JEr

CCII Systems (Pty) Ltd Reg\slvat\on No. 1990/005058/07
Communications
Computer Intelligence
Integration

User Manual

for the

4-Channel New Generation

and

8-Channel High-Speed Serial /0O Adapters

VxWorks Software Driver

C2]2 Ssystems Document No. CCII/HSS8/6-MAN/002

Document Issue 1.6

Issue Date 2015-09-18

Print Date 2015-09-18

File Name W:AHSSB\TECH\MAN\CH8MANO2.WPD

Distribution List No.

© C22 Systems The copyright of this document is the property of C2I2 Systems. The document is issued for the sole
purpose for which it is supplied, on the express terms that it may not be copied in whole or part, used by
or disclosed to others except as authorised in writing by C2I2 Systems.

Document prepared by C2I2 Systems, Cape Town

Signature Sheet

Name

Signature

Date

Completed by

Ly E LA

A

Project Engineer
Board Level Products

Low - O -4

G2 Systems
Accepted by u
L a Project Manager Loy -
DE L Board Level Products Y
, C2I2 Systems

Accepted by

HCH HMeg7enlrF

Quality Assurance
C?I? Systems

l

QotS ~o0a~1t ¥

CCI/HSS8/6-MAN/OD2

2015-08-18

lssue 1.6

CHEMANOZ.WPD

Page ii of vi

Amendment History

Issue Description Date ECP No.
0.1 First draft. 2004-07-08 -
1.0 Baselined document. 2004-07-20 -
11 Added description for 4 channel version of HSS8 Adapter. 2004-11-25 | CCII/HSS8/6-ECP/018
1.2 Implemented ECP, made references to adapter more generic. 2006-06-29 | CCII/HSS8/6-ECP/024
1.3 Added description for the hss8Set_pci_base function. 2008-01-28 | CCII/HSS8/6-ECP/034
1.4 Improve document naming consistency. 2009-08-18 | CCII/HSS8/6-ECP/042
15 Added description of POST progress indicator. 2014-02-06 | CCII/HSS8/6-ECP/057
1.6 Added procedure to configure pins as outputs on startup. 2015-09-18 | CCII/HSS8/6-ECP/059
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6
CH8MAN02.WPD Page iii of vi

Contents

L. SCOPE . 1

11 Identification 1

1.2 SYSIEM OV VI BW . . .ottt e e e e e 1

1.3 DocumMeENt OVEIVIEWo 1

2. Applicable and Reference DOCUMENTS i e 2

2.1 Applicable DOCUMENTS e e 2

2.2 Reference DOCUMENES 2

3. Software Driver Distribution 3

4. Installation Procedure e 4

4.1 To Build the HSS8 VxWorks Software Driver into the VxWorks Kernel 4

4.2 To Load the HSS8 VxWorks Software Driver Separately 4

5. Using the HSS8 VxWorks Software Driver 5

51 Overview of the HSS8 VXWorks Software Driver 5

5.2 Creating the DeVICE e e e 6

5.3 Configuring the Channels e e e e e 6

5.4 Adding Call-back FUNCHIONS 6

55 Sending and Receiving Data e 8

5.6 Destroying the DeviCe 9

5.7 Detecting an Active Clock Signalon Channels i i e 9

5.8 Obtaining the Current Host and Firmware Version Number 9

5.9 HSS8 BUilt-in TeStS (BIT) . . . o oo e e e e 9

5.10 HSS8 Power-On-Self TeStSo e 10

5.11 RetUN Adapler TYPE . o vttt e e e e 11

6. Application Program Interface (API) 12

6.1 General FUNCLON SIIUCIUNEo e e e e 12

6.2 High-Speed Serial VxWorks Software Driver Interface i 12

B.2.1 Creale DEVICE . . ittt 13

6.2.2 Destroy DeviCe 14

6.2.3 Set Port Configuration 15

6.2.4 Get Port Configuration e e 16

6.2.5 OPEN POIt . .o 17

B.2.6 ClOSE POt . . 18

B.2.7 Send Datao 19

6.2.8 Add Call-back 20

6.2.9 Remove Call-back 21

6.2.10 Detecting an Active Clock Signal on Ports 22

6.2.11 Print Out Current Host Software Version Number 23

6.2.12 Print Out Current Embedded Software Version Number vt 24

6.2.13 HSS8 BIT SUUCIUIES ittt e e e e e e e e e e e 25

6.2.14 Enable/ Disable POST 28

6.2.15 Return POST StatUS 29

6.2.16 Return Adapter TYPE . ..ot e e 30

6.2.17 Set PCI Base AGOrESS . ..ttt 31

6.2.18 SetOutput PinValues at Startup 32

6.3 Software Driver Data STrUCIUIESo e 33

6.3.1 UART MOOE e 34

6.3.1.1 UART Protocol Information Structure i 34

6.3.1.2 UART Protocol Information Structure Members i, 35
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page iv of vi

6.3.2 HDLC MOOE e 38

6.3.2.1 HDLC Protocol Information Structuret 38

6.3.2.2 HDLC Protocol Information Structure Members 39

6.3.2.3 Preamble ReqUIrEmMeNtSt e e e 41

6.3.3 BISYNC MOUEottt 42

6.3.3.1 BISYNC Protocol Information Structure 42

6.3.3.2 BISYNC Protocol Information Structure Members 43

6.3.4 SMC UART MOGE . . .ottt e e e e e e e e e e 47

6.3.4.1 SMC UART Protocol Information Structure 47

6.3.4.2 SMC UART Protocol Information Structure Members 48

7. Getting Started 49

8. Contact Details o 50

8.1 (@0 = Tox =TT =T o 1 50

8.2 Physical AdAresst e e e e 50

8.3 Postal AdAresS oo 50

8.4 Voice and ElectroniC CONtaCESottt e e e e e e 50

8.5 ProducCt SUPPOI . . .o 50

AN XU A e e e e 51

Making Changes to SsysLib.c for X86 51
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page v of vi

Abbreviations and Acronyms

API Application Program Interface

BCS Block Check Sequence

BISYNC Binary Synchronous Communication

BIT Built-in Test

bit/s bits per second

BRG Baud Rate Generator

BSP Board Support Package

CD Carrier Detect

CRC Cyclic Redundancy Check

CTS Clear to Send

DLE Data Link Escape

DPLL Digital Phase-Locked Loop

EEPROM Electrically Erasable Programable Read Only Memory
FIFO First In First Out

HDLC High Level Data Link Control

HSS8 8-Channel High-Speed Serial

le] Input / Output

LED Light Emitting Diode

MHz MegaHertz

NRzZ Non-Return-to-Zero

NRZI Non-Return-to-Zero-Inverted

PC Personal Computer

PCI Peripheral Component Interconnect

PMC Peripheral Component Interconnect Mezzanine Card
POST Power-On-Self Test

RAM Random Access Memory

RTS Request to Send

RxD Receive Data

SBC Single Board Computer

SCC Serial Communications Controller

SDLC Synchronous Data Link C

SMC Serial Management Controller

SYNC Synchronisation

TxD Transmit Data

UART Universal Asynchronous Receiver/Transmitter
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6
CH8MAN02.WPD Page Vi of vi

1. Scope

1.1 Identification
This document is the user manual for the VxWorks Software Driver for the 8-Channel High-Speed
Serial (HSS8) Adapter and the 4-Channel High-Speed Serial Adapter (HSS4NG). The 4-Channel Adapter is
based on a stripped down HSS8 Adapter and as such this manual applies, except that only SCC
Channels A - D and SMC Channels | - J will be available.

1.2 System Overview
The HSS8 Adapter provides eight channels of simultaneous, high-speed, bi-directional serial communications
and an additional four channels of lower-speed serial communications (available only on the frontpanel
HSS8 Adapter). The eight high-speed channels are jumper configurable (on a per channel basis) for RS-232
or RS-422/485 drivers while the lower-speed channels have RS-232 drivers only.
The HSS8 VxWorks Software Driver is a low level, device-dependant, interface for transferring data over a
C2I2 Systems HSS8 Adapter . The HSS8 VxWorks Software Driver binaries are provided with explicit installation
instructions.

1.3 Document Overview
This document gives an overview of the HSS8 VxWorks Software Driver installation procedure and its
Application Program Interface (API).

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 1 of 51

2. Applicable and Reference Documents

21 Applicable Documents
2.1.1 Motorola, MPC8260 PowerQUICC Il Family Reference Manual, MPC8260UM/D Rev. 1, dated May 2003.
212 CCII/HSS8/6-MAN/001, Hardware Reference Manual for the 4-Channel New Generation and 8-Channel
High-Speed Serial I/O Adapters.
2.2 Reference Documents
None.
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 2 of 51

Software Driver Distribution

The VxWorks Software Driver distribution consists of (at least) the following files :

ccHss8Lib<arch>V<version><long>.a

ccHss8EmbV<version>.hex
ccHss8Flash<arch>V<version><long>.a
hss8Readme.txt

hss8Release_emb.txt, hss8Release_host.txt

ccHss8HfilesV<version>.zip

ccHss8Test.c and
ccHss8Test<arch><long>.a

hss8Changes.txt

hss8Flash.txt

Host-architecture specific, driver object file :

cc - CCIl systems (Pty) Ltd

Hss8Lib 8-Channel High-Speed Serial
VxWorks Software Driver

<arch> - Host for which the binary is built :

« X86

« PPC

Software version is a 3 digit integer :

« 1% digit : version number

« 2" digit : revision number

« 3"digit : beta number

<version>

<long> - VxWorks Software Driver compiled
with -mlongcall flag (only for a PPC
host)

e.g. “ccHss8LibPPCV100.a” for version 1.0.0 of the
HSS8 software, built for a PPC processor.

HSS8 firmware.
Flash update driver.
General information and installation notes.

Release notes and revision history :

Please check this file for information on the latest
updates.

Zip file which contains all header files that define the
Application Program Interface (API) to the HSS8
VxWorks Software Driver.

Sample C code for accessing the HSS8 VxWorks
Software Driver.

Changes to be made to VxWorks and Board Support
Package (BSP) files.

Procedure for updating the firmware if required.

hss8Test.txt Test procedure for verifying host software driver and

firmware.
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6
CH8MANO02.WPD Page 3 0of 51

4, Installation Procedure

This paragraph describes the installation procedure for the HSS8 VxWorks Software Driver. (The examples
given are for a PowerPC host.)

41 To Build the HSS8 VxWorks Software Driver into the VxWorks Kernel

Assume the BSP directory is given as : BSP_DIR = /tornado/target/config/dy4181.
® Copy ccHss8LibPPCV<version>.a to your $(BSP_DIR)/lib directory as ccHss8.a.

® Inthe Builds section of the Project Workspace, change the Kernel properties to include the ccHss8.alibrary
file in the Macros LIBs option.

® Rebuild all VxWorks images.

4.2 To Load the HSS8 VxWorks Software Driver Separately

Note : This step is not required if the software driver was built into the BSP.

If the software driver is not built into the BSP, a user can load it separately :

® Copy ccHss8LibPPCV<version>.a to your present working directory as ccHss8.a.
® From the VxWorks shell type :

Id < ccHss8.a

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 4 of 51

5. Using the HSS8 VxWorks Software Driver

5.1 Overview of the HSS8 VxWorks Software Driver

The following flow chart shows the main functions of the HSS8 VxWorks Software Driver :

Establish a connection to the HSS8 Adapter by calling
hss8Create_device()

Configure each channel by calling
hss8Set_port_config()

l

Add Call-back functions for
the receive and transmit
channel and for clock
detection if required.
Call function
hss8Add_callback()

Open Channel by calling
hss80pen_port()

l

Send data by calling
hss8Send_data()

Figure 1 : Overview of HSS8 VxWorks Software Driver

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 5 of 51

5.2 Creating the Device

The HSS8 VxWorks Software Driver supports multiple HSS8 Adapters on a single host. To establish a
connection and construct all the device specific structures, a user must create each of the devices separately,
using the device ID to identify it.

The device ID starts at 0 and increments by 1 for each of the devices. Device 0 refers to the device in the
lowest slot. The HSS8 VxWorks Software Driver can not be used until the user has created the device.

Example : For device 0 :

/* Create one HSS8 device */
hss8Create_device(HSS8 ARG 1, 0);

The device ID is used in all calls to the HSS8 VxWorks Software Driver to identify the correct device.

53 Configuring the Channels

The HSS8 Adapter has eight Serial Communications Controllers (SCCs) [Channels A - H] that support UART,
HDLC/SDLC and BISYNC protocols, and four Serial Management Controllers (SMCs) [Channels | - L] that
support only asynchronous UART.

After the HSS8 device has been created, the user must first set the default configuration for each of the
Channels. To set the configuration of a Channel, a protocol-specific information structure is used. Examples
of the required structure is given in ccHss8Test.c (for the UART protocol) and can be used as a starting point.

The structures allow the user to set all the protocol-specific options available on the HSS8 communication
controller chip (the MPC8260 PowerQUICC II™). For available options for each of the structure fields,
see [2.1.1].

Example : Set four SCC channels to UART mode, the other four SCC channels to HDLC mode and all four
SMC channels to UART mode :

/* Set initial SCC port configuration */
hss8Set_port_config(HSS8 ARG _3, HSS8 PORT_A, anduart_info);
hss8Set_port_config(HSS8 ARG_3, 0, HSS8 PORT_B, anduart_info);
hss8Set_port_config(HSS8 ARG _3, 0, HSS8 PORT_C, anduart_info);
hss8Set_port _config(HSS8 ARG _3, 0, HSS8 PORT_D, anduart_info);
hss8Set_port_config(HSS8 ARG 3, 0, HSS8 PORT_E, andhdlc_info);

0

0

0

o

hss8Set_port_config(HSS8_ARG_3, HSS8 PORT_F, andhdlc_info);
hss8Set_port_config(HSS8 ARG _3, HSS8 PORT_G, andhdlc_info);
hss8Set _port _config(HSS8 ARG 3, HSS8 PORT_H, andhdlc_info);

/* Set initial SMC port configuration */

hss8Set_port_config(HSS8 ARG _3, 0, HSS8 PORT_I, andsmc_uart_info);
hss8Set_port _config(HSS8 ARG _3, 0, HSS8 PORT_J, andsmc_uart_info);
hss8Set_port_config(HSS8 ARG 3, 0, HSS8 PORT_K, andsmc_uart_info);
hss8Set_port_config(HSS8 ARG_3, 0, HSS8 PORT_L, andsmc_uart_info);

5.4 Adding Call-back Functions

The HSS8 VxWorks Software Driver notifies the user of different events by calling a user defined Call-back
function. The events for which the user may specify one or more Call-back functions are :

Transmit Begin The software driver has accepted the data for sending.

Transmit Done - The software driver has finished sending the data.

Receive Done - Data has been received into a buffer specifically allocated by the software driver.
Clock Detect A clock signal has been detected on a specific channel.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 6 of 51

Only one Call-back function for each event is recommended. For the user to receive data, at least the
Receive Done Call-back must be installed. While the Receive Done Call-back is executed, the corresponding
buffer will not be accessed by the HSS8 VxWorks Software Driver. The user can process the data in the Call-
back function or copy the data somewhere else for processing.

Call-back function prototype :

void hss8Callback function(hss8ArgType num_args, ...);

Where num_args indicates the number of arguments to follow. The number of arguments differs for each
call back function :

® Transmit Begin Call-back function (six arguments) :

1. dev._id - device ID.

2. port_id - port ID.

3. chan_id - channel ID.

4. user_id - user defined ID.

5. nr_bytes - length of transmitted data.

6. p_data - pointer to buffer containing the data to be send.

® Transmit Done Call-back function (eight arguments) :

1. dev_id - device ID.
2. port_id - port ID.
3. chan_id - channel ID.
4. user_id - user defined ID.
5. error - HSS8 OK (no errors)
- HSS8_TX_BUFFER_UNDERRUN_ERROR (HDLC and BISYNC only)
-HSS8 TX _CTS_LOST_ERROR (All protocols).
6. nr_bytes - length of transmitted data.
7. p_data - pointer to buffer containing the data that was send.
8. missed_tx_done - variable that is incremented when the HSS8 Adapter was not able to

generate an interrupt to the host SBC.

® Receive Done Call-back function (eight arguments) :

1. dev._id - device ID.
2. port_id - port ID.
3. chan_id - channel ID.
4. user_id - user defined ID.
5. error - HSS8 OK (no errors)
- HSS8_RX_FRAMING_ERROR (UART only)
- HSS8_RX_PARITY_ERROR (UART and BISYNC only)
- HSS8_RX_CRC_ERROR (HDLC and BISYNC only)
- HSS8 RX_NONOCTET_ALIGNED_FRAME (HDLC and BISYNC only)
- HSS8_RX_ABORT_SEQUENCE (HDLC only).
6. nr_bytes - length of transmitted data.
7. p_data - pointer to buffer containing the data that was send.
8. missed_rx_done - variable that is incremented when the HSS8 Adapter was not able to

generate an interrupt to the host SBC.

® Clock Detect Call-back function (three arguments) :

1. dev._id - device ID.
2. port_id - port ID.
3. user_id - user defined ID.
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 7 of 51

Example : Add a Call-back function for handling receives :

/* Receive function prototype - this function is implemented by the user */
void Process_rx_data(hss8ArgType num_args, -...)
{

hss8Deviceld dev_id;

hss8Portld port_id;

hss8Channelld chan_id;

hss8Userld user_id;

hss8UINT32 error;

hss8UINT32 nr_bytes;

hss8UINT32 missed_rx;

hss8BufferPtr p_data;

/* declare a variable of type va_list */
va_list arg_ptr;

/* initialize the argument pointer */
va_start(arg_ptr, num_args);

/* retrieve each argument in the variable list */
dev_id = va_arg(arg_ptr, hss8Deviceld);

port_id = va arg(arg_ptr, hss8Portld);
chan_id = va_arg(arg_ptr, hss8Channelld); /* always 0O for now */
user_id = va_arg(arg_ptr, hss8Userld);

error = va_arg(arg_ptr, hss8UINT32);

nr_bytes = va_arg(arg_ptr, hss8UINT32);

p_data = (hss8BufferPtr)va_arg(arg_ptr, hss8UINT32);
missed_rx = va_arg(arg_ptr, hss8UINT32);

/* perform clean up */
va_end(arg_ptr);

/* user specific code here... */

}

/* Add receive call-back */
hss8Add_cal lback(HSS8 ARG 4, 0, HSS8 CB ON_RECEIVE_DONE, Process_rx_data, 0);

55 Sending and Receiving Data

To send and receive data on a specified channel, the user must first open the channel. To stop sending or
receiving data from a channel, the user must close the channel.

Example : Send some data on device 0, Channel B :

/* Open port for sending data */
hss80pen_port(HSS8_ARG_5, 0, HSS8 PORT_B, 15, 16, 17);

/* Send some data */
hss8Send_data(HSS8 ARG 5, 0, HSS8 PORT B, 0, 256, pbuffer256);

/* Do other stuff */
/* */

/* Close port after final usage */
hss8Close port(HSS8 ARG_2, O, HSS8 PORT_B);

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 8 of 51

5.6

5.7

5.8

5.9

Destroying the Device

When the device is no longer required it should be destroyed to free system resources.
Example : Device 0 is no longer required :

/* Close all ports after final usage */

hss8Close port(HSS8 ARG _2, 0, HSS8 PORT_A);
hss8Close_port(HSS8 _ARG_2, HSS8_ PORT_B);
hss8Close_port(HSS8 ARG_2, HSS8 PORT_C);
hss8Close port(HSS8 ARG 2, HSS8 PORT_D);
hss8Close port(HSS8 ARG 2, HSS8 PORT_E);
hss8Close_port(HSS8 _ARG_2, HSS8 PORT_F);
hss8Close_port(HSS8 ARG_2, HSS8 PORT_G);
hss8Close_port(HSS8 ARG 2, HSS8 PORT_H);
hss8Close port(HSS8 ARG 2, HSS8 PORT _1);
hss8Close_port(HSS8 _ARG_2, HSS8 PORT_J);
hss8Close_port(HSS8 ARG_2, HSS8 PORT_K);
hss8Close port(HSS8 ARG _2, 0O, HSS8 PORT_L);

clolojojolojololoNa]

/* Destroy device to free resources */
hss8Destroy_device(HSS8_ARG_1, 0);

Detecting an Active Clock Signal on Channels

To detect when a channel's clock signal becomes active, use the following function.

Example : Detecting a clock signal on device 0 and Channel A :

/* Enable port to detect clock */
hss8Clock_detect(HSS8 ARG_2, 0, HSS8 PORT_A);

A Call-back function gets called once a clock has been detected. After this Call-back function has been
serviced, the user can re-initialise the clock detection routine as shown above.

Obtaining the Current Host and Firmware Version Number

The following function prints out the current version number of the software driver and firmware software :

/* Print current version number */
hss8Version_print(HSS8 ARG _1, 0);

Note: Run hss8Create_device() first.

The following function returns the firmware version stored in the EEPROM :

/* Return firmware version number : version*100 + revision*10 + beta */
hss8Firmware_version(0, andversion);

Note : This function may be called without running hss8Create_device() first.

HSS8 Built-in Tests (BIT)

The following function displays each channel's statistics : e.g. how many bytes / packets have been accepted
/ rejected / sent / received and how many errors were reported.

Example : Displaying each channel's statistics for device O :
hss8Bit_report(HSS8 ARG _1, 0);

To clear the counters of the hss8Bit_report() function, use the function hss8Bit_clear().

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 9 of 51

Note : Instead of displaying each channel's statistics, the function hss8Bit_getstruct() only returns the
corresponding statistics in a structure. See paragraph 6.2.13.

5.10 HSS8 Power-On-Self Tests
The Power-On-Self Tests (POST) are disabled by default, but can be selectively enabled. The following tests
are defined :
® Magic number checking - checks the start of the flash for a correct magic number. This test is
always performed and cannot be disabled.
® Flash CRC - checks that the checksum of the kernel in flash is correct. This test is
disabled by default.
® EEPROM verification - verifies the contents of the EEPROM. If the contents is corrupt, the
EEPROM is reprogrammed. This test is always performed.
® RAM databus test - checks the databus connected to the RAM for any errors. This test is
disabled by default.
® RAM addressbus test - checks the addressbus connected to the RAM for any errors. This test
is disabled by default.
® RAM device test - checks the whole RAM device for any errors. This test is disabled by
default.
If any of the above tests fail, an error code is flashed on the LEDs D1 - D3 and the card will not boot up further.
If the card is reset and the card still does not boot up, contact C2I2 Systems.
The error codes are continuously flashed on the LEDs D1 - D3, followed by a short break. The number of
flashes are defined as follows (see also header file hss8Controllfc.h) :
e HSS EEPROM_UPDATE - 1 flash
e HSS EEPROM_ERROR - 2 flashes
e HSS RAM_DATA_ERROR - 3 flashes
e HSS RAM_ADDR_ERROR - 4 flashes
e HSS RAM_DEVICE_ERROR - 5 flashes
® HSS FLASH_MAGIC_ERROR - 6 flashes
® HSS FLASH _KERNEL_CRC_ERROR - 7 flashes
® HSS8 SLAVE _POWERQUICC_II_FAIL - 8 flashes
The above codes are also written to the EEPROM and may be read back with the following function :
Example : Obtain POST error status on device O :
hss8Post_status(0, &data)
To enable / disable selected tests, the following function may be used :
Example : Enable all RAM tests but disable Flash CRC checking on device O :
hss8Post_enable(0, HSS8_ POST_RAM_DATA ENABLE | HSS8_POST_RAM_ADDR_ENABLE |
HSS8_POST_RAM_DEV_ENABLE);
Note: Thefunction hss8Create_device() willreturnHSS8 POWER_ON_SELFTEST_FAIL if any of the tests
fail. The function hss8Post_status() may then be used to determine which one of the tests has failed.
If a fast host processor is used, it is possible that the user might attempt to initialise the adapter while the POST
routine is still executing. This will result in hss8Create_device() not executing correctly. Starting with software
version 1.9.1, enabling HSS8_POST_PROGRESS_ENABLE will delay hss8Create_device() until POST has
completed.
hss8Post_enable(0, HSS8 POST_PROGRESS ENABLE);
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 10 of 51

Note: IfHSS8 POST PROGRESS ENABLE is enabled, host software earlier than V 1.9.1 will hang when
hss8Create_device() is called.

5.11 Return Adapter Type

The following function returns the adapter type. The return value will be either 4 or 8, describing a 4-Channel
(four SCCs and two SMCs available) or 8-Channel (eight SCCs and four SMCs available) adapter. When a
4-Channel adapter is present, only the following channels are valid : HSS8 PORT_[A - D] (four SCC channels)
and HSS8 PORT_]I - J] (two SMC channels).

Example : Get adapter type of device O :
hss8UINT8 adapter_type;

hss8Adapter_type(0, &adapter_type);

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 11 of 51

6. Application Program Interface (API)

6.1 General Function Structure

The general function structure is as follows :

hss8Status hss8Function_name(hss8ArgType num_args, ...)

With num_args indicating the number of arguments to follow. It can be one the following :
HSS8 ARG _1-HSS8 ARG_15, depending on each individual function.

6.2 High-Speed Serial VxWorks Software Driver Interface

The zip file ccHss8HfilesV<version>.zip contains the following header files, which should always be included :

® hss8Defs.h
® hss8HostDriver.h
® hss8Controllfc.h

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 12 of 51

6.2.1 Create Device
Function :
Purpose :
Arguments :
<num_args>

<dev_id>

<buffer_size>

Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8_PCI_INIT_FAIL
HSS8_MEM_ALLOC_FAILED
HSS8_DEVICE_NOT_FOUND
HSS8_MEM_INVALID_ADDRESS
HSS8_MEM_EEPROM_BUSY

hss8Create_device

Create and initialise the HSS8 device specific structures.

HSS8_POWER_ON_SELFTEST_FAIL -

The number of arguments to follow. Needs to be at least one
(dev_id).

Device ID on the PCl bus. The HSS8 device in the lowest PCI
slot :

<dev_id> =0,

next HSS8 device :

<dev_id> =1, etc.

Maximum RX and TX buffer size for specific port (optional).
One of HSS8 2K, HSS8 4K, HSS8 8K, HSS8 16K or
HSS8 32K. If not specified, the default size is HSS8 2K.

On success.

Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

PCl initialisation failed.

If HSS8 device structure could not be created in memory.

If HSS8 device <dev_id> was not found on the PCI bus.

If the HSS8 device PCI address was not valid.

If HSS8 device could not read version number from
EEPROM.

If the POST failed.

hss8Status hss8Create_device(hss8ArgType num_args, -..);

Note : This function has to be called (once per device) before any other function call to the specified device

will be valid.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 13 of 51

6.2.2 Destroy Device

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8_PCI_INIT_FAIL
HSS8_ERROR

hss8Destroy_device

Destroy the HSS8 device specific structures.

The number of arguments to follow. Needs to be at least one
(dev_id).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

On success.

Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

PCl initialisation failed.

Device has already been destroyed.

hss8Status hss8Destroy device(hss8ArgType num_args, ---.);

Note : After this function is called, no other function call to the specified device will be valid, except for

hss8Create_device(..).

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 14 of 51

6.2.3 Set Port Configuration

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

<port_id>
<p_info>

Returns :

HSS8_OK
HSS8_PCI_INIT_FAIL
HSS8_ERROR
HSS8_INVALID_PARAM

HSS8_PORT_NOT_INSTALLED
HSS8_DEVICE_BUSY
HSS8_DEVICE_NOT_RESPONDING

hss8Set_port_config

Set port protocol and protocol configuration.

The number of arguments to follow. Needs to be at least three
(dev_id, port_id, p_info).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

Port to configure.

Pointer to information struct (hss8Protocolinfo) used for
configuration.

On success.

PCl initialisation failed.

If the Tx/Rx tasks have not been destroyed.

Invalid <dev_id> or <port_id> supplied or the function has been
called with the incorrect number of variables.

If the port does not exist.

If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

HSS8 INCORRECT_PARAM_COMBINATION

If an incorrect parameter combination was selected in the
protocol structure.

hss8Status hss8Set port_config(hss8ArgType num _args, -...);

Note: The <p_info> pointer must point to a valid hss8Protocolinfo structure with all protocol information set
as required. If only a few items need to change, the hss8Get_port_config(..) function should be used

to fill in the rest of the structure.

Warning : Do not call this function while sending or receiving data as this may result in data loss.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 15 of 51

6.2.4 Get Port Configuration

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

<port_id>
<p_info>

Returns :

HSS8_OK
HSS8_ERROR
HSS8_INVALID_PARAM

HSS8_PORT_NOT_INSTALLED
HSS8 DEVICE_BUSY
HSS8_DEVICE_NOT_RESPONDING

hss8Get_port_config

Get port protocol and protocol configuration.

The number of arguments to follow. Needs to be at least three
(dev_id, port_id, p_info).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

Port to get configuration info from.

Pointer to information struct (hss8Protocolinfo) used for
configuration.

On success.

If the Tx/Rx tasks have not been destroyed.

Invalid <dev_id> or <port_id> supplied or the function has been
called with the incorrect number of variables.

If the port does not exist.

If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

hss8Status hss8Get_port_config(hss8ArgType num _args, -...);

Note : The <p_info> pointer must point to an existing hss8Protocolinfo structure.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 16 of 51

6.2.5 Open Port
Function :
Purpose :
Arguments :
<num_args>

<dev_id>

<port_id>
<tx_/rx_/clk_priority>

<fp_options>

Returns :

HSS8_OK
HSS8_ERROR
HSS8_INVALID_PARAM

HSS8 _PORT_NOT_INSTALLED
HSS8_PORT_NOT_CONFIGURED
HSS8_DEVICE_BUSY
HSS8_DEVICE_NOT_RESPONDING

HSS8_MEM_ALLOC_FAILED

hss80pen_port

Open specified port for send and receive.

The number of arguments to follow. Needs to be at least five
(dev_id, port_id, tx_priority, rx_priority, clk_priority).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

Port to open for send and receive.

Priority of the send, receive and clock detection task servicing
this port.

Floating point enable for send, receive and clock detect task :
HSS8_TX_TASK_FP_ENABLE,
HSS8_RX_TASK_FP_ENABLE,

HSS8 CLK_TASK FP_ENABLE.

On success.

If opening of port failed.

Invalid <dev_id> or <port_id> supplied or the function has been
called with the incorrect number of variables.

If the port does not exist.

If an ‘Open' is attempted on a port before configuring the port.
If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

If failed to create semaphore or spawn tasks.

hss8Status hss80pen_port(hss8ArgType num_args, --.);

Note : This function must be called prior to attempting to send or receive on the specified port. Opening a
port spawns a receive, send and clock detect task for that specific port. The priority of these tasks is

specified by the user.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 17 of 51

6.2.6 Close Port
Function :
Purpose :
Arguments :
<num_args>

<dev_id>

<port_id>
Returns :
HSS8 OK
HSS8 ERROR
HSS8 INVALID_PARAM

HSS8_PORT_NOT_INSTALLED
HSS8_DEVICE_BUSY

hss8Close_port

Close specified port for send and receive.

- The number of arguments to follow. Needs to be at least two
(dev_id, port_id).

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id>=0,
next HSS8 device :
<dev_id> =1, etc.

- Port to close for send and receive.

- On success.

- If opening of port failed or Rx/Tx tasks have not been destroyed.

- Invalid <dev_id> or <port_id> supplied or the function has been
called with the incorrect number of variables.

- If the port does not exist.

- If no PCI buffer is available.

HSS8 DEVICE_NOT_RESPONDING - Ifthe HSS8 control block could not be accessed within a certain

time.

hss8Status hss8Close port(hss8ArgType num_args, --.);

Note : Closing a port a second time has no effect and still returns HSS8 OK, since the port was already

successfully closed.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 18 of 51

6.2.7 Send Data
Function :
Purpose :

Arguments :
<num_args>

<dev_id>

<port_id>
<chan_id>

<nr_bytes>
<p_data>

Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8_PORT_NOT_INSTALLED
HSS8_PORT_NOT_OPEN
HSS8_DEVICE_BUSY
HSS8_DEVICE_NOT_RESPONDING

hss8Send_data

Send data over the specified port.

The number of arguments to follow. Needs to be at least five
(dev_id, port_id, chan_id, nr_bytes, p_data).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id> =0,

next HSS8 device :

<dev_id> =1, etc.

Port on which data must be sent.

Channel on which data must be sent. If a port has only one
channel, <chan_id> = 0 (not currently implemented).

Number of bytes to send.

Pointer to buffer with at least <nr_bytes> bytes of data.

On success.

Invalid <dev_id>, <port_id>, <chan_id>, <nr_bytes> or
<p_data> supplied or the function has been called with the
incorrect number of variables.

If the port does not exist.

If the port is not yet open.

If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

hss8Status hss8Send_data(hss8ArgType num_args, --.);

Note : The port must be opened before attempting to send data over it.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 19 of 51

6.2.8 Add Call-back
Function :
Purpose :
Arguments :
<num_args>

<dev_id>

<cb_type>

<callback>
<user_id>
Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8_MEM_ALLOC_FAILED

hss8Add_callback

Add a user defined Call-back routine.

The number of arguments to follow. Needs to be at least four
(dev_id, cb_type, callback, user_id).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

Call-back type, one of : HSS8_CB_ON_SEND_BEGIN,
HSS8_CB_ON_SEND_DONE,

HSS8 CB_ON_RECEIVE_DONE,
HSS8_CB_ON_CLOCK_DETECT.

User function.

User identifier. This identifier will be passed to the Call-back
function when it is called.

On success.

Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

If HSS8 Call-back node could not be created in memory.

hss8Status hss8Add_callback(hss8ArgType num_args, ...);

Four Call-backs are provided for user notification from the software driver :

e HSS8 CB_ON_SEND _BEGIN :
e HSS8 CB_ON_SEND_DONE :

e HSS8 CB_ON_RECEIVE_DONE :

e HSS8 CB_ON_CLOCK_DETECT:

This Call-back will be called as soon as the data has been
handed over to the software driver for sending.

This Call-back will be called when all the data for a given send
has been sent by the software driver.

This Call-back will be called when a block of data has been
received by the software driver. The user must add at least one of
these Call-backs to receive data.

This Call-back will be called when a clock signal has been
detected on a port and only if the port has been instructed to
detect a clock signal, e.g. calling the function hss8Clock_detect().

Only one Call-back for each above type per device is recommended. The Call-back function receives the
portid, such that the user can distinguish which port triggered the Call-back. More than one Call-back function
may be used, in which case the Call-backs will be called in the sequence they were added.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 20 of 51

6.2.9 Remove Call-back

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

<cb_type>

<callback>
<user_id>
Returns :

HSS8_OK
HSS8_INVALID_PARAM

hss8Remove_callback

Remove a user defined Call-back routine.

- The number of arguments to follow. Needs to be at least four
(dev_id, cb_type, callback, user_id).

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id>=0,
next HSS8 device :
<dev_id> =1, etc.

- Call-back type, one of : HSS8 CB_ON_SEND_BEGIN,
HSS8 CB_ON_SEND_DONE,
HSS8 CB_ON_RECEIVE_DONE,
HSS8 CB_ON_CLOCK DETECT.

- User function to remove.

- User identifier. This identifier must be the same as the one
passed to hss8Add_callback.

- On success.
- Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

hss8Status hss8Remove_cal lback(hss8ArgType num_args, ...);

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 21 of 51

6.2.10 Detecting an Active Clock Signal on Ports

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

<port_id>
Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8 PORT_NOT_INSTALLED
HSS8 DEVICE_BUSY

hss8Clock_detect

Set up a port to detect when a clock signal becomes active.

- The number of arguments to follow. Needs to be at least two
(dev_id, port_id).

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id>=0,
next HSS8 device :
<dev_id> =1, etc.

- Port on which to detect clock signal.

- On success.

- Invalid <dev_id> or <port_id> supplied or the function has been
called with the incorrect number of variables.

- If the port does not exist.

- If no PCI buffer is available.

HSS8 DEVICE_NOT_RESPONDING - Ifthe HSS8 control block could not be accessed within a certain

time.

hss8Status hss8Clock_detect(hss8ArgType num_args, -..);

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 22 of 51

6.2.11 Print Out Current Host Software Version Number

Function : hss8Version_print

Purpose : To obtain the current version number of the software driver and
firmware software. This function essentially calls
hss8Bit_getstruct(..) and prints out the contents of the
hss8BoardBitinfo struct. See paragraph 6.2.13.

Arguments :
<num_args> -

<dev_id> -

Returns :

HSS8_OK -
HSS8_INVALID_PARAM -

HSS8_DEVICE_BUSY -
HSS8 DEVICE_NOT_RESPONDING -

The number of arguments to follow. Needs to be at least one
(dev_id).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id> =0,

next HSS8 device :

<dev_id> =1, etc.

On success.

Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

hss8Status hss8Version_print(hss8ArgType num_args, -..);

Note : This function can only be used after a call to hss8Create_device(..).

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 23 of 51

6.2.12 Print Out Current Embedded Software Version Number

Function : hss8Firmware_version
Purpose : Return the firmware version number stored in the EEPROM.
Arguments :
<dev_id> - Dlevice ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id> =0,
next HSS8 device :
<dev_id> =1, etc.
<version> - Return value for version number :
version*100 + revision*10 + beta.

Returns :
HSS8 OK - On success.
HSS8_INVALID_PARAM - Invalid <dev_id> supplied.
HSS8 DEVICE_NOT_FOUND - If HSS8 device <dev_id> was not found on the PCI bus.
HSS8 MEM_INVALID_ADDRESS - If the HSS8 device PCI address was not valid.
HSS8 MEM_EEPROM_BUSY - If the HSS8 device could not read version number from

EEPROM.

hss8Status hss8Firmware_version(hss8Deviceld dev_id, hss8UINT32 *version);

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 24 of 51

6.2.13 HSS8 BIT Structures

The following structures define the HSS8 BIT variables (defined in hss8Controlifc.h) :
BIT Structures :

struct hss8BoardBitInfoStruct

{
hss8UINT32 board_number;
hss8UINT32 firmware_version;
hss8UINT32 firmware_revision;
hss8UINT32 firmware_beta;
char firmware_creation_date[30];
};

typedef struct hss8BoardBitInfoStruct hss8BoardBitinfo;

struct hss8SendBitlnfoStruct

{
hss8Count nr_accepted;
hss8Count nr_rejected;
hss8Count nr_errors;
hss8Count nr_sent;
hss8Count nr_bytes accepted;
hss8Count nr_bytes rejected;
hss8Count nr_bytes sent;

};

typedef struct hss8SendBitlnfoStruct hss8SendBitinfo;

struct hss8ReceiveBitInfoStruct

{
hss8Count nr_buffers_busy;
hss8Count nr_received;
hss8Count nr_bytes received;
hss8Count nr_errors;

}:

typedef struct hss8ReceiveBitInfoStruct hss8ReceiveBitinfo;
Main BIT Structure :

struct hss8BitlnfoStruct

{
hss8BoardBitInfo board bit;
hss8SendBitInfo tx_scc_bit[HSS8 HW_NR_SCC];
hss8ReceiveBitInfo rx_scc_bit[HSS8 HW NR_SCC];
hss8SendBitInfo tx_smc bit[HSS8 HW NR_SMC];
hss8ReceiveBitInfo rx_smc_bit[HSS8 HW NR_SMC];
33

typedef struct hss8BitInfoStruct hss8BitInfo;

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 25 of 51

Three functions give access to the HSS8 BIT structures :

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

<bit_info>
Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8 DEVICE_BUSY

hss8Bit_getstruct

To obtain the latest BIT variables.

- The number of arguments to follow. Needs to be at least two
(dev_id, bit_info).

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id>=0,
next HSS8 device :
<dev_id> =1, etc.

- Pointer to hss8BitInfo struct.

- On success.

- Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

- If no PCI buffer is available.

HSS8 DEVICE_NOT_RESPONDING - Ifthe HSS8 control block could not be accessed within a certain

time.
hss8Status hss8Bit_getstruct(hss8ArgType num _args, -..);
Function : hss8Bit_report
Purpose : To display each port's statistics.
Arguments :
<num_args> - The number of arguments to follow. Needs to be at least one
(dev_id).
<dev_id> - Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id> =0,
next HSS8 device :
<dev_id> =1, etc.
Returns :
HSS8 OK - On success.

HSS8_INVALID_PARAM

HSS8 DEVICE_BUSY

- Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.
- If no PCI buffer is available.

HSS8 DEVICE_NOT_RESPONDING - Ifthe HSS8 control block could not be accessed within a certain

time.

hss8Status hss8Bit_report(hss8ArgType num_args, --.);

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 26 of 51

Function :

Purpose :

Arguments :
<num_args>

<dev_id>

Returns :

HSS8_OK
HSS8_INVALID_PARAM

HSS8_DEVICE_BUSY
HSS8_DEVICE_NOT_RESPONDING

hss8Bit_clear

To clear each port's counters.

The number of arguments to follow. Needs to be at least one
(dev_id).

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id> =0,

next HSS8 device :

<dev_id> =1, etc.

On success.

Invalid <dev_id> supplied or the function has been called with
the incorrect number of variables.

If no PCI buffer is available.

If the HSS8 control block could not be accessed within a certain
time.

hss8Status hss8Bit_clear(hss8ArgType num_args, .--);

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 27 of 51

6.2.14 Enable / Disable POST

Function :
Purpose :
Arguments :

<dev_id>

<test_enable>

Returns :

HSS8_OK
HSS8_INVALID_PARAM
HSS8_DEVICE_NOT_FOUND
HSS8_MEM_INVALID_ADDRESS
HSS8_MEM_EEPROM_BUSY

hss8Post_enable

Enable / disable selected POSTSs.

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id> =0,
next HSS8 device :
<dev_id> =1, etc.
- One or all of the following ORed together :
HSS8 POST _RAM_DATA_ENABLE,
HSS8 POST_RAM_ADDR_ENABLE,
HSS8 POST_RAM_DEV_ENABLE,
HSS8 POST_KERNEL_CRC_ENABLE.

- On success.

- Invalid <dev_id> supplied.

- If HSS8 device <dev_id> was not found on the PCI bus.
- If the HSS8 device PCI address was not valid.

- If the HSS8 device could not write to EEPROM.

hss8Status hss8Post_enable(hss8Deviceld dev_id, hss8UINT8 test_enable);

Note : This function may be called without calling hss8Create_device(..) first.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 28 of 51

6.2.15 Return POST Status

Function :
Purpose :
Arguments :

<dev_id>

<status>

Returns :

HSS8_OK
HSS8_INVALID_PARAM
HSS8_DEVICE_NOT_FOUND
HSS8_MEM_INVALID_ADDRESS
HSS8_MEM_EEPROM_BUSY

hss8Post_status

Return POST status or error code.

- Device ID on the PCI bus. The HSS8 device in the lowest PCI

slot :

<dev_id> =0,

next HSS8 device :
<dev_id> =1, etc.

- Byte returning the error code of the POST.One of :

HSS8_OK
HSS8_EEPROM_UPDATE

HSS8 EEPROM_ERROR

HSS8_RAM_DATA_ERROR
HSS8_RAM_ADDR_ERROR
HSS8_RAM_DEVICE_ERROR
HSS8_FLASH_MAGIC_ERROR

-On success.

-EEPROM was corrupt
and was reprogrammed.
-EEPROM read / write
error.

-RAM databus error.
-RAM addressbus error.
-RAM device error.

-Flash magic number
corrupt.

HSS8_FLASH_KERNEL_CRC_ERROR

-Flash CRC error.

HSS8_SLAVE_POWERQUICC_II_FAIL

- On success.
- Invalid <dev_id> supplied.

-Second PowerQUICC I
processor failed to start

up.

- If HSS8 device <dev_id> was not found on the PCI bus.
- If the HSS8 device PCI address was not valid.
- If the HSS8 device could not read status from EEPROM.

hss8Status hss8Post_status(hss8Deviceld dev_id, hss8UINT8 *status);

Note : This function may be called without calling hss8Create_device(..) first.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 29 of 51

6.2.16 Return Adapter Type

Function :
Purpose :
Arguments :

<dev_id>

<adapter_type>
Returns :

HSS8_OK
HSS8_INVALID_PARAM
HSS8_DEVICE_NOT_FOUND
HSS8_MEM_INVALID_ADDRESS
HSS8_MEM_EEPROM_BUSY

hss8Adapter_type

Return adapter type : either 4-Channel or 8-Channel.

- Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :
<dev_id> =0,
next HSS8 device :
<dev_id> =1, etc.
- Byte returning the adapter type : either 4 or 8.

- On success.

- Invalid <dev_id> supplied.

- If HSS8 device <dev_id> was not found on the PCI bus.
- If the HSS8 device PCI address was not valid.

- If the HSS8 device could not read status from EEPROM.

hss8Status hss8Adapter_type(hss8Deviceld dev_id, hss8UINT8 *adapter_type);

Note : This function may be called without calling hss8Create_device(..) first.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 30 of 51

6.2.17 Set PCI Base Address

Function :

Purpose :

Arguments :

<dev_id>

<addr>
Returns :

HSS8_OK
HSS8_INVALID_PARAM
HSS8_DEVICE_BUSY
HSS8_ERROR

hss8Set_pci_base

This function is used to set the PCI base address used by the
adapter’s firmware for the PCI reverse mapping (adapter to host).
A default value of 0x00000000 is assumed by the adapter at start-

up.

Device ID on the PCI bus. The HSS8 device in the lowest PCI
slot :

<dev_id>=0,

next HSS8 device :

<dev_id> =1, etc.

A 32-bit value to be used as the new PCI base address.

On success.

Invalid <dev_id> supplied.

If no PCI buffer is available.

If firmware did not respond to configuration change.

hss8Status hss8Set pci_base(hss8Deviceld dev_id, hss8UINT32 addr);

Note : This function can only be used after a call to hss8Create_device(..).

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 31 of 51

6.2.18 Set Output Pin Values at Startup

Function :

Purpose :

Arguments :
<num_args>

<dev_id>
<enable mask>

Returns :

HSS8_OK
HSS8_INVALID_PARAM
HSS8_DEVICE_BUSY
HSS8_MEM_EEPROM_BUSY
HSS8_ERROR

hss8Set_init_config

The standard behaviour is that all line drivers are disabled (lines
are tristate) until the channel is initialised. In some cases it may be
desirable to force the lines to a known state as soon as the
adapter is powered up.

This function stores a value in the adapter EEPROM which is
used to selectively enable the line drivers at startup if required.

The default line idle state is a logic one.

- The number of arguments to follow. Needs to be at least one
(dev_id).

- Device ID on the PCI bus.

- 0x00 to OxFF, where 0x01 enables Channel A, 0x02 enables
Channel B, etc.

- On success.

- Invalid <dev_id> supplied.

- If no PCI buffer is available.

- EEPROM error.

- If firmware did not respond to configuration change.

hss8Status hss8Set_init_config(hss8ArgType num _args, -...);

Example :

From the VxWorks command line :

hss8Set_init_config(2,0,0x01) will program the adapter so that the line drivers for Channel A is enabled at
startup. A reboot is required to verify correct behaviour.

hss8Set_init_config(2,0,0) will program the adapter to default behaviour.

CCII/HSS8/6-MAN/002

2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 32 of 51

6.3 Software Driver Data Structures

Each protocol defines a protocol information structure used to configure a port with protocol specific options.
This paragraph details the information structures used by each protocol and explains the use and limitations
of every structure member.

hss8Protocolinfo Structure :
struct hss8ProtocollnfoStruct

hss8UINT32 protocol_id;

union

{
/* SCC info */
hss8UartInfo uart;
hss8HdlIcInfo hdlc;
hss8Bisynclinfo bisync;
/* SMC info */
hss8SmcUartinfo smc_uart;

} info;

h

typedef struct hss8ProtocollnfoStruct hss8Protocolinfo;
protocol_id :

HSS8_PROTOCOL_UART
HSS8_PROTOCOL_HDLC
HSS8_PROTOCOL_BISYNC
HSS8_PROTOCOL_SMC_UART

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 33 of 51

6.3.1 UART Mode
This protocol may only be used with the eight SCC channels : Channels A - H.

6.3.1.1 UART Protocol Information Structure

The following structure is defined in the file hss8Controlifc.h and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controlifc.h.

struct hss8UartInfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 flow_control;
hss8UINT32 stop_bits;
hss8UINT32 data _bits;
hss8UINT32 uart_mode;
hss8UINT32 freeze tx;
hss8UINT32 rx_zero_stop_bits;
hss8UINT32 sync_mode;
hss8UINT32 disable rx _while_ tx;
hss8UINT32 parity_enable;
hss8UINT32 rx_parity;
hss8UINT32 tx_parity;
hss8UINT32 diag_mode;
hss8UINT32 max_receive bytes;
hss8UINT32 max_idl;
hss8UINT32 brkcr;
hss8UINT32 parec;
hss8UINT32 frmec;
hss8UINT32 nosec;
hss8UINT32 brkec;
hss8UINT32 uaddril;
hss8UINT32 uaddr2;
hss8UINT32 toseq;
hss8UINT32 cc[8];
hss8UINT32 rccm;
hss8UINT32 clock_source;

};

typedef struct hss8UartinfoStruct hss8Uartinfo;

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 34 of 51

6.3.1.2 UART Protocol Information Structure Members
Name Options Description
baud_rate 1 200 - 1 Mbit/s (RS-232) Used to specify a single baud rate

1 200 - 16 Mbit/s (RS-422/485)
Any values permissible.

The equation to calculate the actual baud rate for asynchronous
UART is as follows :

Actual baud rate = 100 MHz / 16 / ROUND(100 MHz / 16 /
Desired baud rate)

The equation to calculate the actual baud rate for synchronous
UART is as follows :

Actual baud rate = 100 MHz / ROUND(100 MHz / Desired
baud rate)

Where ROUND() implies that the result is rounded to the nearest
integer.

for both transmitter and receiver.

Units in bit/s.

clock_source

HSS8_CLOCK_DEFAULT

BRGs [1-4].

BRG1 for Channels [A and E]
BRG2 for Channels [B and F]
BRG3 for Channels [C and G]
BRG4 for Channels [D and H]

HSS8_CLOCK_BRG1
HSS8_CLOCK_BRG2
HSS8_CLOCK_BRG3
HSS8_CLOCK_BRG4

HSS8 CLOCK_EXT1 External Clocks connected on

HSS8_CLOCK_EXT2 CLK_IN Pins.
HSS8_CLOCK_EXT3
HSS8_CLOCK_EXT4 Note :

HSS8_CLOCK_EXT[1-2]can

HSS8 CLOCK_DEFAULT
Rate

connects Baud
Generator (BRGs) [1 -

Channels [A - D] and Channels

[E - H].

For synchronous UART :

When transmit clock is set to

HSS8 CLOCK_BRG]I1 - 4], then
receive clock is still set to
HSS8_CLOCK_EXT[1 - 4] for

Channel [A - D] and [E - H].

For asynchronous UART :

Transmit and receive clocks can

be set to one
HSS8_CLOCK_BRG[1 -
HSS8_CLOCK_EXTI1 - 4].

Note :

There are four BRGs and four

4] to

of
4] or

only be wused for |clock input pins per
Channels [A and B] and | PowerQUICC Il processor.
[E and F], while
HSS8_ CLOCK_EXT[3-4]can
only be used for
Channels [C and D] and
[G and H].
flow control HSS8_UART_FLOW_NORMAL Normal or asynchronous flow
- HSS8 UART_FLOW_ASYNC control.
stop_bits HSS8_UART_STOP_BITS_ONE Number of full stop bits.
- HSS8 UART_STOP_BITS_TWO
data bits HSS8_UART_DATA_BITS_5 Number of data bits. Note only
- HSS8 _UART_DATA_BITS_6 channels [I - L] (i.e. the SMC
HSS8 UART_DATA_BITS_7 channels) support nine or more
HSS8 UART_DATA_BITS_8 data bits.
HSS8 UART_DATA_BITS_9
HSS8_UART_DATA_BITS_10
HSS8 _UART_DATA_BITS_11
HSS8 _UART_DATA_BITS_12
HSS8_UART_DATA_BITS_13
HSS8 UART_DATA_BITS_14
uart mode HSS8 _UART_MODE_NORMAL Select UART mode :
- HSS8_UART_MODE_MAN_MM Normal, manual multidrop or
HSS8 UART_MODE_AUTO_MM automatic multidrop mode.
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 35 of 51

Name

Options

Description

freeze tx

HSS8_UART_FREEZE_TX_NORMAL
HSS8_UART_FREEZE_TX_FREEZE

Pause (freeze) transmission.
Transmission continues when set
back to normal.

rx_zero_stop_bits

HSS8_UART_RX_ZERO_STOP_BITS_NORMAL
HSS8_UART_RX_ZERO_STOP_BITS_NONE

If set to none, the receiver
receives data without stop bits.

sync_mode

HSS8_UART_SYNC_MODE_ASYNC
HSS8_UART_SYNC_MODE_SYNC

Select asynchronous (normal) or
synchronous mode.

disable_rx_while_tx

HSS8_UART_DISABLE_RX_WHILE_TX_NORMAL
HSS8_UART_DISABLE_RX_WHILE_TX_DISABLE

Enable (normal) or disable
receiver while transmitting. Used
in multidrop mode to prevent
reception of own messages.

parity_enable

HSS8_UART_PARITY_NO_PARITY
HSS8_UART_PARITY_ENABLE

Enable or disable parity checking.

rx_parity, tx_parity

HSS8_UART_PARITY_ODD
HSS8_UART_PARITY_LOW

HSS8_UART_PARITY_EVEN
HSS8_UART_PARITY_HIGH

Receive and transmit parity.
Parity will only be checked if parity
is enabled.

diag_mode

HSS8_DIAG_NORMAL

Normal operation. Use this for
external loopback.

HSS8_DIAG_LOOPBACK

Internal loopback :

TxD and RxD are connected
internally. The value on RxD,
CTS and CD is ignored. The
transmitter and receiver share
the same clock source.

HSS8_DIAG_ECHO

The transmitter automatically
resends received data bit-by-
bit.

HSS8_DIAG_LOOPBACK_EC | Loopback and echo operation

HO

occur simultaneously.

Set diagnostic mode.

External loopback -
RS-422/485 :

Connect TxD+ to RxD+, TxD- to
RxD-, (CLK_OUT+ to CLK_IN+
and CLK_OUT- to CLK_IN- for
synchronous mode).

External loopback - RS-232 :
Connect TxD to RxD, (CLK_OUT
to CLK_IN for synchronous mode)
and RTS to CTS and CD.

max_receive_hytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function

hss8Create_device(..)).

Maximum number of bytes that
may be copied into a buffer.

max_idl

0 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function

hss8Create_device(..)).

Maximum idle characters. When a
character is received, the receiver
begins counting idle characters. If
max_idl idle characters are
received before the next data
character, an idle timeout occurs
and the buffer is closed. Thus,
max_idl offers a way to demarcate
frames.

To disable the feature, clear
max_idl. The bit length of an idle
character is calculated as follows :
1 + data length (5-9) + 1 (if parity
is used) + number of stop bits (1-
2). For 8 data bits, no parity, and 1
stop bit, the character length is 10
bits.

brkecr

0-2048

Number of break characters sent
by transmitter. For 8 data bits, no
parity, 1 stop bit, and 1 start bit,
each break character consists of
10 zero bits.

parec

0-65535

Number of received parity errors.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 36 of 51

Name Options Description
frmec 0-65535 Number of received characters
with framing errors.
nosec 0- 65535 Number of received characters
with noise errors.
brkec 0-65535 Number of break conditions on the

signal.

uaddrl, uaddr2

0x0000 - OxO00FF

Address in multidrop mode. Only
the lower 8 bits are used so the
upper 8 bits should be cleared.

Ob11------ 11111111 -

toseq 0x0000 - Ox00FF Transmit out of sequence
character (e.g. XON, XOFF).
cc[8] 0b00------ cceceeeee - Valid entry. Control character 1 to 8. These
0b10------ cceeeeee - Entry not valid and is not used. characters can be used to delimit
received messages.
—————— (6 bits) -
Reserved. Initialise to zero.
ccccccecc (8 bits) -
Defines control characters to be
compared to the incoming
character.
rccm Ob11------ 00000000 - Ignore these bits when comparing | Receive control character mask. A

incoming character.
Enable comparing the incoming
character to cc[n].

one enables comparison and a
zero masks it.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 37 of 51

6.3.2 HDLC Mode
This protocol may only be used with the eight SCC channels : Channels A - H.

6.3.2.1 HDLC Protocol Information Structure

The following structure is defined in the file hss8Controlifc.h and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controlifc.h.

struct hss8HdlIcInfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 crc_mode;
hss8UINT32 diag_mode;
hss8UINT32 max_receive_bytes;
hss8UINT32 max_frame_bytes;
hss8UINT32 address_mask;
hss8UINT32 addressl;
hss8UINT32 address2;
hss8UINT32 address3;
hss8UINT32 address4;
hss8UINT32 nr_flags between_frames;
hss8UINT32 retransmit_enabled;
hss8UINT32 flag_sharing_enabled;
hss8UINT32 rx_disabled_during tx;
hss8UINT32 bus_mode;
hss8UINT32 bus_mode_rts;
hss8UINT32 multiple_tx_ frames;
hss8UINT32 encoding_method;
hss8UINT32 preamble_length;
hss8UINT32 preamble_pattern;
hss8UINT32 send_idles_or_flags;
hss8UINT32 clock_source;

};

typedef struct hss8HdlclnfoStruct hss8HdlclInfo;

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 38 of 51

6.3.2.2 HDLC Protocol Information Structure Members
Name Options Description
baud rate 1200 - 1 Mbit/s (RS-232) Used to specify a single baud
- 1200 - 16 Mbit/s (RS-422/485) rate for both transmitter and
receiver.
Any values permissible.
Units in bit/s.
The equation to calculate the actual baud rate for FMO/1,
Manchester and Diff. Manchester is as follows :
Actual baud rate = 100 MHz / 16 / ROUND(100 MHz
/ 16 / Desired baud rate)
The equation to calculate the actual baud rate for NRZ/NRZI is as
follows :
Actual baud rate = 100 MHz / ROUND(100 MHz /
Desired baud rate)
Where ROUND() implies that the result is rounded to the nearest
integer.
clock source HSS8_CLOCK_DEFAULT HSS8_CLOCK_DEFAULT
- connects BRGs [1 - 4] to
Channels [A - D] and
Channels [E - H].
For NRZ/NRZI :
When transmit clock is set to
HSS8_CLOCK_BRG]1 - 4], then
BRGs [1-4]. receive clock is still set to
HSS8_CLOCK_BRG1 BRG1 for Channels [A and E] HSS8_CLOCK_EXT[1 - 4] for
HSS8_ CLOCK_BRG2 BRG2 for Channels [B and F] Channels [A - D] and [E - H].
HSS8_CLOCK_BRG3 BRG3 for Channels [C and G]
HSS8 CLOCK_BRG4 BRG4 for Channels [D and H] For FMO/1, Manchester and
Diff. Manchester :
Transmit and receive clocks can
be set to one of
HSS8_CLOCK_EXT1 External Clocks connected on HSS8_CLOCK_BRGI[1 - 4] or
HSS8_CLOCK_EXT2 CLK_IN Pins. HSS8_CLOCK_EXT[1 - 4].
HSS8_CLOCK_EXT3
HSS8 CLOCK_EXT4 Note : Note :
HSS8_CLOCK_EXT[1-2]can | There are four BRGs and four
only be used for clock input pins per
Channels [A and B] and PowerQUICC Il processor.
[E and F], while
HSS8_CLOCK_EXT[3 - 4] can
only be used for
Channels [C and D] and
[G and H].
crc mode HSS8_HDLC_CRC_MODE_16_BIT HDLC CRC mode.
- HSS8 _HDLC_CRC_MODE_32_BIT

CCII/HSS8/6-MA

N/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 39 of 51

Name

Optio

ns

Description

diag_mode

HSS8_DIAG_NORMAL

Normal operation. Use this for
external loopback.

HSS8_DIAG_LOOPBACK

Internal loopback :

TxD and RxD are connected
internally. The value on RxD,
CTS and CD s ignored. The
transmitter and receiver share
the same clock source.

HSS8_DIAG_ECHO

The transmitter automatically
resends received data bit-by-bit.

HSS8_DIAG_LOOPBACK_EC
HO

Loopback and echo operation
occur simultaneously.

Set diagnostic mode.

External
RS-422/485 :
Connect TxD+ to RxD+, TxD- to
RxD-, (CLK_OUT+ to CLK_IN+
and CLK_OUT- to CLK_IN- for
synchronous mode).

loopback -

External loopback - RS-232:
Connect TxD to RxD, (CLK_OUT
to CLK_IN for synchronous
mode) and RTS to CTS and CD.
Set diagnostic mode.

For synchronous mode :
see encoding_method.

max_receive_bytes

1to (2 048 - CRC bytes (2 or 4)) (default) or up to (32 kBytes - CRC
bytes (2 or 4)), depending on how many bytes have been allocated
to the RX and TX buffers (See function hss8Create_device(..)).

Maximum number of bytes to
receive before closing buffer. Set
equal to max_frame_bytes.

max_frame_bytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function

hss8Create_device(..)).

Maximum number of bytes per
frame. Set equal to the number
of data bytes plus the number of
CRC bytes (either two or four)
per frame.

address_mask

0x0000 - OXFFFF

HDLC address mask. A one
enables comparison and a zero
masks it.

address1l, address?2,
address3, address4

0x0000 - OXFFFF

Four address registers for
address recognition. The SCC
reads the frame address from the
HDLC receiver, compares it
with the address registers, and
masks the result with
address_mask.

For example, to recognize a
frame that begins OX7E (flag),
0x68, 0XAA, using 16-bit address
recognition, the address registers
should contain O0xAA68 and
address_mask should contain
OXFFFF. For 8-bit addresses,
clear the eight high-order
address bits.

nr_flags_between frames [0-15 Minimum number of flags
- - - between or before frames.
retransmit_enabled TRUE Enable re-transmit.
- FALSE
flag_sharing_enabled TRUE Enable flag sharing.
- - FALSE
rx_disabled_during_tx TRUE Disable receive during transmit.
- - - FALSE
bus_mode TRUE Enable bus mode.
- FALSE
bus_mode_rts TRUE Enable special RTS operation in
B B FALSE HDLC bus mode.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 40 of 51

Name Options Description

multiple_tx_frames TRUE Enable multiple frames in
- FALSE transmit FIFO.
encoding_method HSS8 HDLC_ENCODING_METHOD_NRZ RX / TX encoding method. NRZ
- HSS8 HDLC_ENCODING_METHOD_NRZI_MARK and NRZI use no DPLL. FMO0/1,
HSS8_HDLC_ENCODING_METHOD_NRZI_SPACE Manchester and Diff_Manchester
HSS8_HDLC_ENCODING_METHOD_FMO use the DPLL for clock
HSS8_HDLC_ENCODING_METHOD_FM1 recovery.The clock rate is 16x
HSS8 HDLC_ENCODING_METHOD_MANCHESTER when the DPLL is used.
HSS8 HDLC_ENCODING_METHOD_DIFF_MANCHESTER
preamble_length HSS8_DPLL_PREAMBLE_LENGTH_O Determines the length of the
- HSS8_DPLL_PREAMBLE_LENGTH_8 preamble pattern.

HSS8_DPLL_PREAMBLE_LENGTH_16
HSS8_DPLL_PREAMBLE_LENGTH_32
HSS8_DPLL_PREAMBLE_LENGTH_48
HSS8_DPLL_PREAMBLE_LENGTH_64
HSS8_DPLL_PREAMBLE_LENGTH_128

preamble_pattern HSS8_DPLL_PREAMBLE_PATTERN_00 Determines what bit pattern
- HSS8 DPLL_PREAMBLE_PATTERN_10 precedes each TX frame.

HSS8_DPLL_PREAMBLE_PATTERN_01
HSS8_DPLL_PREAMBLE_PATTERN_11

send_idles_or_flags HSS8_HDLC_SEND_IDLES Send either idles or flags/syncs
- - HSS8_HDLC_SEND_FLAGS_SYNCS between frames as defined by
the protocol. For HDLC the flag
is defined as Ox7E. NRzI
encoding methods may only be
used with flags/syncs.

6.3.2.3 Preamble Requirements

Decoding Method Preamble Pattern Minimum Preamble Length
Required
NRZI Mark All zeros 8-hit
NRZ| Space All ones 8-bit
FMO All ones 8-bit
FM1 All zeros 8-bit
Manchester 101010...10 8-hit
Differential Manchester All ones 8-bit
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 41 of 51

6.3.3 BISYNC Mode
This protocol may only be used with the eight SCC channels : Channels A - H.

6.3.3.1 BISYNC Protocol Information Structure

The following structure is defined in the file hss8Controlifc.h and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controlifc.h.

struct hss8BisyncinfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 clock_source;
hss8UINT32 max_receive bytes;
hss8UINT32 min_no_sync_pairs;
hss8UINT32 crc_select;
hss8UINT32 receive_bcs;
hss8UINT32 rx_transparant_mode;
hss8UINT32 reverse_data;
hss8UINT32 disable _rx_while_tx;
hss8UINT32 rx_parity;
hss8UINT32 tx_parity;
hss8UINT32 diag_mode;
hss8UINT32 crcc;
hss8UINT32 prcrc;
hss8UINT32 ptcrc;
hss8UINT32 parec;
hss8UINT32 bsync;
hss8UINT32 bdle;
hss8UINT32 cc[8];
hss8UINT32 rccm;
hss8UINT32 sync;
hss8UINT32 syn_length;
hss8UINT32 send_idles_or_flags;

33

typedef struct hss8BisynclnfoStruct hss8Bisynclnfo;

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 42 of 51

6.3.3.2

BISYNC Protocol Information Structure Members

Name

Options

Description

baud_rate

1200 - 1 Mbit/s (RS-232)
1200 - 16 Mbit/s (RS-422/485)

Any values permissible.

The equation to calculate the actual baud rate for BISYNC is as

follows :

Actual baud rate = 100 MHz / ROUND(100 MHz /

Desired baud rate)

Where ROUND() implies that the result is rounded to the nearest

integer.

Used to specify a single baud rate for
both transmitter and receiver.

Units in bit/s.

clock _source

HSS8_CLOCK_DEFAULT

HSS8_CLOCK_BRG1
HSS8_CLOCK_BRG2
HSS8_CLOCK_BRG3
HSS8_CLOCK_BRG4

BRGs [1 - 4].

BRG1 for Channels [A and E]
BRG2 for Channels [B and F]
BRG3 for Channels [C and G]
BRG4 for Channels [D and H]

HSS8_CLOCK_EXT1
HSS8_CLOCK_EXT?2
HSS8_CLOCK_EXT3
HSS8_CLOCK_EXT4

External Clocks connected on
CLK_IN Pins.

Note :
HSS8_CLOCK_EXT[L - 2]
can only be wused for
Channels [A and B] and
[E and F], while
HSS8_CLOCK_EXT[3 - 4]
can only be wused for
Channesl [C and D] and
[G and H].

HSS8_CLOCK_DEFAULT
connects BRGs [1 - 4] to
Channels [A - D] and Channels [E - H].

When transmit clock is set to
HSS8 CLOCK_BRG[1 - 4], then
receive clock is still set to
HSS8_CLOCK_EXT[1 - 4] for
Channels [A - D] and [E - H].

Note :

There are four BRGs and four clock
input pins per PowerQUICC I
processor.

max_receive_hytes

1 to (2 048 - 2 CRC bytes) (default) or up to (32 kBytes - 2 CRC
bytes), depending on how many bytes have been allocated to the RX
and TX buffers (See function hss8Create_device(..)).

Maximum number of bytes to receive
before closing buffer.

min_no_sync_pairs

0b0000 (0 pairs) -0b1111 (16 pairs)

Minimum number of SYN1-SYN2 pairs
sent between or before messages. The
entire pair is always sent, regardless of
the syn_length variable.

crc select HSS8_BISYNC_CRC_MODE_16 CRC selection.

- HSS8_BISYNC_CRC_MODE_LRC 1. CRC16 (X16 + X15+ X2 + 1) :
Initialise prcrc and ptcrc to all zeros
or all ones.

2. LRC (sum check) :
For even LRC, initialise prcrc and
ptcrc to zeros, for odd LRC initialise to
ones.
receive bcs TRUE Enable Receive Block Check
- FALSE Sequence (BCS).
CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO02.WPD

Page 43 of 51

Name Options Description
rx_transparant_mode TRUE Enable Receiver transparent mode.
- - FALSE
FALSE :
Normal receiver mode with SYNC
stripping and control character
recognition.
TRUE :
Transparent receiver mode. SYNC's,
DLE’'s and control characters are
recognised only after the leading DLE
character. The receiver calculates the
CRC16 sequence even if it is
programmed to LRC while in
transparent mode. Initialize prcrc to
the CRC16 preset value before setting
rx_transparant_mode.
reverse data TRUE Enable Reverse data.
- FALSE
disable rx while tx TRUE Disable receiver while sending.
- - FALSE
rx_parity HSS8_BISYNC_PARITY_ODD Receive and transmit parity. Parity is
tx parity HSS8 BISYNC_PARITY_LOW ignored unless crc_select = LRC.
— HSS8_BISYNC_PARITY_EVEN
HSS8_BISYNC_PARITY_HIGH
diag_mode HSS8_DIAG_NORMAL Normal operation. Use this for | Set diagnostic mode.
- external loopback.
External loopback - RS-422/485 :
Connect TxD+ to RxD+, TxD- to RxD-,
HSS8_DIAG_LOOPBACK Internal loopback : CLK_OUT+ to CLK_IN+ and
TxD and RxD are connected | CLK_OUT- to CLK_IN-.
internally. The value on RxD,
CTS and CD is ignored. The | External loopback - RS-232:
transmitter and receiver share | Connect TxD to RxD, CLK_OUT to
the same clock source. CLK_IN and RTS to CTS and CD.
HSS8 DIAG_ECHO The transmitter automatically
resends received data bit-by-
bit.
HSS8 DIAG_LOOPBACK_ECHO | Loopback and echo operation
occur simultaneously.
crec 0 CRC constant value.
prcrc 0x0000 or Preset receiver / transmitter CRC16 /
ptcre OXFFFF LRC. These values should b_e presetto
all ones or zeros, depending on the
BCS used.
parec 0- 65535 Number of received parity errors.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 44 of 51

Name

Options

Description

bsync

0bv0000000ssSSSSSS

BISYNC SYNC register. Contains the
value of the SYNC character stripped
from incoming data on receive once
the receiver synchronizes to the data
using the SYN1- SYN2 pair.

V -

If v =1 and the receiver is not in hunt
mode when a SYNC character is
received, this character is discarded.

SSSSSsSss (8 hits) -

SYNC character. When using 7-bit
characters with parity, the parity bit
should be included in the SYNC
register value.

bdle

0bv0000000dddddddd

BISYNC DLE register. In transparent
mode, the receiver discards any DLE
character received.

v -

If v =1 and the receiver is not in hunt
mode when a DLE character is
received, this character is discarded.

dddddddd (8 bits) -
DLE character. This character tells the
receiver that the next character is text.

cc[8]

0b0Obh----- ccceceece -
Ob1bh-----cccccccc -

Valid entry.

Entry not valid and is not used.

Control characters 1 to 8.

----- (5 hits) -
Reserved. Initialise to zero.

b -
Block check sequence expected. A
maskable interrupt is generated after
the buffer is closed.

b=0:
The character is written into the
receive buffer and the buffer is closed.

b=1:

The character is written into the
receive buffer. The receiver waits for 1
LRC or 2 CRC bhytes and then closes
the buffer.

h-
Enables hunt mode when the current
buffer is closed.

h=0:

The BISYNC controller maintains
character synchronisation after closing
the buffer.

h=1:

The BISYNC controller enters hunt
mode after closing the buffer. When
b = 1, the controller enters hunt mode
after receiving LRC or CRC.

ccccccecc (8 hits) -

Defines control characters to be
compared to the incoming character.
When using 7-bit characters with
parity, include the parity bit in the
character value.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 45 of 51

Name

Options

Description

rcem Ob11------ 00000000 - Ignore these bits when comparing | Receive control character mask. Aone
incoming character. enables comparison and a zero masks
Ob11------ 11111111 - Enable comparing the incoming | it.
character to cc[n].
sync 0xssss (2 bytes) SYNC character :
Should be programmed with the sync
pattern.
syn_length HSS8 BISYNC_SYNL_8 HSS8_BISYNC_SYNL_8:

HSS8_BISYNC_SYNL_16

Should be chosen to implement
mono-sync protocol. The receiver
synchronizes on an 8-bit sync pattern
in sync.

HSS8 BISYNC_SYNL_16:
The receiver synchronizes on a 16-bit
sync pattern stored in sync.

send_idles_or_flags

HSS8_BISYNC_SEND_IDLES
HSS8_BISYNC_SEND_FLAGS_SYNCS

Send either idles or flags/syncs
between frames as defined by the
protocol. The flag character is equal to
sync.

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 46 of 51

6.3.4 SMC UART Mode

This protocol may only be used with the four SMC channels : Channels | - L.

6.3.4.1 SMC UART Protocol Information Structure

The following structure is defined in the file hss8Controlifc.h and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controlifc.h.

struct hss8SmcUartiInfoStruct

{
hss8UINT32 max_receive bytes;
hss8UINT32 max_idl;
hss8UINT32 data_bits;
hss8UINT32 stop_bits;
hss8UINT32 parity enable;
hss8UINT32 parity mode;
hss8UINT32 diag_mode;
hss8UINT32 baud_rate;

};

typedef struct hss8SmcUartinfoStruct hss8SmcUartinfo;

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 47 of 51

6.3.4.2 SMC UART Protocol Information Structure Members
Name Options Description
baud rate 1 200 - 115.2 kbit/s (RS-232/RS-422/485) Used to specify a single baud rate for
- both transmitter and receiver.
Any values permissible.
Units in bit/s.
The equation to calculate the actual baud rate for the SMC UART is as
follows :
Actual baud rate = 100 MHz / 16 / ROUND(100 MHz / 16
/ Desired baud rate)
Where ROUND() implies that the result is rounded to the nearest integer.
stop_hits HSS8_UART_STOP_BITS_ONE Number of full stop bits.
- HSS8 UART_STOP_BITS_TWO
data bits HSS8_UART_DATA_BITS_5 Number of data bits. Note only

HSS8_UART_DATA BITS_6
HSS8_UART DATA_BITS_7
HSS8_UART_DATA_BITS_8
HSS8_UART_DATA BITS_9
HSS8_UART_DATA BITS_10
HSS8_UART DATA_BITS_11
HSS8_UART_DATA BITS_12
HSS8_UART_DATA BITS_13
HSS8_UART_DATA BITS_14

Channels | - H (i.e. the SMC channels)
support nine or more data bits.

parity_enable

HSS8_UART_PARITY_NO_PARITY
HSS8_UART_PARITY_ENABLE

Enable or disable parity checking.

external loopback.

HSS8_DIAG_LOOPBACK Internal loopback :
TxD and RxD are connected
internally. The value on RxD is

ignored.

HSS8_DIAG_ECHO The transmitter automatically

resends received data bit-by-bit.

HSS8_DIAG_LOOPBACK_ECHO Loopback and echo operation

occur simultaneously.

parity_mode HSS8_UART_SMC_PARITY_ODD Receive and transmit parity. Parity will
- HSS8_UART_SMC_PARITY_EVEN only be checked if parity is enabled.
diag_mode HSS8_DIAG_NORMAL Normal operation. Use this for | Set diagnostic mode.

External loopback - RS-422/485 :
Connect TxD+ to RxD+ and TxD- to
RXD-.

External loopback - RS-232:
Connect TxD to RxD.

max_receive_bhytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many bytes
have been allocated to the RX and TX buffers (See function
hss8Create_device(..)).

Maximum number of bytes that may be
copied into a buffer.

max_idl

0 to 2 048 (default) or up to 32 kBytes, depending on how many bytes
have been allocated to the RX and TX buffers (See function
hss8Create_device(..)).

idle characters. When a
character is received, the receiver
begins counting idle characters. If
max_idl idle characters are received
before the next data character, an idle
timeout occurs and the buffer is closed.
Thus, max_idl offers a way to demarcate
frames.

To disable the feature, clear max_idl.
The bit length of an idle character is
calculated as follows :

1 + data length (5-14) + 1 (if parity is
used) + number of stop bits (1 - 2). For 8
data bits, no parity, and 1 stop bit, the
character length is 10 bits.

Maximum

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 48 of 51

Getting Started

Afterinstalling the HSS8 VxWorks Software Driver according to Paragraph 4, test the host software driver following
the test procedure given in hss8Test.txt.

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 49 of 51

8.1

8.2

8.3

8.4

8.5

Contact Details

Contact Person

Direct all correspondence and / or support queries to the Project Manager at C2I2 Systems.

Physical Address

C?J2 Systems
Real-Time House
Greenford Office Estate
Punters Way
Kenilworth

Cape Town

7708

South Africa

Postal Address

C22 Systems
P.O. Box 171
Rondebosch

7701

South Africa

Voice and Electronic Contacts

Tel : (+27) (0)21 683 5490
Fax : (+27) (0)21 683 5435
Email : info@ccii.co.za
Email : support@ccii.co.za
WWW http://www.ccii.co.za/

Product Support

Support on C2I2 Systems products is available telephonically between Monday and Friday from 09:00to 17:00 CAT.

Central African Time (CAT = GMT + 2).

CCII/HSS8/6-MAN/002

2015-09-18

Issue 1.6

CH8MANO02.WPD

Page 50 of 51

Annexure A

Making Changes to sysLib.c for x86

The PCI free memory space may need to be defined in the memory descriptor table. Consult the relevant reference manual
and obtain the upper address of the PCI memory. Allocate at least 5 MBytes of memory per HSS8 Adapter. Subtract that
amount from the upper address of the PCI memory, and use this value as the base of the PCI memory space.

Note : If there are other devices on the PCI bus, it may be necessary to allocate more memory.

Example : For 2 HSS8 Adapters, allocate 10 MBytes of memory. If the upper address of the PCI memory space is defined
as 0xFFF00000, then subtracting 10 MBytes gives a base address of :

O0xFFFO0000 - 0xA00000 = 0xFF500000.

Inthe PC 386/486/Pentium/Pentiumpro system-dependent library (sysLib.c), code (shown in bold text) needs to be added
to the memory descriptor table, sysPhysMembDesc]] :

#ifndef CPU_PCI_MEM_ADRS
#define CPU_PCI_MEM_ADRS OxFF500000 /* base of PCl MEM addr */
#endif

PHYS_MEM_DESC sysPhysMemDesc [] =

/* adrs and length parameters must be page-aligned (multiples of 4KB/4MB) */
#iT(YM_PAGE_SIZE == PAGE_SIZE_4KB)

/* lower memory */

/* vidéé-ram, etc */

/* uppé;-memory for OS */

/* uppé}-memory for Application */

/* PCI 1/0 space */

(void *) CPU_PCI_MEM_ADRS,

(void *) CPU_PCI_MEM_ADRS,

(0xA00000) ,

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE, VM_STATE_VALID | VM_STATE_WRITABLE |
VM_STATE_CACHEABLE_NOT

}.

/* entries for dynamic mappings - create sufficient entries */
DUMMY_MMU_ENTRY,
DUMMY_MMU_ENTRY,
DUMMY_MMU_ENTRY,

#else

CCII/HSS8/6-MAN/002 2015-09-18 Issue 1.6

CH8MANO2.WPD Page 51 of 51

