinking processing with using the timer.

CPU processing
Count not required

Timer interrupt factor

LED-on LED-off LED-on LED-off

Timer counter

Number of counts

Cleared by software Cleared by software
Cleared by

software

Count not required Count not required

ON/OFF switching
Interrupt processing

ON/OFF switching
Interrupt processing

ON/OFF switching
Interrupt processing

Count clock cycle

Timer

Figure 6-2 LED blinking processing with using the timer

To use the timer to count the LED-on and -off time, the count clock and the number of the

counts need to be specified. The LED-on and -off time can be calculated by using the

following expression. Using the timer, as just described, has the advantage of enabling the

accurate time count.

LED-on and -off time period = count clock cycle × number of counts

6.2 How to create and execute a program to control the LED blinking by using a timer

interrupt

This section explains how to create a program to control the LED blinking by using a timer

interrupt. The 16-bit reload timer is used for the timer of this program.

6.2.1 Outline of the program to be created

In Chapter 2, the LED blinking time is controlled by a WAIT of the loop processing.

In this section, a program that uses the 16-bit reload timer interrupt to count the LED blinking

time is created. The LED operation of this program is the same as that of the program

created in Chapter 2. However, as the operation of the microcomputer, the 16-bit reload

timer instead of the CPU is used for counting the LED-on and -off time. The CPU is not

© Fujitsu -71-

required for counting the LED-on and -off time.

Figure 6-3 Flow of the program shows the flow of the program.

Figure 6-3 Flow of the program

The program created in this section goes into an infinite loop (No. 12 in the flow of the

program) after a sequence of the processing. During this infinite loop processing, the

CPU can execute any processing other then the LED processing. Table 6-1 Register

setting of 16-bit reload timer shows the register of the 16-bit reload timer that is set in

the program created in this section. Suppose the LED-on and -off time is one second.

The value to be set for the counter of the 16-bit reload timer can be calculated by using

the following expression accordingly.

LED -on and -off time period = Count clock cycle (16 µs) × Number of counts (62500)

= 1 s

(1)

Timer interrupt factor is cleared.

Timer interrupt processing ends.

ON/OFF switching of LED5

Timer interrupt is generated.

Set CPU interrupt level.

Infinite loop

Start of main processing

Set LED5 to "on."
Set P14 output level to "Low."

Set P14 to output mode.
(DDR1.bit4 = 1)

Set interrupt permission.

Set timer interrupt level.

Set timer count value.

Set timer count clock.

Set timer count repeat.

Timer operation permission (wait for a start factor)

Software start factor of timer (starts operation)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(10)

(11)

(12)

Timer interrupt processing starts.

(13)

(14)

Timer interrupt permission (9)

-72- © Fujitsu

Table 6-1 Register setting of 16-bit reload timer

Register name Setting item
Setting bit Setting value (meaning)

TMRLR register Timer count value
D0 to D15 (bit0 to bit15)

0 × F424 （62500 counts）

TMCSR0 register Timer count clock
CSL0, CSL1(bit10, bit11)

10 (count clock cycle: 16 µs)*

TMCSR0 register
Timer count repeat

RELD (bit4)

0 (Timer stops at an interrupt generation.)
1 (Timer count is reset at an interrupt generation and

the operation continues.)
TMCSR0 register Timer interrupt

permission INTE (bit3)
0 (Timer interrupt permitted)

1 (Timer interrupt not permitted)
TMCSR0 register Timer interrupt

factor UF (bit2)
0 (There is no timer interrupt factor.)
1 (There is a timer interrupt factor.)

TMCSR0 register Timer operation
permission CNTE (bit1)

0 (Not permitted）
1（Permitted）

TMCSR0 register Timer software start
TRG (bit0)

0 （No effect）
1 （Start）

* Count clock cycle (16 µs) = 32 / Internal operation frequency (2 MHz)

6.2.2 Creation and execution of the program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" in sample.prj and input the program that is

the circled part in Figure 6-4 Example of program code (main routine) and Figure 6-5

Example of program code (interrupt routine). Use all files except main.c without any

changes. After the program is input, "build" the program according to the procedure

described in Appendix A.2.

If an error is output, reconfirm that the program accords to the contents of Figure 6-4

Example of program code (main routine) and Figure 6-5 Example of program code

(interrupt routine). When the "build" is succeeded, "ACCEMIC MDE" starts

automatically.

When the "ACCEMIC MDE" window appears, execute the program and check the

operation. For the procedure of the program execution, see Appendix A.3. When the

program starts correctly, check LED5. Blinking LED5 indicates the normal operation.

© Fujitsu -73-

Figure 6-4 Example of program code (main routine)

Figure 6-5 Example of program code (interrupt routine)

The reload_int function in Figure 6-5 Example of program code (interrupt routine) is

to be executed when an interrupt of the 16-bit reload timer is generated. It is normally

required to register the interrupt routine on the vector table so that the reload_int function

is executed when an interrupt of the 16-bit reload timer is generated. In this sample

project, however, it has already been registered, so it can be used without registration.

In the above code, there are some expressions such as "IO_XXX.byte" and "IO_YYY.bit".

These are the useful description formats, which are defined in the IO header file. For

more information, see the Appendix.

void main(void)
{

 IO_PDR1.byte=0xEF;

 IO_DDR1.byte=0x1F;

 __set_il(7);

 __EI();

 IO_ICR03.byte=0x06;

 IO_TMR[0]=0xF424;

 IO_TMCSR0.bit.CSL=2;

 IO_TMCSR0.bit.RELD=1;

 IO_TMCSR0.bit.INTE=1;

 IO_TMCSR0.bit.CNTE=1;

 IO_TMCSR0.bit.TRG=1;

 while(1);

}

(5) Timer interrupt level setting

(3) CPU interrupt level setting

(4) Interrupt permission

Program code to be added

__interrupt void reload_int(void)
{
 IO_TMCSR0.bit.UF = 0;

 IO_PDR1.bit.P14=~IO_PDR1.bit.P14;
}

(12) Clearing interrupt factor

(13) LED-on/off switching

Program code to be added

(1) LED5 on setting P14=Low

(2) P10 to P14 output setting

(12) Infinite loop

(6) Timer count value setting

(7) Timer count clock setting

(8) Timer count repeat setting

(10) Timer operation permission (wait for
a start factor)
(11) Software start factor of timer (starts
operation)

(9) Timer interrupt permission

-74- © Fujitsu

7 “Let's use the A/D converter.”

This section describes the processing to convert the analog signals input to the microcomputer into

the digital signals by using the A/D converter and to load the digital signals into the

microcomputer.

This Starter Kit can control the value of the voltage applied to the analog pin for the A/D converter

by using the volume tab mounted on the board. Let's input the analog signal to the

microcomputer by using this tab. The input analog signal can be converted into the digital signal

by the A/D converter and processed by the microcomputer.

Figure 7-1 Adjustment of applied voltage with volume tab

7.1 Analog and Digital

Do you know the difference between analog and digital? Those are explained as follows in a

dictionary.

Table 7.1 Analog and digital

 Definition in a dictionary

Analog
Expressing states of a material or system according

to its physical quantity that varies continuously

Digital
Expressing states of a material or system according

to discrete signals such as numbers or characters

Although you read the above definitions, you may have a hard time picturing them.

Intuitively speaking, initially, everything is in analog value. At the moment a person tries to

determine the size or variety of the analog value, the quantity becomes digital value. In other

words, a digital value exists only when an analog value exists. A digital value is what an

analog value is divided into some levels for easier handling and converted to easier

Volume tab for

adjusting applied voltage

© Fujitsu -75-

understandable form.

Figure 7-2 Low accurate digital conversion shows an example of analog and digital

signals. The blue line indicates an analog signal, and the black line indicates a digital signal.

The digital signal in this figure is a low accurate A/D conversion result.

Figure 7-2 Low accurate digital conversion

7.1.1 Outline of A/D converter

A digital value is a value into which an analog value is divided according to a standard

based on a certain rule. The A/D converter is mounted on the microcomputer to

perform this conversion. For this conversion, the important factor is resolution. This

resolution is, like the resolution of photograph, a scale of how small the analog value is

to be resolved and converted to the digital value. For example, a school record that is

evaluated on a scale of one to five can be a poor accurate digital value. In contrast, a

school record that is evaluated on full mark of a 1000-point scale can be a highly

accurate digital value.

The microcomputer mounted on this Starter Kit contains the A/D converter that has

10-bit resolution (8-bit resolution is also available). Having the 10-bit resolution

means that it can resolve an analog value into 210, or 1024, levels to convert it to a

digital value (with 8-bit resolution, the value is resolved into 28, or 256, levels). The

higher the resolution is, the more highly the A/D conversion can be accurate. The

following shows the 1-bit voltage accuracy (at 5 V) with 10-bit resolution and 8-bit

resolution.

1-bit voltage accuracy (at 5 V)

10-bit resolution: 5 V/1024 = approximately 0.00488 V

8-bit resolution: 5 V/256 = approximately 0.01953 V

-76- © Fujitsu

7.1.2 Scheme of volume tab

Figure 7-3 Variable resistor shows the symbol of a variable resistor. The volume is

the variable resistor that you use in an experiment in a science class. This Starter Kit

uses the circuit configuration shown in

Figure 7-4 Peripheral circuitry of voltage adjustment. By using this tab, the

voltage is changed and applied to the target pin of the A/D conversion. The applied

voltage is digitized into 1024 levels so that it can be used as an internal signal.

Figure 7-3 Variable resistor

Figure 7-4 Peripheral circuitry of voltage adjustment tab

7.2 How to create and execute a program to display potental

Let's create a program to display the potential based on the contents so far. Input the

adjusted voltage, convert the analog signal to digital, and obtain the digital value. Also, light

the LED to display the potential.

7.2.1 Outline of program to be created

Let us now create the actual program. The contents of the program are to use the A/D

converter to digitalize the potential of the applied voltage and to determine the number

of LEDs to be lighted according to the potential. The main operation of the program is

described below. The flow of the program is shown in Figure 7-5 Flow of the

program .

GND

（Variable resistor）

Volume

Vcc

ADCR

ＡＤCS
GND

Pin AN1

Microcomputer

Starter Kit board

© Fujitsu -77-

(1) Perform initialization (such as initial settings of the A/D converter).

(2) Start the A/D conversion (to obtain the applied voltage by using the A/D

converter).

(3) The A/D conversion is completed. (The A/D converted values are obtained.)

(4) Light the LEDs according to the obtained A/D converted values. (Determine the

number of LEDs to be lighted.)

(5) Then, repeat （2） to （4）.

First, in the program, set up the output pin of the LED and the input pin to be used for the

A/D converter. Then, make the settings regarding the A/D converter operations such as

the sampling time of the A/D conversion, operation mode, and A/D input channels. In

this section, the sampling time is set to 128/φ, the comparing time is set to 176/φ, the

resolution is set to 8-bit、and the A/D conversion channel to be used is set to Ch0 only,

and the operation mode is set to the continuous conversion mode. "φ" indicates the

internal operation frequency of the microcomputer. Table 7.2 Register settings of

A/D converter shows the values to be written to the register for the settings.

Table 7.2 Register settings of A/D converter

Item Register (bit) Setting value (contents)

A/D conversion started ADCS: H (bit 9) 1 （A/D conversion started)

A/D interrupt permission ADCS:H (bit 13) 1 (permitted), 0 (not permitted)

A/D interrupt factor

cleared

ADCS: H (bit 14) 0 (factor cleared)

A/D conversion stopped ADCS:H (bit 15) 0 (A/D conversion is forcibly

stopped)

A/D conversion end Ch ADCS: L (bits 0 to 2) 0 (Select Ch0)

A/D conversion start Ch ADCS: L (bits 3 to 5) 0 (Select Ch0)

A/D conversion mode

setting

ADCS: L (bits 6 to 7) 2 (Continuous conversion mode)

Comparing time selection ADCR: H (bits 11 to 12) 3 (176/φ)

Sampling time selection ADCR: H (bits 13 to 14) 3 (128/φφ)

A/D resolution selection ADCR: H (bit 15) 1 (8-bit resolution)

Analog input permission ADER (bits 0 to 7) 01h (Input permitted from Ch0

only)

-78- © Fujitsu

*The sampling time includes the time for loading the A/D input voltage after

the A/D conversion starts.

*The comparing time is the time to perform comparison operations of the sampled A/D voltage

and the standard voltage of the A/D converter and to convert it to a digital value.

After that, permit interruptions of A/D converter. This is the end of the operation

settings of the A/D converter. Start the A/D conversion. In this program, the operation

mode of the A/D converter is set to the continuous conversion mode. The operation of

the A/D converter is as follows accordingly.

A/D converter is activated (A/D conversion starts) ⇒ A/D conversion ends ⇒ A/D
conversion starts - - -

The operation repeats as shown above. When the A/D conversion ends, an interrupt of

the A/D converter is generated, and an interrupt routine is called. In the interrupt routine,

the interrupt factor is cleared, the A/D value is obtained, and the LEDs are lighted

according to the obtained A/D value, which is the volume size. The correspondence

between the volume size and the number of LEDs lighted is as shown in Table 7.3 LED

lighting according to volume .

Table 7.3 LED lighting according to volume level

Applied voltage Obtained A/D value LED lighting

0 to 0.83 V 0 to 43
No LED is on.

0.83 to 1.67 V 43 to 85
LED1 is on.

1.67 to 2.50 V 85 to 128
LEDs 1 to 2 are on.

2.50 to 3.33 V 128 to 171
LEDs 1 to 3 are on.

3.33 to 4.17 V 171 to 213
LEDs 1 to 4 are on.

4.17 to 5.00 V 213 to 255
All LEDs are on.

© Fujitsu -79-

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

Figure 7-5 Flow of the program

Start of main processing

Set output pins of LED1 to LED5.
(PDR1.byte = 0x1F,
DDR1.byte = 0x1F)

Set an input pin of AN1
(DDR5.bit1 = 0)

Infinite loop

A/D conversion started
(ADCS:H.byte9 = 1)

Stop A/D converter.
(ADCS:H.bit15 = 0)

Initialize the A/D converter.
Set the channel. (ADER.byte=0x01)

Set the mode (continuous conversion,
(ADCS:L.byte = 0x80)

Set the sampling conditions.
(ADCR:H.byte = 0xF8)

A/D converter interrupt permission
(ADCS:H.byte13 = 1)

(7)

(8)

External interrupt factor is cleared.
(ADCS:H.bit14 = 0)

External interrupt processing starts.

External interrupt processing ends

Turns on/off LED3.
(PDR1.bit2 = !(PDR1.bit2))

Interrupt occurs by A/D conversion end

AD_DATA<42

AD_DATA<84

LED lighting processing
(PDR1.byte = 0x1F)

Obtain A/D value.
(AD_DATA = ADCR:L.byte)

LED lighting processing
(PDR1.byte = 0x1E)

Y

Y

N

N

AD_DATA<126

LED lighting processing
(PDR1.byte = 0x1C)

Y

N

AD_DATA<168

LED lighting processing
(PDR1.byte = 0x18)

Y

N

AD_DATA<210

LED lighting processing
(PDR1.byte = 0x010)

Y

N

LED lighting processing
(PDR1.byte = 0x00)

(9)

-80- © Fujitsu

7.2.2 Creation and execution of the program

Let us now create the actual program. According to the procedure described in

Appendix A.1, open the source file "main.c" in the "sample.prj," and input the program

that is the circled part in Figures A.1 and A.1. Use all files except main.c without any

changes. After the program is input, "build" the program according to the procedure

described in Appendix A.2. If an error is output, reconfirm that the program accords to

the contents of Figure 6-4 Example of program code (main routine) and Figure 6-4

Example of program code (main routine). When the "build" is succeeded, “

ACCEMIC MDE” starts automatically.

When the “ACCEMIC MDE” window appears, execute the program and check the

operation. For the procedure of the program execution, see Appendix A.3. When the

program starts correctly, check the operation. It can be confirmed that the LEDs 1 to 5

are lighted according to the size of the applied voltage that has been adjusted on the

volume.

Figure 7-6 Example of program code (main routine)

voi main(void)
{

__set_il(7);
__EI();

IO_PDR1.byte = 0x1F;
IO_DDR1.byte = 0x1F;

IO_DDR5.bit.D50 = 0;
IO_ICR03.byte = 0x06;

IO_ADCSH.bit.BUSY = 0;

IO_ADER.byte = 0x01;
IO_ADCSL.byte = 0x80;
IO_ADCRLH.byte.ADCRH = 0xF8;

IO_ADCSH.bit.INTE = 1;
IO_ADCSH.bit.STRT = 1;

while(1);

 }

(1) Port 1 (LED control) output setting

(6) A/D conversion starts

(3) Stop A/D converter.

(4) A/D converter initialization
- A/D converter channel setting
- A/D converter mode setting
- A/D sampling condition setting

Program code to be added

(2) Port 5 (AD input) input setting

(5) A/D conversion
interrupt permission

© Fujitsu -81-

Figure 7-7 Example of program code (interrupt routine)

The ADC_int function is to be executed when an interrupt of the A/D converter is generated.

It is generally required to register the interrupt routine on the vector table so that the

ADC_int function is executed when an interrupt of the A/D converter is generated. In

this sample project, however, it has already been registered, so it can be used without the

registration.

In the above code, there are some expressions such as "IO_XXX.byte" or "IO_YYY.bit."

These are the useful description formats, which are defined in the IO header file. For

more information, see the Appendix.

__interrupt void ADC_int(void)
{

 unsigned char AD_DATA;

 IO_ADCSH.bit.INT = 0;

 AD_DATA = IO_ADCRLH.DATA8;

 if(AD_DATA > 171){
 IO_PDR1.byte = 0x1F;
 }
 else if(AD_DATA > 142){
 IO_PDR1.byte = 0x1E;
 }
 else if(AD_DATA > 113){
 IO_PDR1.byte = 0x1C;
 }
 else if(AD_DATA > 87){
 IO_PDR1.byte = 0x18;
 }
 else if(AD_DATA > 66){
 IO_PDR1.byte = 0x10;
 }
 else{
 IO_PDR1.byte = 0x00;
 }

}

(7) Clearing interrupt factor

(8) Obtain A/D converted value.

Program code to be added

(9) LED control based on AD value.

-82- © Fujitsu

8 “Let's use the temperature sensor.”
Most of the microcomputer application systems contain various sensors to detect the external

information. There are various sensors for different purposes and requirements, and one of those

various sensors is the temperature sensor. The temperature sensor is, as its name suggests, a

sensor to detect changes in temperature. Examples of what the temperature sensor is used for

include the temperature control features of air conditioners and refrigerators. In this way, various

sensor s are used for household appliances.

This Starter Kit contains the temperature sensor. This chapter describes how to detect

temperature by using this temperature sensor.

8.1 What is a temperature sensor?

The temperature sensor is a sensor to detect temperature changes. Simply stated it is a

thermometer to measure temperature. There are various methods to measure temperature. One

of those methods uses a mercurial thermometer, and another one uses a radiation thermometer

that enables contactless measurement. Table 8.1 Temperature measuring method shows

the general methods for measuring temperature. Of course it depends on the purposes or

requirements, however, most of the systems containing microcomputers use the thermocouple

thermometer or thermistor. This Starter Kit also uses the thermistor as its temperature sensor.

Table 8.1 Temperature measuring method

Category Method and its feature

Mercurial/alcohol

thermometer

This method uses thermal expansion of mercury or alcohol to detect

temperature. This method is used for many thermometers and

clinical thermometers.

Thermocouple

thermometer

This sensor uses the Seebek effect. It contains the two-contact

circuit using two different metals, and when there is a difference in

temperature between two contact points, it generates thermal

electromotive force. It can measure the wide-range temperature.

Thermistor This sensor uses the resistance thermometer bulb that uses the

temperature characteristic of semiconductor. It is in heavy usage.

Radiation

thermometer

The infrared energy emitted by an object varies with temperature.

The radiation thermometer uses this principle for measuring

temperature. It enables contactless measurement.

© Fujitsu -83-

The thermistor is the resistor using the temperature characteristic of semiconductor. The

resistance value of the temperature sensor varies with temperature. This Starter Kit contains

the TDK's NTC thermistor (NTCG164BH103） for its temperature sensor. NTC stands for

Negative Temperature Coefficient, and this thermistor has negative characteristic of the

resistance value, which is reduced as the temperature rises. This section describes the

concrete method of detecting temperature by using this temperature sensor.

Figure 8-1 Temperature sensor (NTCG164BH103)

8.2 How to detect temperatures by using "temperature sensor"

To use the temperature sensor and detect temperature, it is necessary to understand the

specifications of the sensor. The specifications of the sensor to be used (NTCG164BH103）

can be confirmed on the sensor data sheet, which is issued from the manufacturer. The data

sheet of the temperature sensor contains the information required for measurement. For this

time, the relationship between the measured temperature and the state of the sensor (resistance

value) is especially important. According to the data sheet, the relationship between the

temperature from 5 to 50 oC and the resistances are shown in Table 8.2 Relationship

between measured temperature and resistance of NTCG164BH103.

Table 8.2 Relationship between measured temperature and resistance of NTCG164BH103

Temperature[°C] Resistance value[kΩ] Temperature[°C] Resistance value[kΩ]

5 26.250 30 7.997

10 20.390 35 6.437

15 15.960 40 5.213

20 12.590 45 4.248

25 10.000 50 3.481

Temp. sensor

-84- © Fujitsu

Figure 8-2 Peripheral circuit diagram of "temperature sensor" (image)

shows the peripheral circuit diagram of the "temperature sensor" on the Starter Kit board. In this

circuit, when the resistance of the "temperature sensor" changes, the input voltage of the A/D

converter of the microcomputer also changes. Suppose the resistance of the "temperature sensor" is

RTH . Then, the input voltage of the A/D converter VAN1 can be calculated by using the following

formula. (The necessary knowledge to calculate it is only Ohm's law.)

Figure 8-2 Peripheral circuit diagram of "temperature sensor" (image)

[Input voltage of the A/D converter]

According to the Ohm's law, the current in the circuit I is as shown below:

Therefore, VAN1 is

Because R=10[kΩ] and Vcc＝5.0[V],

the input voltage to the A/D converter VAN1[V] can be obtained by using the following

formula.

Table 8.3 Relationship between the measured temperature of Starter Kit and A/D input

voltage summarizes the relationship between the measured temperature from 5 to 50 oC and

TH

CCTH
THAN RR

VRIRV
+
×

=×=1

TH

TH
AN R10000

R5.0V
+

×
=1

GND

RTH

Vcc=5.0[V]

R=10[kΩ]

VAN1 I

TH

CC

RR
VI
+

=

GND

Temperature
sensor

Vcc

Pin AN1

Microcomputer

Starter Kit board

AD
AD

GND

R=10 kΩ

© Fujitsu -85-

the input voltage of the A/D converter. By measuring the input voltage of the A/D converter,

the temperature can be known accordingly.

Table 8.3 Relationship between the measured temperature of Starter Kit and A/D input voltage

Temperature [°C] A/D input voltage:

VAN1[V]

Temperature [°C] A/D input voltage:

VAN1[V]

5 3.62 30 2.22

10 3.35 35 1.96

15 3.07 40 1.71

20 2.79 45 1.49

25 2.50 50 1.29

8.3 How to create and execute a program to display temperature

The following section explains how to create a program to detect temperature by using the

sensor. For how to use the A/D converter, apply the contents of the previous chapter. For

checking the detected temperature visually, the lighting of the AD input LED is controlled.

8.3.1 Outline of the program to be created

Let us now create the actual program. The contents of the program are to use the A/D

converter to obtain the temperature information of the sensor, and to control the lighting

of the LED (to change the lighting pattern) according to the obtained value. For

processing related to the A/D converter, create the program based on the program of the

volume control A/D converter that is created in the previous chapter. The main

operation of the program is described below. The flow of the program is shown in

Figure 8-3 Flow of the program

(1) After the program is started, performs the initialization (such as initial settings of the

A/D converter).

(2) Starts A/D conversion (to obtain the sensor information using the A/D converter).

(3) The A/D conversion is completed. (The A/D converted values are obtained.)

(4) According to the obtained A/D converted values, controls the LED lighting.

(5) Then, repeat （2） to （4）.

-86- © Fujitsu

In the flow of the main processing of the program, first set up the output pin of the LED

and the input pin to be used for the A/D converter. The settings of the pins are explained

in the previous chapter. Then, make the settings related to the A/D converter. The

settings to be made are about the same as the previous chapter. The only difference is

that the channel of the A/D converter to be used is set to "1" (Channel 0 is used in the

previous chapter). The operation mode of the A/D converter is set to the continuous

conversion mode that is also used in the previous chapter. The operation of the A/D

converter is as follows accordingly.

A/D converter is activated (A/D conversion starts) ⇒ A/D conversion ends ⇒ A/D
conversion starts - - -

When the A/D conversion ends, an interrupt of the A/D converter is generated, and an

interrupt routine is called. In the interrupt routine, the interrupt factor is cleared, the A/D

value is obtained, and the LEDs are lighted according to the obtained A/D value. The

LED lighting processing is as shown in Table 8.4 LED lighting processing.

Table 8.4 LED lighting processing

Obtained A/D value LED lighting Remarks

0 to 65
All LEDs are on.

50 oC or higher

66 to 86
LEDs 1 to 4 are on.

40 oC or higher but lower than 50 oC

87 to 112
LEDs 1 to 3 are on.

30 oC or higher but lower than 40 oC

113 to 141
LEDs 1 to 2 are on.

20 oC or higher but lower than 30 oC

142 to 170
LED 1 is on.

10 oC or higher but lower than 20 oC

171 to 255
No LED is on.

Lower than 10 oC

© Fujitsu -87-

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

Figure 8-3 Flow of the program

Start of main processing

Set output pins of LED1 to LED5.
(PDR1.byte = 0x1F,
DDR1.byte = 0x1F)

Set an input pin of AN1.
(DDR5.bit1 = 0)

Infinite loop

A/D conversion started
(ADCS:H.byte9 = 1)

Stop the A/D converter
(ADCS:H.bit15 = 0)

Initialize the A/D converter.
Set the channel (ADER.byte = 0x02)
Set the mode (continuous conversion

(ADCS:L.byte = 0x89)
Set the sampling conditions

(ADCR:H.byte = 0xF8)

A/D converter interrupt permission
(ADCS:H.byte13 = 1)

(7)

(8)

External interrupt factor is cleared
(ADCS:H.bit14 = 0)

External interrupt processing starts

External interrupt processing ends.

Turns on/off LED3
(PDR1.bit2 = !(PDR1.bit2))

Interrupt occurs by A/D conversion end

AD_DATA>171

AD_DATA>142

LED lighting processing
(PDR1.byte = 0x1F)

Obtain A/D converted value.
(AD_DATA = ADCR:L.byte)

LED lighting processing
(PDR1.byte = 0x1E)

Y

Y

N

N

AD_DATA>113

LED lighting processing
(PDR1.byte = 0x1C))

Y

N

AD_DATA>87

LED lighting processing
(PDR1.byte = 0x18)

Y

N

AD_DATA>66

LED lighting processing
(PDR1.byte = 0x010)

Y

N

LED lighting processing
(PDR1.byte = 0x00)

(9)

-88- © Fujitsu

8.3.2 Creation and execution of the program

Let us now create the actual program. According to the procedure described in Appendix

A.1, open the source file "main.c" in "sample.prj," and input the program that is the

circled part in Figure 8-4 Example of program code (main routine)

and Figure 8-5 Example of program code (interrupt routine)

Use all files except main.c without any changes. After the program is input, "build" the

program according to the procedure described in Appendix A.2. If an error is output,

reconfirm that the contents of the program are correct. When the "build" is successful,

"ACCEMIC MDE" starts automatically.

When the "ACCEMIC MDE" window appears, execute the program and check the

operation. For the procedure of the program execution, see Appendix A.3. When the

program starts correctly, check the LEDs. When the temperature of the room where the

operation is performed is between 10 and 20 oC, LED 1 and LED 2 are supposed to be on.

The number of LEDs lighted varies with the temperature detected by the sensor. For

example, warm up the sensor part using your fingers. When warming up the peripheral

part of the sensor, be aware of the temperature. When it gets hot, it may damage the

board.

Figure 8-4 Example of program code (main routine)

voi main(void)
{

__set_il(7);
__EI();

IO_PDR1.byte = 0x1F;
IO_DDR1.byte = 0x1F;

IO_DDR5.bit.D51 = 0;
IO_ICR03.byte = 0x06;

IO_ADCSH.bit.BUSY = 0;

IO_ADER.byte = 0x02;
IO_ADCSL.byte = 0x89;
IO_ADCRLH.byte.ADCRH = 0xF8;

IO_ADCSH.bit.INTE = 1;
IO_ADCSH.bit.STRT = 1;

while(1);

 }

(1) Port 1 (LED control) output setting

(6) A/D conversion starts.

(3) Stop A/D converter

(4) A/D converter initialization
- A/D converter channel setting
- A/D converter mode setting
- A/D sampling condition setting

Program code to be added

(2) Port 5 (AD input) input setting

(5) A/D conversion
interrupt permission

© Fujitsu -89-

Figure 8-5 Example of program code (interrupt routine)

The ADC_int function is to be executed when an interrupt of the A/D converter is generated.

It is normally required to register the interrupt routine on the vector table so that the

ADC_int function is executed when an interrupt of the A/D converter is generated. In this

sample project, however, it has already been registered, so it can be used without

registration.

In the above code, there are expressions such as "IO_XXX.byte" or "IO_YYY.bit." These are the

useful description formats, which are defined in the IO header file. For more information, see the

Appendix.

__interrupt void ADC_int(void)
{

 unsigned char AD_DATA;

 IO_ADCSH.bit.INT = 0;

 AD_DATA = IO_ADCRLH.DATA8;

 if(AD_DATA > 171){
 IO_PDR1.byte = 0x1F;
 }
 else if(AD_DATA > 142){
 IO_PDR1.byte = 0x1E;
 }
 else if(AD_DATA > 113){
 IO_PDR1.byte = 0x1C;
 }
 else if(AD_DATA > 87){
 IO_PDR1.byte = 0x18;
 }
 else if(AD_DATA > 66){
 IO_PDR1.byte = 0x10;
 }
 else{
 IO_PDR1.byte = 0x00;
 }

}

(7) Clearing interrupt factor

(8) Obtain A/D converted value

Program code to be added

(9) LED control based on AD value

-90- © Fujitsu

A Appendix (Program Creation Procedure)

A.1 Program Creation Procedure

This appendix explains the procedure you should follow when creating an actual program.

First, start up SOFTUNE as instructed in Item 1.1.5, "Starting and setting up of SOFTUNE,"

(pages 15 to 17), and open the Start_kit.wsp file. Use the sample project provided for easy

creation of software.

To use the sample project, select "Sample.prj" in the list, right-click to open a submenu, and

select 'Set active project' from the submenu. Then, the string including "Sample.prj" is

displayed in boldface in the list, and debugging of the sample project is enabled.

Sample project

Select 'Set active project.'

© Fujitsu -91-

Click on "Sample.prj" to show the list of folders below. Click on "main.c" under the Source

Files folder to open the main.c file.

After the main.c file is opened, create your program in the section indicated by the red dotted

line below.

If another program has already been input to the main.c file, delete the lines from the above

program list section enclosed by the red dotted line before creating your new program. If

you need to save the already input program, perform the procedure below to save the program

as a backup file before deleting the program.

#include "_ffmc16.h"
#include "extern.h"
//#include "monitor.h"

void main(void)
{

}

/* Vector Table */

#pragma section INTVECT,locate=0xfffc00

#pragma intvect _start 0x8 0x0 // Reset Vector

Input the program to be created here.

-92- © Fujitsu

<Program (source file) backup procedure>

While editing a source file, select 'Save As...(A)' from the File menu.

The dialog box below appears. Select Text file, and then click 'OK.'

Next, the dialog box below appears. Select the folder to save the program in the Save in

field, specify the file name in the File name field, and then click 'Save.'

© Fujitsu -93-

The saved file is still displayed. Close the displayed file.

After closing the saved file, find the original file name of the saved file ("main_old.c in this

example) in the Source Files folder under "Sample.prj" in the list, and then click on the

original file name to open the file. In this status, you can edit the source file.

Name of the saved file

(main_old.c) is

displayed.

-94- © Fujitsu

A.2 Program Building Procedure

After creating a program, confirm that the board is connected to the personal computer by the

USB cable, and then start the procedure to build the program.

If no error is found in the created program, ACCEMIC MDE starts automatically and displays

the information shown below for 10 s. This information is displayed only by the trial version

of ACCEMIC MDE (not displayed by the product version). An 'OK' button appears 10 s

later. Click the OK button.

© Fujitsu -95-

If an error is found in the created program, the error is indicated as shown below. Correct the

indicated error, and perform 'building' again.

Error indication window

Click the error code to jump to

the line that includes the error.

-96- © Fujitsu

A.3 Program Execution Method

Execute the created program and check that it performs the intended operation. After

ACCEMIC MDE has started, the window as shown below appears:

Use the buttons shown below to control the program.

Function Button Operation (when clicked)

Continuous

execution
 Starts and runs the program continuously.

Stop Stops the running program.

Reset Resets the microcomputer.

© Fujitsu -97-

B Appendix (Method To Write/Read Values in Registers)

B.1 About the Method To Write/Read Values in Registers

The sample program codes presented in this document include such descriptions

as ”IO_XXX.byte” and ”IO_YYY.bit”. These are the convenient formats of description

defined in the I-O header file. You can use these description formats after setting up Softune

Workbench, the development environment provided by the Starter Kit.

An actual C-language program contains the descriptions of instructions to write values to

various registers to specify microcomputer operation. The above description formats enable

you to write values to registers in C language. For example, assume the instruction to write

0xff to the port 1 data register (PDR1), which is allocated at address 0x000001. The

instruction is described in C language as follows:

*((volatile char *)0x000001) = 0xFF;

It is not immediately obvious what kind of processing the above description specifies. If you

use one of the description formats defined in the I-O header file, you can write the same

instruction as follows:

IO_PDR1.byte = 0xff;

You can use this description because the following operation is defined in a separate file:

Substituting a value for variable "IO_PDR1.byte" ＝ Writing the value to PDR1 register at

address 0x000001

It is now immediately clear that the description specifies the processing to write 0xff to the

PDR1 register. The I-O header file contains the definitions of these description formats for

the registers of the microcomputer built in the Starter Kit.

-98- © Fujitsu

C Appendix (Method To Change the Include Path)

C.1 About the Method To Change the Include Path

A necessary include path is specified for each sample program.

A sample program requires the specified include path to reference sample I-O register

files.

If the installation folder of SOFTUNE or ACCEMIC MDE is changed, change the include

path settings of the C compiler and the assembler before using the sample program.

Select "Project setting(J)" under "Project(P)."

Change the include path settings of the C compiler and the assembler as shown below.

The following window shows the include path setting of the C compiler.

Delete the specified

include path.

Select this tab for setting

the include path of the C.

© Fujitsu -99-

Select a folder.

Click this button to

select a arbitrary

directory.

Click the Add button to

add the selected include

path.

After setting, click the

OK button.

-100- © Fujitsu

Use the same procedure for setting the include path of the assembler.

Select this tab for setting

the include path of the

assembler.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

