EX series

EXRM0808R/T USER'S GUIDE

 This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of Remote I/O module EXRM0808R/T.

***	Introduction	***
<u>EXRM0808</u> R		

- R: Relay output; T: Transistor output
- Output: 8 points
- Input: 8 points
- Remote I/O EX series
- This module converts data with PLC main unit by communication method.
- This module read X input status and store it to BFM#00, and output Y output status to external terminal.

**

Input Specifications

Item	DC input (Sink) NPN	DC input (Source) PNP
Circuit		
Input voltage	DC24V+10%, -15%	DC24V+10%, -15%
Input current	7mA / DC24V	7mA / DC24V
Impedance	3.3ΚΩ	3.3 ΚΩ
Response time	About 10 ms(X00~X07 High speed)	About 10 ms(X00~X07 High speed)
Input pattern	No voltage contact or NPN open collector	No voltage contact or PNP open collector
Circuit isolation	Photo coupler	Photo coupler
***	Output Specifi	cations ***

Output Specifications

Item	Relay output	Transistor output
Circuit		
Load voltage	Under AC250V DC30V	DC5V ~ 30V
Rated current	2A / 1 point	0.5A / 1 point
Rated capacity	100W	12W
Response time	About 10ms	Under 1 ms
Circuit isolation	Machine isolation	Photo coupler

•Note: Transistor output module is without high resistor 2.2K

24V FG 24G S/S X00 X01 X02 X03 X04 X05 X06 X07 Input

D+ D- C0 Y00 Y01 Y02 Y03 C1 Y04 Y05 Y06 Y07 Output

Set station no. of RSW2, RSW1:01~99 (can't set to 00) Bit0 (SW1-1: Data length) 0 = 7bit; 1 = 8 bitBit1 (SW1-2) 0= no parity ; 1= with parity Bit2 (SW1-3) 0= odd parity ; 1= even parity Bit3 (SW1-4) 0= 1 stop bit ; 1= 2 stop bit Bit5,4 (SW1-6,5) 00= 9600bps 01= 19200bps 10= 38400bps 11= 57600bps Bit6 (SW1-7) 0= computer link ; 1= Modbus When Bit6=0, Bit7=0 Computer Link Format 1 Computer Link Format 4 Bit7=1 When Bit6=1. Bit7=0 Modbus Ascii mode Bit7=1 Modbus Rtu mode

BFM No.	Content	Initial value
#0	X input relay status	
#1	Reserved	
#2	Reserved	
#3	Reserved	
#4	Y output relay status	
#5	Reserved	
#6	Detection of disconnection	0
#7	Reserved	

BFM#6: This value is defined by user (unit: ms). When value is 0, this function is disable.

Example: value=1000. If there is no communication data written in after 1000ms, I/O status will be cleared automatically.

EXRM0808R/T-edoc0610v100

LIYAN ELECTRIC INDUSTRIAL LTD.

TEL: 886-4-25613700 FAX: 886-4-25613408 WEBSITE: http://www.liyanplc.com E-MAIL: twlivan@ms16.hinet.net

*** Modbus Ascii mode ***

- ♦ Command code 03H, read N word
- EX.: Read 2 word from BFM#00 of station no. 01H continuously.

< command message >

3Ah	0′	01h 03h		00)h	00	Dh	00	Dh	02	2h	FA	۱h	0Dh	0Ah	
':'	'0'	'1'	'0'	'3'	'0'	·0' ·0' ·0' ·0'				'0'	'0'	'2'	'F'	'A'	CR	LF
S T X	A D R 1	A D R	C M D	C M D 0	ļ	Sta \ddi	art ess			W Cc	ord ount	1	CHK1	СНКО	E N D	E N D 0

Note: calculation of command message of CHK(check sum)

01H+03H+00H+00H+02H=06H

2's complement of 06H : FFH-06H+1=FAH

< response message >

S T X	A D R 1	A D R O	C M D 1	C M D 0	By Co	/te unt	E	Da BFM	ata 1#00)		Da BFN	ata 1#01	1	LRC CHK1	LRC CHK0	E N D	Η N D O
	'0'	'1'	'0'	'3'	'0'	'4'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'F'	'8'	CR (0D)	LF (0A)
3Ah	01	h	03	3h	04	1h	00)h	00)h	00)h	00)h	F8	3h	0Dh	0Ah

Note: calculation of response message of CHK(check sum)

01H+03H+04H+00H+00H+00H+00H=08H

2's complement of 08H : FFH-08H+1=F8H

• Command code 06H write one word

EX.: Write data 0084H to BFM#04 of station no. 01H.

< command message >

3Ah	01	01h 06h		3h	00	Dh	04	łh	00	Dh	84	1h	7′	lh	0Dh	0Ah
·.'	'0'	'1'	'0'	'6'	'0'	ʻ0' ʻ0' ʻ0' ʻ4'				'0'	'8'	'4'	'7'	'1'	CR	LF
S T X	A D R 1	A D R 0	C M D 1	C M D 0	Þ	Da \ddr	ta ess			Da Cor	ata nten	t	LRC CHK1	LRC	E N D 1	ШN D о

< response message >

S T X	A D R 1	A D R 0	C M D 1	C M D 0	ŀ	Da \ddr	ta ess			D Cor	ata nten	t	LRC CHK1	LRC CHK0	E N D 1	E N D 0
ʻ:'	'0'	'1'	'0'	'6'	'0'	'0'	'0'	'4'	'0'	'0'	'8'	'4'	'7'	'1'	CR	LF
3Ah	01	lh	06	Sh	00)h	04	h	00)h	84	h	7′	lh	0Dh	0Ah

CHK (check sum) description

Ascii mode use LRC (Longitudinal Redundancy Check) check sum. The calculation method of LRC check sum is that add up ADR to content of last data (only get binary from result), and get 2's complement result, then it is LRC check sum.

- Command code 10H write N word
- EX.: Write data 8765H and 4321H to BFM#05 and BFM#04 of station no. 01H

< command message >

3Ah	01	lh	1()h	00)h	04	lh	00)h	02	2h	04	1h	43	ßh	21	h
ʻ:'	'0'	'1'	'1'	(1) (0) (0) C C			'0'	'4'	'0'	'0'	'0'	'2'	'0'	'4'	'4'	'3'	'2'	'1'
S T X	A D R 1	A D R O	C M D 1	C∑D⊙	1	00h '0' '0' Sta Add			(Qua	ntity	,	By Co	/te unt	Th of	ne co BFI	onte M#C	nt 14

87	7h	65	ōh	95	ōh	0Dh	0Ah
'8'	'7'	'6'	'5'	'9'	'5'	CR	LF
Tł of	ne co FBF	onte M#C	ent)5	CHK1	CHK0	E N D 1	ENDO

< response message >

S T X	A D R 1	A D R 0	C M D 1	C M D 0	ļ	Sta \ddi	art ess		(Qua	ntity	/	CHK1	LRC CHK0	E N D 1	E N D 0
':'	'0'	'1'	'1'	'0'	'0'	'0'	'0'	'4'	'0'	'0'	'0'	'2'	'E'	'9'	CR	LF
3Ah	01	lh	10	Dh	00)h	04	h	00)h	02	h	E	9h	0Dh	0Ah

Exception response

In normal situation, Remote I/O device receive command message from Master Device, and send back a normal response message (exclude broadcast message). If because of communication error, Remote I/O is unable to receive correct message, or receive correct message but is unable to handle it, then it will send back an exception response to Master Device. (In the exception response, the most significant bit of the original command code is set to 1).

Following is communication command 06H and response of exception code 02H

< command message >

3Ah	01	lh	06	Sh	00	00h)h	00)h	00)h	F	9h	0Dh	0Ah
':'	'0'	'1'	'0'	'6'	'0'	·0' ·0' ·0' ·0'				'0'	'0'	'0'	'F'	'9'	CR	LF
S T X	A D R 1	A D R 0	C M D 1	CMDo	A	Sta \ddr	irt ess		Tŀ	ne co of c	onte lata	ent	LRC CHK1	LRC CHK0	E N D	E N D O

< response message >

S T X	A D R 1	A D R O	C M D 1	СМДо	code	Exception	CHK1	LRC CHK0	E N D 1	E N D O
ʻ:'	ʻ0'	'1'	'8'	'6'	'0'	'2'	'7'	'7'	CR	LF
3Ah	01	lh	86	Sh	02	2h	77	7h	0Dh	0Ah

Exception code list

Exception code	content					
01	False command code					
02	False data address					
03	False data value					
09	Check sum Error					
13	Receive buffer overflow					
14	Defective receive character (Ascii only)					
15	Parity error; overrun error, framing error					

*** Modbus Rtu mode ***

- Command code 03H; read N word
- EX.: Read 2 word from BFM#00 of station no. 01H continuously.

< command message >

	01h	03h	00h	00h	00h	02h	XXh	XXh	
STOP above 10ms	A D R	C M D	Sta Add	art ress	Wc Coi	ord unt	CRC CHK Low	CRC CHK High	STOP above 10ms

< response message >

STOP above 10ms	A D R	C M D	Byte Count	Da BFN	Data 3FM#00		ata 1#01	CRC CHK Low	CRC CHK High	STOP above 10ms
	01h	03h	04h	00h	00h	00h	00h	XXh	XXh	

Note : Calculation of CRC check sum

Rtu mode use CRC (Cyclical Redundancy Check) check sum. Calculation method as follows,

- (1) Input content is 16bit register of FFFH(CRC register) •
- (2) Use first byte of command message and lower byte of 16bit to do Exclusive OR operation, and store result to CRC register.
- (3) Move content of CRC register 1bit to the right. Maximum bit is filled 0.
- (4) Check value of CRC register's lowest bit. If it is 0, then repeat (3). If it is not 0, then use CRC register and A001H to do Exclusive OR operation, and store result to CRC register.
- (5) Repeat (3) and (4) until content of CRC register is moved 8 bit to the right. At this time, this byte is finished.
- (6) Repeat (2) to (5) to byte of next command message until all bytes are finished. Content of CRC register is check sum.
- (7) When sending CRC value, send lower bit first and then send high bit.
- ♦ Command code 06H write one word
- EX.: Write data 0084H to BFM#04 of station no. 01H.

< command message >

	01h	06h	00h	04h	00h	84h	XXh	XXh		
STOP above 10ms	A D R	C M D	St Add	art ress	Da Con	ata tent	CRC CHK Low	CRC CHK High	STOP above 10ms	

< response message >

STOP above 10ms	A D R	C M D	St Add	art ress	Da Con	ata tent	CRC CHK Low	CRC CHK High	STOP above 10ms
	01h	06h	00h	04h	00h	84h	XXh	XXh	

- Command code 10H write N word
- EX.: Write data 8765H and 4321H to BFM#05 and BFM#04 of station no. 01H

< command message >

	01h	10h	00h	04h	00h	02h	04h	43h	21h
STOP above 10ms	A D R	C M D	Sta Add	art ress	Qua	ntity	Byte Count	Con c BFN	tent of 1#04

87h	65h	XXh	XXh		
Content of BFM#05		CRC CHK Low	CRC CHK High	STOP above 10ms	

< response message >

 \succ

STOP above 10ms	A D R	C M D	Start Address		Qua	ntity	CRC CHK Low	CRC CHK High	STOP above 10ms
	01h	10h	00h	04h	00h	02h	XXh	XXh	

<< Protocol format of Computer link >> Format 1

<< Protocol format of Computer link >> Format 4

Note: About more detailed information, please refer to user's manual of Computer Link.