
Implementation of a Serial Communication 
Interface for a Signal Processor 

 
by 

 
Jens Eriksson 

and 
Kristian Nilsson 

 
Reg nr: LiTH-ISY-EX-ET-0272-2003 

 
2003-10-29 



 



Implementation of a Serial Communication 
Interface for a Signal Processor 

 
 

Master Thesis 
 

Division of Electronics Systems 
Department of Electrical Engineering 

Linköping Institute of Technology 
Linköping University, Sweden 

 
 

By 
Jens Eriksson 

and 
Kristian Nilsson 

 
 

Reg nr: LiTH-ISY-EX-ET-0272-2003 
 
 
 

Supervisor: 
Thomas Johansson 

Ulrik Lindblad 
Patrik Thalin 

 
Examiner: 

Kent Palmkvist 
 

2003-10-29 



 



 
 

 

 

Avdelning, Institution 
Division, Department 
 

  
Institutionen för systemteknik 
581 83 LINKÖPING 

  

Datum 
Date 
2003-10-29 

 

 

Språk 
Language 

  

Rapporttyp 
Report category 

  

ISBN 
 

 Svenska/Swedish 
X Engelska/English 

  Licentiatavhandling 
X Examensarbete 

  

ISRN   LITH-ISY-EX-ET-0272-2003    

 
     

  C-uppsats 
 D-uppsats 

  

Serietitel och serienummer 
Title of series, numbering 

 

ISSN 
 

    Övrig rapport 
 ____ 
 

  
 

   
 

URL för elektronisk version 
http://www.ep.liu.se/exjobb/isy/2003/272/ 

  

 

 

 

Titel 
Title 
 

 

Implementation of a Serial Communication Interface for a Signal Processor  
 
 

 

Författare 
 Author 

 

Jens Eriksson, Kristian Nilsson 
 

 
 

Sammanfattning 
Abstract 
The purpose of this thesis was to implement a serial communication port model for a digital 
signal processor. It is a behavioral model, developed using VHDL, that is instruction 
comparisable to the Motorola digital signal processor DSP 56002. It supports five different data 
transfer modes and provides a programmable baud rate generator. 
 
This report starts out by giving a description of the external port, port C, the pin control logic and 
general purpose functionality. Then a more detailed description of the three pin dedicated serial 
communication interface is presented, the different operating modes and the baud rate generator 
are described. 
 
 
 

 

 

Nyckelord 
Keyword 
Serial communication, VHDL 

 



 



Table of contents 
 

1 INTRODUCTION................................................................................... 1 

1.1 BACKGROUND...................................................................................... 1 
1.2 TASK ................................................................................................... 2 
1.3 CHAPTER DESCRIPTION......................................................................... 2 
1.4 SEQUENCE OF WORK ............................................................................ 3 

2 PORT C ................................................................................................... 5 

3 SCI ........................................................................................................... 9 

3.1 THE REGISTERS.................................................................................... 9 
3.1.1 Transfer registers ......................................................................... 9 
3.1.2 SCI control and status registers...................................................11 
3.1.3 The SCI control register (SCR)....................................................13 
3.1.4 The SCI status register (SSR).......................................................15 
3.1.5 The SCI clock control register (SCCR) ........................................16 

3.2 SCI STRUCTURAL DESCRIPTION ...........................................................17 
3.3 BAUD RATE GENERATOR .....................................................................21 

3.3.1 Behavior ......................................................................................22 
3.3.2 Operation ....................................................................................22 

3.4 DATA TRANSFER .................................................................................24 
3.4.1 Wakeup modes.............................................................................24 
3.4.2 The word modes ..........................................................................25 

4 SIMULATION ...................................................................................... 31 

5 DIFFERENCES BETWEEN MODEL AND ACTUAL DSP............. 35 

6 PROBLEMS.......................................................................................... 37 

7 USING FPGA ADVANTAGE.............................................................. 39 

7.1 DESIGN...............................................................................................39 
7.2 SIMULATING .......................................................................................39 

8 RESULT AND CONCEIVABLE FUTURE IMPROVEMENTS ...... 41 

BIBLIOGRAPHY.................................................................................... 43 

APPENDIX A, GLOSSARY...................................................................... 45 

 



 



1 Introduction 
 

 - 1 - 

1 Introduction 

1.1 Background 

Electronics Systems (ES), a division at the University of Linköping, is running a 

project with the purpose of creating a synthesizable instruction comparisable 

version of the Motorola digital signal processor DSP 56002 (figure 1). This project 

can be divided into several blocks.  

 

One of these blocks is the somewhat detached Port C, which constitutes a serial 

communication interface to the surrounding world. 

 

 

Figure 1 The Motorola DSP 56002 
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1.2 Task 

The purpose of this work was to implement the Port C serial communication 

interface, the SCI, using VHDL. We made the restriction of creating a behavioral 

model. There were given requirements on pins and names. 

 

In addition to constructing the SCI, the task demanded the basic Port C external 

interface to be implemented. This meant implementing pin control logic and 

general purpose I/O functionality. 

 

The behavior and timing of the signals was to be implemented in accordance with 

the descriptions given in the user’s manual. Each mode was to be specified, coded 

and validated through testing. 

 

This report, along with all other documentation, was required to be written in 

English as the material should be available to visiting scientists. 

1.3 Chapter description 

Chapter 2 gives a general description of port C, describing the basic external 

interface and the pin control. 

 

The majority of this report is constituted by chapter 3, which describes the 

structure and behavior of the SCI. Pertinent simulation results are presented in 

chapter 4. 

 

Inevitably a behavioral model like this will diverge from the actual DSP. Known 

differences are accounted for in chapter 5. Other plausible problems are accounted 

for in chapter 6. 

 



1 Introduction 
 

 - 3 - 

In chapter 7 we mention some of our experiences using FPGA during the process 

of designing and simulating. 

 

Finally, chapter 8 presents the result of this work and future work that we see 

might be done to improve the instruction comparisable model. 

 

1.4 Sequence of work 

As the purpose of this work was to implement, or redesign, an existing interface, 

the first two weeks were spent studying the manual and getting acquainted with the 

structure of it. This process was somewhat cumbersome as the manual does not 

really convey the structural composition of the interface. Also the behavior of 

certain signals is a bit unclear. This particularly applies to signals or actions that 

are not limited to Port C, such as interrupts. 

 

During this period of time we also sought guidance from similar open core projects 

online, without any real success. It seems the generic language for such projects is 

Verilog. 

 

The third week was pretty much wasted in a coding attempt based on the 

assumption that the best way to implement the interface was by using the HDL 

Designer tools built in state machine designer. This idea was finally abandoned 

because of limited flexibility. 

 

After that a couple of weeks of intertwined coding and testing followed. We started 

with designing the external Port C interface, the pin selection and the GPIO.  

 

The next step meant implementing the serial communication interface, the SCI. 

This was done using a bottom up approach. The different modes were initially 
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coded and tested one by one. Most of the problems throughout this project came 

from trying to get them to work together, simultaneously. 

 

Finally we wrote this report, describing this work and what it has lead to. 
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2 Port C 

 

Port C (figure 2) is a nine pin input/output (I/O) port. Each pin can be configured 

either as a general purpose I/O (GPIO) or as a serial communication pin. Pins 0 to 

2 are either GPIO or Serial communication interface (SCI). Pins 3 to 8 are either 

GPIO or  serial synchronous interface (SSI).  

 

GPIO is used to implement functions that are not implemented with the dedicated 

controllers in the SCI or SSI, and require simple input or output software 

controlled signals.  

 

The Port C external interface is controlled by three memory mapped registers, 

mapped to the processors X-memory. These registers are: 

• The Port C control register, the PCC, which determines whether a given pin 

is a GPIO- or a serial communication pin. 

• The Port C data direction register, the PCDDR, which determines whether a 

pin is an input or an output. 

• The Port C data register, the PCD, which holds the data being received or 

transmitted. 

 
 

Port C 
I/O 
(9) 

PC0 
PC1 
PC2 
PC3 
PC4 
PC5 
PC6 
PC7 
PC8 

RXD 
TXD 
SCLK 
SC0 
SC1 
SC2 
SCK 
SRD 
STD 

Figure 2 Port C 
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The PCDDR and the PCD are only used for GPIO. Each bit in the PCC 

corresponds to a single pin, if the bit is cleared the pin is configured as GPIO, 

otherwise it is a serial communication pin. Similarly, clearing a bit in the PCDDR 

means configuring the corresponding pin as an input, setting the bit to one turns the 

pin into an output. GPIO means that when the pin is an input the value of the pin is 

latched to the PCD. When it is an output the pin sees the value of the PCD. Upon 

startup or reset all pins are configured as GPIO inputs. 

 

The pin control logic is depicted in figure 3. When configured as an input the 

processor will get the logic level on the pin upon read. Writing to the PCD is not 

possible since the buffer is in high impedance. When configured as an output the 

processor will see the PCD upon read, meaning it will not see the logic level on the 

pin. 

PORT INPUT DATA BIT 

Figure 3 Port C I/O Pin Control Logic 
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When configured as an SCI, Port C is meant to work as a connection to other 

standardized units, such as other DSPs, processors, modems and other peripherals. 
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3 SCI 

The SCI is constituted by three pins: Receive data (RXD), transmit data (TXD) 

and the SCI serial clock (SCLK). It provides a versatile connection to other units.  

Communication between the SCI and the DSP core is performed with memory 

mapped control and data registers. A programmable baud rate generator divides the 

internal transmit and receive clocks from either the DSP clock or a clock applied 

externally on the SCLK pin. During data transfer the SCI can operate in five 

different word modes and two different wakeup modes. 

3.1 The Registers 

The registers available for controlling and communicating with the SCI are all 

memory mapped. There are two control registers, the SCI control register (SCR) 

and the SCI clock control register (SCCR). These are both 16-bit registers. There 

is also one 8-bit status register (SSR). The purpose of each individual bit in these 

registers will be described later on in this chapter (3.1.2-3.1.5).  There are also two 

different types of data transfer registers. 

3.1.1 Transfer registers 

SXhigh, SXmid and SXlow constitute one register (SX) and STXA is an address 

data register. Along with these there are two non memory mapped shift registers. 

The SCI receive data shift register (SRDSH) is used to shift in serial data sampled 

from the RXD pin. Data is serially shifted in to SRDSH, and is then transferred in 

parallel to one of the data transfer registers. During transmission data is sent from 

the data transfer registers in parallel to the SCI transmit data shift register 

(STDSH), from which it is then serially shifted out to the TXD pin. The 

composition of these registers can be seen in figure 4. 
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The SCI data transfer register (SX) is a 24 bit register divided into three 8 bit 

registers mapped to three adjacent memory positions. The reason for mapping 

them this way is so that three bytes can be “OR”ed into a 24 bit word, 24 bits is the 

size of the memory bus. The actual mapping of the memory lies outside the frames 

of this thesis. 

 

 

 

 

(a) Receive Data Register 
 

(b) Transmit Data Register 
 

Figure 4 SCI Transfer Register Model 
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3.1.2 SCI control and status registers 

As mentioned before there are two control registers and a status register 

comprising the core of the SCI. Each bit in these registers represents some sort of 

flag or control signal, as can be seen in figure 5. 

 
 
Table 1 shows the content of the registers after reset. There are two possible reset 

scenarios, hardware reset (HW) and individual reset (IR). Individual reset occurs 

when none of the dedicated pins are configured as SCI. Reset is active high. 

 

Table 1 Registers after Reset 
 

NOTES: 
SSR[1] = TDRE 
SSR[0] = TRNE 
 
HW = Hardware reset is caused by asserting the external RESET pin 
IR = Individual reset is caused by clearing PCC[2-0] (configured for general-purpose I/O) 

Reset Type 
Register Bit 

HW IR 
SCR 15 - 0 0 - 

7 - 2 0 0 SSR 
1 - 0 1 1 

SCCR 15 - 0 0 - 
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Figure 5 SCI Control and Status Registers 
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3.1.3 The SCI control register (SCR) 

The purpose of the SCR is to tell the SCI how to operate, it does this through 

means of 16 control signals. 

 

The word select bits (WDS) 

These three bits determine in which of the five word modes to operate. (See table 2, 

3.4.2) 

 

The SCI shift direction bit (SSFTD) 

Determines how data is shifted in or out, LSB or MSB first. When SSFTD is 

cleared, data is shifted LSB first, when it is set, data is shifted MSB first. 

 

Send break (SBK) 

If an unusual event occurs, giving the DSP core reason to believe that data has 

been distorted, a break can be sent by setting this bit. 

 

WAKE 

When the receiver is sleeping this bit determines what is required to wake it up. If 

WAKE is cleared, idle line wakeup mode is chosen, if it is set, address bit wakeup 

mode is chosen. 

 

Receiver wake up enable (RWU) 

Setting this bit puts the receiver to sleep. It is cleared upon wake up. This way it is 

possible to use the RWU to force the receiver to sleep or wake up. 

 

Wired-OR mode select (WOMS) 

When set, the WOMS bit is supposed to protect the TXD driver while it is wired 

together with other transmitters. 
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Receiver and Transmitter enable (RE, TE) 

These bits are used to enable/disable the receiver/transmitter. TE is also used as a 

preamble trigger, toggling TE will cause the transmitter to send a preamble. 

 

Idle line interrupt enable (ILIE) 

If ILIE is set, an interrupt will be requested when a start bit occurs. All interrupts 

are handled by the interrupt controller, which lies outside the SCI and is yet to be 

implemented. 

 

Receive and transmit interrupt enable (RIE, TIE) 

A receive data interrupt is requested when both RDRF and RIE are set. Transmit 

data interrupt will be requested when both TDRE and TIE are set. 

 

Timer interrupt enable (TMIE) 

When this bit is set, the baud rate generator will request periodic interrupts at a  

rate specified by the SCCR. 

 

SCI timer interrupt rate bit (STIR) 

This bit controls a divide by 32 for the interrupt rate. Setting the bit bypasses the 

divide by 32. 

 

SCI clock polarity bit (SCKP) 

When SCKP is set, the polarity of the clock is shifted. 
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3.1.4 The SCI status register (SSR) 

The SSR conveys the status of the SCI to the DSP core. The error flags in the SSR 

are cleared when the DSP core reads the register. 

 

Transmitter empty (TRNE) 

This bit is set when both STDSH and the data register are empty. TRNE being set 

indicates that no message is currently beeing transmitted. 

 

Transmit data register empty (TDRE) 

TDRE equals zero indicates that there is data to be sent in the data register. 

 

Receive data register full (RDRF) 

When this bit is set no data may be transferred from the SRDSH. RDRF is cleared 

when the DSP reads the SX. 

 

IDLE 

The IDLE bit shows the status of the line at all times. If IDLE is cleared the 

receiver is busy. 

 

Overrun error flag (ORF) 

If there is data ready to be transferred from SRDSH to SX while RDRF is set this 

flag is set. 

 

Parity error flag (PE) 

In the modes using parity this flag is set when the parity bit does not match the 

parity chosen. 
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Framing error flag (FE) 

If a character is missing a stop bit (the last bit is not set) this flag goes high. 

 

Received bit 8 address bit (R8) 

If the received character is an address (the tenth bit in the word is set), while using 

the multidrop mode, R8 is set. 

3.1.5 The SCI clock control register (SCCR) 

What bit rate and which clock to use is determined by the 16 bit SCCR. 

 

Clock divider bits (CD11-0) 

These bits constitute a number between 0 and 4096, which is the clock divider 

number. 

 

Clock out divider bit (COD) 

The COD bit only affects the asynchronous modes, and only if SCLK is an output. 

If COD is cleared the internal clock is divided by 16 to form the SCLK. If COD is 

set the SCLK will run at the same rate as the internal clock (polarity might differ 

though). 

 

SCI clock prescaler bit (SCP) 

Aside from the clock divider bits, the DSP clock is additionally divided by the 

prescaler. SCP equals zero means divide by 1 and SCP equals one results in a 

divide by 8. 

 

Receive/transmit clock source mode bits (RCM/TCM) 

These bits determine if the receive/transmit clocks are internal (divided from the 

DSP clock) or external (from SCLK). Zero selects internal clock and one selects 

external clock. 
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3.2 SCI structural description 

The top block (figure 6): 

If either of the pins is configured as SCI, the SCI_data vector is updated on every 

clock edge, bringing the data to the SCI block. The Port C I/O block handles the 

pin selection and GPIO functionality. If either of the pins are configured as SCI, 

the SCI is released from reset. 

 

The first SCI sublevel (figure 7): 

This level includes three blocks: The Namedef block, in which the register vectors 

are divided into separate internal signals. The baudrate generator, which 

determines timing and polarization of clocks. The SCI_states block, which 

contains another sublevel.  

 

Since the registers for controlling and comunicating with the SCI are memory 

mapped, and the SCI can not occupy the memory bus at all time, it was necessary 

to create internal signals so that data is not lost. This is done in the Namedef block. 

The first sublevel of the SCI, including the Namedef block, is depicted in figure 6. 

The name Namedef comes from the fact that the individual register bits are each 

given a separate internal signal, conveniently named as its corresponding bit. This 

also simplifies handling the signals in the code as it means not having to access 

them by indexing vectors. The downside of this procedure is that it introduces a 

delay of up to one DSP clock. 

 

The SCI_states (figure 8) sublevel:  

The SCI can operate in five different word modes. Each block in this sublevel 

handles one of those modes. 
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Figure 6 The Top block structure 

 



3 SCI 

 - 19 - 

Figure 7 The SCI sublevel block structure 
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Figure 8 The SCI states block structure 
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3.3 Baud rate generator 

The baud rate generator block (see figure 9) handles the timing and generation of 

the clocks. It is controlled by the 16 bit SCCR (figure 5). 

 

The internal clock, which is generated in this block, determines the baud rate, i.e. 

the data transmission speed. The baud rate is decided by the processor oscillator 

frequency (DSP clock) and the configuration of the time base. The time base is 

determined by the control bits in the SCCR. 

 

In addition to producing the clocks, the baud rate block can also be used to create a 

periodic interrupt. 

fOSC 

TO SCLK 

INTERNAL CLOCK 

DIVIDE 
BY 2 12-BIT COUNTER 

CD11 – CD0 

PRESCALER: 
DIVIDE BY 

 1 OR 8 

SCP 

DIVIDE 
BY 2 

IF ASYNCHRONOUS 
DIVIDE BY 1 OR 16 
IF SYNCHRONOUS 

DIVIDE BY 2 

STIR 

DIVIDE 
BY 16 

SCI CORE LOGIC : 
USES DIVIDE BY 16 FOR 

ASYNCHRONOUS 
USES DIVIDE BY 2 FOR 

SYNCHRONOUS 

COD 

SCKP = 0 →  + 

SCKP = 0 →   - 
 

SCKP 

Figure 9 SCI Baud Rate Generator 

TIMER INTERRUPT 
(STMINT) 

BPSSYNC  
1*)1)(7(*8 ++

=
CDSCP

fOSC  

BPSASYNC
1*)1)(7(*64 ++

=
CDSCP

fOSC  

 
where:   SCP = 0 or 1 
                CD = 0 to $FFF 
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3.3.1 Behavior 

Figure 9 shows the behavior of the baud rate generator. The SCI internal clock is 

divided from the DSP clock in accordance with the configuration of the SCCR. 

The DSP clock is scaled by 2 before it is divided by the clock divider number 

(CD11-CD0). It is then further divided by 1 or 8 (SCP equals zero or one). This 

output is further divided by 2 to form the internal clock. It can also be used as the 

interrupt rate for periodic interrupts. When STIR is set this output is divided by 32 

before forming the interrupt rate. The internal clock is divided by 1 or 16, if the 

mode is asynchronous, or by 2, if the mode is synchronous, to form the SLCK 

output. If SCKP is set the polarity of SCLK is inverted. 

 

In total 3 clocks are generated by the baud rate generator: 

• The internal clock 

• The SCLK 

• The interrupt clock. 

 

The SCI core uses the internal clock divided by 16 for the asynchronous modes, 

and divided by 2 for the synchronous mode. Hence if an external clock is to be 

used a 16-times clock must be applied to the SCLK pin. 

 

The SCI receiver and transmitter use separate receive- and transmit clocks that are 

not necessarily the same (depending on RCM and TCM). The assignments of these 

clocks are done internally in the SCI states block. The only clocks transmitted from 

the baud rate block are SCI clock and the internal clock. 

3.3.2 Operation 

The three different clocks are divided with the help of three denominator variables. 

These denominators (integer values) are calculated by successively stepping 

through the bits in the SCCR as well as pertinent bits in the SCR. Each 
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denominator initially gets the value of the clock divider bits multiplied by 2. If then 

e.g. SCP is set, that value is simply multiplied by 8. The value of the clock divider 

bits is not directly accessible, it has to be transformed into an integer value. This is 

done by the LogicVector2int function. 

 

The denominators are then used to control three different counters, clocked by the 

DSP clock. When the counter reaches the value of the denominator the clock shifts. 

 

The interrupt clock however is not an actual clock, rather a periodic timer 

(interrupts are to be requested at the rate set by the timer). At the rate set by the 

interrupt denominator a flag, STMINT, is set. When STMINT and TMIE are both 

set a timer interrupt will be requested. This flag then has to be cleared by the 

interrupt controller to avoid that the request is sent again. 

 

The bit rate for the synchronous mode is given by the following equation:  

1*)1*7(*8 ++
=

CDSCP

DSPclk
BPSSYNC  

The bit rate for the asynchronous mode is given by the following equation: 

1*)1*7(*64 ++
=

CDSCP

DSPclk
BPS ASYNC  
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3.4 Data transfer 

In both the synchronous and the asynchronous modes, messages are transferred 

byte by byte. This is the only possibility since the shift registers are only one byte 

wide. 

 

In the synchronous mode there is no idle line in between messages, nor any start or 

stop bits separating characters. Data is simply shifted whenever a clock is applied. 

The purpose of the synchronous mode is for the SCI to function as a fast serial to 

parallel- or parallel to serial converter. 

3.4.1 Wakeup modes 

All asynchronous modes can operate in either idle line wake up mode or address 

bit wake up mode. 

 

3.4.1.1 Idle line wakeup 

In the idle line wake up mode messages are separated by a preamble or a break, 

and bytes are separated by start and stop bits. The receiver wakes up when it 

detects an idle line (full word frame of ones detected). As long as no transmission 

is in progress the line is idle (all ones).   

 

A preamble turns the line idle and must be sent before transmitting a message in 

idle line wake up mode. A break can be used by the DSP in order to force a 

framing error, thus signaling an unusual event.  

 

The RXD pin is constantly sampled at 16 times the data rate (see baud rate section) 

to find the start bit (the transition from idle to zero). Then the byte is clocked in to 

the SRDSH. Messages are to be separated either by a preamble (full word frame of 

ones) or a break (full word frame of zeros). 
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To send data in idle line wake up mode, TE must be toggled to turn the line idle 

(preamble the line), then the message can be sent. 

 

3.4.1.2 Address bit wake up 

In the address bit wakeup mode there is no need for an idle line in between 

messages. Instead the receiver wakes up if the eighth or ninth bit (depending on the 

word mode) is set, marking it as an address. This eliminates the dead time in 

between messages. 

 

When operating in the address bit wake up mode, the receiver is constantly shifting 

data in to SRDSH, but only wakes up if it detects an address byte. When that has 

happened the same procedure as for the idle line mode is carried out.  

 

3.4.2 The word modes 

SCI reception and transmission can be performed in five different word modes. 

There is one synchronous and four asynchronous modes (Table 2). 

 

Table 2 Word Formats 
 

WDS2 WDS1 WDS0 Word Formats 
0 0 0 8-bits Synchronous Data (shift register mode) 
0 0 1 Reserved 

0 1 0 10-bit Asynchronous (1 start, 8 data, 1 stop) 
0 1 1 Reserved 

1 0 0 11-bit Asynchronous (1 start, 8 data, 1 even parity, 1 stop) 

1 0 1 11-bit Asynchronous (1 start, 8 data, 1 odd parity, 1 stop) 
1 1 0 11-bit Multidrop (1 start, 8 data, 1 data type, 1 stop) 
1 1 1 Reserved 
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3.4.2.1 8-bit synchronous data 

In this mode the SCI functions as a high speed shift register used for parallel to 

serial or serial to parallel conversion. 

 

There are no error flags present in this mode, nor any start or stop bits. This 

implicates that loss of data or invalid data can not be detected.  

 

3.4.2.2 10-bit asynchronous data 

Data is transferred using 1 start bit, 8 data bits and 1 stop bit. The start bit is zero 

and the stop bit should be one. Data is clocked on the rising edge of the receive 

clock (see the baud rate generator section for clocks). Depending on SSFTD, data 

is shifted in either LSB or MSB first. 

 

Reception 
Firstly for the receiver to initiate it is necessary for the line to go idle. When 10 

consecutive ones have been detected the IDLE flag is set. Detection of an idle line 

clears the RWU and wakes up the receiver. The IDLE flag is cleared as soon as a 

start bit is detected, indicating that the receiver is busy. 

 

Upon detection of a start bit (the transition from idle line to zero) the receiver 

clocks 8 data bits into SRDSH. It then shifts them to the data register and sets the 

RDRF flag. Depending on the position of the bytecntr pointer (an internal signal) 

data is latched to either SXhigh, SXmid or SXlow. If the stop bit is zero, a framing 

error has occurred and the FE flag is set.  

 

When the DSP core reads the data register it also clears the RDRF, clearing the 

way for another byte to be received. If the receiver tries to write to the data register 

while RDRF is set, an overrun error has occurred and the ORF flag is set. 
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Transmission 
The transmitter is activated when a rising edge on TE is detected. This sets the 

transmitteractive help variable and also clears the preambled variable. Clearing 

preambled serves two purposes. Firstly it insures that the first thing to happen upon 

activation is a preambling of the line. Also it will cause a TE-toggle to execute a 

preamble. 

 

Data is transmitted on the falling edge of the transmit clock and what happens is 

determined by a priority list: 

1. If preambled equals zero the line is preambled, meaning it will send 10 

consecutive ones (a full word frame). 

2. If SBK is set a break will be sent, meaning 10 consecutive zeros will be 

transmitted. 

3. The character (byte) will be transmitted. 

 

When a character is to be transmitted, TDRE is polled to see if there is valid data 

in the data register. If so the data will be latched into the STDSH from the data 

register pointed out by bytecntr. TDRE goes high while the second bit of the 

character is being shifted out to the TXD pin. 

 

When the whole byte has been shifted out, the transmitter sends an additional one 

(stop bit). While sending the stop bit TE is polled, and if it is zero the 

transmitteractive variable is cleared and the transmitter is deactivated. This way the 

transmission of the current byte will be completed whenever TE is cleared. If TE is 

set, and no preamble or break is pending, the next byte will be sent. 
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3.4.2.3 11-bit asynchronous even/odd parity data 

Data is transferred using 1 start bit, 8 data bits, 1 parity bit and 1 stop bit. The two 

modes are the same except for the difference in parity. SSFTD does not affect the 

position of the parity bit, it is always the tenth bit. 

 

Reception 
Aside from the parity check and the frame size being 11 bits, these modes work 

very much like the 10 bit mode. The parity check is made by simply introducing a 

variable that counts the number of ones. If the parity bit does not match then the 

PE flag is set. 

 

Transmission 
Again very much like the ten bit mode. The exception being that prior to sending 

the tenth bit (the parity bit) a loop counts the number of ones in STDSH. It then 

sets the bit according to the parity chosen. 

3.4.2.4 Multidrop 

Data is transferred using 1 start bit, 8 data bits, 1 data type bit and 1 stop bit. The 

data type bit tells whether the character is a data byte (the bit is cleared) or if it is 

an address byte (the bit is set).  

 

The purpose of the multidrop mode is to allow for multiple receivers and 

transmitters to be connected together on a single line network. 

 

Reception 
When operating in idle line wake up mode the first byte to be received after wake 

up should be an address byte, if it is, the R8 bit will be set and the DSP determines 

whether or not the message is meant for it. If so, the remainder of the message will 
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be retrieved. If not, the receiver will simply go to sleep waiting for a reason, 

determined by the WAKE bit, to wake up. 

 

When operating in the address bit wake up mode the receiver is constantly shifting 

data into the SRDSH, but only wakes up if the ninth bit is set, indicating that it is 

an address byte. When that has happened the same procedure as that of the idle line 

mode follows. 

 

Transmission 
Transmission always begins by sending an address. The DSP stores the address 

byte in the STXA. This automatically sets the data type bit to one, indicating that it 

is an address. Bytes stored in either of the SX registers are in a similar fashion 

automatically turned into data bytes. 
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4 Simulation 

In order to validate that the different blocks behaved as they were intended to, 

various test scenarios were simulated using the program ModelSim. 

 

During data transfer certain flags have to be controlled by the DSP, such as RDRF 

and TRNE. In simulation these signals are set in the test files as they should be by 

the DSP in actuality. Pertinent simulation results are presented below. 

 

Figure 10 illustrates a simulation performed on the baud rate generator block. The 

clock polarity is shifted, the internal SCLK is the actual SCLK pin inverted. The 

mode is asynchronous and the divider is set to 3.  

 

Figure 11 illustrates another simulation performed on the baud rate generator 

block, this time in the Synchronous mode with the divider set to 3. Clock polarity 

Figure 11 Simulation results of the Synchronous clock 
 

Figure 10 Simulation results of the Asynchronous clock 
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is unshifted. These tests show that the synchronous mode runs at a faster pace than 

the asynchronous (eight times faster, for a given time base). 

 

Figure 12 conveys a simulation performed from the SCI block, configured to 

operate in the 11 bit asynchronous odd parity mode. Receiving three bytes and then 

sending three bytes, LSB first, in idle line wake up mode. After the line has gone 

idle and the start bit is detected, the RWU is cleared and reception commences. 

The first character received has an intentional parity error to validate the operation 

of the parity error flag. The second character received has an intentionally corrupt 

stop bit to validate the operation of the framing error flag. 

 

The high impedance state (Z) of the R8 bit in the SSR is due to the fact that R8 is 

not used in this mode. As can be seen, the initial signal levels of the shift and data 

registers are high impedance.  

 

Figure 12 Simulation results of the 11-bit Asynchronous odd parity 
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In figure 13 the same simulation is run from the external Port C block. The only 

difference is that this time the TXD pin (pc1) is used as a GPIO input when it is 

not used by the SCI. The datadirection vector determines how the SCI uses the pins 

(pc2, pc1, pc0), and has nothing to do with GPIO direction. 

 

 
Figure 14 illustrates the delay introduced by the Namedef block. The internal RXD 

signal is not updated with the current value of SCI_indata(0) until the next DSP 

clock edge. 

Figure 14 Delay caused by the Namedef block 

 

Figure 13 Simulation results of the Port C, 11-bit Asynchronous odd parity 
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5 Differences between model and actual DSP 

In some aspects, or events, this model deviates from the behavior of the actual 

DSP. 

 

Due to the restriction of a behavioral model, the functionality of the WOMS bit is 

yet to be implemented, thus rendering it as a don’t care. The reason for this is that 

it simply is not a feasible functionality to implement in a behavioral model. This 

means that it might be unwise to connect this version to a line with multiple 

transmitters, as no precautions have been taken to protect the transmitter.  

 

The data transfer register comprised of SXhigh, SXmid and SXlow also differs 

from the description in the manual. For some reason the manual divides this 

register into a receive (SRX) and a transmit (STX) register. However they are 

mapped to the same memory address, hence they are the same. Therefore the 

register is simply called SX in the clone. 

 

The manual claims that the maximum bit rate is the DSP clock divided by 2. 

However, following the description of the baud rate generator renders a maximum 

bit rate of DSP clock divided by 4, which is the case for this model. 

 

Separating the registers into internal signals in the NameDef block introduces a 

delay of  up to one DSP clock. This should not be a problem though since the 

signals are only delayed until the next DSP clock edge, and nothing happens 

outside of clock edges during data transfer. Also all of the signals are assigned 

simultaneously, this is of course possible, but the individual registers can not be 

read simultaneously as they occupy different memory positions in the actual DSP. 

This means that the registers will have to be buffered between the memory bus and 

the NameDef block. 
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One possible problem spawns from the fact that a write command (wr equals one) 

causes all internal signals to be updated, which might not always be desirable. 

 

The SSI would have made this work too extensive, hence it has not been 

implemented.  
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6 Problems 

Working as a part of a larger project caused some confusion about the extent of the 

SCI. The SCI is a somewhat detached part of the DSP. However not all of the 

events described in the manual section about the SCI are actually handled by the 

SCI. For example all interrupts requested. They are supposed to call a specific 

routine, but that is handled by the interrupt controller. The decision whether to 

accept a message in the multidrop mode is made outside the SCI. The conditions 

reported by the status register are attended to by the DSP core. These are all things 

that took some time to conclude. 

 

Another problem was getting the different blocks to work in coherence, when 

simulated from the outside. The blocks that are not in use were interfering with the 

signals. This caused the signal levels to go undefined. The undefined signals were 

caused by multiple drivers for the same signals. The solution was to force these 

signals to high impedance, tri-state, by setting them to ‘Z’, when they should not 

drive the signals. This sounds simple enough, but it turned out to be quite 

cumbersome. Cumbersome because care had to be taken not only to which mode is 

active, but also to the setting of the read and write signals, as well as RE and TE. 

 
The SCI core uses the internal clock or the SCLK divided by 2 for asynchronous 

and divided by 16 for synchronous modes. This is fine as long as the internal clock 

is being used and the SCLK is an output, because then the SCI core clock runs at 

the same pace as the SCLK. However when the SCI core clock is divided from the 

SCLK pin, they run at different frequencies, which would seem undesirable. This 

causes data to be shifted either every 2 (synchronous) or every 16 (asynchronous) 

SCLK clock cycles. Whatever type of unit is applying the SCLK would probably 

expect data to be updated on every clock cycle. 
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7 Using FPGA Advantage 

All the design and simulation in this project was performed using FPGA 

Advantage. 

7.1 Design 

A designer tool that uses a graphical user interface facilitates structuring a project 

into different blocks. It does so because the wiring to and from the blocks does not 

need to be coded by hand.  

 

At times though, the GUI can be quite vexing. This particularly applies while 

attempting to rearrange signals, whether it be wiring or type, where the GUI seems 

to be reluctant to change the signal order. 

 

7.2 Simulating 

The blocks can be simulated individually using ModelSim. This was essential for 

this task, as when trying to get everything to work together alterations were made 

constantly. This meant that actions had to be taken to ensure the modes were still 

working individually. 

 

Assigning, or forcing, the signal values in ModelSim can be done either by typing 

force – signal name – value, on the command line, or by selecting the signal from 

the signals window and then choosing force. This is quite confusing as the default 

force method differs. While using the command line the default force method is 

deposit. While forcing from the signals window the default method is freeze. 

Forcing a freeze means that the signal is frozen to the assigned value and cannot be 

altered by the simulation. This is something that in this case was undesirable and 

thus caused some perplexity. 
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One very positive thing with the simulator is that all commands, whether typed in 

or entered using GUI, are saved in the command window. This enables collecting 

all commands in an executable macro, a .DO file, which makes repeated testing 

very convenient. 

 

One problem with the simulator occurs while using break points to step through the 

code in order to determine what is wrong. It seems that sometimes the mere 

presence of break points affect the simulation result, thus ruining any chance of 

detecting the problem this way. 
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8 Result and conceivable future improvements 

The result of this work is an instruction comparisable model that behaves as 

intended in simulation. The layout feels well structured and easy to comprehend. 

Although in some points the model diverges from the Motorola DSP56002 and in 

some points, such as with the clocks, things are a bit unclear. 

 

In order to make any actual use of this model it has to be connected to the rest of 

the processor. Doing so requires some additional work with mapping the registers 

to the memory. For the Port C to be complete implementing the SSI would also be 

required. 

 

Another plausible improvement would be to transform this behavioral model into a 

more hardware oriented one. 
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Appendix A, glossary 

Designations 
Break Full word frame of zeros 
DSP Digital signal processor 
ES Electronics systems 
Idle line 
 

The line is ready, waiting for a start bit (transition from one to 
zero) 

Preamble Full word frame of ones 
SCI Serial communication interface 
SSI Serial synchronous interface 
GPIO General purpose input/output 
VHDL Very high definition language 
LSB Least significant bit 
MSB Most significant bit 
BPS Bits per second 
GUI Graphical user interface 
FPGA Field programmable gate array 
  
PINS   
RXD Receive pin 
TXD Transmit pin 
SCLK SCI clock pin 
  
Transfer registers 
SX SCI data transfer register 
SRDSH SCI receive data shift register 
STDSH SCI transmit data shift register 
STXA SCI address register 
  
SCR  SCI control register 
SCKP SCI clock polarity 
STIR Timer interrupt rate 
TMIE Timer interrupt enable 
TIE Transmit interrupt enable 
RIE Receive interrupt enable 
ILIE Idle line interrupt enable 
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TE Transmitter enable 
RE Receiver enable 
WOMS Wired-Or mode select 
RWU Receiver wake up enable 
WAKE Wake up mode select 
SBK Send break 
SSFTD SCI shift direction 
WDS Word select bits 
  
SSR  SCI status register 
R8 Received bit 8 
FE Framing error flag 
PE Parity error flag 
OR Overrun error flag 
IDLE Idle line flag 
RDRF Receive data register full 
TDRE Transmit data register empty 
TRNE Transmitter empty 
  
SCCR  SCI clock control register 
TCM Transmit clock source bit 
RCM Receive clock source bit 
SCP SCI clock prescaler 
COD Clock out divider 
CD Clock divider bits 
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