

Senior Design Dec06-04

Diana Calhoun EEFaculty Advisors:Matt Koch EEDr. John LamontKelly Melohn EEProf. Ralph PattersonYesu Thommandru CprEClient: ECpE Senior Design

Presentation Outline

Definitions

- Problem description
- Operating Environment
- Intended Users/Uses
- Assumptions and Limitations
- Deliverables

- Accomplishments
- Approaches Considered
- Design, Implementation, and Testing
- Resources and Schedule
- Closing Material

Definitions

- **Binary** base 2 number system.
- Daylight saving time (DST) shifting time by one hour to compensate for Earth's rotation.
- Fourteen possible calendar years only fourteen variations.
- Geek *slang* a term to describe a person with good computer skills, an interest in technology, and firm knowledge of the sciences...usually accompanied with an almost complete social ineptitude.
- **LED** light emitting diode.
- LCD liquid crystal display.
- **PCB** printed circuit board.
- 12-hr format the standard hourly display. e.g. 12:34pm
- 24 hr format Military Time. e.g. 17:32 is 5:32pm

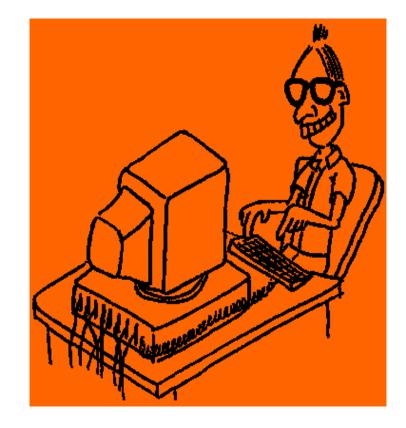
Problem Description

The purpose of this project is to develop a binary alarm clock to display the current time and date.

Operating Environment

The operating environment is:

- An indoor, dry environment
- Able to supply appropriate power through wall outlet
- Not in areas that contain moisture



Intended Users/Uses

The intended users:

- Know binary code or interested in learning binary
- Fit the geek persona
- Not children due to certain dangers of small parts

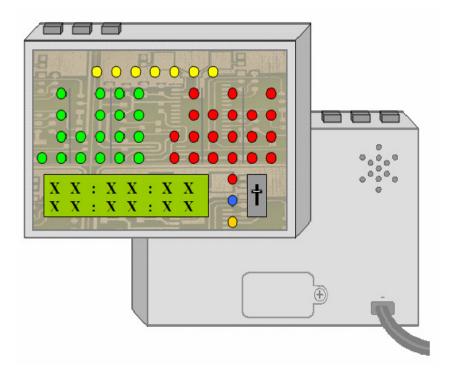
Assumptions and Limitations

Assumptions

- LCD display to display time for "non-geeks"
- DST and leap year self-correcting
- "Geeky" appearance transparent case
- LED's show time, month, day, and year in binary

Limitations

- Features alarm, DST, battery backup, binary display, 12 or 24 hr format
- Cost/Budget Less than \$150; labor not included
- Size/Weight light-weight and wall mountable


Deliverables

Geek Clock

- Time/Date
- Day of the week
- LCD display

User Manual

- Description
- Instructions
- Troubleshooting


Accomplishments

Previous

- Project Plan
- Design Report
- Design Review
 Presentation
- Present
 - Poster
 - Acquired Parts and Casing
 - User Manual

Future

- Implementation
- Testing
- Commercialization

Approaches Considered

Problems:

- 1. Binary display: 12/24 hour
- 2. A settable alarm function
- 3. Self-correcting for daylight saving time
- 4. Withstand power outages for at least 2 hours
- 5. Implement completed consumer product
- 6. Display "Geeky" personality

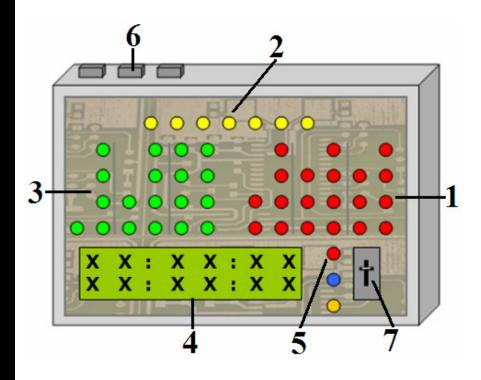
Approaches: 1. LEDs

- AM/PM indicator
- 2. Alarm buttons
 - up/down counter
 - fast/slow speeds
- **3**. Software code
- 4. 9V battery
- 5. User manual
- 6. Clear case to sh inner circuitry

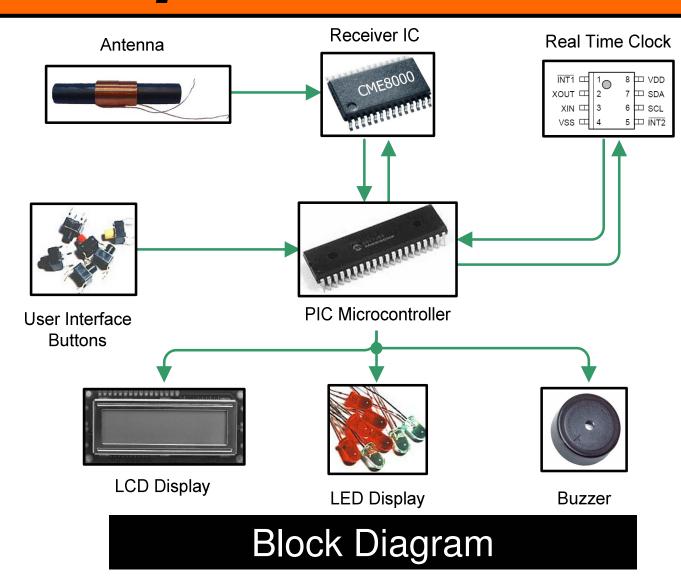
Additional Approaches Considered

Problems:

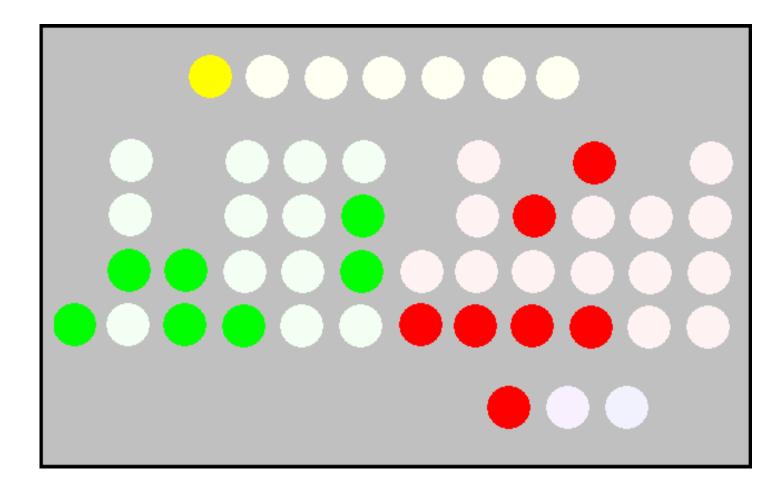
- 1. Self-adjust/correct time
- Binary week/date display
- 3. Learn binary
- 4. Snooze
- 5. Automatic leap year correction
- 6. Idle state (lower power required) while running back-up power


Approaches:

- 1. RF antenna and receiver
- 2. Binary LED
- 3. Digital LCD
- 4. Any button
- 5. Real Time Clock (RTC)
- RTC low power detection – turn off week/date displays


Geek Clock Design

Day of the week Date (4) LCD display (5) ON/OFF or AM/PM notification (6) Mechanical switches for alarm control (7) Toggle switch for user preferences

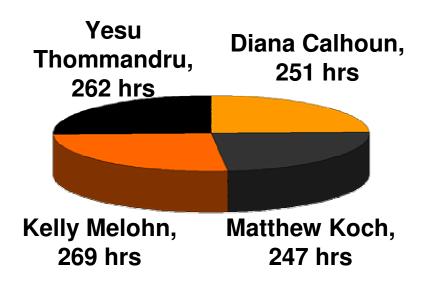

Time

Implementation

Animation of Date and Time

Testing

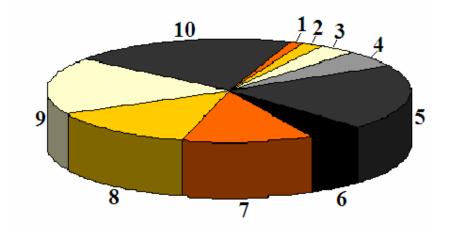
Components


- 1. LEDs and LCD
- 2. AC power
- 3. Time/date/DST
- 4. Alarm
- 5. Buzzer
- 6. Battery backup
- 7. Software
- 8. Usability

Testing Method

- 1. Correct display with appropriate power supply.
- 2. Stability with AC power.
- **3.** Accuracy upon hardware/software integration.
- 4. "Setability" using software testing.
- **5**. Apply voltage power supply.
- 6. "Pulling the plug".
- 7. Debugging using the MPLab IDE debugger.
- 8. Survey of prototype with volunteers.

Resources


Financial Resources

Labor at \$10.50 per hour	
Diana Calhoun	\$2,635.50
Matthew Koch	\$2,593.50
Kelly Melohn	\$2,824.50
Yesu Thommandru	\$2,751.00
Total	\$10,931.34

Resources

Component Resources

Clock Component Costs

Clock Material	Cost
1 Real Time Clock	\$0.89
2 Antenna	\$1.50
3 Battery	\$2.50
4 Receiver IC	\$3.60
5 Transformer	\$15.55
6 Microcontroller	\$3.71
7 LCD	\$8.93
8 Other	\$10.00
9 LEDs	\$13.60
10 Casing	\$15.00
Total:	\$75.28

Schedule

Tasks

- Task 1: Project Definition
- Task 2: Technology Consideration
- Task 3: End-Product Design
- Task 4: End-Product Implementation
- Task 5: End-Product Testing
- **Task 6: End-Product Documentation**
- **Task 7: End-Product Demonstration**
- **Task 8: End-Product Reporting**

Closing Material

- Project evaluation
- Commercialization
- Recommendations for additional work
- Lessons learned
- Risk and risk management

Closing Summary

The Dec06-04 team faced the challenge of building a "geek" clock. The Geek Clock shall be a fun, easy to use household item geeks can be proud to show friends and family.