MMAYV User’s Guide

Version 2.0

DENALI SOFTWARE, INC.
1000 Hamlin Court,
Sunnyvale, CA 94089
Tel: (408) 743-4200
Fax: (408) 743-4209

el

info@denali.com
sales@denali.com
www.denali.com/support
WWW.ememory.com

All rights reserved

Confidentiali

ty Notice

Denali Software, Inc. Sunnyvale, CA 94089

© 2006 Denali Software, Inc. All rights reserved.
Release: July 7, 2008

No part of this information product may be reproduced, transmitted, or trandated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise without prior
written permission from Denali. Information in this product is subject to change without
notice and does not represent a commitment on the part of Denali.

The information contained herein is the proprietary and confidential information of Denali
or itslicensors, and is supplied subject to, and may be used only by Denali’s customersin
accordance with, awritten agreement between Denali and its customers. Except as may be
explicitly set forth in such agreement, Denali does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy, or usefulness of the
information contained in this document. Denali does not warrant that use of such
information will not infringe any third party rights, nor does Denali assume any liability
for damages or costs of any kind that may result from use of such information.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Destination Control Statement

All technical data contained in this product is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

MMAV User’s Guide

717108 2

1 PREFACE . oo i e 7

11 Audience PrereqUISItES.ot 7
1.2 Typographical CONVENLIONSo et e e et e e e e 7
1.3 Getting HE . . oo 8
1.3.1 Product Documentationo. ittt 8

132 Reated Information. 8

133 Contacting TeCh SUPPOIt oo e e e e 9

134 TrainiNG COUISES . . o v et ettt e e et e e et et e e 9

14 HowtoUSeThiSGUIEt e 9
2 USING THE PUREVIEW GRAPHICAL TOOL .+« v vt v ettt e e e e e e e e e e 11
21 Launching PUrEVIEWot e e e e 11
2.2 Creating/Editing SOMA File. e e e e e 12
221 Denali SOMA files . .o 12

222 Obtaining SOMA FilesfromeMemory.Com.covviienennennenn.. 14

23 UsingthePureView GUI o e 17
231 Viewing SOMA FlesinPureViewttt 17

232 PureView “File’ Pull-downMenu. 19

233 PureView “Options” Pull-downMenu 21

24 Creatingan HDL Shell withthePureView GUI 23
25 Cregtingor ModifyingaSOMA file o 24
251 Creatingan HDL shell viaCommandLine............................... 27

3 DEBUGGING MEMORY USING PUREVIEW . . . o ottt e et e e 30
3.1 DenaiMemory DatabaseFilest e e 30
3.2 Interactive Debugging During Simulation. i 31
321 UNIX Shell INVOCELION . ..o e e 31

3.22 Simulator/Testbench Invocation i 32

33 OpeninguptheSimulation ResultsFile. it 32
34 Selecting Memory INStanCeSottt e 33
35 PureView Debugging Windows. 34
351 Memory ContentsSWindowco it e 34

352 Memory Contents Transaction SUMMArY, 36

353 TransaCtion History Viewt e e 36

3.6 Post-Processing with PUreView 37
3.7 Using PureView with Mentor Graphic's Seamless HW/SW Co-Verification............ 37
4 USING DENALI'S MEMORY MODELER ADVANCED VERIFICATION\ vviie i eann 39
4.1 Controlling Your Memory Simulation Models - The .dendlircFile. 39
411 Register File Specific .denalirc Parameters., 47

41.2 IBM-EDRAM Specific .denalirc Parameters oL, 47

413 RDRAM Specific .denalirc Parameters. 47

414 RLDRAM Specific .denalircParameters., 48

415 DDR-II SDRAM Specific .denalirc Parameters.t 48

416 DDR-ll and DDR3 Specific .denalirc Parameters.t 49

417 ESSRAM Specific .dendlircParameters............... 49

MMAV User’s Guide 717108

418 Mentor Graphics Model Sim Specific .denalirc Parameters. 49
419 Mentor Graphics Seamless HW/SW Co-Verification Specific .denalirc ParametersS0

4.1.10 OneNand Flash .denalirc Parameters., 50

4111 dendircSummary Table. 52

4.2 Setting .denalirc Options Dynamically During Simulation.c..... 54
4.3 Licensing SOIULIONSot 55
431 Simulator Queuing for Denali Licenses. ... 55

432 SpeedingupLicenseCheckoutot 55

44 TheDenali Tcl Interface. 56
441 UsingwithModelSim ... e e 56

4.4.2 Usingwith NCSIM and other Tcl Interpreters.t 56

443 Tl Commands.ottt 56

444 Calback Commandsot 59

45 Initidizing Denali Memories.ot 61
451 Memory AddressDeterminationovuitii i 61

45.2 Initial Contentsof MeMOKies.t 61

453 LoadingMemoriesFromaFile. i 63

454 Memory Content FileFormatt i 64

4.6 Specifying Memory INStaNCESot et e 66
47 Resettingthe Memory Contents.t e e e 67
4.8 Reading and Writing MemMOIiES.ottt e 68
481 Masked Memory WIitesot 70

4.9 Saving and Comparing Memory Contents.ttt 70
410 Recaculating Clock CyCle Time . ..ottt e e i e 72
411 Re-loading SOMA Files and Changing Timing Parameters on-the-fly During Simulation . 72
412 Error Message Control ot e 75
4.13 Forcing Clock Cycle Recalculation e 76
4.14 RDRAM (Rambus) Specific Model Considerationscovviiiiiennnn.., 76
4.14.1 Turbo Channel Model for RAMBUS e 76

5 MMAYV SPECIAL VERIFICATION FEATURES . . . ot vttt e et et e e e e 81
5.1 Setting Assertionson Memory TransactionS. it 82
511 Memory ACCESS ASSEIIONS . . . oottt 82

512 DalaACCESS ASSEIMTIONS vttt 83

513 Globa Memory ACCeSS ASSEItiONSo v i et 85

5.2 Parity Checking ASSartioNSottt e e 86
5.3 Dynamicaly Enabling and Disabling Assertions. 86
54 Error Injection ROULINES.ottt e e et 87
541 Error INjeCtion 87

542 Fault Modeling.o 90

5,5 Logical Addressingwith MMAV (Method#1) it 92
551 XML BaSICS. . ottt it 92

552 Depth, Width EXpansion i e e 93

553 Interleavingo 95

554 AddressScrambling. 96

MMAV User’s Guide 717108

555 DataBit Reorderingand Masking.t 96

556 CreatingHoleS. 97

55.7 Puttingitall Together e e e 97

55.8 Interfacingto MMAV 100

56 Logical Addressing (Method#2)t e 100
5.7 AddressScrambling. 105
5.8 Scratchpad MEeMONIES.t 106
5.9 Verilog Calbacks (NeW iN 3.2). . ..ot e et et 108
501 Calback Interface e 108

59.2 Cdlback Initidization 108

5093 Calback Handlingo 109

59.4 denaiMemCallback Registers. 110

59,5 denaiMemCallback Tasksand Functions. 111

5.10 Using MMAV with Mentor Graphic’'s Seamless HW/SW Co-Verification Product 113
511 Using MMAV for Embedded ASICMEMOrieSo oot i 114
5111 Register FilEs ..o 114

5112 Embedded SRAM 115

511.3 Embedded DRAM i 117

6 MMAYV TESTBENCH INTEGRATION . . oo ittt et e et e e e et e e e e e 118
6.1 VerilogInterface. e 118
6.1.1 SimulatingwithMMAV and Verilog. 118

6.2 VHDL INterface.t 123
6.21 SmulatingwithMMAY andVHDL i 123

6.3 SystemMC INterface o 126
6.3.1 MMAV and SystemC OVEIVIBWot 126

6.3.2 SimulatingwithMMAV and SystemCt 126

6.4 Specmaninterface e 128
6.41 MMAV and Specman OVEIVIEWottt et e 128

6.4.2 SmulatingwithMMAV andSpecmanc.coviiiiiinennnnnn.n. 129

6.4.3 Configuration Register and Memory ACCESS.o v v i 131

6.4.4 Extending sn_denai_unit to include al MMAV Functions as Methods. 131

6.45 Viewing Memory TransactionsinWaveforms 133

6.4.6 EXample TeStCase. . .. oottt 133

6.5 Veralnterface. 134
6.5.1 MMAV and VeraOVerVIBWottt et et 134

6.5.2 SmulatingwithMMAV andVera. ..., 135

6.5.3 Initializing Denali Memory Models from VeraTestbench 136

6.5.4 Processing Callbacks. 137

6.5.5 Using other Denali functionsfrom VeraTestbench. 139

6.5.6 EXample TeSICase. . ..ottt 140

6.6 NTBINterface. 141
6.6.1 MMAV and NTB OVEIVIBW.ottt et et et i e i 141

6.6.2 SmulatingwithMMAY and NTB. i 141

6.6.3 Instanceand Transaction Classes.o oot 141

MMAV User’s Guide 717108

6.6.4 Processing Callbacks. 163

6.6.5 EXample TestCase.ottt 163

6.7 SystemVerilog Interface.ot 166
6.71 MMAV and SystemVerilog OVerview.c.couiiiiiiiiin, 166

6.7.2 Simulating with MMAV and SystemVerilog.ccoviiiiinnn... 166

6.7.3 Configuration Register and Memory ACCESS.o vvi i ii i eeeaean 168

A GETTING TECHNICAL SUPPORT . &t vttt ettt et et e e e e e e e e e e 196
Al TheDendi History File e 197
A.1.1 Understanding the Denali History Files (HistoryFilein .denalirc):............ 198

A.1.2 HistoryDebug Mode (HistoryFile AND HistoryDebug in .dendlirc):.......... 198

A.2 UndestandingtheHistory File e 200
A21 SIMREAD ENY. ..ot e 200

A.22 MASKED SIMWIteENtry.o e e 200

A23 DebUgReEado 200

A.24 DebUg Wt . .o 200

A25 FleLoad 200

MMAV User’s Guide 717108

CHAPTER

1 Preface

Welcome to the MMAV User’s Guide. This manual describes use of the Denali Memory
Modeler Advanced Verification (MMAV) and PureView software.

1.1 Audience Prerequisites

This guide, and the product it describes, are intended for chip designers and verification
engineers. Readers of this guide should have a solid understanding of Verilog and VHDL,
and Tcl.

1.2 Typographical Conventions

This guide uses the following typographical conventions:

e Literal string values for commands, filenames, and command-line options are shown
iNn monospace.

Example: The .dena1lirc file alows you to change runtime modeling parameters.
NOTE: Literals such as register names are shown in regular font.
e Variables where you should substitute a context-specific value are shown in angle

brackets.
Example: To search for afile, typegrep <filename> Where <filenames isthe name
of your file.

e UNIX environment variables are shown using the standard notation.
Example: The $DENALI environment variable specifies your product installation
home directory.

e For options where the user can choose zero or more from a series of options, the syn-
tax is shown using angle brackets and pipes
myscript [-optionl <value>|option2]
So to run the fictitious myscript specifying amachine caled server1 in debug mode:

myscript -server serverl -debug

MMAV User’s Guide 717108 7

e Syntax examples are shown in atext box.

% verilog [all of your regular arguments] \
SDENALI/ddvapi/verilog/denaliPcie.v \
+incdir+SDENALI/ddvapi/verilog

1.3 Getting Help

You can find help, training, and online documentation as described in the following sec-
tions.

1.3.1 Product Documentation

If you have any questions about using Denali products, consult the product documentation
that isinstalled on your network or found in the Denali software release structure.

SDENALI/docs/

where $pENALT isthe Denali home directory.

1.3.2 Related Information

You can access the following related information:

o Getting Sarted User’s Guide that provides details on how to get started with Denali
VIP products. This includes details on downloading the software, creating an installa-
tion directory, un-compressing the installation package, installing the software license,
and alist of supported tools and platforms.

YOUCanf“KjGettingStartedUserGuide.pdfaI$DENALI/docs/

e FAQsfor Denali products on the Web at the following URL :
http://www.denali.com/support

e SOMA filefrom:
http://www.ememory.com

e MMAV releases from:
http://www.denali.com/support

For more information about Denali and its products, check out:
http://www.denali.com

MMAV User’s Guide 717108 8

http://www.denali.com/support
http://www.ememory.com
http://www.denali.com/support
http://www.denali.com

1.3.3 Contacting Tech Support

All users from organizations that have purchased a valid software license are eligible to
receive technical support. You can contact Denali’s support center as follows:
For email support:

¢ Go to www.denali.com/support

¢ Ontheleft-hand side, choose Support > Product Support > Create New Ticket.

e Open a support ticket with detailed information of problem along with a tracefile of
simulation with following . denalirc configuration options set.

Historyfile denali.his
Historydebug on
Tracefile denali.trc

(For more information on the . denalirc file and trace file settings, see See “Control -
ling Your Memory Simulation Models - The .denalirc File” on page 39..)

e Telephone your local support center:
— United States : 408-743-4200, option 3

— Europe : +44-1494-481030, europe@denali.com
— Japan : +81-3-3511-2460, japan@denali.com
1.34 Training Courses

Denali offers a complete suite of training courses for its products, including PureSpec.
Contact your local technical support center for information on current course offerings.

1.4 How to Use This Guide

This guide is divided into the following chapters:
e Chapter 1. “Preface” provides an introduction to the manual itself.

e Chapter 2: “Using the PureView Graphical Tool” describes both the SOMA parameters
viewing and editing capabilities of the new PureView GUI.

e Chapter 3: “Debugging Memory Using PureView” provides information about the
PureView debugger with a unique graphical view of your memory contents during
simulation.

e Chapter 4: “Using Denali’s Memory Modeler Advanced Verification” provides details
on how to use the MMAV product that extends Denali’sworld class memory modeling
capability with advanced verification features aimed at enhancing your memory sub-
system verification.

MMAV User’s Guide 717108 9

e Chapter 5: “MMAV Specia Verification Features’ lists a suite of additional verifica-
tion functions that allow you to add verification checks to your testbenches and also
organize physical memories into logica memory views.

e Chapter 6: “MMAV Testbench Integration” lists and describes the various supported
testbench interfaces.

e Appendix A: “Getting Technical Support” describes various methods to get the techni-
cal support from Denali.

MMAV User’s Guide

717108 10

CHAPTER

2 Using the PureView Graphical Tool

PureView graphical user interface enables you to configure a SOMA file and combines all
the previous capabilities of Memory Maker with the enhanced debugging capabilities of
PureView. This reduces the number of desktop windows required for Denali products.

This chapter describes both the SOMA viewing and editing capabilities along with the
debugging features of the new PureView GUI.

2.1 Launching PureView

The PureView GUI islaunched from your Unix or Linux shell command line by typing:
shell > $DENAL I/bin/pureview &

Thiswill bring up the following graphical user interface (GUI):

MMAV User’s Guide 717108 11

A PRy 4 PureView'

Configure a new SOMA file

MMAY mermory model =
FuresSpec verification [P e
Databahn memory controller .
Databahn FCle Core =

Open an existing file
SOMA

Simulation results

Copyright (<) Denali Software, Inc., 1993 — 2008
#11 Rights Reserved. J
Licensed Software.
Confidential and Proprietary Information Which is the
Property of Denali Software, Inc., or Its Licensors.

FIGURE 2-1: PureView GUI
2.2 Creating/Editing SOMA File

PureView is used to create new SOMA (Specification of Memory Architecture) files, view
and edit the parameters of a Denali or memory vendor created SOMA file, and to generate
an HDL wrapper to be used in your ssmulation. Before discussing these features, an over-
view of Denali’s SOMA file technology is needed.

2.2.1 Denali SOMA files

The core of Denali’s Memory Modeling solution are class based *C' models for al popu-
lar memory class architectures. These ‘C’ models cover al the features found across the
entire memory class of a specific family of devices. For example, Denali has‘C’ models
for the following memory classes:

Embedded ASIC/

Non-Volatile Volatile FPGA
Synch-SRAM DRAM Flash Card Memories
Asynch-SRAM EDO-DRAM Synch-FLASH MultiMedia Card*

SRAM

MMAV User’s Guide 717108 12

Embedded ASIC/

SRAM DRAM Non-Volatile Volatile FPGA
DDR SRAM SDRAM EEPROM MemoryStick* FLASH
QDR SRAM SGRAM SEPROM MemoryStick Pro* Register Files/Arrays
QDR-2 SRAM Enhanced-SDRAM PROM SecureDigital **
SigmaRAM DDR-SGRAM SMROM SecureDigital |0**
FIFO DDR/DDRII-SDRAM Compact Flash * = For Licensee only
Cellular RAM FCRAM/FCRAM2 Atmel Serial/Paral- ** = For SDA Members only
lel/SPI Flash
Mobile RAM RDRAM AND/NAND/NOR
Flash
RLDRAM Sharp Flash
RLDRAM2 SST Serial Flash
GDDR2 One NAND
GDDR3 DDR-NVM
GDDR4 LPDDR2-NVM
GDDR5
DDR3

Because there are numerous variations of the above memory classes from different mem-
ory vendors, Denali uses SOMA files to describe the specific memory features and timing
for a specific part number. These SOMA files uniquely parameterize our highly optimized
'C' core models to adjust their behavior and timing according to the SOMA specification.

SOMA files are widely used by memory vendors to specify the behavior of memory com-
ponents. These files can be freely downloaded from a number of memory vendor web
sites. In partnership with these vendors, Denali also maintains arepository for SOMA files
on the Denali eMemory website (http://www.eMemory.com). If you are unable to locate a
SOMA file for adevice you are interested in, it is our policy to deliver SOMA files upon
reguest. In general, you can exercise the following steps for obtaining SOMA files:

1.

2
3.
4

Search Denali’s eMemory website (http://www.eMemory.com)

Search the memory vendors website for the pertinent SOMA file

Modify an existing SOMA file for asimilar device

Request the SOMA file from http://www.eMemory.com (be sure to include references
to any pertinent device specifications and datasheets)

MMAV User’s Guide

717108

13

http://www.eMemory.com
http://www.eMemory.com
http://www.eMemory.com

2.2.2

Denali SOMA files completely characterize our C-based memory models for a specific

Obtaining SOMA Files from eMemory.com

vendor and speed grade. Denali meticulously creates and verifies these files using the ven-
dor datasheets and our expertise in memory devices.

SOMA filesfor specific memory vendor part numbers can be obtained from our eMemory
website. The URL is: http://www.eMemory.com. The first time you access this page, you
will be asked to register for downloads. This ensures that if one of your SOMA files is

ever updated, you will receive notice of the event allowing you to go back and download

the latest version.

Products & Solutions !

MemCon 2008

MEMCONOS |

MemCon San Jose 2008 is
the largest worldwide
conference and exhibition
addrezsing the technology,
busineszg, and system design
strategies for memory and
storage.

(® Reaqister Now

Denali PureSpec™

PureSpec is the industry's
most trusted verification IP.
PureSpec includez a
configurable BFM, protocol
monitor, and complete

Aot

Fas
Ej Memory Blog MemCon sMe 10

Events i Search...

Support Partners | News Company

Register | Log In | My Account

Denali User Registration

Thank you for registering at Denali.com, we are proud to offer the most comprehensive and high-quality resc
for designing and verifying =tandard chip interfaces. Registration provides you with immediate access to ma
reports and a host of rezources for design and verification with =emiconducter memory and other standard
interfaces including: PCl Express, USB, SATA, and more.

Rezources include market reports, webcasts, whitepapers, EDA and IP solutions, and a searchable online d
of information for over 10,000 =emiconductor memory devices.

Complete the form to automatically receive your password for instant access!

Registration Form

* Indicates a required field

*Email address: I

*First name: I

azsertion library for all RS |
standard interfaces:
*Job title:
PCl Express s
Advanced Switching *Company:
USB 2.0, 0TG -
EET'I[E\B‘TA Postal address: I
Ethernet
| AMBA, AXI | b
< &
FIGURE 2-2: eMemory.com Registration Page
MMAV User’s Guide 7/7/08 14

http://www.eMemory.com

Once you are a registered eMemory.com user, you can search for SOMA files for your
design.

Eh‘arrary Blog MemCon eMemary.com -
d el

Products & Solutions Support Partners News Events Company @

Ragister | Log In | My Account | Intarnal Sitz | Log Cut

eMemory

e — Memory Search

Download Cart B

Memory Search

- View Content

= . endor: | —— R11 Vendors —— % | Please limit your memory =earch to a specific
F=0s =l wvender, clazs, data width, size and/or part number.
- View Past Downloads Class: | —-— Rl1l classes -— ¥ | The zearch engine performs a substring match on
your input to the "Part #” field, which alze accepts =
Research Data Width:| —— A1l Widths --- v| asa widcard
If you are unable to find the part you're
- DMR min m looking for, you can reguest a SOMA,
= _ . Size:
- MemCon Proceedings max
Part #: |
Denali Customers
L)

<

4 |

FIGURE 2-3: eMemory.com SOMA Search Page

You can search for the specific memory simply specifying either Vendor, Class, Data
Width, Size, or Part Number.

You must limit your memory search to a specific Vendor, Class, Data Width, Size and/or
Part Number. The search engine performs a substring match on your input to the "Part #"
field, which also accepts * as awildcard.

You can then select the relevant SOMA and Add to cart. This displays the Download
Cart. Using thisinterface, you can either Send cart now to get the SOMA files emailed to
you or Remove Selected or Remove All SOMA files.

MMAV User’s Guide

717108 15

m Memory Blog MemCon eMemory.com

Products & Solutions | Support Partners | News Events Company | @

Register | Log In | My Account | Log Dut

eMemory
Download Cart

Memeory Search

Download Cart

i Send cart now o
" View Content Destnatior: _
~send bY-EmE” = Cart Contents

- Vi o = 2
AR AR AT To add more items to your download cart, you can =tart a new =search or press

Research Il Remove selected ‘your brow=er's "back” button to return to your previous search. To remove items
- from your download cart, click the checkbox next to the tems to be removed, then
- DMR press the "Remove =elected” button. If you wish to remove all items in your cart,

=imply press the "Remove all” button.

Once you have finished modifying the contents of your cart, you can =end these
items to mbhatia@denali.com

- MemCon Proceedings

penali Customers Remove |Vendor Class |Configuration Part Number MMAV Required

O AEROFLEX SRAM |18Mb (512K x 32 bit) UTBERS12K32-20 3.2.031 or greater
Q e 1
@ patabahn
@ PureSpec

FIGURE 2-4: eMemory.com Download Cart

Once your files have been emailed, you can now take a look at the settings using Pure-
View. For details, refer to* Using the PureView GUI” on page 17.

NOTE: If you are unable to find the part you are looking for, you can request a SOMA
using the following interface.

MMAV User’s Guide 717108 16

G Memory Blog MemCon ehemory. com

1 i
Products & Solutions | Support | Partners | News | Events | Company | @
Register | Log In | My Account | Log Qut

Logged in az mbhatia@denali.com

eMemory

SOMA Request

Memory Search

Download Cart
SOMA Request

- View Content
e . *endor: | | SOMA requests are normally
B AR fulfiled within one week from
- View Past Downloads *Class: ! | the date of submiz=ion. Due to
= — the high velume of requests,
Research *Part number: | | we ask that you indicate the
7 3 i urgency of your need in the
- PR l *Datasheet link: ! | SOMA request form.
- MemCon Proceedings "
e — Needed in: O1week O2weeks &)1 month
- [
Denali Customers
Comments:
@ PureSpec z
Submit request

DATABAHN™

FIGURE 2-5: SOMA Request

2.3 Using the PureView GUI

231

To start PureView, enter the following command from the UNIX shell:

SDENALI/bin/pureview &

This will bring up the PureView window where you can choose to either create a new
SOMA specification file, or open an existing SOMA file. A SOMA file contains all the
necessary functional and timing specifications to model any memory device.

Viewing SOMA Files in PureView

To read in an existing SOMA file, select the “ Open SOMA file” button on the main Pure-
View window. SOMA files can have either an XML .soma suffix or atext file .spc file suf-
fix. Select a SOMA filein the current directory (or traverse to another directory) and click
on the “Open” button on the file selection window. If the SOMA fileis not in the current
directory, use the directory browsing features at the top of the file selection window.

MMAV User’s Guide

717108 17

3elect an interface class - | to create a new S0MA file

=llB/lx]

-

Memory solutions defined

Open SOMA file l

Open Simulation Results |

Copyright {c) Denali 5 }{'UDEH

Confidential and Propriet
Property of Denali Softw

creating new axi description

A1l Righf
License(piractory: fhomeftyanfsomafiles

X
= |

PureView,

hyaduzddZZzg-6.50ma
hySdyB41622at 4. soma

hyadve41 B22at_33.50ma
hyadvE41622at_33_caslati.soma
hyadvE41622at_36.50ma

(57 samsung El k4d2B3238m_gcd0 soma
El essram.soma El m13l64164a_4.50ma
El miabwdmazly-4 soma

i I o o

File name: |hy5duz832220-6.50ma

Files of type: XML SOMA (*.soma) ~|

Open

Cancel |

FIGURE 2-6: PureView “Open” SOMA File Window

MMAV User’s Guide

717108

18

2.3.2

PureView “File” Pull-down Menu

PureView - /home/ryan/somafiles /hy5dv641622at_4.soma i]

{ Fie | Egit options

New s
= card -
Open cflash Double Data Rate (DDR) Synchronous DRAM x
Check SOMA databahn s=======ee- ====== ==============
This is a generic DODR model which supports all the o
ddr_ll - DIR wendors.
Save S0MA As
M: ddr_sdram To skip initialization sequence, Feature "Check ini
ddr_ssram can be turned off. This will cause the model to igm
constraint of 200us init delay, and ignore the cons
dram 200 cycles delay after DLL reset.
edo

In addition to use "Mode Register Set" command =and
Close edram - "Extended Mode Register Set" command for setting the
mode registers can be loaded dynamically, through W |—

Exit ESStaly - or VHOL package functien.
foram 3 For example, 1n Verilog:
1 = #mmload ("testhench memoryimr)", "mr.da
flash - in VHOL:
peix . i = mmLoad ("/testhench/memory(mc)", "mrc.d:
prom Here testhench memory is the memory model instance o
d (mr) is the fixed suffix for mode registers.
qur_ssram S0, "testhench memoryimr)® is the instance name for
rdram registers. "mr.data" is the memory format file name
The register content has the following binary forma
regfile Bain-17 ... Bal a(m-1) ... &0 7
Hdram TIN | =
sdram
Overview { FUnction: seprom { Source f
sfifo
sigmaram =
smrom

FIGURE 2-7: PureView “File” Menu

“New” SOMA File

This option is used to create your own SOMA file using Denali’s default SOMA file for a
specific memory class.

“Open” a SOMA File

This option allows you to open up a different SOMA file. It will bring up a dialog box
allowing you to choose another SOMA file to open up in PureView.

“Check” a SOMA File for Errors

This option will check the SOMA file for syntax errors and for illegal feature combina-
tions. If creating your own SOMA file from scratch, it is recommended that you check
your SOMA file before saving it and using it in a simulation. NOTE: this check will not
ensure the correctness of your SOMA file from a timing and functionality standpoint, it
will only check for illegal parameters set in the SOMA file.

MMAV User’s Guide

717108 19

Note that the Save SOMA or Save SOMA As... commands discussed below cause the
same checks as the Check SOMA command, and gives you the option of cancelling the
save or proceeding with the issues intact.

“Save SOMA” File Option

This option will alow you to save your SOMA file. The Save SOMA option is available
once any changesto a SOMA file are detected. If you are smply viewing a Denali created
SOMA file, you will not need to re-save the SOMA file, unless you have made changes to
the parameters.

“Save SOMA As” File Option

This option allows you to save a newly created SOMA file or to save an existing SOMA
file as adifferent filename.

“Save Source” Option

This option alows you to save the HDL wrapper file generated in Figure 2.4, “ Creating an
HDL Shell with the PureView GUI,” on page 23 to disk. This option will use the SOMA
file name and use either a .vhdl or .v file extension (for VHDL and Verilog sources
respectively) by default.

“Save Source As” Option

This option alows you to save the HDL wrapper file generated in Figure 2.4, “ Creating an
HDL Shell with the PureView GUI,” on page 23 to disk. This option will use the memory
model class name and use either a .vhdl or .v file extension (for VHDL and Verilog
sources respectively) by default. New in 3.2, you can save off an HTML datasheet of the
interface you are modeling.

“Close” Option

This option closes the current PureView window, but does NOT close the entire PureView
application

“Exit” Option

This option closes the current PureView window as well as any other open PureView win-
dows and exits PureView.

MMAV User’s Guide 717108 20

2.3.3 PureView “Options” Pull-down Menu

I Pureiiew — <untitleds
A File Edit options | ||
S50MA Output Format F
C]aSS|_|j E . . = Class supports Double Data Rate I
= Simulation Enydronment = Co-Design -
Fart name T | q
I_I-E“t blast pins Documentation -
" Combine Setup Hold
S tant “k (DM pin for ¢
Manufacturer I_I:I [T Enable SDF Entry Yerilog Head cycles
|_ [T STO_ULOGIC for WHOL ports VHOL r 5
I_lBchu:un help .t Length

Read and Write of 4 or 8 only, inte
back to back burst allowed.

Latencies
write latency equals read Tatency
no 172 cycle latencies
Cas and additive latencies prograr

= | - .lJH—I -

-\'. Oyeryiew ,{Functinna'lity,(Timing Jl{ Source ,f

FIGURE 2-8: PureView “Options” Menu

SOMA Output Format

This option gives you the ability to save the SOMA file out in any of three supported for-
mats. By default, all SOMA files downloaded from eMemory.com are in a compressed
XML format. You can save these as either Uncompressed XML format or as a text file
(Version 0.001).

Simulation Environment

This option is used to select the simulation environment you are using for the HDL shell
generation process. You can select from Verilog, VHDL, HTML Datasheet, and Sys-
temC. Once selected, the PureView “Source” window will display the HDL shell file and
you can use the File -> Save Sour ce menus to save the HDL shell for simulation.

The datasheet option lets you save off an HTML Datasheet of your interface that is being
modeled. This allows you to quickly extract the features into any documentation. An
example of thisis shown below:

MMAV User’s Guide 717108 21

| Fureticoy — <untitled>

File Edit oOptions
Environment: \
i| |Pins
Name: {Canonical} | Direction |Description
k =% in lock Input
k_n “ck_ny in lock Input
ke “cker in lock
E_N {cs_n) in hip Select
as_n fras_n) in Row Address
33_N fcas_nl in alumh
e_n Swe_nd in Irite
hal1:0] ‘hak in [Bank.
all130] Ca) in Rddress
dgq[3:0] fdq? inout Data 1/0
das <dgs? inout. Differentia
da=_n tdgs_nd inout, Mifferentia
dm Cdm> in Input Data
i [Tining
Name Description Min P
Linit Time 200 us
ok Clack cucle |5 ns
tck_max Clock cucle 10 ns
tck3 inimum ns
tck3_max i mum 1o ns —
k4 ird mLn E ns
tokd_max & d 1o s
tac_min D0 output E s
il eac_max [0 output. LB ns £
g
: \ Overview I(Fun[:uunality !(Timing }\ Source f
o
A

FIGURE 2-9: PureView “Datasheet” Source Window

Bit-blast Pins

This option will expand all data buses into individual single bit ports for the HDL shell
file. Additionally, individual pins may be bit-blasted with the “Blast Bits’ check boxesin
the “Pins’ (right) half of the “Functionality” tab. Refer to Figure 2-11, “PureView “ Func-
tionality” Window” for a sample window.

STD_ULOGIC for VHDL Ports

This option will convert all VHDL port signal typesto STD_ULOGIC. The default signal

typeisSTD_LOGIC.

Balloon help

This option turns on the “mouse over” help information. You can disable this by un-check-

ing this box.

MMAV User’s Guide

717108 22

Creating an HDL Shell with the PureView GUI

Once you have successfully loaded a SOMA file into PureView, you now need to create an
HDL shell of the memory suitable for your particular simulation environment. This is
accomplished by selecting the “Source” tag in the bottom right hand corner of the Pure-
View SOMA description window.

Pureiew — fhome/mbhatia/work/RESOURCE/mt47h32m16_18esoma
oA File Edit options|
SOMA Qutput Format P
Enwi ronment: |:
2/ Hodule: Simulation Environment s Co-Dasign - I
/7 SOMA file; | B1E-blast pins Documentation
/¢ Initial cont aibine Sela Kol systemc F
[T Enable SDF Entry

/7 Si lati 'u'erﬂug I
RN R T I Ll : .
S~ IBM MESA Cycle Simulator — Werilod

// PLEASE do not
// Doing so wil. M Balloon help |s in Denali nodels to be
/¢ inaccurate a possible undetected errors or

/4 erroneous errors. It nust remain “tinescale lps/lps for accurate sinulation.
*timescale 1lpsfips

nodule |mt47h32m6_18e «

ck,
ckbar ., 7

Y overview [Functionality { Timing b Source /

FIGURE 2-10: PureView HDL Source Window

The Source window will initially be blank. Select the Options -> Simulation Environ-
ment menu tag at the top of the window. From here select either Verilog or VHDL
depending on the HDL language your simulator supports. Then proceed to select the
actual simulator you will be using. The actua code for the HDL simulator will appear in
the Source window. You will notice that some of the fields can be edited. These fields
have been pre loaded with the appropriate data from the SOMA file you read and do not
need to be modified. If you choose to modify the location of the.spc file or the initial con-
tents file, you can select the “...” button next to these fields and a file selection box will
pop up. Use this box to select an alternative file.

The HDL shell enables you to specify aninitialization file (init_file). You can edit the path
name to point to afileto be loaded at model initialization time. Thisfile format isidentical
to the Memory Content File Format as described in “Memory Content File Format” on
page 64.

MMAV User’s Guide

717108 23

The last step is to write out this HDL shell to a file so it can be instantiated into your
design. To do this, select the “File -> Save Source AS” menu button at the top left of the
Source window. A file selection box will pop up where you can name the HDL sourcefile
and write it to the appropriate directory. Once this is done, you have everything you need
to start simulation with the particular memory device specified in the SOMA file.

NOTE: New in 3.2, all of the verilog simulator options have been combined into a single
source window. Because of the PLI standard interface, the Verilog HDL wrappers
arenow identical for all Verilog simulators. Select the“ All” option for any Verilog
simulator.

2.5 Creating or Modifying a SOMA file

PureView allows you to create anew SOMA file from scratch as well as modify an exist-
ing SOMA file. This section will describe the process by which you can modify or create a
SOMA file with PureView. Below are the steps you need to follow to create/modify a
SOMA file.

1. Select an interface class OR read in an existing SOMA file

Once you haveinvoked PureView, either select “ Open SOMA file” to modify an exist-
ing SOMA file or select “ Select an interface class’ from the main PureView window.
A PureView class window will appear with 4 tabs on the bottom of it (Overview,
Functionality, Timing, Source).

2. Select size, functional parameters, and pin names

MMAV User’s Guide 717108 24

I Pure¥Yiew - /home/ryan/somafiles/hy5dv641622at_4.soma _al:

A File Edit Options
Features Fins
B Column Address Width | [cock clk Y
|4 NHumber of hanks Clock bar clkhar
I1 . Address bit {0 .. size-1) used for Clock Enahle cke
detenmining auto precharge Chip Select cshar
I Refresh cycles required during
2 e Row Address Strobe rasbar
_| Enable CAS latency of 6. Column Address Strobe |cashar
Write Enable wehar
_1 Enable CAS latency of 5.
Data Mask dm Bus Sizel 2 _| Blast
_I Enable CAS latency of 4.
| Bank fuldress ha Bus Sizel Z _l Blast
J Enahle CAS latency 3 Address a Bus Size [12 _| Blast
I Enable CAS latency of 2.5 Data qu— Bus Size | 16 1 Blast
_| Enable CAS latency of 2 T f
¥ Bldlrectmna;ir?ata Strobe qus— Bus Size |—2 _{ Blast
_1 Enahle CAS latency of 1.5
@ Enable Burst Length of 2 I
@ Enable Burst Length of 8
I Enable full page bursis
o Ensure even address when starting a full
page read burst
_1 Fized burst sequence —
4 £
=l [TI =l [

\ Overview \Func:tiuna\lit)ur l Timing ’(Source /

|Ahout this software

FIGURE 2-11: PureView “Functionality” Window

Select the Functionality Tab in the bottom of the PureView window. The functionality
window will allow you to parameterize the simulation model for the class of memories
you have selected. Each class has its own set of parameters that describe the size and
functionality of the memory class. You can select and desel ect these optionsin the left
hand window that appears. The right hand window allows you to specify the pin
names and widths for each pin type. The size of the device is determined by the pin
widths of the address and data ports.

Pin Naming

Beginning with Denali version 2.800, pin naming was enhanced to provide you more
control of the pin names generated in the HDL shell. Primarily enhanced for multi-port
SRAM devices (embedded as well as external), these enhancements enables you to
uniquely identify the naming of multiple ports. PureView now takes the following syn-
tax in the Pins section: name_prepend{ port1l_specifier, port2_ specifier,
port3_specifier} name_postpend.

Example:

For a2 port device and the desired HDL shell Output Enable pin names of:
OE_portl N and OE_port2_N, enter the Output Enable pin name in PureView as.
OE_{portl,port2} N.

MMAV User’s Guide

717108 25

4. Specify timing parameters

A PureYiew - /home/ryan/somafiles/hy5dvb41622at_4.50ma - | m| |_><
oA Fie Edit Options

Enabled Min hdax

|

Minimum Clock cycle time (CAS latency=3)
=
7|

N | =
value [4 unit ns |

v 045 clk
v 045 clk
s 04 ns
« 04 ns = |
7 = SDF

ans l—
v 0.9 ns - |
vy 0.9 clk = —
v 11 clk il —l

\Over\riew AFunctionality\ Timing § Source /

FIGURE 2-12: PureView “Timing” Window

Once you have selected the proper functionality and size of the memory, you now
must specify the timing parameters relevant to this class and parameters you have set.
To edit the timing parameters, simply left mouse button click on the timing parameter
value. The description and value of this parameter will appear in the upper right hand
corner of the window as well as atiming diagram that illustrates the timing parame-
ter’s releationship.You can modify this timing parameter by right mouse clicking in
the “Value” field and inputting the correct value. The magnitude of the value can be
changed by clicking on the pull down menu to theright of the*Value” field. To change
the value of the parameter, press RETURN while the cursor focusisin the “Vaue”
input box.

You can enable or disable reporting of a particular error if the timing relationship spec-
ified isviolated during simulation. To do this, smply click on the “check mark” to dis-
able this check. Clicking on the blank spot under the “Enabled” column will turn the
timing check back on. Any timing check that is not applicable to the parameters you
set in the “Functionality” tab will be greyed out and cannot be edited.

5. Savethe SOMA file

MMAV User’s Guide

717108 26

251

Once you are done setting all the functionality and timing parameters for the memory,
you need to write out the SOMA file to disk. To do this, select the “File -> Save
SOMA As’ pull down menu at the top left hand corner of the window. A file selection
dialog box will appear where you can select the name of the SOMA file. Once you
have specified the file name for the SOMA file, click on “Save”. If you are ssmply
modifying an existing SOMA file, you can select “File -> Save SOMA” and the origi-
nal SOMA file will be overwritten by the new specifications you have input through
the “Functionality” and “Timing” windows.

3. Writeout HDL Shdll

The last step isto write out the HDL shell for the memory you have just created or
modified so you can add it to your simulation environment. To do this, follow the
instructions outlined in Figure 2.4, “ Creating an HDL Shell with the PureView GUI,”
on page 23. Caution: Write out the HDL shell last. Thiswill insure the HDL shell
pointsto the correct SOMA file when you instantiate it in your design. If you write out
the HDL shell before you save the SOMA file, you could be pointing to an outdated
SOMA file.

Creating an HDL shell via Command Line

PureView is most commonly used to create the HDL shell necessary to instantiate in your
simulation. This HDL shell contains the module definition for Verilog or the entity/archi-
tecture pair for VDHL for the device described in the SOMA file. The pins of the device
are defined along with a call to the particular memory class object in “C”. This object is
linked into the simulation via the denali.so shared library object provided in the Denali
software. You can see alist of PureView options by typing:

pureview -batch -help

To create an HDL shell viathe command line, the syntax is as follows:

pureview -batch -generate <target environments> <model name> -genoption
optionl,option2 -genoutput <HDL shell file name> <soma file>

Example:

pureview -batch -generate mti essram denali -genoption
init file="../loadfiles/essram.dat” -genoutput essram.v essram.soma

This command would create a Verilog file caled essram.v with a module name of
“essram_denali” that references an initiaization file of ../loadfiles/essram.dat to preload
the device and the essram.soma SOMA file. This HDL shell file (essram.v) will be gener-
ated for the MTI Verilog simulator.

MMAV User’s Guide

717108 27

Below isacomplete list of the options available for the command line use of PureView.

Option Description

TABLE 2-1: PureView Command line options

-batch Open no windows, and exit after operations specified on the command-line.
-usage Output usage information about PureView command

-help Output help information about PureView command

-quiet Do not write messages to the console

-new <class name>

Creates a new SOMA for the given memory class.

-convert <format>

Converts the input SOMA to the specified format. Valid options are “xml” and “uncom-
pressedxml” (or “uxml”).

-convoutput <file
name>

Writes the converted SOMA (see -convert) to the given file instead of to the console.

-generate
<target env>
<model name>

Generate simulation source code for the given environment, using the given name for
the Verilog module or VHDL entity. See list of target_environments below.

-genoption
<option>[=<value>]

Set the named options to either the given values or to 1 where no value is supplied. The
effects of multiple -genoption arguments on the command line are cumulative. Multiple
options are comma separated, no spaces. See list of options below.

-genoutput
<file name>

Write HDL source code (see -generate) to the given file instead of to the console.

-simdb <file name>

Connect to a simulation database file

-instance <instance
name>

Instance name to view in the simulation database (requires -simdb)

MMAV User’s Guide

717108

28

TABLE 2-2:

Target Environments for -generate option

Parameter Environment

Co-Design

CoWare | Coware Simulator

Verilog

all | All Verilog Simulators

VHDL

configuration VHDL Configuration Template
leapfrog Cadence Leapfrog/NC-VHDL
mentor-unix Mentor MTI Modelsim (UNIX)
mti-unix MTI V-System/Mentor QuickHDL (UNIX)
package VHDL Package Template

scirocco Synopsys Scirocco

voyager Ikos Voyager

Datasheet

datasheet | HTML Datasheet

SystemC

systemC | SystemC

TABLE 2-3: Parameters for -genoption

Parameter Description

init_file“file name” The value for the init_file parameter/generic. NOTE, you can use relative paths
(../../this_initfile.txt) as well as environment variables ($denali_loadfiles/
mem1l.dat) in the file name.

bitblast[=<value>] If set to any of 1, yes, or true, generate an additional bit-blasted HDL shell.

NOTE: All busses will be blasted, for selective blasting, use the PureView GUI.

blastModelName= <model | Name of the module/entity for the bit-blasted or additional HDL shell (e.g. blast-
name> ModelName=rbt12_75). Note that blastModelName is case sensitive.

combinesetuphold If set to 1, it combines $setup/$hold conditions into one $setuphold condition

configurationName Name of the configuration for the VHDL configuration template
packageName Name of the package for the VHDL package template
libraryName Name of the library for the VHDL configuration template

vhdl_std_ulogic If setto 1, VHDL port types can be either std_logic or std_ulogic (default is

always std_logic).

MMAV User’s Guide 717108

CHAPTER

Debugging Memory Using PureView

The PureView debugger provides a unique graphical view of your memory contents dur-
ing simulation. It isintended for interactive as well as post-processing debugging and pro-
vides the following beneficial features for verification debug:

Display physical and “logical addressing” contents

Postprocessing database

Interactively browse memory contents at any time after simulation has run

Step forward or back in time while viewing memory contents
Address-specific history

Double-clicking on any memory location brings up transaction history for it
Time-synchronization with simulator

When running in “live” mode, can have PureView sync'ed with simulator
User-selectable layout and display of memory space/contents

The PureView debugger is synchronized to your simulation using Denali’s client applica-
tion interface. This ensures that the PureView window accurately reflects the data being
read and written to memory

3.1 Denali Memory Database Files

To enable the post processing capability, you must specify a database file to be created.
This file uses Denali’s advanced database compression technology to minimize perfor-
mance impact during simulation. All memory events during the simulation are captured in
this binary file.

Thisfile can be specified at the beginning of simulation or at any time during simulation.

NOTE: If the database file is specified after simulation has started, it may inhibit valuable

information about system memory definition which might have preceded the simu-
lation database creation.

There are two methods for specifying the database file to be created.

MMAV User’s Guide

717108 30

3.2

3.2.1

1. At the beginning of simulation - Specify via.denalirc file
e SimulationDatabase simdb
2. Dynamically during ssimulation - Specify in RTL through Tcl Interface
e Verilog/VHDL - mmtcleval (“ mmsimulationdatabase simdb_filename”);
e Tcl - mmsimulationdatabase simdb_filename
It should be advised that using the .denalirc option is the preferred method, as it will cap-

ture the entire database from the beginning of ssmulation. If both methods are used, the
.denalirc file will stop being recorded when mmsimulationdatabase iSinvoked.

Interactive Debugging During Simulation

As mentioned above, PureView can now be used in two modes: interactively during simu-
lation and in post-processing modes. PureView can be invoked at any time before or dur-
ing simulation. In either case, a database file must be generated. See Figure 3.1, “Denali
Memory Database Files,” on page 30 for details on how to specify the database file.

UNIX Shell Invocation

To invoke PureView from the UNIX shell, use the following command:

unix> pureview &

Also, there are command line switches to bring up a specific database file and memory
instance. These are used as follows:

-ssimdb filename - Will automatically connect PureView to a ssmulation database file.
-instance instance_name - Instance name to view in the simulation database.

Example: Open up instance “test.memory.ddrQ” in the “testl.ssmdb” database.

pureview -simdb ./testl.simdb -instance test.memory.ddr0

The complete list of command line switches can be seen by typing:

pureview -batch -usage

MMAV User’s Guide 717108 31

3.2.2

3.3

Invoking PureView using “pureview &” will bring up the following client window:

E =1
-
Memory solutions defined.
Select an interface class - | to create a new SOMA file

Open S0MA file

Open Simulation Results

Copyright () Denali Software, Inc., 1998 - 2001
21l Rights Reserved.
Licensed Software.
confidential and Proprietary Information Which is the
Property of Denali Software, Inc., or Its Licensors.

PureWiew, Version 3. 200

FIGURE 3-1: PureView Debugger Window

Simulator/Testbench Invocation

PureView can aso be invoked directly from within your design/testbench. For conve-
nience, Denali has provided PLI, FLI and TCL commands to invoke PureView directly
from within your testbench or from your smulator’s command line.

For example:

ModelSim TCL: mmstartpureview
NC-SIM VHDL TCL : call mmtcleval “mmstartpureview”

Verilog PLI : success = $mmstartpureview;
VHDL FLI (ModelSim only): success := mmstartpureview;
Verilog Command Line : $system(“$DENALI/bin/pureview &”);

Opening up the Simulation Results File

Once PureView is invoked, the database file must be opened to begin debugging with
PureView. Click on the “Open Simulation Results’ button to locate and open the ssmula
tion database file. Note that only ONE database file can be opened per PureView session.

MMAV User’s Guide 717108 32

-

Memory solutions defined.

Select an interface class — | to create a new SOMA file

Open SOMA file

Open Simulation Results

Copyright (c) Denali Software, Inc., 1998 - 2001
411 Rights Reserwed.
Licensed Software.
Confidential and Proprietary Information Which is the
Property of Denall Software, Inc., or Its Licensors.

Pure¥iew, Wersion 3. 200

¢ Open Simulation Database

Directory: ft fryanfregressions/d —-| £

3 .denali
£ wiork
El simdhb

File name: |simdb

Open

Files of type: Simdb Files (*simdb™) — Cancel

FIGURE 3-2: PureView “Open Simulation Results” Window

3.4 Selecting Memory Instances

PureView can be used to view either physical memory instances instantiated in your
design or view “logically addressed” memories created using the features of MMAV. Log-
ically addressed memories let you combine physical memories using depth, width, and
interleave expansion to generate a more cohesive “system” view of your memory sub-
system. Refer to the “Logical Address View” section in the Denali’'s MMAV Guide for
more information on creating these “logically addressed” memory views.

Once PureView has been invoked and the database file opened, a memory instance win-
dow is displayed. Select one (or multiple) memory instances and then click on “OK”.

>¢ Open Instance

homefryanfregressionsidemossimdh
4-Bit- Parity

G-Bit

32-Bit- Data

testhench.uutl

testhench.uut2

testhench.uut3

testhench.uutd

[[[(] o)

oK Cancel

Open Database...

FIGURE 3-3: PureView “Open Instance” Window

MMAV User’s Guide 717108

33

3.5

3.5.1

PureView Debugging Windows

Once you have selected a memory instance to debug, two windows will be displayed. The
first window, the Memory Contents Window, will display the contents of memory at the
specified simulation time. The second window, the Transaction History Window, will dis-
play the sequential memory transactions that have been captured.

These two windows are synchronized with each other. For example, if you “ Set” the time
in the Memory Contents Window, the Transaction History Window will automaticaly be
updated to show you the transactions at or near that point in time. Also, if you double click
on a transaction in the Transaction History Window, the Memory Contents Window will
automatically adjust to display the memory contents at that time in simulation.

A PureYiew - testhench.uutl =]]
File View Connect Help

Database | fhome/ryaniregressions/demofsimdb| Instance | testhench.uut
Address | 0x0000cd Time |

il @

133 | 19 a0 | 1%
10 | 1AL | A2 | 1A3 | 14 | 1A | M6 | 1A7 | 1A9 | 1AA | 1AB | 1AC | LAE 180 | 1B1
OAZ | OAd | OAB | OAG | OA7 | OAB | OA9 | OAR | ORC | OAD | ORE | OAF | (B0 02 | 083
UBG | OBE | OBY | OBS | OB9 | OBA | OBE | OBC | OBE | OBF | OCO | 0C1 | 0C2 0cd | 005
OC7 | OCE | OC3 | OCA | OCB | OCC | oCD | OCE | 0D0 | OO | 0D2 | OD3 | 0D4 | 0D | (D6 | OOF
003 | 0D | ODB | ODC | ODD | ODE | ODF | OEO | OE2 | OE3 | OE4 | OES | OEE | QE7 | (FR | OF9
UEB | OEC | OED | OEE | OEF | OFO | OFL | OF2 | OF4 | OF5 | OFE | OF7 | OF8 | OF9
OFD | OFE | OFF | 100 | 200 | 102 | 103 | 104 | 106 | 107 | 108 | 109 | 10A | 10B
0 2V A < A A A
0og | 0oL | 002 | 003 | 004 | 005 | 006 | O0F | 111 | 114 | 11 | 114 M1 | 111
e e e e 1 e
]
4685 1o Flashing
Debug: Cycle 2490: State Bank 0: active 1. active
Debug Read (0, 000, Ocd)
SIM READ 0000zd+0 128
74715 ns
Debug: Cycle 2491: State Bark 0: active 1. active
Gycle: 2491 Command Burst Stop
Debug Read (0, 000, Oce) . .
STt READ 0000ce+0 180 Transaction History
74745 ns .
Debug: Cycle 2492: State Bank 0: active 1. active VlaN
Gycle: 2492 Command Nop
74775 ns
Debug: Cycle 2493: State Bank 0: active 1. active
74805 ns |
Debua: Cwele 2494: State Bank 0: active 1. active i
|

74685 ns -| Set
¢

FIGURE 3-4: PureView Debugger Windows

Memory Contents Window

Memory Content:

; Red tag: Last Read address

: Last Written address

3 These are with respect to the currently dis
time, not with respect to the end of hist

tag: Addressreq
by adouble-

The Memory Contents Window has a some additional features to help with debugging.
These are activated by the pull-down menus. A close-up of this window is shown below.

MMAV User’s Guide

717108

34

A PureView - testbench.uut1 o [m] 5

File View Connect Help
Jsimdh| Instance | testhench.uut1
0%000000 Tlme| 385 ns —| GSet

111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111
S A 6 6
T e e A s e s A B B IO A B A R R AR B 111

FIGURE 3-5: PureView Memory Contents Window Options
These features are described below.

From the File options pull-down menu, you can use the following features:

e Open Instance.... Opens the PureView memory instance window to allow the user to
open additiona debugger windows

e Run Tcl Command...: Allows user to issue a Tcl command, if desired.

e Debug: Turn on window debugging options to report a problem with the PureView
GUI to Denali support.

e Close Window: Closes the current Memory Content Window
e Exit: Close al windows and exit PureView

From the View pull-down menu, you can use the following feature:

e Value Format: Allows you to set the format for the data values (addresses are always
displayed in Hexadecimal format). You can select one of the following: Binary, Deci-
mal, Hexadecimal, or Octal.

e Contents Table Origin:

e Top Left: Display the memory contents window with the starting address starting at
the top left

e Top Right: Display the memory contents window with the starting address starting at
the top right

e Bottom Left: Display the memory contents window with the starting address starting
at the bottom left

e Bottom Right: Display the memory contents window with the starting address start-
ing at the bottom right

e Show Last Read: Displays last Read address
e Show Last Write: Displays last Written Address
¢ Refresh: Refreshes the Memory Contents Window

MMAV User’s Guide

717108 35

3.5.2

3.5.3

Memory Contents Transaction Summary

You can get a summary of all the memory transactions for a specific address by “double-
clicking” on that address. If there have been any memory transactions at that address, you
will get the following pop-up window summarizing al the activity.

A testbench.uutl @ 0xDDDOSS5 o =]
2175 ns =
MALSKED SIM WRITE 0oo0ss+0 017 1FF
2535 ns
SIM EEAD 000055+0 niv
23685 ns
MALSKED SIM WRITE 0oo0ss+0 017 1FF
24045 ns
SIM EEAD 000055+0 017
45315 ns
MALSKED SIM WRITE 0oo0ss+0 0l1E 1FF
45675 ns
SIM EEAD 000055+0 01E
48195 ns
MALSKED SIM WRITE 0oo0ss+0 0l1E 1FF
48555 ns
SIM EEAD 000055+0 01E
54105 ns
MASKEED S5IM WRITE 00005s+0 128 1FF
E4465 ns
SIM EEAD 000055+0 1zg
63975 ns
MASKEED S5IM WRITE 00005s+0 127 1FF
E4335 ns
SIM EEAD 000055+0 1z7
Fl

FIGURE 3-6: PureView Transaction Summary Window

Transaction History View

PureView provides a complete and informative transaction history view to allow the user
to see a list of all the memory transactions since PureView was invoked. The level of
information in the transaction history window can be controlled by parameters in the
.denalirc file (see “Controlling Your Memory Simulation Models - The .denalirc File’ on
page 39 for more details on the .denalirc file) as follows:

1. HistoryFile: Provides details on basic read/write operations and memory operations
(precharge, nop, refresh, etc.)

MMAV User’s Guide

717108 36

3.6

3.7

2. HistoryDebug: In addition to the HistoryFile information, this option also provides
detailed debug information such as bank/row/column addresses, bank states, etc.

L7585 ns A

Debug: Cycle 1920: State Bank 0: active 1: actiwe
Debug: Write (0, 000, 07e)
MASEED SIM WRITE Q0007E+0 156 1FF

57615 ns

Dekug: Cycle 1921: State Bank 0: active 1: actiwe

Dekug: Write (0, 000, O076)

MASEED SIM WRITE 00007F+0 157 1FF

57645 ns

Debug: Cycle 1922: State Bank 0: active 1: active
STETE ns

Debug: Cycle 1923: State Bank 0: active 1: actiwe
STT0S ns

Dekug: Cycle 1924: State Bank 0: active 1: actiwe
5TT35 ns

Debug: Cycle 1925 State Bank 0: active 1: active

Cycle: 1925 Bank 0 Command Read —
ETTES ns

Debug: Cycle 1926: State Bank 0: active 1: actiwe

Cycle: 1926 Command Nop

Dekug: Read (0, 000, 078)

SIM READ 00oo7e+0 150

FIGURE 3-7: PureView Transaction History Window

Double-clicking on aline in the Transaction History window takes you to that time and
address in the Memory Contents window.

Post-Processing with PureView

As mentioned above, PureView can now be used in two modes: interactively during simu-
lation and in post-processing modes. To use PureView in post-processing mode, a data-
base file must already exist. To use PureView in post processing mode, follow these steps:

1. Runyour simulation with “ SimulationDatabase” set either in the .denalirc file or from
within your testbench

2. Invoke PureView and open the ssimulation database file
3. Open memory instances you wish to debug

All of the features mentioned above are still valid.

Using PureView with Mentor Graphic’s Seamless
HW/SW Co-Verification

Prior to Denali’s 3.0 release, Seamless customers were unable to use Denali’s PureView
debugger with Seamless. This was the result of Seamless “owning” the memories in the
design. With Release 3.0, Denali and Mentor Graphics have solved this. There are two
new .denalirc features called: DenaliOwn and DenaliOwnClass that pass control of the

MMAV User’s Guide

717108 37

memory within Seamless to Denali. This allows you to now use PureView to debug the
memory contents.

NOTE: To use PureView within the Seamless environment you must use these Denali set-
tings to pass the owner ship of the memories to Denali.

Use the DenaliOwn .denalirc setting to pass a specific instance to Denali to “own”.

For example, to view the memory instance “testbench.rams.sdramQ” in Seamless, set the
.denalirc variable as follows:

DenaliOwn /testbench/rams/sdram0

You can aso instruct Seamlessto allow Denali to own an entire memory class. A memory
classis the specific memory type (for example, sdram, ddr_sdram, flash, sram, etc.). For
example, to view the sdram memory instances in PureView when running in Seamless, set
the .denalirc variable as follows:

DenaliOwnClass sdram

NOTE: In order to add multiple memory classes to the DenaliOwn and DenaliOwnClass
parameter, you MUST separate the memory classes by using a semicolon and
ensure that these are on the same line of text.

Examples:

DenaliOwn /testbench/rams/sdram0;/testbench/rams/sdraml; *ddr*
DenaliOwnClass sdram;ddr

MMAV User’s Guide 717108 38

CHAPTER

4 Using Denali’'s Memory Modeler Advanced
Verification

Denali’'s Memory Modeler Advanced Verification (MMAV) product extends Denali’s
world class memory modeling capability with advanced verification features aimed at
enhancing your memory subsystem verification Using the data and data transactions to
verify your system can significantly reduce your verification cycle time while increasing
your verification coverage.

4.1 Controlling Your Memory Simulation Models - The
.denalirc File

In order to achieve the most out of MMAYV, Denali uses a runtime control initialization
file, $SDENALI/.denalirc, which stores settings to control model behavior during ssimula-
tion. Up to four $SDENALI/.denalirc files may be used to store these settings. For example,
if you only wish to change one setting for a particular simulation, you would create a
.denalirc file in your working directory to store your specific ssmulation settings. The
locations of these initialization files are listed below in order of precedence:

TABLE 4-1: .denalirc Precedence

Location Description

$DENALIRC Environment variable
J.denalirc Simulation specific defaults
~/.denalirc User defaults
$DENALLI/.denalirc System defaults

In general, the .denalirc file is a simple text file containing keyword-value pairs used to
store your initialization settings. All lines beginning with # are ignored. The default .dena-
lirc file in your installation also includes commented lines which provide a complete
description of all the switches and their usage. The descriptions use mixed case for clarity
but the switch names are NOT case sensitive, though their values may be.

The following section describes some of the switches (or flags) that can be set in the ini-
tialization file to modify the behavior of your memory models.

HistoryFile

MMAV User’s Guide 717108 39

When set, the History File switch creates a history file containing all read and write opera-
tions to each memory. In your default .denalirc, this switch is turned off. To set this
switch, simply un-comment the appropriate line, and specify a file to which the history
should be written to. For example, to save your history file as“memresults.his’, thelinein
your .denalirc file would read as follows:

HistoryFile memresults.his
HistoryDebug

The HistoryDebug switch causes more detailed information to be saved to your History-
File results. In your default .denalirc, this switch is turned off. To set this switch, smply
un-comment the appropriate line, for example:

HistoryDebug On

HistoryDebugL oad

The HistoryDebugL oad switch causes even more information to be saved to your History-
File results, including each individual address load to the file. Consequently, setting this
switch will greatly increase the size of your HistoryFile. In your default .denalirc, this
switch isturned off. To set this switch, ssmply un-comment the appropriate line, for exam-
ple:

HistoryDebugLoad On
HistorylnSimL og

Use HistorylnSimL og set to 1 to see the history messages reflected in wherever the output
from the simulator is going (which varies by simulator). This interleaves Denali history
with testbench output. The default for thisis O (off).

HistoryInSimLog O

TraceFile

When set, the TraceFile switch creates a file containing al events on the memory ports
such as reads, writes, etc. Thisis primarily used by Denali support as a valuable diagnostic
tool for understanding and recreating a customer’s memory simulation environment. In
your default .denalirc, this switch isturned off. To set this switch, ssmply un-comment the
appropriate line, and specify afile to which the trace file information should be written to.
For example, to save your trace file as “testcase.trc”, the line in your .denalirc file would
read as follows:

TraceFile testcase.trc
TraceTimingChecks

TraceTimingChecks enables you to trace all of the timing checks performed during simu-
lation. In your default .denalirc, this switch is turned off. To turn on TraceTimingChecks,
simply set the valueto 1, for example:

MMAV User’s Guide 717108 40

TraceTimingChecks 1
LicenseQueueTimeout

LicenseQueueTimeout allows you to specify how many minutes to wait suspended, if a
license is not available. In the example below, Denali will wait for 120 minutes for a
license to become available.

LicenseQueueTimeout 120
LicenseQueueRetryDelay

LicenseQueueRetryDelay specifies how many seconds to wait before pinging for licenses
(so that the license log file doesn't overflow). In the example below, Denali will ping every
60 seconds for a Denali license.

LicenseQueueRetryDelay 60
SimulationDatabase

SimulationDatabase specifies the filename and location for the post-processing simulation
database.

SimulationDatabase /tmp/simdbxxx

Where XXX is a unique number to avoid collisions with other users. You can specify a
different database location than above if desired. However, for performance reasons it is
strongly recommended to locate the database on alocal disk.

NOTE: You must turn on HistoryFile parameter when generating a database.

To turn off database generation (thisis the default), use:

SimulationDatabase Off
SimulationDatabasePatter n

To limit the database info to specified instances, use the statement:

SimulationDatabasePattern instance?2

SimulationDatabaseBuffering

You can turn the simulation database buffering on/off if you want database flushed to disk
immediately. This results in a performance hit but is useful if you're debugging an "abnor-
mal termination” situation:

SimulationDatabaseBuffering on/off

TimingChecks

MMAV User’s Guide 717108 41

The TimingChecks switch turns on/off the timing checks on your memory model (i.e.
setup times, hold times, etc.) In your default .denalirc, this switch isturned on. To turn off
timing checks, ssimply set the value to O, for example:

TimingChecks 0

RefreshChecks

The RefreshChecks switch turns on/off the refresh timing checks for DRAM models. If
you are not simulating with DRAM models, this switch isignored. In your default .dena-
lirc, this switch is turned on. To turn off refresh checks, simply set the value to 0O, for
example:

RefreshChecks 0
RefreshOnReadWrite

If you would like to count reads and writes as a refresh to that particular row, set the fol-
lowing parameter RefreshOnReadWrite to 1. Although the true behavior of the part may
count a read and write as a refresh to that row, Denali does not default to that behavior.
The reason being that a controller should not rely on certain memory accesses to obtain
proper refresh rates. Thisisonly supported for edram, rldram, sdram, ddr sdram, and ddr |1
sdram memories.

RefreshOnReadWrite 1
ReadDQSContentionCheck

To have the model check for bus contention on DQS during reads, set ReadDQSConten-
tionCheck to *1'. Supported for DDR SDRAM only. DDR SDRAM model checks for bus
contention on DQS during reads. To disable this check, set ReadDQSContentionCheck to
‘0.
ReadDQSContentionCheck 1

InitialM emoryValue
By default, your memory models are initialized to X. You may specify any of the follow-
ing values to initialize your memory:

e |nitialMemoryVaue O - initializesto all O's

e |nitialMemoryValue 1 - initializesto all 1's

¢ InitialMemoryValue X - initializesto al X's

e |nitialMemoryVaueU - initializesto al 'U's

Alternatively, you can also specify a hex value. This value must begin with "0x" and con-
sist of the hex values 0-9 and A-F (or af). For example:

InitialMemoryValue 0x3018

MMAV User’s Guide 717108 42

This string cannot expand to be longer than the memory's word width (typicaly the data
size). If shorter, the unspecified bits will be filled with Os.

Any other value will initialize memory to all 'X's

You may also generate random data for the initial data by specifying:

¢ |nitialMemoryVaue randomNoUpdate - the model is not updated with the random
data(i.e. it isnot written to the model). So subsequent reads without intervening writes
will get new random data.

¢ |nitialMemoryValue randomWithUpdate - the model is updated with the random data,
(i.e. it iswritten to the model). So subsequent reads without intervening writes will get
the same random data that was returned the first time.

Alternatively, you can use any arbitrary C function to specify the initial data, including
random data, random data with parity, etc.

For examples, refer to SDENA L I/ddvapi/example/fill Value.
I nitM essages

InitM essages causes the system to report an informative message concerning each mem-
ory component instantiated in your design during initialization. In your default .denalirc,
InitMessagesis turned on. To turn off InitMessages, ssimply set the value to Off, for exam-
ple:

InitMessages Off
TracePattern

TracePattern allows you to limit the size of your trace file (see above) by limiting the cap-
ture to specific instance name parameters. You may use shell “glob” patterns such as*, 2,
[]. You MUST have TraceFile uncommented as well.

For example, to trace just memory instances with the pattern “sdram”, you would use:

TracePattern *sdram*
HistoryPattern

HistoryPattern allows you to limit the size of your history file (see above) by limiting the
capture to specific instance name parameters. You may use shell “glob” patterns such as*,

201

For example, to record history for just memory instances with the pattern “sdram”, you
would use:

HistoryPattern *sdram*

Irregular Clock

MMAV User’s Guide 717108 43

In models with random output delay scheduling, such as DDR SDRAM, DDR-II,
FCRAM, RDRAM, and RLDRAM, output scheduling and some timing checks are
affected by the actual clock cycle time. The clock cycle timeis typically measured by the
model during the first few cycles of simulation only, unless one of the following flagsis
used.

This feature must be set if you are running with uneven clocks (non-constant clock-
widths). If you are running with regular (even) clocks, the Denali models can “randomize”
the data output within the alowable data valid range (see RandomOutputDelay below).
If IrregularClock isset to ‘1’, then this randomization will be automatically turned off.

When thisis set, the model measures the clock width every cycle and disables random out-
put delay scheduling.

IrregularClock 1

ClockSableCycles

Thisis used to define the number of cyclesin arow where MMAV considers clock stabi-
lized. Thisis necessary for DDR, FCRAM and RLDRAM as thereistypically a period of
time before the clocks become stabilized.

ClockStableCycles 1000
RandomOutputDelay

This parameter is used in models with random output delay scheduling (DDR, FCRAM,
DDR, etc.), which better exercises the memory controller. You might want to turn it off
early in your verification cycle. By default thisvalueison.

RandomOutputDelay 1
OutputTiming

By default, Denali memory models drive the data outputs with delay based on SOMA file
parameters. If you wish to drive the model outputs with zero-delay, the OutputTiming
.denalirc variable must be set to “0”. Thisis primarily used in cycle based smulations.

OutputTiming O
InitChecks

DRAM initialization checks can be disabled using the InitChecks parameter. If the initial-
ization checks are turned off, Denali will NOT check for the proper DRAM initialization
sequence. Use this command with caution as real errors may be masked if this is turned
off.

To turn off the initialization checks.

InitChecks 0

MMAV User’s Guide 717108 44

I nitChecksPauseTime

Thisvariable is used by the Denali model to ignore tpause/tinit checksin DRAM models,
and DLL Lock time checksin SSRAM models.

InitChecksPauseTime 0
ErrorM essages

This .denalirc option can be used to turn on/off warning and error messages globally.
Errors and warnings will still be captured in Denali history and trace files, but messages
will be purged from the simulator output/console.

ErrorMessages on
ErrorMessages off

ErrorMessagesStartTime

Denali aso provides the capability to turn on error and warning messages at a specific
time. Thisallows time for reset and device initialization before Denali models start report-
ing errors. Errors and warnings will still be captured in Denali history and trace files, but
messages will be purged from the simulator output/console. See examples below for syn-
tax.

ErrorMessagesStartTime 0ps # default
ErrorMessagesStartTime “20 us”
ErrorMessagesStartTime “200ms”
ErrorMessagesStartTime 200000 ns

ExitOnError Count
This .denalirc variable will allow you to exit simulation when a specified number of
Denali errors have occurred. Simply specify the error threshold in the .denalirc file:

ExitOnErrorCount 10 #exits simulation after 10 Denali errors
ErrorCount

In Verilog code, you can use an integer variable to see the number of errors detected by the
Denali memory models. Declare an integer variable in your testbench and then register it
as the error count variable through the ErrorCount switch in the .denalirc file. Then our
modelswill increment this variable each time an error detected. You may monitor the error
count variable, branch on it, etc.

Sampl e usage:

In testbench:

module testbench;
integer errCount; // monitor, display this

MMAV User’s Guide 717108 45

In .denalirc: uncomment the following line:

ErrorCount testbench.errCount
Tclinterp

This setting is used by NC Sim users. By default, Denali’s Tcl interpreter with NC Sim is
turned off due to some earlier incompatibilities with NC Sim’s Tcl interpreter. To enable
Denali’s Tcl interpreter in NC Sim, you must explicitly enableit by this .denalirc setting.

Tclinterp 1
TrackAccessFroml nit

If you are preloading memory with "init_file" or mm1oad before setting breakpoints and
you want these actions to be counted as memory write accesses, then set the following
variable: (default is0)

TrackAccessFromInit 1
Thisis useful when setting breakpoints on unaccessed memory locations.
EiM essages

Suppresses messages for soft error injections. By default, all injected errors are reported.

EiMessages off

DifferentialClockChecks

This setting suppresses differential clock checking. By default, models check negative
polarity clock signals for synchronization with positive polarity clock signals.

DifferentialClockChecks 0
DifferentialClock Skew

This setting allows you to specify allowable skew between positive and negative polarity
clock signalsfor differential clock checking. Skew is measured from the time either one of
the signals switches to the time the opposite signal switches. By default, no skew is
allowed. Note that in an actual device, differential clock skew is meaningless since the
clock edge is defined as the crossing of the positive and negative clock signals. This
parameter accounts for the fact that rise and fall times are not modeled in simulation, and
itsvalue is not provided by vendors. Skew is specified using atime value and units.

DifferentialClockSkew 150 ps
AssertionM essages

Suppress the messages displayed when an assertion fires. By default, a message is printed
when an assertion is triggered.

MMAV User’s Guide 717108 46

4.1.1

4.1.2

4.1.3

AssertionMessages off

TraceBackdoor ReadWrite

Suppress the trace for backdoor reads/writes. By default it istraced in the Denali trace file
(if specified).

TraceBackdoorReadWrite O

DenaliByPass

Renders all Denali models as non-functional, and does not check out a license during sim-
ulation. The default valueis 0.

DenaliByPass 1

Register File Specific .denalirc Parameters

SuppressUnknownAddr ReadError

Suppresses the error messages when an unknown address is read from the instance whose
name matches "InstNamePattern”.

SuppressUnknownAddrReadError InstNamePattern

IBM-EDRAM Specific .denalirc Parameters

SuppressRefreshl nfoM essages

Use 'SuppressRefreshinfoMessages 1' to eliminate informational messages about the
actua refresh window size (when it's not an error or warning). The default is '0’, or to
report on every refresh cycle.

SuppressRefreshInfoMessages 0

RDRAM Specific .denalirc Parameters

WarnSuppress

In addition to normal timing and protocol error conditions, the Denali RDRAM model
issues warnings for the following hazardous operations:

e overwriting the write buffer beforeit'sretired (e.g. WR-WR-RD-RD-RTR).

e precharging abank beforeit'sretired (rule CR8).

These warnings can be suppressed by setting the WarnSuppress parameter in the .denalirc
fileasfollows:

MMAV User’s Guide

717108 47

4.1.4

4.1.5

WarnSuppress 1
TimingChecksReportOnly

Turning this .denalirc option on will disable the Denali model feature that corrupts mem-
ory and drives “X’s” on the data-bus when there are timing errors. This option allows tim-
ing errorsto only cause the model to issue messages and will NOT drive “X” when seeing
timing errors. This can be very useful in early evaluation of errors, but will allow the sm-
ulation to continue, though reporting errors.

TimingChecksReportOnly 1

TimingChecksStartTime

Denali also provides the capability to turn on timing checks at a specific time. Thisalows
time for reset and device initialization before Denali models start checking for timing
errors. See examples below for syntax.

TimingChecksStartTime Ops
TimingChecksStartTime “20 us”
TimingChecksStartTime “200ms”
TimingChecksStartTime 200000 ns

RLDRAM Specific .denalirc Parameters

RldramlnitCyclesCheck

To turn off the 2000 cycle check between each refresh during initialization.

RldramInitCyclesCheck 0
RldramlnitRefreshChecks

To turn off refresh checking to each bank at initialization, set thisto “0”.

RldramInitRefreshChecks 0
InitMrsAddressSable

This setting is used to enable address stability checks during Init MRS. It can be forced to
check it by setting "InitMrsAddressStable 1" as follows:

InitMrsAddressStable 1

DDR-1l SDRAM Specific .denalirc Parameters

OffChipDrivel mpedanceChecks

MMAV User’s Guide

717108 48

4.1.6

4.1.7

4.1.8

The Off ChipDrivel mpedanceChecks variable is used to disable OCD checking. When this
variable is 0, the model does not issue warning messages or corrupt data when the OCD
level is outside the valid range. Note that there's also a SOMA feature that enables OCD.
If the SOMA featureis disabled, OCD is completely ignored by the model.

OffChipDriverImpedanceChecks 0

MRSmsgsinSimL og

MRS/EMRS informative messages are always included in the history and the simulation
log/transcript file. If you do not want to see these messages in the simulation log, then set
the MRSmsgsInSimL og parameter to 0. By default, this parameter is set to “1”.

MRSmsgsInSimLog 0

DDR-1l and DDR3 Specific .denalirc Parameters

noXslnReadData

Invalid ranges of model driven read data are not padded X's.

noXsInReadData 0
Randoml nsteadOf X1 nReadData

Invalid ranges of model driven read data padded with rand data not X.

RandomInsteadOfXInReadData 0

ESSRAM Specific .denalirc Parameters

SuppressPortContention

The SuppressPortContention variable is used to suppresses Read-Write Port contention
error messages in instances whose name matches the pattern specified by "InstNamePat-

tern

SuppressPortContention InstNamePattern

Mentor Graphics ModelSim Specific .denalirc
Parameters

ModelSimTimeDefinitionToggle

Denali triesto beintelligent about interpreting high and low bits of time for the ModelSim
simulator. This behavior is platform and release dependent in ModelSim. Denali's auto-
matic behavior may not be appropriatein al cases, so the following switches give the user

MMAV User’s Guide

717108 49

4.1.9

4.1.10

control over the automatic behavior of Denali. To override the automatic interpretation of
high and low time bits and turn off the toggling behavior use:

ModelSimTimeDefinitionToggle off

To make toggling the default behavior (avoids certain messages), use:

ModelSimTimeDefinitionToggle on

Mentor Graphics Seamless HW/SW Co-Verification
Specific .denalirc Parameters

Prior to Denali’s 3.0 release, Seamless customers were unable to use Denali’s PureView
debugger with Seamless. This was the result of Seamless “owning” the memories in the
design. With Release 3.0, Denali and Mentor Graphics have solved this. There are two
new .denalirc features called: DenaliOwn and DenaliOwnClass that pass control of the
memory within Seamless to Denali. This allows you to now use PureView to debug the
memory contents.

To use PureView within the Seamless environment you must use these Denali settings to
pass the ownership of the memoriesto Denali.

DenaliOwn
Use the DenaliOwn .denalirc setting to pass a specific instance to Denali to “own”.

For example, to view the memory instance “testbench.rams.sdramQ” in Seamless, set the
.denalirc variable as follows:

DenaliOwn /testbench/rams/sdram0

DenaliOwnClass

You can aso instruct Seamless to allow Denali to own an entire memory class. A memory
class is the specific memory type (for example, SDRAM, DDR_SDRAM, Flash, SRAM,
etc.). For example, to view the SDRAM memory instances in PureView when running in
Seamless, set the .denalirc variable as follows:

DenaliOwnClass sdram

OneNand Flash .denalirc Parameters

minimizeCallbacks

The oneNand Flash has a buffer-RAM and a Flash array when the data is moved from the
buffer-RAM to the Flash array or from the Flash array to the buffer-RAM. If minimize-
Callbacks is enabled then only callbacks that are applicable will occur. For example, if

MMAV User’s Guide

717108 50

you issue a program command to read the buffer-RAM and write to the Flash array, and if
minimize callbacks is enabled, then only the write to the Flash array callbacks will occur.

minimizeCallback 1

oneNandEnableReadArrayCBs

If this .denalirc variable is enabled, and for example a load is performed, a true read is
done from a Flash array. Thiswill cause a callback to be issued for each read of the Flash

array.

oneNandEnableReadArrayCBs 1

MMAV User’s Guide 717108 51

4.1.11

Keyword
HistoryFile

TABLE 4-2:

Values

filename

.denalirc Summary Table

Default

None

.denalirc Keywords

Description

Saves a file with Denali read/write information

HistoryDebug

On/Off

Off

Adds additional debug information to the file created using
“HistoryFile”

HistoryDebugLoad

On/Off

Off

Adds additional information regarding each address if it
loaded from a file

HistoryInSimLog

0/1

Redirects the history file to a user’s simulation log vs. the
filename mentioned in “HistoryFile”

TraceFile

filename

None

Saves “trace” information to a file. Used primarily by Denali
support to debug customer problems

TraceTimingChecks

0/1

Adds additional timing check information to the file created
using “TraceFile”

LicenseQueueTimeout

time value (in min-
utes)

None

LicenseQueueTimeout allows you to specify how many min-
utes to wait suspended, if a license is not available

LicenseQueueRetryDelay

time value (in sec-
onds)

None

LicenseQueueRetryDelay specifies how many seconds to
wait before pinging for licenses (so that the license log file
doesn't overflow).

SimulationDatabase

filename

Off

Setting this parameters defines the file for the simulation
database. NOTE- you MUST also have HistoryFile set as
well

SimulationDatabasePattern

pattern string

All
instances

Adds only information about the specified “pattern” to the
simulation database file. Used to limit the amount of infor-
mation dumped into the database file.

SimulationDatabaseBuffering

On/Off

Off

Turn simdb buffering off if you want database flushed to disk
immediately. This results in a performance hit but is useful if
you're debugging an "abnormal termination" situation.

TimingChecks

0/1

Check for setup/hold timing violations

RefreshChecks

0/1

Check for DRAM refresh violations

RefreshOnReadWrite

0,1

If you would like to count reads and writes as a refresh to
that particular row, set the following parameter RefreshOn-
ReadWrite to 1. Although the true behavior of the part may
count a read and write as a refresh to that row, Denali
doesn't default to that behavior. The reason being that a
controller should not rely on certain memory accesses to
obtain proper refresh rates. This is only supported for
edram, rldram, sdram, ddr sdram, and ddr Il sdram memo-
ries.

ReadDQSContentionCheck

0,1

Instruct the model to check for bus contention on DQS dur-
ing reads

InitialMemoryValue

X,1,0

X

The initial value for all the memories

InitMessages

Off/On

On

Turn on/off messages pertaining to the instances in the
design

TracePattern

pattern string

All
instances

Adds only information about the specified “pattern” to the
trace file. Used to limit the amount of information dumped
into the trace file.

HistoryPattern

pattern string

All
instances

Adds only information about the specified “pattern” to the
history file. Used to limit the amount of information dumped
into the history file.

MMAV User’s Guide

717108

52

TABLE 4-2: .denalirc Keywords
Keyword Values Default Description

IrregularClock 0/1 0 If your clock is non-periodic, this must be set to 1, resulting
in data aligned with clock edges.

ClockStableCycles number of cycles |0 Specifies the number of stable clock cycles used to deter-
mine the clock cycle time

RandomOutputDelay 0/1 1 If IrregularClock is ‘0’, then this parameter will enable/dis-
able the output randomization for certain memory devices

OutputTiming 0/1 1 By default, the memory model drives output with delay, if set
to 0, then it drives output with zero delay, mainly used for
cycle-based simulations

InitChecks 0/1 Turn off/on initialization checks.

InitChecksPauseTime 0/1 This variable is used by the Denali model to ignore tpause/
tinit checks in DRAM models, and DLL Lock time checks in
SSRAM models.

ErrorMessages On/Off On Is used to turn off error messages completely. Messages
will still be logged in the History and Trace files if these are
enabled.

ErrorMessagesStartTime time value Ons Is used to specify a start time for reporting error messages.
Useful to avoid messages during initialization and reset.
Messages will still be logged in the History and Trace files if
these are enabled.

ExitOnErrorCount variable name None Verilog feature that allows a user to set a variable to query
within the HDL code to check the number of errors that have
occurred.

ErrorCount variable name None Verilog feature that allows a user to set a variable to query
within the HDL code to check the number of errors that have
occurred.

Tclinterp 0/1 0 Enables/Disable Denali’s Tcl interpreter when using NC-Sim

TrackAccessFrominit Off/On Off Allows preload and backdoor operations to count as mem-
ory “write” accesses for breakpoints on uninitialized memory
accesses

EiMessages On/Off On Disables error messages for error injections

DifferentialClockChecks 0/1 1 Suppresses differential clock checking. By default, models
check negative polarity clock signals for synchronization
with positive polarity clock signals.

DifferentialClockSkew time value and unit|0 ns Allows you to specify allowable clock skew between positive
and negative polarity clock signals for differential clock
checking.

AssertionMessages on/off on Model displays or suppresses assertion messages when a
Denali assertion is triggered. Default is a message.

TraceBackdoorReadWrite 0/1 1 Allows user to suppress backdoor read/write messages
from the trace file. By default, the messages are generated
in the tracefile.

Register File Specific Parameters

SupressUnknownAddrReadEr- [instance pattern No Suppresses the error messages when an unknown address

ror string instances is read from the instance whose name matches the
“instance pattern string”

IBM eDRAM Specific Parameters

SuppressRefreshinfoMes- 0/1 0 Eliminate informational messages about the actual refresh

sages window size (when it's not an error or warning). The default
is '0', or to report on every refresh cycle.

MMAV User’s Guide

717108

53

TABLE 4-2: .denalirc Keywords

Keyword Values Default Description

RDRAM Specific Parameters

WarnSuppress 0/1 0 Suppresses warning messages for specific protocol checks
(see details above)

TimingChecksReportOnly 0/1 0 Disables the Denali model feature that corrupts memory
and drives “X’s” on the data-bus when there are timing
errors

TimingChecksStartTime time value O ps Is used to specify a start time for reporting error messages.

Useful to avoid messages during initialization and reset.
Messages will still be logged in the History and Trace files if
these are enabled.

RLDRAM Specific Parameters

RldramInitCyclesCheck 0/1 1 Checks for 200 cycles between refresh commands during
initialization.

RldramInitRefreshCheck 0/1 1 Turn off refresh checking to each bank during initialization

InitMrsAddressStable 0/1 0 This setting is used to enable address stability checks dur-
ing Init MRS.

DDR-1l SDRAM Specific Parameters

OffChipDrivelmped- 0/1 1 Disables OCD checking. When this variable is 0, the model

anceChecks does not issue warning messages or corrupt data when the

OCD levelis outside the valid range. Note that there's also a
SOMA feature that enables OCD. If the SOMA feature is
disabled, OCD is completely ignored by the model.

eSSRAM Specific Parameters

SuppressPortContention pattern string none Suppresses Read-Write Port contention error messages in
instances whose name matches the pattern specified by
"InstNamePattern".

ModelSim Simulator Specific Parameters

ModelSimTimeDefinitionTog- |on/off on Automatic interpreting of the high and low bits of time for the
gle ModelSim simulator
Denali PureView/Mentor Seamless Specific
DenaliOwn /path/to/memory/ |none Specifies a particular instance to Seamless that Denali
instance “owns” for debug
DenaliOwnClass ddr_sdram, sdram, |none Specifies a particular memory class type that Denali “owns”
flash, sram, and for debug
other memory
classes
SaveDataRadix 2,8,10, or 16 16 Specifies the format setting as 2 (binary), 8 (octal), 10 (deci-
mal), or 16 (hexadecimal) for the mmsave* data.
SaveAddressRadix 2,8,10, or 16 16 Specifies the format setting as 2 (binary), 8 (octal), 10 (deci-

mal), or 16 (hexadecimal) for the mmsave* address.

4.2 Setting .denalirc Options Dynamically During
Simulation

In Release 3.0, Denali added a powerful feature to allow usersto control .denalirc settings
directly from their testbench. A Tcl command called “mmsetvar” was added. To use
mmsetvar within your testbench, the Denali PLI/FLI call mmtcleval command can be

MMAV User’s Guide 717108 54

4.3

4.3.1

4.3.2

called to interpret the Tcl command mmsetvar. For example, to dynamically turn on his-
tory file generation (creating a history file named denali.his) from your testbench, you
would use the following syntax:

Verilog:

success = Smmtcleval (“mmsetvar historyfile denali.his”);

VHDL:

success := mmtcleval (“mmsetvar historyfile denali.his”);

TCL:

mmsetvar historyfile denali.his

Licensing Solutions

Simulator Queuing for Denali Licenses

License queuing allows your simulation to “wait” for aDenali license if oneisunavailable
when your simulation is loaded. License queueing can be turned on by setting the environ-
ment variable: DENALI_LICENSE_QUEUE_TIMEOUT in your shell environment, and
specifying the number of minutesto wait for aDenali license. For example to queue for up
to 60 minutes, use:

setenv DENALI LICENSE QUEUE TIMEOUT 60
By default, thisfeature is OFF.
To specify seconds to wait before pinging for MMAV license (so that the license log file

does not overflow), in your environment set the following:

setenv DENALI LICENSE QUEUE RETRY DELAY 60

Speeding up License Checkout

Users can now specify Dendli-related license files in an environment variable called
DENALID_LICENSE FILE. For example:

setenv DENALID LICENSE FILE /home/denali/licenses/license.dat

In this case Denali will only search the license server associated with the server hosting
the “/home/denali/licenses/license.dat file”. In this case, the LM_LICENSE FILE envi-
ronment variable is ignored. This can significantly speed up license checkouts as only
license servers that serve up Denali licenses are checked. Also, commas are now sup-
ported as separators in license file paths.

MMAV User’s Guide 717108 55

4.4

4.4.1

4.4.2

4.4.3

The Denali Tcl Interface

Denali provides adirect Tcl interface for all of it’s functions. Tcl is becoming more preva-
lent as a verification language and is very powerful. Tcl is aso portable across simulators
as VHDL simulators do not share acommon C interface as Verilog simulators do, as most
simulators support Tcl. All of the Denali functions to be discussed later in this document
have been ported to Tcl for ease of use.

Using with ModelSim

Because Model Sim has a built-in Tcl interpreter, all Denali Tcl commands can be executed
directly from the Model Sim command line or from aModelSim .do file.

Example:

mmwriteword testbench.uutl 0 11110000

Using with NCSIM and other Tcl Interpreters

Because NCSIM (and other simulators) have their own Tcl interpreters built-in, you must
load the Denali library libmmcalls.so from any Tcl interpreter to allow the two Tcl inter-
preters to communicate with each other. Once this is done, al the Denali mm* calls are
available as Tcl commands asin Model Sim:

Example:

ncsim> load /<denali path>/libmmcalls.so
ncsim> set x [mminstanceid]
ncsim> set a [mmreadword]

Alternatively, you can use the Denali CFC library as another method for externally calling
a limited number of Denali C foreign function routines such as mmtcleval. The lib-
dencfc.so library is located in $DENALI with a bootstrap function named den_CFCPtr.
However, Denai recommends loading libmmcalls.so because the Denali Tcl calls get
loaded within the simulator's Tcl interpreter. In this way, the function calls and variables
will be directly visible to the ssmulator interpreter as opposed to using Dendli's Tcl inter-
preter which is external.

Tcl Commands

mmtcleval - This command is used within a VHDL or Verilog testbench to evaluate
another Denali Tcl command. This command will return a“0” value if successful and a* -
1" valueif an error was encountered.

Examples:

MMAV User’s Guide

717108 56

Use Tcl to do a “back-door” read from memory instance /testbench/top/sdram at

address=0.

Verilog

success = Smmtcleval (“set memid [mminstanceid testbench.top.sdram]”) ;
success = Smmtcleval (“mmreadword S$memid 0”) ;

VHDL

If you are using Cadence NC-VHDL.:

success := mmtcleval (“set memid [mminstanceid :testbench:top:sdram]”) ;
success := mmtcleval (“mmreadword S$memid 0”) ;

If you are using Mentor Graphics ModelSim:

success := mmtcleval (“set memid [mminstanceid /testbench/top/sdram]”) ;
success := mmtcleval (“mmreadword $memid 0”) ;

mmitclcallback - This command is used to call a Tcl function when an assertion “fires’.
Assertions are discussed in “Setting Assertions on Memory Transactions’ on page 82.
This command will return a “0” value if successful and a “-1" vaue if an error was
encountered.

Example:

Use a Tcl callback to call another Tcl procedure (“Funcl”) that isin the Tcl script “func-
tions.tcl” when an assertion (bkpt) “fires’. (Assertions are discussed in “ Setting Asser-
tions on Memory Transactions’ on page 82).

Verilog

success = smmtcleval (“source functions.tcl”);
success = Smmtclcallback (memid, bkpt, “Funcl”);
VHDL

success := mmtcleval (“source functions.tcl”);
success := mmtclcallback (memid, bkpt, “Funcl”) ;
Tcl

source functions.tcl
mmtclcallback memid bkpt Funcl

Note that you must also use the mmtcleval command from your Verilog or VHDL test-
bench to source the Tcl handler script (functions.tcl). This Tcl handler function also
expects the following parameters:

e bkpid = break-point id of the assertion

MMAV User’s Guide 717108 57

e instid =instanceid

e addr = associated address for the assertion

o bkptype = assertion type(assert_datavalue,assert_access,assert_parity)
e access= type of access(read,write,etc)

e data = associated data for the above mentioned address

e mask = masked bitsif any

e compare = compare string if any

An example of this Tcl callback handler would look like this:

proc Funcl {bkpid instid addr bkptype access data mask compare}

{

set curtime [mmtime] //displays the time of assertion

puts ""Scurtime:s$bkpid $instid Saddr S$bkptype Saccess $data $mask
Scompare""

mmbreak

}

4.4.3.1 Tcl Callback Helper Commands

Denali has added some callback “helper” commands that can be called from within an
assertion callback function. These are described below.

mmgetids - This command will return the memory id’s used in the design. These are inte-
ger values.

Tcl

mmgetids - will return {0} for a design with a single memory instance

mmgetinfobyid - This command will return the width (in bits) of the memory instance ref-
erenced, the number of address locations, the instance name, and the type of memory.

Tcl

mmgetinfobyid 0 - Returns: {9 2097152 testbench.uutl sdram}

Where ‘9’ is the width of the device (in bits), 2097152 is the decimal
number of address locations, testbench.uut is the instance name, and the
memory type is an SDRAM.

mmnote - This command prints information about an assertion that has occurred. It can be
called inside an assertion callback function.

Tcl

mmnote “This is a callback note”

MMAV User’s Guide 717108 58

4.4.4

mmbreak - This Tcl command stops the smulation. This would normally be called inside
an assertion callback function.

Tcl

mmbreak

mmexit - This Tcl command will exit the simulation. This would normally be called inside
an assertion callback function.

Tcl

mmexit

mmtime: This Tcl command gets the current time of simulation. Returns the time as a
string. Thiswould normally be called inside an assertion callback function.

Tcl

mmt ime

Callback Commands

mmdisablecallbackall: This Tcl command is used to disable all callbacks setup in the Data
Driven Verification APl (DDV-API). This command can be called from Verilog or VHDL
using the mmtcleval command.

Verilog

success = Smmtcleval (“‘mmdisablecallbackall”) ;
VHDL

success := mmtcleval (“‘mmdisablecallbackall”) ;
Tcl

mmdisablecallbackall

mmenablecallback: This Tcl command is used to enable callbacks on specific memory
instances setup in the Data Driven Verification APl (DDV-API). This command can be
called from Verilog or VHDL using the mmtcleval command. NOTE-since all callbacks
are enabled by default, to enable a single callback, you must use mmdisablecallbackall
prior to enabling individual callbacks.

Verilog

success = S$mmtcleval (“set mem id [mminstanceid tb.mem.sdram0]”);
success = smmtcleval ("mmenablecallback $mem id") ;

VHDL

MMAV User’s Guide

717108 59

If you are using Cadence NC-VHDL.:

success = smmtcleval (“set mem id [mminstanceid :to:mem:sdram0]”);
success = S$mmtcleval (* mmenablecallback Smem id”) ;

If you are using Mentor Graphics Model Sim:

success = Smmtcleval (“set mem id [mminstanceid /to/mem/sdram0]”) ;

success Smmtcleval (* mmenablecallback S$mem id”) ;

Tcl

set mem_id [mminstanceid tb.mem.sdram0]
mmenablecallback $mem id

mmdisablecallback: This Tcl command is used to disable callbacks on specific memory
instances setup in the Data Driven Verification APl (DDV-API). This command can be
called from Verilog or VHDL using the mmtcleval command.

Verilog

success = smmtcleval (“set mem id [mminstanceid tb.mem.sdram0 1”);
success = S$mmtcleval ("mmenablecallback S$mem id") ;

VHDL

If you are using Cadence NC-VHDL.:

success = smmtcleval (“set mem id [mminstanceid :to:mem:sdram0]”);
success = S$mmtcleval (* mmenablecallback Smem id”) ;

If you are using Mentor Graphics Model Sim:

success = Smmtcleval (“set mem id [mminstanceid /to/mem/sdram0]”) ;
Smmtcleval (* mmenablecallback S$mem id”) ;

success

Tcl

set mem_id [mminstanceid tb.mem.sdram0]
mmdisablecallback $mem id

mmsetaccesscallbackmask: This Tcl command is used to enable callbacks based on the
write mask field for specific memory instances setup in the Data Driven Verification API
(DDV-API). The callback is triggered only when the write mask matches the string speci-
fied. This command can be called from Verilog or VHDL using the mmtcleval command.

Verilog

success = S$mmtcleval (“set mem id [mminstanceid tb.mem.sdram0]”);
success = smmtcleval (“mmsetaccesscallbackmask $mem_id hf£f00”);
VHDL

MMAV User’s Guide 717108 60

4.5

4.5.1

4.5.2

If you are using Cadence NC-VHDL.:

success = smmtcleval (“set mem id [mminstanceid :to:mem:sdram0]”);
success := mmtcleval (“mmsetaccesscallbackmask $mem _id hff00”);

If you are using Mentor Graphics Model Sim:

success = Smmtcleval (“set mem id [mminstanceid /to/mem/sdram0]”) ;
success := mmtcleval (“mmsetaccesscallbackmask $mem id hff00”);
Tcl

set mem_id [mminstanceid tb.mem.sdram0]
mmsetaccesscallbackmask $mem id ‘hff00

Initializing Denali Memories

Memory Address Determination

Denali models such as flash, SRAM, register files, use a simple direct address to access
their memory contents. Others such as DRAMs, use a different addressing scheme, relat-
ing to the device's physical configuration of banks, rows, and columns.

In order to provide a simplistic memory map, Denali uses a flattened address map to
access these devices. This address is generated by concatenating the bank bits with the
row and column bits to form the actual address. For example, aDDR-DRAM device with
4 banks (2 bank bits) and 9 row and 12 column bits would have a Denali model address of

Address[22.0]=“BBRRRRRRRRRCCCCCCCCCCCC

This results in a 23-bit address that can uniquely address any location of the physical
DRAM device.

Initial Contents of Memories

By default, the initial value of the memory is set to “X”. This means that any read of an
un-initialized memory will yield avalue of “X” in the simulation.

You can change the default value using one of the following two methods:
e Usethe .denalirc variable I nitialMemoryValue:

InitialMemoryValue 0 - for all '0's
InitialMemoryValue 1 - for all 'l1's
InitialMemoryValue X - for all 'X's
InitialMemoryValue U - for all 'U's

Alternatively, you can use a hex valueto initialize all the words to the specified value.
For example:

MMAV User’s Guide 717108 61

InitialMemoryValue 0x3018

This string cannot expand to be longer than the memory's word width (typicaly the

data size). If shorter, the unspecified bits will be filled with Os.

Any other value will initialize memory to al 'X's. You may aso generate random data

for theinitial data by specifying:

— InitialMemoryvValue randomNoUpdate - for new random data after multiple
reads.

— InitialMemoryValue randomWithUpdate - for the same random data after mul-
tiple reads.

NOTE: For logically addressed memory if you are using | nitialMemoryValue random-

WithUpdate, you will get write callbacks if write callbacks are enabled.
For details, refer to “Controlling Your Memory Simulation Models - The .denalirc
File” on page 39.

Alternatively, you can use any arbitrary C function to specify theinitia data, including
random data, random data with parity, etc.

Refer to $DENALI/ddvapi/example/fillvalue for an example.

e Usethe “mmsetfillvalue” command in your simulation testbench.

NoTE: mmsetfillvalue only sets the value for the unwritten locations. It does not reset

them. To reset the memory locations, use $mmreset. For details, refer to “ Reset-
ting the Memory Contents’” on page 67.

The size of the fill value is the width of the memory device. Use hexadecimal format
“Ox” to define the actual fill value. Examples for setting the fill value of 0x55 for an 8
bit wide SDRAM instance “th.mem.sdramQ” in Verilog and VHDL are below.

An optional 3rd argument has recently been added to mmsetfillvalue. Thisargument is
used for suppressing any informational messages. If the value of the third argument is
1, any informational messages are not displayed. If the value is 0 or no value is pro-
vided as athird argument, all messages are displayed as usual.

This command will return a“0” vaue if successful and a “-1" value if an error was
encountered.

Verilog

status = Smmsetfillvalue (“tb.mem.sdram0”, “0x55”, “1”); //suppress
the informational messages

VHDL

If you are using Cadence NC-VHDL.:

status := mmsetfillvalue (“<instance id>", “:tb:mem:sdram0”, “0x55"); /

/No message suppression (default)

If you are using Mentor Graphics Model Sim:

status := mmsetfillvalue(“<instance_ id>”",“/tb/mem/sdram0”, “0x55”); /
/No message suppression (default)

MMAV User’s Guide

717108 62

4.5.3

Tdl

mmsetfillvalue /tb/mem/sdram0 0x55 1 # supress messages

NoTE: mmsetfillvalue ONLY pertains to physical memories. This command cannot be
used to set the fill value of a logically addressed memory. To accomplish this, you
must use mmsetfillvalue on each physical memory instance that is part of the logi-
cally addressed memory.

Loading Memories From a File

All Denali memory models can be loaded from afile. The file load command takes two
arguments. The first is the instance name for the Denali model you wish to load and the
second is the file which contains the address and data values. The width of the data values
in the load file must match the width of the device you are attempting to load. The syntax
of thefileisasfollows:

<start_addr>:<end addr>/<data>;
or
<addr>/<data>;

All address and data values are in HEX format. The load file can contain blank lines and
the comment character is“#’. Example:

File name: load.dat
0/21;

1/22;

3/23;

4:1F/55;

20:1FFF/FF;

End of load.dat

Below are examples of the load command:

Verilog

status = Smmload (“tb.mem.sdram0”,”load.dat”) ;
VHDL

If you are using Cadence NC-VHDL.:

status := mmload(“:tb:mem:sdram0”,”load.dat”) ;

If you are using Mentor Graphics Model Sim:

status := mmload(“/tb/mem/sdram0”,”load.dat”) ;

Tcl

MMAV User’s Guide

717108 63

4.5.4

mmload tb.mem.sdramO0 load.dat # Verilog
mmload /tb/mem/sdram0 load.dat # VHDL

NOTE: You can also specify a file to be loaded upon model initialization. This is done in
the HDL shell file that is created. For details, refer to “ Creating an HDL Shell
with the PureView GUI” on page 23.

Memory Content File Format

Memory format files are used to Save, Load, and Compare the contents of a memory
instance using standard text files.

Each memory format file is composed of a set of records. Each record must be written
within one line of ascii text, but multiple records may be contained on one line. Use the
following syntax when composing these files:

start addr [:|- end addr] / data;
start _addr / data [data ...];
[# comment]

“[1” indicates an optional component of the record. “|” indicates the logical OR. For the
record specification above, this indicates that either character “:” or “-” may be used to
separate the end_addr from the start_addr.

Comments are indicated by the character “#’and are continued until the end of the line. A
line can contain just a comment.

Base Specifier Prefix

The start_addr and end_addr for the mmload and mmcomp commands and the data can
specified in binary, octal, hexadecimal, or decimal format by using a base specifier prefix.
By default, if no base specifier is used, the base is hexadecimal.

Use the following prefixes as base specifiers:

b - binary

"o - octal

'd - decimal

"h - hexadecimal

The start_addr is a required component of a memory format record. When used with an
end_addr, the record specifies the value for a contiguous, inclusive address range. When
used alone, the record specifies the memory contents of a single address if only one data
value is supplied. If multiple data values are supplied, then the record specifies the mem-
ory contents sequentially beginning with the address start_addr.

Use the end_addr to specify the end of an address range.

MMAV User’s Guide

717108 64

Use either the character “:” or “-” to separate the start_addr from the end_addr.

For the mmsave and mmsaverange commands, the format of the output data can be set
only as hex. In case you want to change this format setting, you can use SaveDataRadix
and SaveAddressRadix .denalirc variables. These can be set to 2 (binary), 8 (octal), 10
(decimal), or 16 (hexadecimal), depending on which "radix" you want the output of the
saved files. Alternatlively, you can dynamically set these from your testbench. The default
valueis 16.

For example, to change the address radix dynamically to binary, you can use:

SUCCESS = smmtcleval ("mmsetvar SaveAddressRadix 2") ;

For example, to change the data radix dynamically to binary, you can use:

success = Smmtcleval ("mmsetvar SaveDataRadix 2") ;

As with the address(es), by default the data and address is in hexadecimal. Unknowns are
allowed and are indicated by either the character “X” or “x”. However, unknowns cannot
be used with decimal values.

While it is good style and practice to specify the data with a width equivalent to the data
width of the memory instance, this is not required. Data will be filled with leading O's if
the value is smaller than the data width of the memory instance.

If the value istoo large, the format file will be invalid for the relevant instance.

Use the character “;” to indicate the end of a memory format record. Thisis not necessary
for the last record in the file. Multiple records may be entered on one line of text.

Converting Motorola S-record and Intel Hex Format Files

Denali has Tcl scripts that can convert a Motorola S-record format file or an Intel hex for-
mat file into a Denali load file. Contact support@denalisoft.com if you would like these
Tcl scripts.

Parity Bits

Certain memory types (primarily SRAM devices) have optional parity bits specified in the
memory model. The number of bits used for parity is determined by the SOMA file setting
for a particular device. Normal devices use a single bit of parity to cover 8 hits of data.
The parity bits are ALWAY S the least significant bits of the data field that is to be loaded.
For example, if an 8 data bit + 1 parity bit SRAM deviceis used, the data bitswill be from
[8:1] and the parity bit will be bit [Q]. For a 16 data bit + 2 parity bit device, the data bits
will be from [17:2] and the parity bits will be [1:0]; where bit [1] covers data bits [17:10]
and bit [0] coversdata bits[9:2]. You must consider these when loading the datainto these
devices.

MMAV User’s Guide 717108 65

Examples

Example 1.

The following example loads the hexadecimal value “70FF” into the address at hexadeci-
mal “AB73".

AB73 / 70FF;
Example 2

The following example loads hexadecimal values into the addresses beginning with the
address at hexadecimal “AB73” (and ending with the hexadecimal address“AB7A”).

AB73 / 70FF 7100 7101 7102 7103 7104 7105 7106;
Example 3:

The following examples both load the binary value “1100XXXX" (with unknowns) into
the address range starting with the initial address and ending with the decimal address
“2478". Note that you can use either the “:” or the “-" address range separator.

0:'d2478/'b1100XXXX;
0-'d2478/'b1100XXXX;

Example 4.

The following example shows the ability to specify multiple records on one line and illus-
trates ending a line with a comment.

0/00; 1/01; 2/02; 3/03; # pattern loading

4.6 Specifying Memory Instances

Denali MMAV-2001 references memories in the design by using the HDL instance name
of the model in the design. Denali provides two functions, “mminstanceid” for Verilog
and “mmgetinstanceid” for VHDL. These commands can be used to extract the instance
name to reference a specific memory device for al of the Denali memory model com-
mands.

The typical usage isto assign a variable or an integer to the specified instance name. This
variable can then be used as a“ shortcut” when referencing Denali memory models.

There are two forms of the commands. The first takes the full instance path name as the
memory instance name, while the second takes a relative path. If the user knows the full
hierarchical path down to the memory model, then thisis the preferred method.

MMAV User’s Guide 717108 66

If the user needs more portability and is not sure of the higher hierarchy levels, then the
user can use a relative path to identify the memory model within a particular module or
architecture block. Therelative pathis ONLY valid if mminstanceid or mmgetinstanceid is
used within amodule or architecture block. The resulting variable or integer is now asso-
ciated with that instance and can be used with other commands.

In VHDL, however, there is another issue. When instantiating models using a GENER-
ATE statement, a specia form of mmgetinstanceid is needed. A “path_name” parameter is
needed. This allows Denali to extract the full path name from the GENERATE block to
form the correct instance name.

Example (Full hierarchical instance name):

Verilog

memory_id0 = $mminstanceid("testbench.top.deviced");
VHDL

If you are using Cadence NC-VHDL.:

memory 1d0 := mmgetinstanceid(“:testbench:top:device0”) ;

If you are using Mentor Graphics ModelSim:

memory id0 := mmgetinstanceid(“/testbench/top/device0”);
Example (Relative instance name, relative to module of instantiation):
Verilog

memory_id0 = $mminstanceid("device0");

VHDL

memory_id0 := mmgetinstanceid(* deviceQ”);

Example (Relative instance name used in GENERATE statements):

VHDL

memory 1d0 := mmgetinstanceid(deviceO’path name) ;

4.7 Resetting the Memory Contents

At any point during simulation, you can reset the memory contents of the specified mem-
ory instance back to it’sinitial state. The mmreset command accomplishes this.

Verilog

MMAV User’s Guide 717108 67

4.8

success = Smmreset (“tb.mem.sdram0) ;

VHDL

success := Smmreset (“tb.mem.sdramO) ;

Tcl

mmreset tb.mem.sdramO

Reading and Writing Memories

MMAV enables you to read and write any memory location from the test bench. These
commands can be issued at any time during the ssmulation. You must specify the instance
you wish to read or write as well as the address or addresses. There are multiple read and
write commands for Verilog.

The Verilog commands for reading or writing memories can take explicit instance names
or implicit instance ids obtained from the “mminstanceid” commands. The difference
between the two is that the implicit instance id commands are faster than the explicit
instance names. Use the instance id commands if you are reading and writing memoriesin
the test bench often. You can also read and write contiguous locations in one command by
specifying the starting address and the number of locations to read or write. The syntax of
the commands are listed below. This command returnsa®0” valueif successful and a“-1”
valueif an error was encountered.

NOTE: Certain SRAM devices have parity bits associated with the data bits. Refer Figure ,
“ Parity Bits,” on page 65 for details on handling these parity bits.

Also note that the address input must be a string value (“0x00”) when using mmreadword
and in verilog format (* h00) when using mmreadword2 or mmreadword3.

Smmreadword (“<instance name>”,”<address>", <params) ;
Smmreadword?2 (<instance id>, <address>, <params>) ;
Smmreadword3 (<instance id>, <addresss>, <numbers, <params>, ..., <params) ;

Verilog

Examples:
status = $mmreadword(“tb.mem.sdram0”,”0x000a”,tmp read) ;
m_id = $mminstanceid(“tb.mem.sdram0”) ;

status = Smmreadword2 (m_id, 'h200, tmp_read) ;
status = S$mmreadword3 (m_id, 'h200,2,tmp_read, tmp_read2) ;

The Verilog write commands have various syntax based on whether the data you wish to
write is explicit to the commands or resides in a register or parameter in the simulation.

MMAV User’s Guide 717108 68

Choose the correct command for your application. The syntax for these commands are as
follows.

NOTE:

The data value “ <value>" must be a binary string value. When you are using the
mmwriteword, the address input must be a string value (“ 0x00”). When you are
using mmwriteword2-5, the address input must be a in Verilog format (*h00) or a
variable.

Examples:

Smmwr i
smmwr i
Smmwr i
Smmwr i
Smmwr i

teword (”<instance name>",”<addr>","”<value>") ;
teword?2 (<instance id>, <addr>, <value>) ;
teword3 (<instance id>, <addr>, <num>, <value>, ..., <value>) ;
teword4 (<instance id>, <addrs>, <params) ;

teword5 (<instance ids>, <addr>, <num>, <params, ..., <params) ;

(
(
(
(

Examples:

status
m id =

status
status
status
status

= Smmwriteword (”tb.mem.sdram0”,”0x200”,”01010101") ;
Smminstanceid (“tb.mem.sdram0”) ;

"h200,”701010101") ;

Smmwriteword2 (m id,
id, "h200,2,701010101”,710101010") ;
ia,
ia,

(m_
Smmwriteword3 (m_i
Smmwriteword4 (m_i
Smmwriteword5 (m_i

"h200,tmp_write) ;
"h200,2,tmp _write,tmp write2);

For VHDL and Tcl, there are currently only two commands for reading and writing mem-
ory locations. The syntax is as follows. The status of the command is returned in the <sta-
tus> variable. The return value of TRUE means success and the value of FALSE means
failure to write the data.

VHDL

mmreadword (<instance ids>, <addr>, <params>,<statuss) ;

mmwrit

eword (<instance ids>, <addrs>,<data>,<status>) ;

Example (if you are using Cadence NC-VHDL):

m_id

:= mmgetinstanceid (“:tb:mem:sdram0”) ;

mmreadword (m_id, 200, tmp_read, status) ;

mmwrit

eword(m_id,200,tmp_write,status);

Example (if you are using Mentor Graphics Model Sim):

m_id

:= mmgetinstanceid (“/tb/mem/sdram0”) ;

mmreadword (m_id, 200, tmp read, status) ;

mmwrit

Tcl

eword(m_id,200,tmp_write,status);

set <param> [mmreadword <instance id> <addr>]

MMAV User’s Guide

717108 69

mmwriteword <instance id> <addr> <data>

Examples:

set tmp read [mmreadword /tb/mem/sdram0 200]
mmwriteword /tb/mem/sdram0 200 10100101

4.8.1 Masked Memory Writes

Verilog

Smmwritewordmasked (<instance id>, <address>, "value", "mask")

VHDL

mmwritewordmasked (<instance ids>, <address>, "value", "mask", status)

This Verilog and VHDL-only function is the same as the Verilog $mmwriteword2 func-
tion with the difference being that only the bit locations set to “1” in the mask are copied
from "value" (bit-string) into the instance id <instance id> at address <address>. The
remaining bit locations at the instance id <instance id> at address <address> are pre-
served to their previous bit-value. This function returns O when successful.

Verilog

i2 = Smminstanceid("testbench.uutl") ;

success = Smmwriteword2 (i2, 'hl4, "00001111");

success = Smmwritewordmasked(i2, 'hl4, "01010101", "00110011");

This example would result in the value "00011101" being at address 'h14 at instance “i2".

VHDL

i2 := mmgetinstanceid("testbench.uutl");
mmwritewordmasked(i2, 0, "01010101", "00110011", status);
Tcl

Not available

4.9 Saving and Comparing Memory Contents

All Denai memories alow you to save the contents of the memories to afile or compare
the memory contents to that file.

There are three commands for these features - mmsave, mmsaverange, and mmcomp. The
first two alow you to save the entire contents or only a specific range of addresses. The
third command allows you to compare the entire contents of memory to a specified file.
For the mmsave and mmsaverange commands, the format of the output data can be set

MMAV User’s Guide 717108 70

only as hex. The file format for mmcomp command is described in Section 4.5.4, “Mem-
ory Content File Format,” on page 64.

The Verilog and VHDL commands are described as follows. This command will return a
“0” valueif successful and a“-1” value if an error was encountered.

Verilog

Smmsave (“<instance names>,”<file name>") ;
Smmsaverange (“<instance name>",”<file name>”,<start addr>,<end addr>);
$mmcomp (“<instance names>,”<file name>") ;

Example:

status = Smmsave (“tb.mem.sdram0”,”save.dat”) ;

status = Smmsaverange (“tb.mem.sdram0”,”save.dat”,’h0, 'hlf);
status = Smmcomp (“tb.mem.sdram0”,”save.dat”) ;

VHDL

mmsave (“<instance name>",”<file name>") ;

mmsaverange (“<instance name>”,”<file name>”",<start addr>,<end addr>) ;
mmcomp (“<instance names>”",”<file name>") ;

Example:

status := mmsave (“/tb/mem/sdram0”,”save.dat”) ;

status := mmsaverange (“/tb/mem/sdram0”,”save.dat”,0,31);
status := mmcomp (“/tb/mem/sdram0”,”save.dat”) ;

Tcl

mmsave <instance name> <file names
mmsaverange <instance name> <file name> <start addr> <end addr>
mmcomp <instance name> <file names

Example:

mmsave /tb/mem/sdram0 save.dat
mmsaverange /tb/mem/sdram0 save.dat 0 31
mmcomp /tb/mem/sdram0 save.dat

The mmcomp command enables you to go through the file that you specify and deter-
mines if any address/data pair listed there mismatches with the memory you give it to
compare to.

NOTE: The mmcomp command does NOT do the other way around (i.e. loop through the
entire memory and compare to the file). So if you write to an address outside of
those in thefile, it does not catch it asit is not comparing in that direction.

As a workaround, you can put linesin the file that do not have a specific value, and
set to the initial value. In order to do this, after you run mmload with load.dat file,

MMAV User’s Guide

717108 71

save it immediately with mmsave as comp.dat. This automatically fillsin the initial
values everywhere you did not specify the address. Then, at a later point, you can
use mmcomp command and compare it against comp.dat.

NOTE: mmSave is not directly available in VHPI. You can use the mmtcleval as an alter-
native solution.

NOTE: In system memory, when the data written to any location matches the "fill value" of
the memory;, it does not dump that data for mmsave and mmsaverange.

4.10 Recalculating Clock Cycle Time

Certain memory classes allow the option to recal culate the clock cycle time. With this fea-
ture enabled, the Denali memory models will recalcul ate the clock cycle on the next rising
edge of the clock. Thisisuseful if you have “IrregularClock = 0" (see “IrregularClock” on
page 43) as certain timing parameters which are based on the clock may be incorrect if the
Denali model is not notified of the clock cycle time change.

mmrecalculatecycle("instance name")

Verilog

success = Smmrecalculatecycle("testbench.uutl");

VHDL

success := mmtcleval (“mmrecalculatecycle testbench.uutl”);
Tcl

mmrecalculatecycle testbench.uutl

4.11 Re-loading SOMA Files and Changing Timing
Parameters on-the-fly During Simulation

Starting in version 3.00, two new features are added for a subset of our memory classes.
These features alow you to dynamically alter SOMA file parameters or even load in a
completely different SOMA file than is referenced in the HDL wrapper. Currently these
features are valid for the following memory classes:

e DDR3-SDRAM
e DDR2-SDRAM
e DDR-SDRAM
e FLASH-AMD
e FLASH-INTEL

MMAV User’s Guide 717108 72

1.

FLASH-NAND
FLASH-ONE-NAND
GDDR3
GDDR4
SDRAM
RLDRAM
FCRAM
RDRAM
QDR-SSRAM
NVM_DDR
MS

MS-PRO

mmsomaset (“<instance_name>", “<parameter_name>", “ <parameter_value>",

“<parameter _units>");

Use thisif you just want to change a small number (<3) timing numbers from the original
SOMA file. If you want to change more than that, it's more efficient to use mmsomaload

as described below. This can be called viathe pli ($mmsomaset) or via mmtcleval.

Simulation continues from that point with the new numbers. Memory contents are unaf-

fected. Note that both parameter_value and parameter_units fields are required.

Note that the parameter _units can be “ns’ for nano-seconds, and “clk” for time units of

clocks as specified in the original SOMA file.

Ex

amples:

Verilog

success = Smmsomaset

VHDL

Use mmtcleval with the Tcl command bel ow.

"tb.mem0",

If you are using Cadence NC-VHDL.:

ex. mmtcleval“*mmsomaset

If you are using Mentor Graphics Model Sim:

ex.

Tcl

:tb:mem0 toh 15 ns”;

mmtcleval “mmsomaset /tb/mem0 toh 15 ns”;

MMAV User’s Guide

717108

73

mmsomaset /tb/mem0 toh 15 ns

2. mmsomaload (“ <instance_name>", “ <file_name>");

Use this to change multiple timing numbers, and/or to change pin widths. This is more
efficient for changing multiple timing numbers than a series of mmsomaset commands
because many of the checks will only get done once, and recal culations of things based on
clks etc. will only happen once. Note that though this SOMA file will need to have the
things you want to changeinit, it must be a complete SOMA file.

Once mmsomaload isissued, the memory is reallocated and all contents are thrown away.
You will see warnings if you resize pins and they don't match what the simulator has. You
will get afatal error if the size of any signal islarger than what the ssimulator has, whichis
the maximum size that you can have for any pin (this width is the width from the Verilog
or VHDL shell).

Aninit fileisNOT read (as it probably doesn't apply now) and you have to go through all
the steps you would expect with the brand new memory. However if you have other mem-
oriesin your design they are not affected. Thisis basically “starting over” with that mem-
ory, except simulation time continues from where it left off and you don't have to exit the
simulator, recompile, etc.

Implementation Note: If you are only interested in changing timing and do not want the
memory reset, you should do a series of mmsomaset commands instead.

Restrictions:

e Cannot change classes with this technique. Once a DDR memory, always a DDR mem-
ory.

e Cannot make pin widths any bigger than the original HDL shell. You can make them
smaller, then grow them again up to the original HDL shell width.

Examples:

Verilog

success = S$mmsomaload ("tb.mem0", "new soma.spc");
VHDL
Use mmtcleval with the Tcl command below.

If you are using Cadence NC-VHDL.:

mmtcleval “mmsomaload :tb:mem0 new_soma.spc”;
If you are using Mentor Graphics Model Sim:

mmtcleval “mmsomaload /tb/mem0 new soma.spc”;

MMAV User’s Guide

717108 74

Tcl

mmsomaload tb.mem0 new_ soma.spc

4.12 Error Message Control

Starting in Denali version 2.800-0018, an additional Tcl command was added to provide
the user with the flexibility to turn on/off error reporting. Two new commands called
“mmerrormessageson” and “mmerrormessagesoff” were added. The functions can be
called at any time to turn on/off error messaging from the Denali models. By default the

messaging is always on.
Verilog

success = Smmtcleval ("mmerrormessageson") ;
success=smmtcleval ("mmerrormessagesoff") ;

VHDL

Use mmtcleval with the Tcl command bel ow.

mmtcleval “mmerrormessageson”;
mmtcleval “mmerrormessagesoff”;

Tcl

mmerrormessageson
mmerrormessagesoff

In addition to the above commands, there are two commands that can be used to turn on/
off the history and tracefile generation dynamically during simulation:

$mmdebugon;
Allows you to create a window of history and trace file information. This command is

overridden when the HistoryFile and TraceFile options are enabled in the .denalirc file.
Returns O when successful.

Verilog

initial #5000 success = $mmdebugon;
VHDL

wait for 5000 ns;

success := mmdebugon;

$mmdebugoff;

Closes the window of history/trace information. Returns O when successful.

MMAV User’s Guide 717108 75

4.13

4.14

4.14.1

Verilog

initial begin

#50000 success = S$mmdebugon;
#50000 success = S$Smmdebugoff;
end
VHDL
wait for 50000 ns;
success := mmdebugon;
wait for 50000 ns;
success := mmdebugoff;
end

Forcing Clock Cycle Recalculation

If the memory class supports this capability, MMAV recalculates the clock cycle on the
next rising edge of the clock. Thisisuseful if IrregularClock = 0, but somewhere along the
line the clock cycle changes. If you do not notify the model, the timing parameters which

are based on the clock may be incorrect.

Verilog

Smmrecalculatecycle("instance name")

RDRAM (Rambus) Specific Model Considerations

Turbo Channel Model for RAMBUS

Overview

In addition to high-performance models for Rambus discrete Direct-RDRAM compo-
nents, Denali offers a“Turbo Channel Model” which delivers the highest performance of
any Direct RDRAM channel simulation model on the market. This option, using algo-
rithms for accel erating the simulation performance, the Turbo Channel Model “collapses’
the individual RDRAM instances into a single model object without compromising accu-
racy. In most cases, the simulation performance shows “n” times improvement over dis-
crete RDRAM models where “n” is the number of RDRAM components on the Rambus

Channel being ssmulated.

MMAV User’s Guide 717108

76

Licensing

An additional license, Denali_ SM _rdram turbo, is required for simulation of the
RDRAM Turbo Channel Model. Contact Denali Software at: info@denalisoft.com to
inquire about this option.

Device Numbers

To use the RDRAM Turbo model, the user needs to specify the generic parameter:
device_number. This string parameter defines the number of devices on a Rambus chan-
nel. At the HDL level, one instance represents one channel; subsequently, individual
devices should not be instantiated in the test bench.

The devices on the channel will have names in the form:
<channel name>_d%d

For example, if the channel instance name is chl and it has a total of 8 devices, then the
devices would be named as:

chl 40, chl di, chl d2, chl d3, chl d4, chl d5, chl dé, chl d7

This naming convention should be followed when loading the memory contents with the
mmload function.

Note: If the generic device_number is undefined or equals to O, then the Turbo mode is
turned off. This means the instance is treated as a single device instance instead of as a
channel instance. In this case, the user has to instantiate al instances on the channel. The
serial pins need to be connected manually also.

Device id’s

In Turbo Mode, the model automatically sets device id'sto 0...n-1. No mmload is needed
anymore. However, checkinitialization has to be desel ected to enable default id.

Channel Inversion
Some RAC models (and/or test benches) drive ROW/COL/DQA/DQB with physical volt-

age levels. If the parameter invertChannel is set in PureView (in the SOMA file), the
resulting model will internally invert the logic signals ROW/COL/DQA/DQB.

Channel Delay Settings

The Denali RDRAM Turbo Channel Model stores channel delay settings in the unused
RDRAM control register Oxf. The last three bits of Oxf are used to specify the Denali chan-

MMAV User’s Guide 717108 77

nel interconnect delay in terms of CFM/CTM cycles, ranging from 0 to 7 cycles. For
Example, the parameter:

0£/'b0000000000000110; channel delay=6cyc

would cause a channel interconnect delay to be added to the register TPARM and
TCDLY 1 values resulting in anew tCAC read data delay as follows:

tCAC = channel delay + 3*tCYCLE + tCLS_C + tCDLYO_C + tCDLY1 C

Notice that channel delay in the Oxf register is specified as number of CFM/CTM cycles
(not half-cycles) because it is the from/to master round trip delay.

.denalirc Options

e WarnSuppress
In addition to normal timing and protocol error conditions, the Denali RDRAM model
issues warnings for the following hazardous operations.
— overwriting the write buffer before it's retired (e.g. WR-WR-RD-RD-RTR).
— precharging abank beforeit's retired (rule CR8).

These warnings can be suppressed by setting the WarnSuppress parameter in the
.denalircfile asfollows:

WarnSuppress 1

¢ TimingChecksReportOnly

Turning this .denalirc option on will disable the Denali model feature that corrupts
memory and drives “X’s’ on the data-bus when there are timing errors. This option
allows timing errors to only cause the model to issue messages and will NOT drive
“X” when seeing timing errors. This can be very useful in early evaluation of errors,
but will allow the ssmulation to continue, though reporting errors.

TimingChecksReportOnly 1

e TimingChecksStartTime

Denali also provides the capability to turn on timing checks at a specific time. This
allows time for reset and device initialization before Denali models start checking for
timing errors. See examples below for syntax.

TimingChecksStartTime Ops

TimingChecksStartTime “20 us”

TimingChecksStartTime “200ms”

TimingChecksStartTime 200000 ns

Device Refresh Options

All Denali memory models use a sophisticated dynamic memory allocation algorithm to
minimize the memory footprint during simulation. Memory requirements for the RDRAM
Turbo Channel Model can be further reduced by specifying refresh checking in a single

MMAV User’s Guide 717108 78

device, as opposed to all devicesin the channel. The generic parameter device_number is
used to specify refresh intervals for a specific device on the channel as follows:

device_number = “32;RefreshCheckOneDev:1”

The above example illustrates the instantiation of a channel with 32 devices, refresh
checking one device only.

Note: Refresh commands are normally issued through channel broadcast, so checking
only one device should preserve good model accuracy.

Multi-Bank Refresh Options

Multi-bank refreshes are controlled by the numBanksPerRefresh parameter. If multiple
banks are refreshed for each refresh command, then the banks share the same lower
address bits. For example:

numBanksPerRefresh 2

If the setting above was used with a 16 bank device, the first refresh would occur in banks
0 & 8. The next refresh would occur in banks 1 & 9, and so on.

Turbo Mode - Support for Different Sized Devices on the Same
Channel

Previoudly, all devices on the same channel shared the same SOMA file, meaning that
they all had to be the same configuration. The generic parameter, “device_number”, has
been expanded to support different sized devices on the channel. For example:

Eight 128M devices plus sixteen 64M devices on a single channel would get instantiated
as.

device number => "24;8:128M 800.spc;16:64M 800.spc";

Note that memory_spec has no effect any more.

Denali RDRAM Byte Ordering Options

The Denali RDRAM model handles the dualoct in the following fashion in memory (for
fileloads and saves):

DQAJ8]...DQA[0] DQB[g]...DQB[O] DQAJ8]...DQA[0] DQBI[8]...DQB[0]
| VT cfmckO.eeee, / | VTR, cfMAK7 i, /
0 71 72 143

Thisresultsin bit ordering as such:
data[0] isDQA[8] of tick O, data[143] is DQBJQ] of tick 7

MMAV User’s Guide 717108 79

The mask array is also constructed using the same byte order and when a dualoct gets read
out, the datais presented in the same order.

This byte ordering is different from RMC/RAC. In RMC/RAC, a dualoct is split into
DQA/DQB asfollows:

DQB(clk 7) ... DQB(clk 0) DQA(clk 7) ... DQA(clk 0)

If you wish to use the RMC/RAC byte ordering for comparison or for loading a memory
content file, an environment variable in .denalirc can be set to allow this configuration.

RdramRM CByteOrder 1

In this case, the Denali RDRAM model will save/load the dualoct in the RMC/RAC byte
order as above.

MMAV User’s Guide

717108 80

CHAPTER

5 MMAV Special Verification Features

Denali has added a suite of additional verification functions that allow you to add verifica-
tion checks to your testbenches and aso organize physical memories into logical memory
views. These features are intended to be a part of your regression tests and help to verify
that your entire system is functioning properly. You can verify many parts of your system
by tracking the memory transactions as they occur in your simulations. An example of this
isasystem that handles telecom packets. The packets come in from a source and are writ-
ten into memory. These packets are then read from memory and modified and sent out
again. One of the properties of this system isthat any packet written into memory at a par-
ticular address must be read out before another packet can be written into that memory
location. One verification feature to assist in checking this system are assertions that
checks that any location in memory is written twice in arow. This assertion monitors all
memory accesses to a certain memory and will report an error when alocation is written
for the second time without a read in between. By using this feature, you will be alerted
immediately when the system violates this packet protocol.

MMAV can also create logically addressed views of physical memory components. These
logical views are important to debugging and test bench generation and support. An exam-
ple of alogically addressed view is collecting together multiple SDRAM devices into a
single bank of memory. A logical 32 bit bank of SDRAM memory can be created from
four eight bit SDRAM physical instances. Once you have created the logical memory
view, you can load, store, compare, read and write this memory view and the MMAV
functions will automatically access the correct physical instances.

Another verification featurein MMAV is Transaction Lists. A transaction list allows users
to verify the sequence of read and write operations expected on a memory segment. The
read/write operations, their addresses and (optionally) their values are added in sequence
to atransaction list. Memory segments that are added to the transaction list are monitored
to check if their read/write sequence matches the read/write operations registered with the
transaction list. If the sequence, address and/or values do not match the list of registered
transactions, an assertion is triggered and one of three actions can be taken: a notification
can be issued, or simulation can be stopped with a message, or simulation can exit with a
message. Each registered read/write can be matched against a single read/write or against
N (N > 0) read/writes. This can be controlled on a per operation basis.

MMAV User’s Guide 717108 81

5.1

5.1.1

Setting Assertions on Memory Transactions

To set an assertion to track memory references, you have to execute a command in the
simulation test bench to register the assertion. The command returns a unique number that
can be used to disable and enable the assertion throughout the simulation. Each command
and its syntax is described in the following sections.

Memory Access Assertions

This assertion allows you to trigger an assertion when a particular memory is accessed in
the specified manner. Typical uses for this assertion are to protect certain address ranges
from unwanted accesses. Writing into address space that is designated as code as opposed
to data can be registered so that an erroneous write to that address space triggers the asser-
tion to stop the simulation. The syntax for this assertion is as follows.

mmassert access (<instance id>, “<access>", “<action>”, <start address>, <end
address>, [<address increment>]) ;

The allowable types for <access> are:

e Read - aread of amemory location.

e Write - awriteto amemory location.
ReadorWrite - either aread or awrite.

ReadnoWrite - aread of amemory location without a previous write to that location.

ReadRead - two consecutive reads to the same memory location.

WriteWrite - two consecutive writes to the same memory location.

NOTE: The access types listed above are NOT case sensitive, they are shown this way for
clarity.

Action

The allowable values for <action> are:
¢ Note- anoteinthe simulation log is printed out and the simulation continues.
e Break - anoteinthe simulation log is printed and the simulation stops (pauses).
e EXxit - anoteinthe simulation log is printed and the simulation exits.
e Callback (newin 3.2) - averilog callback is generated when the assertion is triggered.

Start Address, End Address, Address | ncrement

These entries indicate the range of addresses to which the assertion is applied to. The
address increment value allows for consecutive addresses within the starting and ending

MMAV User’s Guide

717108 82

5.1.2

address range (addr increment=1) or other selected addresses within the range (addr incre-
ment =/ 1).

If both a starting and ending address are given then the user may specify the additional
parameter (optional) <address increment> which specifies the steps in which to increment
the address within that particular address range. For instance if the starting address is spec-
ified as 20H and ending address as 30H and the <address increment> parameter is set to 2
it meansthat all the assertion checks will be donein steps of 2 from address locations 20H,
22H, 24H and so on until reaching the ending address of 30H. If no starting and ending
address are specified then the check is done on the entire memory instance or if only the
starting address is specified then the check is done from that particular address through the
end of the address space.

Examples:
To halt the simulation whenever |ocations 0x0 through 0x4000 are written:

Verilog

m_id = $mminstanceid(“tb.mem.sdram0”) ;
a_id = Smmassert access(m_id,”write”,”break”,'h0,'h400, 'hl);

VHDL

m id := mmgetinstanceid(“/tb/mem/sdram0”) ;

a_id := mmAssert Access(m_id,”write”,”break”,0,400,1);
Tcl

set id [mminstanceid tb.mem.sdramO]
mmassert access $id write break 0 1024 1

(NOTE: again the address value (1024) is in decimal and not hexadecimal) .

Data Access Assertions

You can also qualify any access assertion to add a data checking component. You can cre-
ate an access assertion that will only fire based on the data that is being read or written.
Thetriggering of the assertion is based on the comparison function of the data you specify
against the actual data being read or written. You can also supply a mask value to check
only certain bits of the data. The syntax for thiscommand is as follows.

mmassert datavalue (<memory ids>,”<access>",”<action>", <data
values>, [<mask>], "<comparison>”,<start address>,<end
address>, <address increments) ;

Comparison

MMAV User’s Guide

717108 83

Masking is performed on a bit by bit basis and comparisons are then performed on the
resulting word. Allowable values are:

e —— gpecifiesthat the accessed (masked) datais equal to the specified (masked) data

o 1= specifies that the accessed (masked) data is not equal to the specified (masked)
data

e > gspecifies that the accessed (masked) data is greater than the specified (masked)
data

e >= gpecifies that the accessed (masked) data is greater than or equal to the speci-
fied (masked) data

o < gpecifiesthat the accessed (masked) data is less than the specified (masked) data

o <= gpecifies that the accessed (masked) data is less than or equal to the specified
(masked) data

Data Value, Mask

This entry specifies the data and mask (in hex format) to be used for comparisons. A
comma character is used to separate the optional mask value from the data value. If no
mask is specified, all the bits are compared. If amask valueis given, only the masked por-
tion of the data being accessed is compared to the data specified. If the mask bitis“1” for
that data position, the comparison will take place. If the mask bit is “0”, the comparison
for that data position will not be considered.

Start Address, End Address, Address | ncrement

These entries indicate the range of addresses to which the assertion is applied to. The
address increment value allows for consecutive addresses within the starting and ending
address range (addr increment=1) or other selected addresses within the range (addr incre-
ment =/ 1).

If both a starting and ending address are given then the user may specify the additional
parameter (optional) <address increment> which specifies the steps in which to increment
the address within that particular address range. For instance if the starting addressis spec-
ified as 20H and ending address as 30H and the <address increment> parameter is set to 2
it meansthat all the assertion checks will be donein steps of 2 from address locations 20H,
22H, 24H and so on until reaching the ending address of 30H. If no starting and ending
address are specified then the check is done on the entire memory instance or if only the
starting address is specified then the check is done from that particular address through the
end of the address space.

Example:

To set an assertion whenever the memory is written with values greater than 0x0 for
addresses greater than 0x4000 to put a note in the ssimulation:

Verilog

MMAV User’s Guide 717108 84

m_id = $mminstanceid(“tb.mem.sdram0”) ;
a_id = $mmassert datavalue(m id,”write”,”note”,’ho0,’'hlf,”>”,"h400,

"hiffff, "'hl);
VHDL
m _id := mminstanceid(“/tb/mem/sdram0”) ;
a id :=

mmassert datavalue(m_ id,”write”,”note”,”0”,”00011111”,”>",1024,131071,1)

12

Tcl
set m_id [mminstanceid tb.mem.sdramO]

mmassert datavalue $m_id write note 0 00011111 > 1024 131071 1

NOTE: again the address values (1024, 131071) are in decimal and not
hexadecimal) .

5.1.3 Global Memory Access Assertions

The previous assertion commands registered assertions on particular memory instances.
The following assertions set the particular assertion on all memory instances in the test-
bench. These assertions are

mmassert uma (“<action>") ;

This assertion will fire whenever the ssimulation attempts to read alocation in memory that
has not been written to or initialized by aload command.

mmassert rwa (“<action>") ;

This assertion will fire whenever a single location in memory has been written twice
before aread has occurred.

mmassert rra(“<action>") ;

This assertion will fire whenever asingle location in memory has been read twice before it
iSwritten.

Verilog

a_id = $mmassert uma ("break");
a_id = Smmassert rwa("note");
a_id = Smmassert rra("exit");

VHDL

a_id := mmassert uma ("break");

MMAV User’s Guide 717108 85

5.2

5.3

a_id := mmassert rwa("note");
a_id := mmassert rra("exit");

Tcl

mmassert uma break
mmassert rwa note
mmassert rra exit

Parity Checking Assertions

If you have a protected memory with a parity bit, you can set an assertion that will fire
whenever you have written or read aword in memory with incorrect parity. The syntax for
this command is as follows.

mmassert parity(m id,”<access>",”<action>",<parity>,<start addr>,<end
addr>, <addr increments) ;

Odd parity isencoded as“1” and even parity isencoded as“0” for the <parity> parameter.

Example: Print a message whenever | read from addresses 0 to 20 and the parity on the
datais NOT odd (“1").

Verilog

m_id = $mminstanceid(“tb.mem.sdram0”) ;

a_id = S$mmassert parity(m_id, “read”, “note”, 1, 0, 20, 1);
VHDL

m_id := mmgetinstanceid(“/tb/mem/sdram0”) ;

a_id := mmassert parity(m id, “read”, “note”, 1, 0, 20, 1);
Tcl

set m_id [mminstanceid tb.mem.sdramO]
mmassert parity $m id read note 1 0 20 1

Dynamically Enabling and Disabling Assertions

You can dynamically enable and disable (render inactive) assertions from within your test-
bench using the following MMAV functions:

mmenableassertion (assertion id) ;
mmdisableassertion(assertion_id) ;

The assertion_id is the variable that is assigned to the assertion definition call. In this
example, the assertion_id would be“a id”.

MMAV User’s Guide

717108 86

54 FEr

5.4.1

a_id = S$mmassert parity(m_id, “read”, “note”, 1, 0, 20, 1);

And to disable this assertion definition:

status = smmdisableassertion(a_id);
Verilog
status = Smmenableassertion(a_id) ;

status = $mmdisableassertion(a_id);

VHDL

status := mmenableassertion(a_id) ;
status := mmdisableassertion(a_id);
Tcl

mmenableassertion a_ id
mmdisableassertion a_id

Usage:

For ease of adding assertions and modifying them for specific tests, Denali recommends
that all assertions be placed in asingle Verilog, VHDL or Tcl file and that all assertions be
disabled using the “mmdisableassertion” call. Assertions can then be enabled individually
in certain tests using the “mmenabl eassertion” call.

ror Injection Routines

You can insert errors into the Denali memories during simulation in order to exercise ECC
checking logic and hardware test features in your design. There are two types of error
injections routines. The first routine will randomly flip a random bit on the wires of a
memory during aread at regular intervals. This routine simulates signal integrity errorsin
the real system. The second type of routines are hard fault routines that allow you to create
stuck-at and coupling errors in the Denali memory models. This is useful when testing
software or hardware that detects faulty memory devices in the real system. The syntax
and description of these call are asfollows:

Error Injection

Starting in Denali’s release 2.900, the error injection routine was enhanced to allow multi-
bit errors and provide the user with greater flexibility over the randomization of errors.

NOTE: Thereis alimitation on the frequency of injected errors. Due to implementation,
the smallest interval between injectionsis 2.

MMAV User’s Guide

717108 87

mmerrinject (<instance id>, “error type string”) ;

“error_type string” options:

-seed <seed_value>: Integer random number seed. By default, it uses system time as seed,
thus generating a different result for each run. To get a repeatable sequence, this option
should be used.

-reads<number_of reads per_error> <range>: Integer value for the number of reads
per error. The optional second integer specifies the range, and the default value is 100.

-bits <bit number> <bit number 2> ...: The optional integer fields indicates different bit
error numbers. For example, to create single and double bit errors, the values 1 and 2
would be specified. The default valueis 1 (single bit errors only).

-per cent <percentage integer > <percentage integer 2>: Each integer is the distribution/
percentage of the occurrences of the bit errors as defined in -bits option above. The total
sum of integers should be 100. By default, they are evenly distributed for different types.

Example: Generate single, double and 4-bit errors at a rate of 80% single bit errors, 15%
double bit errors and 5% 4-hit errors. The errors will begin occurring randomly (using a
seed of 12) 5-10 reads | ater.

Verilog

m_id = $mminstanceid(“tb.mem.sdram0”) ;
success = S$mmerrinject (m _id, "-seed 12 -reads 5 10 -bits 1 2 4 -percent
80 15 5");

VHDL

m_id := mmgetinstanceid(“/tb/mem/sdram0”) ;
err id := mmerrinject (m_id, "-seed 12 -reads 5 10 -bits 1 2 4 -percent 80
15 5");

Tcl

set m_id [mminstanceid tb.mem.sdramO]
mmerrinject $m_id -seed 12 -reads 5 10 -bits 1 2 4 -percent 80 15 5

Denali has also added a command to disable the error injection. To disable the error
injection set using mmerrinject use the following command:

Verilog

success = Smmsetallerrinject(0) ;

VHDL

m id := mmgetinstanceid(“/tb/mem/sdram0”) ;

MMAV User’s Guide 717108 88

success := mmseterrinject(m_id, 0); -- Turns OFF error injection
success := mmseterrinject(m_id, 1); -- Turns ON error injection

Tcl

set m_id [mminstanceid tb.mem.sdram0]
mmseterrinject $m_id 0

(OR)

mmsetallerrinject O

For having error inject on every read, the command is:

Smmerrinject (id, 1); /* inject every read */

Similarily, if you need to inject asingle bit error once every 512 reads then command is:

Smmerrinject (id, 512); /* inject error every 512th read*/

Enabling Error Injection on “backdoor” Reads

For backdoor reads (using mmreadword or from testbench tools such as Specman or
VERA), the default behavior isto NOT do error injection. Error injection, by default, is
only done on reads performed via the pins. However you can turn on error injection for
backdoor reads by using a third, optional parameter of mmseterrinject in the following

way:

mmseterrinject (id, status, [backdoorstatus]);
This function turns error injection on or off for the specified memory instance.

Arguments
e id - memory id for error injection, -1 for all
e dtatus- O (to turn off) or 1 (to turn on)

e backdoorstatus - OPTIONAL - 0 (to turn off) or 1 (to turn on) default for backdoor
readsis for error injection to be off (backdoor reads are those not through the pins but
through the PLI or DDVAPI interface) error injection can be enabled on backdoor
reads by setting the third parameter to 1.

Verilog

m_id = $mminstanceid(“tb.mem.sdram0”) ;
success = smmsetallerrinject(m id, 1, 1); // Turns ON backdoor error
injection

VHDL (currently only ModelSim VHDL is supported)

m id := mmgetinstanceid(“/tb/mem/sdram0”) ;
success := mmseterrinject(m id, 1, 1); -- Turns ON backdoor error
injection

MMAV User’s Guide 717108 89

5.4.2

Tcl

set m_id [mminstanceid tb.mem.sdramO]

mmitcleval ("mmseterrinject $m _id 1 1");
Fault Modeling

Creating Memory Faults

Logical memory faults can be applies to any Denali memory device. These features can be
very useful in testing fault logic and BIST (built-in self test) logic to verify memory
arrays. The mmfault command is described below.

mmfault (<instance ids>,”<type>”,<addr>,<bit>,<value>,<slave addr>,<slave
bit>) ;

The valid <type> fields are:

e stuck-at
A stuck at fault will fix the specified bit at the specified address to be stuck at the spec-
ified value.

e transition
A transition fault will insure that the specified bit at the specified address can never
attain the specified value.

e coupling
A coupling fault will force a transition on the slave bit at the slave address whenever
the specified bit on the specified address transitions.

Example: Set bit 5 at address 0x20 in memory instance th.mem.sdram0 to stuck at 1.

Verilog

m_id = $mminstanceid(“tb.mem.sdram0”) ;

//Stick bit 5 of address=0x20 to “1”
err id = $mmfault (m_id, “stuck-at”, ‘h20, ‘h5, ‘hl);

//Make bit 1 of address=0x20 unable to transition to a ‘0’
err id = $mmfault (m_id, “transition”, ‘h20, ‘hl, ‘hO0);

//In this example, a change in bit 0 at address 7 will cause a transition
//to that value at bit 2 at address 20 (if that bit does not already have
//the value) .

err id = $mmfault (m_id, “coupling”, ‘h7, ‘h0, ‘h0, ‘h20, ‘h2);

MMAV User’s Guide 717108 90

VHDL
m id := mminstanceid(“/tb/mem/sdram0”) ;

--Stick bit 5 of address=0x20 to “1”
err id := mmfault (m_ id, “stuck-at”, 16#20#, 5, 1, 0, 0);

--Make bit 1 of address=0x20 unable to transition to a ‘0’
err_id := mmfault(m_id, “transition”, 16#20#, 1, 0, 0, 0);

--In this example, a change in bit 0 at address 7 will cause a transition
--to that value at bit 2 at address 20 (if that bit does not already have
--the value)

err id := mmfault(m id, “coupling”, 7, 0, 0, 16#20#, 2);

NOTE: In VHDL, ALL fields must be used for any mmfault command. Thus unused fields
must be setto “ 0" .

Tcl
--Stick bit 5 of address=0x20 (dec=32) to “1”

mmfault tb.mem.sdramO0 stuck-at 32 5 1 0

--Make bit 1 of address=0x20 (dec=32) unable to transition to a ‘0’
mmfault tb.mem.sdram0 transition 32 1 0

In this example, a change in bit 0 at address 7 will cause a transition
to that value at bit 2 at address 20 (dec=32) (if that bit does not

already have the wvalue)

mmfault tb.mem.sdramO coupling 7 0 0 32 2

Enabling/Disabling Fault Checks

Once enables, Denali memory faults are aways active. The fault definitions can be dis-
abled using the following commands.

mmsetfault (<fault id>, <flag>); - Turns on(flag=1l)/off(flag=0) a
specific fault specified by the fault id (err id in the examples above)

mmsetallfault(<flag>); - Turns on(flag=1)/off (flag=0) all faults

Verilog

success = Smmsetfault (5, 0); //Turn off(0) fault id=5
success = Smmsetallfault(0); //Turn off all faults
VHDL

success = Smmsetfault (5, 0); //Turn off(0) fault id=5

success = Smmsetallfault(0); //Turn off all faults

MMAV User’s Guide

717108 91

5.5

5.5.1

Tcl

mmsetfault 5 0 #Turn off (0) fault id=5
mmsetallfault 0 #Turn off all faults

Logical Addressing with MMAV (Method #1)

NOTE: Logical memories, when created, generate a new instance name that is at the top
of the testbench hierarchy. Thus when using other MMAV commands such as
mmwriteword, mmreadword, mmsave, etc., you MUST use the instance name as
specified in the logical memory definition, without any hierarchy. The *
address.space name=‘<name>’ ” XML tag identifies the instance “ name” for the
new logical memory instance.

This section describes how to create system memories with MMAV. System memories can
also be thought of as virtual, or logical, memories, but will be referred to as system mem-
ories throughout this document. They provide avirtual view of the physical memoriesin
your design, to reorganize the datain a view that makes more sense for ease of debugging.
For instance you can separate parity bits from data, change the bit order of addresses and
data, interleave memories, and more.

In versions 3.0 and earlier, all system memories were created via PLI, VHDL or DDVAPI
cals. There were multiple calls made to first create the memory, then add to it. This
implementation had limitations, and required memories to be place in an MxN grid, with
no holes. The new specificationisin very flexible XML. The 3.0 interfaces are still sup-
ported, but customers must use the new XML format if they wish to have more flexible
organization of their memories. The 3.0 interface is described in Section 5.6, “Logical
Addressing (Method #2),” on page 100.

XML Basics

XML (Extensible Markup Language) has a very simple syntax with a few basic rules. If
you are familiar with HTML, it will look familiar. XML is not a language itself but a
standard on how to define your own language, which Denali has done for creating system
memories. The syntax is a combination of tags (delimited by < >), content, and
attributes. The rules to remember when writing XML are:

e Every start-tag must have a matching end-tag or be a self closing tag
e Tags cannot overlap (they must be properly nested)

e XML documents can only have one root element

e XML iscase sensitive

Denali can accept XML either from afile or from a string, see Section 5.5.8, “Interfacing
to MMAV,” on page 100 for details.

MMAV User’s Guide

717108 92

5.5.2

Let's start with the root element. Your file or string containing XML must have one root
element, and one Denali recognizes. Because Denali envisions supporting other things
than system memoriesin XML eventually, thetop level root is: "advanced.verification”.

For example, the simplest XML for MMAV to processis:

<advanced.verification>
</advanced.verifications>

which would do nothing.

Note that a matching end tag is required, to do this, begin the tag with / within the < >,
with no space between the < and the /. Your XML must begin and end with thistag in
order for MMAV to process it.

For defining system memories, the tag is. <system.addressing>. So, an empty System
declaration would look like:

<advanced.verification>
<system.addressing>
<!-- This is a comment -->
</system.addressing>
</advanced.verification>

Note that the indentation is not required but will be used in the examples for clarity.

Also, note that you can put comments within your XML. The syntax is:

<!l-- comment -=>

Depth, Width Expansion

Now, within the system.addressing tags, you can create system memories.

Each system memory is defined with address.space tags. They must be given a unique
name, a width, and a depth. Within the memory, you can place physical or other system
memories.

Width Expansion example:

<advanced.verification>
<gsystem.addressing>
<!-- Four léemb X 8 bit memories, width expanded -->
<address.space name=‘ram’ width='32’ depth='16777216'>
<place baseaddr='0’ bitpos=‘'0’>
<memory name='testbench.i0’ />
</place>
<place baseaddr='0’ bitpos='8’>
<memory name='testbench.il’ />
</place>

MMAV User’s Guide

717108 93

<place baseaddr='0’ bitpos=‘'16’>
<memory name='testbench.i2’ />

</place>

<place baseaddr='0’' bitpos='24’'>
<memory name='testbench.i3’ />

</place>

</address.space>
</system.addressing>
</advanced.verifications>

This example shows how to create a system memory caled "ram" 32-bits wide, 16Mb
deep. Thisis created from 4 8-bit wide physical memories, placed side by side at bit posi-
tions 0, 8, 16, and 24.

Refer to the following figure that shows the XML Logical Memory Example.

testbench.iO | testbench.il | testbench.i2 | testbench.i3

FIGURE 5-1: XML Logical Memory Example - Width Expansion

Depth Expansion Example:

<advanced.verifications>
<system.addressing>
<!-- Two 32mb X 16 bit memories, depth expanded -->
<address.space name=‘myview’ width='16’ depth='64M’>
<place baseaddr='0’ bitpos='0’>
<memory name='testbench.i5’ />
</place>
<place baseaddr='32M’ bitpos='0'>
<memory name='testbench.ié’ />
</place>
</address.space>
</system.addressing>
</advanced.verifications

MMAV User’s Guide 717108 94

5.5.3

which looks like:

0 testbench.i5

32M testbench.i6

FIGURE 2. XML Logical Memory Example - Depth Expansion

Interleaving

Interleaving is accomplished by putting an interleave attribute on the place of affected

memories, as well as adjusting the baseaddr accordingly.

Interleaving Example:

<advanced.verification>
<system.addressing>

<!-- Four 4k X 32 bit memories, interleaved -->
<address.space name=‘cache’ width='32’ depth='16K’>
<place baseaddr='0’ bitpos='0’ interleave='4'>

<memory name='‘processor.cl’ />
</place>

<place baseaddr='1l’ bitpos='0’ interleave=‘4'>

<memory name='‘processor.c2’ />
</place>

<place baseaddr='2’ bitpos='0’ interleave='4'>

<memory name='‘processor.c3’ />
</place>

<place baseaddr='3’ bitpos='0’ interleave=‘4'>

<memory name='‘processor.c4’ />
</place>
</address.space>
</system.addressing>
</advanced.verification>

MMAV User’s Guide

717108

95

which looks like:

Processor.cl

Processor.c2

Processor.c3

Processor.c4

Processor.c2

0
1
2
3
4 Processor.cl
5
6
7

Processor.c4

16380 Processor.cl
16381 Processor.c2

16382 Processor.c3
16383 Processor.c4

|
|
|
|
|
|
|
|
Processor.c3 |
|
|
|
|
|
|
|

FIGURE 3. XML Logical Memory Example - I nterleave Expansion

5.5.4 Address Scrambling

You may also rearrange the bits of the address to suit your needs. Here is the example
from Section 5.7, “ Address Scrambling,” on page 105, reversing bits 4 through 7, and 12
through 15 of each address used to access th.uut1 through scraml:

<advanced.verification>
<system.addressing>
<address.space name='‘scraml’ width='24’ depth=‘1M’>
<place baseaddr='0’ bitpos='0' >
<address.map bits='19:16 12:15 11:8 4:7 3:0’' />
<memory name=‘tb.uutl’ />
</place>
</address.space>
</system.addressing>
</advanced.verifications>

55.5 Data Bit Reordering and Masking

You may also view the data bits in a different order, and/or only use a subset of themin a
given place.

<advanced.verification>
<system.addressing>

MMAV User’s Guide 717108 96

<address.space name=‘data’ width='30’ depth='1M’>
<place baseaddr='0’ bitpos=‘0’' >
<data.map>
<word bits='31:17 15:1' />
</data.map>
<memory name=‘tb.uut2’ />
</place>
</address.space>
<address.space name=‘parity’ width=‘'2’ depth=‘1M’>
<place baseaddr='0’ bitpos=‘0’ >
<data.map>
<word bits=‘16 0’ />
</data.map>
<memory name=‘tb.uut2’ />
</place>
</address.space>
</system.addressing>
</advanced.verifications>

Note that you could instead combine these together to make a 32-bit memory, with parity
on the right by doing the following and changing the width on the address.space to 32:

<word bits='31:17 15:1 16 0’ />

5.5.6 Creating Holes

This specification also alows for leaving 'holes in the system memory - spaces that are
not occupied by any physical or child system memory. The space does not need to be fully
specified. For instance, to leave the bottom 64K of a system memory empty, ssimply start
placing memories at a baseAddr equal to 64K.

5.5.7 Putting it all Together

Here's an example tying these concepts together:

A 256kB x 8 memory, addressed by big-endian 32-bit words, width-expanded with a 32kB
X 64, addressed by 32-bit words, in little-endian order:

<advanced.verification>
<system.addressing>
<address.space name=‘wide’ width='64’ depth='64K’'>

<place baseaddr='0’ bitpos='0’ >

<data.map>
<word bits='7:0 15:8 23:16 31:24' />

</data.map>
<memory name=‘narrow’ />

</place>

<place baseaddr='0’ bitpos='32’ >

MMAV User’s Guide 717108 97

<data.map>
<word bits='31:0' />
<word bits='63:32' />
</data.map>
<memory name= ‘extra wide’ />
</places>
</address.space>
</system.addressing>
</advanced.verification>

Logical Memory Diagram
0 31 32

63

[31:0]

[63:32]

“extra_wide”

MMAV User’s Guide

7/7/08

98

The examples should make much of the specification clear, but let'slook at each XML ele-
ment in detail. Each element is followed by a description of its attributes.

<system.addressing> A container for logical addressing descriptions.

<address.space> Describes alogical address space. (mandatory: name, width, depth)

name - Identifier for the address space akin to instance names for
physical memories.

width - Number of bits in each word in this address space.

depth - Number of words in the address space.

<memory> Refers to a physical memory instance. (mandatory: name)

name - Instance name of the physical or system child memory.

<place> Specifies placement attributes of a physical memory or logical address space
within alogical address space. (mandatory: baseaddr; optional: bitpos, interleave)

baseaddr - Address in the logical space at which the child begins.
bitpos - Bit number (LSB = 0) in the logical space corresponding to
the child's LSB. Defaults to 0.

interleave - Numeric offset in the logical space between consecutive
locations in the child. For example, with an interleave
of two, the child's words will correspond to every
alternate logical address. Interleave another child
with this one by also setting the second's
interleave='2"' and its baseaddr one greater than the
first's baseaddr. Defaults to 1; that is, no addresses
are skipped.

<data.map> Modify the enclosing placement (i.e., <place>) to alow viewing the child
other than by full wordsin their natural bit order (width-1 : 0).

<wor d> - One or more <word>s in a <data.map> describe the bit arrangement for viewing
the placed memory. (mandatory: bits)

bits - Space-separated list of bit numbers and bit ranges. Bits are
numbered starting at zero for the least-significant bit. A
bit range is two bit numbers joined by a colon. The range
represents all the bits numbered between the two numbers,
inclusive, and the range is in either ascending or descending
order, depending on whether the left number is less than or
greater than that, respectively. (For
completeness, the bit range N:N should probably be considered
equivalent to the simple bit number N.)

With a single <word>, one may rearrange the bits in the placed memory into a different
logical order. To view the memory through a wider bus width than its natural width, the
“bits’ attribute may include bit numbers beyond (width-1). A bit number N * width + B
indicates bit B in the Nth successive word. See the first <wor d> in the example above.

MMAV User’s Guide 717108 99

To view the memory through a narrower-than-native bus width, use multiple <wor d>s,
using the “bits’ attributesto indicate how to apportion the bits of aword among the logical
words. See the second <data.map> in the example above.

<address.map> Modify the enclosing placement to allowing viewing the child other than
in consecutive order of ascending addresses. (mandatory: bits)

bits - Space-separated list of bit numbers and bit ranges. Bits are
numbered starting at zero for the least-significant bit. See
the bits attribute of <words>, above, for a discussion of
ranges.

To understand how the <address.map> is applied, consider the computation of an address
in the placed memory without any address mapping. From an address in the enclosing
address space, subtract the child's baseaddr, divide by its interleave, and multiply by the
ratio of child words to logical words as determined by any <data.map> in the placement.
This gives the address in the child memory to which alogical address corresponds, or, in
the case of a <data.map> that combines bits from multiple child locations, the first such
address. When an <address.map> is applied to the placement, it is this computed address
whose bits are rearranged as specified by the bits attribute.

5.5.8 Interfacing to MMAV

Now that you have these memories defined, either in afile, or in astring in your testbench,
you can create them in the Denali environment in the following ways:

Verilog:
success = smmxmleval ("xmlString") ;
success = Smmxmlfile("filename") ;
VHDL:
success := mmXmlEval (xmlString) ;
success := mmXmlFile (filename) ;

You can make multiple callsto the routines, al your system memories do not haveto bein
the same file or string buffer, though they can be.

You can find out what the instance id of this memory is using $mminstanceid, for usein
subsequent calls which take the id number versus the name.

5.6 Logical Addressing (Method #2)

Prior to Section 5.5, “Logical Addressing with MMAV (Method #1)” in Denali MMAV
version 3.1, you could define simple width expanded, depth expanded, and interleaved
memories using testbench PLI/FLI or Tcl calls. Thefirst command is used to specify the

MMAV User’s Guide 717108 100

"shape" of the logical address. Succeeding commands are then used to map specific phys-
ical memoriesto the logically addressed memory.

Once logical addressing has been created, the standard PLI/FLI/Tcl functions for reading,
writing, saving and restoring can be used on the logically addressed memory in the same
way as with physical memories. The exception is with the compare command.

The logica addressing supported by these commands are created by combinations of
width expansion

Two or more physical memories are combined to form alogica address word with more
bits. The physical memories combined in this way need not be of the same width, but must
have equal address spaces.

depth expansion

Two or more physical memories are combined to form a larger address space for the logi-
cally addressed memory (equivalent to the sum of all the address spaces for the constituent
memories). The physical memories combined in this way need not have equal address
spaces, but must have equal word size.

interleaving

Two or more physical memories may be interleaved so that stepping through the addresses
in the logically addressed memory will result in cycling over the interleaved physical
memories. The physical memories that are interleaved together must have equal width and
depth.

masking

Masking may be used to select only some of the bitsin the word of a physical memory in
defining the logical addressing word. These bits need not be contiguous in the memory,
but there is no mechanism for reordering the bits. The masking is fixed for each physical
memory that comprises the logically addressed memory. Also, if there is depth expansion,
the masks must be consistent over all the physical memoriesinvolved in the depth expan-
sion. An example of when masking might be used is when the physical memory word rep-
resents two (or more) different values. For example, the first 4 bits could represent a
priority value, or a pointer, and the remaining bits could represent data. Using the appro-
priate masks, two logically addressed memories could be defined corresponding to those
two values. The resulting logically addressed memories are then, in general, MxN arrays
of physical memories, with or without interleaving, and with or without masking.

id = $mmcreatesysmem("logically addressed memory name",
"logically addressed memory instance id",
width,
depth,

[numinterleaves]) ;

MMAV User’s Guide

717108 101

e |ogically addressed memory name - user specified name for the logically addressed
memory instance name

e |ogically addressed memory instance id - user specified instance id for the logically
addressed memory. NOTE: This s the instance id that will be used with subse-
guent MMAV commands, such as mmload, mmsave, mmwriteword, mmread-
word, etc.

e width - number of physical memories used in width expansion

e depth - number of physical memories used in depth expansion

interleaves - the level of interleaving

This command is used to create the configuration of the logically addressed memory. The
physical memories are laid out in an “MxN” array, with or without interleaving. Anid is
returned that corresponds to the logically addressed memory. Note that the logically
addressed memory is not ready for use after this command, since no physical memories
have yet been mapped to the logically addressed memory. The following commands are
used for that purpose.

result = $mmaddtosysmem(<logically addressed memory ids>,
<instance ids>,
<width positions,
<depth positions,
[<interleave position>])

This command is used to add a physical memory to alogically addressed memory previ-
ously created by a mmcreatesysmem command. A command of this kind must be issued
for every position in the matrix as defined by the mmcreatesysmem command before the
memory is usable.

Arguments:

logically addressed memory id - the id of the logically addressed memory as returned by
mmcreatesysmem

instanceid - theid of the physical memory being added into the logically addressed mem-
ory

width position - the width position in the MxN matrix where this memory should go val-
ues should be 0 to width-1)

depth position - the depth position in the MxN matrix where this memory should go (val-
ues should be 0 to depth-1)

interleave position - the level of interleave for this memory (values should be O to inter-
leave-1)

This function returns a 0 on success, and a-1 on failure.

MMAV User’s Guide 717108 102

result Smmaddtosysmemmask (<logically addressed memory ids>,
<physical ids,

"mask string" ,

<width positions,

<depth positions,

[interleave position])

This function is identical to mmaddtosysmem (described above) except that a string is
specified that represents the binary representation of the mask. Recall that the mask must
be the same for all physical memories of a given width position.

This function returns a 0 on success, and a-1 on failure.

Examples:

Verilog

m_idl = $mminstanceid(“tb.mem.sdram0”) ;

m id2 = $mminstanceid(“tb.mem.sdraml”) ;

m id3 = $mminstanceid(“tb.mem.sdram2”) ;

m id4 = Smminstanceid(“tb.mem.sdram3”) ;

vid = Smmcreatesysmem(“logical”, “new memory name”, 2, 2, 1);
success = s$mmaddtosysmem(vid, m_idl, 0, 0, 0);

success = smmaddtosysmem(vid, m_id2, 1, 0, O0);

success = smmaddtosysmem(vid, m _id3, 0, 1, 0);

success = S$mmaddtosysmem(vid, m id4, 1, 1, 0);

VHDL

m _idl := mmgetinstanceid(“/tb/mem/sdram0”) ;

m id2 := mmgetinstanceid(“/tb/mem/sdraml”) ;

m id3 := mmgetinstanceid(“/tb/mem/sdram2”) ;

m_id4 := mmgetinstanceid(“/tb/mem/sdram3”) ;

vid := mmcreatesysmem(“logical”, “new memory name”, 2, 2, 1);

success := mmaddtosysmem(vid, m_idl, 0, 0, 0);

success := mmaddtosysmem(vid, m_id2, 1, 0, 0);

success := mmaddtosysmem(vid, m_id3, 0, 1, 0);

success := mmaddtosysmem(vid, m id4, 1, 1, 0);

Tcl

set m_idl [mminstanceid tb.mem.sdram0]

set m_id2 [mminstanceid tb.mem.sdraml]

set m_id3 [mminstanceid tb.mem.sdram2]

set m_id4 [mminstanceid tb.mem.sdram3]

set vid [mmcreatesysmem logical new_memory name 2 2 1]

mmaddtosysmem $vid $m_idl 0 0 0
mmaddtosysmem $vid $m_id2 1 0 0

MMAV User’s Guide

717108

103

mmaddtosysmem $vid $m_id3 0 1 0
mmaddtosysmem $vid $m _id4 1 1 0

In the above examples, alogically addressed memory is created from a 2x2 array of phys-
ical memories.

In the following example, two logically addressed memories (data and pointer) are created
from two 8 bit wide physical memories using masks. Thefirst logically addressed memory
consists of the 5 most significant bits from the first physical memory. In the example, this
represents a5 bit pointer. The second logically addressed memory is created from the least
significant bits of the first physical memory and all the bits of the second physical mem-
ory. In the example, this represents an 11 bit logically addressed word.

Examples:

Verilog

//Pointer

m_idl = $mminstanceid(“tb.mem.sdram0”) ;

m id2 = $mminstanceid(“tb.mem.sdraml”) ;

vid = S$Smmcreatesysmem(“logical”, “data”, 1, 1, 1);

success = $mmaddtosysmemmask(vid, m idl, “11111000”, O, 0, 0);

[IData

vidl = Smmcreatesysmem("logical", "pointer", 2, 1, 1);
success = $mmaddtosysmemmask(vidl, m idi, "o0000O0111", 0, O, 0);
success = $mmaddtosysmemmask(vidl, m id2, "iiiiiiii", 1, O, 0);

VHDL

-- Pointer

m idl := mmgetinstanceid(“/tb/mem/sdram0”) ;

m_id2 := mmgetinstanceid(“/tb/mem/sdraml”) ;

vid := mmcreatesysmem(“logical”, “data”, 1, 1, 1);

success := mmaddtosysmemmask(vid, m_ idl, “11111000”, 0, 0, 0);
-- Data

vidl := mmcreatesysmem(“logical”, “pointer”, 2, 1, 1);

success := mmaddtosysmemmask(vidl, m idi, “00000111”, 0, O, 0);
success := mmaddtosysmemmask(vidl, m id2, “11111111”, 1, O, 0);
Tcl

Pointer

set m_idl [mminstanceid tb.mem.sdramO]

MMAV User’s Guide 717108 104

5.7

set m_id2 [mminstanceid tb.mem.sdraml]

set vid [mmcreatesysmem logical data 1 1 1]
mmaddtosysmemmask $vid $m_idl 11111000 0 0 O

-- Data

set vidl [mmcreatesysmem logical pointer 2 1 1]
mmaddtosysmemmask $vidl $m_idl 00000111 O 0 O
mmaddtosysmemmask $vidl $m id2 11111111 1 0 O

Address Scrambling

Address Scrambling is used to create a “scrambled” memory from a physical memory.
The scrambling consists of a bit-by-bit transglation of the original address to the scrambled
address. This allows the user to re-define the way that a particular address gets mapped
into memory.

Example:

mid = $mmaddressmap ("scrambled memory name", memory id, "<address map>",
[output message levell);

Where:

e scrambled memory name = Newly created scrambled memory for the scrambled
addresses

e memory_id = Physical memory that isto be mapped to the “ scrambled” memory
e “addressmap” = Bit-by-hit trandation from the physical to the “scrambled” address

e [output message level] = [Optional] Verbose messages showing the physical to
“scrambled” addresses translation

The first integer in the address map specifies the value of the most significant bit of the
scrambled address. In other words, the first integer specifies which bit of the original
address is used for the most significant bit of the scrambled address. Similarly, the last
integer specifies the least significant bit. For example, to reverse the bitsin a4 bit address,
the address map would be: “0 1 2 3”. Here, the MSB of the scrambled addressis given by
bit O of the original address. The LSB is given by bit 3 of the original address. For exam-
ple, with this mapping the address Oxa would scramble to 0x5 (1010 -> 0101).

Valid integers in the address map are in the range O .. n, where n is the number of bits
required to represent the largest addressable memory location in the memory instance. For
example, if Ox1fffff isthe largest addressable memory location, you would need to specify
21 mapping integers. In this case, valid values for the mapping integers are from 0 to 20.

MMAV User’s Guide

717108 105

To display verbose messages when scrambling, use a value of 1 for the [output message
level] argument in $mmaddressmap. This causes messages like the following to appear in
standard output:

Denali (write) scramble: address 255 maps to 8160
By default, no such messages appear in stdout.

Verilog
mid = $Smmaddressmap("scraml", idl, "19 18 17 16 12 13 14 15 11 10 9 8 4
56 73 210", 1);

This command will scrambled all writes and reads to the scrambled memory "scraml”,
which consists of the physical memory 'id1'. The scramble scheme consists of reversing
bits 4 through 7, and 12 through 15 of a given address.

VHDL

mid := mmaddressmap("scraml", idl, "19 18 17 16 12 13 14 15 11 10 9 8 4
56 73210, 1);

Tcl

set idl [mminstanceid tb.mem.sdramO]
mmaddressmap scraml $idl “19 18 17 16 12 13 14 15 11 10 9 8 4 56 73 21
o" 1

5.8 Scratchpad Memories

Scratchpad memories are used to create a simple C-based MxN memory array. This can be
extremely useful in modeling caches, embedded memory arrays, etc.

$mmcreatescratchpad (<names, <width>, <depth>, <init_vals) ;
e name - name of the scratchpad returned by mmcreatescratchpad
width - width of the scratchpad in bits (integer)

depth - number of words in the scratchpad (integer)

init_val - initial memory value of scratchpad (0, 1, x, X, "")

This command is available through the PLI or via Tcl. The init_va argument is not
optional, though it can be the empty string "", in which case MMAV uses a default value
of “X".

Example: Create a 32-bitx1024 scratchpad memory called “scratchpadl”.

Verilog:

sp_id = S$mmcreatescratchpad (scratchpadl, 32, 1024, 1);

MMAV User’s Guide 717108 106

VHDL:
For VHDL, Denali has created two direct functionsin func_If.vhd (for NC-VHDL) and in
func_mti.vhd (for MTI)

FUNCTION mmCreateScratchpad(name : STRING,;
width : INTEGER;
depth : INTEGER;
initvalue: STD_LOGIC_VECTOR) return INTEGER,
attribute FOREIGN of mmCreateScratchpad:function is " Clib:mmcreatescratchpad”;

If you put this call within an entity/architecture that gets instantiated more than once, you
can make the path names to the newly created scratchpad memories unique by using the
VHDL 'path_name attribute.

Example:

entity simple mem is

port (
a : in std logic vector (9 downto 0);
data : inout std logic_ vector (7 downto 0);
cs, we, clk : in std logic

) i

end simple mem;
use work.memory modeler.all;

architecture behavior of simple mem is

signal width: integer := 8;
signal size:integer := 1024;
signal id: integer := -1 ;
begin
process
begin

id <= mmcreatescratchpad(simple mem'path name & "storage", width,
size, "00000000") ;
wait;
end process;

When thisisinstantiated in the testbench twice like this:

i simple mem: simple mem

port map(a => tb_a, data => tb _datal, cs => tb_cs, we => tb we, clk
=> tb clk);

j_simple mem: simple mem
port map(a => tb_a, data => tb data2, cs => tb _cs, we => tb we, clk
=> tb_clk);

MMAV User’s Guide 717108 107

You will get unique path names which to refer to the names as follows:

Denali Class: scratchpad Instance:
":simple tb:j simple mem:simple memstorage" Size: 1Kx8

Denali Memory id: O created of size 1024, width 8.
Denali Class: scratchpad Instance:
":simple tb:i simple mem:simple memstorage" Size: 1Kx8

Denali Memory id: 1 created of size 1024, width 8.
Alternatively, you can refer to the memories by the id returned from mmcreatescratchpad.

Tcl:
set sp_id [mmcreatescratchpad scratchpadl 32 1024 1]

The above example creates a scratchpad memory named scratchpadl that is 32-bits wide
and 1024 words deep (each of which contains FFFFFFFF until changed). The variable
sp_id contains the integer value returned by the command that is the id of the memory
created. The following will appear in the Denali history file:

Denali Memory id: 1 created of size 1024, width 32.

You can then use mmreadwor d and mmwriteword (and other MMAV calls) referring to
"1" (not recommended) or sp_id ($sp_id if Tcl) to access this memory from your
testbench. In addition, PureView can be also be used to view this memories contents.

5.9 Verilog Callbacks (new in 3.2)

59.1 Callback Interface

The MMAV Verilog callback interface provides the facilities for model callback initiaiza-
tion and handling. The denaliMemCallback module contains an integer variable which
will be changed by the model when a sensitized event occurs in the model. A change on
this variable should trigger a procedural block in the testbench to process the callback
events.

59.2 Callback Initialization

To use the Denali MMAV Verilog callbacks, you must compile the SDENAL I /ddvapi/ver-
ilog/ddvapi.v file along with your other Verilog files. The tasks included in this file pro-
vide the necessary tasks to implement the callback routines.

MMAV User’s Guide 717108 108

5.9.3

Callbacks are generated whenever an MMAV assertion is triggered. When setting MMAV
assertions, you must use the “ callback” <action> type. See Figure 5.1, “ Setting Assertions
on Memory Transactions,” on page 82 for detains on how to setup callback assertions.

To set up a callback on amodel event (or a set of model events), instantiate a denaliMem-
Callback module to be attached to the callbacks for the model instance. There should be
separate callback instances corresponding to each model instance so that callbacks for
each model instance may be processed by independent procedural blocks.

With the denaliMemCallback module is instantiated, a model callback is set up by call-
ing setCallback() with the model instance ID to attach the enabled events to the denal-
iMemCallback.Event variable.

Example (setup a callback whenever aread or write occurs to instance testbench.uutl):

denaliMemCallback cb ()
denaliMemTrans trans ()
integer id0, asrtO, 1i;

7
7

initial
begin

1d0 = Smminstanceid ("testbench.uutl") ;

asrt0 = Smmassert access (id0, "ReadorWrite", "callback", O,
'"h7FFFFFFF) ;

// Enable All the Callback Types
for (i = 0; 1 < DENALT CB_TOTAL; i =14+ 1)
cb.enableReason [i] = i;

cb.setCallback (ido) ;

#1000000000;
Sfinish;
end

Callback Handling

Processing of callbacks from the model is performed in a procedural aways-block trig-
gered by the Event variable in the denaliM emCallback instance. At any one time in the
simulation, multiple callback events may have occurred simultaneously at different points
in the model. The callback model handles the list of events triggered in the model, popu-
lating the callback module register variables on each successive getCallback() call. This
function returns 1 as long an additional event exists, and returns zero when the last event
has been processed.

On each call of the getCallback() function, the reason and transaction ID (transld) vari-
ables are loaded with the next available callback event. The transld can then be passed to

MMAV User’s Guide

717108 109

5.9.4

the denaliM emCallback transGet() task to retrieve the actual packet associated with the
event.

always @(cb.Event)

begin
while (cb.getCallback (ido0))
begin
trans.transGet (cb.transId);
Sdisplay ("time : %$0t" , Stime) ;
S$display ("reason : %0s" , cb.reasonStr (cb.reason)) ;
$display ("assertion : %0h" , trans.assertion) ;
Sdisplay ("reason : %0h" , trans.reason) ;
Sdisplay ("address : %0h" , trans.address) ;
Sdisplay ("width : %0h" , trans.width) ;
Sdisplay ("data : %$0h" , trans.data) ;
Sdisplay ("mask : %$0h" , trans.mask) ;
Sdisplay;
end
Sdisplay;
end

denaliMemcCallback Registers

enableReason

enableReason is an array of 32-bit values to specify all of the callback events to be
enabled. These values must be loaded by the user prior to calling the setCallback() task.
setCallback() will step through this array starting with location enableReason[0], and
will enable each callback event specified up to the first uninitialized location. Any
enableReason[| values above the first uninitialized location will be ignored.

The values loaded in to this array must be taken from the set of available callback events
defined in the DENAL IDDVCBpointT section of ddvapi.vh, (i.e. DENALI_CB_*).

Event

Event is an integer variable which will be attached to the model callback function. Any
time one of the enabled internal events occurs in the model, the Event variable will
change. A value change on this variable should trigger a procedural block in the testbench
to process the current callback event(s).

MMAV User’s Guide

717108 110

5.9.5

reason

reason is an integer variable identifying the current callback event; this variable is loaded
by the getCallback() function. When multiple callback events have occurred at the same
simulation time, reason will be updated to identify the next available event on each subse-
guent getCallback() call.

transld

transld is an integer variable identifying the transaction associated with the current call-
back event; this variable is loaded by the getCallback() function. When multiple callback
events have occurred at the same simulation time, transld will be updated to identify the
transaction for the next available event on each subsequent getCallback() call.

denaliMemCallback Tasks and Functions

setCallback()

Setup a callback in a model instance, attaching the selected callback events to the Event
variable in the denaliMemCallback module. Prior to calling setCallback(), the desired
callback events to be enabled must be initialized in the enableReason array.

task setCallback;
input [31:0] instId;

instld isthe Denali instance ID (handle), identifying a particular MMAV instance.

getCallback()

Step through the callback events from the model for the current simulation time. Set the
reason and transld variables to identify the next available event on each successive get-
Callback() call. The return value is 1'bl if an event is found, or 1'b0 if al events have
been processed and there are no more events available.

function getCallback;
input [31:0] instId;

instld isthe Denali instance ID (handle), identifying a particular MMAV instance.

clearCallback()

Clears the given callbacks for an Denali instance ID.

function clearCallback;
input [31:0] instId;

MMAV User’s Guide

717108 111

instld isthe Denali instance ID (handle), identifying a particular MMAV instance.

reasonStr()

Return the callback reason as a printable ASCI| string.

function [30%*8:1] reasonStr;
input [31:0] reason;
case (reason)

DENALI CB None : reasonStr = "None";
DENALI CB Read : reasonStr = "Read";
DENALI_CB_Write : reasonStr = "Write";
DENALI CB ReadOrWrite : reasonStr = "ReadOrWrite';
DENALI CB ReadNoWrite : reasonStr = "ReadNoWrite';
DENALI CB_ReadRead : reasonStr = "ReadRead";
DENALI CB WriteWrite : reasonStr = "WriteWrite";

default : reasonStr = "INVALID";

endcase
endfunction

reason must be one of the DENALIDDVCBpointT values defined in $DENALI/ddvapi/
verilog/ddvapi.vh. For example:

$display ("access : %0s" , cb.reasonStr (cb.reason)) ;

will display one of the “reason” strings listed above.

MMAV User’s Guide 717108 112

5.10 Using MMAV with Mentor Graphic’s Seamless HW/
SW Co-Verification Product

Mentor Graphic's Seamless Hardware/Software Co-Verification product comes bundled
with aversion of Denali’s MMAV. In the past, to use a new Denali release with Seamless,
customers had to wait for a new Seamless release. With the new releases of both Denali
and Seamless, thisis no longer the case.

To use a new Denali release with your current Seamless release, simply install the new
Dendi release in $CVE_HOME/denali. Alternatively, you can aso symbolicaly link
$CVE_HOME/dendi to a Denali MMAV release elsewhere. This will allow you to
change releases easier and keep old ones around.

To use Seamless and Denali’s PureView together, refer to Chapter 2: “Using the PureView
Graphical Tool” and Chapter 3: “Debugging Memory Using PureView”.

MMAV User’s Guide 717108 113

5.11 Using MMAYV for Embedded ASIC Memories

5.11.1

This section describes how to create embedded ASIC memories with MMAV.

Denali’s embedded memory solutions provide vast improvementsin the usability and ver-
ification features over typical vendor models. Denali provides simulation models via it's
MMAV product for register files, embedded SRAM, embedded DRAM, and embedded
Flash. These high quality models provide the same features as Denali’s de-facto external
memory models.

The primary advantage of using Denali’s embedded memory solutionsisthat these models
work with al Denali verification and debug tools.
Some of the key features of all Denali memory models:

¢ Preload the memoriesfrom afile

e Do “back-door” reads and writes to the models

e Compare the memory contentsto a“golden” file

e Save off the memory contentsto afile

e Setup assertions on memory transactions

e Setup error injection and BIST features

e UsePureView to interactively view and edit the memory contents
One other key advantage to Denali’s models is the small simulation footprint. Typicaly
vendor models use a large static array for the memory storage whereas Denali uses

dynamic memory allocation and only allocates the memory being used during the simula-
tion.

You can use Denali’s PureView graphical debugger to view your embedded memory con-
tents during smulation and edit the contents “on-the-fly” during simulation.

Register Files

Using PureView, you can easily create your own register files. Refer to the figure below:

MMAV User’s Guide

717108 114

- <untitled>

Jaddressh
|dataln
T
—
[k
[addressh
[dataout -
—

o

El
II'B
ICS

Name WidthDirection

FIGURE 5-2: PureView Register File Section GUI

Notice that thereis also an Auxiliary pin section that enables you to define other test pins,
etc. that are common on embedded devices. This allows you to create an exact Verilog or
VHDL shell to hookup to your design. By simply comparing the features of the register
file from the ASIC suppliers datasheet, you can easily create a Denali register file model
to instantiate in your design. Once you have added a Denali register file into your design,
you can now take advantage of all the memory model features that have made Denali the
de-facto memory model solution.

5.11.2 Embedded SRAM

Denali’s Embedded SRAM (essram) model is a generic model which intends to cover as
many libraries as possible. Usually, a vendor's memory has a subset of features of the
model described here.

The following is a screen shot of the embedded SRAM model from PureView.

MMAV User’s Guide 717108 115

— zuntitleds=

FIGURE 5-3: PureView Embedded SRAM GUI

Denali’s embedded SRAM model enables you to define multiple data ports and provides
the flexibility to configure these as read, write or read and write.

The fields Read Pins Bit String and Write Pins Bit String should be specified for 1/0
port bit map. "1" means port available, "0" means port unavailable. For example, for a
single port memory part, you can specify:

"Read Pins Bit String" = "1"
"Write Pins Bit String" = "1"

This indicates that it has one data-in pin and one data-out pin. For a dual-port memory, if

you specify:
"Read Pins Bit String" = "10"
"Write Pins Bit String" = "01"

This indicates that portO has one data-in pin and no data-out pin and portl has no data-in
pin and one data-out pin.

For a dual-port memory, if you specify:

MMAV User’s Guide 717108 116

"Read Pins Bit String" = "11"
"Write Pins Bit String" = "11"

This indicates that portO has one data-in pin and one data-out pin (read/write) and portl
has one data-in pin and one data-out pin.

5.11.3 Embedded DRAM

Denali also provides an embedded DRAM model. At thistime, thismodel fully covers
IBM’s SA27-E and Cu-11 embedded DRAM model. Below isthe PureView screen shot

for the IBM embedded DRAM model.

Pureviaew — <untitled>

Hame WidthDirection

PureView Embedded DRAM GUI

MMAV User’s Guide 717108 117

CHAPTER

6 MMAYV Testbench Integration

This chapter describes MMAV'’s integration with various supported testbench interfaces.

6.1 Verilog Interface

MMAV provides adirect Verilog integration using the PLI. Using PureView, you can gen-
erate a Verilog wrapper for your memory model instances. For details, refer to “Using the
PureView Graphical Tool” on page 11.

NOTE: Currently, Denali only supports the wrappers being of all in one language or
another. For example, in a mixed-mode simulation, if you have a Verilog wrapper,
you can instantiate it in a Verilog testbench only. In case you have a VHDL wrap-
per, you can instantiate it in the VHDL testbench only.

MMAV also provides a way to generate callbacks to your Verilog testbench on memory
accesses. Refer to “ Simulation Environment” on page 21 for more details.

6.1.1 Simulating with MMAV and Verilog

Cadence Verilog-XL

To link Cadence Verilog simulator with the models, run the vconfig script provided with
the Cadence release. This script will prompt you for several options, you will simply
answer the guestions appropriate to set-up your environment. If you are unsure about an
answer, simply hit <reTurn> Which will automatically select the default value.

When the script asks for your veriuser.c file, enter: ${DENALI}/verilog/veriuser.c, for
example:
The user template file 'veriuser.c' must always be included in the link

statement. What is the path name of this file?
[veriuser.c] : ${DENALI}/verilog/veriuser.c

When asked for other filesto be linked into the Verilog executable, enter: ${DENALI}/ver-
ilog/denverlib.o, for example:

MMAV User’s Guide 717108 118

List the files one at a time, terminating the list with a single '.'
——————————— > ${DENALI}/verilog/denverlib.o

After completing the program, you will have a script named cr_viog. Run this script to
create anew Verilog executable, which includes the Denali models.

Refer to an example compile script shown below:

#!/bin/csh -f

#

Script to create : Dynamic PLI library
#

set verbose

mkdir $DENALI/verilog/lib

Verilog XL

gcc -c¢ $DENALI/verilog/veriuser.c \
-I$CDS_INST DIR/tools/verilog/include \
-0 $DENALI/verilog/veriuser.o

Linking step
14 -G \
SDENALI/verilog/veriuser.o \
SDENALI/verilog/denverlib.o \
-0 $DENALI/verilog/lib/libpli.so

unset verbose

Cadence NC-Verilog

Satically linking Denali PL1 with NC-Verilog (for all platforms):

1. Setthe CDS _INST_DIR environment variable to your NC-Verilog installation direc-
tory.
% setenv CDS_INST DIR <nc_install dir>
setenv INSTALL DIR $CDS_INST DIR
setenv ARCH to sun4v or 1lnx86 as appropriate

2. Copy the file $CDS INST_DIR/tools/inca/filessMakefile.nc to a Makefile in your
working area:
% cp $CDS_INST DIR/tools/inca/files/Makefile.nc Makefile

3. Edit this copy of the Makefile as follows:

Edit the verTUSER C Statement to point to Denali's copy:
VERIUSER C = $(DENALI)/verilog/veriuser.c

Add the Denali PLI object modules in the statement:
PLI OBJECTS = $(DENALI)/verilog/denverlib.o

MMAV User’s Guide 717108 119

Comment out the arcu_RrELOCATE opT definition that is used for dynamic linking:
ARCH RELOCATE OPT = ...

4. Build the static executables:

% make static
Synopsys VCS
To run MMAV with VCS, you need to link in the Denali memory models with the simula-
tor. Unlike other Verilog PLI's, VCS does not use a veriuser.c. Instead, the simulator

learns about what PLI functions exist by reading a PLI table.

To run VCS, you need to only add to your existing command line where to find the pli.tab
file, and the object filesfor MMAV to be linked in, as shown in the example below.

vcs -M -P $DENALI/verilog/pli.tab \
-LDFLAGS "S$SDENALI/verilog/denverlib.o" \
<your verilog files>

NOTE: Certain platforms (notably Linux) also require linking with the "dynamic linking"
library (using -1dl) as below:

vecs -M -P $DENALI/verilog/pli.tab \
-LDFLAGS "SDENALI/verilog/denverlib.o" -1d1 \

<your verilog filess>

You may then ssimulate using simv.

MMAV User’s Guide

717108 120

Denali VCSPLI tablefiles
In $DENALI/verilog, there are 2 VCS PLI tablefiles, pli.tab and pli-fast.tab.

The pli.tab file uses the "*" wildcard to indicate that the scope of where ACC capabilities
are enabled isfor the entire design.

In general, if you are not having initialization performance issues, continue to use
$DENALI/verilog/pli.tab.

The pli-fast.tab file uses the % TASK wildcard to limit the scope of where ACC capabilities
are enabled, thereby speeding up the initialization of the ssmulation run.

If you are using this file and get an error message like:

Error: acc__handle by name: Object memory spec not found

then you are using one of the Denali tasks in more than one scope and should enable the
appropriate module or by using the wildcard "*" asin $DENALI/verilog/pli.tab.

Mentor Graphics ModelSim

Specifying PL1 Applicationsfor Modelsim

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library). For details,
refer to Compiling and linking PLI/VPI C applicationsin the Model Sm User’s Manual.

NOTE: The pliapp2 and pliappn references are NOT Denali PLI applications, but the
examples are shown to illustrate how to link multiple PLI objects with Denali’s
PLI.

There are three ways in which you can specify PLI applications for Model Sim. The Denali
PLI shared object file for ModelSim is mtipli.so for Unix/Linux. Usage for these shared
libraries are specified as follows:
1. Asalistinthe Veriuser entry in the modelsim.ini file:

uUnix:

Veriuser = S$DENALI/mtipli.so pliapp2.so pliappn.so
2. Asalistinthe pL10oBJS environment variable:

uUnix:

setenv PLIOBJS "$DENALI/mtipli.so \

pliapp2.so pliappn.so"
3. Asa-p1i argument to the simulator (multiple arguments are allowed):

uUnix:

[}

% vsim -pli S$DENALI/mtipli.so -pli pliapp2.so -pli pliappn.so

MMAV User’s Guide

717108 121

The various methods for specifying PL1 applications can be used simultaneously. The sys-
tem libraries are loaded in the order listed above. Environment variable references can be
used in the paths to the libraries in all cases.

ModeSim Timescale

When running simulations with ModelSim, in order to have the Denali timestamp
recorded correctly, the Model Sim simulator uses the minimum time precision used in the
design modules.

This means that you should not specify a time precision using the “-t” timescale com-
mand-line option. Using the “-t” timescale option will result in erroneous timing error
messages as the timestamp that Denali uses for timing checks will be incorrect.

Aldec Rivera-PRO and Active-HDL

You can instantiate the Denali models as Verilog modules. The models communicate with
Riviera-PRO viathe denali.so shared object library (Solaris, Linux). The library is deliv-
ered with both Riviera-PRO and Active-HDL.

To instantiate the Denali memory modelsin Verilog designs:

e Set $DENALI environment variable to point to the Denali installation directory. You
must set this variable prior to running the smulator (Riviera-PRO or Active-HDL).

e Add the denali.so shared object library (Solaris, Linux) to the list of PLI applications
visible to the ssmulator.

e Denali Verilog procedures and tasks for controlling memory models are located in the
denali.so shared object library (Solaris, Linux). If you use these tasks and functionsin
your Verilog code, make sure that they receive appropriate arguments.

In case Denali memory model exits abruptly when it detects a fatal error (e.g., when afile
with the model configuration cannot be found), it may terminate the simulation and close
the ssmulator. If you run simulation at the command-line mode, a message explaining the
cause of the error appears in the OS console window. If you use Riviera-PRO GUI or
Active-HDL, then the GUI closes. To find out the cause of the error, refer to the
denali.error filethat is created in the current directory.

MMAV User’s Guide

717108 122

6.2 VHDL Interface

MMAV provides a direct VHDL integration through each simulator specific C interface.
Using PureView, you must generate a VHDL wrapper for your memory model instances
by choosing the simulator you are using, as the wrappers have information specific to each
simulator. For details, refer to “Using the PureView Graphical Tool” on page 11.

NOTE: Currently, Denali only supports the wrappers being of all in one language or
another. For example, in a mixed-mode simulation, if you have a Veerilog wrappe,
you can instantiate it in a Verilog testbench only. In case you have a VHDL wrap-
per, you can instantiate it in the VHDL testbench only.

6.2.1 Simulating with MMAYV and VHDL

Synopsys VCS

In order to access Dendli calls from within the VHDL, you must:
1. Compile the file $SDENALI/vhpi/memory_modeler.vhd
2. Include the following in the top level of your entity:

use work.Memory Modeler.all;

MMAV User’s Guide 717108 123

Mentor Graphics ModelSim

To run simulation with MMAV and VHDL using Mentor Graphics Model Sim, do the fol-
lowing:

#!/bin/csh -fx

rm -rf work

vlib work

vcom $DENALI/mti/memory modeler.vhd
vcom *.vhd

vsim -c testbench -do 'run -all'

Cadence NC-VHDL (Leapfrog)

To run simulation with MMAV and VHDL using Cadence NC-VHDL, do the following:

/bin/rm -rf WORK

mkdir WORK

ncvhdl -v93 -m -work WORK SDENALI/leapfrog/memory modeler.vhd
ncvhdl -v93 -m -work WORK *.vhd

ncelab -messages -update WORK.TESTBENCH:BEHAVIOR

ncsim -messages -input -logfile simulation.log -LOADFMI $DENALI/
libdenfmi:den FMIPtr WORK.TESTBENCH:BEHAVIOR

Aldec Rivera-PRO and Active-HDL

You can instantiate the Denali models as VHDL modules.

NOTE: The previous versions of Riviera-PRO, up to version 2007.06 and Active-HDL, up
to version 7.3 supported Verilog instantiation only.

The models communicate with Riviera-PRO via the denali.so shared object library
(Solaris, Linux). Thelibrary is delivered with both Riviera-PRO and Active-HDL.

To instantiate Denali memory modelsin VHDL designs:

e Set $DENALI environment to point to the Denali installation directory. You must set
this variable prior to running the smulator (Riviera-PRO or Active-HDL).

e In the VHDL wrapper file generated by PureView (for details, refer to “Using the
PureView Graphical Tool” on page 11), edit the foreign attribute of the architecture so
that it has the following form:

attribute foreign of <architecture> : architecture is "VHPI \
denali;initDenali"

MMAV User’s Guide 717108 124

PureView does not currently list Riviera-PRO or Active-HDL under Options > Simu-
lation Environment > VHDL . You can generate a wrapper file for any other smula-
tor available on thelist and edit it so that the foreign attribute matches the specification
shown above.

The following example shows a sample model generated by PureView that is then
edited to match Aldec’s requirements (file regfile001.vhdl).

-- Entity: regfile0O01
-- SOMA file: /home/joe/mems/regfilel01.soma
-- Initial contents file:
-- Simulation control flags:
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.all;
ENTITY regfile001 IS

GENERIC (
memory spec: string := "regfileOO0l.soma";
init file: string := "init.txt";

sim control: string := ""

)i

PORT (
addressWR : in STD LOGIC VECTOR (14 downto 0) ;
dataIn : in STD LOGIC VECTOR (7 downto 0);
we : in STD LOGIC;
clk : in STD LOGIC;
addressRD : in STD LOGIC VECTOR (14 downto 0);
dataOut : out STD LOGIC VECTOR (7 downto 0) ;
cs : in STD_LOGIC

)i
END regfile001;
ARCHITECTURE behavior of regfile001l is
attribute foreign: string;
attribute foreign of behavior: architecture is "VHPI denali;
initDenali";
BEGIN
END behavior;

Denali VHDL procedures and functions for controlling memory models are located in
the memory_modeler.vhd package. If you use these functions in your VHDL code,
compile package Memory Modeler and add appropriate library and use statements.
The source code for the package is available in the memory_modeler.vhd file located
in the Riviera-PRO or Active-HDL installation directory.

NOTE: Contact Aldec for more information on this interface.

MMAV User’s Guide

717108 125

6.3

6.3.1

6.3.2

SystemC Interface

MMAV provides a direct SystemC integration. Using PureView, you can now generate a
SystemC wrapper for your memory model instances. Denali’s SystemC Integration uses
it's Yukon C-interface for vastly improved simulation performance.

MMAYV and SystemC Overview

SystemC is a C++ simulation environment primarily used for system level design. It isa
modeling platform consisting of C++ class libraries and a ssmulation kernel for design at
behavioral and register-transfer levels. For more information on SystemC itself, refer to
http://www.systemc.org.

MMAV integration with SystemC environment consists of the following:
e A SystemC wrapper for the MMAV model
e Dendli library
e Anintegration file that is used to interface between the wrapper and the Denali Yukon
library.

You can generate the SystemC wrapper for the MMAV model by using the PureView
interface. Select Options > Simulation Environment > SystemC. Once the wrapper is
generated, you can instantiate the top-level sc_modulein a SystemC testbench.

Simulating with MMAV and SystemC

Refer to SDENALI/yukon/example directory for an example using the DDR class of mem-
ory models. It also contains a sample testbench and a M akefile to link MMAV and Sys-
temC together.

The yukon directory in the $DENALI release contains the relevant Denali libraries
(libyukon.o and libyukon.so).

Denali recommends that you compile and run the example as described in the README
filein that directory. Thiswill ensure your environment is properly set up and you have an
appropriate Denali license working. You must be using the GNU C++ compiler version
2.95 or later. The SystemC example has been tested with version 2.95.2.

Once you have successfully run the example, copy the example over and make the
required modifications to fit your environment and usage.

There are three C++ filesincluded in the example:

e main.cc

MMAV User’s Guide

717108 126

http://www.systemc.org
http://www.systemc.org

Thisisan example of atestbench. Thiswould be replaced by your actua testbench. As
shown in the example, it isimportant to call pENALIterminate at the end of the smu-
lation in order to dump all pending transactions correctly...

simulator.cc

Thisisthefile which interfaces Denali to SystemC via our Yukon interface.
ddr.cc

ThisisaDenali wrapper for the model generated using PureView.

MMAV User’s Guide

717108 127

6.4 Specman Interface

6.4.1

This section provides details on how to use MMAV within a Specman environment.

To use the callback methods described in this document, you must be running MMAV ver-
sion 3.2 with Specman 3.3.1 or higher.

To get more detailed information on using Denali MMAV with Specman, refer to Spec-
man Elite Denali MMAV Interface Guide; Chapter 14 of the Usage and Concepts Guide
for Specman Elite. You can access these guides from docs directory of Cadence Specman
release.

MMAYV and Specman Overview

You can access or capture activity to and from the Denali memory models.

In the Specman Elite/ Denali Interface (SNDI), there are two different ways of communi-
cating with a Denali memory from your e testbench using:

e Data-Driven Verification (DDV) methods that have been ported to e
e Callbacks

You can access memory using Denali DDV API functions.

To access a Denali Memory Model from Specman, you must first create an HDL shell
using Memory Maker as normal and instantiate this shell in your testbench or DUT. For
details, refer to “ Using the PureView Graphical Tool” on page 11.

There are two predefined, user-accessible e structures for the SNDI interface, named
sn_denali and sn_denali unit. Thereisone global instance of sn_denali that has 4
methods associated with it to interact with the memory models on a global basis. The sec-
ond struct, sn_denali unit IS an abstract unit type that requires you to inherit from in
order to gain access to the built-in read and write methods. The way to do thisis with the
Spec-man Elite sy pENALT MEMORY UNIT template macro. The macro requires you to
specify the widths. The following example shows how to do this:

<\

SN_DENALI MEMORY UNIT demo denali64 using width = 64;// model width must
// be defined

extend sys {

meml: demo denali64 is instance;
keep meml.hdl path() == “/top/meml”;
}i

>

MMAV User’s Guide

717108 128

SNDI isautomatically initialized when the first instance of sn_denali unit isgenerated.
The initialization loads the Denali shared library, initializes the Denali simulator, and
bindsthe sy _pENALT MEMORY UNIT instancesto their APl counterparts.

The following figure shows the basic organization of Specman, Denali and your verifica-
tion environment.

6.4.2

SPECMAN global

sn_depali

DUT

DMM

Denali

FIGURE 6-1: Verification Environment

Simulating with MMAV and Specman

Mentor Graphics ModelSim

To run simulation with MMAV and Specman using Mentor Graphics ModelSim, do the
following:

1.

Setup up the environment variables
SPECMAN AUTO PRE COMMANDS=false; export SPECMAN AUTO PRE COMMANDS
SN AUTO PRE COMMANDS=false; export SN AUTO PRE COMMANDS

Create Shared lib 1ibgvisn basic.so including Denali

sn_compile.sh -sim gvl -1 "S$DENALI/mtipli.so"

Use shared lib created above

SPECMAN LIBQVL="pwd~/libgvlsn basic.so; export SPECMAN LIBQVL

Clean up before compiling

rm -rf verilog/specman.v work
vlib work

Create Verilog stubsfile

MMAV User’s Guide

717108 129

specman -commands "define VERILOG ENV; load e_code/mem_top.e; write
stubs -verilog verilog/specman.v;"
Compile verilog

vlog verilog/tb.v verilog/essram.v verilog/specman.v +incdir+verilog

When the following command launches Specview and ModelSim GUIs, do the fol-

lowing:

— Type sn then return at the simulator GUI prompt.

- In the Specman GUI load a testcase ($DENALI/example/specman/e_code/
mem tcl.e or e_code/mem tc2.e).

— Then click Test in the Specman GUI.

— Switch to the ssmulator GUI by hitting Return.

— Typerun -all at the ModelSim GUI prompt to run the ssmulation
specview -p "define VERILOG ENV;\
set wave -mode=interactive mti; load e code/mem mti wave; \
load e code/mem top;" \
vsim -keepstdout tb specman specman wave &

Synopsys VCS

To run simulation with MM AV and Specman using Synopsys VCS, do the following:

1.

Create stubsfile specman. v
specman -commands "define VERILOG ENV; load e code/mem top.e; write
stubs -verilog verilog/specman.v;"

Compile simulator-specman linked executable including Denali:

sn_compile.sh -sim vecs \
-ves_flags "+incdir+verilog" \
-ves_flags "-I verilog/tb.v verilog/essram.v verilog/specman.v" \
-ves_flags "-P $DENALI/verilog/pli.tab" \
-ves_flags "-LDFLAGS S$DENALI/verilog/denverlib.o"

When the following command launches Specview and VCS GUIs:
— type ssn then return at the ssimulator GUI prompt.

— In the Specman GUI load a testcase (e_code/mem tcl.e or e code/mem tc2.e).
Refer to SDENALI/example/specman.

— Click Test in the Specman GUI.
— Switch to the simulator GUI by hitting Return.
— AddHDL signalsto the waveform viewer.

— Type. at the ves GUI prompt to run the simulation:

specview -p "define VERILOG ENV; load e code/mem top.e;" vcs \
-Mupdate -o ./vcs_specman -RIG verilog/tb.v verilog/essram.v \
verilog/specman.v &

MMAV User’s Guide

717108 130

6.4.3

6.4.4

Configuration Register and Memory Access

The Specman integration with MMAV interface enables you read from or write to mem-
ory.

SNDI Methods

Specman Elite/Denali Interface methods are the MMAV functions that have been ported to
the sn_denali and sn_denali unit types through the DDVAPI. This integration pro-
vides access to Denali Data-Driven Verification interface without having to leave the
Specman environment. It isimportant to point out that not all MMAV functions have been
integrated into Specman. Only Specman Denali predefined methods are available within e
code.

It is also important to point out that since e does not understand unknown’s, the SNDI
interface has developed methods to read and write unknown values into the Denali mem-
ory model. For example, read unk (), write unk ().

For details on sn denali and sn denali unit methods, refer to
using_sn_denali_interface.pdf inyour Specman installation directory.

Extending sn_denali_unit to include all MMAV Functions
as Methods

You will notice that not all functions for MMAV have been ported over to methods of the
sn denali unit. Itiseasy to extend the sn_denali unit to include these methods. A
simple code snippet demonstrating thisis below.

MMAV User’s Guide

717108 131

// Sample Code Snippet for extending sn denali unit

\

<
define SN _DENALI ADDR SIZE 32; //Define the Max Addr Size in Bits
define SN DENALI DATA SIZE 512; // Define the Max Data Size in Bits
define SN DENALI SMALL STRING SIZE 96; // Define the Max String Size in
Bits

define SN DENALI STRING SIZE 2048;// Define the Max String Size in Bits

extend sn denali add on {
instance : string;
mem_id : uint;

!verilog instance : list of byte;

str e2v(e string : string): list of byte is {
var packed str: list of byte;

packed str = pack(packing.network, e string);
result = packed str[l..]; // skip the first 0 byte
}; // End Method str e2v

}; // End Struct sn denali add on

extend sn denali unit {

run() is also {
add on.instance = me.full hdl path();
add on.verilog instance = add on.str e2v(add on.instance) ;

add on.mem_id = me.get id();

}i

verilog function ’~/$mmassert uma’ (action
SN _DENALI SMALL STRING SIZE) : 1;

assert uma (action : string) @sys.any is ({
var packed val : list of byte;

var status : uint (bits:1);

packed val = add on.str_ e2v(action);

status = '~/Smmassert uma’ (packed val) ;

check that (status == 0) else dut_ error (appendf ("%12d ns (%s) ERROR:

Denali method call to assert uma(%s) failed RC=%d4d",
sys.time,add on.instance,packed val,status)) ;

MMAV User’s Guide 717108 132

6.4.5

6.4.6

The above e file does not extend al the functions of MMAV as methods to
sn_denali unit, but does give a representative set. With the addition of the MMAV
functions, you can build a test environment around your memory subsystem.

The methods defined above can be found in $DENALI/example/sndi_example/

sn33_denali.e.

Viewing Memory Transactions in Waveforms

One big advantage of using Specman Elite isthat in addition to viewing signalsin awave-
form window, you can aso view events or transactions on the memory. The following fig-
ure shows that actions for memory o are displayed in the waveform window.

Transactions to
Memory 0

FIGURE 6-2: Waveform Showing Events in Waveform Window

Example Testcase

You can access some basic example with callbacks from $DENALI/example/specman
directory. These include examples for SRAM, SDRAM, SMROM, and ESSRAM.

You can aso find a detailed example of SNDI at $DENALI/examples/specman. This
testcase utilizes the system memories from Denali along with the callbacks from SNDI.

MMAV User’s Guide 717108 133

6.5

6.5.1

Vera Interface

This section provides details on how to use MMAV from a Veratestbench.

To get more detailed information on using Denai MMAV with Vera, refer to
$VERA HOMEFE/lib/denali/README_DDVAPI.

MMAYV and Vera Overview

Denali's Data-Driven Verification (DDV) methods have been ported to Vera. For details
on MMAV-Vera functions and tasks, refer to $VERA _HOME/lib/denali/denali_ddv.vrh.

Some of the functions available in MMAV are not integrated into the MMAV-Vera inter-
face. You can access these Denali functions by calling these through the Denali TCL inter-
preter. The Vera DirectC function penalibbvTclEval () can execute a TCL routine
through the Denali TCL interpreter. This TCL routine can call any one of the Denali func-
tions or execute any TCL script.

The following example shows a TCL script with this call.

// Tcl call from within Vera Testbench

integer iErr;

iErr = DenaliDDVTclEval ("source MyDenaliTclFile.tcl");
/ Tcl Routine -- MyDenaliTclFile.tcl

mmsaverange /tb/mem/sdram0 save.dat 0 31

mmcomp /tb/mem/sdram0 golden.dat

The above example will save the contents of addresses O to 31 of memory instance /tb/
menvsdramO to file save.dat and then compare the contents of the entire memory /tb/meny
sdramO to a golden file golden.dat.

MMAV User’s Guide 717108 134

6.5.2

Architecture

The following figure illustrates the MM AV-Vera interface architecture.

—— | Vera Template

'

DUT

Denali Testbench
Memory [¢— (Vera Code)
Models
A
L] ‘
HDL Simulator Vera Simulator
(Debugger)

FIGURE 6-3: MMAY and Vera Architecture

Simulating with MMAYV and Vera

In order to use MMAV and Verawith your simulator, you must first link in the appropriate
libraries according to the instructions in the manuals.

The steps required to use MMAV within your Vera environment are as follows:

1. To accessaDenali Memory Model from Vera, you must first create an HDL shell
using PureView and instantiate this shell in your testbench or DUT. For details, refer to
“Using the PureView Graphical Tool” on page 11.

2. In order to gain access to the DDV functions that has been ported to Vera, you must
include the header file in your Veratestbench.

#include <denali ddv.vrh>

NOTE: MMAV no longer supports the old CAPI interface. The MMAV Vera interface uses
DDVAPI. For details on DDVAPI functions, refer to $DENALI/doc/ddvapi.pdf.
This manual also includes details on how to transition from CAPI to DDVAPI. The
Vera document $VERA HOME/ lib/denali/README_DDVAPI covers the changes
from CAPI to DDVAPI.

3. Initialize Denali memory from Veratestbench. For details, refer to “Initializing Denali
Memory Models from Vera Testbench” on page 136.

4. Setup callbacks (optional). For details, refer to “ Processing Callbacks’ on page 137.

MMAV User’s Guide 717108 135

6.5.3

5. Cal other Denali functions from Veratestbench, as needed (optional). For details refer
to “Using other Denali functions from Vera Testbench” on page 139.

6. Link Denali, Vera, and simulator together and run your testbench.
Synopsys VCS

To run simulation with MMAV and Vera using Synopsys VCS, do the following:

#! /bin/sh -f
vera -cmp display.vr
make -f Makefile vcs

NOTE: The Makefile vcs is available in $SDENALI/example/vera/denali_vera.tar.gz. The
$VERA HOME/lib/denali/README_DDVAPI file also has run scripts for differ-
ent platforms.

Initializing Denali Memory Models from Vera Testbench

To access the Denali Memory Models with any of the functions, you must first initialize
the smulator API from within Vera. This must be done in order for the Denali Memory
Modelsto talk to Veraand must be called prior to issuing any other Denali functions, such
as pre-loading memory, issuing backdoor reads or writes, dumping the contents of mem-
ory, €etc.

Initialization of the Memory Simulator API needs to be called only once in the simulation.
You can do this by ssimply calling the pEnALDDVIinitialize function from within Vera

DENALIDDVinitialize (string init, string reportFunc, var integer
unknownsP, string elabDone, string clientName) ;

Argument Type Description

init string These two arguments specifies the strings which name the

reportFunc string exported VERA tasks to be registered as Denali initialize and
access callbacks. A null-string argument disables that call-
back.

unknownsP var integer This variable tells the simulator how to store unknowns in the

address content data. It can take the form of three options.

« unknownsNBit1- unknown bit will be stored per bit of data

¢ unknowns1Bitl - unknown bit will be stored per address
content of data

e unknownsO0BitO - unknown bit will be stored per address
content of data

MMAV User’s Guide

717108 136

6.5.4

Argument Type Description

elabDone string Specifies the name of the exported VERA task to be called by
Denali when simulation is about to start. This is only set on the
rare occasions when the client plans on taking ownership of
any memories. In general, it should not be set. A null-string
argument disables this callback.

clientName string Specifies the client name.

For example:

integer iErr;
iErr = DenaliDDVinitialize("DramInitCbk", "DramAccCbkl", iUnkMode,"",
"DDVAPI Denali Vera Example") ;

In this example, iErr returns 0 on success.

Processing Callbacks

Callback tasks can either be declared during Initialization or later on with the accessset -
callback function call.
There are 3 types of callbacksin the Veraand MMAV interface as following:

e Initialization callback

e Access callback

e |terate callback

Refer to $VERA _HOME/lib/denali/README_DDVAPI for details.

MMAV User’s Guide 717108 137

Hereisacallback example:

integer iErr;
iErr = DenaliDDVaccessSetCallback ("regCbFunc") ;

export task regCbFunc (integer id, integer access, integer portNum)

{
bit [31:0] bDbata;
bit [31:0] bMask;
bit [63:0] address;
integer iWidth, iErr;
integer memId;

iErr = DenaliDDVgetIdByName ("testbench.i0", memId) ;
if (id == memId)

iErr = DenaliDDVaccCbkGetDataAndMask (iWidth, bData, bMask,
address) ;

In this example, iErr returns 0 on success.
You can disable all the callbacks or just a particular memory callback.

To disable al callbacks:

iErr = DenaliDDVTclEval ("mmdisablecallbackall") ;

To disable callback for a particular memory:

iErr = DenaliDDVTclEval ("mmdisablecallback -user <instance_id>");

In case you disable all callbacks or only one particular memory instance, you can enable
callbacks for each one of them:

iErr = DenaliDDVTclEval ("mmenablecallback -user <instance id>");

Blocking Assignments in Callbacks

The Vera exported task that you set as a callback function is expected to return without
blocking. Such blocking can occur explicitly, such as with " @(posedge clock)", or implic-

MMAV User’s Guide 717108 138

6.5.5

itly, such as by reading or writing an HDL signal, which causes blocking to the clock edge
associated with the signal.

If you need to run blocking code in response to a callback, that code can be spawned from
the callback task in a separate thread with the fork-join-none construct. However, the main
callback thread must still return without blocking.

You can write your callback code so that it blocks. In such a situation, a second callback
may occur while the first callback is still active. Vera detects this situation and discards the
second callback.

Vera detects the blocked-callback error at two times: first when the callback failsto return
"asynchronously" (without blocking), and again if a second callback occurs while the first
callback is still active. In both cases, Vera's only indication that an error has occurred isto
return DENALIerror Unknown instead of DENALIerror NoError to Dendli.

However, if you have made Vera DirectC function call penalibbvwarnDiscarded-
Cbk (1) ; then an error or warning message will be printed in either case.

Using other Denali functions from Vera Testbench

You can use other Denali functions from Veratestbench, as needed. Thisis optional.

Refer to the example below. In this, benalibpbvget IdByName returnsthe instance id corre-
sponding to a particular instance name and penalibbvload loads that memory instance
with data from the file file.dat. It also shows how to do mmsomaset USING DenaliDDVT-
clEval.

integer id;
integer iErr;
integer unk = 0;

string inst = "testbench.io";
string file = "file.dat";
string init = "";

string access = "";

iErr = DenaliDDVinitialize("", "", unk, "", "API");

iErr = DenaliDDVgetIdByName (inst, id) ;

iErr = DenaliDDVload(id, file);

iErr = DenaliDDVTclEval ("mmsomaset testbench.i0 tds 0.4 ns");

In this example, iErr returns O on success.

MMAV User’s Guide 717108 139

6.5.6

You can download atestcase from $DENALI/example/vera/denali_vera.tar.gz

Example Testcase

The example testcase utilizes DRAM to exhibit many of the common capabilities of the
Denali-Verainterface.

| Clock Generator
(SystemClock)
|
I
I
Denali Memory
Model
dram_mm.v
-
Top Level File:
dram_th.v

Y

Vera Shell File
dram_shell.v
(Generated File)

L
Y

Denali-Vera Interfac
denali_ddv.vrt

Vera Testbench
dram.vr

FIGURE 6-4: Diagram of Denali-Vera Example

MMAV User’s Guide

717108

140

6.6

6.6.1

6.6.2

6.6.3

NTB Interface

MMAYV and NTB Overview

MMAV provides a native class-based object-oriented interface to support NTB testcases.
The interface consists of NTB classes and methods that |et you track memory accesses as
well as perform backdoor reads and writes. You can also perform other operations that are
available in the (PLI-based) Verilog procedural interface using these NTB classes.

Simulating with MMAV and NTB

This section provides details on ssmulating MMAV and NTB using Synopsys VCS simu-
lator.

Synopsys VCS

To run simulation with MMAV and NTB using Synopsys VCS, do the following:

1. Compile the denaliMem.vr and denaliMem\rif.c files along with the Verilog and Vera
source/testbench files

2. Link inthe Denali Verilog library (denverlib.o)

ves |\
-ntb +vc+allhdrs \
-M -P $DENALI/verilog/pli.tab \
-CFLAGS "-DDENALI USE NTB=1 -I/usr/local/include -I${DENALI} -
I${DENALI}/ddvapi -c " \
-LDFLAGS "-rdynamic $DENALI/verilog/denverlib.o" \
SDENALI/ddvapi/vera/denaliMemVrIf.c \
-ntb_define DENALI USE NTB=1 $DENALI/ddvapi/vera/denaliMem.vr \
+incdir+S$DENALI/ddvapi/verilog \
* . vVr *.v;

NOTE: The ‘-rdynamic’ flag used above is required only for Linux.

Instance and Transaction Classes

NTB memory access functions lets you track the memory references and perform read/
write operations.

The main classes are:
e “ClassdenaiMemlnstance” on page 142

MMAV User’s Guide 717108 141

e “Class denaliMeminstancelist” on page 154
e “Class denaliMemTransaction” on page 155

Each field in these classes has get<field_name> access methods associated with it for get-
ting the field values. In addition to that al writable fields have set<field_name>) for set-
ting the field values. Since these fields are public, you can also access these directly.

All methods that return a status code always return a“-1" on error and a “0” on success.
Unless specified otherwise, only the default constructor is available.

The set<field_name> and get<field_name> methods have the first letter of the given field
name is capitalized. So if you would like to get the value of address, the method to do so
iISgetAddress.

Class denaliMemInstance

In order to use MMAV in the NTB environment to access memory, instantiate a denal -
iMemInstance. The denaliMemInstance coOrresponds to the memory instance either
instantiated in the testbench or created by a Denali model, such as a configuration space.
The following sections describe the denaliMemInstance class.

Constructor

task new(string instName, string cbTaskName = "")

Arguments

Name Type Description

instName string The instance name.
cbTaskName string The callback task name.
Description

Creates anew instance object.

The instName must be afull path name and the cbTaskName can be null for the construc-
tor. However, if you wish to define an explicit DPI callback task, it must be set before any
callback point is added for monitoring.

NOTE: The cbTaskName field is deprecated.
Returned Value

This task returns a newly created object.

MMAV User’s Guide 717108 142

Example

denaliMemInstance inst;

inst = new("ddro") ;

Methods

Name Description

getld() Gets the Id.

getinstName() Gets the instance name.

setCbTaskName() Sets the DPI callback task name.

getCbTaskName() Gets the DPI callback task name.

setCallback() Sets callbacks on memory accesses.

write() Writes the memory contents.

read() Returns the memory contents.

tclEval() Executes a Tcl command using the embedded the Tcl interpreter.

ReadCbT() This task is called whenever a read callback occurs.

WriteCbT() This task is called whenever a write callback occurs.

DefaultCbT() This task is called when any enabled callback occurs.

LoadCbT() This task is called when a load callback occurs.

LoadDoneCbT() This task is called when a load done callback occurs.

ResetCbT() This task is called when a reset callback occurs.

CompCDbT() This task is called when a compare callback occurs.

CompDoneCbT() This task is called when a compare done callback occurs.

ReadEiCbT() This task is called when an error is being injected in the current memory read opera-
tion.

getld()

Gets theid that can be used to access Denali memory.

Syntax

virtual function integer getId()
Arguments

None

Returned Value

This function returns the id.

Example

MMAV User’s Guide 717108 143

denaliMemInstance inst;
inst = new("ddr0o") ;

Sdisplay ("MemId = %d\n ", inst.getId());

getinstName()

Gets the instance name.

Syntax

virtual function string getInstName ()
Arguments

None

Returned Value

This function returns the instance name.

Example

denaliMemInstance inst;
inst = new("ddro0") ;

Sdisplay ("InstName = %s", inst.getInstName()) ;

setCbTaskName()

Sets the DPI callback task name.

NoTE: Denali does not recommend a user-defined DPI task.

Syntax

virtual task setCbTaskName (string cbTaskName)

Arguments
Name Type Description
cbTaskName string The callback task name.

MMAV User’s Guide 717108 144

Returned Value
None

Example

denaliMemInstance inst;

inst = new("ddro0") ;

inst.setCbTaskName ("myCbFunc") ;

getCbTaskName()

Gets the DPI callback task name.

NoTE: Denali does not recommend a user-defined DPI task.

Syntax

virtual function string getCbTaskName ()

MMAV User’s Guide 717108 145

Arguments

None

Returned Value

This function returns the callback task name.

Example

denaliMemInstance inst;

inst = new("ddro0") ;
inst.setCbTaskName ("myCbFunc") ;

Sdisplay ("TaskName = %$s", inst.getCbTaskName()) ;

setCallback()

Sets a callback on memory access.

Syntax

virtual function integer setCallback (DENALIDDVCBpointT cbRsn)

Arguments

Description

cbRsn DENALIDDVCB- | Callback reason.
pointT

Returned Value
This function returns O if successful, non-zero if failed.

Example

integer status;
denaliMemInstance inst;

inst = new("ddr0o") ;

status = inst.setCallback (DENALI CB Write) ;

MMAV User’s Guide 717108 146

write()

Writes the memory contents.

Syntax

virtual function integer write(var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the write oper-
iMemTransac- |ation.
tion
Returned Value

This function returns O if successful, non-zero if failed.

Example

task writeMem(reg [63:0] addr)
{
integer 1i;
integer status;
reg [7:0] data [*];
denaliMemTransaction tr = new;
tr.setAddress (addr) ;
data = new[8]; // memory width is 64 bits
for (i = 0; 1 < 8; i++) {
data[i] = 'hl0 + 1i;
}
tr.setData (data) ;
status = mem.write (tr) ;
printf ("## MEM WRITE : %$x -> ", tr.getAddress());
for (1 = 0; 1 < data.size(); i++) {
printf ("$x ", datali]);
}
printf ("\n") ;
}
program main
{
denaliMemInstance mem;
mem = new(“ddr0”) ;
writeMem (‘*h569) ;
}

MMAV User’s Guide 717108 147

read()
Returns the memory contents.

Syntax

virtual function integer read(var denaliMemTransaction tr)

Arguments

Description

tr denal- Contains address and other relevant fields for the read operation.
iMemTransaction

Returned Value
This function returns O if successful, non-zero if failed.

Example

task readMem(reg [63:0] addr)
{
integer 1i;
integer status;
reg [7:0] data [*];
denaliMemTransaction tr = new;
tr.setAddress (addr) ;
status = mem.read(tr) ;
tr.getData (data) ;

printf ("## MEM READ : %X -> ", tr.getAddress());
for (i = 0; i < data.size(); i++) {
printf("$x ", datalil);
}
printf ("\n") ;

}

program main
denaliMemInstance mem;
mem = new (“ddr0”) ;
readMem (‘*hé68) ;

MMAV User’s Guide 717108 148

tclEval()

Executes a Tcl command using the embedded the Tcl interpreter.

Syntax

virtual function integer tclEval (string cmd)

Arguments

Name Type Description
cmd string Tcl command.
Returned Value

This function returns O if successful, non-zero if failed.

Example

integer status;
denaliMemInstance inst;

inst = new("ddro0o") ;

status = inst.tclEval ("mmsetvar tracefile -gzip denali.trc.gz");

ReadCbT()

This task is called whenever a read callback occurs. This happens only if the callback
DENALI_CB_ Read iSenabled and no user-defined callback task is set.

Syntax

virtual task ReadCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains address and other relevant fields for the read operation.
iMemTransac-
tion

MMAV User’s Guide 717108 149

Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Refer to example shown in “ Example Testcase” on page 163.
Returned Value

None

WriteCbT()

This task is called whenever a write callback occurs. This happens only if the callback
DENALI CB Write iSenabled and no user-defined callback task is set.

Syntax

virtual task WriteCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the write oper-
iMemTransac- |ation.
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Refer to example shown in “Example Testcase” on page 163.
Returned Value

None
DefaultCbT()

Thistask is caled when any enabled callback occurs and no user-defined callback task is
Set.

Syntax

virtual task DefaultCbT (var denaliMemTransaction tr)

MMAV User’s Guide 717108 150

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Refer to example shown in “Example Testcase” on page 163.
Returned Value

None

LoadCbT()

Thistask is called when aload callback occurs.

Syntax

virtual task LoadCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Returned Value
None
LoadDoneCbT()

Thistask is called when aload done callback occurs.

MMAV User’s Guide 717108 151

Syntax

virtual task LoadDoneCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Returned Value
None
ResetCbT()

Thistask is called when areset callback occurs.

Syntax

virtual task ResetCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

MMAV User’s Guide 717108 152

Returned Value
None
CompCbT()

Thistask is called when a compare callback occurs.

Syntax

virtual task CompCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Returned Value

None

CompDoneCbT()

Thistask is called when a compare done callback occurs.

Syntax

virtual task CompDoneCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion

MMAV User’s Guide 717108 153

Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Returned Value

None

ReadEiCbT()

Thistask is called when an error is being injected in the current memory read operation.

Syntax

virtual task ReadEiCbT (var denaliMemTransaction tr)

Arguments

Description
tr denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
task.

Returned Value

None

Class denaliMemInstanceList

This classisacontainer for al Denali memory instances instantiated by you.

NOTE: Denali does not recommend using this class. This was used in the past to retrieve
instance name at the callback points, but MMAV NTB new callback methodology
has made this class obsolete.

getinstanceFromlid()

Retrieves the instance name for the specified instance id.

Syntax

MMAV User’s Guide 717108 154

function denaliMemInstance getInstanceFromId (integer id)

Arguments

Name Type Description

id integer The instance Id.
Returned Value

This function returns the memory instance object name.

Class denaliMemTransaction

Thisis adata structure that contains fields that are relevant for the memory access opera-
tions.

Constructor
function new/()
Description

Creates a new memory transaction object of this class, which can then be used for reading/
writing.

Returned Value

This function returns a memory transaction object.

MMAV User’s Guide 717108 155

Example

tr = new;

denaliMemTransaction tr;

Fields

Description

Callback N DENALIDDVCB- | The callback reason.
pointT
Width Y integer The width of the data in bits.
Address Y reg [63:0] The address location to be read from or written
to.
Data [] Y reg [7:0] The data to write or the data just read.
Mask [] Y reg [7:0] The mask to use (1 = Write).
Methods

Name Description

getCallback() Returns the callback reason.

getWidth() Gets the memory width in bits.

setAddress() Sets the address location to be read from or written to.
getAddress() Returns the address location.

setData() Sets the data that needs to be written.

getData() Returns the data array being read or written.
getDataSize() Returns the data size.

setMask() Sets the mask to use (1 = Write) for the data being read or written
getMask() Returns the mask used for the data.

getMaskSize() Returns the mask size.

printinfo() Prints the contents of the transaction object.

getCallback()

Returns the callback reason.

Syntax

virtual function DENALIDDVCBpointT getCallback/()

Arguments

None

MMAV User’s Guide

717108

156

Description

When the transaction object is retrieved at a callback point, this function returns the call-
back reason.

Returned Value
This function returns the callback reason.

Example

virtual task WriteCbT (var denaliMemTransaction tr)

{

printf (“Callback : %s\n”, tr.getCallback());
super .WriteCbT (tr) ;

getWidth()

Gets the memory width in bits.

Syntax

virtual function integer getWidth ()
Arguments

None

Returned Value

This function returns the memory width.

Example

virtual task WriteCbT (var denaliMemTransaction tr)

{

printf (“Memory Width : %d\n”, tr.getWidth());
super .WriteCbT (tr) ;

MMAV User’s Guide 717108 157

setAddress()

Sets the address location to be read from or written to.

Syntax

virtual task setAddress(reg [63:0] Address)

Arguments

Name Type Description

Address reg [63:0] Specifies the address.

Returned Value
None

Example

denaliMemTransaction tr = new;
tr.setAddress (*h100) ;

getAddress()

Returns the address |ocation.

Syntax

virtual function reg [63:0] getAddress()
Arguments

None

Returned Value

This function returns the address being accessed.

Example

printf ("## MEM WRITE : %x -> ", tr.getAddress());

MMAV User’s Guide 717108 158

setData()
Sets the data that needs to be written.

Syntax

virtual task setData(reg [7:0] Data [*])

Arguments

Description
Data [*] reg [7:0] Specifies the data.
Returned Value
None
Example

tr.setData (data) ;
status = mem.write (tr) ;

getData()

Returns the data array being read or written.

Syntax

virtual task getData(var reg [7:0] Data [*])

Arguments

Name Type Description
Data [*] reg [7:0] The data array.
Returned Value

This function returns the data array being read or written. The accessed datais returned in
the pata argument.

MMAV User’s Guide 717108 159

Example

integer status;

reg [7:0] data *;denaliMemTransaction tr = new;
tr.setAddress (*h1l00) ;

status = mem.read(tr) ;

tr.getData (data) ;

getDataSize()

Returns the data size.

Syntax

virtual function integer getDataSize ()
Arguments

None

Returned Value

This function returns the size of the data array.

Example

virtual task WriteCbT (var denaliMemTransaction tr)

{

printf (“Data Size : %d\n”, tr.getDataSize());
super.WriteCbT (tr) ;

setMask()

Sets the mask to use (1 = Write) for the data being read or written.

Syntax

virtual task setMask(reg [7:0] Mask [*])

Arguments
Name Type Description
Mask [*] reg [7:0] Specifies the mask.

MMAV User’s Guide

717108

160

Returned Value
None

Example

integer 1i;
reg [7:0] mask [*];

denaliMemTransaction tr = new;
tr.setAddress (‘h40) ;
mask = new([8]; // our memory width is 64 bits
for (i = 0; 1 < 8; 1i++) {
mask([i] = ‘b01010101;
}

tr.setMask (mask) ;

getMask()
Returns the mask used for the data in the Mask argument.

Syntax

virtual task getMask(var reg [7:0] Mask [*])

Arguments

Name Type Description

Mask [*] integer Specifies the data mask.
Returned Value

This function returns the mask array being read or written. The accessed mask is returned
in the Mask argument.

MMAV User’s Guide 717108 161

Example

virtual task WriteCbT (var denaliMemTransaction tr)

{
integer 1i;
reg [7:0] mask [*];

tr.getMask (mask) ;

printf ("## MASK : ");

for (i = 0; i < mask.size(); i++) {
printf ("%x ", mask[i]);

}

super.WriteCbT (tr) ;

getMaskSize()

Returns the mask size.

Syntax

virtual function integer getMaskSize ()
Arguments

None

Returned Value

This function returns the size of the mask array.

Example

virtual task WriteCbT (var denaliMemTransaction tr)

{
printf (“Mask Size : %d\n”, tr.getMaskSize());
super.WriteCbT (tr) ;

printinfo()

Prints the contents of the transaction object.

Syntax

virtual task printInfo(integer arrayDepth = 32)

MMAV User’s Guide

717108

162

6.6.4

6.6.5

Arguments

Description

arrayDepth integer Specifies the maximum number of array elements that need to be
printed.

Returned Value

This function returns O if successful, non-zero if failed.

Example

virtual task DefaultCbT (var denaliMemTransaction tr)

{

tr.printInfo() ;
super.DefaultCbT (tr) ;

}

Processing Callbacks

MMAV provides away to generate callbacks to your NTB testbench on memory accesses.

MMAV NTB callback interface provides the facilities for model callback initialization and
handling.

For this, you should add the relevant callbacks to the device. You can setup callback func-
tions by extending denaliMemInstance (the instance class) and overloading the built-in
callback functions (specified by not setting the cbTaskName parameter). You can overload
avirtual task per callback reason in the class.

Refer to “ Example Testcase” on page 163 for a detailed example on callback processing.
Example Testcase

The following example shows the instantiation of a DDR memory and backdoor reads and
writes. It aso shows how the denaliMemInstance classis extended to handle callbacks.

MMAV User’s Guide

717108 163

#include "denaliMemTypes.vrh"

task writeMem(reg [63:0] addr)
{
integer 1i;
integer status;
reg [7:0] data [*];

denaliMemTransaction tr = new;
tr.setAddress (addr) ;

data = new[8]; // memory width is 64 bits
for (1 = 0; 1 < 8; i++) {

data[i] = 'hl0 + 1i;
}

tr.setData (data) ;
status = mem.write(tr) ;

printf ("## MEM WRITE : %$x -> ", tr.getAddress());
for (1 = 0; i < data.size(); i++) {
printf ("$x ", datali]);
}
printf ("\n") ;

}

task readMem(reg [63:0] addr)
{

integer 1i;

integer status;

reg [7:0] data [*];

denaliMemTransaction tr = new;
tr.setAddress (addr) ;

status = mem.read(tr) ;
tr.getData (data) ;

printf ("## MEM READ : %x -> ", tr.getAddress());
for (1 = 0; 1 < data.size(); i++) {
printf ("$x ", datali]);
}
printf ("\n") ;
}
continued. ..
MMAV User’s Guide 717108 164

. .continued

class MyDenaliMemInstance extends denaliMemInstance

{

task new(string instName)

{

super .new (instName) ;

}

virtual task WriteCbT (var denaliMemTransaction tr)

{

PTAInNGLE (Mhkkkhkkkhkkkkhkkkkhkkkkkkkkkkkkkxkkkkx\n") ;

tr.printInfo() ;
Printf ("**kxkdkkkkkhkhkhkhkkkkkkkkkkkkkkxx\n") ;

WriteCbT = super.WriteCbT (tr) ;

virtual task ReadCbT(var denaliMemTransaction tr)

{

PTAINGLE (Mhkkkhkkkhkkkkhkkkkhkkkkkkkkkkkkxkkkx\n") ;

tr.printInfo() ;
Printf (M"**sxkdkkkhkhkhkhkhkkkkkkkhkkkkkkxx\n") ;

ReadCbT = super.ReadCbT (tr) ;

program main
{
integer status;
MyDenaliMemInstance mem;
denaliMemTransaction tr;
status = denaliMemInit () ;
if (status == -1) {
error ("Denali DDV-MMAV initialization failed. Cannot continue
.A\n");
exit (1) ;

mem = new("simple tb.simple mem.storage") ;
status = mem.setCallback (DENALI CB Read) ;
status = mem.setCallback (DENALI CB Write) ;

writeMem('hé68) ;
readMem('hé8) ;

while (1) {
@ (posedge CLOCK) ;

}

@ (posedge CLOCK) ;

MMAV User’s Guide

717108

165

6.7 SystemVerilog Interface

6.7.1

6.7.2

This section provides details on how to use MMAV in a SystemVerilog testbench.

MMAYV and SystemVerilog Overview

MMAV provides a native class-based object-oriented interface to support SystemVerilog
testbenches. The interface consists of SV classes and methods that let you track memory
accesses as Well as perform backdoor reads and writes. Other operations that are found in
the (PLI-based) verilog procedural interface can also be performed with these SV classes.

Simulating with MMAYV and SystemVerilog

This section describes the simulation steps for some of the commonly used Verilog simu-
lators.

Mentor Graphics Questa

To run simulation with MMAV and SV using Mentor Graphics Questa, do the following:

1.
2.
3.

Set an environment variable spenarn1 to the root directory of your Denali installation.
Setup path for your SystemVerilog simulator.

Generate your MMAV model shell file using PureView. For details, refer to “ Using the
PureView Graphical Tool” on page 11.

4. Create your user.sv testbench.

Compilethe SV files. The -dpiheader option creates the header file that is used in the
C compilation below.

vliog \
+incdir+$DENALI/ddvapi/sv -dpiheader denaliMemSvIf.h \
$DENALTI/ddvapi/sv/denaliMem.sv *.sv *.v

Compile/Link the C files. These files contain the code that translates C data structures
to SV and the vice-versa.

gcc -c¢ -g -fPIC -ISMTI HOME/include -I. -ISDENALI \
-ISDENALI/ddvapi $DENALI/ddvapi/sv/denaliMemSvIf.c

Create the shared object.

gcc -shared -o denaliMemSvIf.so \
$DENALI/mtipli.so

Delete all the unnecessary files.
rm -f denaliMemSvIf.h denaliMemSvIf.o

Run the ssmulation. The '-svlib <lib>' option loads the interface shared object that you
just created. The -dpioutoftheblue 1 option lets you cal SV exported tasks from

MMAV User’s Guide

717108 166

the C code that was invoked via PLI 1.0. The -p1i <lib> options loads the Denali
library containing the C model.

vsim -c top -sv_1lib denaliMemSvIf -do "run -all; quit" -pli \
SDENALI/mtipli.so -dpioutoftheblue 1

Cadence NC-Verilog

To run simulation with MMAV and SV using Cadence NC-Verilog, do the following:

1
2.
3.

Set an environment variable $spenaL1 to the root directory of your Denali installation.
Setup path for your SystemVerilog simulator.

Generate your MMAV model shell file using PureView. For details, refer to “ Using the
PureView Graphical Tool” on page 11.

Create your user . sv testbench.

Compilethe SV files. The -dpiheader option creates the header filethat isused in the
C compilation below.ncverilog +sv \
+elaborate \
+ncdpiheader+denaliMemSvIf.h \
+licg \
+define+DENALI SV NC \
+incdir+$DENALI/ddvapi/sv \
$DENALI/ddvapi/sv/denaliMem. sv

Compilethe C files. These files contain the code that trandlates C data structures to SV
and the vice-versa.
gcc -c -g -fPIC -DDENALI_ SV NC=1 \

-IS$CDS_TOOLS/include -I. -ISDENALI \

-I$DENALI/ddvapi \

$DENALTI/ddvapi/sv/denaliMemSvIf.c -m32

Link the C files.

1d -G -o denaliMemSvIf.so denaliMemSvIf.o $DENALI/verilog/libden-
pli.so -melf i386

Create the shared object.

gcc -shared -o denaliMemSvIf.so \
$DENALI/mtipli.so

Run the simulation.

ncverilog +loadplil=$DENALI/verilog/libdenpli.so:den PLIPtr \
+access+rw \
+nbasync \
+sv \
+sv_1ib=$PROJ HOME/run/denaliMemSvIf.so \
+incdir+SDENALI/ddvapi/sv \
+licg \
+define+DENALI SV NC \
*.sv *.v

MMAV User’s Guide

717108 167

6.7.3

Synopsys VCS

To run simulation with MMAV and SV using Synopsys VCS, do the following:
1. Set an environment variable $spenaLT to the root directory of your Denali installation.
2. Setup path for your SystemVerilog simulator.

3. Generate your MMAV model shell file using PureView. For details, refer to “Using the
PureView Graphical Tool” on page 11.

4. Createyour user . sv testbench.
Compilethe SV files. vcs -CFLAGS "-DDENALI SV VCS=1 -I${DENALI} \

-I${DENALI}/ddvapi -g -c" \
-sverilog +ves+lic+wait \
-ntb_opts svp -ntb opts rvm -ntb opts dtm \
-Mupdate -P SDENALI/verilog/pli.tab \
-LDFLAGS "-rdynamic $DENALI/verilog/denverlib.o" \
-debug pp
+ntb _enable solver trace=0 \
+dmprof \
+define+DENALI SV VCS \
+incdir+$SDENALI/ddvapi/sv \
SDENALI/ddvapi/sv/denaliMemSvIf.c \
SDENALI/ddvapi/sv/denaliMem.sv \
*.8V *.v

5. Runthe simulation.

./simv -1 vcs.log

Configuration Register and Memory Access

SystemVerilog memory access functions are applicable to all Denali Verification IP prod-
ucts. These functions let you track the memory references and perform read/write opera-
tions.
The main classes are:

¢ ClassdenaliMemlnstance

¢ ClassdenaliMemlnstancelist

e ClassdenaiMemTransaction
Each field in these classes has get<field_name> access methods associated with it for get-

ting the field values. In addition to that all writable fields have set<field_name>) for set-
ting the field values. Since these fields are public, you can also access these directly.

All methods that return a status code always return a“-1" on error and a“0” on success.

MMAV User’s Guide 717108 168

The set<field_name> and get<field_name> methods have the first letter of the given field
name is capitalized. So if you would like to get the value of address, the method to do so
iISgetAddress.

Some fields are marked rand so that the SV randomize function can generate values for
them.

Class denaliMemInstance

In SystemVerilog environment to access memory, instantiate a denaliMemInstance. The
denaliMemInstance COrresponds to the memory instance either instantiated in the test-
bench or created by the model, such as a configuration space.

The following sections describe the denaliMemInstance class.

Constructor

function new(string instName, string cbFuncName = "")

I

Fields

Description

instName string The instance name.

cbFuncName string The callback function name.

The instName must be afull path name and the cbFuncName can be null for the construc-
tor. However, if you wish to define an explicit DPI callback function, it must be set before
any callback point is added for monitoring.

NOTE: The cbFuncName field is deprecated.

M ethods

Name Description

new() Creates a new instance object.
getinstName() Gets the instance name.

getld() Gets the id.

getSize() Retrieves the size of memories.
getWidth () Retrieves the width of memories.
setCbFuncName() Sets the DPI callback function name.
getCbFuncName() |Gets the DPI callback function name.
setCallback() Sets a callback on memory access.
write() Writes the memory contents.

read() Returns the memory contents.

MMAV User’s Guide

717108 169

Name Description

tclEval() Executes a Tcl command using the embedded the Tcl interpreter.

tclEvalGetResult() Executes a Tcl command using the embedded Tcl interpreter and returns the result in
a string parameter.

setBackdoorCb- This function is called with a parameter value of 0 to turn off backdoor access call-

Mode() backs. Setting it to 1 enables them.

ReadCbF() This function is called whenever a read callback occurs.

WriteCbF() This function is called whenever a write callback occurs.

DefaultCbF() This function is called when any enabled callback occurs and the callback function is
not set.

LoadCbF() This function is called when a load callback occurs.

LoadDoneCbF() This function is called when a load done callback occurs.

ResetCbF() This function is called when a reset callback occurs.

CompCbF() This function is called when a compare callback occurs.

CompDoneCbF() This function is called when a compare done callback occurs.

ReadEiCbF() This function is called when an error is being injected in the current memory read
operation.

new()

Creates anew instance object.

Syntax

function new(string instName, string cbFuncName = "")

Arguments

Name Type Description
instName string The instance name.
cbFuncName string The callback name.
Description

Creates a new packet to be initiated from the specified instance and returns a packet han-
dle pointing to the newly created empty packet.

Returned Value
This function returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
inst = new("i0o") ;

MMAV User’s Guide 717108 170

getld()
Getstheid.

Syntax

virtual function int getId() ;
Returned Value
Thisfunction returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
inst = new("i0") ;
S$display ("MemId = %d\n ", inst.getId());

getinstName()

Gets the instance name.

Syntax

function string getInstName () ;
Returned Value
This function returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
inst = new("i0") ;
Sdisplay ("InstName = %s", inst.getInstName()) ;

getSize()

Retrieves the size of memories.

Syntax

virtual function longint unsigned getSize() ;

Returned Value

This function returns O if successful, non-zero if failed.

MMAV User’s Guide

717108

171

Example

denaliMemInstance inst;
inst = new("i0") ;
$display ("MemSize = %d\n ", inst.getSize());

getWidth()

Retrieves the width of memories.

Syntax

virtual function int unsigned getWidth() ;
Returned Value
This function returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
inst = new("io") ;
Sdisplay ("MemWidth = %$d\n ", inst.getWidth());

getCbFuncName()
Gets the DPI callback function name.
NoTE: Denali does not recommend the use of user-defined DPI function.

Syntax

function string getCbFuncName () ;
Returned Value
This function returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;

inst = new("i0");

inst.setCbFuncName ("myCbFunc") ;

Sdisplay ("FuncName = %s", inst.getCbFuncName ()) ;

MMAV User’s Guide

717108 172

setCallback()

Thisfunction is used to set a callback on memory access.

Syntax

function integer setCallback (DENALIDDVCBpointT cbRsn) ;

Arguments

Description

cbRsn DENALIDDVCB-|The callback reason.
pointT

Returned Value
This function returns O if successful, non-zero if failed.

Example

int status;
denaliMemInstance inst;

inst = new("i0") ;

status = inst.setCallback (DENALI CB Write);

write()

This function writes the memory contents.

Syntax

function int write (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the write oper-
iMemTransac- |ation.
tion
Returned Value

This function returns O if successful, non-zero if failed.

MMAV User’s Guide 717108 173

Example

function void writeData(reg [63:0] addr);
reg [7:0] data [I];
denaliMemTransaction trans;

trans = new;
trans.setAddress (addr) ;
data = newl[4];

data[0] = 'ho01l;

datal[l] = 'h34;

data[2] = 'h78;

data[3] = 'h90;

trans.setData (data) ;

assert (inst.write(trans) == 0);
endfunction

denaliMemInstance inst;
inst = new("i0") ;
inst.writeData ('h569) ;

read()

This function returns the memory contents.

Syntax

function int read(ref denaliMemTransaction trans) ;

Arguments

Description

trans denal- Contains address and other relevant fields for the read operation.
iMemTransaction

Returned Value
Thisfunction returns O if successful, non-zero if failed.

Example

MMAV User’s Guide 717108 174

function void readData(reg [63:0] addr);
reg [7:0] data [];
int status;
denaliMemTransaction trans;

trans = new;

trans.setAddress (addr) ;

assert (inst.read(trans) == 0)

trans.getData (data) ;

Sdisplay("Data = %x", data);
endfunction

denaliMemInstance inst;
inst = new("i0") ;
inst.readData ('h569) ;

tclEval()
Executes a Tcl command using the embedded the Tcl interpreter.

Syntax

function int tclEval (string cmd) ;

Arguments

Name Type Description
cmd string Tcl command.
Returned Value

Thisfunction returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
inst = new("io0");
assert (inst.tclEval ("mmsetvar tracefile -gzip denali.trc.gz") == 0);

tclEvalGetResult()

Executes a Tcl command using the embedded Tcl interpreter and returns the result in a
string parameter.

Syntax

MMAV User’s Guide 717108 175

function int tclEvalGetResult (string cmd, output string result, input
int resultSize = 1024) ;

Arguments

Name Type Description

cmd string Tcl command.

result string Tcl evaluation result.
resultsize int The maximum result size.
Returned Value

Thisfunction returns O if successful, non-zero if failed.

Example

denaliMemInstance inst;
string res;

int status;

inst = new("i0") ;

status = inst.tclEvalGetResult ("mmsetvar tracefile -gzip
denali.trc.gz", res);

Sdisplay("status = %d / res = %s", status, res);
setBackdoorCbMode()

This function is called with a parameter value of 0 to turn off backdoor access callbacks.
Setting it to 1 enables them.

NOTE: If the callback processing testbench code calls any Denali MMAV backdoor
method that causes another access callback to occur at the same time and in the
same delta cycle, some simulators may have trouble handling this. To ensure that
the backdoor method can be called from within another callback, Denali recom-
mends turning off backdoor access callbacks for that memory instance.

Syntax

virtual function int setBackdoorCbMode (bit onOrOff) ;
Returned Value
Thisfunction returns O if successful, non-zero if failed.

Example

MMAV User’s Guide 717108 176

denaliMemInstance inst;

inst = new("testbench.il");

// this will turn off backdoor access cb's for inst
assert (inst.setBackdoorCbMode (0)) ;

ReadCbF()

Thisfunction is called whenever aread callback occurs. This happens only if the callback
DENALI_ CB Read iSenabled and the callback function is not set.

Syntax

virtual function int ReadCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains address and other relevant fields for the read operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
Thisfunction returns O if successful, non-zero if failed.

Example

virtual function int ReadCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfol()) ;
return super.ReadCbF (trans) ;

endfunction

WriteCbF()

Thisfunction is called whenever awrite callback occurs. This happens only if the callback
DENALI CB Write iSenabled and the callback function is not set.

Syntax

virtual function int WriteCbF (ref denaliMemTransaction trans) ;

MMAV User’s Guide 717108 177

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the write oper-
iMemTransac- |ation.
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
Thisfunction returns O if successful, non-zero if failed.

Example

virtual function int WriteCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo()) ;
return super.WriteCbF (trans) ;

endfunction

DefaultCbF()

This function is called when any enabled callback occurs and the callback function is not
Set.

Syntax

virtual function int DefaultCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

MMAV User’s Guide 717108 178

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int DefaultCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo()) ;
return super.DefaultCbF (trans) ;

endfunction

LoadCbF()

This function is called when aload callback occurs.

Syntax

virtual function int LoadCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal - Contains data, address, and other relevant fields for the operation.
iMemTrans-
action
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int LoadCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfol()) ;
return super.LoadCbF (trans) ;

endfunction

MMAV User’s Guide 717108 179

LoadDoneCbF()

This function is called when aload done callback occurs.

Syntax

virtual function int LoadDoneCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int LoadDoneCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo()) ;
return super.LoadDoneCbF (trans) ;

endfunction

ResetCbF()
Thisfunction is called when areset callback occurs.

Syntax

virtual function int ResetCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion

MMAV User’s Guide 717108 180

Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int ResetCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo());
return super.ResetCbF (trans) ;

endfunction

CompCbF()

Thisfunction is called when a compare callback occurs.

Syntax

virtual function int CompCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
This function returns O if successful, non-zero if failed.

Example

MMAV User’s Guide 717108 181

virtual function int CompCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo()) ;
return super.CompCbF (trans) ;

endfunction

CompDoneCbF()

Thisfunction is called when a compare done callback occurs.

Syntax

virtual function int CompDoneCbF (ref denaliMemTransaction trans) ;

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int CompDoneCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfol()) ;
return super.CompDoneCbF (trans) ;

endfunction

ReadEiCbF()

This function is called when an error is being injected in the current memory read opera-
tion.

Syntax

virtual function int ReadEiCbF (ref denaliMemTransaction trans) ;

MMAV User’s Guide 717108 182

Arguments

Description
trans denal- Contains data, address, and other relevant fields for the operation.
iMemTransac-
tion
Description

You can extend denaliMemInstance and can provide your own implementation of this
method.

The readricobr () callback function works together with the $smmerrinject () function
and is primarily used in the DRAM for ECC validation.

For details on the the usage of the smmerrinject () function, refer to MMAV User’s
Guide located at $DENALI/doc/mmav/mmavUser Guide.pdf.

Hereis an example that shows how to use $smmerrinject () function:

denaliMemInstance inst;

inst = new("i0");

assert (inst.tclEval ("mmerrinject id -seed 12 -reads 1000 1200 -bits 1 2
4 -percent 80 15 5") == 0);

In this, the model randomly injects errors between 1000 and 1200 read operations with 1
bit error injection 80% of the time, 2 bit error injection 15% of the time, and 4 bit error
injection 5% of the time. A particular Nth read operation between the range 1000-1200 is
random as well as for which particular bits get flipped.

You can use afew variations of the smmerrinject () function call. For example, if you do
not need to specify a range, then you can only specify “-reads 1000” to inject an error
every 1000 read operations for instance.

NOTE: The readricbr () function is only true and triggered for the Nth read operation
for which an error injection takes place. The Data field returns the value and the
Mask in this case |=NULL. Mask[i] = 1 means Data[i] is true memory content
and Mask[i]=0 means Data[i] isflipped (0->1, or 1->0).

Returned Value
This function returns O if successful, non-zero if failed.

Example

MMAV User’s Guide 717108 183

virtual function int ReadEiCbF (ref denaliMemTransaction trans) ;
void' (trans.printInfo()) ;
return super.ReadEiCbF (trans) ;

endfunction

Class denaliMemInstanceList

This classisacontainer for al Denali memory instances instantiated by you.

NOTE: Denali does not recommend using this class. This was used in the past to retrieve
instance name at the callback points, but SystemVerilog new callback methodol ogy
has made this class obsol ete.

getinstanceFromlid()
Retrieves the instance name for the specified instanceid.

Syntax

static function denaliMemInstance getInstanceFromId(integer id) ;

Arguments
Name Type Description
id integer The instance Id.

Returned Value

This function returns O if successful, non-zero if failed.

Class denaliMemTransaction

Thisis a data structure that contains fields that are relevant for the memory access opera-
tions.

Constructor

function new () ;

MMAV User’s Guide 717108 184

Fields

Name Type Description
Callback N DENALIDDVCB- | The callback reason.
pointT
Width Y integer The width of the data in bits.
Address Y reg [63:0] The address location to be read from or written
to.
Data [] Y reg [7:0] The data to write or the data just read.
Mask [] Y reg [7:0] The mask to use (1 = Write).
M ethods

INET] Description

new() Creates a memory transaction object.

printinfo() Prints the contents of the transaction object.
AVM Methods

clone() Returns a copy of the AV M object.

comp() Compares two transaction objects.

convert2string()

Returns a string representation of the object.

VMM Methods

psdisplay() Returns an image of the current value of the transaction or data described by this
instance in a readable format as a string.

is_valid() Checks if the current value of the transaction or data described by this instance is
valid and error-free, according to the optionally specified kind or format.
Note: This is not implemented yet.

copy() Copies the current value of the object instance to the specified object instance. If no
target object instance is specified, a new instance is allocated.

allocate() Allocates a new instance of the same type as the object instance.

compare() Compares the current value of the object instance with the current value of the speci-
fied object instance, according to the specified kind. Returns TRUE (i.e., non-zero) if
the value is identical.

byte_pack() Packs the name of the action descriptor into the specified dynamic array of bytes,

starting at the specified offset in the array and ending with a byte set to 8’h00.
Note: This is not implemented yet.

byte_unpack()

Unpacks the name of the action descriptor from the specified offset in the specified
dynamic array until a byte set to 8’h00, the specified number of bytes have been
unpacked or the end of the array is encountered, whichever comes first.

Note: This is not implemented yet.

byte_size()

Returns the number of bytes required to pack the content of the descriptor.

Note: This is not implemented yet.

new()

Creates a new memory transaction object.

Syntax

function new () ;

MMAV User’s Guide

717108 185

Description

Creates a new memory transaction object of this class, which can then be used for reading/
writing.

Returned Value
This function returns O if successful, non-zero if failed.

Example

denaliMemTransaction trans;
trans = new;

printinfo()
Prints the contents of the transaction object.

Syntax

virtual function integer printInfo(integer arrayDepth = 32) ;

Arguments

Description

arrayDepth integer Specifies the maximum number of array elements that need to be
printed.

Returned Value

This function returns O if successful, non-zero if failed.

Example

virtual function int DefaultCbF (ref denaliMemTransaction tr);
assert (tr.printInfo() == 0);
return super.DefaultCbF (tr) ;

endfunction

clone()
Returns a copy of the AVM object.

Syntax

MMAV User’s Guide 717108 186

virtual function denaliMemTransaction clone() ;

Returned Value
This function returns O if successful, non-zero if failed.

Example

static denaliMemTransaction trQ [S$];

virtual function int DefaultCbF (ref denaliMemTransaction tr) ;
trQ.push front (tr.clone()) ;
return super.DefaultCbF (tr) ;

endfunction

comp()

Compares two transaction objects.

Syntax

virtual function bit comp (input denaliMemTransaction item) ;

Arguments

Description
item denal Specifies the object against which the current object is compared.
iMemTransac-
tion
Returned Value

Thisfunction returns O if successful, non-zero if failed.

Example

static denaliMemTransaction trQ [S$];

virtual function int DefaultCbF (ref denaliMemTransaction tr) ;
if ((trQ.size == 1) && (tr.comp(trQ[0]))) begin
$display("Match found!") ;
end
return super.DefaultCbF (tr) ;
endfunction

MMAV User’s Guide 717108 187

convert2string()

Returns a string representation of the object.

Syntax

virtual function string convert2string() ;

Returned Value
This function returns O if successful, non-zero if failed.

Example

virtual function int DefaultCbF (ref denaliMemTransaction tr) ;
tr.convert2string() ;
return super.DefaultCbF (tr) ;

endfunction

psdisplay()

Returns an image of the current value of the transaction or data described by this instance
in areadable format as a string.

Syntax

virtual function string psdisplay(string prefix = "");
Description

The string may contain newline characters to split the image across multiple lines. Each
line of the output must be prefixed with the specified prefix.

Returned Value

Returns an image of the current value of the transaction or data described by this instance
in areadable format as a string.

is_valid()
NOTE: Thisfunction is not implemented yet.

Checksif the current value of the transaction or data described by thisinstanceisvalid and
error-free, according to the optionally specified kind or format.

Syntax

virtual function bit is_wvalid(bit silent = 1, int kind = -1);

MMAV User’s Guide 717108 188

Description

Checksif the current value of the transaction or data described by thisinstanceisvalid and
error-free, according to the optionally specified kind or format. Returns TRUE (i.e., non-
zero) if the content of the object is valid. Returns FALSE otherwise. The meaning (and
use) of the kind argument is descriptor-specific and defined by the user-extension of this
method.

If silent is TRUE (i.e., non-zero), no error or warning messages are issued if the content is
invalid. If silent is FALSE, warning or error messages may be issued if the content is
invalid.

Returned Value

This function returns O if successful, non-zero if failed.

copy()

Copies the current value of the object instance to the specified object instance. If no target
object instance is specified, anew instance is allocated.

Syntax

virtual function vmm data copy(vmm data to = null);
Description

Copies the current value of the object instance to the specified object instance. If no target
object instance is specified, a new instance is alocated. Returns a reference to the target
instance. Note that the following trivial implementation will not work. Constructor copy-
ing is a shalow copy. The objects instantiated in the object (such as those referenced by
the log and notify properties) are not copied and both copies will share references to the
same service interfaces. Furthermore, it will not properly handle the case when the to
argument is not null.

Returned Value

This function returns areference to the target instance.
allocate()

Allocates a new instance of the same type as the object instance.

Syntax

virtual function vmm data allocate() ;

Description

MMAV User’s Guide

717108 189

Allocates a new instance of the same type as the object instance. Returns areference to the
new instance. Useful to implement class factories to create instances of user-defined
derived class in generic code written using the base class type.

Returned Value

This function returns O if successful, non-zero if failed.

compare()

Compares the current value of the object instance with the current value of the specified

object instance, according to the specified kind. Returns TRUE (i.e., non-zero) if the value
isidentical.

Syntax
virtual function bit compare (input vmm_data to, output string diff,
input int kind = -1)°
Description

Compares the current value of the object instance with the current value of the specified
object instance, according to the specified kind. Returns TRUE (i.e.,, non-zero) if the
valueisidentical. If the value is different, FALSE is returned and a descriptive text of the
first difference found is returned in the specified string variable. The kind argument may
be used to implement different comparison functions (e.g., full compare, comparison of
rand properties only, comparison of al properties physically implemented in a protocol
and so on.).

Returned Value

Thisfunction returns O if the valueisidentical.
byte pack()

NOTE: Thisfunction is not implemented yet.

Packs the name of the action descriptor into the specified dynamic array of bytes, starting
at the specified offset in the array and ending with a byte set to 8 h0O0.

Syntax
virtual function int unsigned byte pack(ref logic [7:0] bytes|],
input int unsigned offset = 0, input int kind = -1);
Description

MMAV User’s Guide

717108 190

The default implementation packs the name of the action descriptor into the specified
dynamic array of bytes, starting at the specified offset in the array and ending with a byte
set to 8'h00. The array isresized appropriately.

Returned Value

This function returns the number of bytes added to the array.

byte unpack()

NOTE: Thisfunction is not implemented yet.

Unpacks the name of the action descriptor from the specified offset in the specified

dynamic array until a byte set to 8 h00, the specified number of bytes have been unpacked
or the end of the array is encountered, whichever comes first.

Syntax
virtual function int unsigned byte unpack(const ref logic [7:0]
bytes[], input int unsigned offset = 0, input int len = -1, input
int kind = -1);
Description

The default implementation unpacks the name of the action descriptor from the specified
offset in the specified dynamic array until a byte set to 8 h0O, the specified number of
bytes have been unpacked or the end of the array is encountered, which-ever comesfirst.

Returned Value

This function returns the number of bytes unpacked.

byte size()

NOTE: Thisfunction is not implemented yet.

Returns the number of bytes required to pack the content of the descriptor.

Syntax

virtual function int unsigned byte size(int kind = -1);
Description

This method will be more efficient than vmm data::byte pack () for simply knowing
how many bytes are required by the descriptor because no packing is actually done.

If the data can be interpreted or packed in different ways, the kind argument can be used to
specify which interpretation or packing to use.

MMAV User’s Guide 717108 191

Returned Value

This function returns the number of bytes required to pack the content of this descriptor.

Callback Processing

Denali provides away to generate callbacks to your SystemVerilog testbench on memory
accesses.

The SystemVerilog callback interface provides the facilities for model callback initializa-
tion and handling.

For this, you should add the relevant callbacks to the device. You can setup callback func-
tions by extending denaliMemInstance (the instance class) and overload the built-in call-
back functions (specified by not setting the cbFuncName parameter). You can overload a
virtual function per callback reason in the class. Refer the example testcase bel ow.

MMAV User’s Guide 717108 192

Example Testcase

module top;
import DenaliSvMem: :*;

/* extend the denaliMemInstance
*/
class MyMemInstance extends denaliMemInstance;
function new (string instName) ;
super.new (instName) ;
endfunction

/* overload the write callback function

*/

virtual function int WriteCbF
$display ("WriteCbF ()");
void' (trans.printInfol()) ;
return super.WriteCbF (trans);
endfunction

(ref denaliMemTransaction trans) ;

/* overload the read callback function

*/

virtual function int ReadCbF
$display ("ReadCbF ()");
void' (trans.printInfo ());

(ref denaliMemTransaction trans) ;

return super.ReadCbF (trans);
endfunction
endclass
continued. ..
MMAV User’s Guide 717108 193

. .continued
MyMemInstance inst;
task init tb();
assert (denaliMemInit () == 0);
// instantiate MyMemInstance for the momory model/configuration
space
inst = new("top.io0");
// set the read and write callback points
assert (inst.setCallback (DENALI CB Write) == 0);
assert (inst.setCallback (DENALI CB Read) == 0);
endtask
initial
begin
init tb();
writeData ('h569) ;
readData ('h569) ;
end
function void writeData(reg [63:0] addr);
reg [7:0] data [];
denaliMemTransaction trans;
trans = new;
trans.setAddress (addr) ;
data = newl([4];
data[0] = 'hO01l;
data[l] = 'h34;
data[2] = 'h78;
data[3] = 'h90;
trans.setData (data) ;
assert (inst.write(trans) == 0);
endfunction
function void readData(reg [63:0] addr);
reg [7:0] data [];
int status;
denaliMemTransaction trans;
trans = new;
trans.setAddress (addr) ;
assert (inst.read(trans) == 0) ;
trans.getData (data) ;
Sdisplay("Data = %x", data);
endfunction
endmodule

MMAV User’s Guide

717108 194

MMAV User’s Guide 717108 195

APPENDIX

A Getting Technical Support

Denali has a quick and easy procedure for resolving technical issues with its products. If
you suspect a problem with Denali tools while you are simulating, follow these three
steps. If the problem is not related to simulation, go to step 3.

Sep 1: Check the Denali MMAV FAQ

You can find the Denali MMAV FAQ at: http://www.denali.com/support. Check here
first as many commonly asked questions have been added to the FAQ knowledge data-
base. If the FAQ does not help, proceed to Step 2.

Sep 2: Generating Simulation Results

The History file and Trace files are essentia to reproduce the behavior of your models. To
generate the appropriate files, ssmply run the simulation after un-commenting the follow-
ing linesin your local .denalirc file:

HistoryFile <historyfile.his>
HistoryDebug On
TraceFile <tracefile.trc>

Note, you can restrict this history and trace files to certain memory instances. To do this,
there are a couple settings in the .denalirc file that control this:
TracePattern

TracePattern allows you to limit the size of your trace file (see above) by limiting the cap-
ture to specific instance name parameters. You may use shell “glob” patterns such as*, 2,
[]. You MUST have TraceFile uncommented as well.

For example, to trace just memory instances with the pattern “sdram”, you would use:

TracePattern *sdram*

HistoryPattern

MMAV User’s Guide 717108 196

HistoryPattern allows you to limit the size of your history file (see above) by limiting the
capture to specific instance name parameters. You may use shell “glob” patterns such as*,

?2[1
For example, to record history for just memory instances with the pattern “sdram”, you
would use:

HistoryPattern *sdram*
Sep 3: Compressing Simulation Files

Your History and Trace files can be quite large, therefore Denali recommends that you
compress these files (along with the SOMA files used during simulation) before attaching
them to your E-mail message. For example, you could use the following steps for com-
pressing the files:

tar cf mail.tar <historyfile.his> <tracefile.trc>
gzip mail.tar

this will result in a “mail.tar.gz” file which you can E-mail to
“support@denali.com”.

Sep 4: Composing the E-mail Message

Your E-mail to support@denali.com should include the following information:

e asuccinct description of the problem you are experiencing, including specific error
messages and/or time stamp for the unexpected behavior.

e adescription of your simulation environment (i.e.simulator, operating system, etc.)

e your contact information (i.e. telephone number and an appropriate return E-mail
address)

e and finally, the file mail.tar.gz (from Step 2) as an attachment to the E-mail message.

Following this protocol will ensure that your technical question gets addressed quickly
and efficiently by the Denali support staff.

A.1 The Denali History File

The Denali history file contains very important debug information regarding the Denali
memory models. The history file will decode al bus transactions and record al memory
events. You can elect to capture more debug information in your history file if so desired.
Thisis explained below.

MMAV User’s Guide

717108 197

A.l1l

A.l2

Understanding the Denali History Files (HistoryFile in
.denalirc):

If you have elected to generate the default history file by setting on the HistoryFile
parameter in your .denalirc file, then you will see basic memory read and write operations
plus decoded memory commands. An example of this history file is shown below:

Instance Time Action Address Vaue
testbench.uutl LOAD FILE: init2.dat

testbench.uutl LOAD FILE: done

testbench.uutl LOAD FILE: init.dat

testbench.uutl LOAD FILE: done

testbench.uutl 15 ns Cycle: 1 Command Nop

testbench.uutl 105 ns Cycle: 4 Command Precharge All

testbench.uutl 135 ns Cycle: 5 Command Mode Register Set
testbench.uutl 135 ns Setting Burst Length = 8 Cas Latency = 2 interleave
testbench.uutl 165 ns Cycle: 6 Bank 1 Command Activate

testbench.uutl 195 ns Cycle: 7 Command Nop

testbench.uutl 315 ns Cycle: 11 Bank 0 Command Activate
testbench.uutl 345 ns Cycle: 12 Command Nop

testbench.uutl 465 ns Cycle: 16 Bank 0 Command Write

testbench.uutl 465 ns MASKED SIM WRITE 000040+0 000 (1FF)
testbench.uutl 495 ns Cycle: 17 Command Nop

testbench.uutl 495 ns MASKED SIM WRITE 000041+0 001 (1FF)
testbench.uutl 525 ns MASKED SIM WRITE 000042+0 002 (1FF)
testbench.uutl 555 ns MASKED SIM WRITE 000043+0 003 (1FF)
testbench.uutl 585ns MASKED SIM WRITE 000044+0 004 (1FF)
testbench.uutl 615 ns MASKED SIM WRITE 000045+0 005 (1FF)
testbench.uutl 645 ns MASKED SIM WRITE 000046+0 006 (1FF)
testbench.uutl 675ns MASKED SIM WRITE 000047+0 007 (1FF)

testbench.uutl 795 ns Cycle: 27 Bank 0 Command Read
testbench.uutl 825 ns Cycle: 28 Command Nop

testbench.uutl 825 ns SIM READ 000040+0 000

testbench.uutl 855 ns SIM READ 000041+0 001

testbench.uutl 885 ns SIM READ 000042+0 002

testbench.uutl 915 ns SIM READ 000043+0 003

testbench.uutl 945 ns SIM READ 000044+0 004

testbench.uutl 975 ns SIM READ 000045+0 005

testbench.uutl 1005 ns Cycle: 34 Command Burst Stop

testbench.uutl 1005 ns SIM READ 000046+0 006

HistoryDebug Mode (HistoryFile AND HistoryDebug in
.denalirc):

If you have turned on the HistoryDebug option in the .denalirc file you will get additional
debug information. This can be helpful in determining the interna settings for certain
memory devices. A DRAM example history file with debug is shown below:

Instance Time Action Address Vaue
testbench.uutl LOAD FILE: init2.dat
testbench.uutl LOAD FILE: done
testbench.uutl LOAD FILE: init.dat
testbench.uutl LOAD FILE: done

testbench.uutl 15 ns Debug: Cycle 1: State Bank O: idle 1: idle
testbench.uutl 15 ns Cycle: 1 Command Nop

testbench.uutl 45 ns Debug: Cycle 2: State Bank O: idle 1: idle
testbench.uutl 75 ns Debug: Cycle 3: State Bank O: idle 1: idle
testbench.uutl 105 ns Debug: Cycle 4: State Bank 0: idle 1: idle
testbench.uutl 105 ns Cycle: 4 Command Precharge All

testbench.uutl 135 ns Debug: Cycle 5: State Bank 0: idle 1: idle
testbench.uutl 135 ns Cycle: 5 Command Mode Register Set
testbench.uutl 135 ns Setting Burst Length = 8 Cas Latency = 2 interleave
testbench.uutl 165 ns Debug: Cycle 6: State Bank 0: Mode Register Access 1: Mode Register Access
testbench.uutl 165 ns Cycle: 6 Bank 1 Command Activate

MMAV User’s Guide

717108 198

testbench.uutl 195 ns Debug: Cycle 7: State Bank 0: idle 1: active
testbench.uutl 195 ns Cycle: 7 Command Nop

testbench.uutl 225 ns Debug: Cycle 8: State Bank 0: idle 1: active
testbench.uutl 255 ns Debug: Cycle 9: State Bank 0: idle 1: active
testbench.uutl 285 ns Debug: Cycle 10: State Bank 0: idle 1: active
testbench.uutl 315 ns Debug: Cycle 11: State Bank O: idle 1: active
testbench.uutl 315 ns Cycle: 11 Bank 0 Command Activate

testbench.uutl 345 ns Debug: Cycle 12: State Bank 0: active 1: active
testbench.uutl 345 ns Cycle: 12 Command Nop

testbench.uutl 375 ns Debug: Cycle 13: State Bank O: active 1: active
testbench.uutl 405 ns Debug: Cycle 14: State Bank 0: active 1: active
testbench.uutl 435 ns Debug: Cycle 15: State Bank 0: active 1: active
testbench.uutl 465 ns Debug: Cycle 16: State Bank 0: active 1: active
testbench.uutl 465 ns Cycle: 16 Bank 0 Command Write

testbench.uutl 465 ns Debug: Write (0, 000, 040)

testbench.uutl 465 ns MASKED SIM WRITE 000040+0 000 (1FF)
testbench.uutl 495 ns Debug: Cycle 17: State Bank 0: active 1: active
testbench.uutl 495 ns Cycle: 17 Command Nop

testbench.uutl 495ns Debug: Write (0, 000, 041)

testbench.uutl 495 ns MASKED SIM WRITE 000041+0 001 (1FF)
testbench.uutl 525 ns Debug: Cycle 18: State Bank 0: active 1: active
testbench.uutl 525ns Debug: Write (0, 000, 042)

testbench.uutl 525 ns MASKED SIM WRITE 000042+0 002 (1FF)
testbench.uutl 555 ns Debug: Cycle 19: State Bank 0: active 1: active
testbench.uutl 555ns Debug: Write (0, 000, 043)

testbench.uutl 555 ns MASKED SIM WRITE 000043+0 003 (1FF)
testbench.uutl 585 ns Debug: Cycle 20: State Bank 0: active 1: active
testbench.uutl 585ns Debug: Write (0, 000, 044)

testbench.uutl 585 ns MASKED SIM WRITE 000044+0 004 (1FF)
testbench.uutl 615 ns Debug: Cycle 21: State Bank 0: active 1: active
testbench.uutl 615ns Debug: Write (0, 000, 045)

testbench.uutl 615 ns MASKED SIM WRITE 000045+0 005 (1FF)
testbench.uutl 645 ns Debug: Cycle 22: State Bank 0: active 1: active
testbench.uutl 645 ns Debug: Write (0, 000, 046)

testbench.uutl 645 ns MASKED SIM WRITE 000046+0 006 (1FF)
testbench.uutl 675 ns Debug: Cycle 23: State Bank 0: active 1: active
testbench.uutl 675ns Debug: Write (0, 000, 047)

testbench.uutl 675 ns MASKED SIM WRITE 000047+0 007 (1FF)
testbench.uutl 705 ns Debug: Cycle 24: State Bank 0: active 1: active
testbench.uutl 735 ns Debug: Cycle 25: State Bank O: active 1: active
testbench.uutl 765 ns Debug: Cycle 26: State Bank 0: active 1: active
testbench.uutl 795 ns Debug: Cycle 27: State Bank 0: active 1: active
testbench.uutl 795 ns Cycle: 27 Bank 0 Command Read

testbench.uutl 825 ns Debug: Cycle 28: State Bank 0: active 1: active
testbench.uutl 825 ns Cycle: 28 Command Nop

testbench.uutl 825ns Debug: Read (0, 000, 040)

testbench.uutl 825 ns SIM READ 000040+0 000
testbench.uutl 855 ns Debug: Cycle 29: State Bank 0: active 1: active
testbench.uutl 855ns Debug: Read (0, 000, 041)

testbench.uutl 855 ns SIM READ 000041+0 001
testbench.uutl 885 ns Debug: Cycle 30: State Bank 0: active 1: active
testbench.uutl 885ns Debug: Read (0, 000, 042)

testbench.uutl 885 ns SIM READ 000042+0 002
testbench.uutl 915 ns Debug: Cycle 31: State Bank 0: active 1: active
testbench.uutl 915ns Debug: Read (0, 000, 043)

testbench.uutl 915 ns SIM READ 000043+0 003
testbench.uutl 945 ns Debug: Cycle 32: State Bank 0: active 1: active
testbench.uutl 945 ns Debug: Read (0, 000, 044)

testbench.uutl 945 ns SIM READ 000044+0 004
testbench.uutl 975 ns Debug: Cycle 33: State Bank 0: active 1: active
testbench.uutl 975ns Debug: Read (0, 000, 045)

testbench.uutl 975 ns SIM READ 000045+0 005
testbench.uutl 1005 ns Debug: Cycle 34: State Bank O: active 1: active
testbench.uutl 1005 ns Cycle: 34 Command Burst Stop

testbench.uutl 1005 ns Debug: Read (0, 000, 046)

testbench.uutl 1005 ns SIM READ 000046+0 006

These additional debug comments will provide valuable information such as:
1. The state of the banks (for DRAM devices):

testbench.uutl 945 ns Debug: Cycle 32: State Bank 0: active 1: active

2. Thedecoded Bank, Row, and Column addresses used to decodethe DRAM:

testbench.uutl 975 ns Debug: Read (0, 000, 045)

MMAV User’s Guide 717108 199

A.2

A21

A.2.2

A.2.3

A.2.4

A.2.5

In this case, the Bank address=0x0, the Row Address=0x000 and the Column
address=0x045 for this read operation.

Understanding the History File

There are a few transactions in the history file that need to be described. The Debug
entries shown below will only occur in the history file if HistoryDebug is turned ON.

SIM READ Entry

Instance Name Time Action Address+Offset Read Data
testbench.uutl 25095 ns SIM READ 000060+0 024

MASKED SIM Write Entry

I('r\}lsé@gze Name Time Action Address+Offset Write Data
testbench.x 202500 ps MASKED SIM WRITE 00002+0 0000C
(3FFFF)

Debug Read

Instance Name Time Debug Action (Bank, Row, Column Addresses)
testbench.uutl 945 ns Debug: Read (0, 000, 044)
Debug Write

Instance Name Time Debug Action (Bank, Row, Column Addresses
testbench.uutl 615 ns Debug: Write (0, 000, 045)

File Load

Instance Name Action (VIRT="logical” memory) : Filename/done
testbench.uutl LOAD FILE: init.dat

testbench.uutl LOAD FILE: done

32-Bit-Data VIRT LOAD FILE: mem32x8.dat

32-Bit-Data VIRT LOAD FILE: done

MMAV User’s Guide 717108 200

Symbols
.denalirc 54

A

Address 61

Address Scrambling 96, 105
addressing scheme 61
Assertion Messages 46
AssertionMessages 47, 53
Assertions 82

B
Bit-blast Pins 22

C

Callback 108

Callback Interface 108
Changing Timing Parameters 72
Clock Cycle Recalulation 76
ClockStableCycles 44, 53
Close Window 35

Contents Table Origin 35
Conventions, typographical 7
coupling faults 90

Creating memory faults 90
Customer support 8

D

Data access assertions 83

Data Bit reordering and masking 96

DDR-Il 54

DDR-II SDRAM specific .denalirc parameters 48
Debug 35

Denali technical support 9

DenaiMemCallback 110

denaliMemCallback 109, 110, 111

DenaliOwn 37, 54

DenaiOwnClass 37, 54

denaliPcieCallback 108

denalirc 39

Depth Expansion 93, 94

depth expansion 101

Differential ClockChecks 46, 53

Differential ClockSkew 46

Differential ClockSkewClock Skew 46

DRAM 12

Dynamically Enabling and Disabling Assertions 86

E

eDRAM 53

EiMessages 46, 53

Embedded ASIC/FPGA 12

eMemory 14

enableReason 110

Enabling Error Injection on “backdoor” Reads 89
Enabling/Disabling Fault Checks 91

Error Count Variable 45

Error Injection 87

Error Message Control 75

ErrorCount 53

ErrorMessages 45, 53
ErrorMessagesStartTime 45, 53

eSSRAM 54

ESSRAM specific .denalirc parameters 49

MMAV User’s Guide 717108

201

Event 110
ExitOnErrorCount 45, 53

F
FAQs8
Fault Modeling 90

G

getCallback() 111
Global memory access assertions 85

H

HDL Shell 23

History File 197
HistoryDebug 40, 52, 196
HistoryDebugl oad 40, 52
HistoryFile 39, 52, 196
HistorylnSimLog 40, 52
HistoryPattern 43, 52

|

IBM-EDRAM Specific .denalirc parameters 47
InitChecks 53
InitChecksPauseTime 46, 53
Initialization Checks 44
Initializing Memories 61
Initial MemoryValue 42, 52
InitM essages 43, 52
InitMrsAddressStable 48, 54
Interleaving 95

interleaving 101
Interleaving Example 95
IrregularClock 43, 53

L

License Checkout 55
LicenseQueueRetryDelay 41, 52
LicenseQueueTimeout 41, 52
Licensing Solutions 55

Loading memories from afile 63
Logical Addressing with MMAYV 92

M

Masked Memory Writes 70
masking 101

Memory Access Assertions 82
Memory Address Determination 61
Memory Content File Format 64
Memory Contents Window 34
Memory Holes 97

Mentor Graphics Model Sim specific .denalirc parameters 49
Mentor Seamless 113

Mentor Seamless HW/SW Co-Verification specific .denalirc parameters 50
mmassert_access 83

MMAV 39

mmbreak 59

mmcomp 71

mmCreateScratchpad 107
mmcreatescratchpad 106, 108
mmdebugoff 75

mmdebugon 75

mmdisablecallback 60
mmdisablecal lbackall 59
mmenablecal Iback 59

MMAV User’s Guide 717108 202

mmerrinject 88
mmerrormessagesoff 75
mmerrormessageson 75
mmexit 59

mmfault 90

mmgetids 58
mmgetinfobyid 58
mmgetinstanceid 66, 67
mminstanceid 66
mmload 63

mmnote 58
mmreadword 68
mmreadword?2 68
mmreadword3 68
mmrecal culatecycle 72
mmreset 67

mmsave 71
mmsaverange 71
mmsetaccesscal|lbackmask 60
mmesetallerrinject 88
mmsetallfault 91
mmsetfault 91
mmSetFillValue 62
mmsetvar 55

mmsi mul ationdatabase 31
mmsomaload 74
mmsomaset 73, 74
mmstartpureview 32
mmTclCallback 57
mmTclEval 56
mmtcleval 31, 55, 72
mmtime 59
mmwriteword 69
mmwriteword2 69
mmwriteword3 69
mmwriteword4 69
mmwriteword5 69
mmwritewordmasked 70
ModelSim 54

Model SimTimeDefinitionToggle 48, 49, 50, 51, 54

N

NC 119

NCSIM 56

Non-Volatile/Flash Memories 12
noXslnReadData 49

0]

Off ChipDrivel mpedanceChecks 54
Open Instance 35

Open Simulation Results 32
Output Timing 44

OutputTiming 53

P
Parity Bits-bit position in memories 65
Parity Checking Assertions 86
PureSpec

help and documentation 8
PureView 17, 31

R
RAMBUS 76
RAMBUS - .denalirc Options 78

MMAV User’s Guide 717108

203

RAMBUS - Channel Delay Settings 77
RAMBUS - Deviceid's 77

RAMBUS - Device Numbers 77
RAMBUS - Device Refresh Options 78
RAMBUS - Multi-Bank Refresh Options 79
RAMBUS - Turbo Mode 79

Randoml nsteadOf X InReadData 49
RandomOutputDelay 44, 53

RDRAM - Byte Ordering Options 79
RDRAM (Rambus) Specific Options 45
RDRAM specific .denalirc parameters 47
ReadDQSContentionCheck 42, 52
Reading and Writing Memories 638

reason 111

Recalculating Clock Cycle 72

Refresh 35

RefreshChecks 42, 52
RefreshOnReadWrite 42, 52

Register File Specific .denalirc parameters 47
Re-loading SOMA Files 72

RLDRAM 54

RLDRAM specific .denalirc parameters 48
RIdraminitCyclesCheck 48, 54
RldramlnitRefreshChecks 48

Run Tcl Command 35

S
Save SOMA 20
Save SOMA As 20
Save Source 20
Save Source As 20
Saving and Comparing Memory Contents 70
Scratchpad Memories 106
Seamless 54
setCallback 110
Show Last Read 35
Show Last Write 35
Simulation

Verainterface 166
SimulationDatabase 37, 41, 52
SimulationDatabaseBuffering 41, 52
SimulationDatabasePattern 41, 52
Simulator Queuing 55
SOMA 12
SOMA Output Format 21
SRAM 12
STD_ULOGIC for VHDL Ports 22
stuck-at faults 90
SuppressPortContention 54
SuppressRefreshlnfoM essages 53
SuppressUnknownAddrReadError 47

T
Tcl 56

Tcl Callback Helper Commands 58
Tcl Interface 56

Tcl with ModelSim 56

Tcl with NCSIM 56

TclInterp 45, 46, 53

Technical Support 196

Technical support 9
TimingChecks 41, 52
TimingChecksReportOnly 48, 78
TimingChecksStartTime 48, 78

MMAV User’s Guide 717108

204

Trace Backdoor Reads/Writes 47
TraceBackdoorReadWrite 53
TraceBackdoorReadWrite 0 47
TraceFile 40, 52, 196
TracePattern 43, 52
TraceTimingChecks 40, 52
TrackAccessFromlnit 46, 53
Transaction History 36
Transaction Summary 36
transGet 110

translid 109, 111

transition faults 90
Typographical conventions 7

u
Using 11

\

Value Format 35

Verainterface
overview 142, 169
simulation 166

Verilog Callbacks 108

w

WarnSuppress 47
Width Expansion 93
width expansion 101

X
XML Basics 92

MMAV User’s Guide

717108

205

	1 Preface
	1.1 Audience Prerequisites
	1.2 Typographical Conventions
	1.3 Getting Help
	1.3.1 Product Documentation
	1.3.2 Related Information
	1.3.3 Contacting Tech Support
	1.3.4 Training Courses

	1.4 How to Use This Guide

	2 Using the PureView Graphical Tool
	2.1 Launching PureView
	2.2 Creating/Editing SOMA File
	2.2.1 Denali SOMA files
	2.2.2 Obtaining SOMA Files from eMemory.com

	2.3 Using the PureView GUI
	2.3.1 Viewing SOMA Files in PureView
	2.3.2 PureView “File” Pull-down Menu
	“New” SOMA File
	“Open” a SOMA File
	“Check” a SOMA File for Errors
	“Save SOMA” File Option
	“Save SOMA As” File Option
	“Save Source” Option
	“Save Source As” Option
	“Close” Option
	“Exit” Option

	2.3.3 PureView “Options” Pull-down Menu
	SOMA Output Format
	Simulation Environment
	Bit-blast Pins
	STD_ULOGIC for VHDL Ports
	Balloon help

	2.4 Creating an HDL Shell with the PureView GUI
	2.5 Creating or Modifying a SOMA file
	2.5.1 Creating an HDL shell via Command Line

	3 Debugging Memory Using PureView
	3.1 Denali Memory Database Files
	3.2 Interactive Debugging During Simulation
	3.2.1 UNIX Shell Invocation
	3.2.2 Simulator/Testbench Invocation

	3.3 Opening up the Simulation Results File
	3.4 Selecting Memory Instances
	3.5 PureView Debugging Windows
	3.5.1 Memory Contents Window
	3.5.2 Memory Contents Transaction Summary
	3.5.3 Transaction History View

	3.6 Post-Processing with PureView
	3.7 Using PureView with Mentor Graphic’s Seamless HW/SW Co-Verification

	4 Using Denali’s Memory Modeler Advanced Verification
	4.1 Controlling Your Memory Simulation Models - The .denalirc File
	4.1.1 Register File Specific .denalirc Parameters
	4.1.2 IBM-EDRAM Specific .denalirc Parameters
	4.1.3 RDRAM Specific .denalirc Parameters
	4.1.4 RLDRAM Specific .denalirc Parameters
	4.1.5 DDR-II SDRAM Specific .denalirc Parameters
	4.1.6 DDR-II and DDR3 Specific .denalirc Parameters
	4.1.7 ESSRAM Specific .denalirc Parameters
	4.1.8 Mentor Graphics ModelSim Specific .denalirc Parameters
	4.1.9 Mentor Graphics Seamless HW/SW Co-Verification Specific .denalirc Parameters
	4.1.10 OneNand Flash .denalirc Parameters
	4.1.11 .denalirc Summary Table

	4.2 Setting .denalirc Options Dynamically During Simulation
	4.3 Licensing Solutions
	4.3.1 Simulator Queuing for Denali Licenses
	4.3.2 Speeding up License Checkout

	4.4 The Denali Tcl Interface
	4.4.1 Using with ModelSim
	4.4.2 Using with NCSIM and other Tcl Interpreters
	4.4.3 Tcl Commands
	4.4.3.1 Tcl Callback Helper Commands

	4.4.4 Callback Commands

	4.5 Initializing Denali Memories
	4.5.1 Memory Address Determination
	4.5.2 Initial Contents of Memories
	4.5.3 Loading Memories From a File
	4.5.4 Memory Content File Format
	Base Specifier Prefix
	Converting Motorola S-record and Intel Hex Format Files
	Parity Bits
	Examples

	4.6 Specifying Memory Instances
	4.7 Resetting the Memory Contents
	4.8 Reading and Writing Memories
	4.8.1 Masked Memory Writes

	4.9 Saving and Comparing Memory Contents
	4.10 Recalculating Clock Cycle Time
	4.11 Re-loading SOMA Files and Changing Timing Parameters on-the-fly During Simulation
	4.12 Error Message Control
	4.13 Forcing Clock Cycle Recalculation
	4.14 RDRAM (Rambus) Specific Model Considerations
	4.14.1 Turbo Channel Model for RAMBUS
	Overview
	Licensing
	Device Numbers
	Device id’s
	Channel Inversion
	Channel Delay Settings
	.denalirc Options
	Device Refresh Options
	Turbo Mode - Support for Different Sized Devices on the Same Channel
	Denali RDRAM Byte Ordering Options

	5 MMAV Special Verification Features
	5.1 Setting Assertions on Memory Transactions
	5.1.1 Memory Access Assertions
	5.1.2 Data Access Assertions
	5.1.3 Global Memory Access Assertions

	5.2 Parity Checking Assertions
	5.3 Dynamically Enabling and Disabling Assertions
	5.4 Error Injection Routines
	5.4.1 Error Injection
	5.4.2 Fault Modeling

	5.5 Logical Addressing with MMAV (Method #1)
	5.5.1 XML Basics
	5.5.2 Depth, Width Expansion
	5.5.3 Interleaving
	5.5.4 Address Scrambling
	5.5.5 Data Bit Reordering and Masking
	5.5.6 Creating Holes
	5.5.7 Putting it all Together
	5.5.8 Interfacing to MMAV

	5.6 Logical Addressing (Method #2)
	5.7 Address Scrambling
	5.8 Scratchpad Memories
	5.9 Verilog Callbacks (new in 3.2)
	5.9.1 Callback Interface
	5.9.2 Callback Initialization
	5.9.3 Callback Handling
	5.9.4 denaliMemCallback Registers
	5.9.5 denaliMemCallback Tasks and Functions

	5.10 Using MMAV with Mentor Graphic’s Seamless HW/ SW Co-Verification Product
	5.11 Using MMAV for Embedded ASIC Memories
	5.11.1 Register Files
	5.11.2 Embedded SRAM
	5.11.3 Embedded DRAM

	6 MMAV Testbench Integration
	6.1 Verilog Interface
	6.1.1 Simulating with MMAV and Verilog
	Cadence Verilog-XL
	Cadence NC-Verilog
	Synopsys VCS
	Mentor Graphics ModelSim
	Aldec Rivera-PRO and Active-HDL

	6.2 VHDL Interface
	6.2.1 Simulating with MMAV and VHDL
	Synopsys VCS
	Mentor Graphics ModelSim
	Cadence NC-VHDL (Leapfrog)
	Aldec Rivera-PRO and Active-HDL

	6.3 SystemC Interface
	6.3.1 MMAV and SystemC Overview
	6.3.2 Simulating with MMAV and SystemC

	6.4 Specman Interface
	6.4.1 MMAV and Specman Overview
	6.4.2 Simulating with MMAV and Specman
	Mentor Graphics ModelSim
	Synopsys VCS

	6.4.3 Configuration Register and Memory Access
	SNDI Methods

	6.4.4 Extending sn_denali_unit to include all MMAV Functions as Methods
	6.4.5 Viewing Memory Transactions in Waveforms
	6.4.6 Example Testcase

	6.5 Vera Interface
	6.5.1 MMAV and Vera Overview
	Architecture

	6.5.2 Simulating with MMAV and Vera
	Synopsys VCS

	6.5.3 Initializing Denali Memory Models from Vera Testbench
	6.5.4 Processing Callbacks
	Blocking Assignments in Callbacks

	6.5.5 Using other Denali functions from Vera Testbench
	6.5.6 Example Testcase

	6.6 NTB Interface
	6.6.1 MMAV and NTB Overview
	6.6.2 Simulating with MMAV and NTB
	Synopsys VCS

	6.6.3 Instance and Transaction Classes
	Class denaliMemInstance
	Constructor
	Methods
	getId()
	getInstName()
	setCbTaskName()
	getCbTaskName()
	setCallback()
	write()
	read()
	tclEval()
	ReadCbT()
	WriteCbT()
	DefaultCbT()
	LoadCbT()
	None
	LoadDoneCbT()
	None
	ResetCbT()
	None
	CompCbT()
	None
	CompDoneCbT()
	None
	ReadEiCbT()

	Class denaliMemInstanceList
	getInstanceFromId()

	Class denaliMemTransaction
	Constructor
	Methods
	getCallback()
	getWidth()
	setAddress()
	getAddress()
	setData()
	getData()
	getDataSize()
	setMask()
	getMask()
	getMaskSize()
	printInfo()

	6.6.4 Processing Callbacks
	6.6.5 Example Testcase

	6.7 SystemVerilog Interface
	6.7.1 MMAV and SystemVerilog Overview
	6.7.2 Simulating with MMAV and SystemVerilog
	Mentor Graphics Questa
	Cadence NC-Verilog
	Synopsys VCS

	6.7.3 Configuration Register and Memory Access
	Class denaliMemInstance
	new()
	getId()
	getInstName()
	getSize()
	getWidth()
	getCbFuncName()
	setCallback()
	write()
	read()
	tclEval()
	tclEvalGetResult()
	setBackdoorCbMode()
	ReadCbF()
	WriteCbF()
	DefaultCbF()
	LoadCbF()
	LoadDoneCbF()
	ResetCbF()
	CompCbF()
	CompDoneCbF()
	ReadEiCbF()

	Class denaliMemInstanceList
	getInstanceFromId()

	Class denaliMemTransaction
	new()
	printInfo()
	clone()
	comp()
	convert2string()
	psdisplay()
	is_valid()
	copy()
	allocate()
	compare()
	byte_pack()
	byte_unpack()
	byte_size()

	Callback Processing
	Example Testcase

	A Getting Technical Support
	A.1 The Denali History File
	A.1.1 Understanding the Denali History Files (HistoryFile in .denalirc):
	A.1.2 HistoryDebug Mode (HistoryFile AND HistoryDebug in .denalirc):

	A.2 Understanding the History File
	A.2.1 SIM READ Entry
	A.2.2 MASKED SIM Write Entry
	A.2.3 Debug Read
	A.2.4 Debug Write
	A.2.5 File Load

